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 The arguments that have the present paper to thank for their existence can be best 
clarified by a quote from Einstein’s groundbreaking work in the year 1914 (1).  In its 
introduction, he said the following: 
 
 “At first, it would generally seem that such an extension of the theory of relativity 
should be rejected on physical grounds.  Namely, let K be a coordinate system, in the 
Galilei-Newton sense of the term, and let K′ be a coordinate system that rotates 
uniformly relative to K.  Centrifugal forces will act upon masses that are at rest relative to 
K′, while no such forces will act upon masses that are at rest relative to K.  Newton 
already saw a proof in that of the fact that one had to regard the rotation of K′ as an 
‘absolute,’ so one could not treat K′ as being ‘at rest’ with the same justification that one 
had with K.  However, that argument is not cogent, as E. Mach showed, in particular.  
Namely, we do not necessarily need to attribute the existence of those centrifugal forces 
to a motion of K′.  If Newton’s laws of mechanics do not admit such a concept then that 
would quite probably be rooted in some flaw in the theory…” 
 
 Now, since Einstein’s theory seems to have been completed in the publications of 
1915, one must ask: Do the equations of the new theory (to the extent that it is free of the 
flaws in Newton’s theory) actually say that the rotation of distant masses will generate a 
gravitational field that is equivalent to a “centrifugal force?”  One might attempt to table 
a discussion of that question by saying that the required equivalence is guaranteed by the 
general covariance of the field equations.  However, things are not quite so simple, since 
the boundary conditions for the gµν at spatial infinity also play a role.  The questions that 
are related to that were treated mainly in the papers of De Sitter (2) and Einstein (3).  
Now, we shall not go further into these general question in what follows; rather, we 
would like to carry out the calculations for a special concrete example of the field of 

                                                
 (1) A. Einstein, Berl. Ber. (1914), pp. 1030; cf., also Ann. Phys. (Leipzig) 49 (1916), pp. 769. 
 (2) De Sitter, Amsterdam Proc. 19 (1917), pp. 527. 
 (3) A. Einstein, Berl. Ber. (1917), pp. 142. 
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rotating distant masses and study them.  The method that Einstein (1) gave for the 
approximate integration of the field equations is eminently suited to that end, and it shall 
serve as the basis for the following calculations.  The example that we shall choose is that 
of the field in the interior of a uniformly-rotating, infinitely-thin, hollow sphere that is 
loaded with a constant mass density. 
 In the first section of this paper (which can be skipped without impairing one’s 
understanding of what follows), the approximate calculation of the gµν will be performed 
for the interior of the spherical shell, and in the second section, the motion of a mass-
point in that field will be discussed. 
 
 
 A. Computational part: The calculation of the gµν in the vicinity of the center of 
the rotating sphere. – 
 
 Notations: 
 
 a radius of the hollow sphere 
 M its mass 
 ω its angular velocity 
 x, y, z the rectangular coordinates of a point of the outer surface of the ball 
 x0, y0, z0 coordinates of the reference point 
 κ gravitational constant 
 ρ0 naturally-measured spatial density of the matter 
 
 As far as the viewpoint of the approximation that will be used in the field calculations 
is concerned, let us say this in advance: The field in the vicinity of the center of the 
sphere will be considered to be weak enough that only those terms in the field equations 
that have order one relative to the quantities γµν will be used in the calculations (γµν is 
defined by gµν = − δµν + γµν).  That approach will make it possible for us to employ 
Einstein’s method for the approximate integration of the field equations.  With the 
second, oft-employed, approach to the approximation, we regard the components of the 
velocity of ponderable matter as small in comparison to unity (i.e., the speed of light), 
such that their first powers can already be neglected in that coarsest approximation that 
leads to Newton’s theory.  We would like to apply this approximation (which is 
completely independent of the first one) only to the extent that we shall drop the terms of 
order three and higher in the velocities in comparison to 1.  Finally, our calculations shall 
relate to the vicinity of the center of the sphere.  Let r be the distance from the reference 
point to the center of the sphere, and let R be the distance from the reference point to the 
integration element, so we shall develop 1 / R into a power series in r / a that we shall 
truncate after the second power. 
 Einstein’s approximation method of integration yields the following prescription for 
the calculation of the gµν : 
 

                                                
 (1)  A. Einstein, Berl. Ber. (1916), pp. 688. 
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gµν = − δµν + γµν , δµν = 
1 ,

0 ,

µ ν
µ ν

=
 ≠

   (1) 

 
γµν  = 1

2µν αα
α

γ γ′ ′− ∑ ,      (2) 

 

µνγ ′ = − 0

( , , , )

2

T x y z t r
dV

R
µνκ

π
−

∫ .    (3) 

 
In this, Tµν is the covariant energy tensor of matter, dV0 is the spatial volume element of 
the integration space, and: 
 

R2 = (x – x0)
2 + (y – y0)

2 + (z – z0)
2 . 

 
The coefficients gµν of the line element refer to the coordinates x1 = x, x2 = y, x3 = z, x4 = i 
t. 
 With the first approach to the approximation, we can replace the covariant energy 
tensor with the contravariant one; it is given by neglecting the stresses: 
 

Tµν = Tµν = 0

dx dx

ds ds
µ νρ  = 

2

4
0

4 4

dx dx dx

dx dx ds
µ νρ  

 
 

.  (4) 

 
The sphere rotates around the z-axis with an angular velocity of ω, so one will have: 
 

1

4

2

4

3

4

sin sin ,

sin cos ,

0

dx dx
i i a

dx dt

dx dy
i i a

dx dt

dx

dx

ω ϑ ϕ

ω ϑ ϕ


= − = 




= − = − 



= 


    (5) 

 
for one of its points that has the polar coordinates a, ϑ, ϕ.  When these are substituted in 
(4), that will imply the following matrix: 
 

Tµν =

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2
4

0

sin sin sin sin cos 0 sin sin

sin sin cos sin cos 0 sin cos

0 0 0 0

sin sin sin cos 0 1

a a i a

a a i adx

ds

i a i a

ω ϑ ϕ ω ϑ ϕ ϕ ω ϑ ϕ
ω ϑ ϕ ϕ ω ϑ ϕ ω ϑ ϕρ

ω ϑ ϕ ω ϑ ϕ

 − +
 + − −  
  

   
 − 

.  (6) 
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Since we understand ρ0 to mean the naturally-measured density of matter, we must 
likewise set dV0 equal to the naturally-measured spatial volume element in order to 
ensure the tensor character of the integral (3).  The formula (1): 
 

dV0 = 4dx
g i dV

ds
     (7) 

 
is true for it.  We introduce polar coordinates for the integration, so: 
 

g dV= a2 da sin ϑ dϑ dϕ .    (8) 

 
Finally, we still have to express 1 / R in terms of the integration variable.  We choose the 
coordinate system in such a way that the reference point falls in the ZX-plane, so its 
coordinate will then be: 

x0 = r sin ϑ0 ,      y0 = 0,      z0 = r cos ϑ0 . 
One will then have: 
 

R2 = (a sin ϑ cos ϑ – r sin ϑ0)
2 + a2 sin2 ϑ sin2 ϑ + (a cos ϑ – r cos ϑ0)

2 
 

= 
2

2
0 0 2

2
1 (sin cos sin cos cos )

r r
a

a a
ϑ ϕ ϑ ϑ ϑ 

− + + 
 

. 

 
Developing this into a binomial series and making the omissions that were cited in the 
introduction will yield: 
 
1

R
=

2 2
2

0 0 0 02 2

1 1 3
1 (sin cos sin cos cos ) (sin cos sin cos cos )

2 2

r r r

a a a a
ϑ ϕ ϑ ϑ ϑ ϑ ϕ ϑ ϑ ϑ 

+ + − + + 
 

. (9) 

 
 We denote the expression in the curly brackets by K and write: 
 

1

R
= 

K

a
.     (9a) 

 
Substituting (6), (7), (8), and (9a) in (3) gives: 
 

                                                
 (1) Cf., Einstein, Berl. Ber. (1914), pp. 1058, eq. (47a). 
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ds

dxi
a da d d K

ds

π π

π π

π π

π

κγ ρ ω ϕ ϑ ϑ ϕ
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0
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,
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2
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2

0.

dxi
a da d d K
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π
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π
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
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  ′ =  
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  ′ = −     
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∫

∫ ∫

∫ ∫

  (10) 

 
 The absolute value of the quantity dx4 / ds differs from unity only by terms of order 
ω2 a2 ; they appear as factors in the small first-order quantities µνγ ′ .  Therefore, it is 

sufficient for one to calculate them from the expression for the “zeroth” approximation to 
the line element: 

2 2 2 2 2
1 2 3 4

2 2 22
2 2 21 2 3

2 2
4 4

2 2
2

4

2
2 2 24

,

1 1 sin ,

1 sin ,
2

3
1 sin .

2

ds dx dx dx dx

dx dx dxds
a

dx dx

ds a
i

dx

dx
i a

ds

ω ϑ

ω ϑ

ω ϑ

= − − − −


+ + = − − = − +



  = −  
  

   
= +  
   

  (11) 

 
Since our computational precision extends to only terms of order ω2 a2, we can set 

3

4dx

ds
 
 
 

= i in all µνγ ′  that already contain the factor ω a, except that we employ the 

expression (11) for 44γ ′ .  If we set: 

ρ0 da = σ 
then (10) will go to: 
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If one substitutes the value of K from (9) in these expressions and evaluates the integrals 
then one will get: 

2
3 2

11 2

2
3 2 2

22 02

2
2 2 2

44 02
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1 (1 3sin ) ,
2 3 5

3
1 1 1 sin ,

2 5 2

sin ,
2 3

0.
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a
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π
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 ′ = − −  
  

 
′ = − − − 
 

    ′ = + − −    

     

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
′ ′ ′ ′ ′ ′= = = = = = 

  (13) 

 
One then gets the γµν , and thus, the gµν , from these values with the use of equations (1) 
and (2).  One now replaces the polar coordinates r and ϑ0 of the reference point with its 
rectangular coordinates and replaces Einstein’s gravitational constant κ with the usual 
one: k = κ / 8π (speed of light = 1).  That will then yield: 
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,

3
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a
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a
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a
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a
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ω
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  
= −


  = − + + − −  
  

= − 

   (14) 

 
while all of the remaining gµν vanish. 
 We would now like to free ourselves from the special choice of coordinate system. 
(Indeed, we put the reference point in the zx-plane.) To that end, we make the 
transformation: 

1 1 2

2 1 2

3 3

4 4

cos sin ,

sin cos ,

,

.

x x a x a

x x a x a

x x

x x

′ = + 
′ = − + 
′ = 
′ = 

    (15) 

 
By means of the transformation formula for a covariant tensor of rank two: 
 

gστ′ = 
x x

x x
µ ν

σ τ

∂ ∂
′ ′∂ ∂

gµν , 

the coefficient matrix will go to: 
 

gµν  =

2 2
2 2 2 2 2

2 2
2 2 2 2 2

2 2 2
2 2 2

2 2 4
1 1 (2 3 ) 0

10 5 3

2 2 4
1 1 (2 3 ) 0

5 10 3

0 0 1 0

4 4 2 5
0 1 1 (2 )

3 3 3 6

kM kM kM
a z x y xy i y

a a a

kM kM kM
xy a z x y i y

a a a

kM kM kM a
i y i x z x y

a a a

ω ωω ω

ω ωω ω

ω ωω ω

  
− − + − + − + +  

  
  
 + − − + − + − −  
  
 − 
  

− − + + + − −  
   

.     (16) 

 
The index 0 for the coordinates has been dropped here; from now on, x, y, z will mean the 
coordinates of the reference point. 
 
 
 B. Physical part: The motion of a mass-point inside of a rotating hollow sphere. 
– We would like to present the equations of motion for a mass-point that is found near the 
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center of our rotating spherical shell.  The field in that neighborhood is characterized by 
the coefficient matrix of the gµν [eq. (16) of the first section]. 
 The law of motion for a mass-point in Einstein’s theory is known to be given by the 
condition: 

δ ∫ ds = 0, 
or, when one performs the variation (1): 
 

2

2

d x

ds
τ = 

dx dx

ds ds
µτ ν

µνΓ   (τ = 1, …, 4).   (17) 

 
With the first approach to approximation, one will have: 
 

τ
µνΓ = − 

µ ν
τ

 
 
 

= 
µ ν
τ

 
 
 

= 
1

2

g gg

x x x
µτ µντν

µ ν τ

 ∂ ∂∂ + −  ∂ ∂ ∂ 
  (18) 

 
for the “field components” τ

µνΓ .  We would like to consider only those motions of mass-

points that are small in comparison to the speed of light, such that we can neglect the 
squares and products of the velocity components.  We can then drop all terms in which 
the index 4 does not occur from the right-hand side of equations (17), and replace the 
derivatives with respect to s with ones with respect to t, as well.  If we give consideration 
to dx4 / dt = i then equations (17) will go to: 
 

2

2

d x

ds
τ = 31 2

14 24 34 442
dxdx dx

i
dt dt dt

τ τ τ τ Γ + Γ + Γ − Γ 
 

.  (19) 

 
Only those field components τµνΓ  that contain the index 4 at least once will come under 

consideration then.  They amount to sixteen quantities that can be represented in our case 
as a matrix of an antisymmetric tensor of rank two (although they are not actually tensor 
components!).  Since the partial derivatives with respect to x4 all vanish for stationary 
fields, the quantities can then be written as follows (2): 

                                                
 (1) Indices that occur twice will be summed from 1 to 4.  
 (2) One should observe that this matrix corresponds completely to the six-vector M of the 
electromagnetic field.  The  analogy between electrodynamics and the (approximate) theory of gravitation 
goes even further than that when one ponders the fact that in the approximate integration, the quantities g14 , 
g24 , g34 , g44  can be computed from the density and velocity of matter in precisely the same way that the 
potentials Ax , Ay , Az , Φ can be computed from the electric four-current, and furthermore, the fact that in 
our case, the right-hand sides of eq. (19) correspond completely with the components of the ponderomotor 
force E + [v H], up to a numerical factor! 
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0
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


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
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If one substitutes the special values for the gµν from (16) in this then one will get the 
following matrix: 

2

2

2

2 2 2

4
0 0

3 3
4

0 0
3 3

2
0 0 0

3
2

0
3 3 3

kM kM
i x

a a
kM kM

i y
a a

kM
z

a
kM kM kM

x y z
a a a

ω ω

ω ω

ω

ω ω ω

− 

− −





−


   (21) 

 
 We then obtain the equations of motion for our special problem from (19) and (21): 
 

2

2

2

8
,

3 3
8

,
3 3

2
.

3

kM kM
x y x

a a
kM kM

y x y
a a

kM
z z

a

ω ω

ω ω

ω

= − + 

= + 

= − 


ɺɺ ɺ

ɺɺ ɺ

ɺɺ

    (22) 

 
 The right-hand sides of the equations represent the components of the force that our 
field exerts on the mass-point with mass 1.  As one sees, the first terms correspond 
completely to the X and Y components of the Coriolis force, and the second term, to the 
centrifugal force.  The third equation implies the at-first-surprising result that this 
“centrifugal force” possesses an axial component.  Its appearance in the field of the 
rotating ball can be explained as follows: From the standpoint of the observer at rest, the 
surface elements of the hollow sphere that are found near the equator will have larger 
velocities, and as a result, also larger apparent (inertial and gravitating) masses, when 
compared to the ones in the neighborhood of the poles.  The field of a rotating hollow 
sphere that is loaded with constant surface density will then correspond to that of a 
spherical shell at rest whose surface density increases with increasing distance ϑ from the 
pole.  The fact that points in the latter case that lie outside of the equatorial plane will be 
drawn towards it is self-explanatory. 
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 (By the way, it is not difficult to also comprehend the fact that forces that are 
analogous to centrifugal forces will appear inside of such a hollow sphere that is non-
uniformly loaded with mass density.  It is known in potential theory that one can show 
the vanishing of the force field inside of a hollow sphere that is charged with a constant 
surface density as follows: The force of attraction between surface elements that will be 
seen inside the viewing angle dω when they are viewed from P outward (cf., the figure) 
is equal and opposite to the force that is exerted by the surface elements that lie in the 
solid angle dω′ that belongs to dω.  Naturally, that will no longer be the case for non-
uniformly loaded densities.  Let AA′ be the equatorial plane, so the surface elements that 
lie inside of the viewing angle dω at the position of the point P that is drawn in the figure 
will have midpoints that lie closer to the equator, so they will be more massive than those 
of dω′, in particular.  A force in the direction A′A will then result – i.e., a pull 
perpendicular to the axis of rotation from the outside that will get smaller as the reference 
point P moves closer to the center.) 

 

A A′ 

N 

S 

P dω′ dω 

 
 The fact that we have come to know of merely a radial component to centrifugal force 
in nature, but never an axial one, can now be brought into agreement with the results that 
were found here somewhat by saying: The approximation of the fixed stars by an 
infinitely-thin hollow sphere is simply incorrect.  However, even if we would like to 
improve our approximation (perhaps by a spatial mass distribution), we would never get a 
field that is completely equivalent to a centrifugal force by the method of integration that 
was employed here.  We would obtain such a field then if we thought of all of the masses 
that are found in outer space (Milky Way system, etc) as rotating and calculated their 
gravitational effects.  However, the solution by retarded potentials [eq. (3)] assumes the 
boundary condition lim γµν = 0 for spatial infinity.  Now, as Einstein said in his 
cosmological paper (1), those boundary conditions will be fulfilled approximately for a 
coordinate system that is at rest with respect to the center of the fixed stars.  Our solution 
(16) does not represent the field of a rotating hollow sphere that is “alone in the world” 

                                                
 (1) Berl. Ber. (1917), pp. 142.  
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then, but the field inside such a hollow sphere, and outside of which masses are found at 
much larger distances from the origin and are at rest in the mean with respect to the 
chosen reference system.  The field that is represented by eq. (16) is then, for example, 
the one that exists at the position of the center of the Sun, if, instead of the Sun and all of 
the planets, a large hollow sphere (say, with a radius that equals the orbit of Neptune) 
were present that rotates with an angular velocity ω relative to the fixed stars.  If an 
observer were found at the center of this ball on a world-body whose own gravity field 
could be neglected and that rotated around the same axis with the angular velocity ω′ 
then he would perceive centrifugal and Coriolis forces that would combine the effects of 
his own rotation and that of the rotating hollow sphere.  The influence of the field of the 
hollow sphere on the centrifugal field that arises from the proper rotation shall be studied 
in what follows. 
 To that end, we introduce a coordinate system that is rigidly coupled with the 
reference body that rotates with angular velocity ω′.  That happens by means of the 
transformation: 

4 4

4 4
4 4

cos sin , ,

sin cos , .

x x
x x z z

i i
x x

y x y x x
i i

ω ω

ω ω

′ ′ ′ ′= + = 

′ ′ ′ ′= − + =


   (23) 

 
 The quantities gµ4 that are of interest to us will go to: 
 

14g′ = − i y′ 2 4
1

3 3

kM kM

a a
ω ω  ′ + −  
  

 

 

24g′ =   i x′ 2 4
1

3 3

kM kM

a a
ω ω  ′ + −  
  

,            (24) 

 

44g′ = − 1 +
2 2 2

22 5
1

3 3 3

kM a
z

a

ω ω 
+ − 

 
+ 2 2 2 22 4

( ) 1
3 3

kM kM kM
x y

a a a
ω ωω ω  ′ ′ ′ ′+ + − +  

  
 

 
under this transformation.  If one forms the equations of motion from these quantities 
according to (19) and (20) then that will yield: 
 

2 2

2 2

2

2 4 2 4
2 1 1 ,

3 3 3

2 4 2 4
2 1 1 ,

3 3 3

2
.

3

kM kM kM kM kM
x y x

a a a a a

kM kM kM kM kM
y y y

a a a a a

kM
z z

a

ω ω ω ωω ω

ω ω ω ωω ω

ω

      ′ ′ ′= + − + + − +      
       

       ′ ′ ′= − + − + + − +      
       


= − 



ɺɺ ɺ

ɺɺ ɺ

ɺɺ

 (25) 
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If one sets M = 0 in this then one will get the usual centrifugal-Coriolis field: 
 

2

2

2 ,

2 ,

0.

x y x

y x y

z

ω ω
ω ω

′ ′ = +
′ ′= − + 
= 

ɺɺ ɺ

ɺɺ ɺ

ɺɺ

     (26) 

 
If one sets M ≠ 0, ω = 0 then one will get: 
 

2

2

2 2
2 1 1 ,

2 2
2 1 1 ,

0,

kM kM
x y x

a a

kM kM
y x y

a a

z

ω ω

ω ω

   ′ ′= + + +    
    

   ′ ′= − + + +    
    

=



ɺɺ ɺ

ɺɺ ɺ

ɺɺ

   (27) 

 
from which one can see how the inertial effects can be influenced by the presence of 
surrounding masses M: Centrifugal and Coriolis forces will be multiplied by the factor 

2
1

kM

a
 + 
 

. 

 Finally, one sees from eq. (25) itself that the effect of a rotation of the hollow sphere 
with the same sense consists of a reduction of the centrifugal and Coriolis force.  If one 
sets: 

ω′ = ω 
4

3(2 )

kM

kM a+
   (28) 

 

then the Coriolis force will vanish.  One can refer to the quantity 
4

3(2 )

kM

kM a+
 as the 

“dragging coefficient” of the hollow sphere relative to the Coriolis force.  The centrifugal 
force cannot be made to vanish, since the expressions in the curly brackets in eq. (25) will 
yield no real roots for ω when they are set to zero.  The value of the centrifugal force in 
the “rest” system (ω′ = 0) was: 

2 2 2

3

kM
x y

a
ω + . 

 
If one could now rotate the reference system in the same sense as the hollow sphere then 
the centrifugal force would initially go down with small values of ω′ and attain a 
minimum when ω′ / ω was equal to one-half the value of dragging coefficient (1).  From 
there on, it would once more increase and again attain the original value that it had for ω′ 
= 0, as long as ω′ / ω was equal to the dragging coefficient.  With increasing ω′, it would 
then rise again and attain a magnitude for large ω′ that differed only slightly from the 
                                                
 (1) One can convince oneself of that fact directly by differentiating the quantity in brackets.  
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value that it had in the absence of the hollow sphere (namely, 2 2 2x yω′ + ), since 2kM / 

a is indeed small compared to 1, from our assumptions. 
 On first glance, the fact that the right-hand sides of the equations of motion (25) do 
not depend upon merely the difference ω – ω′ seems to contradict the very essence of a 
theory of relativity.  However, it should not be forgotten that we are not dealing with just 
two bodies (namely, the mass-point and hollow sphere) in the problem that we treat here, 
but that even-more-distant masses that are at rest in the initially-chosen reference system 
must be brought into play as a third element that is determined by the field by way of the 
boundary condition lim γµν = 0. 
 
 

Summary. 
 

 It will be shown in a concrete example that further forces that are due to 
rotating masses will appear in the (Einsteinian) gravitational field that are 
analogous to the centrifugal (Coriolis, resp.) force.  The peculiarities that the 
calculated special case exhibits will be discussed. 
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