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On the effect of rotating distant masses
in Einstein’s theory of gravitation

By Hans Thirring

Translated by D. H. Delphenich

The arguments that have the present paper to thankdorexistence can be best
clarified by a quote fronEinstein’s groundbreaking work in the year 191%. ( In its
introduction, he said the following:

“At first, it would generally seem that such an extensid the theory of relativity
should be rejected on physical grounds. NamelyKlé&e a coordinate system, in the
Galilei-Newton sense of the term, and |&’ be a coordinate system that rotates
uniformly relative toK. Centrifugal forces will act upon masses that aresitrelative to
K’ while no such forces will act upon masses that amrestrelative toK. Newton
already saw a proof in that of the fact that one lmadegard the rotation d” as an
‘absolute,” so one could not trd&t as being ‘at rest’ with the same justification thaé o
had withK. However, that argument is not cogentEadviach showed, in particular.
Namely, we do not necessarily need to attribute theesde of those centrifugal forces
to a motion oK. If Newton's laws of mechanics do not admit such a concept thén tha
would quite probably be rooted in some flaw in the theory...”

Now, sinceEinstein’s theory seems to have been completed in the publicanf
1915, one must ask: Do the equations of the new theorg€textent that it is free of the
flaws in Newton's theory) actually say that the rotation of distarstsses will generate a
gravitational field that is equivalent to a “centrifud@aice?” One might attempt to table
a discussion of that question by saying that the requiresladguoce is guaranteed by the
general covariance of the field equations. However, ttangsiot quite so simple, since
the boundary conditions for tlgg, at spatial infinity also play a role. The questidmest t
are related to that were treated mainly in the papeBeoSitter (%) and Einstein ().
Now, we shall not go further into these general questiowhat follows; rather, we
would like to carry out the calculations for a speciahcrete example of the field of

) A. Einstein, Berl. Ber. (1914), pp. 1030; cf., also Ann. Phys. (Leipz@)1916), pp. 769.

() A
() De Sitter, Amsterdam Procl9(1917), pp. 527.
() A. Einstein, Berl. Ber. (1917), pp. 142.
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rotating distant masses and study them. The methodEihatein (*) gave for the
approximate integration of the field equations is emiyesitited to that end, and it shall
serve as the basis for the following calculationbe €&xample that we shall choose is that
of the field in the interior of a uniformly-rotating, infiely-thin, hollow sphere that is
loaded with a constant mass density.

In the first section of this paper (which can be skibpathout impairing one’s
understanding of what follows), the approximate calculadibtine g, will be performed
for the interior of the spherical shell, and in theos& section, the motion of a mass-
point in that field will be discussed.

A. Computational part: The calculation of the g, in the vicinity of the center of
the rotating sphere.—

Notations:

a radius of the hollow sphere
M its mass
w  its angular velocity
X, ¥,z the rectangular coordinates of a point of the outdaserof the ball
Xo, Yo, Zo  coordinates of the reference point
K gravitational constant
o naturally-measured spatial density of the matter

As far as the viewpoint of the approximation that \Ww#lused in the field calculations
is concerned, let us say this in advance: The fielchénvicinity of the center of the
sphere will be considered to be weak enough that only teose in the field equations
that have order one relative to the quantiyigswill be used in the calculationg;f is
defined byg,, = - dw + yu). That approach will make it possible for us to employ
Einstein's method for the approximate integration of the field ¢éiqua. With the
second, oft-employed, approach to the approximation,egard the components of the
velocity of ponderable matter as small in comparisonrtity (i.e., the speed of light),
such that their first powers can already be negiettdhat coarsest approximation that
leads toNewton's theory. We would like to apply this approximation (whigh
completely independent of the first one) only to themeixthat we shall drop the terms of
order three and higher in the velocities in comparisah t&inally, our calculations shall
relate to the vicinity of the center of the spheret rLbe the distance from the reference
point to the center of the sphere, andRdte the distance from the reference point to the
integration element, so we shall developR ihto a power series in/ a that we shall
truncate after the second power.

Einstein’s approximation method of integration yields the follogviprescription for
the calculation of thg,, :

() A. Einstein, Berl. Ber. (1916), pp. 688.
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1 u=v,
v:_a_v‘l' Vs 5v: 1
Ou vt Vu W { 0 u#v, 1)
v = V,uv _%zyaa’ (2)
K Tw(x, Y, Zt=1)
== dv,. 3
1/;11/ 27T R 0 ()

In this, T, is the covariant energy tensor of mattdy is the spatial volume element of
the integration space, and:

R=x—%)+-w +@Z-2°.
The coefficientg),, of the line element refer to the coordinates X, X2 =y, X3 =2z, X4 =1
t.

With the first approach to the approximation, van geplace the covariant energy
tensor with the contravariant one; it is given leglecting the stresses:

dX d)g/ dX d)g/ (dxAJ
Tw= = _ 4
H :00 ds ds ,0 dX4 d)g ( )

The sphere rotates around thaxis with an angular velocity af so one will have:

—Xl ——|aa)smz95|n¢

dx, dt

d dy . .

—Z=—j—==—-jawsind cosp , 5
dx, dt ¥ ®)
d_x3:0

dx,

for one of its points that has the polar coordisate?, . When these are substituted in
(4), that will imply the following matrix:

—a’w’sin’dsin’g  +a‘w’si’d sip cog 0 iaw st s
Tw p(d&) +a’w’sin’dsing coyp  -a’w® sind coy O-iaw sif cgs| (6)
°{ds 0 0 0 0
iawsing sing —-iawsing co® 0 1
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Since we understangy to mean the naturally-measured density of matter, wst mu
likewise setdV, equal to the naturally-measured spatial volume elememirder to
ensure the tensor character of the integral (3). dtreula ():

dVo= g i dx4 dv (7)
is true for it. We introduce polar coordinates for ititegration, so:
Jg dv==a’dasinddddg. (8)
Finally, we still have to express R/in terms of the integration variable. We choose the
coordinate system in such a way that the reference falla in theZX-plane, so its
coordinate will then be:
Xo=rsind, Yo=0, Z=rcosd.

One will then have:

R = (asin dcosd—r sin%)? + a° sirf Isif I+ (@ cosd—r cosd)?
ool 2r, . r?
=a 1—Z(S|n79 cogp sid, + co8 ca¥ +)¥ :
Developing this into a binomial series and making thessimns that were cited in the
introduction will yield:

; i{1+ (sing cogp sid, + cof cay )%;—z —:’% (sth cps & &bs @pé}.(9)

We denote the expression in the curly brackets Bpd write:

- K (9a)
a

1
R

Substituting (6), (7), (8), and (9a) in (3) gives:

() Cf., Einstein, Berl. Ber. (1914), pp. 1058, eq. (47a).
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K 2 G o
1/11—51,00 afdaj d¢j dB[ j sin*dsinfg K,
K 3 5
1/22—57,00a afdaj; d¢j ( j sin’g cos ¢ K,
__ii 2 _X4 .
Via = anoadaj; d¢£ dB( dsj sing K,
H 2 T 3 10
1/12=—£,00a3a)2daj' d¢j dB(d—X“j sin®J sing co® K (10)
2r 5 % ds
_ii ) 2 V4 d_X4 3 L, -
Vi = 2]T,ooa a)daj d¢J‘ dB[ dsj sin® & sing K,

Vou ——,ooaa)dafdﬁ (%—2) sin®J cosp K,
V13_V23_V33_V43:O'

The absolute value of the quantity, / ds differs from unity only by terms of order
¢f @ ; they appear as factors in the small first-order gtiesty,,. Therefore, it is

sufficient for one to calculate them from the expi@s for the “zeroth” approximation to
the line element:

ds’ =-df - df - df- df
d§__1 dx’ + dx + dX _ -1+ afa? sitd,

- dx
E—{1—%3#&’} (11)
dx, 2

(d—x“j =i (1+§afazsin2§j .
ds 2

Since our computational precision extends to only terfnsrder «f a%, we can set
dx, ). .
(d_XAj =i inall y, that already contain the factaw a, except that we employ the
S
expression (11) foy,,. If we set:

Mda=o0
then (10) will go to:
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K 2 w
Y, = —_aa%zj' d¢J' ddsin’I sinfg K,
2 0 0
K 2 w
V., = —_aa3afj' d¢j d9sin®9 cogp K ,
2 0 0

B K 2 m . 3 )
;/44-—ZTaa£ d¢jo dsingd K(1+Eafa2 smzz?j ,

H 2 w 12
Vo =ocoa’e? [ [ dIsin®s sing cogK (12)
2T 5 %
ik,
Vi, =—0oa’w d¢j ddsinJ sing K,
2T

0 0

H 2 V4
1/24=—iaaza) d¢j ddsin® g cogp K ,
2 5 %

1/1321/23:1/33:1/34:0'

If one substitutes the value Kffrom (9) in these expressions and evaluates the ingegral
then one will get:

KM, re
=-——a%’|1-— |,
™ o ( 5a2j

y, =K M s {1—% (1- 3sirtd, )} ,

27T 3Aa
Kk M r2 3 . (13)
=— —J1+a’w’| 1-—| 1-=sirf I ,
Via= o a{ { 5a2( 2 Oﬂ}
ik M )
=———wrsind,,
Vas 271 3a Mo

Vi =V1a=Vis= V2= V= V3= 0.

One then gets thg, , and thus, thg,,, from these values with the use of equations (1)
and (2). One now replaces the polar coordinatsd &, of the reference point with its
rectangular coordinates and replaéasstein’s gravitational constank with the usual
one:k = x/ 8rr(speed of light = 1). That will then yield:
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0, =-1- ZkaM {1'*' aa’ - (2%2'*' )52)} )

_ . 2kM _g _
95, = 1- a {1‘*‘8.0.)2 10(2%2 3{)}1
933:_1’
2kM 5a’ef
w1 PO S g gy
——i4k—Ma)x
924 3a 0’

while all of the remaining,, vanish.

(14)

We would now like to free ourselves from the specialia of coordinate system.
(Indeed, we put the reference point in theplane.) To that end, we make the

transformation:
X, = X cosa+ x, sina,

X, ==X sina+ x cosa,
X=X,
Xy = X,

By means of the transformation formula for a covartansor of rank two:

, ax axv
g[n’_ N ,u|/1
0x 0X

the coefficient matrix will go to:

-1- 2kM {1+a _ (222+ xz—SyZ)} +2kM£ xy 0 + |—'4:2/|a)y
O = 2l;'\/I%xy 1—2kTM{1+aa) ——(222+ X - 33?)} 0 - f”(?Ma)y _
0 0 -1 0
kM AM 2k BEe Q%f 2 )
3a 3a a 3

(15)

(16)

The index O for the coordinates has been dropped hene;nioav on X, y, z will mean the
coordinates of the reference point.

B. Physical part: The motion of a mass-point inside of a rating hollow sphere.
— We would like to present the equations of motion folaas¥point that is found near the
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center of our rotating spherical shell. The fieldhat neighborhood is characterized by
the coefficient matrix of thg,, [eq. (16) of the first section].
The law of motion for a mass-point linstein’s theory is known to be given by the
condition:
) ds=0,
or, when one performs the variatidi (

dZX[ =T dﬁd_&
ds " ds ds

(r=1, ..., 4). (17)

With the first approach to approximation, one will have:
FTV:— HV = HV :E ag”’+agm—agﬂv (18)
# T T 2\ ox, 0%, 0x

for the “field componentsT | . We would like to consider only those motionsvass-

points that are small in comparison to the speeligbf, such that we can neglect the
squares and products of the velocity component& ce#h then drop all terms in which
the index 4 does not occur from the right-hand silequations (17), and replace the
derivatives with respect ®with ones with respect tp as well. If we give consideration

to dx, / dt =i then equations (17) will go to:

2
9% = Zi[r;d—xwrf D dxsj—rzw (19)

ds dt  *dt *dt

Only those field components;, that contain the index 4 at least once will comeer

consideration then. They amount to sixteen quastihat can be represented in our case
as a matrix of an antisymmetric tensor of rank falthough they are not actually tensor
components!). Since the partial derivatives witpect tox, all vanish for stationary
fields, the quantities can then be written as fedcf):

() Indices that occur twice will be summed from 1 to 4.

(® One should observe that this matrix corresponds complételthe six-vectord of the
electromagnetic field. The analogy between eldgtnamics and the (approximate) theory of gravitation
goes even further than that when one ponders the fadh tint approximate integration, the quantities
O24, O34, Q44 Can be computed from the density and velocity of mattg@recisely the same way that the
potentials,, Ay, A, ® can be computed from the electric four-current, and furthee, the fact that in
our case, the right-hand sides of eq. (19) correspond colyplétie the components of the ponderomotor
force ¢ + [v $], up to a numerical factor!



Thirring — On the effect of distant rotating masseginstein’s theory of gravitation. 9

1(dg,, 0g 1(dg,, dg 1 1l0g
rl :0 rl == 14 _ 24 rl o 14 _ 34 r - 44
14 24 z(axz aXlJ 34 2( a)% a)& 44 2 a)i
r2 :l a924_6914 rZ =0 r2 :1 6924_6934 rZ :_}agM
14 24 34 44
2\ ox, 0%, 2\ 0x 0% 20% (20)
1(0dg,, 0Jg 1(0g,, dg 3 3 1dg
r3 - 34 _ 14 r3 - 34 _ 2 r? =0 M =-= 44
14 2( axl aXSJ 24 2( axz aXS 34 44 2 aX3
4+ - 109, s _ 109, s 2109, 4
== r4 == r4 == r=0
14 2 axl 34 2 ax2 34 2 a)% 44

If one substitutes the special values for ¢hhe from (16) in this then one will get the
following matrix:

o MM, o KM
3a 3a
—i—4k'vI w 0 0 —k—M
= @)
0 0 0 w7z
3a
k—szx k—szy ——Zkazz 0
3a 3a 3a

ke B Y
3a 3a
8kM kM
V= —— wX+—— Y, 22
y % 3 Y, (22)
5= —Zk_M(UZZ
3a

The right-hand sides of the equations representtimponents of the force that our
field exerts on the mass-point with mass 1. As eees, the first terms correspond
completely to thex andY components of the Coriolis force, and the secenahtto the
centrifugal force. The third equation implies thefirst-surprising result that this
“centrifugal force” possesses an axial componeltt appearance in the field of the
rotating ball can be explained as follows: From stendpoint of the observer at rest, the
surface elements of the hollow sphere that aredawear the equator will have larger
velocities, and as a result, also larger apparnesttial and gravitating) masses, when
compared to the ones in the neighborhood of thespolThe field of a rotating hollow
sphere that is loaded with constant surface dengilythen correspond to that of a
spherical shell at rest whose surface density asa@e with increasing distanddrom the
pole. The fact that points in the latter case lieabutside of the equatorial plane will be
drawn towards it is self-explanatory.
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(By the way, it is not difficult to also comprehendetfact that forces that are
analogous to centrifugal forces will appear inside of saudiollow sphere that is non-
uniformly loaded with mass density. It is known in potantiheory that one can show
the vanishing of the force field inside of a hollow sphée is charged with a constant
surface density as follows: The force of attractiowleen surface elements that will be
seen inside the viewing anglevwhen they are viewed frof outward (cf., the figure)
is equal and opposite to the force that is exerted by tli@csuelements that lie in the
solid angledw’ that belongs talew Naturally, that will no longer be the case for non-
uniformly loaded densities. L&A be the equatorial plane, so the surface elements that
lie inside of the viewing angléwat the position of the poift that is drawn in the figure
will have midpoints that lie closer to the equator,hsytwill be more massive than those
of dw, In particular. A force in the directioA’A will then result — i.e., a pull
perpendicular to the axis of rotation from the outside will get smaller as the reference
point P moves closer to the center.)

N
|
|

A--- EB:»% ——— A

S

The fact that we have come to know of merely aalasimponent to centrifugal force
in nature, but never an axial one, can now be broughtagteement with the results that
were found here somewhat by saying: The approximation effited stars by an
infinitely-thin hollow sphere is simply incorrect. Hewer, even if we would like to
improve our approximation (perhaps by a spatial masshilistn), we would never get a
field that is completely equivalent to a centrifugak®by the method of integration that
was employed here. We would obtain such a field thes ithought of all of the masses
that are found in outer space (Milky Way system, escyadating and calculated their
gravitational effects. However, the solution by retdrgetentials [eq. (3)] assumes the
boundary condition limy,, = O for spatial infinity. Now, a<£Einstein said in his
cosmological paper'), those boundary conditions will be fulfilled approximgtédr a
coordinate system that is at rest with respect t@¢néer of the fixed stars. Our solution
(16) does not represent the field of a rotating hollphese that is “alone in the world”

() Berl. Ber. (1917), pp. 142.
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then, but the field inside such a hollow sphere, andadmutsi which masses are found at
much larger distances from the origin and are at reghanmean with respect to the
chosen reference system. The field that is repreddnt eq. (16) is then, for example,
the one that exists at the position of the centégh@fSun, if, instead of the Sun and all of
the planets, a large hollow sphere (say, with a ratthas equals the orbit of Neptune)
were present that rotates with an angular velocityelative to the fixed stars. If an
observer were found at the center of this ball onoddabody whose own gravity field
could be neglected and that rotated around the same akighegitangular velocityw
then he would perceive centrifugal and Coriolis forces$ would combine the effects of
his own rotation and that of the rotating hollow sphefée influence of the field of the
hollow sphere on the centrifugal field that arisesrfithe proper rotation shall be studied
in what follows.

To that end, we introduce a coordinate system that idlyigoupled with the
reference body that rotates with angular veloeity That happens by means of the
transformation:

X = xcoscdﬁ+ smcdﬁ , 2= 2z,
i [ (23)
y’=—xsincdﬁ+ yco&d_ﬁ , X =%
i [
The quantitieg),4 that are of interest to us will go to:
. 2kM 4kM
L=y d| 1+ -w
O14 y { ( 2 j % }
. 2kM 4kM
W= X d| 1+ -w : 24
o= i {1 200 20 oo

2 2
9.=—1 RN O +(X*+Y?) cdz(1+—2kM j—axJ—A'kM rar M
3a 3 3 a 3a 3a

under this transformation. If one forms the equatiohsnotion from these quantities
according to (19) and (20) then that will yield:

o o ) ] 1, 200 0

a 3a 3a 3a
y=-2 cJ(l+2ij—a)4kM v+ cdz(l+ ZKMJ—MJ—4KM+0}M Y, (25)
a 3a a 3a 3a

7= —Zk—szz.
3a
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If one setdM = 0 in this then one will get the usual centrifugal-ClisiGeld:

X= 2w y+a®x,
y=-2adx+a?y, (26)
Z2=0.

If one setdM # 0, w= 0 then one will get:
X = 2ai(1+ 2kM j Y+ cdz(l+ Zij X,
a a

y=-2d (1+ 2‘;'\" j X+ w2(1+—2k'v' j Y, (27)

2=0,

from which one can see how the inertial effects bannfluenced by the presence of
surrounding massed: Centrifugal and Coriolis forces will be multipdieby the factor

1200
a

Finally, one sees from eq. (25) itself that theafof a rotation of the hollow sphere
with the same sense consists of a reduction otéérifugal and Coriolis force. If one
sets:

4kM

a)—
3(2kM + a)

(28)

then the Coriolis force will vanish. One can reflerthe quantity4k—|vI as the
3(2kM + a)

“dragging coefficient” of the hollow sphere relaito the Coriolis force. The centrifugal
force cannot be made to vanish, since the expresaiche curly brackets in eq. (25) will
yield no real roots forowhen they are set to zero. The value of the tegal force in

the “rest” systemq/ = 0) was:
%aﬂ/ x>+ y2.

If one could now rotate the reference system instmae sense as the hollow sphere then
the centrifugal force would initially go down witbmall values ofw’ and attain a
minimum whena'/ wwas equal to one-half the value of dragging coieffit ¢). From
there on, it would once more increase and agaamate original value that it had fay
=0, as long asv'/ wwas equal to the dragging coefficient. With iragiag w), it would
then rise again and attain a magnitude for lazgéhat differed only slightly from the

() One can convince oneself of that fact directly byed#htiating the quantity in brackets.
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value that it had in the absence of the hollow sptreamely, «f?y/ X* + y*), since ZM /
ais indeed small compared to 1, from our assumptions.

On first glance, the fact that the right-hand sidethe equations of motion (25) do
not depend upon merely the differenwe- w’ seems to contradict the very essence of a
theory of relativity. However, it should not be fotgm that we are not dealing with just
two bodies (namely, the mass-point and hollow sphardé)e problem that we treat here,
but that even-more-distant masses that are atrréiseiinitially-chosen reference system
must be brought into play as a third element that is eheted by the field by way of the
boundary condition liny,,, = 0.

Summary.

It will be shown in a concrete example that further foces that are due to
rotating masses will appear in the (Einsteinian) gravitationalfield that are
analogous to the centrifugal (Coriolis, resp.) force. The peculiarities that the
calculated special case exhibits will be discussed.

Vienna, December 1917, Institut fur theoret. Physik der Usitégr

(Received 21 December 1917)




