“Sur les caractéristiques des systémes de trois dinmeysBull. Sci. math. et Astrod (1873), 172-192.

On the characteristics of three-dimensional systems (1)

F. SUVAROFF

(Analysis made by the author)

Translated by D. H. Delphenich

In my paper “Sur les caractéristiques des systememdedimensions,” | assumed
(following the example of Riemann) that the line eletmeha system is equal to the
square root of a second-degree homogeneous function of theedifalsdX;, dX;, dXs
whose coefficients are functions of the varialdgsX,, Xs , in such a way that:

(1)  dS=A,dX2+ 2A1dX; dXo + A, dX3+ 2A13dX; dXs + 2803 dXo dXs + A, dX2.

The form of the function8y1, As2, ... will depend upon the choice of coordinates, as
well as the properties of the given three-dimensioystesn. Indeed, if:

(2) ds =a, d¢+ 2a12dx dx +a,, A+ 2853 dx; dxs + 2823 dx dXs +a,, dX

is another form of the line element then in ordertlar latter to express the line element
of the same system, it would be necessary that aftranation of the first form into the
second one should be possible. However, upon supposing:that x; are arbitrary
functions of theXy, X,, X3, one will see the theoretical possibility of reduciagt jthree of
the coefficientdA11, A1z, ... to the formays, a2, ..., while the other three cannot take the
other given forms, in general. Consequently, in ordeof@ to be able to transform the
form (1) into (2), the coefficients of the latter formust necessarily satisfy certain
conditions that are three in number. In order to fi@be conditions, suppose thatx,,

X3 are arbitrary functions of;, X,, X3 . Substitute the values of the differentidig, dx,

dxs in (2) and equate the coefficients of the various prodafdise differentialsiX in the
form (2) to the corresponding coefficients of the foft). One will then obtain six
equations of the form:

0% 0x _
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() F. SUVOROFF, “Sur les caractéristiques des systémdsoiedimensions,” Kazan (1871) (114
pages gr. (?) in octavo).
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in which the summation signd_ and )  are extended over the values 1, 2, 3 of the

indicesr ands. One can eliminate the derivatives of thevith respect to th& from
these six equations and their derivatives, and those deesawill depend upon only
some arbitrary relations that couple the coordinatesheftwo expressions for the
differential element with each other. The resulthat elimination will provide us with
the necessary conditions that the transformatiorthef form must satisfy, and the
verification of those conditions will depend upon the gubisi of transforming one of
the forms into the other one. If those conditioresexpressed by means of the values of
certain invariant functions of the coefficiems; , Ai>, ..., and their derivatives then
those invariants will serve as characteristics télate to the three-dimensional system.

The number of resultants of the elimination can berdahed with no difficulty.
Upon raising equations (3) to second derivatives, one will get:

6(1+3+6)=60
equations that contain:
3(83+6+10)=57

guantities to be eliminated. As a result, we will hakieee resulting equations that
contain the second derivatives of the coefficienthefforms of the line element. Other
than those three necessary conditions for the tramatmn, there exist some other
conditions that refer to the derivatives of ordeeéhand higher of the coefficient the
form; however, the first three are the simplestsone

Upon setting:
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in whichl, m, n are three of the indices 1, 2, 3 that are all diffefeom each other, and
the summations signs extend over the values 1, 2, 3 dhdiees o and g, and upon
letting the lowercase letter® andv denote the similar expressions that are composed
from the coefficientsa;;, ai», ... of the second form, the three resultants of the
elimination in question will then be presented as:
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in which the summation signs extend over the valyes 3 of the indiceg, p'.
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in whichq, d, r, r' are the remainders when one diviges 1,p' + 1,p + 2,p' + 2, resp.,
by 3, and the summation signs extend over the safues ofp, p':

(1) —Z_V VooV, = wzz Vo Vo Vy

p.q.r p.q.r

in which the signz + denotes the determinant of the elements undesuh@mation
p.q,r
sign. Those three functions, which Christoffel hatatained already before me in a
general form (see Borchardt’s Journal7®), do not contain the derivatives of thevith
respect to th&. As a result, they will not depend upon the caathe coordinates, and
as a consequence, they will express the necessaditions for the transformation.
Moreover, the form of those conditions is remarkabkofar as they express the identical
equality of functions that are similar to the caméints of the line element. It results
from this that in order for a transformation togakne form of the line element to another
one, it is necessary that the three functions mstjon must preserve their values under
the passage from one of the systems of variabléketather one; i.e., that is must be
impossible to transform the given form into anoto@e for which any of the three
functions has a value that is different from the tmat it had in the first form.

Those functions, which relate to the three-dimmmeli system, must imply the
properties that characterize the system essenti@lig to the independence that exists
between their values and the choice of coordinates;the ones that distinguish that
system from other three-dimensional systems fockvthe functions have another value.
Hence, for example, each of those three functionst meduce to zero for the space
whose line element is expressed by the equation:

ds’ = d¢ + dx + dX.

Hence, the space is a system that is different mbrof the other systems for which any
of those functions is not annulled, but it is eqahn arbitrary constant magnitude or to a
function of the coordinates of the point. The foofrthe line element of such a system
cannot be reduced to the sum of the squares ofitade differentials for any arbitrary

choice of coordinates; i.e., in geometric language,surfaces, there exists only one
function of this nature ! that does not change in value under the coomlinat

() CASORATI: “Ricerca fondamentale per lo studio di weata classe di proprieta delle superficie
curva,” Annali di Matematic& (1860).
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transformations, and from the geometric viewpoint, firesents the curvature of the
surface according to Gauss. As far as the three @nxtihat were found above is
concerned, the theory of three-dimensional systener tlan the present space is much
too recent for me to decide how to give a special nantbe properties of the systems
that are expressed by those functions. However, jusseasral other geometers
(Riemann, Kronecker, Beltrami) have applied geomegérnminology to these properties,
and in various ways, in Chapter Ill of my paper, | havaght to untangle the geometric
laws of the analytical expressions that are found. tAa end, in order to better
understand the analogy between formulas (1), (1), @dand the formulas of ordinary
geometry (which are analogies that one discovers Ingidering a three-dimensional
system to be a locus in a four-dimensional systemave tsacrificed generality for the
advantage of having a more intuitive picture of things, astead of a four-dimensional
system of the most general form, | took a system whogeslement is expressed by the
sum of the squares of the differentials of the fourdmates, namely:

4) ds = dy? + dy? + dy + dy.

| shall denote the coordinates of a four-dimensional sydig the lettery and | shall
reserve the lettex for the coordinates of a three-dimensional systemponitonsidering
the latter to be a locus in the former, the coordinated! play the role of curvilinear
coordinates on a surface that is placed in space. @sudt,rsimilar to the coordinates of
space, the coordinatgsof the points of a three-dimensional system will inections of
the coordinateg, and the line element of a three-dimensional systenis a locus in a
four-dimensional space, will be expressed by formula (4).

Upon replacing the differentialdy in (4) with their values as functions of the
differentialsdx, and then equating the coefficients of the same diftéls dx in the
forms (1) and (4), one will get the coefficier{sand therefore, the functioNsandQ, as
well, expressed in terms of the derivatives yofvith respect tox. Since a three-
dimensional system, when it is considered to be aslat a four-dimensional space, can
be represented by an arbitrary function of the cooreayat v, Vs, Ya :

W=F (Y1, Y2, ¥3, ¥a) = 0,

we can regard one of the coordinateg,for example — as a function of the other three.
Upon expressing, V, Q in terms of the derivatives gf with respect to thg, y», ys, and

setting:
2 2 2
Q = 1+(%j +(%j +[%j ,
oy, Y, 0y,
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%y, 9%, 9%y,
oy; 0y, 0y, 0y0y,

vo| 9 9y, 0%,
dy,0y, 9y, 9y,0¥%|
%y, 9%, 9%y,
oy, 0y, 0y, 0y, 0V

to abbreviate, and lettindfpq denote the second-order determinant that is obtained by
suppressing th@" row and theq™ column fromY, one will find expressions for the
function (1), (11), (111) in terms of the derivatiweofy, :

d
(12) ZZApp o Yot Yot Wt 2 Wa P y
5 0y, ayp
ZzQpp(qu ql’ rc{)
Y |o? ay,) (ay,) | @2 av.Y (av)
Y |9y, 1{&} {Aj L0, 1{_»} *(—y“j
Q| 9y, Y, 7% 0y oy 0y,
(&) i , , 2
49 Ya 1{%} +(%j _p 0% 9Y,0Y
0y; oy, Y, 0y,0Y,0y0y
5 0%, 0¥, 0y, _, 0%y, a_ya_y}
0y, 0y, 0y, 0y,  0Y,0¥%0 %0 ¥
Y2
(liia) Z £V, Voo Vo = —5-

p.q.r

Upon taking the square root of the last expresson,

Y
RYRVAVIES
\/pqr 1p "2q "3 Q5

one will easily see that the right-hand side is eatmat analogous to Gauss'’s formula for
the curvature of a surface, and that it will codlecwvith that formula if we extend to three
dimensions, just as it will coincide with the forfmuthat Kroneckerj called the

curvatureof a system of an arbitrary number of dimensiolmgleed, if one expresses the

(Il b)

() Monatsberichte d. Kénig. Akad. zu Berlin, August 1869.
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derivatives of the, in terms of partial derivatives & with respect to the coordinates
Y2, V3, Ya then when one substitutes those values into fornitilg),(one will get:

o W W W W
1 W W, W, W, W,
2 2 2 1/2 WZ V\él \/\42 V\£3 W4’
WEAEWE W W, o, w, W,
W4 VV41 \MZ V\£3 W4
in which one sets:
_ oW oW

’ rs — ’
ay, ay, 0y,
to abbreviate.

However, | do not think that the teruarvature of the systeoan be properly applied
to that function. Indeed, following Gauss, we are accust to use the tergurvature
of a systento describe the ratio of the area of an infinitelya#irtriangle in the given
system to the corresponding area in a system of pgssiwmstant curvature (viz., a
spherical system). That is, at least, what RiemadnBaitrami meant by the curvature
of the system, and it is only in that sense that the-Euclidian or pseudo-spherical
systems of the latter geometry will have a constagiative curvature, and the spherical
systems will have positive curvature. Effectively, ihe element of a spherical system
can be put into the form:

©) dszsz[dxf+dx§+ ot + d)%j’

X

in whichx® = a® +x? + X2 + X, X1, %, X3 are the coordinates of the system, wRilanda

are parameters. The value of the functiond)fior that form of the line element will be
+ 1 /R’ and not + 1 R? which is the value that the curvature of the systamstrhave,
according to Riemann. For systems with constant negatiwature, the function (b)

will give an imaginary value) -1/R° . It seems to me that the second term of the

condensation of the systdimt Kronecker gave to that function at the endhef cited
paper upon comparing it to the Kummer functions tbpresent the condensation of light
rays had a simpler geometric explanation. Indeedjpare the two three-dimensional
systems: viz., the given system:

W=F (Y, Y2, Y3, Y2 =0
and a spherical system; i.e., one with constanttipescurvature. We will find the

equation of the latter system when we know the esgion p) for its line element.
Attribute any values tg, Yo, Y3, Y4 and set:

RE:y4, Rﬁ =V, Rﬁ =Yo, Ré =Vs3.
X X X X
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Upon substituting these values p),(one will get:

dS =dy? + dy? + dy + dy],

RE=y + Yo+ v+ Vi

As a result, the equation for that locus will be tbéta three-dimensional spherical
system. | will use the symbolg, v,, V;, Y, in order to distinguish the coordinates of

the points of the systelV = O from the coordinates of the system:
V=y/+y;+ ¥+ y,-1=0,

in which | have seR = 1, for more simplicity. For each poit (Y-, Y, ya) of the system
W =0, one can find a poirty;, Y,, Y5, ¥,) of the systenV = 0 for which one will have:

0_ 0  Oi_ 0V 0y, _ 0y,
dy, o9y, 9y, 0y, 9y, Oy,

For this to be true, it is sufficient to suppose that¢oordinatesy, v,, V;, Y, are equal

to the derivatives:
ow ow ow ow

oy, 0y, Oy; 0y,
respectively, divided by:
REREIREA]
oy, ay, 0y; 0y,

I will call such pointscorresponding points.Take four points in the systeW = 0
that are determined by the coordinates:

Y1, Yo, Y3, y1+dyr, yo +dys, ys +dys;
y1 +0y1, Y2 +0Y2, Y3 +0ys; y1+ Oy, Yo + Oy, Y3+ 9y,

in which the fourth coordinate is determined as a functbrthe first three. One
determines the coordinates of the four corresponding pioitke systenV = 0 from the
agreed-upon rule, and they will be functions of the cootéemaf the point of the system
W= 0. Denote them by:

Y, Y Vi y, +dy, Y, +dy,, oy, +adyi;
Y1 +oy,, Y, +0Y,, Y; +0Ys; y.+0Y,, Y,+0Y,, Y,;t+0Y,.
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Upon consideringl, 0, d to be symbols for infinitely-small increments and coimig the
approximation to the first-order terms, the ratio:

dy, dy, dy||dy dy dy
oy, 0y, OY,|:(0y, 0Y, Oy =c
Oy, OY, OYs| |0y, OY, OV

will represent the ratio of the volumes of the Ideken in the system& =0,V = 0 and
corresponding to the tetrahedra in space. However gach point of the first system
corresponds to a well-defined point of the second orah ealume of the first system
will correspond to a volume in the second system, aedatter volume will be like a
transformation of the first one, since each wellust point inside the volume in the first
system will correspond to a well-defined point inside tbkime of the second system.
The ratioc that was found above is the ratio of two of thoseesponding infinitely-
small volumes. The value of that ratio will give aasure of the difference between the
volume in the first system and the volume in the sésystem from the viewpoint of a
well-defined property (the curvature, according to Kroneckar)if the volumes are
infinitely small, a measure of the difference betweath point of the first system
relative to the corresponding point of the second systemm the viewpoint of that
property. Since the functianis a function of the derivatives @ = 0, it will be different
for different systems, and as a result, it can sewea characteristic for a system.
However, upon expressing the differentials of the coatdswy’ as functions of the
differentials of the coordinateg and substituting their values in the functionafter
reduction, one will find the expression for that ratio asfunction of the second
derivatives ofy, , namely:
Y
c= 5 ;
I.e., that ratio is expressed by the value of the fandtllb). It will then follow from this
that the function (Ilb) does not represent the ratio of the areas of iiafyjasmall
triangles (which we call theurvatureof the system, in accord with Gauss and Riemann),
but the ratio of the volumes of infinitely-small &tedra. For that reason, | believe that
the second term that Kronecker gave to the propertyidletpressed by that function —
namely, referring to it as a measure of dmmdensatiorof the system — is the most
convenient one.

As far as the interpretation of formulas () ang @ie concerned, upon replacing the
function (lla) by the function:

z z Q oy Vg Vie = Var Vi)
p

(I1b) P
Q \/ > £V, Vs,

p.q.r
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it is easy to see that the expressions for the ifumgi(la), (I1b), and (I1b) in terms of the
derivatives ofy, represent the coefficients of the cubic equatioR1hat are obtained by

eliminatingy: — v;, Y2 = Y,, Y3 — Y3, dyi, dy,, dys from the equation:
@) 0 Y2+ 02— ¥5)° + 03— ¥3)° + (a- ¥i)* =R,

its three partial derivatives with respectyipys, ys (upon considering, to be a function
of the other coordinates), and the three total diffembnbf those partial derivatives.
Consequently, upon letting 1Ry, 1 /Ry, 1 / Rs, be the roots of that equation, we will
have:

1
I £V, Vo, Vy = - ,
(1 J RR R
1 111
19 022 Ve R R RR RE

(e

zzQpp(qu qi’ rq):_[l 1 1}

\/ +le qu V2r
p.q,r

Since equationq) represents a system of constant positive curgathe three roots
1/Ri, 1 /R, 1 /Rs will be inversely proportional to the radii of eature of the three
directions that are determined by the two equatimete/een the differentialy;, dy,, dys
that one can obtain by eliminating the differegge- y, between the differentials of the
partial derivatives of equatiop); Since the square root of the function (lll) deve an
imaginary value, which will be true for a systemcohstant negative curvature, in order
to avoid that inconvenience, | shall multiply thea€tions (1) and (llic) by (llic); upon
then setting:

a=

one can write:
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The parameters, B, yrepresent the (Gaussian) surface curvatures along e th
principal sections of the three-dimensional systesn@lvhich the curvature presents the
property of being a maximum or minimum.

Indeed, Lipschitz has proved) that the general form of the line element of aehre
dimensional system can be converted into the formRimnann gave for a system of
constant curvature when the necessary and sufficoemitton:

2.2 Ve (8%, X =00 d (0 dx=0 x oy

Q) zzgpp (%, d%-0% d )@ % dx-0 x dY

is satisfied, in whiclw is the measure of the constant curvature.

If one supposes that is variable then formular) will give the expression for the
variable curvature as a function of the differentidlshe surface directions. The cubic
equation ina that is provided by the discriminant of equatioh Will have the three
values ofa for its roots as functions of the coefficients bé tform of the line element
that represent the maximum and minimum values. of

It will then follow that in order to specify a threl@mensional system, one must
necessarily know the three roots of the equatiom,imr the three coefficients of that
equation, and none of those coefficients can remaitranry. That shows that among the
three-dimensional systems, there cannot exist twoerhtthat can be mapped to each
other.

For a system with constant curvature, all three efrtots of the equation i must
be constant and equal. That condition will be fdéllilwhen one supposes that the
functions Vi, are proportional to th€, , and thata is the factor of proportionality,
which is, at the same time, the measure of the cuevattithe system. One will then
obtain six conditions for the determination of the @omnts of the form of the line
element. Those conditions will take a very simplerfavhen one chooses, X2, X3 to be
orthogonal coordinates. The line element of a thisexsional system in the case of
rectangular coordinates axes is presented in the form:

d$ = B2d¢ + B d¥+ B d¥,

and the condition for the system to have constamature will become:

o ig@} 0 [ @Lj SO —ame,

0%\ By 0% B dx) B dxo
o1 Bz}ri[i Ea}_lg@&-_asgsl,
0%\ B 0% ) x|\ B ox) B 0% 0x

() Borchardt's Journal, V2, pp. 52.
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0°B, _ 1 0B, 0B 1 9B B_,
0x,0%, B, 0% 0% B, 0% 0X%
0°B, _1.98,98 _10BIB_,
0%0% By 0x 0% B dx 0X%
OB, 10808 198,08,
0x0% B 0% 0x B 0% 0%

If one takesa = 0, i.e., if one suppose that the curvature is zeno dne will get the
conditions for a given form of the line element to repré the line element of ordinary
space. The latter conditions have been given afremthe case ofr = 0 by Lamé Y),
like the conditions for the transformation of a giferm of the line element into the sum
of the squares of three differentials.

F. SUVOROFF

() Lecons sur les coordonnées curvilignes. 76.



