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§ 1.  Introduction and brief summary 
 
 In collaboration with prof. L. I. Mandelstam, I arrived at the invariant equations of the 
electrodynamics of anisotropic media (2).  In that article, they are used to determine the 
laws of propagation of light in crystals.  These formulas are quite analogous to the known 
equations for determining the propagation of light in gravitational fields in vacuo.  That 
analogy permits one to give the law of crystal optics a geometrical interpretation, which 
amounts to the statement that in a material medium, as well as in a vacuum, light 
propagates along null lines (ds = 0).  In that case, one must determine the element of 
length by means of the following formula: 
 

ds4 = hijhk dxi dxj dxh dxk = hijhk dxi dxj dxh dxk,   (1) 
 
in which hijhk (hijhk, resp.) is a tensor of rank four whose components are functions of the 
magnetic permeability µαβ and the dielectric constants εαβ .  In other words, in an 
anisotropic medium, one must assume that the element of length is determined by a bi-
quadratic form in the coordinate differentials, while in a vacuum and in isotropic media, 
it will be a quadratic form. 
 Physically, a bi-quadratic element of length corresponds to the presence of double 
refraction.  Thus, in anisotropic bodies, the Riemannian geometry of quadratic forms is 
no longer valid, but one must deal with the more general geometry of bi-quadratic forms.  

                                                
 (1) Zh. R. F. Kh. O., v. 3-4 (1925), 1.  
 (2) Zh. R. F. Kh. O., 56 (1924), 248.  (cf., esp. volume 1, first ed.) 
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Further development of the aforementioned theory of crystal-optical relativity will allow 
us to elucidate some of the features of that geometry.  For example, the major role that is 
played by the (metric) tensor gij in Riemannian geometry gets distributed among the three 
tensors hijhk, kij, and sijhk in bi-quadratic geometry.  The first of them plays the role of the 
metric tensor, which defines an element of length, while the tensor kij of “refraction 
indices” establishes a connection between the covariant and contravariant components of 
the same tensor.  Finally, the tensor sijhk establishes a connection between the 
fundamental electromagnetic field tensors Fij and f ij (cf., § 2).  In isotropic media, bi-
quadratic geometry goes to quadratic, and these three aforementioned tensors will 
become identical with each other. 
 In anisotropic media, there is a difference between the propagation of light waves and 
the propagation of light rays.  That fact is in apparent contradiction with the reality that in 
the “natural” bi-quadratic geometry of anisotropic media both of these phenomena are 
described by the same equation ds = 0.  The significance of that distinction lies in the fact 
that the difference between the speed of the wave and the speed of the ray can be 
irrelevant for a Cartesian interpretation of arbitrary Riemannian (i.e., non-Cartesian) 
coordinates, which is analogous to the way that one explains the bending of a light ray in 
a gravitational field by means of a similar interpretation of Riemannian coordinates, 
moreover.  For a more detailed explanation of that topic, § 8 is devoted to the 
consideration of the optical anisotropy of gravitational fields in vacuo. 
 The present theory has a macroscopic character.  A discussion of its relationship to a 
deeper physical interpretation in terms of the microscopic (electron) theory of a material 
medium will be postponed to a later article. 
 The present article is an attempt to sketch out a path to the construction of a general 
theory of geometrical optics that would admit one to assume a single viewpoint on the 
laws of propagation for light in various media (gravitational fields in vacuo, material 
media, both isotropic and anisotropic, homogeneous and inhomogeneous). 
 
 

§ 2.  Basic equations of electrodynamics for anisotropic media 
 

 In this article, we shall restrict ourselves to the consideration of dielectric media, and 
in addition, assume that the medium has three mutually-perpendicular principal axes of 
anisotropy.  (This is true in all crystalline systems, except for monoclinic and triclinic 
ones.) (3) 
 Electromagnetic fields in dielectrics are determined by anti-symmetric tensors Fij and 
f ij, whose components have the following physical interpretation: 
 
 (F14, F24, F34) = (E1, E2, E3),  (F23, F31, F12) = (B1, B2, B3), 

(2) 
 (f 14, f 24, f 34) = (− D1, − D2, − D3), (f 23, f 31, f 12) = (H1, H2, H3). 
 

                                                
 (3) This assumption is introduced only for the sake of simplifying the calculations.  The main results of 
this article − in particular, all of § 6 − will remain valid in the general case.  (For the importance of the 
components of the tensor s that relates to that case, cf., the article that was cited above.) 
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Here, Eα , Hα , Dα , and Bα are the components of the usual three-dimensional 
electromagnetic vectors (electric force and magnetic field, electric displacement and 
magnetic induction, resp.). 
 The tensors Fij and f ij must satisfy three fundamental equations.  The first of them 
establishes a connection between Fij and f ij.  That equation was derived by me in the 
aforementioned article and has the following form: 
 

f ij = sijpq Fpq ,     (3) 
 
or the corresponding form that relates to Fij: 
 

Fij = sijpq f 
pq.     (3a) 

 
Here, sijpq and sijpq are two tensors of rank four, or rather, two general forms (covariant 
and contravariant, resp.) of the same tensor of “dielectricity and magnetic permeability.”  
The following relations exist between them: 

sijpq shkpq = i j
h kδ δ ,    (4) 

 
in which i

hδ  = 1 when i = h and i
hδ  = 0 when i ≠ h. 

 In the sequel, we shall often have to use Cartesian coordinate systems that are at rest 
with respect to the region of the dielectric considered and whose axes coincide with its 
principal axes of anisotropy.  We shall refer to these coordinate systems as A systems, for 
the sake of brevity. 
 One can show (loc. cit.) that in A systems the only components of the tensor sijpq (sijpq, 
resp.) that are non-zero are the ones for which i = p and j = q.  When viewed in an A 
system, the values of the components of the tensor sijpq can be displayed in the form of a 
square matrix: 

sijpq = 

1
3 2

2
3 1

3
2 1

2
1 2 3

1 1 1

1 1 1

1 1 1

[ ]

ε
µ µ µ

ε
µ µ µ

ε
µ µ µ
ε ε ε ε µ

   −  
  

  
 − 
  
 

  −   
 

− − − 

.    (5) 

 
 The elements of this matrix that are found at the locations (1, 1), (1, 2), (1, 3), … are 
equal to the components s1111, s1212, s1313, …, respectively.  I was not able to determine 
the meaning of the elements of the main diagonal (4), and the respective locations of these 
elements in the matrix contain only the dimensions of the elements.  As was pointed out 
before, all of the components of sijpq that are not included in the matrix are zero. 

                                                
 (4) These elements will drop out of the equations that we shall have to use in what follows.  
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 By means of equation (4), it is easy to see that the following relation is valid for all 
non-zero components: 

sijpq = 1 / sijpq      (6) 
in an A system. 
 In isotropic media, the tensor sijpq of rank four (sijpq, resp.) will reduce to the square of 
the tensor sip (sip, resp.) of rank two.  In other words: 
 

sijpq = sip sjq, sijpq = sip sjq ,    (7) 
 
and in the rest system of Cartesian coordinates, the components sip will have the 
following interpretations: 
 

sip = 

1
0 0 0

1
0 0 0

1
0 0 0

0 0 0

µ

µ

µ

ε µ

 
 
 
 
 
 
 
 
 
 

−  

.    (5a) 

 
Equations (4) and (6) reduce to analogous formulas in isotropic media, namely: 
 

sip siq = p
qδ       (4a) 

 
and (in a stationary Cartesian system): 
 

sij = 1 / sij.      (6a) 
 
 We now turn to the other two equations of electromagnetic fields.  In the special 
theory of relativity, they have the following form: 
 

rot Fij = ij jkki
k j i

F FF

x x x

∂ ∂∂+ +
∂ ∂ ∂

 = 0,    (8) 

 

div f ij = 
ij

j

f

x

∂
∂

 = 0.     (9) 

 
 The first of these equations is invariant with respect to any coordinate transformation.  
However, in the general theory of relativity, the second one is replaced with the following 
tensor equation: 

ij

j

g f

x

∂ −
∂

 = 0.      (10) 
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 However, we have no right to introduce the “microscopic” tensor gij into the 
development of our macroscopic theory, so we shall deal with only the average, 
collective values of the physical magnitudes.  We can give equation (9) an invariant form 

without having to resort to the use of the gravitational potentials gij .  Indeed, g−  

transforms by the formula: 

g−  = J g′− , 

 
in which J is the Jacobian of the transformation: 
 

J = 
1 2 3 4

1 2 3 4

( , , , )

( , , , )

x x x x

x x x x

′ ′ ′ ′∂
∂

.     (11) 

 

On the other hand, g′−  = 1 in a Cartesian coordinate system.  Therefore, if we are to 

understand J to mean the Jacobian of the transformation that takes the coordinate system 

x1, x2, x3, x4 to the Cartesian (primed) system then we will get  g−  = J, and the 

invariant equations (10) will take the form: 
 

∂J f ij / ∂xj = 0.      (10a) 
 
We can transfer this equation directly to our macroscopic theory in this form (5).  Later 
on, we shall give this equation a slightly more convenient form. 
 The set of equations (3) [or (3a)], (8), and (10a) represents the total system of 
equations for electromagnetic fields in dielectrics.  It can be simplified by introducing the 
tensor potentials Φi into consideration and setting: 
 

Fij = ji
j ix x

∂Φ∂Φ −
∂ ∂

.     (12) 

 
 Equation (8) would then be satisfied identically, and f ij would be defined by equation 
(3): 

f ij = sijpq ji
j ix x

∂Φ ∂Φ − ∂ ∂ 
.    (13) 

 
 

§ 3.  Electromagnetic fields of light waves 
 

 The electromagnetic fields of light waves are characterized by the fact that their 
tensor-potentials are periodic functions of the coordinates (viz., space and time); i.e., that: 

                                                
 (5) In the terminology of H. Weyl, the quantity J f ij = f ij is called a “tensor density.”  These arguments 

boil down to the fact that the invariant divergence of the tensor density f ij should be equal to zero.  We 

determine the value of f ij from the condition that its components in a Cartesian coordinate system must be 
equal to the components of the tensor f ij. 
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Φi = Ai 
1Qe − ,     (14) 

 
where Q is a scalar function of the coordinates. 
 Strictly speaking, the functions Φi can be called periodic only under the condition that 
the components of the tensor Ai must have a constant value (in space and time).  
However, that condition is not invariant under coordinate transformations and must be 
replaced with the requirement that the derivatives of Ai must be small in comparison to 
the derivatives of Q. 
 In the present article, we shall confine ourselves to geometrical optics.  That means 
that we shall exclude from consideration, first of all, the dispersion of light and secondly 
its diffraction.  The first exclusion is achieved by assuming that the light ray is 
monochromatic.  (For a given frequency, εα and µα will then be well-defined functions of 
the coordinates.)  The influence of diffraction can be neglected only if the medium is not 
rapidly-varying; i.e., only if the properties of the medium do not change appreciably at 
distances that are comparable to the wavelength (and for a period of time that is 
comparable to the period of oscillation).  In other words, it is necessary that the 
derivatives of sijpq must be small in comparison to the derivatives of Q. 
 Finally, it is necessary to impose the restriction on the derivatives of the Jacobian J 

that obviously amounts to excluding those coordinate systems in which g−  varies 

significantly over distances that are comparable to the wavelength of the light.  This 
restriction is rooted in the very essence of all macroscopic theories. 
 As described above in regard to the differentials of the potentials Φi, the terms that 
contain the derivatives of Ai can be neglected in comparison to the terms that contain the 
derivatives of Q.  Therefore, equation (12) will take on the form: 
 

Fij = 1−  (Ai Qj – Aj Qi) 
1Qe − ,    (15) 

 
in which we have introduced the notation Qi = ∂Q / ∂xi.  Moreover, we will get: 
 

f ij = sijpq  1−  (Ai Qj – Aj Qi) 
1Qe −     (16) 

from equation (13). 
 Turning now to equation (10a), and differentiating the expression J f ij, we must once 
more confine ourselves to terms that contain the highest power of Q (in the present case, 

the second power) (6).  It is obvious that thanks to the wave factor 1Qe − , differentiating 

with respect to xj will reduce to multiplication by 1− Qj in this case.  Hence: 
 

ij

j

J f

x

∂
∂

 = 1−  J f ij Qj = 0, 

or: 

                                                
 (6) When differentiating, it is assumed that Q is constant to a first approximation; i.e., that Q is a linear 
function of the coordinates.  That assumption can always be satisfied is one restricts oneself to a 
sufficiently small coordinate change.  The laws of geometrical optics are applicable only within that 
domain; outside of it, the period of oscillation will vary as the wave propagates.  
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f ij Qj = 0.     (17) 
 
 Equation (17) can be regarded as a set of four homogeneous, linear equations in the 
four unknowns Qj .  In order for these equations to have non-zero solutions, it is 
necessary that the determinant of the coefficients must be zero (7): 
 

| f ij | = 0. 
 
 It is known that the determinant | f ij |, which is composed of the components of the 
anti-symmetric tensor of rank two, is expressed as follows: 
 

| f ij | = | f 12 f 34 + f 13 f 42 + f 14 f 23 |4. 
Hence: 

f 12 f 34 + f 13 f 42 + f 14 f 23 = 0. 
 
One can express f ij in terms of the components of the vectors H and D [cf., equation (2)]: 
 

H1 D1 + H2 D2 + H3 D3 = 0.    (18) 
 
 We then have the: 
 
 Theorem: In any coordinate system in which we measure the electromagnetic field of 
a light wave, we can combine the magnetic field vector H and the electric induction 
vector D in such a way that the relation (18) will always be valid, which is equivalent to 
the condition that those vectors must be perpendicular in a Cartesian coordinate system.  
It is assumed that the values of the constituent vectors H and D are determined from the 
tensor f ij by using formula (2). 
 
   Let us go back to equation (17).  It is easy to show that only three of the four 
equations are independent of each other.  We shall show, first of all, that the equations f ij 
Qj = 0 is a consequence of the equations f 1j Qj = 0, f 2j Qj = 0, and f 3j Qj = 0.  For the sake 
of brevity, in the sequel we shall use Greek letters to denote indices that take on one of 
the three values 1, 2, 3.  By contrast, indices that take on any of the four values 1, 2, 3, 4 
will be denoted by Latin letters.  In order to prove that the equation f 4j Qj = 0 is a 
consequence of the equations f α j Qj = 0, multiply them by Qα , respectively, and add 
them.  The result of that will be: 
 

f α i Qi Qα = f αβ Qβ Qα + f α 4 Q4 Qα = 0. 
 
The first sum is equal to zero, since f αβ = − f αβ, while Qα Qβ = Qβ Qα .  Therefore, f α 4 
Q4 Qα = 0.  If one cancels Q4 and permutes the indices of f α 4 then that will give f 4α Qα = 

                                                
 (7) This theorem is taken from the theory of linear equations.  It will remain valid for the case in which 
the coefficients f ij, along with the unknowns Qj , are themselves unknown functions [cf., equation (16)]. 
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0.  However, f 4i Qi = f 4α Qα + f 44 Q4 = f 4i Qi , because f 44 = 0.  Therefore, f 4i Qi = 0, 
which was to be proved (8). 
 Thus, all of the restrictions that are imposed upon the equations of electrodynamics 
regarding the values of the potentials of the fields of light waves will reduce to the three 
equations (9): 

f α i Qi = 0 (α = 1, 2, 3).    (19) 
 

 Inserting the values of f α i into equation (16) and cancelling 1Qe −  will give: 
 

sα ipq (Ap Qq – Aq Qp) Qi = 0 (α = 1, 2, 3).   (20) 
 
 

§ 4.  Fresnel equations 
 

 In this and subsequent paragraphs, we shall restrict ourselves to the consideration of A 
systems (viz., stationary Cartesian coordinate systems that are parallel to the principal 
axes of anisotropy).  Due to the fact that in A systems only those components of the 
tensor sijpq for which one simultaneously has i = p and j = q (cf., § 2) will be non-zero, 
equation (20) will take the following simple form: 
 

( )i j
i i i

i

s A Q AQ Qα α
α α−∑ = 0.    (21) 

 
There is obviously no need to sum these equations over the index α.  
 In what follows, we shall write the summation sign with the index that is being 
summed over in those and only those cases in which there is some departure from the 
general rule of summation over the same pairs of indices. 
 In order to simplify the calculations, we shall replace the amplitudes of the potentials 
Ai with new unknowns Bi that are defined by the equations: 
 

Ai = 4

4

A

Q
 Qi + Bi .     (22) 

 
It is clear from this that B4 = 0.  On the other hand, all Bi cannot be zero simultaneously, 
since otherwise Ai would be proportional to Qi, and according to equation (15), all Fij  

would then be equal to zero: i.e., there would be no electromagnetic field.  Thus, the 
inequality: 

Bα ≠ 0       (22a) 
 
will be true for at least one of the indices α. 
 From equation (22), we should have that: 

                                                
 (8) Q4 = ∂Q / ∂x4 cannot be zero, since we are considering electromagnetic fields of light waves, and 

therefore the factor 1Qe − cannot be independent of time. 
 (9) Of course, one could choose any other three of the four equations (17).  



Tamm – The crystal-optical theory of relativity.   9 

Aα Qi – Ai Qα = Bα Qi – Bi Qα . 
 
Substituting this expression into equation (21) will give: 
 

( )i i
i i i

i

s B Q B Q Qα α
α α−∑ = 0, 

or, since B4 = 0: 
4 4 2

4( )s B Q B Q Q s B Qαβαβ α α
α β β α β α

β
− +∑ = 0.   (23) 

 
 It is easy to ascertain the physical interpretation of the quantities Bα .  From (22), one 
will have that Q4 Bα = Aα Q4 – A4 Qα .  If we compare these expressions with equation 
(15) then, on the basis of equation (2), that will give: 
 

B1 : B2 : B3 = F14 : F24 : F34 = E1 : E2 : E3 .   (24) 
 
Thus, Bα are proportional to the direction cosines of the electric force vector E. 
 It is just as easy to ascertain the physical interpretation of the quantity Q.  In a 
Cartesian coordinate system of the kind that we are considering in this paragraph, the 

factor 1Qe −  will take the form: 
 

exp 
2

1 ( )wt m xα
α

π ϕ
λ

 − − +  
, 

 
in which w is the speed of light, λ is the wave length, and mα are the direction cosines of 
the wave normal, which are related by the condition that 2mα

α
∑ = 1. 

 Therefore: 
Q1 : Q2 : Q3 : Q4 = m1 : m2 : m3 : − w.    (25) 

 
Here, as in all of what follows, the unit of speed that will be adopted is the speed of light 
in vacuo, such that: 

Q4 = 
4

Q

x

∂
∂

 = 
Q

t

∂
∂

 
1

and not 
Q

c t

∂ 
 ∂ 

. 

 
 Before we go onto the solution of a more general problem, we show that the well-
known Fresnel equation, which determines the speed of propagation of light waves in 
crystals, represents the special case of equations (23) for which µ = 1.  In fact, in that 
case, all sαβαβ = 1 and sα4α4 = − εα [cf., equation (5)].  If one substitute this expression 
into equation (23), and in addition replaces Qi with mα and w, then from (25) that will 
give: 

2 2B m m B m B wα β α β β α α
β β

ε− −∑ ∑  = 0.   (26) 
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If one multiplies these equations by mα, respectively, and sums over α then one will 
verify that the first two sums cancel each other, and therefore: 
 

B mα α α
α

ε∑  = 0.     (27) 

 
 By dint of equation (24), it is easy to see that this formula expresses the idea that the 
displacement vector D is perpendicular to the direction of the wave normal.  On the other 
hand, from (26) and the fact that 2mβ

β
∑  = 1, one will have: 

 

Bα = 
21

m B m

w

α β β
β

αε−

∑
 . 

 
 If one multiplies this by mα εα , sums over α, and takes equation (27) into account, 
moreover, then that will give: 
 

 m Bα α α
α

ε∑ = 

2

21

m B m

w

α α β β
β

α α

ε

ε−

∑
∑  = 0, 

 
or, when one cancels m Bβ β

β
∑ : 

2

21
m

w

α

α

αε
−

∑ = 0.     (28) 

 
This expression is nothing but the one that is known as Fresnel’s equation. 
 

 
§ 5.  General equations of light wave propagation 

 
 Fresnel’s equation is valid only in A coordinate systems, and then only in the case of 
non-magnetic crystals (µ = 1).  In order to find the general equation of propagation for 
light waves, one must analyze the case of µ ≠ 1 using the former A system and then show 
that the equation that is obtained will be invariant with respect to any coordinate 
transformation. 
 Let us return to equation (23).  That equation can be put into the following form: 
 

2 4 4 2
4B s Q s Q B s Q Qαβαβ α α αβαβ

α β β α β
β β

 
+ − 

 
∑ ∑  = 0, 

or 
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B pαβ
β

β
∑ = 0,      (29) 

 
in which it easy to see that the coefficients pαβ are the following expressions: pαβ = − 
sαβαβ Qα Qβ , in which α ≠ β (there is no need to sum over α and β) and: 
 

pαα = 2 4 4 2 2
4s Q s Q s Qαβαβ α α αααα

β α
β

+ −∑ . 

 
 Equations (29) represent three linear, homogeneous equations in the three unknowns 
Bβ .  Since all three of the quantities Bβ cannot be simultaneously zero [cf., equation 
(22a)], the determinant that is composed of the coefficients pαβ must be equal to zero:       
| pαβ | = 0. 
 In order to simplify the calculations, we represent the elements of the determinant of 
pαβ as sums of elements of two other determinants uαβ and vαβ, namely: 
 

uαβ = − sαβαβ Qα Qβ + 2s Qβ αγαγ
α γ

γ
δ ∑ ,  vαβ = 4 4 2

4s Qβ α α
αδ . 

Hence: | uαβ + vαβ | = | pαβ | = 0. 
 Calculating the determinant | uαβ + vαβ | will present no difficulties if we take into 
account the facts that the in the determinant | vαβ |, only elements of the main diagonal are 
non-zero and, on the other hand, that the determinant | uαβ | is zero.  It now becomes clear 
from the fact that if the columns of the determinant | uαβ | are multiplied by Qβ, 
respectively, and then added then the result will be that all of the rows will become zero.  
In fact: 

u Qαβ
β

β
∑ = − 2 2s Q Q Q s Qαβαβ β αγαγ

α β α β γ
β β γ

δ+∑ ∑ ∑ , 

or 
u Qαβ

β
β
∑ = − 2 2s Q Q Q s Qαγαγ αγαγ

α γ α γ
β γ

+∑ ∑ = 0. 

 
 If one takes advantage of these properties of the determinants | uαβ | and | vαβ | and 
expands the determinant | uαβ + vαβ | according to certain rules into sums of eight 
determinants that are composed of elements of uαβ and vαβ then that will give: 
 
 | pαβ | = | uαβ + vαβ | 
 

= v11 (u22 u33 – u23 u32) + v22 (u33 u11 – u31 u13) + v33 (u11 u22 – u12 u21) 
+ v11 v22 u33 + v11u22 v33 + u11 v22 v33 = 0. 

 
We insert the values of uαβ and vαβ into this and express the quantities sα iα i in terms of µα 
and εα using equation (5), and finally divide the equations by the common non-zero 
factor 2

4Q .  The result of that will give the following equation: 
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4 2 2 4 2 431 1 2 2
1 1 3 2 1 1 4 1 2 3

2 3 1 2 2 3

S S SQ Q Q Q Q Q
εε ε ε εε ε ε ε

µ µ µ µ µ µ
  

+ + − + +  
   

 = 0, (30) 

 

in which the symbol S means a sum of elements that have been subjected to a cyclic 
permutation of the indices 1, 2, 3.  This equation represents a generalization of Fresnel’s 
formula (28) to the case of magnetic crystals (µ ≠ 1).  Indeed, if one expresses Qi in terms 
of mα and w using equation (25) then one will get an equation that determines the speed w 
of light waves in terms of the direction of (mα).  That equation is equal to the 
corresponding formula that was derived Heaviside by an argument of an entirely different 
character (10).  Equation (30) will reduce to Fresnel’s equation (28) when µ = 1. 
 Equation (30) can be put into the following form, which will be more convenient for 
our later discussions: 

, , ,

ijhk
i j h k

i j h k

h Q Q Q Q∑ = 0.    (30a) 

 
If one compares equation (30) with equation (30a) then one will see that of the 256 
coefficients hijhk, the only non-zero ones are the ones for which one has both i = h and j = 
k.  Their values are written most conveniently in the form of the symbolic quadratic 
matrix (5): 
 

hijhk = 

3 31 1 2 1 1 2

2 3 3 1 2 2 3 1 2 3

3 31 2 2 2 2 1

3 1 2 3 1 1 2 3 3 1

3 3 3 31 2 1 2

2 3 1 1 2 3 1 2 1 2

31 2

2

1 1

2 2 2

1 1

2 2 2

1 1

2 2 2

2

ε εε ε ε ε ε ε
µ µ µ µ µ µ µ µ µ µ

ε εε ε ε ε ε ε
µ µ µ µ µ µ µ µ µ µ

ε ε ε εε ε ε ε
µ µ µ µ µ µ µ µ µ µ

εε ε
µ

    
+ + − +    

     

    
+ + − +    

     

     
+ + − +     

    

− + 3 32 1 1 2
1 2 3

3 3 1 1 22 2

ε εε ε ε ε ε ε ε
µ µ µ µ µ

 
 
 
 
 
 
 
 
 
 
      

− + − +      
      

. (31) 

 
The elements of this matrix, when referred to as (1, 1), (1, 2), (1, 3), … are equal to the 
coefficients h1111, h1212, h1313, …, respectively.  All of the elements of the matrix of 
coefficients hijhk that were not included are equal to zero. 
 We used an A coordinate system for the derivation of equation (30a).  However, it is 
obvious that the equation will preserve its form under the transition to any other 
coordinate system as along as we also transform the coefficients hijhk according to the 
rules of transformation for the components of a contravariant tensor of rank four (11) at 

                                                
 (10) O. Heaviside, Electromagnetic Theory, v. II, London, Benn, 1922, pp. 522, equation (6).  
 (11) If we denote the values of quantities that are measured in the transformed coordinate system by 

primes (x′i) then we will have Qi = 
p

p

i

x
Q

x

′∂
′

∂
. 

  Substituting this into equation (30a) will give: 
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the same time that we transform the coordinates. (Needless to say, the components of the 
covariant tensor Qi = ∂Q / ∂xi must also transform according to the rules of tensor 
calculus under it.)  In other words, equations (30a) will lead to the correct dependency 
between the components of the tensor Qi in any coordinate system, as long as we 
understand that hijhk are the components of a fourth-rank tensor whose values are 
determined by equation (31) in an A system.  Thus, in order to define the tensor hijhk, we 
shall use an A system as a “natural” coordinate system. 
 However, it is possible to determine the values of the tensor hijhk in terms of the 
fundamental tensor sijpq without referring to the original A system.  To that end, we 
introduce the unit anti-symmetric tensor eijhk of rank four.  The components of that tensor 
are non-zero only if all four indices are different.  Its components are equal to + 1 or – 1 
depending upon whether the given sequence of indices i, j, h, k is obtained from the 
normal sequence 1, 2, 3, 4 by an even or odd number of transpositions, respectively. 
 The relationship between the tensor hijhk and sijpq can be expressed in the following 
form by means of the tensor eijhk : 
 

hqrst = − 1

6
(sqisj srhkl − sqsij srhkl + sqrik sshjl) simnp eihkm ejlnp .  (32)  

 
 The validity of this formula in an A system can be verified by directly substituting the 
values of the components hijhk and sijpq into equations (5) and (31) (12).  Since both sides 
of equation (32) are tensors, formula (32) will remain valid under any coordinate 
transformations.  Thus, the values of the tensor hijhk are determined from the values of the 
tensor sijpq completely in any coordinate system. 
 Strictly speaking, the last statement will be true only if we modify equation (32) 
slightly.  The fact is that the values of the components of the tensor eijhk are not invariant: 
Under a coordinate transformation, their numerical values will be divided by J, where J is 
the Jacobian of the transformation (11): 
 

ijhkε ′  = 
1

J
eijhk .      (33) 

 

                                                                                                                                            
 

q r s

ijhk

p q r s

p

i j h k

x x x x
h Q Q Q Q

x x x x

′ ′ ′ ′∂ ∂ ∂ ∂
′ ′ ′ ′

∂ ∂ ∂ ∂
= 0 

or 
ijhk

p q r s
h Q Q Q Q′ ′ ′ ′ ′ = 0,     (30b) 

in which: 

ijhkh′ = 
q r sp

ijhk

i j h k
h

x x x x

x x x x

′ ′ ′ ′∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
 

 
are the expressions for the h coefficients in the primed coordinate system. 
 (12) In equation (5), the elements siiii  of the main diagonal were not defined, but in equation (32), all 
elements of that kind cancelled each other out. 
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 Therefore, formula (32) implicitly refers to the original A system: It is assumed that 
the non-zero components of eijhk are equal to ± 1 in this system.  In order to avoid such a 
reference to the original system, in the general theory of relativity, the components eijhk 
are usually defined by saying that the non-zero components of the fundamental tensor 

eijhk are equal to g± − , where g is the determinant that is formed from the covariant 

components gij of the metric tensor. 
 The validity of such a definition for the components eijhk is derived from the fact that 

the value of g−  transforms according to the same rules as the numerical values of the 

components eijhk , namely: 

g′−  = 
1

g
J

− . 

 
 As we already pointed out, we have no right to introduce the “microscopic” tensor gij 
into the development of our macroscopic theory.  However, we can give an invariant 
definition to the tensor eijhk if we consider the four-dimensional determinant s  that is 
defined by the components of the macroscopic covariant tensor sijhk of rank four.  In the 
theory of multi-dimensional determinants, it is proved that the values of four-dimensional 
determinants transform according to the following rule (13): 
 

s′  = 
1

s
J

 .     (33a) 

 Hence: 

4 s′  = 4
1

s
J

′ .     (33b) 

 
 If one compares formulas (33) and (33b) then one will verify that the non-zero 

components of eijhk can be defined invariantly if one equates them to 4 s± .  However, 

we shall not equate eijhk to 4 s± , but to 4 / 24s± .  The reason for this will become clear 

later on (14). 

                                                
 (13) Cf., above all, L. Gegenbauer, Wien. Akad. Denkschr. 43 (part 2) (1882), 17; 46 (part 2) (1883), 
291.  Since the dimension of the determinant in question is even, he gets only one value for the 
determinant, as opposed to the odd (e.g., cubic) dimensions. 
 Note that if one uses equation (33) then the third of the fundamental equations of electrodynamics (10a) 
can be put into the following form: 

( )4 / ij

j
fs s

x

∂
′

∂
= 0,    (10b) 

 
in which s′  denotes the value of the determinant s  in the A coordinate system. 
 (14) We present a purely formal argument in support of that choice.  In isotropic media, the tensor sijhk  is 
the square of a second-rank tensor sijhk  = sip sjq [cf., equation (7)].  In that case, one must naturally equate 
eijhk to the square root of the two-dimensional determinant s  = | sip | (in analogy with g− ).  In isotropic 

bodies s = 24 (− s )2 = 4! (− s )2; hence, s−  = 4 / 24s . 
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 As is obvious from equation (32), the replacement of the former values eijhk = ± 1 

with the values eijhk = 4 / 24s±  is equivalent to the coupling of the components of the 

tensor hijhk with 2 / 24s .  Hence, the values of hijhk in an A system will no longer be 

determined by the matrix (31); every element of that matrix must be multiplied by 

/ 24s . 

 The new definition of the tensor hijhk does not change our previous argument, since 
our basic equation is homogeneous with respect to the components hijhk, and all of those 

components are multiplied by the same factor / 24s , which will not violate its validity.  

In other words, it can be shown that it is only with the new definition of the tensor hijhk 
that it will take on the following remarkable property: In isotropic media, the tensor hijhk 
will become equal to the tensor sijhk identically (15). 
 Let us summarize the results of this paragraph: The propagation of light in anisotropic 
media is determined by the invariant equation (30a), in which hijhk are the components of 
a tensor of rank four.  That tensor is a function of the tensor sijhk and is determined by 
equation (32), in which eijhk should be understood to mean the completely anti-symmetric 

tensor whose non-zero components are equal to 4 / 24s± .  In the A systems, the 

components of the tensor hijhk are equal to the elements of the matrix (31), multiplied by 

/ 24s . 

 
 

§ 6.  Double refraction and bi-quadratic geometry 
 

The equation Q = const. determines an arbitrary surface (viz., the surface of equal phase).  
The propagation of light waves will occur along world lines that are perpendicular to its 
surfaces; i.e., along lines that satisfy the equations: 
 

dxi = λ gradi Q = λ
i

Q

x

∂
∂

,    (34) 

 
in which λ is a proportionality factor.  Inserting this into equation (30a) will give the 
equation of light rays: 

hijhk dxi dxj dxp dxq = 0.    (35) 
 
 It is known that light propagates in a vacuum along null lines (16), whose equation 
takes the form: 

ds2 = gij dxi dxj = 0,     (35a) 
 
in which gij are the components of the metric tensor. 
 The complete analogy of the last two equations allows us to give the following 
interpretation to equation (35): 

                                                
 (15) Cf., the Appendix.  
 (16) We shall pass over the question of the geometry of light rays.  
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 Light propagates along null lines in material media, just as it does in vacuo.  
Equation (35) is equivalent to the equation ds = 0.  Thus, the metric tensor of a material 
medium is a tensor hijhk of rank four.  In other words, in material media, the line element 
is determined by the following expression: 
 

ds4 = hijhk dxi dxj dxh dxk = hijhk dxi dxj dxh dxk .   (36) 
 
Of course, these suggestions are of a formal character and are essentially definitions.  
However, in order to maintain them, one must deal with a number of criticisms. 
 The values of the components of the metric tensor gij in vacuum can be found from 
three kinds of measurements: Optical [based upon equation (35a)], mechanical (the free 
motion of material bodies), and direct metrical ones (the behavior of rods and clocks); the 
last two methods are inapplicable in material media.  The “geometrization” of the 
macroscopic theory of material media is possible only with the “optical” method.  In 
other words, the only way to determine the metric tensor in a material medium is from 
the conditions for light rays to have zero length.  Meanwhile, the application of well-
developed geometrical methods to crystal optics, as well as to general electrodynamics, 
has greatly facilitated the further development of those theories. 
 Finally, as we shall see later on, our assumption that equation (35) is equivalent to the 
equation ds = 0 will lead to a number of physically-interesting consequences whose 
accuracy can be confirmed independently of our recently-proposed hypothesis. 
 Therefore, we shall assume that the line element is not determined by a quadratic 
form in the coordinate differentials, but a bi-quadratic one.  That situation could have 
been predicted a priori, because it corresponds to the presence of double refraction in 
crystals; every spatial direction (dx1, dx2, dx3) corresponds to not two (± w), but four 
(±w1, ± w2), possible values of the speed of light that satisfy the fourth-degree equation ds 
= 0 (17). 
 It is obvious that in the case of the absence of double refraction – i.e., the case of 
isotropy – the line element must still be determined by a quadratic form in the coordinate 
differentials, not a bi-quadratic one.  Indeed, it was already mentioned in the previous 
paragraph that hijhk ≡ sijhk in isotropic media; in other words, in that case, the fourth-rank 
tensor sijpq will reduce to square of the second-rank tensor sip [cf., equation (7)].  Thus, 
equation (35) will take the following forms: 
 

ds4 = sih sjk dxi dxh dxj dxk = (sih dxi dxk)
2, 

or 
ds2 = sih dxi dxk,      (36b) 

 
which was to be proved. 
 Thus, the “natural” geometry of anisotropic media is the geometry of bi-quadratic 
forms, which is a direct generalization of the Riemannian geometry of quadratic forms.  It 
is easy to understand that the need for such a generalization might be superfluous in 
anisotropic media.  Indeed, Helmholtz has shown that quadratic geometry is the only 
geometry in which a solid body preserves three rotational degrees of freedom around a 
                                                
 (17) In the general case, the values of the speed of light differ, not only in their signs, but also in their 
absolute values. 
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fixed point.  Now, the general theory of relativity is restricted essentially to the 
consideration of physical processes in vacuo, to the extent that it is based upon the 
concept of the rotation of rigid-bodies (of infinitesimal size).  However, it is obvious that 
this concept is based upon a general assumption of the isotropy of space.  There is no 
reason to believe that the freedom of rigid-body rotation would be preserved in 
anisotropic space; rather, we must reject such a possibility.  The existence of double 
refraction resolves the issue in favor of bi-quadratic geometry. 
 
 

§ 7.  Waves and rays 
 

 The equation of the null lines ds = 0 can be written down in either contravariant or 
covariant coordinates.  Previously, we saw that in the former case it determines the line 
of propagation of a light wave.  What is the physical meaning of the equation: 
 

ds4 = hijhk dxi dxj dxh dxk = 0,    (37) 
 
when it is written in contravariant coordinates dxi ? 
 If the main provisions of the preceding paragraph are correct then that equation must 
also determine the line of propagation of light.  In order to look into the matter more 
deeply, we express the differentials of the contravariant coordinates in terms of the speed 
of light rays and their direction cosines lα: 
 

v = 
2 2 21 2 3

4 4 4

dx dx dx

dx dx dx

     
+ +     

     
, 

or 

4

dx

dx

α

 = lα v,  2( )lα

α
∑  = 1, α = 1, 2, 3.   (38) 

 
 The admissibility and validity of this interpretation of the coordinate differentials will 
be justified in the following paragraph; in the meantime, I will confine myself to referring 
to Einstein, who used equation (38) in his article on “The fundamentals of the general 
theory of relativity.” (18) 
 In order to commence with the physical interpretation of equation (37), we still need 
to determine the values of the covariant components of the tensor hijhk .  The 
contravariant components of that tensor are determined in terms of the tensors sijhk and 
eijhk by using equation (32).  In order to get the covariant components of hijhk , we 
obviously need to replace the superscripts on both sides of that equation with subscripts.  
If we take advantage of an A coordinate system then, in view of equations (6) and (5), the 
replacement of sijhk with sijhk will come down to the replacement of µα and εα with their 
reciprocal values 1 / µα and 1 / εα in the final result. 
 If one makes that substitution into the matrix (31) then that will give: 

                                                
 (18) Ann. Phys. 49 (1916), 821 (cf., Albert Einstein.  Collected Scientific Papers. v. 1, M. “Science,” 
1965, pp. 452, 1st ed.)  
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 hijhk =  
 

2 3 3 3 31 2 2 1 2

1 1 2 3 1 1 2 3

3 3 1 3 31 2 1 2 1

1 2 2 2 3 2 3 1

3 32 1 1 2 1 2 1 2

3 1 2 3 3 3 1 2

32

1 2 3

1

2 2 2

1

2 2 2

1

2 2 2

1

2

µ µ µ µ µµ µ µ µ µ
ε ε ε ε ε ε ε ε

µ µ µ µ µµ µ µ µ µ
ε ε ε ε ε ε ε ε

µ µµ µ µ µ µ µ µ µ
ε ε ε ε ε ε ε ε

µµ
ε ε ε

    
+ + − +    

     

    
+ + − +    

     

     
+ + − +     

    

− + 3 1 1 2

2 3 1 3 1 2 1 2 3

1 1 1

2 2

µ µ µ µ
ε ε ε ε ε ε ε ε ε

 
 
 
 
 
 
 
 
 
 
      

− + − +      
      

. (39) 

 
This matrix, like the matrix (31), gives the values of the components hijhk in an A 

coordinate system, up to a common factor that equals / 24s  for hijhk and / 24s  for 

hijhk .  Here, s  denotes the four-dimensional determinant that is defined by the 
contravariant components sijhk. 
 If we insert the values of hijhk and dxα / dx4 from (38) and (39) into the equation of the 
null lines (37) then we will get the following equation: 
 

4 1 4 4 1 2 2 2 1 22 3 31 2 2
3

1 1 2 1 2 3 1 2 3

1 1
( ) ( ) ( )S S Sv l v l l v l

µ µ µµ µ µµ
ε ε ε ε ε ε ε ε ε

 ′ ′
+ + − + +  

   
 = 0, (40) 

 

in which the S denotes a sum over cyclic permutations of the indices 1, 2, 3. 
 Formula (40) coincides completely with the formula that determines the speed of 
propagation of light rays in magnetic crystals (19) and is a generalization of the known 
formula of elementary crystal optics to the case of µ ≠ 1. 
 In this situation, we find our first confirmation of the basic assumptions of the 
preceding paragraph.  Except for the tensor h, which is the metric tensor in material 
media, there is no reason to assume that there exists any strong physical connection 
between (35) and (37), especially if we take into account the way by which we have 
determined the values of the covariant components of the tensor h. 
 Here, the null line equation (37) in contravariant coordinates determines the 
propagation of light rays, while the null line equation (35) in covariant coordinates 
determines the propagation of light waves.  In this situation, it is essential that the 
covariant and contravariant coordinate differentials must be interpreted in entirely 
different ways: For the covariant coordinates, we use equations (25) and (34), which can 
be put into the following form: 
 

                                                
 (19) Cf., E. Cohn, Das Elektromagnetische Feld, Leipzig, S. Hirzel, 1900, pp. 570 [equation (37b)].  
Cohn’s term “Wellenfläche” corresponds to our term “ray surface.”  (cf., infra). 
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4

dx

dx
α = 

4

Q

Q
α = − 

m

w
α ,  2( )mα

α
∑ = 1,   (41) 

 
in which w is the speed of waves, and mα are its direction cosines.  In other words, 
equation (38) will take the form: 
 

4

dx

dx
α  = lα v, 2( )lα

α
∑  = 1,     (41a) 

 
in which v is the ray speed and lα are its direction cosines. 
 The question naturally arises: How does one find a consistent and reasonable 
interpretation of such different values dxi and dxi?  Now, equation (41) was only derived 
in an A coordinate system, and even then, only under the assumption that it was a 
Cartesian system.  However, now that we have identified the element of length by means 
of formula (36), we no longer have no right to assume that the A system is Cartesian.  
Furthermore, equation (38) is certainly true for a Cartesian system.  But is it applicable in 
any coordinate system?  Finally, equations (35) and (37) represent, in essence, two 
different ways of writing down the same equation; namely, ds = 0.  How can the same 
equation represent such diverse things as the propagation of waves and the propagation of 
rays? 
 In order to unravel these issues, one must recall the cases in which there is a 
difference between the speed of rays v and the speed of waves w. 
 The values of v and w can be determined in two different ways.  With the first one, 
one can start with the wave equation [viz., equation (14)].  Assume that the wave surfaces 
Q = const. at two consecutive moments in time t1 and t2 define the surfaces P1 and P2 .  If 
the time interval t2 – t1 is equal to 1 sec then the speed of the wave would be numerically 
equal to the length of the segment that is normal to the surfaces P1 and P2 and included 
between them.  In other words, the speed of the ray will be numerically equal to the 
length of the line segment that is between the surfaces, whose direction will coincide with 
the direction of the flow of energy.  The difference between the ray speed and the wave 
speed arises only in the case in which the direction of the flow of energy is not 
perpendicular to the wave surface. 
 The desired speeds v and w can also be determined by examining the so-called ray 
surface – i.e., the geometry of the locus of points that are illuminated at the time t by a 
light pulse that has the initial coordinates at the moment t0 .  Let the ray surface coincide 
with the surfaces P1 and P2 at two consecutive moments t1 and t2 .  If the time interval t2 – 
t1 equals 1 sec then the ray speed will be numerically different from the length of the 
segment of the radius vector that is included between the surfaces P1 and P2 .  
Furthermore, the wave speed will be equal to the length of the normal segment that is 
include between the tangent planes to the surfaces P1 and P2 .  The wave speed is 
different from the ray speed if and only if the normal direction to the ray surface does not 
coincide with the direction of the radius vector to that surface. 
 Thus, the problem of determining the speeds v and w reduces to the problem of 
constructing a normal to a given surface P.  The concept of a normal is meaningful only 
if one has defined a metric, which will define a geometry. 
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 It is possible to given an answer to the question above on the basis of the following 
conditions: 
 
 1. In a natural geometry that enjoys an invariant definition of line elements, the 
normal to the ray surface will always coincide with the direction of the radius vector to 
that surface, and the normal to the wave surface will coincide with the direction of the 
flow of energy.  Therefore, v = w, so there will be no difference between the laws of 
propagation for light waves and those of light rays, and both phenomena will be 
described by the same equation ds = 0. 
 
 2. The difference between waves and rays will arise only in the case in which a non-
Cartesian coordinate system (or any other non-invariant system) uses a Cartesian metric. 
 
 Naturally, these contravariant Riemannian coordinates can be directly identified with 
Cartesian coordinates [according to equation (41a)].  As for the covariant coordinates, 
they have no direct geometric interpretation in Cartesian geometry.  However, it is not 
difficult to insure that when one is considering the laws of the propagation of light, the 
covariant coordinate differentials should be interpreted according to our equation (41).  

Indeed, within an infinitesimal region of the wave, the factor 1Qe −  can always be 
represented in the following form: 

1Qe − = 01( ) 1 i
iQ Q dxe e− − , 

in which (Q)0 = const. 

 If one identifies the factor 1 i
iQ dxe −  with the wave factor 

2
1 ( )wt m x

e
α

α
π
λ

− −
of a plane 

wave in Cartesian space then we can repeat all of the arguments that led up to equations 
(25) and (41) in § 4 and 5, respectively. 
 
 3. We claim that if the invariant equation ds = 0 is written in contravariant 
(covariant, resp.) coordinates then if we eliminate those coordinates by using the relations 
(41a) [(41), resp.], the equation that will be obtained will be tantamount to the Cartesian 
equation of a light ray, in which case, one would have a wave surface (20).  In order to 
prove the correctness of this assertion, we still need to show that there is a proper 
geometric relationship between certain surfaces, which amounts to the fact that the wave 
surface is the locus of the feet of the perpendicular that is dropped from the center of the 
ray surface to a tangent plane to it. 
 In order to prove the validity of the statement above, I shall turn to the optics of the 
gravitational field in vacuo, which is also a Cartesian viewpoint on anisotropic space, and 
therefore there is a difference between a light ray and a light wave.  All of the results that 
we arrive at in this simple case can be transferred to the optics of material media directly. 
 

 
 
 

                                                
 (20)  By definition, the length of the radius vector of the wave surface in a given direction is the speed of 
a plane wave that propagates in that direction. 
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§ 8.  The optics of gravitational fields 
 
 Although the equations of light rays in vacuum are generally known, I shall still give 
a brief derivation of those equations here, while adhering to the method that was outlined 
in § 3. 
 In a vacuum, the relationship between the tensors Fij and f ij is established by using 
the metric tensor (21): 

f ij = gip gjq Fpq . 
 

Equations (14) and (15) still remain in force, while equation (16) will take the form: 
 

f ij = 1−  gip gjq (Ap Qq – Aq Qp) 
1Qe − ,   (16a) 

 
and equation (17) can be written in the stated form as follows (after removing 

1− 1Qe − ): 

gip gjq (Ap Qq – Aq Qp) Qj = 0.    (17a) 
 
 Multiplying this equation by gik and summing over i will give (since gip gik = p

kδ ): 

 
Ak (g

jq Qq Qj) – Qk (g
jq Aq Qj ) = 0. 

 
These four equations can be satisfied in only the following two cases: Either Ak is 
proportional to Qk, or the following equalities are satisfied simultaneously: 
 

gjq Qq Qj = 0, gjq Aq Qj = 0.    (42) 
 
The first situation is impossible [cf., (23a)]; therefore, one must have equations (42). 
 The derivation of equations (42) that is contained here differs from the results that are 
known to me (e.g., Laue, Eddington, etc.) by the fact that those authors did not prove the 
validity of the second of equations (42) completely, or rather, the equivalence of those 
equations with div Φi = 0, where Φi is the tensor potential. 
 If one replaces Qj in equations (42) with the coordinate differentials of a light ray [cf., 
equations (34)] then one will finally get: 
 

gjk dxj dxk = 0.      (43) 
 
The same equations in contravariant coordinates are written as follows: 
 

gjk dxj dxk = 0.              (43a) 
 
In terms of Riemannian geometry, equations (43) and (43a) are identical.  The anisotropy 
of space is out of the question, if only because the expression for the line element can 

                                                
 (21) Thus, Fij and f ij are components of the same tensor in a vacuum (as opposed to a material medium). 
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always be reduced to a sum of quadratic differentials by a suitable coordinate 
transformation (22). 
 By contrast, one always enjoys Cartesian geometry in experimental physics, and any 
deviation from Cartesian relationships is explained by the influence of external (viz., 
gravitational) forces.  Hence, for example, the speed of light will depend upon the 
direction of propagation in gravitational field coordinates.  Experimental physics seeks to 
explain that fact by way of an anisotropy of space that is created by gravitation.  The 
presence of anisotropy, in turn, will cause differences between the wave speed and the 
ray speed. 
 We now turn to the proof of the provisions that were outlined at the end of the 
preceding paragraph.  For simplicity, assume that we have chosen a coordinate system in 
which time is perpendicular to space; i.e., g14 = g24 = g34 = 0.  As is known, that condition 
will imply the validity of the following equality: 

 
g44 = 1 / g44 .     (44) 

 
In addition, to simplify, we drop the signs in front of the differentials of the coordinate xi 
and xi in equations (43) and (43a), which is, however, limited to a coordinate change over 
an infinitesimal region; i.e., a region in which the values of the components gij can be 
regarded as constant. 
 The equation of the ray surface G(xα) will be obtained equation (43a) by setting t = x4 
= const.: 

G(xα) = gαβ x
α xβ + g44 t 

2 = 0, t = const., α = 1, 2, 3.   (45) 
 
Draw a spatial segment whose components will be denoted by ξα at an arbitrary point 
(xα) of the surface G(xα).  That segment can lie in the tangent plane to the surface 
considered as long as (∂G / ∂xα) ξα = 0; i.e., as long as gαβ x

β ξα = 0.  From the standpoint 
of Riemannian geometry, the equality the must be shown is that the radius vector (xα) to 
the ray surface G will always be perpendicular to that surface (23), which agrees with the 
first part of condition 1 that we stated in the previous paragraph. 
 Moreover, the direction of energy flow is determined by the components 4Tα  of the 

energy-impulse tensor kiT .  For electromagnetic fields, the tensor k
iT  is determined from 

the equality: 
k

iT  = Fir f 
kr − 1

4
k
iδ  Frs f 

rs. 

 
 When Frs and f rs are expressed in terms of Ai and Qi by using equations (15) and 
(16a) and taking equation (42) into account, we confirm that the second term and three 
terms in the first term on the right hand side of this equation will be equal to zero for the 

                                                
 (22) In contrast, if that element is determined by a bi-quadratic form in the coordinate differentials then 
the anisotropy of space will have an essential character, and cannot be eliminated by a suitable choice of 
coordinates. 
 (23) Because it is perpendicular to any of the tangents to that surface.  



Tamm – The crystal-optical theory of relativity.   23 

field of the light wave.  Omitting the wave factor 1Qe − , which is unimportant for us, will 
give k

iT  = gkp Qp g
rs Ar As Qi .  Thus, 4Tα  = λ Qα , in which λ is a proportionality factor. 

 In other words, the direction of the normal to the wave surface will be determined by 
the values of dxα = λ gradα Q = λ Qα .  Therefore, the direction of energy flow in the field 
of a light wave will coincide with the direction of the normal to the wave surface.  This 
illustrates the second part of our condition 1. 
 We now proceed to the proof of condition 3.  To that end, we take the viewpoint of 
Cartesian geometry and identify the contravariant Riemannian coordinates xi with the 
Cartesian ones and find the geometric locus of the bases of the perpendiculars that are 
dropped from the center of ray surface (45) to the tangent plane to that surface. 
 The tangent plane to the ray surface G(xα) = 0 is determined from the equation: 
 

G

xα
∂
∂

 (Xα – xα) = 0, 

 
in which Xα are the current coordinates of the tangent plane, and xα are the coordinates of 
the point of tangency. 
 From (45), we will have: 

G

xα
∂
∂

 = 2 gαβ x
β. 

 
If we substitute this into the previous equation then we will find that: 
 

gαβ X
α xβ – gαβ x

α xβ = 0, 
 
or, on the basis of equation (45): 

gαβ X
α xβ + g44 t 

2 = 0. 
 
 To simplify, we introduce the notation (24): 
 

xα = gαβ  x
β, a = g44 t 

2,     (46) 
 
and with their help, the equations of the tangent planes will be given in the form Xα xα + 
a = 0. 
 As is known, the coordinates ξα of the base of the perpendicular that is dropped from 
the coordinate origin to the plane are determined from the equation: 
 

ξα = − 
2

a x

x
α

β
β
∑

. 

 
In order to find the equation that relates the values of ξα to t, form the expression: 

                                                
 (24) Of course, since we are using Cartesian geometry, the quantities xα cannot be considered to be 
covariant coordinates.   We have introduced the notation in a purely formal way. 
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gαβ α β

αβ
ξ ξ∑ = 

2

2

2

a g x x

x

αβ
α β

β
β

 
 
 
∑

. 

 
 On the basis of equations (45) and (46), that will easily give: 
 

gαβ xα xβ = gαβ x
α xβ = − a. 

Therefore: 

gαβ α β

αβ
ξ ξ∑ = 

3

2

2

a

xβ
β

−
 
 
 
∑

. 

 
In other words, the length of the desired perpendicular will be given by the formula: 

 

r2 = 2( )α

α
ξ∑ = 

2 2

2

2

a x

x

α
α

β
β

 
 
 

∑

∑

= 
2

2

a

xβ
β
∑

. 

 Hence: 
gαβ α β

αβ
ξ ξ∑ = − r4 / a, 

or 
4

2
44

r
g

g t
αβ α β

αβ
ξ ξ +∑  = 0. 

 
 If we divide both sides of this equation by r2, introduce the notation w = r / t for the 
wave speed and mα = ξα / r for the direction cosines, and finally, express g44 in terms of 
g44 using equation (44) then we will get the equation of the desired (wave) surface in the 
following form: 

gαβ mα mβ + g44 w2 = 0.    (47) 
 
 It is easy to see that this will lead us to the same equation, and equation (43) of null 
lines, if we eliminate the differentials of covariant coordinates from it by using the 
relation (41). 
 Thus, the equations of the ray and wave surfaces, which are derived from the equation 
ds = 0 by the method that was discussed in the preceding paragraph, are connected by the 
proper geometric relationship (25).  Thus, we have proved all of the statements that were 

                                                
 (25) Riemannian coordinates will reduce to oblique-angled Cartesian coordinates (with a different length 
scale along each coordinate axis) within a region that is sufficiently small that the values of the components 
gij can be regarded as constants.  The contravariant coordinates will equal the projections of the radius 
vector onto the coordinate axes In an oblique-angled coordinate system.  In other words, the wave speed 
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made at the end of the last paragraph in the case of gravitational fields in vacuo.  In this 
article, we shall not dwell upon the proof of those statements for more complex cases of 
the propagation of light in anisotropic material media and shall confine ourselves to the 
assumption that the aforementioned statements that are valid in quadratic geometry will 
also remain valid in bi-quadratic geometry. 
 
 

§ 9.  The three fundamental tensors of bi-quadratic geometry 
 

 In quadratic geometry, by definition, there are well-known relations between the 
covariant and contravariant components of the same tensor that are established by the 
metric tensor. 
 In particular, they are known to be dxi = gij dxj and dxi = gij dxj .  A similar kind of 
relationship should exist in bi-quadratic geometry.  However, these relationships cannot 
be established using any metric tensor h or s as the tensor that plays the role of “index 
changer,” unless it satisfies the following two conditions: 
 
 1) It should be a second-rank tensor, since otherwise the transition from the 
contravariant components of an arbitrary tensor T to the covariant components (and 
conversely) would change the rank of the tensor T. (In particular, that would apply to the 
coordinate differentials dxi and dxi .) 
 
 2) The components of the “index-changing” tensor (which will be denoted by kij and 
kij) must satisfy the relations: 

kjh k
ij = i

hδ .      (48) 

 
which follow from the fact that the equalities dxi = kij dxj = kij kjh dxh should be satisfied 
identically for any differentials dxi . 
 
 It might seem that the role of “index-changer” is purely abstract and can be performed 
by any second-rank tensor that satisfies the condition (48).  However, that is not true.  
The replacement of the contravariant differentials dxi with covariant ones (and vice versa) 
must convert the expression for the line element ds4 = hijhk dxi dxj dxh dxk = hijhk dxi dxj dxh 
dxk from the first form into the second one (and conversely).  Therefore, it is necessary 
that (26): 

hijhk = kip kjq khr kks h
pqrs.     (49) 

 
 Due to the fact that the values of the covariant and contravariant components of the 
metric tensor h are known from the above, we can use equation (49) to determine the 

                                                                                                                                            
will equal the projection of the ray speed onto the normal to the wave plane.  The analogy is clear and can 
serve as a confirmation of our equation (41). 
 (26) Unlike the tensor h, the components of the tensor s are coupled by the relation (4), which is 
analogous to equation (48).  The components sijhk and sijhk do not satisfy any relationship of the type (49). 
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values of the components of the tensor k.  A few simple calculations will lead to the 
values of these components in an A coordinate system (27): 
 

8
ij

s
k

s
 = 

2 1

1

3 1

2

1 2

3

1 2 3

0 0 0

0 0 0

0 0 0

1
0 0 0

µ µ
ε

µ µ
ε

µ µ
ε

ε ε ε

 
 
 
 
 
 
 
 
 
 
 −
 
 

 .   (50) 

 
 By means of analogous considerations, we can easily see that the values of the 
contravariant components of the tensor kij will be obtained from the matrix (50) by 
replacing the values εα and µα with their reciprocal values 1 / εα and 1 / µα and replacing 
s  with s , and conversely.  It is also easy to see that the tensor k satisfies the condition 

(48). 
 Thus, one needs to distinguish between the three fundamental tensors s, h, and k in bi-
quadratic geometry.  The fourth-rank tensor s establishes a relationship between the 
electromagnetic tensors Fij and f ij.  The fourth-rank tensor h determines the line element.  
The second-rank tensor k plays the role of “index-changer” with respect to any tensor, 
and in particular, the tensor s.  All of these functions are performed by the same tensor g 
in quadratic geometry. 
 It is obvious that these three tensors s, h, and k will reduce to one second-rank tensor 
that is analogous to the tensor g in isotropic media, where quadratic geometry dominates.  
In fact, it was already observed in § 2 that the fourth-rank tensor sijhk (s

ijhk, resp.) will 
reduce to the square of the second-rank tensor sij (sij, resp.) [cf., equation (7)] in an 
isotropic medium. 
 In other words, it was pointed out in § 6 that hijhk = sijhk = sih sjk in an isotropic 
medium, and therefore the line element will be determined by the equation (36b): ds2 = sij 
dxi dxj in that case. 
 Finally, as will be proved in the Appendix, one has the following relations: 
 

s  = 24 2s  = 24
2

2

ε
µ

  and s  = 24 2s  = 24
2

2

µ
ε

 

 
in isotropic media, and as a consequence, as is easily seen, the components of the tensor 
kij will be equal to the components of the tensor sij in an isotropic medium.  Thus, in an 
isotropic medium, the tensor sij will perform all three of the functions of the metric tensor 

                                                
 (27) Equation (49) is insufficient for the determination of the signs of the components kij .  We selected 
the signs of kij by analogy with the signs of the components gij and sij . 
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gij that were listed above.  Of course, as the medium becomes gradually more rarefied by 
the transition to a vacuum, the tensor sij will become identical to the tensor gij . 
 We also mention that the job of the tensor s is determined uniquely by the values of 
the other fundamental tensors of bi-quadratic geometry.  Thus, for example, if one is 
given the values of the components sijhk then by the use of equation (4), one can 
determine the components of sijhk, and by using equation (32), one can determine the 
components hijhk and hijhk.  Finally, by using equations (48) and (49), one can calculate the 
values of the components of the tensor k.  Unfortunately, I could not find any relations 
that would establish a direct link between the tensors s and k. 
 The further development of this theory would have to be associated with the 
resolution of a number of physically and mathematically interesting problems.  Thus, for 
example, I suppose that the eventual development of the theory will permit one to 
determine the form of the electromagnetic tensor of energy and impulse in material media 
and to thus eliminate the existing questions and inconsistencies in regard to it (28).  The 
extension of the theory to inhomogeneous, anisotropic media will involve finding the 
equations of geodesic lines in bi-quadratic geometry.  Perhaps, the above physical 
considerations can also facilitate the solution of this purely mathematical problem of 
finding the laws of bi-quadratic geometry.  Thus, for example, the considerations that 
were described at the end of § 7 suggest that the expression that defines the cosine of the 
angle between two directions must be such that the surface that is defined by the 
equations ds = 0 or xi = const. is always perpendicular to its radius vector. 
 It is indeed a pleasant task for me to express my sincere appreciation to prof. L. I. 
Mandelstam for his valuable advice and suggestions that helped me in the preparation of 
this work. 
 
 

Appendix 
 
 We prove that the metric tensor hijhk is identically equal to the square of the second-
rank tensor sij in isotropic media. 
 It is known that the four-dimensional determinant s  can be put into the following 

form: 
s  = (sijhk) = 1 2 3 4 1 2 3 4 1 2 3 4

1 1 1 2 2 2 3 3 3 4 4 41 2 3 4
i i i i j j j j h h h h

i j h i j h i j h i j hs s s sε ε ε , 

 
in which we let eijhk denote the antisymmetric tensor of rank four whose non-zero 
components are equal to ± 1.  In isotropic media, due to the equality sijhk = sih sjk, we will 
get: 

s  = 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 1 2 2 3 3 4 41 2 3 4( )( )j j j j i i i i h h h h
j j j j i h i h i h i hs s s s s s s sε ε ε , 

 
in which s  = ( )(4! )s s  = 224s , where s= | sij |. 

 According to § 5, when the components of the tensor eijhk are introduced into formula 
(32), that will give the following values: 

                                                
 (28) Cf., W. Pauli, Relativitätstheorie, Leipzig, 1921, § 35 (translated into: V. Pauli, Teoriya 
otnositelnosti, M. –L., GITTL, 1947. – 1st ed.) 
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eijhk = 4

24

s
 εijhk . 

 
 In isotropic media, that equality will take the following form: 
 

eijhk = 24 s εijhk = ( )s− εijhk . 

 
(We include a “minus” sign under the square root since s  < 0.) 
 Thus, equation (32) will take on the following form: 
 

hqrst = − ( )21

6
s− { sqs sij srk shl − sqi ssj srk shl + sqi srk ssj shl} stn smp εihkm εjlnp 

 
in an isotropic medium. 
 The last two terms in the parentheses cancel each other out, and as a consequence, the 
equality can be written in the following form: 
 

hqrst = 
1

6
s sqs srk stn{ εihmk εjlnp s

ij shl smp}. 

 
It is easy to see that the expression in parentheses is the adjunct determinant s  = | sij |, 
multiplied by 3! (= 6), that corresponds to the term skn (29).  As is known, that adjunct is 
equal to the covariant components of the tensor skn, multiplied by the determinant s .  
Thus: 

hqrst = 
1

6
s sqs srk stn 6 skn s . 

 
 Since s s and srk stn skn = srt [due to equation (4a)], we finally get: 
 

hqrst = sqs srt, 
which was to be proved. 
 

                                                
 (29) The appearance of the factor 3! is due to the fact that the summation inside of the brackets is 
performed over the indices i, h, m, along with the indices j, l, p. 


