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8 1. Introduction and brief summary

In collaboration with prof. L. I. Mandelstam, | ared at the invariant equations of the
electrodynamics of anisotropic medf. (In that article, they are used to determine the
laws of propagation of light in crystals. These folasuare quite analogous to the known
equations for determining the propagation of light in grawvitatl fieldsin vacuo That
analogy permits one to give the law of crystal optigeametrical interpretation, which
amounts to the statement that in a material medasnwell as in a vacuum, light
propagates along null linegg= 0). In that case, one must determine the element of
length by means of the following formula:

ds’ = h"™ dx dx dx, dx, = hj dX dX dxX' dX’ (1)

in which h™™ (hy, resp.) is a tensaif rank fourwhose components are functions of the
magnetic permeability/,s and the dielectric constantss . In other words, in an
anisotropic medium, one must assume that the elemdangth is determined by la-
guadraticform in the coordinate differentials, while in a vacuum engotropic media,
it will be a quadratic form.

Physically, a bi-quadratic element of length correspoad$hé presence of double
refraction. Thus, in anisotropic bodies, the Riemanniamgéry of quadratic forms is
no longer valid, but one must deal with the more gempgraimetry of bi-quadratic forms.

() zh.R.F.Kh.O., 34 (1925), 1.
() Zzh.R. F. Kh. 0.56 (1924), 248. (cf., esp. volume 1, first ed.)
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Further development of the aforementioned theory dadtalyoptical relativity will allow
us to elucidate some of the features of that geoméioy.example, the major role that is
played by the (metric) tensgg in Riemannian geometry gets distributed among the three
tensorshik, Kj, andsjnk in bi-quadratic geometry. The first of them plays rible of the
metric tensor, which defines an element of length, evttile tensok; of “refraction
indices” establishes a connection between the covaarahcontravariant components of
the same tensor. Finally, the tensgc establishes a connection between the
fundamental electromagnetic field tens&sandf ” (cf., § 2). In isotropic media, bi-
guadratic geometry goes to quadratic, and these threemefotiened tensors will
become identical with each other.

In anisotropic media, there is a difference betwlemptopagation of light waves and
the propagation of light rays. That fact is in appacemtradiction with the reality that in
the “natural’” bi-quadratic geometry of anisotropic medighbof these phenomena are
described by the same equatds+ 0. The significance of that distinction lies in thetf
that the difference between the speed of the wavetledspeed of the ray can be
irrelevant for a Cartesian interpretation of arbitr&iemannian (i.e., non-Cartesian)
coordinates, which is analogous to the way that oneamsthe bending of a light ray in
a gravitational field by means of a similar interpretatof Riemannian coordinates,
moreover. For a more detailed explanation of thaticio§ 8 is devoted to the
consideration of the optical anisotropy of gravitatidretlsin vacuo

The present theory has a macroscopic character. cAssi®n of its relationship to a
deeper physical interpretation in terms of the microscglectron) theory of a material
medium will be postponed to a later article.

The present article is an attempt to sketch out la foathe construction of a general
theory of geometrical optics that would admit one tauemsa single viewpoint on the
laws of propagation for light in various media (gravaatl fieldsin vacuqg material
media, both isotropic and anisotropic, homogeneous andhimdp@neous).

8 2. Basic equations of electrodynamicsfor anisotropic media

In this article, we shall restrict ourselves to tbesideration of dielectric media, and
in addition, assume that the medium has three mutpahyendicular principal axes of
anisotropy. (This is true in all crystalline systems;egt for monoclinic and triclinic
ones.)?)

_ Electromagnetic fields in dielectrics are determineaty-symmetric tensors; and
f", whose components have the following physical interpoeta

(F1a, F24, F3a) = (E1, E2, E3), (F23, F31, F12) = (By, Bz, Bg),
(2)
(F1% £2° £3%) = (=Dy, =Dy, — D), (% 13 1) = (Hy, Ho, Ha).

() This assumption is introduced only for the sake of sigipt) the calculations. The main results of
this article— in particular, all of 8 6- will remain valid in the general case. (For the inigoce of the
components of the tenssthat relates to that case, cf., the article thatcitesl above.)
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Here, E,, H,, D,s, and B, are the components of the usual three-dimensional
electromagnetic vectors (electric force and magneéild,f electric displacement and
magnetic induction, resp.).

The tensords; andf ' must satisfy three fundamental equations. The difshem
establishes a connection betwdgnandf !. That equation was derived by me in the
aforementioned article and has the following form:

fl=grap,, (3)
or the corresponding form that relates-jo
Fij = Sijpq fPa, (38.)

Here, sjpq ands™ are two tensors of rank four, or rather, two genfenahs (covariant
and contravariant, resp.) of the same tensor ofédigtity and magnetic permeability.”
The following relations exist between them:

P Shipa = Gy, (4)

in which & =1 when =h andd; = 0 wheni # h.

In the sequel, we shall often have to use Cartesiamlicabe systems that are at rest
with respect to the region of the dielectric consdeand whose axes coincide with its
principal axes of anisotropy. We shall refer to th@serdinate systems dssystems, for
the sake of brevity. )

One can showldc. cit) that inA systems the only components of the ters$8r(Spq,
resp.) that are non-zero are the ones for whielp andj = q. When viewed in ai
system, the values of the components of the tesfSbcan be displayed in the form of a
square matrix:

1 F} 1,
U=y p] o 7 (5)
1

| -8 &, —&, [£°4] |

The elements of this matrix that are found at thetioesa (1, 1), (1, 2), (1, 3), ... are
equal to the componenss'*!, s'#2 s'313  respectively. | was not able to determine
the meaning of the elements of the main diagoaaad the respective locations of these
elements in the matrix contain only the dimensionsefdlements. As was pointed out
before, all of the components g9 that are not included in the matrix are zero.

(") These elements will drop out of the equations thasivedl have to use in what follows.
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By means of equation (4), it is easy to see thafal®wing relation is valid for all
non-zero components: )
Sipg = 1 /8™ (6)
in anA system. )
In isotropic media, the tensa@®® of rank four §j,q, resp.) will reduce to the square of
the tensos® (sp, resp.) of rank two. In other words:

ghd = gP éq, Sipa = Sp Saq » (7)

and in the rest system of Cartesian coordinates, thepaeentss® will have the
following interpretations:

- _
— 0 O 0
T
1
_ 0 —— 0 0
dp = Ju . (52)
1
0 0 —— O
Ju
0 0 0 -&fu|

Equations (4) and (6) reduce to analogous formulas in gotneedia, namely:

P 5q=0F (4a)
and (in a stationary Cartesian system):

s;=1/9. (6a)

We now turn to the other two equations of electromagrields. In the special
theory of relativity, they have the following form:

o, + aF“_i + OF

rot Fij = oy P =0, (8)
; ij
divii=9 - o )
ox’

The first of these equations is invariant with respeetrity coordinate transformation.
However, in the general theory of relativity, the setone is replaced with the following
tensor equation:

d,/-g f!
N9 -y (10)
ox'
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However, we have no right to introduce the “microscogensor g; into the
development of our macroscopic theory, so we shall datdo only the average,
collective values of the physical magnitudes. We can giution (9) an invariant form

without having to resort to the use of the gravitational pitisng; . Indeed, /-9

transforms by the formula:
V-9 =3-9,

in whichJ is the Jacobian of the transformation:

o, X2, K
At e, X))

(11)

On the other handy/ -g' =1 in a Cartesian coordinate system. Therefbree are to
understand to mearthe Jacobian of the transformation that takes therdinate system
x, 2, ¢, X' to the Cartesian (primed) system then we will ggt-g = J, and the
invariant equations (10) will take the form:

3Jf/ox = 0. (10a)

We can transfer this equation directly to our macopic theory in this fornt). Later
on, we shall give this equation a slightly morevament form.

The set of equations (3) [or (3a)], (8), and (10epresents the total system of
equations for electromagnetic fields in dielectrittscan be simplified by introducing the
tensor potential®; into consideration and setting:

0P,
Fij = a;‘).'——.J . (12)
ox!'  oX
Equation (8) would then be satisfied identicadigdf ! would be defined by equation
(3):
o 0D,
pizgra |99 9P, ) (13)
ox!'  ox

8 3. Electromagnetic fields of light waves

The electromagnetic fields of light waves are ahtarized by the fact that their
tensor-potentials are periodic functions of therdomtes (viz., space and time); i.e., that:

() In the terminology of H. Weyl, the quantilyf’ = / is called a “tensor density.” These arguments
boil down to the fact that the invariant divergence oftéresor density " should be equal to zero. We
determine the value ¢f' from the condition that its components in a Cartesi@ordinate system must be
equal to the components of the tenisbr



Tamm — The crystal-optical theory of relativity. 6

b =A e, (14)

whereQ is a scalar function of the coordinates.

Strictly speaking, the functiors; can be called periodic only under the condition that
the components of the tensé& must have a constant value (in space and time).
However, that condition is not invariant under coordingiansformations and must be
replaced with the requirement that the derivativeg;ahust be small in comparison to
the derivatives of).

In the present article, we shall confine ourselvegemmetrical optics. That means
that we shall exclude from consideration, first of tilkedispersionof light and secondly
its diffraction. The first exclusion is achieved by assuming that tpbt Iray is
monochromatic. (For a given frequeney,andy, will then be well-defined functions of
the coordinates.) The influence of diffraction cambglected only if the medium is not
rapidly-varying; i.e., only if the properties of the med do not change appreciably at
distances that are comparable to the wavelength (and fperiod of time that is
comparable to the period of oscillation). In other wortlsis necessary that the
derivatives 08" must be small in comparison to the derivative®of

Finally, it is necessary to impose the restrictiontiee derivatives of the Jacobidn

that obviously amounts to excluding those coordinate sigsie which./-g varies
significantly over distances that are comparable & wavelength of the light. This
restriction is rooted in the very essence ofrakroscopidheories.

As described above in regard to the differentials ofpibtentials®;, the terms that

contain the derivatives @& can be neglected in comparison to the terms that cotitai
derivatives ofQ. Therefore, equation (12) will take on the form:

Fi=J-1(AQ-AQ) e, (15)

in which we have introduced the notation=9Q / dxX. Moreover, we will get:

=g [-1 (AQ-AQ)e™ (16)
from equation (13). )
Turning now to equation (10a), and differentiating the esgionJ f, we must once
more confine ourselves to terms that contain the higt@ser ofQ (in the present case,

the second powerf)( It is obvious that thanks to the wave facer'?, differentiating
with respect tod will reduce to multiplication bw/-1Qj in this case. Hence:
ij )
I _JHAatig=o,
ox’
or:

() When differentiating, it is assumed tiis constant to a first approximation; i.e., tiais a linear
function of the coordinates. That assumption can alwa&yssdtisfied is one restricts oneself to a
sufficiently small coordinate change. The laws of geoitedt optics are applicable only within that
domain; outside of it, the period of oscillation will yas the wave propagates.
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f'g=o. (17)

Equation (17) can be regarded as a set of four homogenemas, dquations in the
four unknownsQ; . In order for these equations to have non-zero ieolit it is
necessary that the determinant of the coefficients brigero {):

[f1]=0.

It is known that the determinant | |, which is composed of the components of the
anti-symmetric tensor of rank two, is expressed as\isl

|flj | — |f12f34+f13f42+f14f23|4,
Hence:
f12f34+f13f42+f14f23:0_

One can expredd in terms of the components of the vectidrandD [cf., equation (2)]:
Hi D1 +H2D2 +Hz D3 = 0. (18)
We then have the:

Theorem: In any coordinate system in which we measure the electromagnietioffie
a light wave, we can combine the magnetic field vektaand the electric induction
vectorD in such a way that the relatigfl8) will always be valid, which is equivalent to
the condition that those vectors must be perpendicular in a Cartesian catediystem.
It is assumed that the values of the constituent veetasd D are determined from the
tensor f by using formulg2).

Let us go back to equation (17). It is easy to show dhiit three of the four
equations are independent of each other. We shall shswoffall, that the equatiors
Q = 0 is a consequence of the equatibh€) = 0,f ¥ Q = 0, and ¥ Q = 0. For the sake
of brevity, in the sequel we shall use Greek letters tmt@eindices that take on one of
the three values 1, 2, 3. By contrast, indices ttat ¢a any of the four values 1, 2, 3, 4
will be denoted by Latin letters. In order to provetttiee equatiorf ¥ Q=0isa
consequence of the equatioh$' Q; = 0, multiply them byQ, , respectively, and add
them. The result of that will be:

fQQr=f"QsQu+f"*QQs=0.

The first sum is equal to zero, sinc® = - f %, while Q, Qs = Qs Q.. Thereforef
Q4 Q. = 0. If one cancel®, and permutes the indicesfdt* then that will givef **Q, =

() This theorem is taken from the theory of linear éiqna. It will remain valid for the case in which
the coefficients ”, along with the unknown®; , are themselves unknown functions [cf., equation (16)].
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0. Howeverf ¥ Q =f%Q,+f*Q,=f%Q;, becausd * = 0. Thereforef “Q; = 0,
which was to be proved)(

Thus, all of the restrictions that are imposed uporethetions of electrodynamics
regarding the values of the potentials of the fieldgbt waves will reduce to the three
equations): _

f7'Q =0 @=1,2,23). (29)

Inserting the values 6" into equation (16) and cancellir&jle will give:

SPIAQQ-AQ Q=0 (@=1,2,3). (20)

8 4. Fresnel equations

In this and subsequent paragraphs, we shall restrictheesgte the consideration af
systems (viz., stationary Cartesian coordinate systbatsare parallel to the principal
axes of anisotropy). Due to the fact thatAirsystems only those components of the
tensors® for which one simultaneously has p andj = q (cf., § 2) will be non-zero,
equation (20) will take the following simple form:

Y (AQ- AQ) Q=0. (21)

There is obviously no need to sum these equatieastbe indexa.

In what follows, we shall write the summation sigith the index that is being
summed over in those and only those cases in whiete is some departure from the
general rule of summation over the same pairsdiés.

In order to simplify the calculations, we shalplace the amplitudes of the potentials
A with new unknown®; that are defined by the equations:

=Aosp. 22
A QQ+ (22)

4

It is clear from this thaB, = 0. On the other hand, & cannot be zero simultaneously,
since otherwiseA; would be proportional t@), and according to equation (15), Bl
would then be equal to zero: i.e., there would beelectromagnetic field. Thus, the
inequality:

B,# 0 (22a)

will be true for at least one of the indices
From equation (22), we should have that:

() Qs =0Q /ax* cannot be zero, since we are considering electromiadiwtls of light waves and

therefore the factoe’™® cannot be independent of time.
() Of course, one could choose any other three of tiresfguations (17).
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AHQ_AQa:BaQ_BQa-

Substituting this expression into equation (21) will give:

>.s"(B,Q- BQ) Q=0,
or, sinceBs = 0:

25" (B,Q-BQ) Q+ & B Q=0 (23)
B

It is easy to ascertain the physical interpretatibthe quantitie®,. From (22), one
will have thatQ, B, = Ay Qs — A4 Q. . If we compare these expressions with equation
(15) then, on the basis of equation (2), that giilk:

Bl:Bz:B3:F14:F24:F34:E1:E2:E3. (24)

Thus,B, are proportional to the direction cosines of tleeteic force vectoE.
It is just as easy to ascertain the physical pregation of the quantit®. In a
Cartesian coordinate system of the kind that wecaresidering in this paragraph, the

factor e’ 1° will take the form:
exp [x/—_127ﬂ(wt— m, X +¢)} ,

in whichw is the speed of light] is the wave length, ana,are the direction cosines of
the wave normal, which are related by the conditithmf, =1

Therefore:
Qu:Q:Qs:Qs=m:m:mg:—W. (25)

Here, as in all of what follows, the unit of spehdt will be adopted is the speed of light

in vacuq such that:
0Q _ 0Q ( 1 an
=— =— and not——-|.
Q=0 T c ot

Before we go onto the solution of a more generablem, we show that the well-
known Fresnel equation, which determines the spdéqufopagation of light waves in
crystals, represents the special case of equati8)sfor whichy = 1. In fact, in that

adad _

case, alls™ = 1 ands™™ = - g, [cf., equation (5)]. If one substitute this exgsien
into equation (23), and in addition replac@swith m, andw, then from (25) that will

give:
B, m-m> Bm-¢, BV=0. (26)
B B
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If one multiplies these equations by, respectively, and sums overthen one will
verify that the first two sums cancel each othed, therefore:

> ¢,B,m, =0. (27)

By dint of equation (24), it is easy to see that thisnfda expresses the idea that the
displacement vectdD is perpendicular to the direction of the wave norn@h the other

hand, from (26) and the fact thﬁ mf, =1, one will have:
B

ma; B, m,

B, = —F—
1w

If one multiplies this bym, &,, sums overm, and takes equation (27) into account,
moreover, then that will give:

Z
B = =
z Moa Za: 1-£,W =0

or, when one canceIEm B
7

Z (28)

1
= —w2
£,
This expression is nothing but the one that is kmagFresnel’s equation

8 5. General equations of light wave propagation

Fresnel's equation is valid only A& coordinate systems, and then only in the case of
non-magnetic crystalg/(= 1). In order to find the general equation ofgagation for
light waves, one must analyze the casg 8fl using the formeA system and then show
that the equation that is obtained will be invariavith respect to any coordinate
transformation.

Let us return to equation (23). That equationlmaput into the following form:

Bﬂ(zﬂlsaﬂaﬂ@-*_ §4a4 (jj_; % gﬁaﬂ Q 9:0,

or
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> B, p¥=0, (29)
B

in which it easy to see that the coefficiepfé are the following expressionp = —
s%P% Q, Qp, in whicha # 3 (there is no need to sum oveandp) and:

aa _ zsaﬂaﬂ%_*_ §4a4 Qz_ §aaa Q
B

Equations (29) represent three linear, homogeneous equatitre three unknowns
Bs . Since all three of the quantiti®; cannot be simultaneously zero [cf., equation
(22a)], the determinant that is composed of the coetffisie? must be equal to zero:
|p¥| = 0.
In order to simplify the calculations, we represtnat elements of the determinant of
p? as sums of elements of two other determinafftandv®, namely:

u¥=-sPPQ,Qp+ 5D ™ Q, v = 5P,
4

Hence: u% +v#| = |p”| =0

Calculating the determinanuf” + v? | will present no difficulties if we take into
account the facts that the in the determinafff |, only elements of the main diagonal are
non-zero and, on the other hand, that the determinéf{ |s zero. It now becomes clear
from the fact that if the columns of the determinant”j | are multiplied byQg,
respectively, and then added then the result will beathaf the rows will become zero.

In fact:
2UPQ == s"PQG+Y QY §7 G
B B B y

or

;u”ﬂQﬂ - ;SWWQ‘,@‘*' sz gray Q: 0.

If one takes advantage of these properties of the detnta [u” | and v** | and
expands the determinantuf? + v® | according to certain rules into sums of eight
determinants that are composed of elementé’éindv® then that will give:

P77 | = U+ 7|

_Vll (u22 33 u23 u32) +V22 33 ll 31 13) +V33 (ull 22 12 u21)

+ V11V22 u33+vll 22\/33+ ullv22v33

We insert the values of”” andv? into this and express the quantiti¥”' in terms ofu,
and &, using equation (5), and finally divide the equations by the aomnon-zero
factor Q7. The result of that will give the following equation:
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SQ!

4 4 S ﬂ+ﬁj— N s[ﬁ+3j+ ceg£.=0, 30
HoHs SQlQ{ﬂl 1, QZSQZl,Uz Hs Fes ¢
in which the symbofS means a sum of elements that have been subjectedydia
permutation of the indices 1, 2, 3. This equation represegéneralization of Fresnel's
formula (28) to the case of magnetic crystal# (1). Indeed, if one express@sin terms
of m, andw using equation (25) then one will get an equation thatmetes the speed
of light waves in terms of the direction oim§). That equation is equal to the
corresponding formula that was derived Heaviside by gunaent of an entirely different
character’). Equation (30) will reduce to Fresnel's equation (28) wine.

Equation (30) can be put into the following form, whichl\w& more convenient for
our later discussions:

> hQQ QQ=o. (30a)

i,jhk

If one compares equation (30) with equation (30a) then aliesee that of the 256
coefficientsh™™, the only non-zero ones are the ones for which asebbth = h andj =
k. Their values are written most conveniently in fbem of the symbolic quadratic

matrix (5):

2 LF&}LF&}&F&}
Halds 2\ My M) 20\ M My 2\, My

i{i@ 2 i[2+3j _ﬁ(ﬁ+ﬁ‘]

hink — 2u\ M, Hatdy 2u\ My Mg 2\ 1y M . (31)

i%ﬁ.%@% 2 g@ﬁj

21, \ My M) 2\ M, Mg Hd, 2\, H,

& | & & &, | & & &, & &

—_1[_2+_3 —_2(_3+_1j —_3(_1+_2j 515253

2\, W 2\ M 2\ 1y M, |

The elements of this matrix, when referred to as (1(11)2), (1, 3), ... are equal to the
coefficientsh™*, h'#2 h''3 .. respectively. All of the elements of the matoif
coefficientsh™™ that were not included are equal to zero.

We used ar\ coordinate system for the derivation of equation (3®#&wever, it is
obvious that the equation will preserve its form under tifa@sition to any other
coordinate system as along as we also transform tbicients h™™ according to the
rules of transformation for the components of a @ariant tensor of rank fout’j at

(*% O. HeavisideElectromagnetic Theory. Il, London, Benn, 1922, pp. 522, equation (6).

() If we denote the values of quantities that are medsim the transformed coordinate system by
. X' P

primes K"') then we will haveQ, = TQ,

XI P’

Substituting this into equation (30a) will give:
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the same time that we transform the coordinatessdidss to say, the components of the
covariant tensoiQ; = dQ / X must also transform according to the rules of tensor
calculus under it.) In other words, equations (30a) ivdd to the correct dependency
between the components of the ten§€prin any coordinate system, as long as we
understand thah™ are the components of faurth-rank tensorwhose values are
determined by equation (31) @m A system Thus, in order to define the tendd¥, we
shall use a\ system as a “natural’ coordinate system.

However, it is possible to determine the values oftédmsorh™ in terms of the
fundamental tensos®™ without referring to the originah system. To that end, we
introduce the unit anti-symmetric tensgyi of rank four. The components of that tensor
are non-zero only if all four indices are differerits components are equalto + 1 or — 1
depending upon whether the given sequence of indjgesh, k is obtained from the
normal sequence 1, 2, 3, 4 by an even or odd number eparsitions, respectively.

The relationship between the tens8 ands®@ can be expressed in the following
form by means of the tensejy:

iihk

hqrst — _%( qisj srth _ Sqsij srth + Sqrik §th) g’mnp Bhkm QInp ) (32)

The validity of this formula in aA system can be verified by directly substituting the
values of the componentd™ ands™ into equations (5) and (31)%. Since both sides
of equation (32) are tensors, formula (32) will remaididvainder any coordinate
transformations. Thus, the values of the tehrare determined from the values of the
tensors™ completely in any coordinate system.

Strictly speaking, the last statement will be true ahlwe modify equation (32)
slightly. The fact is that the values of the compdsi@f the tensoegjnk are not invariant:
Under a coordinate transformation, their numerical sl be divided byd, whered is
the Jacobian of the transformation (11):

U

1
Eink = jaihk- (33)

L OXP OX O OX”
ax ox' ax' ax

QQQQ=0
or
"™ QQQQ=0, (30b)
in which:
i OXP axX® axX" ax®

h'ijhk: h — e ——— ————
ax axl ax' ax

are the expressions for theoefficients in the primed coordinate system.
(¥ In equation (5), the elemengs of the main diagonal were not defined, but in equation, @R)
elements of that kind cancelled each other out.
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Therefore, formula (32) implicitly refers to the ginal A system: It is assumed that
the non-zero components &fx are equal ta 1 in this system. In order to avoid such a
reference to the original system, in the general thebrglativity, the componentsjnx
are usually defined by saying that the non-zero compormdritse fundamental tensor

ejk are equal tot,/ — g, whereg is the determinant that is formed from the covariant

componentgy; of the metric tensor.
The validity of such a definition for the componeej is derived from the fact that

the value of,/ —g transforms according to the same rules as the ncahealues of the

component®jnk , namely:
- _ 1
MRS

As we already pointed out, we have no right to mhiice the “microscopic” tensay;
into the development of our macroscopic theory. H@mmewe can give an invariant
definition to the tensoej if we consider thdour-dimensionaldeterminants that is

defined by the components of the macroscopic covariasbtegj, of rank four In the
theory of multi-dimensional determinants, it is provieattthe values of four-dimensional
determinants transform according to the following rife (

s = 1§ : (33a)
J
Hence:

s’ = %@ - (33b)

If one compares formulas (33) and (33b) then one willfywehat the non-zero
components oéjx can be defined invariantly if one equates thenﬂyﬂg. However,

we shall not equateyi to i(‘/g, but to+{/s/24. The reason for this will become clear
later on t4.

(*®) Cf., above all, L. Gegenbauer, Wien. Akad. DenkséBr(part 2) (1882), 1746 (part 2) (1883),
291. Since the dimension of the determinant in questioavésn, he gets onlpne value for the
determinant, as opposed to the odd (e.g., cubic) dimensions.

Note that if one uses equation (33) then the third ofithéamental equations of electrodynamics (10a)
can be put into the following form:

9 (ysrst)=0, (10b)

ox’

in which s’ denotes the value of the determinanin theA coordinate system.

(Y We present a purely formal argument in support of theice. In isotropic media, the tenspi is
the square of a second-rank tengqr = s, Sq [Cf., equation (7)]. In that case, one must naturedjyate

&jnk to the square root of the two-dimensional determirgrt |sp | (in analogy with,/-g ). In isotropic
bodiess= 24 (-s)*= 4! (-s)% hence,/-s = 4s/24.
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As is obvious from equation (32), the replacement effdrmer valuegjx = + 1
with the valuesej = £{/s/24 is equivalent to the coupling of the components of the

tensorh™ with 2/s/24. Hence, the values & in anA system will no longer be
determined by the matrix (31); every element of that imnatrust be multiplied by

\s/24.

The new definition of the tens®"™ does not change our previous argument, since
our basic equation is homogeneous with respect to thparentsh™, and all of those

components are multiplied by the same fagyar/ 24, which will not violate its validity.

In other words, it can be shown that it is only witke new definition of the tensf™
that it will take on the following remarkable property:isotropic media, the tensof™
will become equal to the tensd%“sidentically(w).

Let us summarize the results of this paragraph: The propagH light in anisotropic
media is determined by the invariant equation (30a), in \Akh‘ﬂ[t'fmre the components of
a tensor of rank four. That tensor is a functiorthef tensors™ and is determined by

equation (32), in whickjk should be understood to mean the completely anti-syriamet
tensor whose non-zero components are equat{c/24. In the A systems, the
components of the tensbf™ are equal to the elements of the matrix (31), migtipby

\/S/24.

8 6. Doublerefraction and bi-quadratic geometry

The equatior® = const. determines an arbitrary surface (viz., thexsardf equal phase).
The propagation of light waves will occur along world $irtbat are perpendicular to its
surfaces; i.e., along lines that satisfy the equations:

dx =Agrad Q=122 (34)
0X

in which A is a proportionality factor. Inserting this into etjoa (30a) will give the
equation of light rays: )
hi"k dx dx dx, dx, = 0. (35)

It is known that light propagates in a vacuum alond lmgs (%), whose equation
takes the form: )
ds =g dx dx = 0, (35a)

in whichg" are the components of the metric tensor.
The complete analogy of the last two equations allowso give the following
interpretation to equation (35):

(*%) Cf., the Appendix.
(*°) We shall pass over the question of the geometry of iaylst
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Light propagates along null lines in material media, just as it does in vacuo.
Equation (35) is equivalent to the equatas= 0. Thusthe metric tensor of a material
medium is a tensor'f of rank four. In other words, in material media, the line element
is determined by the following expression:

dst = h"™ dx dx dx, dx = hij dX dX dxX' dX’ . (36)

Of course, these suggestions are of a formal charaalear@nessentially definitions.
However, in order to maintain them, one must deal avitumber of criticisms.

The values of the components of the metric tegéan vacuum can be found from
three kinds of measurements: Optical [based upon equai@)]( mechanical (the free
motion of material bodies), and direct metrical orthe pehavior of rods and clocks); the
last two methods are inapplicable in material medighe “geometrization” of the
macroscopic theory of material media is possible avityh the “optical” method. In
other words, the only way to determine the metric tems@ material medium is from
the conditions for light rays to have zero lengthleanwhile, the application of well-
developed geometrical methods to crystal optics, asagelb general electrodynamics,
has greatly facilitated the further development of ¢hibeories.

Finally, as we shall see later on, our assumptiongtaation (35) is equivalent to the
equationds = 0 will lead to a number of physically-interesting seguences whose
accuracy can be confirmed independently of our recentlggsed hypothesis.

Therefore, we shall assume that the line elemenbisdetermined by a quadratic
form in the coordinate differentials, butb&quadraticone. That situation could have
been predicted priori, because it corresponds to the presencgoable refractionin
crystals; every spatial directionx, dx¢, dx’) corresponds to not twat (w), but four
(iwl,l7i W), possible values of the speed of light that satisfolirth-degree equatias
=0 ().

It is obvious that in the case of the absence of dohlaction — i.e., the case of
isotropy — the line element must still be determined by draiia form in the coordinate
differentials, not a bi-quadratic one. Indeed, it wasaaly mentioned in the previous
paragraph that’™™ = s in isotropic media; in other words, in that case, ftheth-rank
tensors®® will reduce to square of the second-rank tersofcf., equation (7)]. Thus,
equation (35) will take the following forms:

ds' = s" & dx dx, dx dx = " dx dx)?,
or
ds’ = " dx dx (36b)

which was to be proved.

Thus, the “natural” geometry of anisotropic media i geometry of bi-quadratic
forms, which is a direct generalization of the Riemanimgeometry of quadratic forms. It
is easy to understand that the need for such a gemi@iiznight be superfluous in
anisotropic media. Indeed, Helmholtz has shown that gqtiadgeometry is the only
geometry in which a solid body preserves three rotdtidegrees of freedom around a

() In the general case, the values of the speed of liglet difot only in their signs, but also in their
absolute values.
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fixed point. Now, the general theory of relativity isstricted essentially to the

consideration of physical processesvacuq to the extent that it is based upon the
concept of the rotation of rigid-bodies (of infinitesihsize). However, it is obvious that

this concept is based upon a general assumption of ttiepgmf space. There is no

reason to believe that the freedom of rigid-body rotat@ould be preserved in

anisotropic space; rather, we must reject such a possibilihe existence of double

refraction resolves the issue in favor of bi-quadrgéicmetry.

8 7. Wavesand rays

The equation of the null lineds = 0 can be written down in either contravariant or
covariant coordinates. Previously, we saw that infahener case it determines the line
of propagation of a light wave. What is the physicaaming of the equation:

ds’ = hjne dX dX dX' dX = 0, (37)
when it is written in contravariant coordinates ?
If the main provisions of the preceding paragraph areecbthen that equation must
also determine the line of propagation of light. In oretook into the matter more

deeply, we express the differentials of the contramarcoordinates in terms of the speed
of light rays and their direction cosiné's

o= (2T

v, D92 =1, a=1,2,3. (38)

or
o,
dx*

The admissibility and validity of this interpretat of the coordinate differentials will
be justified in the following paragraph; in the mime, | will confine myself to referring
to Einstein, who used equation (38) in his artmle“The fundamentals of the general
theory of relativity.” ¢?)

In order to commence with the physical interpietabf equation (37), we still need
to determine the values of theovariant components of the tensdwn . The
contravariant components of that tensor are detemhin terms of the tensos&* and
&k by using equation (32). In order to get the civdrcomponents ok , we
obviously need to replace the superscripts on biolgs of that equation with subscripts.
If we take advantage of acoordinate system then, in view of equations (&) @), the
replacement 0§ with sy will come down to the replacement gf and &, with their
reciprocal values 14, and 1 /&, in the final result.

If one makes that substitution into the matrix)(@ten that will give:

(*® Ann. Phys.49 (1916), 821 (cf.Albert Einstein Collected Scientific Papers. v. 1, M. “Science,”
1965, pp. 452,%ed.)
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hijnic =
HoHs H K K Hy ,U3+,U1 _ 1 ,U2+,U3
& 2l& & 2 &, 2,
&(ﬁ+&j Hbly u{mg&j _[ gj
2\ & & £, 2\ &, x (39)
o\ B ( H4 HufHe  Fs Hil 5 S I i
2\ & & 2\ &, & £, .\ £,
S 2 N DT R 1
25\ &, & 28, & & 2.\ & &, EEE£,

This matrix, like the matrix (31), gives the values of t@mmponentshj in an A
coordinate system, up to a common factor that eqya$24 for K™ and \/5/24 for

hinx . Here, S denotes the four-dimensional determinant that is definedthiey
contravanantcomponentﬁJhk

If we insert the values anddx? / dx* from (38) and (39) into the equation of the
null lines (37) then we will get the following equation:

v“S(Il)“%+v4 (113 %, (ﬁ +&j -v

1 1 82

*S1) zi[&ié}—l =0, (40)

81 82 83 £§§3

in which theS denotes a sum over cyclic permutations of the indi¢c@s 3.

Formula (40) coincides completely with the formulattidetermines the speed of
propagation ofight rays in magnetic crystalsli) and is a generalization of the known
formula of elementary crystal optics to the casg #fl.

In this situation, we find our first confirmation of thmsic assumptions of the
preceding paragraph. Except for the tensowhich is the metric tensor in material
media, there is no reason to assume that thereseaist strong physical connection
between (35) and (37), especially if we take into accoumtwaly by which we have
determined the values of the covariant components détisorh.

Here, the null line equation (37N contravariant coordinates determines the
propagation of light rays, while the null line equation (3%)covariant coordinates
determines the propagation bfht waves. In this situation, it is essential that the
covariant and contravariant coordinate differentialasimbe interpreted in entirely
different ways: For the covariant coordinates, weag@ations (25) and (34), which can
be put into the following form:

(*° Cf., E. Cohn,Das Elektromagnetische Feltleipzig, S. Hirzel, 1900, pp. 570 [equation (37b)].
Cohn’s term “Wellenflache” corresponds to our term ‘sayface.” (cf.jnfra).
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%:g:—ﬂ m"zz
e

in which w is the speed of waves, and, are its direction cosines. In other words,
equation (38) will take the form:

& =17, > (19) =1, (41a)

in whichv is the ray speed andare its direction cosines.

The question naturally arises: How does one findoasistent and reasonable
interpretation of such different valudg anddx? Now, equation (41) was only derived
in an A coordinate system, and even then, only under #seinaption that it was a
Cartesian system. However, now that we have ifieshtihe element of length by means
of formula (36), we no longer have no right to assuthat theA system is Cartesian.
Furthermore, equation (38) is certainly true f@@atesian system. But is it applicable in
any coordinate system? Finally, equations (35) %) represent, in essence, two
different ways of writing dowrthe samesquation; namelyds= 0. How carthe same
equation represent such diverse things as the gatipa of waves and the propagation of
rays?

In order to unravel these issues, one must rehallcases in which there is a
difference between the speed of raymd the speed of waves

The values o¥ andw can be determined in two different ways. With tinst one,
one can start with the wave equation [viz., equatial)]. Assume that the wave surfaces
Q = const. at two consecutive moments in ttimendt, define the surfacd?; andP, . If
the time intervat; —t; is equal to 1 sec then the speed of the wave warildumerically
eqgual to the length of the segment that is normah¢ surface®; andP, and included
between them. In other words, the speed of thewifiype numerically equal to the
length of the line segment that is between theased, whose direction will coincide with
the direction of the flow of energy. The differenoetween the ray speed and the wave
speed arises only in the case in which the directé the flow of energy is not
perpendicular to the wave surface.

The desired speedsandw can also be determined by examining the so-cadgd
surface — i.e., the geometry of the locus of potihtd are illuminated at the timeby a
light pulse that has the initial coordinates at ti@mentt, . Let the ray surface coincide
with the surface®; andP, at two consecutive momertisandt, . If the time interval, —

t; equals 1 sec then the ray speed will be numeyichiferent from the length of the
segment of the radius vector that is included betwéhe surfaced?; and P, .
Furthermore, the wave speed will be equal to thegtke of the normal segment that is
include between the tangent planes to the surfegesnd P, . The wave speed is
different from the ray speed if and only if the mad direction to the ray surface does not
coincide with the direction of the radius vectothat surface.

Thus, the problem of determining the speedand w reduces to the problem of
constructing a normal to a given surfd&e The concept of a normal is meaningful only
if one has defined a metric, which will define agetry.
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It is possible to given an answer to the question abovéhe basis of the following
conditions:

1. In a natural geometry that enjoys an invariant defmiof line elements, the
normal to the ray surface will always coincide witie tdirection of the radius vector to
that surface, and the normal to the wave surfacecwiticide with the direction of the
flow of energy. Thereforey = w, so there will be no difference between the laws of
propagation for light waves and those of light raysgd doth phenomena will be
described by the same equatds+ O.

2. The difference between waves and rays will ayrdg in the case in which a non-
Cartesian coordinate system (or any other non-invariateisy uses a Cartesian metric.

Naturally, these contravariant Riemannian coordinatedeadirectly identified with
Cartesian coordinates [according to equation (41a)]. Agsh® covariant coordinates,
they have no direct geometric interpretation in Caategieometry. However, it is not
difficult to insure that when one is considering thedan? the propagation of light, the
covariant coordinate differentials should be intergtedecording to our equation (41).

Indeed, within an infinitesimal region of the wave, thetda e? can always be
represented in the following form:

e/ 1= o l@s gl lQat
in which @Q)o = const.

. " =PI 127 (wt-m, £)
If one identifies the factoe’™@ ¥ with the wave factorer 7 of a plane

wave in Cartesian space then we can repeat all ofrgjuenents that led up to equations
(25) and (41) in 8 4 and 5, respectively.

3. We claim that if the invariant equatiads = 0 is written in contravariant
(covariant, resp.) coordinates then if we eliminats¢hooordinates by using the relations
(41a) [(41), resp.], the equation that will be obtained lalltantamount to the Cartesian
equation of a light ray, in which case, one would haveage surface ¥9). In order to
prove the correctness of this assertion, we stilldnee show that there is a proper
geometric relationship between certain surfaces, whicluatado the fact that the wave
surface is the locus of the feet of the perpendidinairis dropped from the center of the
ray surface to a tangent plane to it.

In order to prove the validity of the statement abdw&hall turn to the optics of the
gravitational fieldin vacuq which is also a Cartesian viewpoint on anisotropic spee
therefore there is a difference between a lightaray a light wave. All of the results that
we arrive at in this simple case can be transfeodle optics of material media directly.

(*® By definition, the length of the radius vector of thave surface in a given direction is the speed of
a plane wave that propagates in that direction.
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§8. Theopticsof gravitational fields

Although the equations of light rays in vacuum are gdligekaown, | shall still give
a brief derivation of those equations here, while adheartbe method that was outlined
in 8 3. )

In a vacuum, the relationship between the tenBprandf ’ is established by using
the metric tensor?):

! zgip giq Fpg -

Equations (14) and (15) still remain in force, while equatid) will take the form:
= -1 g (A Q-A Q) e, (162)

and equation (17) can be written in the stated form alewsl (after removing

J-1 e/ Qy; o
9" g" (A Q—A Q) Q =0. (18)

Multiplying this equation by and summing ovarwill give (sincegiIO Ok = J)):

A(d Qe Q) - Q@ A Q) =0.

These four equations can be satisfied in only the fatigwiwo cases: EitheAy is
proportional toQy, or the following equalities are satisfied simultanegusl

Q@ Q=0 g°A Q=0 (42)

The first situation is impossible [cf., (23; therefore, one must have equations (42).
The derivation of equations (42) that is contained hdfergifrom the results that are
known to me (e.g., Laue, Eddington, etc.) by the fadtttiese authors did not prove the
validity of the second of equations (4@mpletely or rather, the equivalence of those
equations with divd; = 0, whered; is the tensor potential.
If one replace®); in equations (42) with the coordinate differentials dfht ray [cf.,
equations (34)] then one will finally get:

¢" dx dx = 0. (43)
The same equations in contravariant coordinates ateemwds follows:
Ok d)d. d)é( =0. (48

In terms of Riemannian geometry, equations (43) and) @2 identical. The anisotropy
of space is out of the question, if only because theesgmn for the line element can

) Thus,F;; andf ' are components dfie saméensor in a vacuum (as opposed to a material medium).
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always be reduced to a sum of quadratic differentials byuitabée coordinate
transformation®).

By contrast, one always enjoys Cartesian geometexperimental physics, and any
deviation from Cartesian relationships is explained h®y influence of external (viz.,
gravitational) forces. Hence, for example, the spekedight will depend upon the
direction of propagation in gravitational fiet@ordinates Experimental physics seeks to
explain that fact by way of an anisotropy of space thaireéated by gravitation. The
presence of anisotropy, in turn, will cause differencetsvben the wave speed and the
ray speed.

We now turn to the proof of the provisions that werdimed at the end of the
preceding paragraph. For simplicity, assume that we bhwsen a coordinate system in
which time is perpendicular to space; i®4 =024 =gz = 0. As is known, that condition
will imply the validity of the following equality:

g =1/gu. (44)

In addition, to simplify, we drop the signs in fronttbé differentials of the coordinaxe
andx; in equations (43) and (43a), which is, however, limited co@adinate change over
an infinitesimal region; i.e., a region in which the valwé the componentg; can be
regarded as constant.
The equation of the ray surfaGéx?) will be obtained equation (43a) by settingx*
= const.:
G(X?) =g X" ¥ +guat?=0, t=const, a=1,2,3. (45)

Draw a spatial segment whose components will be ddrmte™ at an arbitrary point
(x”) of the surfaceG(x?). That segment can lie in the tangent plane to tinéace
considered as long a8G / 9x%) & = 0; i.e., as long ag,z X° & = 0. From the standpoint
of Riemannian geometry, the equality the must be showhatsthe radius vectok) to
the ray surfac& will always be perpendicular to that surfaéd,(which agrees with the
first part of condition 1 that we stated in the previpasagraph.

Moreover, the direction of energy flow is determiri®dthe component3;' of the

energy-impulse tensof*. For electromagnetic fields, the tengdr is determined from
the equality:

Tik :Firfkr_%éik Frsfrs-

WhenF,s andf ™ are expressed in terms Af andQ; by using equations (15) and
(16a) and taking equation (42) into account, we confirmtti@tsecond term and three
terms in the first term on the right hand side of #gsation will be equal to zero for the

(*® In contrast, if that element is determined by a bi-quardfarm in the coordinate differentials then
the anisotropy of space will have an essential chamaand cannot be eliminated by a suitable choice of
coordinates.

(*® Because it is perpendicular to any of the tangentsatosurface.
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field of the light wave. Omitting the wave factevFlQ, which is unimportant for us, will
give T" =g Q, d°* A AsQ . Thus,T* =1 Q,, in which/ is a proportionality factor.

In other words, the direction of the normal to wWeeve surface will be determined by
the values oflx, = A grad, Q =A Q, . Therefore, the direction of energy flow in thed
of a light wave will coincide with the direction tiie normal to the wave surface. This
illustrates the second part of our condition 1.

We now proceed to the proof of condition 3. To that eveltake the viewpoint of
Cartesian geometry and identify the contravariant Ri@mian coordinates' with the
Cartesian ones and find the geometric locus of the ludsé® perpendiculars that are
dropped from the center of ray surface (45) to the targane to that surface.

The tangent plane to the ray surf&@f&”) = 0 is determined from the equation:

0G

XY —x% =0,
ox“? ( )

in which X“ are the current coordinates of the tangent planex@aack the coordinates of
the point of tangency.
From (45), we will have:
0G

=20m; X"
ox“? Gap

If we substitute this into the previous equation then wliefind that:
gaﬂxaxﬂ—gaﬂxaxﬂ: 0,

or, on the basis of equation (45):
gaﬁx"xﬂ+g44t2= 0.

To simplify, we introduce the notatioff’)
Xa = ap X, a=gut? (46)
and with their help, the equations of the tangent plankdevgiven in the fornX? x, +
a=0.

As is known, the coordinateé® of the base of the perpendicular that is dropped from
the coordinate origin to the plane are determined fronedo@tion:

Fg=- 2k

A
2

In order to find the equation that relates the valueg ¢ t, form the expression:

(*") Of course, since we are using Cartesian geometryguhatitiesx, cannot be considered to be
covariant coordinates. We have introduced the notatiopumedy formal way.
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azgaﬂxa )%

23]

On the basis of equations (45) and (46), that will egsilg:

D g¥EEr =
ap

9% Xa X3 = Qap XX = - a.
Therefore:

_a3

In other words, the length of the desired perpendiculhbeigiven by the formula:

IR
rP=) (&)= —=

3 ¥

zgaﬂfagzﬂ:_'A/a’
ap

> g%l =
ap

Hence:

or
r4
> gPEE +—— =0.
aB

Uat?

If we divide both sides of this equation By introduce the notatiow = r / t for the
wave speed anah, = &7/ r for the direction cosines, and finally, expressin terms of
g* using equation (44) then we will get the equatibthe desired (wave) surface in the
following form:

g% my mz+ g** W = 0. (47)

It is easy to see that this will lead us to theeaquation, and equation (43) of null
lines, if we eliminate the differentials of covariacoordinates from it by using the
relation (41).

Thus, the equations of the ray and wave surfadeish are derived from the equation
ds= 0 by the method that was discussed in the pregqufiragraph, are connected by the
proper geometric relationship®. Thus, we have proved all of the statements e

(*® Riemannian coordinates will reduce to oblique-angled Slartecoordinates (with a different length
scale along each coordinate axis) within a region thatffiently small that the values of the components
gj can be regarded as constants. The contravariant coeslwat equal the projections of the radius
vector onto the coordinate axes In an oblique-angled cairdsystem. In other words, the wave speed
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made at the end of the last paragraph in the case ofaji@avil fieldsin vacuo In this
article, we shall not dwell upon the proof of thoseestants for more complex cases of
the propagation of light in anisotropic material medid ahall confine ourselves to the
assumption that the aforementioned statements thatatidein quadratic geometry will
also remain valid in bi-quadratic geometry.

8 9. Thethreefundamental tensors of bi-quadratic geometry

In quadratic geometry, by definition, there are wellknorelations between the
covariant and contravariant components of the sameotehat are established by the
metric tensor. _ o

In particular, they are known to los = gj dX anddxX = @' dx . A similar kind of
relationship should exist in bi-quadratic geometry. Howetherse relationships cannot
be established using any metric tensar s as the tensor that plays the role of “index
changer,” unless it satisfies the following two conaisio

1) It should be asecond-ranktensor, since otherwise the transition from the
contravariant components of an arbitrary ten$oto the covariant components (and
conversely) would change thank of the tensofl. (In particular, that would apply to the
coordinate differentialdX anddx .)

~2) The components of the “index-changing” tensor (whidhhvei denoted bk; and
k') must satisfy the relations:

kn K = . (48)

which follow from the fact that the equalitid® = k! dx = K/ k;, dX’ should be satisfied
identically for any differentialglX .

It might seem that the role of “index-changer” isgdumabstract and can be performed
by any second-rank tensor that satisfies the cond@@n However, that is not true.
The replacement of the contravariant differentibdswith covariant ones (and vice versa)
must convert the expression for the line elenasht hjn, dX dX¥ dX' dxX = h"™ dx dx dx,
dx freoe)m the first form into the second one (and conJg)seTherefore, it is necessary
that ¢°):

hijhk = kip Iﬁq Knr Kies NP9, (49)

Due to the fact that the values of the covariant @mravariant components of the
metric tensoth are known from the above, we can use equation (4€etermine the

will equal the projection of the ray speed onto themadrto the wave plane. The analogy is clear and can
serve as a confirmation of our equation (41).

(*®) Unlike the tensom, the components of the tenssrare coupled by the relation (4), which is
analogous to equation (48). The compondﬁ'tsandsjhk do not satisfy any relationship of the type (49).
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values of the components of the tenkor A few simple calculations will lead to the
values of these components infanoordinate systenf/):

% 0 0 0
1
0 % 0 0
i< = 2 . (50)
0 o [HAH
83
0 0 0 _—1
L A E1€2€5 |

By means of analogous considerations, we canyease# that the values of the
contravariant components of the tensbrwill be obtained from the matrix (50) by
replacing the values, andu, with their reciprocal values 1g, and 1 /u, and replacing
S with s, and conversely. It is also easy to see thatethsork satisfies the condition

(48).

Thus, one needs to distinguish between the thmegaimental tensoss h, andk in bi-
quadratic geometry. The fourth-rank tensoestablishes a relationship between the
electromagnetic tensoFs andf’. The fourth-rank tensdr determines the line element.
The second-rank tensdérplays the role of “index-changer” with respectatay tensor,
and in particular, the tenser All of these functions are performed by the sdaemsorg
in quadratic geometry.

It is obvious that these three tensgrk, andk will reduce to one second-rank tensor
that is analogous to the tengpin isotropic media, where quadratic geometry doteisa
In fact, it was already observed in § 2 that thertlorank tensosjk (", resp.) will
reduce to the square of the second-rank tessds’, resp.) [cf., equation (7)] in an
isotropic medium. )

In other words, it was pointed out in § 6 thgt = S = s, s in an isotropic
medium, and therefore the line element will be deteed by the equation (36l = Si
dX dX in that case.

Finally, as will be proved in the Appendix, oneslthe following relations:

2

2
S =245° = 24'9—2 and s =24s”= 24’”—2
U = £

in isotropic media, and as a consequence, as ily saen, the components of the tensor
k; will be equal to the components of the tengoin an isotropic medium. Thus, in an
isotropic medium, the tensey will perform all three of the functions of the mettensor

(*") Equation (49) is insufficient for the determinationtioé signs of the componerks. We selected
the signs ok;; by analogy with the signs of the componegtands; .
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gj that were listed above. Of course, as the mediwuarbes gradually more rarefied by
the transition to a vacuum, the tenspwill become identical to the tensgy .

We also mention that the job of the tensas determined uniquely by the values of
the other fundamental tensors of bi-quadratic geometryus, Tlor example, if one is
given the values of the componergc then by the use of equation (4), one can
determine the components gf*, and by using equation (32), one can determine the
componentsi andh™. Finally, by using equations (48) and (49), one can citkethe
values of the components of the tenkorUnfortunately, | could not find any relations
that would establish a direct link between the tensarglk.

The further development of this theory would have toassociated with the
resolution of a number of physically and mathematicaligresting problems. Thus, for
example, | suppose that the eventual development ofheeryt will permit one to
determine the form of the electromagnetic tensor ofggn@nd impulse in material media
and to thus eliminate the existing questions and inconsistein regard to i?}). The
extension of the theory tmhomogeneoysanisotropic media will involve finding the
equations of geodesic lines in bi-quadratic geometry. Perlthpsabove physical
considerations can also facilitate the solution of fhisely mathematical problem of
finding the laws of bi-quadratic geometry. Thus, for exanphe considerations that
were described at the end of § 7 suggest that the expréisaiarefines the cosine of the
angle between two directions must be such that the sutfeteis defined by the
equationsis= 0 orx = const. is always perpendicular to its radius vector

It is indeed a pleasant task for me to express my reirggpreciation to prof. L. I.
Mandelstam for his valuable advice and suggestions thatchelpan the preparation of
this work.

Appendix

We prove that the metric tenslajk is identically equal to the square of the second-
rank tensos; in isotropic media.

It is known that the four-dimensional determinantcan be put into the following
form:

in which we leté™ denote the antisymmetric tensor of rank four whose-zeva
components are equal #0l1. In isotropic media, due to the equasiy = Sn Sk, we will
get:

é - (Ejlizjéasljl%jz %j3 %4)(£ji1i2i34é3khrkr§ 4i§1i§2i|§3i|’§4)’

in which s = (s)(4!s) = 24s*, wheres=|s; |.

According to § 5, when the components of the teagpare introduced into formula
(32), that will give the following values:

(*®® Cf., W. Pauli, Relativitatstheorie Leipzig, 1921, § 35 (translated into: V. Paduligoriya
otnositelnostiM. —L., GITTL, 1947. — T ed.)
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S
Ejhk = ,4/ Z Sihk -

In isotropic media, that equality will take thdldaving form:

8ink = 4| S” &k =/ (—S) Sk

(We include a “minus” sign under the square rooteis < 0.)
Thus, equation (32) will take on the following riar

st = —%(V —s) (P K- S S ST S e i

in an isotropic medium.
The last two terms in the parentheses cancel @dehn out, and as a consequence, the
equality can be written in the following form:

hqut = %§ qu Srk §n{ Ehmk Einp g’j ShI gnp}

It is easy to see that the expression in parenshissthe adjunct determinast = |§j l,
multiplied by 3! (= 6), that corresponds to themef" (). As is known, that adjunct is
equal to the covariant components of the temsggrmultiplied by the determinans.
Thus:

hrst = %§sqss”‘ §"65nS.
Sinces s ands® s" §" = s, [due to equation (4a)], we finally get:

hqrst — qu Srt
which was to be proved.

(*® The appearance of the factor 3! is due to the fadt tttea summation inside of the brackets is
performed over the indicésh, m, along with the indiceg I, p.



