“Uber eine gemeinsame Behandlungsweise verschiedenerddiffalgeometrien,” Math. Zeipl (1924),
254-285.

On a common way of treating various geometries

By
G. Thomsen in Karlsruhe

Translated by D. H. Delphenich

As a logical consequence #flein’s ideas, nowadays, one treats the differential
geometries of geometrically-meaningful groups with invarfannhal apparatuses that are
specially constructed for these investigation®ilczynski (*) and Fubini (%) have
founded projective differential geometry. The correspogdnvestigation for affine
geometry has found a systematic presentatioBlagchke andReidemeister (°). Such
formal apparatuses were also exhibited recently for oimfoemal () andLaguerre (°)
groups (especially for the treatment of the theoryunfages). On the one hand, these
investigations confirm the power &fleinian principles to discover the geometrically-
important conceptual structures. However, they alsettl\a broad range of applications
for the tensorand Ricci calculus and prove its superiority over the other methods of
differential geometry that were applied up to now.

Since the exhibition of a formal apparatus for the genmef surfaces or other
manifolds that one might deal with proceeds in the sama@ner, the search for an
invariantly-linked coordinate system that is concomitanttite manifold, and in the
presentation of differential equations and integrabdayditions naturally stimulates the
desire for a common way of treating the various gedesethat is aa far-reaching as
possible.

In this paper, the question that shall be split offrfrall the individual investigations
as their essential, common component shall not, hemyéwe regarded in its ultimate
generality. That sort of abstract and general exaromatiight probably first become
fruitful and interesting in connection with deeper grougstietic questions. In contrast
to the general problem, this paper will move into a maerocontext. The following
investigation will establish the fact that one can derive the fornfolaa large number
of geometries by simple specializations of a formal apparatus whosntiaks
components must emerge from a systematic treatment of the pmjgetimetry of ray

() Wilczynski, Transactions of the American Math. S8¢1907):9 (1908);10 (1909), and numerous
other papers.

(® One findsFubini’s papers summarized, for the most part, in the RentlidofPalermo43 (1919),
pp. 2.
() W.Blaschke, Vorlesungen iiber Differentialgeometrie Il
(Y G. Thomsen, Abhandlungen aus dem Hamb. math. S&(1924), 31-56.
() W.Blaschke, Abh. aus dem. Hamb. math. Se1{1924), 176-194.
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systemg®). (Cf., the table on pp. 15Fubini (*) has treatethe projective geometry of
ray systemghat are based upon a quadratic and a bi-quadratic diffdréntin. Here,
we shall embark upon a different path that might be moefubisn the geometric
applications. Its essential Ansatze were also suggést&dibini (). It employsline

coordinates. A rayp of the system will be given as a function of twogmaetersu' and

u’. Corresponding to the number of coordinates, threee maysv, v, and 3 will be

introduced, in addition t¢ and both of its derivatives with respect to the patans, so
the second derivatives qf and the first derivatives aof, v, and 3 will be linear

combinations of them (viz., differential equation).(

The projective geometry of ray systems is esseytidéntical tothe higher sphere
geometry (i.e., Lie geometry) of sphere systemg®) under Lie's line-sphere
transformation. The rays v, v, and 3 correspond t@rientedspheres. One will arrive

at the ten-parameter group of conformal transformatiéspace when one adds a linear
(sphere, resp.) complex. The spheres that belong to iagdished complex are the
points. Thus, theonformal theory of surfacas nothing but thé.ie geometry of those
sphere systems whose spheres all belong to one asdrtielinear complex. One will
arrive atLaguerre geometry by adjoining a sphere. When one considersghere
systems whose spheres all contact a fixed spherewiinee dealing with thesurface
theory of the Laguerre groupVhen one considers a second envelope that does not
degenerate into a sphere in connection with such a spyseas one will implicitly
adjoin a sphere to it.

One arranges the formulas of conformal geometry irh suavay thatLaguerre
geometry emerges as a special case.

The presentation of the analytical apparatus for thgegree geometry of ray
systems shows that one does not need to establishpbeddcy of the rays v, v, and

3 upon the system completely in the slightest in orddset@ble to present differential

equations and integrability conditions in a final form tiseis simple as can be achieved.
One can let them be arbitrary and variable, to aaremxtent, without affecting the
formal character of these equations. The ultimatedation manifests itself in further
relationships that emerge between the tensors that app®aen one now treats the

projective geometry of ray systems without establisking, and 3 completely, one can

arrive at further geometries by specializing its formul&»r example, one can employ
the arbitrariness in the choice of those rays to dentaatl one of them should
continually lie in the same fixed plane for all posisaf the system. In that way, a plane
will be adjoined implicitly, and one will arrive atdlaffine geometry of ray system$he
requirement that is imposed upon the position of one ofaye will manifest itself in a
relationship that emerges between the tensors that rappéae differential equations.
Conversely, one can propose that relationship betweetetisors as a requirement; it
will then follow from it that the ray will lie in a Xed plane and that one will arrive at

() (viz., ray congruences)

() Fubini, Rom. acc. Lince27 (1918),28 (1919).

(" Fubini introduced three linear complexes instead of the threethay are connected with them in a
simple way.

() Viz., sphere congruences.
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affine geometry. The latter path is the one thatl gtalays be followed in the sequel.
(See the table on page 15.)

One will obtain non-Euclidian (elliptic, as well as peybolic) geometry from
conformal geometry when one adds a fixed sphere, and ula¢ Eisclidian geometry of
motion by adjoining a point. One can then arrivéhatnon-Euclidian theory of surfaces
from theLie geometry of a sphere system that belongs to a fixeddicomplex by the
above process of implicit adjunction when one adjansphere that is outside of the
complex, and &uclidiantheory when one adjoins a sphere that is in theptsmm

One further arrives at theonformal geometry of sphere systamsuch a way when
one adjoins a linear complex that does not belong tspgheres of the system. One will
arrive at theLaguerre geometry of sphere systefing adjoining a sphere that is not
contacted by the spheres of the system. Now, a sphetrés linked invariantly with a
surface and contacts it plays an important role in ble®rly of surfaces, namely, the
central spheré®). For the better part of all problems in the conforrabty of surfaces,
it is even preferable to base them upon the study cfytftems of central spherdmt are
linked with the surface W. Blaschke has discovered a similar situationliaguerre’s
theory of surfaces, in which theniddle sphereand themiddle sphere systerave
considerable significance. In order to then arrive la theory of surfaces that
corresponds to the conformal ahéguerre geometries of sphere systems, one must
impose the condition that a sphere system consisteafentral spheres (middle spheres,
resp.) of an envelope. If one consider the spheresathabntact a fixed sphere (go
through a fixed point, resp.) in the conformal geometrgpifere systems then one will
arrive at thenon-Euclidian (Euclidian, resp.) theory of surfaces in plane coordin#tes;
spheres of the systems will then be tdr@gential planesn the two geometries.

If one considers one sheet of a ray system whesensl sheet is a second-order
surface projective-geometrically in connection with tiag system then one will be
compelled to define aon-Euclidian theory of surfacdsy the implicit adjunction of an
F,, and in fact, tdhe line coordinates of one family of isotropic tangents to the surface.

Finally, the projective and affine geometry of ray eyst will give one a new
perspective into @rojective and affine theory of surfaces in line coordinatedust as
one is forced into a conformal theory of surfaces ftbm study of systems of central
spheres whose envelope is the surface, one can be fatoed projective and affine
theory of surfaces by the study of a system of invasarface tangents. For example, in
the projective geometry of ray systems, it is easyokehe condition that the rays that
coincide with a families dbarboux tangent$'®) to the one focal sheet [viz., ray systems
whose rays are asymptoté§ ¢o a surface] must be excluded from a general thé&y
A surface is then (except for exceptional cases) detedni up to projective
transformations, by two quadratic forms and one invarigklang with that possibility,
there is another one whose pursuit will perhaps probe tmore convenient.

A corresponding path would lead to an affine theory obsed.

()  And indeed the central sphere is characterized amonfjthlé spheres that contact the surface by
the fact that the surface intersects it along aectimat has two perpendicular tangents at the contact point.

(% Cf., e.g.Blaschke, Vorlesungen iiber Differentialgeometrie § 42.

() Asymptotes = tangents to the asymptotic lines.

('3  The author will devote a subsequent paper to these/stgnss and a projective theory of surfaces
that is based upon their study.
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The general theory offers an opportunity to solve probldgrats belong to different
geometries in a common way. In addition, it gives a Baanmeans for discovering the
important geometric concepts in the geometries tha¢ lhaen researched only slightly
up to now.

A complete geometric utilization of the formal appasatand the relationships
between the various geometries must be reserved &erawork. In many respects, the
following developments are only a program, for the momehtle in other respects, they
are already more extensive depending upon which resulidraegly present.

Now and then, special geometric results will be $pethabout, and without proof, to
some extent.

Herr W. Blaschke has supported my work by his advice and suggestions so many
times that | must take this occasion to emphasizddhaexplicitly.

81
Basic concepts.

In what follows, Greek indiceg/ v, g, p, etc.) shall run from 1 to 6, while Latin ones
@i, k1, ...) shall run from 1 to 2. Doubly-appearing indices wéllsummed over.

In order to simultaneously introduce the basic concemisfacts of projective line
geometry and.ie’'s sphere geometry, anywhere that those of the fofimstrappear, the
ones of the latter that correspond to them will be planegparentheses. The spheres of
Lie's geometry will always be understood to di@ented spheres.The six line (sphere,
resp.) coordinateg”, which cannot all vanish at once, are coupled by a horeogen
guadratic equation. In line geometry, one usually empiloysnal coordinates for
which, that equation will take the form:

(1a) pp*+pp° +pp°=0.

[In Lie's geometry, one employs coordinates that make the iequaésume the normal
form:

(1b) @)+ (%) + 07 + 0 - (0°)° - ()* = 0]

General projective line coordinateshall be introduced here that are any sort of linear
functions of the “normal coordinates.” Equation (1)l tien assume the general form:

(2) awp”p’ =0,
in which thea,, are any numbers whose determinant satisfies:

() lagw | =A% 0.
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Should those general line (sphere, resp.) coordinatesahethe form (2) would need to
have the same index of inerti)(as the forms @) [(1b, resp.], whose index is, however,
3 (2, resp.)

Under projective maps (higher sphere transformatiorspade, resp.) the’ will be
subjected to the homogeneous linear transformatiBrsc’, p° that leave equation (2)

invariant. Since the coordinates are homogeneous, thessigms of an invariant
character must remain unchanged under not only thessfararations, but also the
renormalization®f coordinates:

(4) p’ =2 (" p% 0% 0% 0% p°%) 7

whereA is an arbitrary function of its argument.
It would be convenient for us to shall carry out thahstruction of invariant
expressions in two steps:

I. The construction of invariants under the linear tramsétions op” that leave the
forma,, p* p" absolutely invariantz., semi-invarianis

[I. The construction of expressions that are invariarder renormalizations (4), in
addition.

Obviously, the manifold of transformations in | and Il identical with the
transformations above.
The rays (spheres, resp.) that satisfy a linear equatio

(5 qup'=0

belong to alinear complex. Upon introducing new quantitiag’, we can write that

equation in the form:
(6) awq’p’=0.

The quantitiesy” are thecoordinates of the linear complex-or two linear complexes

Z¥, ¥, the expression:
(7) ¢ m=aui",

which we would like to refer to as thegcalar product is semi-invariant. The
determinant Ku), {2, {(3), @) ) o) | Of six linear complexeg, ..., {( is a semi-

invariant. From the multiplication law for determingntscan be expressed in terms of
the scalar products of the complexes:

(** Index of inertia = number of negative signs in theragate of complete squares that one can put the
form into by means of real transformations.
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(8) A O 4y, 4o S Gay dsy o) F =1 o G0 |-

Since the complex coordinates transformation like &onerdinates, we can regard the
rays as special complexes that satisfy equation pJ(= 0}. In fact, all rays that

satisfy an equation (5)(p) = O (so they belong to the complgkwill be a fixed line
whose coordinates are precisely tfen the case wherej(q) = 0. In what follows, we

will then often use the term “complexes” to colleety mean “proper” complexes and
the term “lines” (spheres, resp.) to mean “degenewaiplexes.
All lines q whose coordinates have the form:

9) p’=aa’+ [0
in whicha andb are two fixed intersecting lines:
[(a a) = (b b) =(a b) =0],

anda andg are two parameters that do not vanish at the samedefieg apencil
We will write equations that have the same type asy@polically in the fornp = a

a + £b by omitting the coordinate indices.
Four rays that belong to a pencil:

P =apatfpb (0=1,2,3,4)
will have an invariant, namely, tlidouble ratio:

(10) D= @B -ap)aB.—a )
(aB,—a.B)aB,~aB)

[We will refer to the corresponding invariant ofufospheres of a pencil as thagle
ratio, in order to avoid later confusion.] We refetlie expression:

(11) ¢:i—2IogD i=4-1)

as thdogarithmic double (angle, resp.) ratiolhe formula:

.1+D
12 cotp=1 ——
(12) =i

is true forg.
Four elements of a pencil havd@monic double (angle, resp.) ratwehen one has:



Thomsen — On a common way of treating various geometries.

(13) D=-1, ¢=

General theory of ray and sphere systems.

We assume that the rayof the system is given as a function of two pararsete
and u?>. Since we will also be sometimes forced to use comg&Eometry, we will
assume that the functions are analytic. For moshefresults, one can make do with
fewer assumptions. For the individual quantities thaedd upon the functiong (u,

u?) and their derivatives, we shall introduce the usual otof tensor analysis in
regard to their behavior under parameter transformatioms/o quantities define a
contravariant vectowhen they transform like the differentials’. If s c_id IS invariant
then thes will define acovariant vector and so forth. If we seélp : du' = p; then the

corresponding coordinates pf andp, will define a covariant vector. If we deal with

only quantities that depend upon the ray system then werd@the transformations (4)
in the form:

(14) p=AWL V) OD.
One has:
(15) bp)=@m=0

identically in theu'. Furthermore:
(16) @b dp) = (pi p) dUf du = gic dul d

is a differential form that is invariant, up to a mplicative factor. If we consider a ruled
surface (channel surface, resp()) that goes through, wheret is a parameter, in the

neighborhood of: [q(t) =p +tdp + dp ...], and if we consider quadratic termst ithen
we will recognize from the fact thap (g) = 0 or ¢ d’p) = — (dp dp) = 0, that the null

family of (16) consists of thiorses (contact family, respof the system. We exclude the
case ofg = 0 @ = | gk |[), for which the two families of torses coincides & known,

these systems consist of one of the two familiesagyfmptotic tangents (curvature
spheres, resp.) of a surface for which one sheet coinewtbsthe focal surface

(envelope, resp.)). We introduce the formy as a fundamental form, to which we will
relate covariant derivatives, as well as the raisirdylawering of indices, from now on,
by employing the tensag” that is reciprocal t@y . For the time being, we shall not
concern ourselves with the fact thgt is not absolutely invariant. Later, we will

(¥ Cf., footnote 1.
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“normalize” gk and then use the normalized form as the fundamemtal fé-romRicci’s
lemma %), one has:

(17) Ok = 0,

and from that, one easily derives the fact tHa}:
(18) b1 pi) = 0.

(New indices that are appended mean covariant derivgtivé®r the six linearly-
independentbasic complexe$™), we introducep, p1, andp,, as well as three rays
[spheres, resp.p, v, andj, that are coupled by the conditions that are giverhén t

following table. The scalar products that the compledeine with each other are
calculated:

Pibibioi3

pl0;0! 0} 0}{-1

. 0079, 00 0
p|0:;0;0;1:0

vp|0{0!1{0i0

3/-1i0;0;0; 0

From the determinant law, we easily derive thetiata
(20) AOp, p,p20, 9,5 F=0.

Sinceg # 0, the basic complexes are linearly-independent, and; are not established
completely by the conditions that appear in théetab
The totality of rayg [(t t) = O] that satisfy the equations:

(21) tp)=Ctp)=0

fill up the two pencils of tangents [contacting sps, resp.] to the sheets in the surface
elements to the envelope that belong to the systm If one then introduces the
parameters, v of the torses thearp + Sp, andyp + Jdp, will be the tangent pencils of
the two torses at the associated focal poffis (

Since (vv)# 0, v and v are tangents to different sheets. Moreover, boéhstill

arbitrary with one degree of freedom. If one udttely establishes and v then, from

(% Cf., e.g.Blaschke, Differentialgeometrie 11§ 56.

(*3 Cf., the paper cited irf) formula (28).

(* Which can naturally also be rays.

(*®) The torses cut the enveloping sheet at its edgegoéssion.



Thomsen — On a common way of treating various geometries.

(19), 3 will also be determined completely. Conversely, i€ groposes that the ragy
should satisfy the conditions:

(22) b3=-1 (i3)=0

thenv and v will be determined by that. If one normalizesthenj will also be
normalized, sincep(3) = — 1. However, the normalization of and v is still not
established byvv) = 1; it is still possible by a renormalization of tioem:

(23) p=Av, v

15,
A

in which A is an arbitrary function af* andu®. We exhibit the following table of scalar
products of the second covariant derivatiggsvith the basic complexes:

p P Y
P |~Gki O | G

3
&

(24)

Dl | o

The last three tensors are defined by this. Intiaagd we introduce the skew-symmetric
tensor t'):

(25) ex=/A Op, pi, P, v, 0,3 |
whose Components are.

(26) en =0, e=t/g, e1= T/, = 0.

We can choose one of the signs — perhaps the opeet®). For the tensog®, one will
have:

ell =0, elz = i’ eZl = —i, 322 =0.
Js Ts

One further has the equations:

1 fori =k
27 g = ’
(&7) & {Ofori;tk,
(28) levé=1gug“=1.

We finally exhibit the following table of scalarqatucts:

) g is only invariant under parameter substitutions withghme sense.
The presence of a double sign is connected with thizagbpermutability ob andv .

S
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poip 0 b 3

(29) I T 0
o 0 -G !+n 0 -W

3 0 +a +tw{+W, O

The vectorsy, w; W will be defined here, while the remaining reladazan be derived

from (19) by differentiation when one makes note(24). We can now exhibit the
differential equations:

(30) P = &P +Go+ Go+ g3,
(31) b, =Wp=G*p, — o,

(32) b, =Wp-Gp, — NV,

(33) 3 =8°p, + Wo+ wh,

whose validity one can verify by scalar multiplioat with the “basic complexes.”
We can write the integrability conditions for thgstem with the help of the tenssit
invariantly as follows'):

(34) & piv =K &5 p°, evi=0, €5 =0 €G=0

Here,K means th&aussian curvature of the forrgy . If one expresses the derivatives
of the basic complexes in the conditions (34) wéspect to the latter with the help of the
differential equations (30) to (33) and the fornsuldknat are obtained from them by
differentiating and ultimately sets the individdfattors in them equal to zero then one
will be led to seven essential relations betweertensorg), ci, C, , ak, W, W, andn;:

(35) 1) K=e“egg,— &

(36) 2) €' (w,+wn+ ¢ a)=0,

(37) 3) & (W, - W N+ a)=0,

(38) 4) €(Ge+ G R+ g W=0,

(39) 5) &G -G n+ g W=0,

(40) 6) €'(gy + G W+ & W=0,

(41) 7)e'(n+d° ¢ g)=0.

: . . _ - . %
(*°) These equations emerge from the usual, non-invariamitien integrability condmonsm =
Fp % p _ 3%

— = ———, —— .= etc. Cf,on thisW.Blashke, Differentialgeometrie |Ipp.
ou'ouad  ou'ouou  gu'au’  Au“ou
151-152, formulas (102), (105
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These equations first take on an invariant characteniiret of all, the arbitrariness of
two degrees of freedom that existejnv, and j is resolved by a two suitable additional

equations, and second of all, the normalizatiop ahd the normalizations of v [cf.,
(23] are established by two further equations. Since wecaiitly out the definition of,
v, andj, as well as the normalization of the individual getnies that are depicted in the

table in various way, in the following paragraph, we wowd tio derive some formulas
without imposing those four additional requirements, ev@ugh they would simplify
the formulas for the projective geometry of ray syste

§3.

Invariant theory of three quadratic forms. Asymptotic linesand curvature lines.

Three quadratic formsyk, ck, G, have five simultaneous invariants whose
representatives we can write 43:(

K A _ C _
%ngk - h E‘ K
(42) 19", =h, %:R
1€g™G g, = d (i=y-1),

upon defininggik to be the fundamental fornt and ¢ are the determinants of the forms
ck andT, , resp. One easily proves the formufds ftom ¢?):

(43) % =1 &g, G,

(44) g°Cr Gs=2N G — K Gk .

One obtains analogous equations by switclkinwgith C,. There is a furthefacobi form
for any two of the forms. The thrdacobi forms are the following ones:

(45) Pk=3(6G+8&¢),

(*® h andk are the two simultaneous invariantsggfandc;, and similarly,h and k are those ofj
andc, .
(*) At best, by reverting to the components in the paramsef the torseg,; = g, = 0.

(** This formula is the same as the one in the magieometric theory of surfaces that expresses the
form of the spherical image in terms of the two fundatal forms.
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(46) P =36 G +&7F),

(47) fic=56,(d € - ¢¢).

One has the following equations:

(48) “m=0, g"m =0

(49) *pk=0, cT*p, =0,
i _

(50) Eek gpq pp Qq = da

(51) g~ fu =d.

The quantity:
I _
j= e ee%,

that enters into the integrability condition (35) isinected with the invariants (42) in the
following way:
(52) (j+hh)? = (W* —=K) (h?-k) +d>

We know thap andv are two non-coincident rays of the pencil of tangémts sheet
of the envelope, namely, the “first” one. If we ext# the case in which coincides

precisely with one of the asymptotes (curvature spheesp,) of the sheet then we can
give the two asymptotes of the first sheet in the formp + yv, whereyis a scalar. The

asymptotes have the property that they will still be tatgy®o the sheet at a neighboring
surface element, so from (21) one must havep() = 0, ¢ dpi)) + y(v dp;) = 0O, Iin

additionto ¢ t) =0, ¢ p) = (t pi) = 0, or one must have:

(53) € gi + yci) du =0

for the direction of the asymptotic linds' : du?. Should the two equations (53) have a
solutiong, thengy du would have to be proportional g du. That condition can be
written in the form:

(54) 1€ (gir Gs— Gs &) dU du = 0.
From (45), we get: _
(55) pi du du =0

as thedifferential equation of the asymptotic lines (curvature lines, yespthe first
sheet. For the second sheet, we get, analogously:
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P, dd du=0.

From (48), (49), one will havpi1 = p22 = gi2 = ¢12 = 0 by introducing the asymptotic
lines of the first sheet as parameter curves, and (&) one will get the valuey1 / 911
for ywhendu' = 0,dW? = 0, buty= g/ ¢, for du* = 0,dv? = 1.

If we determine the quantitiesandr ’ by:

(56) h:i(_1+_1j, k:i

2\r r'

then by an application of the special parameters vall have directly:

' =0i1:Ci, r =gs2:Co.

If we introduce analogous quantities T for the second sheet thdre four asymptotes
of the sheewvill be given by:

(56a) p+ro, p+rio, p+To, p+T0.

If we take the two rays and v and the infinitely-close rays + dv, v +dv that

belong to a well-defined direction of advance theom (19), (29), all four of them will
cutp. We ask: When is there yet another infinitelyselaay of the system + Jp that

likewise cuts all four rays? Obviously, one mingtrt have:

(% dv) =—cy A dU =0,
(56b) _
(& dv)=-7T &l dUi=0.

Should both equations be fulfilled féu' that do not vanish simultaneously, thgn
du would have to be proportional E;(dtf. We can write that condition in the form:

16°(G G~ G G)du du'=0,

just as we did above with the corresponding coowlitior the asymptotic (curvature,
resp.) lines [cf., (54)].

From (47), the rays, v + do, v, v+dov will then be cut byp and yet another
neighboring ray of the systepn+ dp only when we advance the fofadu du‘ in one of
the null directions. The null families of that ferdepend upon how one defineand v .

We would then like to refer to them as grencipal familiesthat belong to the systems of
raysv and v, and to the associated curves on the shegtiraspal curves. If we regard

equations (56) as linear equations iu* anddu? then we will see that the solutions for

13
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du that do not vanish simultaneously must imply thatdinectiond'is that of the second
principal family.

Four directions of advanaiy : dvi, dw, : dv2, dus : dvs, dw, : dvy in the ray system
have an invariant, namely, tdeuble ratio:

(57) D = (dudy — dy dy( dy dy- dy dy
(dudv, - dy dy( dy dy- dy dy

It is equal to the double ratio of the four tarngeto one of the sheets that belong to
the direction of advance. One will get:

e S
\/e"‘e"q % q/ék€q§ S
for the logarithmic double (angle, resp.) rafiof the directions of advance that belong
to the null families (lines, resp.) of the formsdu du‘ = 0 andsy du du‘ = 0. It follows

from this that: _
(58) d i, 5q=0

(58) cotg =i

is thecondition for harmonic positionf the null lines that belong g andsy . Sincee®

&' ps, = - p*, from (48), (49), the null lines of the forrgg andci on the first sheet will
be harmonic to the asymptotic lingg (have harmonic angle ratios to the lines of
curvature, resp.). The null lines@f andC, are harmonic to the asymptotic lin@g on

the second sheet. All of these curves then defitenjugate net.From (50), one easily
recognizes thatl = 0 is the necessary and sufficient conditiontfe@ asymptotic lines
(lines of curvature, resp.) to correspond on theesh That equation will then
characterize thév-ray (W-sphere, resp.) systems.

A relation:

(59) agk+pBpk+ yp, =0 (@, B, yscalar)

can exist only foM-ray systems, as one recognizes upon multiplying'kbyFord %0,
we can then make an Ansatz for the symmetric teagdhat is linear in these three
tensors and whose coefficients are invariants. mFequations (35), (36), (37), we can
then calculate these invariants (and thus,akefrom the remaining tensors that enter
into the integrability conditions. If we multip38) and (39) b¥® then we will get:

(60) ws=esi €' ¢, +es€' an,
(61) W=ei€' G -eid gn.

Ford# O, we can then calculagg , wi, and W from the tensorgi, Cik, ., ni, and their

derivatives. We would now like to exhibit the diféntial equation of th®arboux
curves on the sheets. (The analogous curvesemeometry are calledyclide curveg
According to E. Cech, they can be characterized as follows: If one drahe four
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asymptotes of the surface of one of the two familiesutiin four consecutive points of a
Darboux curve then all four of the asymptotes that go througlstidnting points will cut

the other family. One easily sees from thisthat (v, p +r'v) =0, p +r o, d<p +r’
v>) =0, p +r v, d’<p +r’v>) = 0 is fulfilled identically for any direction of aence.
The differential equation for Darboux curvissthen:

(62) O +r o, d’<p +r’0>) =54 dd du dd = 0.

One can also switahandr “in this. Analogous equations are true for the other sheet
The formulas that were derived here are applicabldl tof he geometries that will

be treated in what follows with no further analysig/e will now turn to the special

cases. Through the relations between the tensorsvéat given in the table, one will

come to the geometries that will be discussed asapmges of the general theory. The

rays (spheres, respv) v, andz will also be established each time by these relations

between the tensors. For example, one 3ets=h =0,1C' = h = 0 for the projective

geometry of ray systems. However, that means ttoat €24), one will haveo( g* pi) =

0, (v, g* pu) = 0, and the still-missing defining equations for thgse, v will be given

by that, while; will also be established.

The more detailed explanation of this will be givemha paragraphs that describe the
individual cases.
To abbreviate, one sets:

(63) { mEw+en,
m=w-¢n.

Table of the various geometries

Projective geometry of ray systems, 8§ 4
d=¢ =0
Lie's geometry of sphere systems, § 4
Conformal surface theory e =G e€=0
(point coordinates), 8 5 W =W n=0
| =
Laguerre surface theory g =0 e€=0
(plane coordinates), 8 5 W=0 n=0
| =
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Conformal geometry of sphere systems,

ik =

Laguerre geometry of sphere systems, §

Conformal surface theory
(central sphere systems), § 7

Laguerre surface theory ak=0, w=w =0, € =
(middle sphere systems), 8§ 7
Non-Euclidian surface theory e =G a =-1g
(point coordinates), § 8 n=0 w=w=0
| (. -
Euclidian (ordinary motion-geometric) e =G a =0
surface theory (point coordinates), 8§ § n=0 W =% =0
| |

Non-Euclidian surface theory
(plane coordinates), § 8

Euclidian surface theory G, =0 a =-1g,
(plane coordinates), § 8 n=0 w=w=0
(=W =
Non-Euclidian surface theory ¢=¢ =0, Mm=0 &)

(line coordinates), § 4

Affine geometry of ray systems, § 4

0°ar as+t WW +wWW=0

Projective surface theory (Appendix)

Surface theory of higher sphere geomefry

(Appendix)

q':_e =0

For that, one must have m =
Other conditions besides that one ¢
come into question. (Cf., Appendix

B(

(*» mandm are explained in (63).

16
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. _ 9° ar as+ WW + W W =0
Affine surface theory (Appendix) This implies yet another condition.
(Cf. Appendix.)

§4.

Ultimate formulas for the projective geometry of ray systems.

We seto=4g*p, . One can also write the requirements h = 0 in the form §o) =
(vo) = 0 then, and, v, and; can then be established by them. One obtains the
following expression fog: 3 = o+ (0 0) p.

We fix the normalization of, v, andv by the requirements:

(64) c=C=-0.

In this, we exclude the cases 0 ord = 0O, for which, one of the sheets would become a
torse (surface with nothing but umbilic points, resp.; ial spheres or planes). One

easily recognizes that one obtains the normalized salue v from the un-normalized
ones by the normalization (64) in the following wal):(

(65) p=pof Sl BZUDJE, v =50y~
g C d

Likewise, the normalized values gf, ci, C, , ai, etc., can be expressed in terms of the
un-normalized ones. In the following, all of thepeantities will be assumed to have
been normalized, without stating that explicitigince h= h = 0,k = k= - 1, one will
now get the asymptotes in the form:

(66) pto,pto.

From (10), one now easily calculates thaand v are the tangents to the sheet that
are conjugate te (the contacting spheres that have harmonic aragiesr with the

curvature spheres, resp.). Likewise, sitte= 0, one easily deduces from (58) that the

null lines of the forni yield the pair of conjugate directions on thetfskeet, which
lies harmonically to the pair of null lines gf .

(*) One easily sees which triples of values one must takehe roots in the three expressions
simultaneously. Different possibilities exist.
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The normalized quantities, v, v, ., 6. ¢, depend upon derivatives pfup to

the second3, W, W, A, p. depend upon derivatives up to the third, @d p, , upon

derivatives up to fourth order.
With the chosen normalization, one will have tbkofving orthogonality conditions
between the tensogg, Ci, pi, €, Which are very important in calculations:

(66) 10"gk=1ca=1p =2 a =1,
(67) gik Ck = gik pik — Cik pik — eik gik — eik Ck = eik pik — 0
Furthermore: _ _ _ _

(68) c"ck=p" px=€"ex=g" gx=0,,

(69) eC =€k, &P =Ck, PrCG =6.

One obtains analogous equations for the other sheet
One derives from this that:

(70) i v = (v,9,) = 0.

The torses of theay system® and v, which areconjugate top, then cut out the
same conjugate net from the corresponding shebeasrses of.

Sinceh=h =0,k = k =- 1, one easily recognizes from (42) that a rayesyshas
only one projective invariant of order twonamely,d (*°). It depends in a simple way
upon the logarithmic double ratig of the four directions of advance of the asymptoti
lines on the sheets: One has: got — d.

One further has the equatidp:= 4d Chi . The principal families then coincide with

the torses fod # 0. For theW-ray systems, any curve on the sheet will be acppal
curve.

We would now like to further calculate tlkfferential equation of the Darboux
curves (cyclide curves, respn)connection with (62). Sinae=+ 1,r'=-1, {p pi) = (v

vik) = 0, we get:
Sk = (p vik) — (0 pii)-

With the use of (69), equations (60), (61) takehensimpler form:
(71) Ws = Clsl +Clsnl’

(72) W= Ty -Cn.

(*® TheWaelsch invariant , Wiener Berl00 (1891), pp. 158.
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With the help of (71), one easily sees the identity:
(73) Cia = Pk P/ G -

With the help of this relation and with the use of #igreviation (63), one will
obtain:

(74) Ski = M Gi + Ms Cic ,
and analogously:
(75) S=Mg+T Mg,

There are six independent projective invariants of ayatem that depend upon third
derivatives. If we introduce the abbreviations:

(76) { J=mm, S fmm F'cmy
J=m m, S= _b mm F _”t_i m, 1y
then we will have?):
J2=S*+T? J?=S7+ T
If we further set:
(77) A=c*nn, B=c"nn

then we can regard, s&§,T, S, T , A, andB as the representatives of the six invariants.

One has =134 5.

J=0 (J =0, resp.) is the condition for one of the sheetbdacaruled surface
(channel surface, resp.yvhilem = 0 (m = 0, resp.) is the condition for one of them to
be asecond-order surface (Dupin cyclide, respl)he study of the latter ray systems is
identical with thenon-Euclidian surface theoryf sheets that do not degenerate into an
F.. If, say, m = O then the rayg will be theisotropic surface tangents to one family
(tangents to the absolute surface, resp.). The nel ofgi will be the minimal lines of
that family and the curves that are conjugate to them.

The coefficients of the formy can be calculated a$ = 0,¢' =0,-g=c=¢ (**.
The double sign in the last quadratic equation can be fixea Bpecial choice of

normalization. Upon following through on formula (61)ge tphroof of the following
theorem will no longer be difficult:

A ray system with disjoint focal sheets that is a&¥/-ray system will be determined
by the two quadratic formsicand T, and the linear form nup to projective

transformations. (A corresponding statement is true for thie geometry of sphere
systems.)

(*® Proof is by introducing special parameters!
(**3 If the normalization condition g=c = € is not needed then one can employ other ones in glace
it for the calculation o .
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A Lie-F; (Lie cyclide, resp.)s coupled with a surface in a projectively-invariant way.
If one draws three consecutive asymptotes to the othelyfalong an asymptotic lines
then theLie-F, will be theF; that is drawn through these three lines. If one thices
the asymptotic parameters of one of the sheets of gwystems then one of the families
of generatorgrof its Lie-F, will be given by:

(o0 =0, @ p+v)=0, @ pv+oy) =0, @ pw +ow) = 0.

One can find a representation for the-F; in general parameters from this.

8 5.
On the conformal and Laguerre theories of surfaces.

We link directly to what was just done in the previoasagraph and now appeal to
the terminology oLie's sphere geometry. We consider the special spheatersy for
which:

(78) ECk=C,, EW =W, n =0.

Due to (42), one then has= 0. We are thus dealing with-sphere systems. It then
follows from (31) and (32) that v; —y = const.,cv —v = const. If we introduce the

notationqg = € v —v then we will havey q) = 0. The spheres then belong to the
constant linear complex g can also degenerate into a sphere, namelygfgr € — 2=

0; all sphereg then contact the fixed sphare In the Introduction, it was shown that one
will arrive at conformal surface theory ferz 0. We now turn to that case! The spheres
p that belong to the complex are the points of théasar If we introduce a normal
coordinate system [cf., 8§ 1, (1b)] such thdtas the coordinates (0, O, O, 0,\@) then

we will haveps = 0. The first five coordinates pfare then itdive penta-spherical point
coordinates. If we introduce the notation:

(79) Km=r+ P+ P+ 0t -

then p p] = 0. One will haverr] # O for the coordinates of a sphar¢hat does not
belong to the complex—i.e., ¢q) #0, ( r) = 0. The first five coordinates ofare now

the penta-spherical sphere coordinatek that way, a sphere with given penta-spherical
coordinatesrs, ra, ..., rs will always correspond to two spheres in higher sphere

geometry, namely, the ones with the sixth coordin&tes+\/m andrg = —\/W :

Such a pair of spheres will be referred to as simplgpghere” in conformal geometry.
(The difference between “oriented” spheres goes awhyplace of a linear complex
[(go) # 0], we will have a sphere with penta-spherical cootd®e, ¢, ..., o5 in the
conformal geometry of a sphere. The two spheres thighsixth coordinatess =
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+./[oo] are the spheres that are contained in the pencih@dricomplexesr o + 3 q

(a, Bare scalars). They then correspondd® &, ..., Gs).
Due to the fact that we identify spheres that diffgronly the sign oigg, the two
sheets of the envelope of our special sphere systeralsdlicoincide?). v and© then,

in fact, coincide in their first five coordinateso ) = O implies:vg = +./[vv] , and since

[ov] =[v o], we willget v, ==,/[vv] . Thus,o andv will be identified with each other
in conformal geometry, and therefore, with the shas well. We write out only five
coordinates in the formulas of conformal surfa@tly and can then set=v.

Two null spheres (i.e., points) are always comaim a pencil of sphered.he angle
between two spheres is the logarithmic angle ratio that they makéheitiull spheres in
the pencil that they define.

We obtain the same equations for establishing, andj, as well as determining
their normalizations that were employed in § 3.

The formgik goes to that of the minimal line3.he angle between two directions that
emanate from a point of the surface is the logarithmic angle ratio tha¢ ttiosctions
male with the two isotropic surface direction8) implies that the anglg of the null
lines of the fornm; du du will satisfy:

irJg e
E \/? (r_lrlk |)

The spherg7 =v + £v is the central sphere of the surface that contutssurface

and defines a harmonic angle ratio with the curvatspheres, in conjunction with the
null sphere of the point of the surface. Among $pheres of that pencil, it is
characterized by the fact that it intersects thefeme along a curve that has two
perpendicular tangents at the point of contact.

(80) cotg =

The directions of those distinguished tangentstlaeedirections of the null lines of
the form ¢ pi) = (1 + &2 ci , namely, the angle bisectors of the lines of ature,

which we would like to call théntersecting tangent curvesf the surface?(3. From
(31), (32), one will have:

(81) @ m) =gk O1 + €72

The contact families of the system of central sgghénat are linked with the surface then
coincide with the minimal linesEssentially four integrability conditions remamgmely:
(35), (36), (38), (40).

At this point, let us mention the following notgnwhich are important in the
advanced conformal theory of surfaces:

(") Naturally, this “coincidence” of the sheets doeshwteg = 0 as a consequence. (Cf., § 3)
("3 Confer the more detailed treatment in the paped @it€) for this and what follows.
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1. Thetransverse spherap that belongs to a line elemant— p +dp (*)). (The
caret suggests that one takes the differential of tnienalizedp.) Geometrically, we
arrive at it in the following way: The two neighboring cuu@ spheres of one of the two
families atp andp + dp intersect in a circle. We draw the sphere through¢iicle that
is perpendicular to the curvature spherg.atThat sphere intersects the corresponding
curvature spheres that are constructed from the othailyfan a circle that is
perpendicular to the surfacemtnamely, thdransverse circlg¢o the line element. Now,
the transverse sphere is the one that goes thigugtperpendicular to the line element,
and contains the transverse circle.

2. Thenormal circleof a surface that is perpendicular to it at a pointhefsurface
and is the circle of intersection of all transvespberes to it.

3. Theprincipal point3, at which the normal circle pierces the centralespha
second time.

4. The conformal-geodetic lines. Just as the usual geodetic lines can be
characterized by the fact that their curvature circleshe surface normal a second time,
in addition to the point of the surface, the conformaletptic lines are characterized by
the fact that their curvature circles cut the normadle twice. These curves are the

extremals of the variational problerﬁj}/ g,du dd = 0, wheregy is the normalized
form, as in § 4.

If one would consider only the conformal theory of aoes then one would have to
sete=1. However, if one first leavesarbitrary then one can arrive at the formulas of
the Laguerre theory of surfaces as special cases of those otahéormal theory,
corresponding to the discussion in the Introduction, vdrensetg= 0. q =-v = const.
will then be a sphere ihie geometry. The spheres that contact that fixed spdreréhe
“oriented” planesof Laguerre geometry. A system of planes is then givem ify*, u),
and we will have the surface theory of the non-degemstaet in plane coordinates. By
introducing suitable normal coordinates, we will get¢berdinate values (0, O, O, 1, O,
1) for q, sops = ps. Since § p) = 0, p will be determined fronpi, p2, p3, ps by
establishing such a distinguished coordinate system. Tbase&uantities are then the
homogeneoud.aguerre plane coordinatethat were employed bflaschke. If we
normalize the sphereghat do not contact by (r q) = const. then we can introducgro,
rs, rs as inhomogeneousaguerre sphere coordinates.

By choosing that coordinate system, we can drop the faumthsixth coordinates
from the formulas and sef = —v = 0. Sincec = 0, only the one normalization

conditionc = — g is permissible. However, that condition will thenfm& to establish all

(*®® The interpretation of the transverse sphere thafivien in the paper that was cited i is not
correct.
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guantities up to an arbitrary constant factor that idieggo v. That indeterminacy
corresponds to similar behavior in the geometry of motimere the most important
guantities are also invariant only up to a constant fabttrdepends upon the choice of
units. The main ideas of conformal surface theory go ¢octhrresponding ones in
Laguerre theory fore= 0. For example, the central sphere will becddtaschke's
middle sphere.

The formulas ol aguerre surface theory thus-obtained are, however, not ida&ntic
with those ofBlaschke with no further assumptions. Later on, we will cobaek to
some other facets of conformahguerre surface theory and obtaBiaschke’'s formulas.

§ 6.

On the conformal and Laguerre geometries of sphere systems.

In 8 4, we deduced the equations that fixedv, and 3 and the equations for

determining the normalization in the conformal theorgwffaces directly in 8 4. Here,
in contrast to that, we will appeal to the generaifolas of § 3.v, v, andz will then be

undetermined, at first. It was shown above jlestisfied the equations:

(82) 63)=0, 6p=-1 Gm=0

but can still be chosen freely, to a certain extenand v will then be determined (up to
normalization) upon fixing.

We now demand: The complgx $ &, wheredis a given constant, shall continually
be equal to a given fixed compl&x [If we set:

(83) 3t =4

then ¢ must naturally be normalized in such a way tlgaf)(= — &] That demand can be
fulfilled when equations (82) are consistent with thahaed. We normalizg by (b {) =

- 1. We will then havep{ {) = 0. However, for that distinguished normalization,

equations (82) will then follow from (83).
It follows from (83) thag; = -3 [, or, from (33):

(84) ak =—3 0 , w =W =0.

Instead of (83), we can also demand (84) as a way of fixingo .
If 6% 0 then; will be a “proper” complex, and since we have adjoiaedmplex, we
will be forced into conformal geometry. Since ) # O, thep are proper (i.e., not
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degenerating to a point) spheres, in the sense of confgenatetry ). We will then
be led to the conformal geometry of sphere systems bytieqsig84). One likewise
arrives atLaguerre’'s geometry of sphere systems for the cas@=o0, when one adjoins
a sphere td.

If we once more sef = (0, O, O, O, Q,/?) for the case# 0 of conformal geometry
then we can drop the sixth coordinage, p, ..., ps will be the penta-spherical sphere
coordinates, and one will then g&t 0, so; = -3 .

Since ¢ {) =(v{)=0,v and v will be points, and in fact, from (19), they wilé the
envelope points of the sphere systebhe normalization of the sphearas fixed by ¢ ()
= -1 (®3). We will best fix the normalization of and v in the general case by the

requirement:
(85) c=cC.

However, in special cases, it is often more comento employ other
normalizations.
Since § v) = (p dv) = 0, the tangent directions to the intersectiarve of the first

sheet with the sphegeof the system are given fog du du‘ = (p d %) = 0. We would

like to refer to the null lines ofix and the corresponding form), as theintersection

tangent curves of the sphere systanthe sheets.
In connection with the argument in 8 3 [formulélfp et seq], we can now make the

following statement about a null line of the fofg: It must go through the spheseas

well as a neighboring sphepet & through the points, v of the envelope, as well as
the ones that neighbor them+ dv, v +dv in the direction of one of the principal
families. However, the sphergsandp + J intersect along a circle. The four points

must then lie on a circle, and we will thus be tiedhe well-knownDarboux definition
of theprincipal curves of a congruence of spheres.

With the help of § 3 (42) and the relatikre k that follows from (85), one easily
sees that there are four conformal differentiahimmants of a congruence of spheres that
depend upon derivatives up to order two. Geometnierpretations of four
representatives of them will be simple with thephafl § 3 (58), § 5 (80).

The minimal lines of the sheets are the null lioethe forms:

(86) g” Cr s and g°T G..

The congruence circlef the system that is perpendicular to both shaetbe envelop
pointsv andv is represented by:

(*® They do not belong to the fixed complex.
(*®3 The normalization of is the fixed uniquely by{¢) = — dfor a givend,
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(87) o(t) = Lt20+——p+¥,

NE;

where the pointis given as a function of[since p p] = J [od] = 0 ¢P)].

The theory ofW-sphere systemsd[= 0, cf., (50)], on whose sheets the lines of
curvature correspond, in conjunction with the considematif the systena (u', U?, t) of
congruence circles, will make it possible to deRieacour’s theory of normal systems
of circlesquite easily. If(u*, U?) is a sphere system that refers to the correspondieg i
of curvature of the sheet and hhs 0, and ifo and v are the associated points of the

envelope that &iply-orthogonal systemof surfaces* = const.u? = constt = const. will
be given byo (U, U, 1).

Sphere systems whose sheets are related to each other in an angietpyesay
are special W-sphere systems.

For 6 = 0, one arrives at considerations that are analoggotisose ofLaguerre’s
geometry of sphere systems.and v are then theangential plane®f the sheet. The

normalization of is fixed by ¢ ¢) = — 1 in this case only up to a constant factor siice
is not normalized.

§7.

Central and middle sphere systems.
More on the conformal and Laguerretheories of surfaces.

In the conformall{aguerre, resp.) geometry of sphere systems, the simplestiamia
variational probleny H\/E du dv= 0 will lead to the differential equatiord = 0 and
T =0 for the extremals.

Now, ¢ = 0 is the necessary and sufficient condition fag ¢the first, resp.) sheet of

a sphere system to consist of the central sphereslgspteres, resp.) of #°0).
In fact, the angle rati® between the two curvature sphergst(r v) and ¢ +r’v),

on the one hand, and the null sphere (tangential ptasp.)v of the envelope point and
the sphere of the system, on the other, is calculated ta ber. The condition for a
harmonic angle ratio is:

D=l =-1,0r r+r=0, orh=1c¢ =0,
r

(** The meaning of the square bracket is again the oneriealerives from (79).
(**) The expressions in parentheses are the ones thgttapgiguer re geometry.
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with which, the proof is complete.

Now, it can be very fruitful to study the conformélaguerre, resp.) geometric
properties of surfaces in terms of the properties of ttemtral (middle, resp.) sphere
systems. One sees from (44) that ébr= 0, the tensorg” ¢, os andgi of the minimal

lines of the first sheet and the contact familypreare proportional. Instead of (85), we
now choose the normalization that mak€s;; cs=gx. From (44), we will then have
= -1, and we will easily see from this that the surfacatpois normalized in entirely

the same way (except for an inessential factor) as deae in 8 5 in the conformal
(Laguerre, resp.) theory of surfaces “external to the surfad#ith that, it will no longer
be difficult to exhibit the connection with the forraalof 8§ 5. Fot aguerre geometry,
we will now be led directly tdlaschke’'s formulas. The intersecting tangent curegs
of the sphere system now go to the intersecting targewes of the surface in the sense
of § 5.

The extremals of the variational problem above welgithe sphere systems that are
the systems of central (middle, resp.) spheres fdn bbeets. Naturally, the sheets of
such systems are entirely special surfaces. Thewlsdlbe the extremals of the simplest
invariant variational problem for surfaces. For conforrgabmetry, they will be
conformal minimal surfacewhile for Laguerre geometry, they will be the-minimal
surfaces. According to Blaschke, the latter interesting class of surfaces can be
represented in a manner that is completely free efjrais.

In the conformal geometry of the surfaces with deatished sheets, the sphere
systems withc' = 0,d = 0 will yield theisothermals while for L aguerre geometry, they

will yield the surfaces for which the spherical images of the lines of curvatuneedaf
system of isotherms on the sph@he

88.
Non-Euclidian and Euclidian theories of surfacesin point and plane coordinates.

We continue the investigations of the previous paragragcttyi and set, not only
(84), but:
(88) Cik = 6"(, nI = O

Analogous to § 4, we then obtaisib — v =q = const. We then once more consider the

sphere system that belongs to a linear complex, buttithes from the standpoint of
conformal geometry, instead bfe geometry.

We can give our equations yet another interpretatiéom 8§ 4, we will arrive at the
conformal theory of surfaces by the conditieps= €, , Wi = W, 0y = 0. In the same way

as in 8 5, the constancy pf $ & will be required byax = -3k, wi = W =0, and
with that, one firstly adjoins a linear complex, andoselly completes the definitions of
v, v, and3. However, from § 4, we can make that linear comglestespond to a

(% See the paper d¥. Blaschke that was cited in°).
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sphere in conformal geometry that will degenerate toiwt for o= 0, so foro=0,{ =3}

will be a sphere i.ie geometry. We will rise to conformal geometry by thgiackion
of the complexy =v = v, so q) = 0, and{ will thus belong to that complex, and will

then be a point. However, by adjoining a sphere, otfleawive at conformal non-
Euclidian geometry, while the adjunction of a point wgive conformal Euclidian
geometry. We will thus be led to the non-Euclidian thiexf surfaces by our conditions
(84), (88) in the case @f# 0, and to the Euclidian theory in the cas@of0.

We next once more sgt=v —v = (0, 0, O, O, 0.\/3). The first five coordinates are
then penta-spherical. We then introduce penta-spheocatinates in the casé# 0
such thaz = (0, 0, 0, 0,/J) (). Since:

[bp]=0,  pdd=-1, pFﬁ,

we will then have:

(S

pe+ps+ps+ps =

for the surface poinp. If one setso = 1 thenpi, po, b3, pa Will be the Weierstrass
coordinatesf the points of the surfacd). £=1v +1 is thetangential plane.

For o= 0, one can given the values (0, 0, 0, 1, 1) to the peh&risal coordinates of
the point{ = 3. Corresponding to the arbitrariness in the unit of sueament, the

normalization ofp is established byp({) = —1 only up to the constant factor that is
applied tod. p1, po, p3 are theCartesian coordinatesf the point of the surfaceé =

J2

7(n +v) is thetangential plane &, &, & are thedirection cosines of the surface

normal. C = /2 [k is the form of thesymptotic line§(& d’p) = Ci dd du‘!], \/2h

and X are themeanandGaussian curvaturesesp. By dropping the last three equations,
one will get from (30), (31) that:

pk=+Cik { (Gauss equations
& =-C’p, (Weingarten equations

What will remain are two integrability conditiongmely, (35) and (38):

K =2 (Gauss’s Theorema egregiym
elcu=0 (Codazzi equations

(Y Since ¢ Q) =-3 ({q) =0, one will have{ J =- 4.
(% At least, for the elliptical case.
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We can then arrive at the non-Euclidian and Euclidiesories of surfaces from yet
another direction.

If we consider sphere systems whose spheres avdladlgonal to a fixed sphere then
we will be forced into the study of a non-Euclidianfasce theory of one of the sheets.
By considering sphere systems whose spheres all gagthra fixed point, we will
similarly arrive at Euclidian surface theory. Sinde tspheres of the systems are
orthogonal to the fixed sphere (go through the fixed poegp.) they will be the planes
of non-Euclidian (Euclidian, resp.) geometry, and inddesl twill be the tangential
planes to the sheet in question.

These formulas are then writtenplane coordinates.The intersection tangent curves
of the system go to the asymptotic lines of the sh&be formgy is theform of the line
element on the unit sphere in the spherical image.

In the context of the theory of congruences of @rgpheres, one can now derive
theorems that represent relations between conforn@i-Euclidian, and Euclidian
geometry, such as perhaps the following one:

The conformally-minimal surfaces that are, at the same time, iso#thaurfaces are
the minimal surfaces of non-Euclidian and Euclidian geometry and the onesré¢hat a
conformally-related to them.

If the congruence of circles of a congruence of central spheres dirgagh a fixed
point then the distinguished sheet will be a surface of fixed (Eudlidiaan curvature or
one that is conformally-related to it.

§0.
Affine geometry of ray systems.

We now employ the terminology of the projective getry of ray systems. We
demand that:

(89) g° ar s+ WW +W W =0.

One calculates from (33) that the expression on théslefjual to g ;x). However, §i 3x)
= 0 is the necessary and sufficient condition foraf of the system(u*, 1) to lie in a
fixed plane. If we choose parameters such that) = (2 32) = O then the rays+ 31 du*
and j + 32 du” must intersect and givei(32) = 0. For that reason, the condition is
necessary; however, it is also sufficient, sincefiatiher scalar products i), (G 3iki).
etc., will vanish. If we adjoin the plane that isfided by the ray; then we can now
given the following twist to the requirement (89)shall continually lie in a given fixed
plane.

fa,b,c[(aa)=0b)=(@Cc)=(@b)=(bc)=(ac)=0, resp.] are three rays that lie
in general position in a fixed plane then the raysf the system can be given a
distinguished normalization relative to that plane tkatvell-defined up to a constant
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factor by the demand thef | p, pr, pr, a, b, ¢ | = 1. Namely, if one replaces the rays$,

¢ with other ones that lie in the plane then they el linear combinations of the latter,
while the normalization will change by only a constaatdr. If we think oh as having
been normalized in that way relative to the given pllve® we can normalizg by the
demand thatj(p) = -1. ( pi) = 0 are then two conditions that will determine the
position of 3 in the fixed plane. Since the normalizeddepends upon first-order
derivativesg will be of second order, due tg ;) = O.

We can now introduce a normal coordinate system§ct. (1a)] such that; takes on
the coordinates: (0, O, &, 7, Z), so from (&), we will have § 3) = 0, and al will lie
in the plane that is defined by the three lines (1, 0, 0, 0), (O, 1, O, O, O, 0), (O, O, 1, O,
0, 0). If we restrict ourselves to distinguished coatinsystems such that the only
possible transformations of the line coordinatare the ones that transform the first
coordinatey, p2, p3 amongst themselves then any line whose first threedotes are
equal to zero must also possess that property under tisotmaation. The first three
line coordinates then define a vectddow, the ratio®; : p2 : p3 give thedirection of the
ray, so all rays with the same ratios of the firseé coordinates will be intersected by
that pencil of planes in the fixed (i.e., “infinitelystant”) plane ).

If we take the ray of the system with its distinguished normalizatibart the first
three coordinates of the vector must acquire an invamaaning. That vector must have
the direction ob and depend upon first-order derivatives. Now, the vebairdonnects
the two focal points has those properties. Sincestheg no affine invariants of a ray
system that depend upon only first-order derivatives, {2, p3) = p will then be the
vector that connects the focal points, up to an in¢éisgenstant factor. One can gain
the insight from this that our coordinates essentiallypade with the ones thatV.
Krause (3% employed for the treatment of the affine geomefrsag systems. 3(p) = -

1, ¢ pi) = 0 implies that the last three componentg define a contravariant vectar
One has:

(90) 7=- plx p2 ,
PR R |

wherep; x py is the vectorial product, ang) p1, p2 | the determinant of the vectors. If
we displace all of the vectopsfrom a fixed point then we will obtain a surfao@’, u%):

(** The bilinear form that belongs toallis:

CN=0m+ons+ Gt G+t &G,

and only{, &, {zenter into the condition for the intersection of & lfwith an infinitely distant liney [/
=1, =n3=0], namely: {n) = 0.

(% W. Krause. Dissertation, Hamburg 1922 (Abstract). The completekwis found at the
Hamburgischen Staats- und Universitatsbibliothek andriespischen Staatsbibliothek (typescript).
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namely, the affine curvature image of the ray system. Now, asene(90), ; is the line

of intersection of the tangential plane of the curvature image withixbé plane. One
also sees from this thatand v are the tangents to the focal sheet that are paaltbat
plane.

Similar to what we did in the conformal geometry of esgh congruences, one
concludes here that there are four affine differentimhiiants of a second-order ray
system. As was true there, thencipal curves § du du‘ = 0 of the system will also play
an important role here. The calculation of #ftne normalgo the sheet will involve no
complications.

Appendix.

On the projective and affine theories of surfaces.
(Higher sphere-geometric theory of surfaces.)

Looking back upon the remarks that were made in thedattion, we would now
like to present the conditioior a rayp to coincide with a Darboux tangent to one sheet

in the context of the projective geometry of ray systémat was developed in § 4. If one
introduces torses as families of parameters then dhéave g1 = g2> = 0, and since
contacts the curves on the sheet that correspond tofdhe torses, from (74), one must
have, saysi11 = 0. A tangent to the cundy = 0O is then ®arboux tangent. From (74),
and sincec;; 2 0, ¢t =0, ¢ # 0 (), su1= 0 then implies the condition thek = 0.
However, that can be written invariantly ds: m' m = 0 ([cf., (76)].

The null lines of the forngi on the first sheet are now the dbarboux tangent and
its conjugate. If we exclude the case in which the sudétiee first sheet is af, (m =
0) (° then we can show th&tz 0. [Cf., (76)] Now, due to the two equatiahs 0,S=
p*“ m m,, from (76), one can calculate the fonmin terms of the forms, Ci, C., andS
from (76), and also the form from (71), (63). Since one can calculate the coeffits
of gk from the coefficients otk and C, as in § 4, we can now make the following
statement in connection with the theorem that wa®dta the conclusion to § 4: In
general {'), a surface will be determined by being given the foopst,, and the
invariantS, up to projective transformations.

Imposing the same condition in the affine geometryagfsystems would lead to an
affine theory of surfaces.

However, it is possible that other conditions might lm¥arconvenient. One can let
the null lines of the forngy coincide with any invariant conjugate net of curves a@n th
surface of the sheet. The tangents to that curvehaatdefine the ray systemsando

(% Cf., (66), (67).

(% Cf., § 4.

(") Namely, if the surface has disjoint focal sheetst i not developable and is notra, and if the
three ray systems that are defined by the systenDmadioux tangents are not all three of thamiray
systems.
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(*®). An apparent difficulty in such investigations must bepkasized, namely, that in
projective geometry, a purely line-geometric treatmdrthe theory of surfaces on the
basis of the duality principle might be the most appab@rone, and that theorems on the
surface theory of the sheet are already relativehpla to obtain in the general theory of
ray systems0).

Hamburg, 7 April 1924.

(Received on 9 April 1924).

(¥ In projective geometry, one can imagine the null liogshe third differential form thaEubini
introduced, and the affine lines of curvature in affinengetry.

(* However, one will get the simplest line-geometric wéyreating the projective and affine theories
of surfaces from the study of the ray systems thatisiobnkthe asymptotic tangents to one of the two
families, which can be extracted from the theory thas given here, according to § 2. Cf., footntd.(



