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Introduction.  

 
One knows that Morse theory gives a powerful means of classifying differentiable 
structures, as was generalized by authors such as A. Wallace, S. Smale, etc.  It is natural 
to think that this method will likewise reveal its efficacy in the study of finer structures, 
such as foliated manifolds.  In this article I make an attempt in that direction, which must 
hardly be considered conclusive, and, in any case, is certainly incomplete.  Indeed, I shall 
stop short of the essential problem of the theory, which is that of “recurrence.”  An 
essential difference will separate out theory from the classical one: whereas, in the latter 
theory, one must consider only a finite number of critical points (which are classified by 
an integer, the index) and the corresponding critical values may be considered to be 
isolated, the same is no longer true in the present case.  On the one hand, it will be 
difficult to classify the singularities that are presented “generically; on the other hand, the 
set of critical values is generally infinite − not discrete – and this entails that in a 
neighborhood of a critical value, c, the topological type of the foliated manifold f ≤ c + ε 
must present an infinitude of variations (a non-denumerable infinitude, in general).  At 
the end of the article, I will make several remarks on this question that are obviously 
related to the problem of the structural stability of dynamical systems.  I nevertheless 
hope that the method described will provide a means of attacking this difficult question. 
 
 

1.  Relation of compact equivalence. 
 
Let Mn be a compact n-dimensional differentiable manifold, possibly with boundary.  A 
foliation (X) of codimension k in M is defined by the given of an atlas (Uj) on M, and for 
each Uj, the given of a map of rank k: qj: Uj → k

ℝ , such that on an intersectioni jU U∩  

the qj must satisfy the obvious commutation conditions with the diffeomorphisms of the 
change of chart from the source to the target.  At a point x of the boundary V of Mn, if it 
exists, one may assume that the manifold M is embedded in a regular open neighborhood.  
In the product Mn × Mn of the manifold with itself, one forms the graph (G) that is 
associated with the foliation (X): a pair (x, y) belongs to (G) if x and y are two points of 
Mn from the same leaf.  The graph (G) is a submanifold of codimension k that contains 
the diagonal of M × M and is invariant under the symmetry (x, y) → (y, x).  Nevertheless, 
(G) is not generally a proper submanifold, i.e., i.e., the topology that is induced by the 
embedding of M × M does not generally coincide with the topology of the manifold.  This 
is true only if (G) is a closed submanifold of M × M, hence, compact.  In this case, the 
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adherence of a leaf agrees with the leaf itself.  In this case, in order to simplify the 
discussion, one says that the equivalence relation, or furthermore, that the foliation (X) is 
compact (e). 
 The conditions that are imposed on the graph of a “compact” foliation are very 
restrictive: notably, from the homological viewpoint, one may deduce some conditions 
for a section of the bundle of (n − k)-planes on M to be the set of tangent planes to a 
foliation.  Suppose, for the moment, that M is compact without boundary.  Let T(∆) be a 
tubular neighborhood of the diagonal ∆ in M×M.  The quotient of the complement M×M 
– T(∆) under the symmetry (x, y) → (y, x) is the reduced symmetric product M2 of the 
manifold M.  M2 is a manifold with boundary whose boundary Q is a fiber space with 
base D and fiber PR(n – 1) the real projective space of dimension n – 1.  The given of a 
section of the bundle of (n – k)-planes of M is equivalent to the given in Q of a 
submanifold W of codimension k that is fibered into (n – k + 1)-planes that project on the 
diagonal (∆): Each fiber of Q contains the fiber of W as a projective subspace of 
codimension k.  By considering a regular neighborhood of W in Q, one may associate W 
with a map g: Q → MO(Q), where MO(k) is the Alexandroff compactification of the 
universal bundle into k-balls.  Therefore, if there exists a “compact” foliation such that W 
is the set of tangent (n – k)-planes then the quotient under symmetry of the graph (G), 
namely, (g), is a manifold with boundary in M2 with boundary W.  Therefore, a necessary 
condition for there to exist such a compact foliation is that the map g: Q → MO(k) admit 
an extension g1 = M2 → MO(k).  One may further refine this condition by the following 
remark: Let A be the subspace of the reduced symmetric product of M2 with itself that is 
composed of pairs (x, y), (y, x) such that the two components have one and only one 
common coordinate.  There exists a canonical map of A into M2 that is defined by the 
formula: ψ: (x, y), (x, z) → (y, z).  The graph (g) then has the property that its intersection 
with A has ψ(g) itself for its image, a property that may be expressed in terms of 
homology classes.  If z is the intersection class of (g × g) with A in (M2)2, then ψ(z) = g. 
 These homological conditions on the section (W) are actually of little interest; indeed, 
their use is difficult, since the calculation of the homology of the reduced symmetric 
product M2 is no easy task.  Furthermore, it gives only necessary conditions for the 
existence of a compact foliation, which is an excessive restriction one is interested only 
in the existence of a foliation that is associated with the class of the section of the bundle 
of (n – k)-planes. 
 
 

2.  Morse theory on a foliated manifold. 
 
Let Mn be a differentiable manifold that is endowed with a foliation (X) of codimension k.  
First of all, one chooses a standard function on Mn (a “nice function” in the sense of 
Smale).  The critical points of f are non-degenerate and the values of f at these points are 
ordered by increasing index (by assuming that they are all distinct, here).  Let (G) be the 
graph of the foliation (X) in the product M.  A first approach to the problem of how to 
generalize Morse theory consists of studying the function g that is defined by g(x, y) = 
Sup(f(x), f(y)), on the manifold (G). 
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This function, (which is, moreover, only piece-wise differentiable) must present critical 
points on (G) in the following cases: 
 
 1.  f(x) = f(y),  and  df(x) = 0, 
 
 2.  f(x) = f(y), and f is stationary at x on the leaf of x and at y on the leaf of y. 
 
When one displaces (x) transversally to the foliation in the sense of decreasing f, it might 
happen that y is displaced in the sense of increasing f, in such a way that g admits (x, y) as 
a relative minimum.  One thus sees that other than the critical points of g that are 
naturally associated with those of f there exist critical points of g – in the topological 
sense – which correspond to certain leaves that are bitangent to a level manifold f = c.  
Some simple examples (differential systems on the torus) show that if O is the minimum 
value of f then it is possible that g has an infinitude of critical points for g ≤ ε.  In order to 
avoid the appearance of an accumulation of an infinitude of critical values, at least to 
begin with, it is preferable to adopt the following convention: in the manifold with 
boundary f ≤ c one considers only the equivalence relation (Xc) that is defined by the 
restriction of the foliation (X) to the manifold f ≤ c.  One earns the right to adopt this 
manner of operating since the relation (Xc) is compact for sufficiently small values of c.  
Indeed, if c is sufficiently close to zero the inequality f ≤ c defines a ball that is 
completely situated in a chart Ui of the foliation and is convex in this chart.  Furthermore, 
the projection π is a compact equivalence relation on this ball. 
 If we let (Mc) designate the set f ≤ c then one must study the variation of the 
topological type (M(c), Xc) when c varies.  With this objective, it is first of all necessary 
to specify the set (C) of points where the level hypersurface f = c is tangent to the 
foliation (X).  I say that this set (C) is “generically” a submanifold without singularities of 
dimension k – 1.  Indeed, in a local chart U one must consider the restriction of the 
projection n

ℝ  → k
ℝ  to a portion of the level hypersurface f = c at x.  One must therefore 

consider maps of 1n−
ℝ  into k

ℝ  that admit a factorization of the form: 
1 in n kπ− → →ℝ ℝ ℝ , in which i is an injection and π is a linear projection.  Since the 

corank at the source of the map π · i may not exceed n – k, the dimension of the kernel of 
π and the corank at the target may not exceed one.  Conversely, any map of into has a 
corank that is smaller than one (at the target) then it locally admits a factorization of the 
form π · i.  It results from the transversality lemma that the critical locus of such a map is 
generically without singularities; indeed, the singularities of the critical locus possess 
only points of corank 2 (an S2 singularity, in the terminology of [1]).  By contrast, there 
are good reasons to distinguish subspaces of the “contact” manifold C in which the 
contact is not ordinary.  These subspaces correspond to the symbols Sj, …, S1 of [1], and 
their classification is not known in full generality.  Nevertheless, in low dimensions (n < 
6, for example), this classification may be made precise: there then exists only 
singularities of the form (S1)

j, which correspond to submanifolds without singularities of 
codimension j in (C).  The first case of more complicated singularities presents itself with 
the singularity S2S1 of 5

ℝ  into 4
ℝ , hence, for a foliation of 6

ℝ  with codimension 4. 
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 Of course, when the value (c) varies, the contact manifold (C) must not remain 
isotopic to itself.  It must be subjected to modifications, which we specify when we cross 
a critical point of the function f.  However, it may likewise be transformed when it 
crosses certain regular values (a) of f.  This corresponds to a generic transition between 
two generic forms of (C).  These generic transitions happen at isolated points, which 
correspond to generic singularities of maps 1n− ×ℝ ℝ  → n ×ℝ ℝ  that admit a 
factorization of the form: 

1n− ×ℝ ℝ  → n ×ℝ ℝ  → k ×ℝ ℝ , 
 
with conservation of the last coordinate t.  The description of these transition points may 
be made explicit only for low dimensions (n < 6); later on, we shall do this briefly for the 
case of n ≤ 3. 
 

1.  Critical values of the first species. 
 
These are critical values of f in the usual sense.  One supposes that each critical value, c, 
corresponds to just one critical point O, which is non-degenerate quadratic.  One calls the 
number, p, of negative squares in the second differential d2f at O the type of the critical 
point, and the difference | −p + (n – p) | between the number of positive squares and the 
number of negative ones, the index.  One assumes, moreover, that the leaf of X that 
passes through O cuts the quadratic tangent cone to level hypersurface f = f(O) 
transversally.  This condition, which is realized trivially when p = 0 or n, may be 
satisfied, moreover, for an arbitrarily small deformation of the function f.  One may then 
find a local coordinate chart about O, x1, …, xr, u1, …, uq, in which the equations of the 
foliation (X) are:

0j ju u= , and for which f – f(O) takes the form: 

 
f – f(O) = 2 2 2

1i s tx x u u− − − − −⋯ ⋯  2 2 2 2
1 2s r i qx x u u+ ++ + + + + +⋯ ⋯ ⋯ . 

 
The integer s, which is the smaller of r and p, will be called the X-type of O.  The 
“attaching sphere” that is associated with O, with the equation: 
 

2 2
1 1s ix x u u+ + + + +⋯ ⋯ = ε, xs+j = ut+i  = 0, 

 
takes the form of the join of two spheres: an (s – 1)-sphere that is contained in the leaf of 
O, and a (t – 1)-sphere that is situated in a plane transverse to the foliation.  In the chart, 
the contact locus (Γ) is the q-plane x1 = x2 = … = xq = 0.  The restriction of f to the 
manifold (Γ) possesses a critical point at O of the type t = p – s.  As a result, this 
describes the variation of the contact manifold (C) when one crosses the critical point O. 
 
 

2.  Critical values of the second species. 
 

We shall always let (x1, …, xr, u1, u2i, …, uq) represent a local chart in which ui = ci 
represents the leaves of (X).  If O is a regular point of the contact set (Γ) then one may 
assume that f is taken in the form:  
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f = u1+ g2(xj) + + r
j r jc u x∑ … 

 
The tangent plane to (Γ), which is defined by the equations: 
 

2 0i s
i

g
c s u

x

∂
+ + =

∂ ∑ ⋯ , 

 
contains the leaf uj = 0 only if the quadratic form g2 is degenerate.  In the generic 
situation g2 has rank (r – 1) and may be written: 
 

2 2 3
2 1( ) ( ) ( )i j rg x x x+= − + + +∑ ∑ ⋯  

and 
f – f(O) = u1 + g2 + u1xr+1 +

r
j r jc u x∑ . 

 
 One may then locally parameterize (Γ) by the q variables, u2, u3, …, uq, and xr+1.  To 
second order, the restriction of f to (Γ) begins with the expression: 
 

f  = 
2 2

22 s t
r i s j t

i s j t

x c u c u
   − − + +   
   

∑ ∑ ∑ ∑ ⋯  

 
 As a result, f|(Γ) admits a critical point at O (non-degenerate, in general), whose type 
may not exceed that of the form g2 (and similarly for the index).  Moreover, O is a point 
of the transition manifold s1(Γ) that separates the strata of type r from the strata of type 
(r+1) in (Γ).  Also, the restriction of f to this manifold S1(Γ) likewise admits 0 as a non-
degenerate critical point. 
 This gives a description of the simplest type (generically 1) for a critical point of the 
second species.  There may be others, which are likewise “generic” and situated on 
“exceptional” manifolds (S1)

k(G); this case occurs notably for vector fields. 
 
 

3.  Critical values of the third species. 
 
In the manifold with boundary M(c) (f  ≤ c), let K(C) be the subset of the contact 
manifold C that is saturated by (Xc).  The set K(C) thus obtained is a “stratified set” (See 
[2] for the definition).  In what follows, we always assume that K(C) is compact, and 
form the intersection of K(C) with C in the boundary f-1(c), of M(c).    In general, it is a 
stratified set that one combines with the stratification of K(C) by subdivision.  One 
iterates this construction, and, by reason of dimension, the process terminates.  Again, 
one lets K(C) designate the saturated set thus stratified.  One calls any value (c) for which 
the stratification of K(C) changes its topological type a critical value of the third species.  
More precisely, if one forms the set K(Γ) = ( )c K C∪  for all values c of an interval ]a, b[, 

in which there exists no critical value, and if the map (which is induced by f) K(Γ) → ]a, 
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b[ is stratified (in the sense [2]), then the stratification of the target-interval is trivial (has 
no summits between a and b). 
 When the set K(C) is no longer compact, the notion of critical value itself ceases to be 
defined.  Nevertheless, in certain cases, in which the set K(C) admits an infinitely 
structurally stable generalization, a generalization does not seem possible. 
 
 Examples. – Differential systems in dimensions two and three. 
 
 More generally, one lets n denote the dimension of the space and k, the codimension 
of the foliation considered (n > k). 
 The set (C) consists of isolated points on the manifold f = c.  The critical manifolds of 
the second species correspond to the creation (or annihilation) of a pair of points of (C).  
They are associated with points where the leaves have an inflectional contact with the 
level lines of f. 
(1)    n = 2,  k = 1. 
 
The intersection 1( ) ( )K C f c−∩  generically consists of isolated points.  There is a critical 
value of the third species when two of these points coincide. 
 
(2)    n = 3,  k = 2. 
 
 The critical set (C) is a regular curve that contains isolated points where the field is 
tangent to (C).  These points correspond to the singularity (S1)

2 of a fold.  The critical 
values of the second species correspond to the appearance (or the disappearance) of a 
simple curve of (C) that possess two fold points, or furthermore, to the join of two such 
curves by the intermediary of point of collar type. 
 The set 1( ) ( )K C f c−∩  is a set of curves that possess ordinary regression points on the 
trajectories of the fold.  They will have a critical value of the third species when that set 
of curves cuts the curve (C) non-transversally. 
 
(3)    n = 3,  k = 1. 
 
 For k = 1 (foliations of dimension two in 3

ℝ ), the set (C) decomposes into isolated 
points.  There is a critical value of the second species when two of these points coincide 
(when they are destroyed or created).  The set 1( ) ( )K C f c−∩  is a set of simple curves 
(which possibly admit quadratic double points at the points of (C)).  There is a critical 
value of the third species when these points of (C) are triple points of 1( ) ( )K C f c−∩ . 

 It is important to observe that the set 1( ) ( )K C f c−∩  must be assumed to be saturated 
with respect to the relation (Xc).  For example, in the case of n = 3, k = 2, the locus (C) is 
assumed to be a simple curve.  In general, 1( ) ( )K C f c−∩  is then another curveC′  that 
cuts (C) transversally.  Let x be the point of intersection that is so defined.  There is good 
reason to add the trajectory of x to the stratification of K(C), hence, to also consider the 
point ( )x C′ ′∈ that is the other extremity of this trajectory.  If the pointx′  coincides with x 
for a certain value of c then one will have a critical value of the third species of a 
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particularly important type; indeed, this must say that the trajectory that issues from x is 
closed.  Such critical values, which are characterized by the coincidence of two points x, 
x′  that are situated on the same leaf of (Xc), will be called coincidence values. 
 
 

Morse Theory on a foliated manifold (M, X). 
 
Let f: M → ℝ be a differentiable function that is “generic” on the foliated manifold (M, 
X).  The contact locus (Γ) of the leaves with the level manifolds of f is a manifold without 
singularities (except for the critical points of f) of dimension q, which is equal to the 
codimension of X.  There exists a submanifold S1(Γ) such that the type of the restriction 
(stratum) of f to the leaves of X remains constant on the complement Γ − S1(Γ).  As a 
result, one may associate an integer k to each component of Γ − S1(Γ), which falls 
between 0 and n – q and is called the X-type of this stratum. 
 One then endows M with a Riemannian metric, which one normalizes in a 
neighborhood of (Γ) in such a manner that, in each leaf of (X), the metric becomes the 
Euclidean metric of the associated chart.  With these conditions, to any point m of M, one 
attaches the endpoint of the trajectory of the gradient of f, when restricted to the leaf of m.  
Such a point is necessarily a point of (Γ).  One thus defines a stratification of the 
manifold M whose strata are of three species: 
 
1) The endpoint of the trajectory g(m) is a critical point of f of X-type k.  The 

corresponding stratum is an open k-ball. 
 
2) The extremity point g(m) is a regular point of Γ, which is situated in an open strata 

U (c is the connected component of Γ − S1(Γ)).  Therefore, the corresponding 
stratum, which is formed of all of the points whose trajectories end in U, is 
isomorphic to the product U×Ds , where D is an open s-ball, if the type of the 
stratum U is equal to (s). 

 
3) The extremity of g(m) is a point of S1(Γ); one is dealing with an exceptional 

stratum.  At an ordinary point of S1(Γ), the set of trajectories that end at this point 
form a semi-ball whose cohomology with compact supports is null. 

 
 Morse inequalities. – Let P(U, t) be the Poincaré polynomial of the cohomology with 
compact supports of the stratum U.  The classical Morse inequalities are expressed as 
follows: let P(U, t) be the Poincaré polynomial of the manifold M.  The difference 

( , )P U t∑ − P(M, t) is divisible by (1 + t), and the quotient is a polynomial with positive 

integer coefficients. 
 Suppose that, in our case, there only exist ordinary points of the second species on 
S1(Γ).  The associated strata then have one null cohomology (because the trajectories that 
end at each point of S1(Γ) forms a semi-ball).  If one lets ck designate the number of 
critical points (first species) of X-type i then the polynomial ( ) ( ) k

k kQ t c d t= +∑  is such 

that Q(t) – P(t) is divisible by (1 + t) with a positive integer quotient.  
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Simply stratified foliations. 
 
For the manifold (M, X), one assumes that the set K(C), which saturates the contact set 
(C) on the boundary, is stratified.  In this manner, the set Γ is likewise found to be 
stratified.  One supposes that the function f possesses only a finite number of critical 
points on each leaf.  One then constructs a graph (G) as follows: to each stratum of X-
type zero in G, one associates a vertex.  To each stratum of X-type one, one associates an 
edge whose extremities are vertices that were associated with strata of X-type zero that 
contain the origins of two gradient trajectories that end at a point of this stratum.  One 
says that the foliation (M, X) is simple if the graph thus obtained is a tree (or a finite 
union of trees).  One may (non-canonically) associate a stratum of X-type zero G or one 
of the boundary M∂  to each tree of the graph, and there will be incidence relations 
between these strata whose union defines a stratified set.  The equivalence relation 
defined by (X) in M is then defined by a stratified map q: M → S such that any leaf of X is 
the inverse image q-1(s) of a point s of S.  A leaf (F) of (X) obviously corresponds to a 
tree of the graph (G).  By construction, this tree is nothing but the 1-skeleton of the 
cellular subdivision that is defined by the gradient lines of the restriction fF.  As a result, 
any leaf F is compact and simply connected. 
 Suppose further that any stratum of the stratified set K(c) is defined transversally, i.e., 
as a regular intersection or by a transversal auxiliary map into the space of jets.  This will 
also be true if one perturbs the foliation (X) very slightly, or if one varies the value c of f 
very slightly.  The graph (G) stays isomorphic to itself.  One then remarks that it is 
possible to apply theorem 3 of [2], which relates to the invariance of the topological type 
for stratified maps that do not blow up.  Indeed, the stratified map q: M → S does not 
blow up, because the corank of q on any stratum is equal to the dimension (n – q) of the 
leaves of X, except possibly on certain strata of the boundaryM∂  that have corank zero.  
However, these “extremal” strata form a closed stratified subset that is sent 
isomorphically by q into the boundary of S.  This permits us to conclude: 
 
 THEOREM 1. – If the foliated manifold M(c)/X(c) is simply stratified then the 
manifold ( ) / ( )M c X c′ ′ , wherec′ is sufficiently close to c, is likewise simply stratified and 
has the same topological type as M(c)/X(c). 
 
 THEOREM 2. – If M/X is simply stratified then for any foliationX ′  that is 
sufficiently close to X (in the Cq topology) /M X ′ is simply stratified and has the same 
topological type as M/X (q ≥ 1). 
 
 These theorems show that when one crosses any critical value after starting with a 
value c for which the foliation is simply stratified, the foliated manifold remains simply 
stratified and has the same topological type.  One remarks that in the case of a proper 
function f that takes the value 0 at its minimum, we have, for a sufficiently small c, that 
the manifold (M(c), X(c)) is simply stratified, because it has the topological type of a 
convex ball that is linearly projected onto a coordinate plane.  Theorem 2 shows that the 
simply stratified foliations have the property of structural stability. 
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 One is then forced to specify the effect of crossing critical points of various species 
on a simply stratified foliated structure. 
 
 

1.  Critical point of the first species. 
 
If the foliation (M, X) is simply stratified for if f ≤ c – ε then there exists a stratification 
for the boundary Vc−ε of M(c), and a map q: V → S that induces the equivalence relation 
that is defined by X(c – ε).  Consider the manifold with boundary c – ε < f < c + ε (c is a 
critical value c = f(0)).  In this manifold, the contact set (Γ) is stratified, as well as the 
saturation K(Γ) in c – ε < f < c + ε.  In the generic case, the restriction of K(Γ) to Vc−ε is a 
stratified set of Vc-ε that is transversal to the stratification on V that is already given by 
X(c – ε).  One forms the intersection stratification on Vc−ε , which one saturates on M(c – 
e) for X(c – e), on the one hand, and on {c – ε  ≤ f ≤ c + ε}, on the other.  I say that, 
having done this, one further obtains a finite stratification, except in the case where the 
point 0 is of X-type equal to one.  Indeed, if the X-type of 0 is different from one then for 
x in c – ε ≤ f ≤ c + 2 there exists no stratum of G of type one, except, perhaps, the 
extensions of strata of the same type that transversally cut Vc−ε and that do not contain 0.  
Now, it is clear that it is only important to consider a neighborhood of the critical point 0.  
Let k be the type of 0, and let r be the X-type of 0.  Crossing 0 is topologically equivalent 
to adding a product of disks Dk × Dn−k to M(c – ε), and the portion of the boundary that 
takes the form Dk × Dn−k is found to be identified with a normal tubular neighborhood of 
the “attaching sphere” Sk−1 that is defined by the nappe of the gradient that ends at 0.  
However, this identification must be compatible with the foliation (X).  The examination 
of a local chart shows that the quotient by the relation (X) in the chart are: 
 
 For the neighborhood Sk−1 × Dn−k; for the product Dk × Dn−k: 
 
 1. r = 0  Sk−1 × Dq−k  Dk   × Dq−k 
 2. r = 1  Sk−1 × Dq−k  Dk−1 × Dq−k+1 
 3. r = 2  Dk−r × Dq−k+r  Dk−r × Dq−k+r 
 
 One confirms that there is just one case in this table, namely r = 1, for which the 
crossing of a critical point induces an identification in the local quotient (here, this is the 
identification Sk−1 → Dk−1 by projection onto the equatorial plane).  In case 3, the quotient 
is not affected by crossing 0.  In case 1, one adds another disk Dk of new leaves to the 
quotient, with the boundary kD∂  being given.  As a result, in case 1 and 3, the stratified 
map q: M(c – ε) → S extends to a stratified map : ( )q M c sε′ ′− → , where S S′ = in case 

3 and qS S D′ = ∪ in case 1.  In case 2, one may say nothing “a priori.”  Indeed, it is 
possible that the global saturation K(Γ) is not a finite stratified set; in that case, there 
exists an infinitude of critical values of the third species in the interval ]c – ε, c[ that 
accumulate at c. 
 
 THEOREM 3. – Let f be a function on the foliated manifold (M, X).  If c is a critical 
value of the first species that is associated with a critical point O of X-type different from 
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one, then, if (M(c – ε), X(c – ε)) is simply stratified then (M(c + ε), X(c + ε)) is simply 
stratified, and the (stratified) topological type of (M(c + ε), X(c + ε)) is completely 
defined by the restriction of the map q: M(c – ε) → S to the “attaching sphere” at the 
point, 0. 
 

2.  Critical values of the second species. 
 
Let O be a critical point of the second species, of the ordinary type that was described 
above.  One sees, in turn, that there exists a stratum of type one in the neighborhood of O 
only in the case of transition points of X-type (0, 1) or (1, 2).  These are therefore the only 
two cases that may lead to a local identification in the leaf space.  Now, in these two 
cases, the examination of the local chart shows that the identifications that were imposed 
by the strata of type one always bring a “new” stratum of type zero into play.  The 
identification does not work for f = c – ε.   One may likewise see this upon remarking that 
for any m the hypersurface f = m is projected surjectively onto the space of the ui, which 
is the local quotient space (leaf space).  This surjective character is due to the fact that 
one must solve an equation of third degree in (xr), which always admits a real root, no 
matter what values are attributed to the other variables.  From this, one concludes that 
crossing a point of the second species of ordinary type does not modify the simply 
stratified character of the foliation.  The same argument is no longer valid for points of 
more complicated type.  For example, for a point of type ( )S S′ Γ , in the case of a 
differential system one has an equation of the 4th degree in (x).  There is thus good reason 
to proceed with a study of this case in particular. 
 We further clarify the following point: In the ordinary case, where one has solved an 
equation of third degree in (Xr), it is quite possible that the leaf space is not the space q

ℝ  
of variables (ui), but an étalé space overqℝ .  For a given value a, the set, f ≤ a splits into 
at most two connected components on any leaf.  One may thus obtain – for example, for 
negative a – a supplementary leaf (Φ) in the leaf space F that reduces to the origin (ui = 
0) when a tends to the critical value c = 0.  Indeed, for a > c the equation of third degree 
has only one real root and the local leaf space is isomorphic to q

ℝ .  From this, it results 
that the identifications that are true for the leaf space have no importance, because they 
define only a correspondence between the given leaves of M(c – ε) and the leaves of the 
local foliation Φi(F).  Now, since these leaves may be continuously deformed to O when 
ε tends to zero, they have no pre-existing connection with the leaves of M(c – ε).  This 
“argument” is likewise valid if one reverses the sense of the variation of the function f.  
One may verify this explicitly for the equation f = u + (x)3 – ux. 
 
 

3.  Critical values of the third species. 
 
An explicit description of the singularities of the third species seems out of reach.  To 
simplify, we confine ourselves to the case of a differential system (M, X).  In M(a), one 
has a contact manifold that is formed from connected components (Ci).  It may happen 
that K(Ci) does not encounter Cj, but that for a value a a′ >  these two manifolds are in 
contact in the boundary ( )M a′  at a point ( )x M a′∈ .  For a valuea a′′ ′> , these two 
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manifolds intersect along a small sphere (s).  If the X-type of Cj is repulsive then this may 
have the effect of creating new stratifications in the space K(Γ); for example, another 
locus of ( )M a′′ , a small disk bounded by a spheres′  in K(s).  Such critical values, which 
have only the effect of subdividing the existing strata in a finite manner (one may call 
them contact values), do not affect the simply stratified character of a foliated manifold. 
 Nevertheless, it may happen that the critical contact values c1, .., ck of the type 
described above accumulate to a “limiting” value a.  The stratification K(Γ) then acquires 
finer and finer strata, in such a way that one no longer has a simple finite stratification, in 
general, f ≤ a.  In particular, if F is a compact leaf, and if an element of the fundamental 
group w ∈ π1(F) operates in the holonomy of this leaf as an element of infinite order then 
the smallest value a of f for which one may realize a loop of class (w) in M(a) is 
necessarily an accumulation point for the critical values of the third species.  Such a value 
sometimes corresponds to a critical point of the first species with X-type equal to one. 
 
 

General remarks and open problems. 
 
Let (M, X) be a foliated manifold, and let f be a “generic” function on (M, X) that admits 
zero for its minimum value.  One has seen that for sufficiently small c, the manifold 
(M(c), X(c)) is simply stratified.  This situation persists whenever one crosses only 
critical points of the first species and X-type different from one, “ordinary values of the 
second species, and contact values of the third species.  This situation ceases, in general, 
whenever one crosses a limit value, which is an accumulation value for critical values of 
the third species.  One will observe that the definition of a simply stratified foliation 
involves a generic function (f).  Indeed, this is probably an intrinsic notion; one may 
conjecture that any foliated manifold with boundary (the foliation being “generic” on the 
boundary) such that all of the leaves are compact and simply connected is simply 
stratified.  On this subject, compare the stability theorem (B, II, 16) of G. Reeb in [3]. 
 It will be likewise good to specify a generic form (or forms) for the appearance of 
recurrence in a foliation of given codimension.  One will therefore have – and this is the 
generally accepted conjecture – that is the appearance of recurrence is subordinate to the 
existence of a compact leaf whose holonomy has infinite order (at least in the “generic” 
case). 
 Finally, it remains to be known whether the notion of stratification loses all interest 
when one passes to a limit value and non-compact leaves and recurrence appears.  The 
known examples of “structurally stable configurations” (homoclinic points, etc.)  suggest 
that there exists an infinite stratification in the same case, whose global topological type 
is invariant under very small perturbations.  There is likewise also good reason to know 
how the topological type of (M(c), X(c)) varies as a function of the parameter c.  Maybe it 
is not unreasonable to think that this type varies only on a dense disconnected null perfect 
set of values of (c). 
 

Applications to certain differential systems. 
 
First of all, observe that the preceding theory extends to the case of manifolds with 
boundary (M, X).  One then supposes that the foliation (X) is generic on the 
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boundary M∂ .  One then takes a function f that is likewise generic on the boundary.  As 
before, one has the notion of a simply stratified manifold. 
 

Structural stability of gradient vector fields. 
 
Let f be a function that possesses only a finite number of non-degenerate critical points mj 
on M.  One supposes that the nappes of the gradients that are attached to these critical 
points intersect transversally, for a given Riemannian metric.  Let X = grad f be this field.  
One removes a ball of sufficiently small radius r around each point mj from M, and one 
applies the preceding theory to the manifold with boundary N = M − i

i

D∪ , which is 

foliated by (X).  The chosen function is the given function f.  The set (G) reduces to 
certain contact values (i) of X in the spheres jD∂  and their saturations, which are 

neighborhoods of the nappes of the gradient for small r.  As a result, like the latter, these 
diverse sets intersect transversally, and their union constitutes a stratified set.  The 
quotient S is represented by certain open sets of spheres D, and the equivalence relation 
(X) is induced by a stratified map q: N → S.  Since any leaf here is simply connected, one 
has a simple stratification whose topological type is, moreover, independent of the radius 
r  if r is sufficiently small.  It results from this that the field (X) is structurally stable in 
the manifold (N).  Since the connecting homeomorphisms that express the structural 
stability leave the spheres Dj (globally) invariant, one may possibly extend these 
homeomorphisms to any manifold M by letting r go to zero. 
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