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Introduction.

One knows that Morse theory gives a powerful meangladsifying differentiable
structures, as was generalized by authors such as A.cé/ala Smale, etc. It is natural
to think that this method will likewise reveal itdiefcy in the study of finer structures,
such as foliated manifolds. In this article | make t@enapt in that direction, which must
hardly be considered conclusive, and, in any case, @iggrincomplete. Indeed, | shall
stop short of the essential problem of the theory, Wwlgcthat of “recurrence.” An
essential difference will separate out theory from¢lassical one: whereas, in the latter
theory, one must consider only a finite number ofaaitpoints (which are classified by
an integer, the index) and the corresponding critical samay be considered to be
isolated, the same is no longer true in the preses#. can the one hand, it will be
difficult to classify the singularities that are prete “generically; on the other hand, the
set of critical values is generally infinite not discrete — and this entails that in a
neighborhood of a critical value, the topological type of the foliated manifdle ¢ + ¢
must present an infinitude of variations (a non-denablerinfinitude, in general). At
the end of the article, | will make several remarkstloa question that are obviously
related to the problem of the structural stability of dgizal systems. | nevertheless
hope that the method described will provide a meansadlatg this difficult question.

1. Relation of compact equivalence.

Let M" be a compaat-dimensional differentiable manifold, possibly with bouryda/A
foliation (X) of codimensiork in M is defined by the given of an atlagj onM, and for

eachU;, the given of a map of rark g;: U; - R, such that on an intersectidpn U,

the g must satisfy the obvious commutation conditions with diffeomorphisms of the
change of chart from the source to the target. poiat x of the boundary of M", if it
exists, one may assume that the manifdl¢s embedded in a regular open neighborhood.
In the productM” x M" of the manifold with itself, one forms the grap®) (that is
associated with the foliatiorX): a pair &, y) belongs to @) if x andy are two points of
M" from the same leaf. The grapB)(is a submanifold of codimensidnthat contains
the diagonal oM x M and is invariant under the symmetry ) — (y, X). Nevertheless,
(G) is not generally a proper submanifold, i.e., i.e., thmlmgy that is induced by the
embedding oM x M does not generally coincide with the topology ofrtenifold. This

is true only if G) is a closed submanifold & x M, hence, compact. In this case, the
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adherence of a leaf agrees with the leaf itself. thia case, in order to simplify the
discussion, one says that the equivalence relatiofurttiermore, that the foliatiorXj is
compact(e).

The conditions that are imposed on the graph of a pemth foliation are very
restrictive: notably, from the homological viewpoinine may deduce some conditions
for a section of the bundle of (-k)-planes onM to be the set of tangent planes to a
foliation. Suppose, for the moment, tihatis compact without boundary. L&A) be a
tubular neighborhood of the diagodain MxM. The quotient of the complemeiit<xM
— T(A) under the symmetryk(y) — (y, X is the reduced symmetric produdt of the
manifold M. M is a manifold with boundary whose bound&pyis a fiber space with
baseD and fiberPR(n —1) the real projective space of dimensior 1. The given of a
section of the bundle ofn(— R-planes ofM is equivalent to the given i@ of a
submanifoldw of codimensiork that is fibered intor{ — k+ 1)-planes that project on the
diagonal Q): Each fiber ofQ contains the fiber oW as a projective subspace of
codimensiork. By considering a regular neighborhood/in Q, one may associat&/
with a mapg: Q - MO(Q), whereMO(K) is the Alexandroff compactification of the
universal bundle inté&-balls. Therefore, if there exists a “compact” faba such thaiv
is the set of tangennh (- K-planes then the quotient under symmetry of the gréh (
namely, §), is a manifold with boundary M, with boundaryV. Therefore, a necessary
condition for there to exist such a compact foliai®that the mag: Q — MO(K) admit
an extensiom; = M, - MO(k). One may further refine this condition by the foliog
remark: LetA be the subspace of the reduced symmetric produdt efith itself that is
composed of pairsx( y), (y, ¥ such that the two components have one and only one
common coordinate. There exists a canonical map ioto M, that is defined by the
formula: ¢ (X, y), (X, 2 - (Y, 2. The graphd) then has the property that its intersection
with A has ¢/(g) itself for its image, a property that may be exprésseterms of
homology classes. #is the intersection class @f ¥ g) with A in (My)2, theni(2) =g.

These homological conditions on the sectidf &re actually of little interest; indeed,
their use is difficult, since the calculation of themology of the reduced symmetric
product M, is no easy task. Furthermore, it gives only necessanglitions for the
existence of a compact foliation, which is an excessgéiction one is interested only
in the existence of a foliation that is associated withclass of the section of the bundle
of (n — K-planes.

2. Morse theory on a foliated manifold.

Let M" be a differentiable manifold that is endowed with &fan (X) of codimensiork.
First of all, one chooses a standard functionMih(a “nice function” in the sense of
Smale). The critical points défare non-degenerate and the valuekaifthese points are
ordered by increasing index (by assuming that they are giaishere). Let@) be the
graph of the foliationX) in the productM. A first approach to the problem of how to
generalize Morse theory consists of studying thetfong that is defined byg(x, y) =
Supf(x), f(y)), on the manifold ).
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This function, (which is, moreover, only piece-wisffetentiable) must present critical
points on (G) in the following cases:

1. f(x) = f(y), and df(x) = 0,
2. f(xX) =f(y), andf is stationary ax on the leaf ok and aty on the leaf of.

When one displaces)(transversally to the foliation in the sense ofrdasingdf, it might
happen thay is displaced in the sense of increading such a way thag admits k, y) as
a relative minimum. One thus sees that other thanctitical points ofg that are
naturally associated with those othere exist critical points af — in the topological
sense — which correspond dertain leaves that are bitangent to a level manifoklc.
Some simple examples (differential systems on thesjashow that iD is the minimum
value off then it is possible tha has an infinitude of critical points fgr< £ In order to
avoid the appearance of an accumulation of an infinitdderibcal values, at least to
begin with, it is preferable to adopt the following comi@m in the manifold with
boundaryf < ¢ one considers only the equivalence relati®g) (hat is defined by the
restriction of the foliation X) to the manifoldf < c. One earns the right to adopt this
manner of operating since the relatiof) (is compactfor sufficiently small values of.
Indeed, ifc is sufficiently close to zero the inequalify< c defines a ball that is
completely situated in a chadt of the foliation and is convex in this chart. Further@o
the projectiorvris a compact equivalence relation on this ball.

If we let M.) designate the sdt< c then one must study the variation of the
topological type K(c), X;) whenc varies. With this objective, it is first of all nesary
to specify the set@) of points where the level hypersurfate c is tangent to the
foliation (X). | say that this setq) is “generically” a submanifold without singularities of
dimensionk — 1. Indeed, in a local chald one must consider the restriction of the
projectionR" - R* to a portion of the level hypersurfate c atx. One must therefore
consider maps of R"* into R* that admit a factorization of the form:
R 00, R"OTL R¥, in whichi is an injection andris a linear projection. Since the
corank at the source of the mapi may not exceed — k the dimension of the kernel of
rand the corank at the target may not exceed one. @etyeany map of into has a
corank that is smaller than one (at the target) thiatally admits a factorization of the
form 77-i. It results from the transversality lemma that thitical locus of such a map is
generically without singularities; indeed, the singuilesitof the critical locus possess
only points of corank 2 (a& singularity, in the terminology of [1]). By contrashere
are good reasons to distinguish subspaces of the “contactifald C in which the
contact is not ordinary. These subspaces correspdhe &ymbolsS, ..., S of [1], and
their classification is not known in full generalitiNevertheless, in low dimensions €
6, for example), this classification may be made peecihiere then exists only
singularities of the formg)', which correspond to submanifolds without singularities of
codimensiorn) in (C). The first case of more complicated singularitiesspnts itself with
the singularitysS; of R® into R*, hence, for a foliation oR® with codimension 4.
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Of course, when the value)(varies, the contact manifoldCY must not remain
isotopic to itself. It must be subjected to modificasi, which we specify when we cross
a critical point of the functiod. However, it may likewise be transformed when it
crosses certain regular valueg ¢ff. This corresponds to a generic transition between
two generic forms of§). These generic transitions happen at isolated powmtgh
correspond to generic singularities of ma®"™' xR - R"xR that admit a
factorization of the form:

R"™xR - R"xR - R*xR,

with conservation of the last coordindateThe description of these transition points may
be made explicit only for low dimensions € 6); later on, we shall do this briefly for the
case oh < 3.

1. Critical values of the first species.

These are critical values bfn the usual sense. One supposes that each critica, eal
corresponds to just one critical po@f which is non-degenerate quadratic. One calls the
number,p, of negative squares in the second differenfiiat O thetype of the critical
point, and the differencep + (n — p | between the number of positive squares and the
number of negative ones, tledex One assumes, moreover, that the leaK dhat
passes througl© cuts the quadratic tangent cone to level hypersurface f(O)
transversally. This condition, which is realizedvidlly whenp = 0 or n, may be
satisfied, moreover, for an arbitrarily small deforimatof the functiorf. One may then
find a local coordinate chart abof x4, ..., X, U, ..., Ug, in Which the equations of the
foliation (X) areu; = u, , and for whictf —f(O) takes the form:

f—fO) = _Xiz _"'_Xf_l{"'_ Lf +X32+1+"'+Xr2+"'+ uiz""*' Lhz'

The integers, which is the smaller of andp, will be called theX-type of O. The
“attaching sphere” that is associated vithwith the equation:

X1+"'+st+ Y+t Lf: & Xo+j = Ui = 0,

takes the form of the join of two spheres: ar-()-sphere that is contained in the leaf of
O, and a{(— 1)-sphere that is situated in a plane transverdeetfotiation. In the chart,
the contact locusl( is theg-planex; = x» = ... =Xq = 0. The restriction of to the
manifold () possesses a critical point @t of the typet = p — s As a result, this
describes the variation of the contact manif@jyl\When one crosses the critical point

2. Critical values of the second species.
We shall always letxg, ..., %, ui, Uz, ..., Ug) represent a local chart in whiech= c;

represents the leaves of)( If O is a regular point of the contact s&) (hen one may
assume thdtis taken in the form:
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f=ut gax) ++ D clux ...

The tangent plane td ), which is defined by the equations:

g,
92 4 CS +...:O,
ox Y.csu

contains the leafy = O only if the quadratic forng, is degenerate. In the generic
situationg, has rankr(— 1) and may be written:

9, = _Z(X)z +Z()ﬂ)2 +( )ﬁ+1)3+"'
and
f—HO) =up + g2 + U1+ D CiU X .

One may then locally parameterid@ @y theq variablesu,, us, ..., ug, andx+1. To
second order, the restrictionfab () begins with the expression:

f = -2 -z[zq@ +ZJ(Z‘”T o

As a resultf|(") admits a critical point & (non-degenerate, in general), whose type
may not exceed that of the forgy (and similarly for the index). Moreoved, is a point
of the transition manifold,(I") that separates the strata of typieom the strata of type
(r+1) in (). Also, the restriction of to this manifoldS'(I") likewise admits 0 as a non-
degenerate critical point.

This gives a description of the simplest type @eally 1) for a critical point of the
second species. There may be others, which aggvifle “generic” and situated on
“exceptional” manifolds %,)"(G); this case occurs notably for vector fields.

3. Critical values of the third species.

In the manifold with boundary(c) (f < c), let K(C) be the subset of the contact
manifold C that is saturated by{). The seK(C) thus obtained is a “stratified set” (See
[2] for the definition). In what follows, we alwayassume tha(C) is compact, and
form the intersection o&(C) with C in the boundary*(c), of M(c). In general, it is a
stratified set that one combines with the strattimn of K(C) by subdivision. One
iterates this construction, and, by reason of dsizem the process terminates. Again,
one letK(C) designate the saturated set thus stratified. cale any valued) for which
the stratification oK(C) changes its topological typecdtical value of the third species.
More precisely, if one forms the d&() =0J_K(C) for all valuesc of an interval &, U,

in which there exists no critical value, and if thap (which is induced by K(I') - ]a,
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b[ is stratified (in the sense [2]), then the stratiiiwa of the target-interval is trivial (has
no summits betweeaandb).

When the seK(C) is no longer compact, the notion of critical valigelf ceases to be
defined. Nevertheless, in certain cases, in whichs#teK(C) admits an infinitely
structurally stable generalization, a generalization doeseem possible.

Examples=— Differential systems in dimensions two and three.

More generally, one lets denote the dimension of the space knthe codimension
of the foliation considerech(> k).

The set C) consists of isolated points on the manifbtdc. The critical manifolds of
the second species correspond to the creation (or Etioh) of a pair of points ofQ).
They are associated with points where the leaves aaviaflectional contact with the
level lines off.

() n=2, k=1.

The intersectio (C) n f™(c) generically consists of isolated points. Theredsitical
value of the third specieghen two of these points coincide.

) n=3, k=2.

The critical set@) is a regular curve that contains isolated points wtterdield is
tangent to €). These points correspond to the singular@y?(of a fold. The critical
values of the second species correspond to the appedoant® disappearance) of a
simple curve of C) that possess two fold points, or furthermore, tojslre of two such
curves by the intermediary of point of collar type.

The seK(C) n f™(c) is a set of curves that possess ordinary regressiatsmm the

trajectories of the fold. They will havecaitical value of the third specieshen that set
of curves cuts the curv€) non-transversally.

3 n=3, k=1.

Fork = 1 (foliations of dimension two ifR?), the set €) decomposes into isolated
points. There is a critical value of the second gsewaihen two of these points coincide

(when they are destroyed or created). Th&$8) n f™(c) is a set of simple curves
(which possibly admit quadratic double points at the point&Cpt There is ecritical
value of the third specieshen these points o€} are triple points ok (C) n f™(c).

It is important to observe that the K&C) n f™(c) must be assumed to be saturated
with respect to the relatioix{). For example, in the casemf 3,k = 2, the locusQ) is
assumed to be a simple curve. In gen&ét) n f(c) is then another cur@ that

cuts C) transversally. Lex be the point of intersection that is so defined. &hgigood
reason to add the trajectoryto the stratification oK(C), hence, to also consider the
pointx' (0 (C') that is the other extremity of this trajectory. Iéghointx’ coincides withx

for a certain value o€ then one will have a critical value of the thirpesies of a
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particularly important type; indeed, this must say thatttajectory that issues froxnis
closed. Such critical values, which are characterizethdéyoincidence of two poinis
X" that are situated on the same leaPGj,(will be calledcoincidence values.

Morse Theory on a foliated manifold(M, X).

Letf: M - R be a differentiable function that is “generic” on flodiated manifold i,
X). The contact locug§ of the leaves with the level manifoldsfag a manifold without
singularities (except for the critical points §fof dimensionq, which is equal to the
codimension oX. There exists a submanifo&i(I") such that the type of the restriction
(stratum) off to the leaves oK remains constant on the complemént S(IN). As a
result, one may associate an inte@eto each component df — S(I"), which falls
between 0 and — gand is called th&X-typeof this stratum.

One then endowsM with a Riemannian metric, which one normalizes in a
neighborhood of[{) in such a manner that, in each leaf XY, (the metric becomes the
Euclidean metric of the associated chart. With tloeselitions, to any point of M, one
attaches the endpoint of the trajectory of the gradiéhtwhen restricted to the leaf of. m
Such a point is necessarily a point &f).( One thus defines a stratification of the
manifold M whose strata are of three species:

1) The endpoint of the trajectorg(m) is a critical point off of X-type k. The
corresponding stratum is an ogdeball.

2) The extremity poing(m) is a regular point df, which is situated in an open strata
U (c is the connected component Iof— S()). Therefore, the corresponding
stratum, which is formed of all of the points whosgettories end inU, is
isomorphic to the produdtxDs, whereD is an opers-ball, if the type of the
stratumU is equal to §).

3) The extremity ofg(m) is a point ofS(IN); one is dealing with an exceptional
stratum. At an ordinary point &(I"), the set of trajectories that end at this point
form a semi-ball whose cohomology with compact suppsntsill.

Morse inequalities- Let P(U, t) be the Poincaré polynomial of the cohomolegth
compact supportsf the stratumlJ. The classical Morse inequalities are expressed as
follows: let P(U, t) be the Poincaré polynomial of the manifddl The difference
Z P(U,t) - P(M, t) is divisible by (1 #), and the quotient is a polynomial wplsitive
integercoefficients.

Suppose that, in our case, there only exist ordinary $ointhe second species on
Si(I'). The associated strata then have one null colugypdbecause the trajectories that
end at each point d& (") forms a semi-ball). If one letx designate the number of
critical points (first species) of-typei then the polynomiad(t) = Z(q< +d )t is such
thatQ(t) — P(t) is divisible by (1 +#) with a positive integer quotient.
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Simply stratified foliations.

For the manifold M, X), one assumes that the $&C), which saturates the contact set
(C) on the boundary, is stratified. In this manner, téelsis likewise found to be
stratified. One supposes that the functiopossesses only a finite number of critical
points on each leaf. One then constructs a gréptag follows: to each stratum Xf
type zero inG, one associates a vertex. To each stratuXatgpe one, one associates an
edge whose extremities are vertices that were assdomath strata oX-type zero that
contain the origins of two gradient trajectories thad at a point of this stratum. One
says that the foliationM, X) is simpleif the graph thus obtained is a tree (or a finite
union of trees). One may (non-canonically) asso@asgatum oX-type zeroG or one

of the boundaryoM to each tree of the graph, and there will be incideetations
between these strata whose union defines a stratified $he equivalence relation
defined by K) in M is then defined by a stratified mgpM - Ssuch that any leaf of is
the inverse imagg™(s) of a points of S. A leaf ) of (X) obviously corresponds to a
tree of the graph@). By construction, this tree is nothing but the 1-skeletd the
cellular subdivision that is defined by the gradient liaEthe restrictiofF. As a result,
any leafF is compact andimply connected.

Suppose further that any stratum of the stratified&gtis defined transversally, i.e.,
as a regular intersection or by a transversal auxifizap into the space of jets. This will
also be true if one perturbs the foliatiof) ¢ery slightly, or if one varies the valgeof f
very slightly. The graphQ@) stays isomorphic to itself. One then remarks thag
possible to apply theorem 3 of [2], which relates to tivariance of the topological type
for stratified maps that do not blow up. Indeed, the &gdtmapg: M —» S does not
blow up, because the corankgbn any stratum is equal to the dimension-(g of the
leaves ofX, except possibly on certain strata of the boundlglrythat have corank zero.
However, these “extremal’ strata form a closed ifgdt subset that is sent
isomorphically byg into the boundary ob. This permits us to conclude:

THEOREM 1. —If the foliated manifold Nt)/X(c) is simply stratified then the
manifoldM (c')/ X(c), wherec'is sufficiently close to c, is likewise simply stratifeatt

has the same topological type agcMX(c).

THEOREM 2. —If M/X is simply stratified then for any foliatiot' that is
sufficiently close to Xin the C topologyM / X'is simply stratified and has the same
topological type as MK (= 1).

These theorems show that when one crosses aipalcvitilue after starting with a
value c for which the foliation is simply stratified, tHeliated manifold remains simply
stratified and has the same topological type. €@mearks that in the case of a proper
functionf that takes the value 0 at its minimum, we have afgufficiently smalk, that
the manifold M(c), X(c)) is simply stratified, because it has the topmlabtype of a
convex ball that is linearly projected onto a cawaite plane. Theorem 2 shows that the
simply stratified foliations have the property aigtural stability.
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One is then forced to specify the effect of crossirigcal points of various species
on a simply stratified foliated structure.

1. Critical point of the first species.

If the foliation M, X) is simply stratified for iff < ¢ — £then there exists a stratification
for the boundary.-- of M(c), and a mam: V - Sthat induces the equivalence relation
that is defined byX(c —¢). Consider the manifold with boundacy-s<f<c + £(cis a
critical valuec = f(0)). In this manifold, the contact sét)(is stratified, as well as the
saturatiorK(lN) inc —e<f <c + & Inthe generic case, the restrictiorkgF) to V.. is a
stratified set olV... that is transversal to the stratification grthat is already given by
X(c —¢). One forms the intersection stratification\é@n,, which one saturates on M¢

e) for X(c — g, on the one hand, and on { € <f<c + &, on the other. | say that,
having done this, one further obtains a finite stratiitcg except in the case where the
point O is ofX-type equal to one. Indeed, if tKetype of O is different from one then for
xinc—¢<f<c+ 2 there exists no stratum & of type one, except, perhaps, the
extensions of strata of the same type that trandiyecsa V.- and that do not contain O.
Now, it is clear that it is only important to consideneighborhood of the critical point O.
Let k be the type of 0, and letbe theX-type of 0. Crossing O is topologically equivalent
to adding a product of disk8* x D"* to M(c — &), and the portion of the boundary that
takes the fornD* x D" is found to be identified with a normal tubular neighlomdh of
the “attaching sphere3 " that is defined by the nappe of the gradient that ends at O.
However, this identification must be compatible with fbkation (X). The examination
of a local chart shows that the quotient by the @tefX) in thechart are:

For the neighborhoo®™ x D"*: for the producD* x D"*:

1. r=0 S x pI DX x D9«
2. r=1 S x pI DX x pak+l
3. r = 2 Dk—r x Dq—k+r Dk—r x Dq—k+r

One confirms that there is just one case in this taidenelyr = 1, for which the
crossing of a critical point induces an identificatiarthe local quotient (here, this is the
identification $™ — D*™ by projection onto the equatorial plane). In casegqtiotient
is not affected by crossing 0. In case 1, one adds andileD* of new leaves to the
quotient, with the boundadp® being given. As a result, in case 1 and 3, the stdtifi
mapq: M(c —& — Sextends to a stratified mag: M(c-¢) —» s, whereS' = Sin case

3 and S'= SO Din case 1. In case 2, one may say nothing “a igridndeed, it is
possible that the global saturatiiil’) is not a finite stratified set; in that case,réhe
exists an infinitude of critical values of the thispecies in the intervat }- &, c[ that
accumulate at.

THEOREM 3. —Let f be a function on the foliated manif¢M, X). If c is a critical
value of the first species that is associated wittritical point Oof X-type different from
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one, then, i{M(c —¢), X(c — ¢)) is simply stratified therfM(c + &), X(c + &) is simply

stratified, and the(stratified) topological type of(M(c + &), X(c + &) is completely
defined by the restriction of the mapM(c — &) » Sto the “attaching sphere” at the
point, 0.

2. Critical values of the second species.

Let O be a critical point of the second species, of the orgihge that was described
above. One sees, in turn, that there exists a strattype one in the neighborhood©f
only in the case of transition pointsXtype (0, 1) or (1, 2). These are therefore the only
two cases that may lead to a local identificationtha leaf space. Now, in these two
cases, the examination of the local chart showstheaidentifications that were imposed
by the strata of type one always bring a “new” stratintype zero into play. The
identification does not work fdr=c —&.  One may likewise see this upon remarking that
for anym the hypersurfacé= mis projected surjectively onto the space ofuhevhich
is the local quotient space (leaf space). This suwgdaharacter is due to the fact that
one must solve an equation of third degreexip (vhich always admits a real root, no
matter what values are attributed to the other variable®m this, one concludes that
crossing a point of the second species of ordinary tyms c¢ot modify the simply
stratified character of the foliation. The same amngnt is no longer valid for points of
more complicated type. For example, for a point yfe8'3I), in the case of a
differential system one has an equation of theldgree inX). There is thus good reason
to proceed with a study of this case in particular.

We further clarify the following point: In the ardiry case, where one has solved an
equation of third degree ifXy), it is quite possible that the leaf space isthetspac®*
of variables (), but an étalé space oMt. For a given valua, the setf < a splits into
at most two connected components on any leaf. f@nethus obtain — for example, for
negativea — a supplementary lea®j in the leaf spac€ that reduces to the origin; (=
0) whena tends to the critical value= 0. Indeed, foma > c the equation of third degree
has only one real root and the local leaf spadsoimorphic taR®. From this, it results
that the identifications that are true for the Ispce have no importance, because they
define only a correspondence between the givereteatM(c — &) and the leaves of the
local foliation®i(F). Now, since these leaves may be continuouslgrdedd toO when
£ tends to zero, they have no pre-existing connedctith the leaves of(c —¢). This
“argument” is likewise valid if one reverses thense of the variation of the functidn
One may verify this explicitly for the equatiér u + (x)* —ux

3. Critical values of the third species.

An explicit description of the singularities of thierd species seems out of reach. To
simplify, we confine ourselves to the case of dedéntial systemM, X). In M(a), one
has a contact manifold that is formed from conreect@mponents(). It may happen
that K(C;) does not encountéZ;, but that for a valuea’ > a these two manifolds are in
contact in the boundai (a') at a poink(OdM(a'). For a valua”">a', these two
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manifolds intersect along a small sphege (f the X-type ofC; is repulsive then this may
have the effect of creating new stratifications in sipaceK(l"); for example, another
locus ofM (a"), a small disk bounded by a sphs'rén K(s). Such critical values, which

have only the effect of subdividing the existinga in a finite manner (one may call
themcontact valuels do not affect the simply stratified characteadbliated manifold.
Nevertheless, it may happen that the critical @ntvaluesc, .., ¢k of the type
described above accumulate to a “limiting” vadueThe stratificatiorK(I") then acquires
finer and finer strata, in such a way that oneam@ér has a simple finite stratification, in
generalf < a. In particular, ifF is a compact leaf, and if an element of the funrelatad
groupw [ 74(F) operates in the holonomy of this leaf as an etgraginfinite order then
the smallest valua of f for which one may realize a loop of clasg) (in M(a) is
necessarily an accumulation point for the criticalies of the third species. Such a value
sometimes corresponds to a critical point of thet Species witiX-type equal to one.

General remarks and open problems.

Let (M, X) be a foliated manifold, and leébe a “generic” function o\, X) that admits
zero for its minimum value. One has seen thatsfdficiently smallc, the manifold
(M(c), X(c)) is simply stratified. This situation persistdhemever one crosses only
critical points of the first species abdtype different from one, “ordinary values of the
second species, and contact values of the thirciegpe This situation ceases, in general,
whenever one crosses a limit value, which is amm@atation value for critical values of
the third species. One will observe that the dadim of a simply stratified foliation
involves a generic functiorf)( Indeed, this is probably an intrinsic notiomeomay
conjecture that any foliated manifold with boundé&he foliation being “generic” on the
boundary) such that all of the leaves are compadt simply connected is simply
stratified. On this subject, compare the stabilitgorem (B, Il, 16) of G. Reeb in [3].

It will be likewise good to specify a generic folfor forms) for the appearance of
recurrence in a foliation of given codimension. eQwill therefore have — and this is the
generally accepted conjecture — that is the appearaf recurrence is subordinate to the
existence of a compact leaf whose holonomy hasiiaforder (at least in the “generic”
case).

Finally, it remains to be known whether the notafrstratification loses all interest
when one passes to a limit value and non-compagketeand recurrence appears. The
known examples of “structurally stable configuragb (homoclinic points, etc.) suggest
that there exists an infinite stratification in tbeme case, whose global topological type
is invariant under very small perturbations. Thisrékewise also good reason to know
how the topological type oM(c), X(c)) varies as a function of the parameteMaybe it
is not unreasonable to think that this type vaoiely on a dense disconnected null perfect
set of values ofq).

Applications to certain differential systems.

First of all, observe that the preceding theoryerds to the case of manifolds with
boundary M, X). One then supposes that the foliatioX) (is generic on the
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boundaryyM . One then takes a functibrthat is likewise generic on the boundary. As
before, one has the notion of a simply stratifiedhifiodd.

Structural stability of gradient vector fields.

Letf be a function that possesses only a finite numbaoofdegenerate critical points
on M. One supposes that the nappes of the gradientarthattached to these critical
points intersect transversally, for a given RiemanniatricneLet X = gradf be this field.
One removes a ball of sufficiently small radiuaround each pointy from M, and one

applies the preceding theory to the manifold with boundsdry M —U D, , which is

foliated by ). The chosen function is the given function The set G) reduces to
certain contact valuesi)(of X in the spheredD; and their saturations, which are

neighborhoods of the nappes of the gradient for smals a result, like the latter, these
diverse sets intersect transversally, and their ucomstitutes a stratified set. The
guotientSis represented by certain open sets of spHeresd the equivalence relation
(X) is induced by a stratified mapN - S Since any leaf here is simply connected, one
has a simple stratification whose topological tygemoreover, independent of the radius
r if r is sufficiently small. It results from this thdtet field X) is structurally stable in
the manifold N). Since the connecting homeomorphisms that expresstthetural
stability leave the sphereB; (globally) invariant, one may possibly extend these
homeomorphisms to any manifdidl by lettingr go to zero.
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