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 As a logical consequence of Klein’s ideas, nowadays, one treats the differential 
geometries of geometrically-meaningful groups with invariant formal apparatuses that are 
specially constructed for these investigations.  Wilczynski (1) and Fubini (2) have 
founded projective differential geometry.  The corresponding investigation for affine 
geometry has found a systematic presentation by Blaschke and Reidemeister (3).  Such 
formal apparatuses were also exhibited recently for the conformal (4) and Laguerre (5) 
groups (especially for the treatment of the theory of surfaces).  On the one hand, these 
investigations confirm the power of Kleinian principles to discover the geometrically-
important conceptual structures.  However, they also yield a broad range of applications 
for the tensor and Ricci calculus, and prove its superiority over the other methods of 
differential geometry that were applied up to now. 
 Since the exhibition of a formal apparatus for the geometry of surfaces or other 
manifolds that one might deal with proceeds in the same manner, the search for an 
invariantly-linked coordinate system that is concomitant to the manifold, and in the 
presentation of differential equations and integrability conditions naturally stimulates the 
desire for a common way of treating the various geometries that is aa far-reaching as 
possible. 
 In this paper, the question that shall be split off from all the individual investigations 
as their essential, common component shall not, however, be regarded in its ultimate 
generality.  That sort of abstract and general examination might probably first become 
fruitful and interesting in connection with deeper group-theoretic questions.  In contrast 
to the general problem, this paper will move into a narrower context.  The following 
investigation will establish the fact that one can derive the formulas for a large number 
of geometries by simple specializations of a formal apparatus whose essential 
components must emerge from a systematic treatment of the projective geometry of ray 

                                                
 (1) Wilczynski,  Transactions of the American Math. Soc. 8 (1907); 9 (1908); 10 (1909), and numerous 
other papers. 
 (2) One finds Fubini’s papers summarized, for the most part, in the Rendiconti di Palermo 43 (1919), 
pp. 2. 
 (3) W. Blaschke, Vorlesungen über Differentialgeometrie II.  
 (4) G. Thomsen, Abhandlungen aus dem Hamb. math. Sem. 3 (1924), 31-56.  
 (5) W. Blaschke, Abh. aus dem. Hamb. math. Sem. 3 (1924), 176-194.  
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systems (6).  (Cf., the table on pp. 15)  Fubini (7) has treated the projective geometry of 
ray systems that are based upon a quadratic and a bi-quadratic differential form.  Here, 
we shall embark upon a different path that might be more useful in the geometric 
applications.  Its essential Ansätze were also suggested by Fubini (7).  It employs line 
coordinates.  A ray p of the system will be given as a function of two parameters u1 and 

u2.  Corresponding to the number of coordinates, three more rays v, v , and  z will be 

introduced, in addition to p and both of its derivatives with respect to the parameters, so 

the second derivatives of p and the first derivatives of v, v , and  z will be linear 

combinations of them (viz., differential equations) (7a). 
 The projective geometry of ray systems is essentially identical to the higher sphere 
geometry (i.e., Lie geometry) of sphere systems (8) under Lie’s line-sphere 
transformation.  The rays p, v, v , and  z correspond to oriented spheres.  One will arrive 

at the ten-parameter group of conformal transformations of space when one adds a linear 
(sphere, resp.) complex.  The spheres that belong to a distinguished complex are the 
points.  Thus, the conformal theory of surfaces is nothing but the Lie geometry of those 
sphere systems whose spheres all belong to one and the same linear complex.  One will 
arrive at Laguerre geometry by adjoining a sphere.  When one considers the sphere 
systems whose spheres all contact a fixed sphere, one will be dealing with the surface 
theory of the Laguerre group. When one considers a second envelope that does not 
degenerate into a sphere in connection with such a sphere system, one will implicitly 
adjoin a sphere to it. 
 One arranges the formulas of conformal geometry in such a way that Laguerre 
geometry emerges as a special case. 
 The presentation of the analytical apparatus for the projective geometry of ray 
systems shows that one does not need to establish the dependency of the rays p, v, v , and  

z upon the system completely in the slightest in order to be able to present differential 

equations and integrability conditions in a final form that is as simple as can be achieved.  
One can let them be arbitrary and variable, to a certain extent, without affecting the 
formal character of these equations.  The ultimate foundation manifests itself in further 
relationships that emerge between the tensors that appear.  When one now treats the 
projective geometry of ray systems without establishing v, v , and  z completely, one can 

arrive at further geometries by specializing its formulas.  For example, one can employ 
the arbitrariness in the choice of those rays to demand that one of them should 
continually lie in the same fixed plane for all positions of the system.  In that way, a plane 
will be adjoined implicitly, and one will arrive at the affine geometry of ray systems.  The 
requirement that is imposed upon the position of one of the rays will manifest itself in a 
relationship that emerges between the tensors that appear in the differential equations.  
Conversely, one can propose that relationship between the tensors as a requirement; it 
will then follow from it that the ray will lie in a fixed plane and that one will arrive at 

                                                
 (6) (viz., ray congruences)  
 (7) Fubini, Rom. acc. Lincei 27 (1918), 28 (1919).  
 (7a) Fubini introduced three linear complexes instead of the three rays that are connected with them in a 
simple way. 
 (8) Viz., sphere congruences.  
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affine geometry.  The latter path is the one that shall always be followed in the sequel.  
(See the table on page 15.) 
 One will obtain non-Euclidian (elliptic, as well as hyperbolic) geometry from 
conformal geometry when one adds a fixed sphere, and the usual Euclidian geometry of 
motion by adjoining a point.  One can then arrive at the non-Euclidian theory of surfaces 
from the Lie geometry of a sphere system that belongs to a fixed linear complex by the 
above process of implicit adjunction when one adjoins a sphere that is outside of the 
complex, and a Euclidian theory when one adjoins a sphere that is in the complex. 
 One further arrives at the conformal geometry of sphere systems in such a way when 
one adjoins a linear complex that does not belong to the spheres of the system.  One will 
arrive at the Laguerre geometry of sphere systems by adjoining a sphere that is not 
contacted by the spheres of the system.  Now, a sphere that is linked invariantly with a 
surface and contacts it plays an important role in the theory of surfaces, namely, the 
central sphere (9).  For the better part of all problems in the conformal theory of surfaces, 
it is even preferable to base them upon the study of the systems of central spheres that are 
linked with the surface.  W. Blaschke has discovered a similar situation in Laguerre’s 
theory of surfaces, in which the middle sphere and the middle sphere system have 
considerable significance.  In order to then arrive at the theory of surfaces that 
corresponds to the conformal and Laguerre geometries of sphere systems, one must 
impose the condition that a sphere system consists of the central spheres (middle spheres, 
resp.) of an envelope.  If one consider the spheres that all contact a fixed sphere (go 
through a fixed point, resp.) in the conformal geometry of sphere systems then one will 
arrive at the non-Euclidian (Euclidian, resp.) theory of surfaces in plane coordinates; the 
spheres of the systems will then be the tangential planes in the two geometries. 
 If one considers one sheet of a ray system whose second sheet is a second-order 
surface projective-geometrically in connection with the ray system then one will be 
compelled to define a non-Euclidian theory of surfaces by the implicit adjunction of an 
F2, and in fact, to the line coordinates of one family of isotropic tangents to the surface. 
 Finally, the projective and affine geometry of ray systems will give one a new 
perspective into a projective and affine theory of surfaces in line coordinates.   Just as 
one is forced into a conformal theory of surfaces from the study of systems of central 
spheres whose envelope is the surface, one can be forced into a projective and affine 
theory of surfaces by the study of a system of invariant surface tangents.  For example, in 
the projective geometry of ray systems, it is easy to pose the condition that the rays that 
coincide with a families of Darboux tangents (10) to the one focal sheet [viz., ray systems 
whose rays are asymptotes (11) to a surface] must be excluded from a general theory (11a).  
A surface is then (except for exceptional cases) determined, up to projective 
transformations, by two quadratic forms and one invariant.  Along with that possibility, 
there is another one whose pursuit will perhaps prove to be more convenient. 
 A corresponding path would lead to an affine theory of surfaces. 

                                                
 (9) And indeed the central sphere is characterized among all of the spheres that contact the surface by 
the fact that the surface intersects it along a curve that has two perpendicular tangents at the contact point. 
 (10) Cf., e.g., Blaschke, Vorlesungen über Differentialgeometrie II, § 42.  
 (11) Asymptotes = tangents to the asymptotic lines.  
 (11a) The author will devote a subsequent paper to these ray systems and a projective theory of surfaces 
that is based upon their study.  
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 The general theory offers an opportunity to solve problems that belong to different 
geometries in a common way.  In addition, it gives a heuristic means for discovering the 
important geometric concepts in the geometries that have been researched only slightly 
up to now. 
 A complete geometric utilization of the formal apparatus and the relationships 
between the various geometries must be reserved for a later work.  In many respects, the 
following developments are only a program, for the moment, while in other respects, they 
are already more extensive depending upon which results are already present. 
 Now and then, special geometric results will be sprinkled about, and without proof, to 
some extent. 
 Herr W. Blaschke has supported my work by his advice and suggestions so many 
times that I must take this occasion to emphasize that fact explicitly. 
 
 

§ 1. 
 

Basic concepts. 
 

 In what follows, Greek indices (µ, ν, σ, ρ, etc.) shall run from 1 to 6, while Latin ones 
(i, k, l, …) shall run from 1 to 2.  Doubly-appearing indices will be summed over. 
 In order to simultaneously introduce the basic concepts and facts of projective line 
geometry and Lie’s sphere geometry, anywhere that those of the former first appear, the 
ones of the latter that correspond to them will be placed in parentheses.  The spheres of 
Lie’s geometry will always be understood to be oriented spheres.  The six line (sphere, 
resp.) coordinates pρ, which cannot all vanish at once, are coupled by a homogeneous, 

quadratic equation.  In line geometry, one usually employs normal coordinates, for 
which, that equation will take the form: 
 
(1a)    p

1
p

4 + p2
p

5 + p3
p

6 = 0. 

 
[In Lie’s geometry, one employs coordinates that make the equation assume the normal 
form: 
(1b)   (p1)2 + (p2)2 + (p3)2 + (p4)2 − (p5)2 − (p6)2 = 0.] 

 
General projective line coordinates shall be introduced here that are any sort of linear 
functions of the “normal coordinates.”  Equation (1) will then assume the general form: 
 
(2)      aµν p

µ pν = 0, 

 
in which the aµν are any numbers whose determinant satisfies: 
 
(3)      | aµν | = ∆ ≠ 0. 
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Should those general line (sphere, resp.) coordinates be real, the form (2) would need to 
have the same index of inertia (12) as the forms (1a) [(1b, resp.], whose index is, however, 
3 (2, resp.) 
 Under projective maps (higher sphere transformations of space, resp.) the pρ will be 

subjected to the homogeneous linear transformations p
ρ = cρ

σ pσ∗ that leave equation (2) 

invariant.  Since the coordinates are homogeneous, the expressions of an invariant 
character must remain unchanged under not only these transformations, but also the 
renormalizations of coordinates: 
 
(4)     p

ρ = λ (p1, p2, p3, p4, p5, p6) ⋅⋅⋅⋅ pρ∗, 

 
where λ is an arbitrary function of its argument. 
 It would be convenient for us to shall carry out that construction of invariant 
expressions in two steps: 
 
 I. The construction of invariants under the linear transformations of pρ that leave the 

form aµν p
µ pν absolutely invariant (viz., semi-invariants). 

 
 II. The construction of expressions that are invariant under renormalizations (4), in 
addition. 
 
 Obviously, the manifold of transformations in I and II is identical with the 
transformations above. 
 The rays (spheres, resp.) that satisfy a linear equation: 
 
(5)      qν p

ν = 0 

 
belong to a linear complex.  Upon introducing new quantities qµ, we can write that 

equation in the form: 
(6)      aµν q

µ pν = 0. 

 
The quantities qµ are the coordinates of the linear complex.  For two linear complexes 

ζ µ, ηµ, the expression: 
(7)      (ζ, η) = aµν ζ µην, 
 
which we would like to refer to as their scalar product, is semi-invariant.  The 
determinant | ζ(1), ζ(2), ζ(3), ζ(4), ζ(5), ζ(6) | of six linear complexes (1)

µζ , …, (6)
µζ  is a semi-

invariant.  From the multiplication law for determinants, it can be expressed in terms of 
the scalar products of the complexes: 
 

                                                
 (12) Index of inertia = number of negative signs in the aggregate of complete squares that one can put the 
form into by means of real transformations.  
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(8)     ∆ ⋅⋅⋅⋅ | ζ(1), ζ(2), ζ(3), ζ(4), ζ(5), ζ(6) |
2 = | (ζ(ρ), ζ(σ)) | . 

 
Since the complex coordinates transformation like line coordinates, we can regard the 
rays as special complexes that satisfy equation (2) {(p p) = 0}.  In fact, all rays p that 

satisfy an equation (5) (q p) = 0 (so they belong to the complex q) will be a fixed line 

whose coordinates are precisely the q
µ in the case where (q q) = 0.  In what follows, we 

will then often use the term “complexes” to collectively mean “proper” complexes and 
the term “lines” (spheres, resp.) to mean “degenerate” complexes. 
 All lines q whose coordinates have the form: 

 
(9)      p

ρ = α aρ + β bρ, 

 
in which a and b are two fixed intersecting lines: 

 
[(a a) = (b b) = (a b) = 0], 

 
and α and β are two parameters that do not vanish at the same time, define a pencil. 
 We will write equations that have the same type as (9) symbolically in the form p = α 

a + β b by omitting the coordinate indices. 

 Four rays that belong to a pencil: 
 

p(ρ) = α(ρ) a + β(ρ) b   (σ = 1, 2, 3, 4) 

 
will have an invariant, namely, the double ratio: 
 

(10)    D = 1 2 2 1 3 4 4 3

1 4 4 1 3 2 2 3

( )( )

( )( )

α β α β α β α β
α β α β α β α β

− −
− −

. 

 
[We will refer to the corresponding invariant of four spheres of a pencil as the angle 
ratio, in order to avoid later confusion.]  We refer to the expression: 
 

(11)     ϕ = 
2

i
log D   (i = 1− ) 

 
as the logarithmic double (angle, resp.) ratio.  The formula: 
 

(12)     cot ϕ = i 
1

1

D

D

+
−

 

is true for ϕ. 
 Four elements of a pencil have a harmonic double (angle, resp.) ratio when one has: 
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(13)    D = − 1, ϕ = 
2

π
. 

 
 

§ 2. 
 

General theory of ray and sphere systems. 
 

 We assume that the ray p of the system is given as a function of two parameters u1 

and u2.  Since we will also be sometimes forced to use complex geometry, we will 
assume that the functions are analytic.  For most of the results, one can make do with 
fewer assumptions.  For the individual quantities that depend upon the functions pρ (u1, 

u2) and their derivatives, we shall introduce the usual notations of tensor analysis in 
regard to their behavior under parameter transformations.  Two quantities define a 
contravariant vector when they transform like the differentials dui.  If si dui is invariant 
then the si will define a covariant vector, and so forth.  If we set ∂p : ∂ui = pi then the 

corresponding coordinates of p1 and p2 will define a covariant vector.  If we deal with 

only quantities that depend upon the ray system then we can write the transformations (4) 
in the form: 
(14) p = λ (u1, u2) ⋅⋅⋅⋅ p*. 

One has: 
(15) (p p) = (p pi) = 0 

 
identically in the ui.  Furthermore: 
 
(16)    (dp dp) = (pi pk) dui duk = gik dui duk 

 
is a differential form that is invariant, up to a multiplicative factor.  If we consider a ruled 
surface (channel surface, resp.) q(t) that goes through p, where t is a parameter, in the 

neighborhood of p: [q(t) = p + t dp + d2
p …], and if we consider quadratic terms in t then 

we will recognize from the fact that (p q) = 0 or (p d2
p) = − (dp dp) = 0, that the null 

family of (16) consists of the torses (contact family, resp.) of the system.  We exclude the 
case of g = 0 (g = | gik  |), for which the two families of torses coincide.  As is known, 
these systems consist of one of the two families of asymptotic tangents (curvature 
spheres, resp.) of a surface for which one sheet coincides with the focal surface 
(envelope, resp.) (13).  We introduce the form gik as a fundamental form, to which we will 
relate covariant derivatives, as well as the raising and lowering of indices, from now on, 
by employing the tensor gik that is reciprocal to gik .  For the time being, we shall not 
concern ourselves with the fact that gik is not absolutely invariant.  Later, we will 

                                                
 (13) Cf., footnote (11).   
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“normalize” gik and then use the normalized form as the fundamental form.  From Ricci’s 
lemma (14), one has: 
(17)     gikr = 0, 
 
and from that, one easily derives the fact that (14a): 
 
(18)     (pl pik) = 0. 

 
(New indices that are appended mean covariant derivatives.)  For the six linearly-
independent basic complexes (15), we introduce p, p1, and p2, as well as three rays 

[spheres, resp.] v, v , and z, that are coupled by the conditions that are given in the 

following table.  The scalar products that the complexes define with each other are 
calculated: 

(19)    

0 0 0 0 1

0 0 0 0

0 0 0 1 0

0 0 1 0 0

1 0 0 0 0

k

i ikg

−

−

p p v v z

p

p

v

v

z

 

 
From the determinant law, we easily derive the relation: 
 
(20)    ∆ ⋅⋅⋅⋅ | p, p1, p2, v, v , z |2 = g. 

 
Since g ≠ 0, the basic complexes are linearly-independent.  v, v , and z are not established 

completely by the conditions that appear in the table. 
 The totality of rays t [(t t) = 0] that satisfy the equations: 

 
(21)    (t p) = (t pi) = 0 

 
fill up the two pencils of tangents [contacting spheres, resp.] to the sheets in the surface 
elements to the envelope that belong to the system ray.  If one then introduces the 
parameters u, v of the torses then α p + β pu and γ p + δ pv will be the tangent pencils of 

the two torses at the associated focal points (16). 
 Since ( )vv ≠ 0, v and v  are tangents to different sheets.  Moreover, both are still 

arbitrary with one degree of freedom.  If one ultimately establishes v and v  then, from 

                                                
 (14) Cf., e.g., Blaschke, Differentialgeometrie II, § 56.  
 (14a) Cf., the paper cited in (4), formula (28).  
 (15) Which can naturally also be rays.  
 (16) The torses cut the enveloping sheet at its edges of regression.  
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(19), z will also be determined completely.  Conversely, if one proposes that the ray z 

should satisfy the conditions: 
(22)    (p z) = − 1, (pi z) = 0 

 
 then v and v  will be determined by that.  If one normalizes p then z will also be 

normalized, since (p z) = − 1.  However, the normalization of v and v  is still not 

established by ( )vv  = 1; it is still possible by a renormalization of the form: 
 

(23)    v = λ v*, v  = 
1

λ
∗v , 

 
in which λ is an arbitrary function of u1 and u2.  We exhibit the following table of scalar 
products of the second covariant derivatives pik with the basic complexes: 

 

(24)    
0

l

ik ik ik ik ikg c c a− −
p p v v z

p
 

 
The last three tensors are defined by this.  In addition, we introduce the skew-symmetric 
tensor (17): 

(25)    eik = ∆  ⋅⋅⋅⋅ | p, pi, pk, v, v , z | 

whose components are: 
 

(26)  e11 = 0,  e12 = g± ,  e21 = g∓ ,  e22 = 0. 

 
We can choose one of the signs – perhaps the upper one (18).  For the tensor eik, one will 
have: 

   e11 = 0,  e12 = 
1

g
,  e21 = − 1

g
,  e22 = 0. 

 
One further has the equations: 
 

(27)    eir e
kr = 

1 for ,

0 for ,

i k

i k

=
 ≠

 

 
(28)    1

2 eik e
ik = 1

2  gik g
ik = 1. 

 
We finally exhibit the following table of scalar products: 
 

                                                
 (17) eik is only invariant under parameter substitutions with the same sense.  
 (18) The presence of a double sign is connected with the arbitrary permutability of v and v . 
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(29)    
0 0

0 0

0 0

i

l il l l

l il l l

l il l l

c n w

c n w

a w w

− − −
− + −
+ + +

p p v v z

v

v

z

 

 
The vectors nl, wl; lw  will be defined here, while the remaining relations can be derived 

from (19) by differentiation when one makes note of (24).  We can now exhibit the 
differential equations: 

,(30)

,(31)

,(32)

,(33)

ik ik ik ik ik
g

l l l g l
g

l l l g l
g

l l g l l

a c c g

w c n

w c n

a w w

= + + +
= − −
= − −
= + +

ɺ

p p v v z

v p p v

v p p v

z p v v

 

 
whose validity one can verify by scalar multiplication with the “basic complexes.” 
 We can write the integrability conditions for the system with the help of the tensor eik 
invariantly as follows (19): 
 
(34)  eik pikl = K esi p

s, eik vik = 0, eik ikv  = 0, eik zik = 0. 

 
Here, K means the Gaussian curvature of the form gik .  If one expresses the derivatives 
of the basic complexes in the conditions (34) with respect to the latter with the help of the 
differential equations (30) to (33) and the formulas that are obtained from them by 
differentiating and ultimately sets the individual factors in them equal to zero then one 
will be led to seven essential relations between the tensors gik, cik, ikc , aik, wi, iw , and ni : 

 

(35) 1) ,

(36) 2) ( ) 0,

(37) 3) ( ) 0,

(38) 4) ( ) 0,

(39) 5) ( ) 0,

(40) 6) ( ) 0,

(41) 7) ( ) 0.

ik pq i
ip kq i

kl g
kl k l l sk

kl g
kl k l l sk

kl
ikl ik l ik l

kl
ikl ik l ik l

kl
ikl ik l ik l

kl rs
kl kr ls

K e e c c a

e w w n c a

e w w n c a

e c c n g w

e c c n g w

e a c w c w

e n g c c

= −
+ + =
− + =
+ + =
− + =
+ + =
+ =

 

 

                                                

 (19) These equations emerge from the usual, non-invariantly-written integrability conditions 
3

i k lu u u

∂

∂ ∂ ∂

p
= 

3

i l ku u u

∂

∂ ∂ ∂

p
= 

3

i k lu u u

∂

∂ ∂ ∂

p
, 

2

i ku u

∂

∂ ∂

p
= 

2

k iu u

∂

∂ ∂

p
, etc.   Cf., on this, W. Blaschke, Differentialgeometrie II, pp. 

151-152, formulas (102), (105*). 
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These equations first take on an invariant character when first of all, the arbitrariness of 
two degrees of freedom that exists in v, v , and ɺz   is resolved by a two suitable additional 

equations, and second of all, the normalization of p and the normalizations of v, v  [cf., 

(23] are established by two further equations.  Since we will carry out the definition of v, 

v , and z, as well as the normalization of the individual geometries that are depicted in the 

table in various way, in the following paragraph, we would like to derive some formulas 
without imposing those four additional requirements, even though they would simplify 
the formulas for the projective geometry of ray systems. 
 
 

§ 3. 
 

Invariant theory of three quadratic forms.  Asymptotic lines and curvature lines. 
 

 Three quadratic forms gik, cik, ikc  have five simultaneous invariants whose 

representatives we can write as (20): 
 

(42)   

1
2

1
2

1
2

, ,

, ,

, ( 1),

ik
ik

ik
ik

lk pq
lp kq

c
g c h k

g

c
g c h k

g

e g c c d i

 = =

 = =

 = = −



 

 
upon defining gik to be the fundamental form.  c and c  are the determinants of the forms 
cik and ikc  , resp.  One easily proves the formulas (21) from (22): 

 

(43)     
c

g
 ≡ 1

2  eik epq cip ckp , 

(44)     grs cir cks = 2h cik – k gik . 
 
One obtains analogous equations by switching cik with ikc .  There is a further Jacobi form 

for any two of the forms.  The three Jacobi forms are the following ones: 
 
(45)     pik = 1

2 ( )r r
ir k kr ie c e c+ , 

 

                                                
 (20) h and k are the two simultaneous invariants of gik and cik , and similarly, h  and k  are those of gik 

and 
ik

c .  

 (21) At best, by reverting to the components in the parameters of the torses g11 = g22 = 0.  
 (22) This formula is the same as the one in the motion-geometric theory of surfaces that expresses the 
form of the spherical image in terms of the two fundamental forms.  



Thomsen – On a common way of treating various geometries. 12 

(46)    ikp  = 1
2 ( )r r

ir k kr ie c e c+ , 

 
(47)    fik = 2 ( )r s s ri

rs i k k ie c c c c− . 

 
One has the following equations: 
 
(48)    gik pik = 0, ik

ikg p  = 0, 

 
(49)    cik pik = 0, ik

ikc p  = 0, 

 

(50)     
2

ik pq
ip kq

i
e g p p  = d, 

 
(51)     gik fik = d. 
The quantity: 

j = 
1

2
ik pq

ip kqe e c c  

 
that enters into the integrability condition (35) is connected with the invariants (42) in the 
following way: 
(52)    2( )j hh+  = (h2 – k) 2( )h k−  + d 2. 

 
 We know that p and v are two non-coincident rays of the pencil of tangents to a sheet 

of the envelope, namely, the “first” one.  If we exclude the case in which v coincides 

precisely with one of the asymptotes (curvature spheres, resp.) of the sheet then we can 
give the two asymptotes of the first sheet in the form t = p + γ v, where γ is a scalar.  The 

asymptotes have the property that they will still be tangents to the sheet at a neighboring 
surface element, so from (21) one must have (t dpi) = 0, (p dpi) + γ (v dpi) = 0, in 

addition to (t t) = 0, (t p) = (t pi) = 0, or one must have: 

 
(53)     (− gik + γ cik) duk = 0 
 
for the direction of the asymptotic lines du1 : du2.  Should the two equations (53) have a 
solution g, then gik duk would have to be proportional to cik duk.  That condition can be 
written in the form: 
(54)    1

2 ers (gir cks – gks cir) dui duk = 0. 

 From (45), we get: 
(55)     pik dui duk = 0 
 
as the differential equation of the asymptotic lines (curvature lines, resp.) of the first 
sheet.  For the second sheet, we get, analogously: 
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ikp  dui duk = 0. 

 
From (48), (49), one will have p11 = p22 = g12 = c12 = 0 by introducing the asymptotic 
lines of the first sheet as parameter curves, and from (53), one will get the value c11 / g11 
for γ when du1 = 0, du2 = 0, but γ = g22 / c22 for du1 = 0, du2 = 1. 
 If we determine the quantities r and r′ by: 
 

(56)   h = 
1 1 1

2 r r
 + ′ 

,  k = 
1

rr ′
 

 
then by an application of the special parameters, one will have directly: 
 
    r = g11 : c11 ,   r′  = g22 : c22 . 
 
If we introduce analogous quantities r , r ′  for the second sheet then the four asymptotes 
of the sheet will be given by: 
 
(56a)  p + r v,  p + r′ v, p + r v , p + r ′v . 

 
 If we take the two rays v and v  and the infinitely-close rays v + dv, d+v v  that 

belong to a well-defined direction of advance then, from (19), (29), all four of them will 
cut p.  We ask: When is there yet another infinitely-close ray of the system p + δp that 

likewise cuts all four rays?  Obviously, one must then have: 
 
 (δp dv) = − cik δui duk = 0, 

(56b) 
 (δp dv ) = − ikc δui duk = 0. 

 
 Should both equations be fulfilled for δui that do not vanish simultaneously, then cik 
duk would have to be proportional to ikc duk.  We can write that condition in the form: 

 
1
2 ( )rs

ir ks ks ire c c c c− dui duk = 0, 

 
just as we did above with the corresponding condition for the asymptotic (curvature, 
resp.) lines [cf., (54)]. 
 From (47), the rays v, v + dv, v , d+v v  will then be cut by p and yet another 

neighboring ray of the system p + dp only when we advance the form fik dui duk in one of 

the null directions.  The null families of that form depend upon how one defines v and v .  

We would then like to refer to them as the principal families that belong to the systems of 
rays v and v , and to the associated curves on the sheet as principal curves.  If we regard 

equations (56b) as linear equations in du1 and du2 then we will see that the solutions for 
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dui that do not vanish simultaneously must imply that the direction δ is that of the second 
principal family. 
 Four directions of advance du1 : dv1 , du2 : dv2 , du3 : dv3 , du4 : dv4 in the ray system 
have an invariant, namely, the double ratio: 
 

(57)    D = 1 2 2 1 3 4 4 3

1 4 4 1 3 2 2 3

( )( )

( )( )

du dv du dv du dv du dv

du dv du dv du dv du dv

− −
− −

. 

 
 It is equal to the double ratio of the four tangents to one of the sheets that belong to 
the direction of advance.  One will get: 
 

(58)    cot ϕ = i 
ik pq

ip kq

ik pq ik pq
ip kq ip kq

e e r s

e e r r e e s s⋅
 

 
for the logarithmic double (angle, resp.) ratio ϕ of the directions of advance that belong 
to the null families (lines, resp.) of the forms r ik dui duk = 0 and sik dui duk = 0.  It follows 
from this that: 
(58)     eik epq r ip skq = 0 
 
is the condition for harmonic position of the null lines that belong to r ik and sik .  Since eis 
ekr psr = − pik, from (48), (49), the null lines of the forms gik and cik on the first sheet will 
be harmonic to the asymptotic lines pik (have harmonic angle ratios to the lines of 
curvature, resp.).  The null lines of gik and ikc  are harmonic to the asymptotic lines ikp  on 

the second sheet.  All of these curves then define a conjugate net.  From (50), one easily 
recognizes that d = 0 is the necessary and sufficient condition for the asymptotic lines 
(lines of curvature, resp.) to correspond on the sheets.  That equation will then 
characterize the W-ray (W-sphere, resp.) systems. 
 A relation: 
(59)    α gik + β pik + ikpγ  = 0  (α, β, γ scalar) 

 
can exist only for W-ray systems, as one recognizes upon multiplying by gik.  For d ≠ 0, 
we can then make an Ansatz for the symmetric tensor aik that is linear in these three 
tensors and whose coefficients are invariants.  From equations (35), (36), (37), we can 
then calculate these invariants (and thus, the aik) from the remaining tensors that enter 
into the integrability conditions.  If we multiply (38) and (39) by eis then we will get: 
 
(60)    ws = esi e

kl i
klc  + esi e

kl i
k lc n , 

(61)    sw = esi e
kl i

klc  − esi e
kl i

k lc n . 

 
For d ≠ 0, we can then calculate aik , wl, and lw  from the tensors gik , cik , ikc , nl, and their 

derivatives.  We would now like to exhibit the differential equation of the Darboux 
curves on the sheets.  (The analogous curves in Lie geometry are called cyclide curves.)  
According to E. Čech, they can be characterized as follows: If one draws the four 
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asymptotes of the surface of one of the two families through four consecutive points of a 
Darboux curve then all four of the asymptotes that go through the starting points will cut 
the other family.  One easily sees from this that (p + r v, p + r′ v) = 0, (p + r v, d<p + r′ 
v>) = 0, (p + r v, d2<p + r′ v>) = 0 is fulfilled identically for any direction of advance.  

The differential equation for Darboux curves is then: 
 
(62)   (p + r v, d3<p + r′ v>) = sikl dui duk dul = 0. 

 
One can also switch r and r′ in this.  Analogous equations are true for the other sheet. 
 The formulas that were derived here are applicable to all of the geometries that will 
be treated in what follows with no further analysis.  We will now turn to the special 
cases.  Through the relations between the tensors that were given in the table, one will 
come to the geometries that will be discussed as special cases of the general theory.  The 
rays (spheres, resp.) v, v , and z will also be established each time by these relations 

between the tensors.  For example, one sets 1
2

i
ic  = h = 0, 1

2
i

ic  = h  = 0 for the projective 

geometry of ray systems.  However, that means that, from (24), one will have (v, gik pik) = 

0, (v , gik pik) = 0, and the still-missing defining equations for the rays v, v  will be given 

by that, while z will also be established. 

 The more detailed explanation of this will be given in the paragraphs that describe the 
individual cases. 
 To abbreviate, one sets: 

(63)    
,

.

s
i i i s

s
i i i s

m w c n

m w c n

 = +
 = −

 

 
Table of the various geometries 

 
 

Projective geometry of ray systems, § 4 

 

Lie’s geometry of sphere systems, § 4 

i
ie









 = i
ic  = 0 

 
Conformal surface theory 
(point coordinates),  § 5 

 

 

ik ik

l l

e c

w w

=
=

      
0

0

i
i

l

e

n

=
=

 

 
 

Laguerre surface theory 
(plane coordinates), § 5 

 

 
0

0
ik

l

e

w

=
=

      
0

0

i
i

l

e

n

=
=
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Conformal geometry of sphere systems, § 6 aik = − 1
2 gik,    wl = lw  = 0 

 
 

Laguerre geometry of sphere systems, § 6 
 

 
aik = 0,    wl = lw  = 0 

 
 

Conformal surface theory 
(central sphere systems), § 7 

 

 
aik = − 1

2 gik,    wl = lw  = 0,   i
ie  = 0 

 
Laguerre surface theory 

(middle sphere systems), § 7 
 

 
aik = 0,    wl = lw  = 0,   i

ie  = 0 

 
Non-Euclidian surface theory 

(point coordinates), § 8 
 

 

0
ik ik

l

e c

n

=
=

    
1
2

0
ik ik

l l

a g

w w

= −
= =

 

 
Euclidian (ordinary motion-geometric) 
surface theory  (point coordinates), § 8 

 

0
ik ik

l

e c

n

=
=

    
0

0
ik

l l

a

w w

=
= =

 

 
 

Non-Euclidian surface theory 
(plane coordinates), § 8 

 

 

0
ik ik

l

e c

n

=
=

    
1
2

0
ik ik

l l

a g

w w

= −
= =

 

 
Euclidian surface theory 
(plane coordinates), § 8 

 

 
0

0
ik

l

c

n

=
=

    
1
2

0
ik ik

l l

a g

w w

= −
= =

 

 
 

Non-Euclidian surface theory 
(line coordinates), § 4 

 

 
i
ic = i

ic  = 0,    im  = 0  (23) 

 
Affine geometry of ray systems, § 4 

 

 
grs air aks + i k k iw w w w+  = 0 

 
Projective surface theory (Appendix) 

 
 
Surface theory of higher sphere geometry 

(Appendix) 









  
23

0

For that, one must have 0 ( ).

Other conditions besides that one can 

come into question.  (Cf., Appendix.)

i i
i i

i
i

e e

m m

= =
=

 

                                                
 (23) mi and 

i
m  are explained in (63). 
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Affine surface theory (Appendix) 

 

 
grs air aks + i k k iw w w w+  = 0 

This implies yet another condition. 
(Cf. Appendix.) 

 
 
 

§ 4. 
 

Ultimate formulas for the projective geometry of ray systems. 
 

 We set σ = 1
2

ik
ikg ɺp .  One can also write the requirements i

ic = h = 0 in the form (vσ) = 

( vσ) = 0 then, and v, ɺv , and z can then be established by them.  One obtains the 

following expression for z: z = σ + 1
2 (σ σ) p. 

 We fix the normalization of p, v, and v  by the requirements: 

 
(64)     c = c = − g. 
 
In this, we exclude the cases c = 0 or d = 0, for which, one of the sheets would become a 
torse (surface with nothing but umbilic points, resp.; in real spheres or planes).  One 

easily recognizes that one obtains the normalized values p̂ , v̂ , v̂  from the un-normalized 
ones by the normalization (64) in the following way (24): 
 

(65)  p̂  = p ⋅⋅⋅⋅ 4
2

c d

g

⋅
, v̂  = v ⋅⋅⋅⋅ 4

d

c
,  v̂  = v ⋅⋅⋅⋅ 4

c

d
. 

 
Likewise, the normalized values of gik, cik, ikc , aik, etc., can be expressed in terms of the 

un-normalized ones.  In the following, all of these quantities will be assumed to have 
been normalized, without stating that explicitly.  Since h = h  = 0, k = k = − 1, one will 
now get the asymptotes in the form: 
(66)     p ± v, p ± v . 

 
 From (10), one now easily calculates that v and v  are the tangents to the sheet that 

are conjugate to p (the contacting spheres that have harmonic angle ratios with the 

curvature spheres, resp.).  Likewise, since i
ic  = 0, one easily deduces from (58) that the 

null lines of the form cik yield the pair of conjugate directions on the first sheet, which 
lies harmonically to the pair of null lines of gik . 
 

                                                
 (24) One easily sees which triples of values one must take for the roots in the three expressions 
simultaneously.  Different possibilities exist.  
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 The normalized quantities p̂ , v̂ , v̂ , ˆ ikg , îkc , îkc  depend upon derivatives of p up to 

the second, ̂z , ˆ iw , ˆ
iw , ˆin , ˆ

ip  depend upon derivatives up to the third, and ˆika , ˆ
ikp , upon 

derivatives up to fourth order. 
 With the chosen normalization, one will have the following orthogonality conditions 
between the tensors gik, cik, pik, eik, which are very important in calculations: 
 
(66)   1

2 gik gik = 1
2 cik cik = 1

2 pik pik = 1
2 eik eik = 1, 

 
(67)  gik cik = gik pik = cik pik = eik gik = eik cik = eik pik = 0. 
Furthermore: 
(68)   cir crk = pir prk = eir erk = gir grk = i

kg , 

 
(69)   eir

r
kc  = eik , eri

r
kp  = cik , pir

r
kc  = eik . 

 
One obtains analogous equations for the other sheet. 
 One derives from this that: 
 
(70)    (vi vk) = ( )i kv v  = gik . 

 
 The torses of the ray systems v and v , which are conjugate to p, then cut out the 

same conjugate net from the corresponding sheet as the torses of p. 

 Since h = h  = 0, k = k  = − 1, one easily recognizes from (42) that a ray system has 
only one projective invariant of order two − namely, d (25).  It depends in a simple way 
upon the logarithmic double ratio ϕ of the four directions of advance of the asymptotic 
lines on the sheets: One has: cot ϕ = − d. 
 One further has the equation: fik = 1

2 d ⋅⋅⋅⋅ gik . The principal families then coincide with 

the torses for d ≠ 0.  For the W-ray systems, any curve on the sheet will be a principal 
curve. 
 We would now like to further calculate the differential equation of the Darboux 
curves (cyclide curves, resp.) in connection with (62).  Since r = + 1, r′ = − 1, (p pikl) = (v 

vikl) = 0, we get: 

sikl = (p vikl) – (v pikl). 

 
 With the use of (69), equations (60), (61) take on the simpler form: 
 
(71)     ws = l l

sl s lc c n+ , 

 
(72)     sw = l l

sl s lc c n− . 

 

                                                
 (25) The Waelsch invariant , Wiener Ber. 100 (1891), pp. 158. 
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With the help of (71), one easily sees the identity: 
 
(73)     cikl = pik 

r l
l rsp c . 

 
 With the help of this relation and with the use of the abbreviation (63), one will 
obtain: 
(74)     sikl = ml gik + ms cik , 
and analogously: 
(75)     ikls = s

l ik l s ikm g c m c+ . 

 
 There are six independent projective invariants of a ray system that depend upon third 
derivatives.  If we introduce the abbreviations: 
 

(76)   
, , ,

, , ,

i ik ik
i i k i k

i ik ik
i i k i k

J m m S p m m T c m m

J m m S p m m T c m m

 = = =
 = = =

 

then we will have (26): 
     J 2 = S 2 + T 2,  2J = 2 2S T+ . 
If we further set: 
(77)    A = cik ni nk ,  B = ikc ni nk  
 
then we can regard, say, S, T, S , T , A, and B as the representatives of the six invariants. 
 One has J = 1

2 Sikl Sikl . 

 J = 0 (J  = 0, resp.) is the condition for one of the sheets to be a ruled surface 
(channel surface, resp.), while mi = 0 ( im  = 0, resp.) is the condition for one of them to 

be a second-order surface (Dupin cyclide, resp.).  The study of the latter ray systems is 
identical with the non-Euclidian surface theory of sheets that do not degenerate into an 
F2.  If, say, im  = 0 then the rays p will be the isotropic surface tangents to one family 

(tangents to the absolute surface, resp.).  The null lines of gik will be the minimal lines of 
that family and the curves that are conjugate to them. 
 The coefficients of the form gik can be calculated as i

ic  = 0, i
ic  = 0, − g = c = c  (26a).  

The double sign in the last quadratic equation can be fixed by a special choice of 
normalization.  Upon following through on formula (61), the proof of the following 
theorem will no longer be difficult: 
 
 A ray system with disjoint focal sheets that is not a W-ray system will be determined 
by the two quadratic forms cik and ikc  and the linear form ni up to projective 

transformations.  (A corresponding statement is true for the Lie geometry of sphere 
systems.) 
 

                                                
 (26) Proof is by introducing special parameters! 
 (26a) If the normalization condition – g = c = c  is not needed then one can employ other ones in place of 
it for the calculation of gik .  
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 A Lie-F2 (Lie cyclide, resp.) is coupled with a surface in a projectively-invariant way.  
If one draws three consecutive asymptotes to the other family along an asymptotic lines 
then the Lie-F2 will be the F2 that is drawn through these three lines.  If one introduces 
the asymptotic parameters of one of the sheets of our ray systems then one of the families 
of generators σ of its Lie-F2 will be given by: 
 

(σ σ) = 0, (σ, p + v) = 0,  (σ, pv + vv) = 0, (σ, pvv + vvv) = 0. 

 
One can find a representation for the Lie-F2 in general parameters from this. 
 
 

§ 5. 
 

On the conformal and Laguerre theories of surfaces. 
 

 We link directly to what was just done in the previous paragraph and now appeal to 
the terminology of Lie’s sphere geometry.  We consider the special sphere systems for 
which: 
(78)    ε cik = ikc , ε wl = lw , nl = 0. 

 
Due to (42), one then has d = 0.  We are thus dealing with W-sphere systems.  It then 
follows from (31) and (32) that ε vl − lv  = const., ε v −v  = const.  If we introduce the 

notation q = ε v − v  then we will have (p q) = 0.  The spheres p then belong to the 

constant linear complex q.  q can also degenerate into a sphere, namely, for (q q) = − 2ε = 

0; all spheres p then contact the fixed sphere q.  In the Introduction, it was shown that one 

will arrive at conformal surface theory for ε ≠ 0.  We now turn to that case!  The spheres 
p that belong to the complex are the points of the surface.  If we introduce a normal 

coordinate system [cf., § 1, (1b)] such that q has the coordinates (0, 0, 0, 0, 0, 2ε ) then 

we will have p6 = 0.  The first five coordinates of p are then its five penta-spherical point 

coordinates.  If we introduce the notation: 
 
(79)   [ζ η] = ζ 1η1 + ζ 2η2 + ζ  3η3 + ζ 4η4 − ζ 5η5 
 
then [p p] = 0.  One will have [r r] ≠ 0 for the coordinates of a sphere r that does not 

belong to the complex q – i.e., (r q) ≠ 0, (r r) = 0.  The first five coordinates of r are now 

the penta-spherical sphere coordinates.  In that way, a sphere with given penta-spherical 
coordinates r1, r2, …, r5 will always correspond to two spheres in higher sphere 

geometry, namely, the ones with the sixth coordinates r6 = + [ ]r r  and r6 = − [ ]r r . 

 Such a pair of spheres will be referred to as simply “a sphere” in conformal geometry.  
(The difference between “oriented” spheres goes away.)  In place of a linear complex σ 
[(σ σ) ≠ 0], we will have a sphere with penta-spherical coordinates σ1, σ2, …, σ5 in the 
conformal geometry of a sphere.  The two spheres with the sixth coordinates σ6 = 
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[ ]σ σ±  are the spheres that are contained in the pencil of linear complexes α σ + β q 

(α, β are scalars).  They then correspond to (σ1, σ2, …, σ5). 
 Due to the fact that we identify spheres that differ by only the sign of σ6, the two 
sheets of the envelope of our special sphere system will also coincide (27).  v and v  then, 

in fact, coincide in their first five coordinates.  (v v) = 0 implies: v6 = ± [ ]vv , and since 

[ ]v v  = [v v], we will get 6v  = ± [ ]vv .  Thus, v and v  will be identified with each other 

in conformal geometry, and therefore, with the sheet, as well.  We write out only five 
coordinates in the formulas of conformal surface theory and can then set v =v . 

 Two null spheres (i.e., points) are always contained in a pencil of spheres.  The angle 
between two spheres is the logarithmic angle ratio that they make with the null spheres in 
the pencil that they define. 
 We obtain the same equations for establishing v, v , and z, as well as determining 

their normalizations that were employed in § 3. 
 The form gik goes to that of the minimal lines.  The angle between two directions that 
emanate from a point of the surface is the logarithmic angle ratio that those directions 
male with the two isotropic surface directions.  (58) implies that the angle ϕ of the null 
lines of the form r ik dui duk will satisfy: 
 

(80)    cot ϕ = 
2

i
ir gi

r
    (r = | r ik |). 

 
 The sphere η = v + ε v  is the central sphere of the surface that contacts the surface 

and defines a harmonic angle ratio with the curvature spheres, in conjunction with the 
null sphere of the point of the surface.  Among the spheres of that pencil, it is 
characterized by the fact that it intersects the surface along a curve that has two 
perpendicular tangents at the point of contact. 
 
 The directions of those distinguished tangents are the directions of the null lines of 
the form (η pik) = (1 + ε 2) cik , namely, the angle bisectors of the lines of curvature, 

which we would like to call the intersecting tangent curves of the surface (27a).  From 
(31), (32), one will have: 
(81)     (ηi ηk) = gik ⋅⋅⋅⋅ [1 + ε 2]  2. 
 
The contact families of the system of central spheres that are linked with the surface then 
coincide with the minimal lines.  Essentially four integrability conditions remain, namely: 
(35), (36), (38), (40). 
 At this point, let us mention the following notions, which are important in the 
advanced conformal theory of surfaces: 
 

                                                
 (27) Naturally, this “coincidence” of the sheets does not have g = 0 as a consequence.  (Cf., § 3)  
 (27a)  Confer the more detailed treatment in the paper cited in (4) for this and what follows. 
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 1. The transverse sphere ˆdp  that belongs to a line element p → p + dp (28).  (The 

caret suggests that one takes the differential of the normalized p.)  Geometrically, we 

arrive at it in the following way: The two neighboring curvature spheres of one of the two 
families at p and p + dp intersect in a circle.  We draw the sphere through that circle that 

is perpendicular to the curvature sphere at p.  That sphere intersects the corresponding 

curvature spheres that are constructed from the other family in a circle that is 
perpendicular to the surface at p, namely, the transverse circle to the line element.  Now, 

the transverse sphere is the one that goes through p, is perpendicular to the line element, 

and contains the transverse circle. 
 
 2. The normal circle of a surface that is perpendicular to it at a point of the surface 
and is the circle of intersection of all transverse spheres to it. 
 
 3. The principal point z, at which the normal circle pierces the central sphere a 

second time. 
 
 4. The conformal-geodetic lines.  Just as the usual geodetic lines can be 
characterized by the fact that their curvature circles cut the surface normal a second time, 
in addition to the point of the surface, the conformal-geodetic lines are characterized by 
the fact that their curvature circles cut the normal circle twice.  These curves are the 

extremals of the variational problem δ i k
ikg du du∫  = 0, where gik is the normalized 

form, as in § 4. 
 
 If one would consider only the conformal theory of surfaces then one would have to 
set ε = 1.  However, if one first leaves ε arbitrary then one can arrive at the formulas of 
the Laguerre theory of surfaces as special cases of those of the conformal theory, 
corresponding to the discussion in the Introduction, when one sets ε = 0.  q = − v  = const. 

will then be a sphere in Lie geometry.  The spheres that contact that fixed sphere are the 
“oriented” planes of Laguerre geometry.  A system of planes is then given by p (u1, u2), 

and we will have the surface theory of the non-degenerate sheet in plane coordinates.  By 
introducing suitable normal coordinates, we will get the coordinate values (0, 0, 0, 1, 0, 
1) for q, so p4 = p6 .  Since (p p) = 0, p will be determined from p1, p2, p3, p5 by 

establishing such a distinguished coordinate system.  Those four quantities are then the 
homogeneous Laguerre plane coordinates that were employed by Blaschke.  If we 
normalize the spheres r that do not contact q by (r q) = const. then we can introduce r1, r2, 

r3, r5 as inhomogeneous Laguerre sphere coordinates. 
 By choosing that coordinate system, we can drop the fourth and sixth coordinates 
from the formulas and set q = −v  = 0.  Since c  = 0, only the one normalization 

condition c = − g is permissible.  However, that condition will then suffice to establish all 

                                                
 (28) The interpretation of the transverse sphere that is given in the paper that was cited in (4) is not 
correct.  
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quantities up to an arbitrary constant factor that is applied to v .  That indeterminacy 
corresponds to similar behavior in the geometry of motion, where the most important 
quantities are also invariant only up to a constant factor that depends upon the choice of 
units.  The main ideas of conformal surface theory go to the corresponding ones in 
Laguerre theory for ε = 0.  For example, the central sphere will become Blaschke’s 
middle sphere. 
 The formulas of Laguerre surface theory thus-obtained are, however, not identical 
with those of Blaschke with no further assumptions.  Later on, we will come back to 
some other facets of conformal Laguerre surface theory and obtain Blaschke’s formulas. 
 
 

§ 6. 
 

On the conformal and Laguerre geometries of sphere systems. 
 

 In § 4, we deduced the equations that fixed v, v , and z and the equations for 

determining the normalization in the conformal theory of surfaces directly in § 4.  Here, 
in contrast to that, we will appeal to the general formulas of § 3.  v, v , and z will then be 

undetermined, at first.  It was shown above that z satisfied the equations: 

 
(82)   (z z) = 0, (z p) = − 1, (z pi) = 0, 

 
but can still be chosen freely, to a certain extent.  v and v  will then be determined (up to 

normalization) upon fixing z. 

 We now demand: The complex z + 1
2 δp, where δ is a given constant, shall continually 

be equal to a given fixed complex ζ.  [If we set: 
 
(83)     z + 1

2 δp = ζ 

 
then ζ must naturally be normalized in such a way that (ζ ζ) = − δ.]  That demand can be 
fulfilled when equations (82) are consistent with that demand.  We normalize p by (p ζ) = 

− 1.  We will then have (pi ζ) = 0.  However, for that distinguished normalization, 

equations (82) will then follow from (83). 
 It follows from (83) that zi = − 1

2 δ ⋅⋅⋅⋅ pi, or, from (33): 

 
(84)    aik = − 1

2 δ ⋅⋅⋅⋅ gik , wl = lw  = 0. 

 
Instead of (83), we can also demand (84) as a way of fixing z, v, v . 

 If δ ≠ 0 then z will be a “proper” complex, and since we have adjoined a complex, we 

will be forced into conformal geometry.  Since (p ζ) ≠ 0, the p are proper (i.e., not 
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degenerating to a point) spheres, in the sense of conformal geometry (29).  We will then 
be led to the conformal geometry of sphere systems by equations (84).  One likewise 
arrives at Laguerre’s geometry of sphere systems for the case of δ = 0, when one adjoins 
a sphere to ζ. 

 If we once more set ζ = (0, 0, 0, 0, 0, δ ) for the case δ ≠ 0 of conformal geometry 

then we can drop the sixth coordinate, p1, p2, …, p5 will be the penta-spherical sphere 

coordinates, and one will then set ζ ≡ 0, so z ≡ − 1
2 δp. 

 Since (v ζ) =( )ζv = 0, v and v  will be points, and in fact, from (19), they will be the 

envelope points of the sphere system.  The normalization of the sphere p is fixed by (p ζ) 

= − 1 (29a).  We will best fix the normalization of v and v  in the general case by the 

requirement: 
(85)     c = c . 
 
 However, in special cases, it is often more convenient to employ other 
normalizations. 
 Since (p v) = (p dv) = 0, the tangent directions to the intersection curve of the first 

sheet with the sphere p of the system are given by cik dui duk = (p d 2v) = 0.  We would 

like to refer to the null lines of cik and the corresponding form ikc  as the intersection 

tangent curves of the sphere system on the sheets. 
 In connection with the argument in § 3 [formula (56b), et seq.], we can now make the 
following statement about a null line of the form fik : It must go through the sphere p, as 

well as a neighboring sphere p + δp through the points v, v  of the envelope, as well as 

the ones that neighbor them v + dv, d+v v  in the direction of one of the principal 

families.  However, the spheres p and p + δp intersect along a circle.   The four points 

must then lie on a circle, and we will thus be led to the well-known Darboux definition 
of the principal curves of a congruence of spheres. 
 With the help of § 3 (42) and the relation k = k  that follows from (85), one easily 
sees that there are four conformal differential invariants of a congruence of spheres that 
depend upon derivatives up to order two.  Geometric interpretations of four 
representatives of them will be simple with the help of § 3 (58), § 5 (80). 
 The minimal lines of the sheets are the null lines of the forms: 
 
(86)    grs cir cks and rs

ir ksg c c . 
 
The congruence circle of the system that is perpendicular to both sheets at the envelop 
points v and v  is represented by: 

 

                                                
 (29) They do not belong to the fixed complex.  
 (29a) The normalization of ζ is the fixed uniquely by (ζ ζ) = − δ for a given δ.  
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(87)    σ (t) = 21
2

t
t

δ
+ +v p v , 

 
where the point σ is given as a function of t [since [p p] = δ, [σ σ] = 0 (29b)]. 

 The theory of W-sphere systems [d = 0, cf., (50)], on whose sheets the lines of 
curvature correspond, in conjunction with the consideration of the system σ (u1, u2, t) of 
congruence circles, will make it possible to derive Ribacour’s theory of normal systems 
of circles quite easily.  If p(u1, u2) is a sphere system that refers to the corresponding lines 

of curvature of the sheet and has d = 0, and if v and v  are the associated points of the 

envelope that a triply-orthogonal system of surfaces u1 = const., u2 = const, t = const. will 
be given by σ (u1, u2, t). 
 
 Sphere systems whose sheets are related to each other in an angle-preserving way 
are special W-sphere systems. 
 
 For δ = 0, one arrives at considerations that are analogous to those of Laguerre’s 
geometry of sphere systems.  v and v  are then the tangential planes of the sheet.  The 

normalization of p is fixed by (p ζ) = − 1 in this case only up to a constant factor since ζ 

is not normalized. 
 
 

§ 7. 
 

Central and middle sphere systems. 
More on the conformal and Laguerre theories of surfaces. 

 
 In the conformal (Laguerre, resp.) geometry of sphere systems, the simplest invariant 

variational problem δ g∫∫  du dv = 0 will lead to the differential equations i
ic  = 0 and 

i
ic  = 0 for the extremals. 

 Now, i
ic  = 0 is the necessary and sufficient condition for one (the first, resp.) sheet of 

a sphere system to consist of the central spheres (middle spheres, resp.) of it (29c). 
 In fact, the angle ratio D between the two curvature spheres (p + r v) and (p + r′ v), 
on the one hand, and the null sphere (tangential plane, resp.) v of the envelope point and 

the sphere p of the system, on the other, is calculated to be r′ / r.  The condition for a 

harmonic angle ratio is: 
 

D = 
r

r

′
 = − 1, or r + r′ = 0, or h = 1

2
i
ic  = 0, 

 

                                                
 (29b) The meaning of the square bracket is again the one that one derives from (79).  
 (29c) The expressions in parentheses are the ones that apply to Laguerre geometry.  
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with which, the proof is complete. 
 Now, it can be very fruitful to study the conformal (Laguerre, resp.) geometric 
properties of surfaces in terms of the properties of their central (middle, resp.) sphere 
systems.  One sees from (44) that for i

ic  = 0, the tensors grs cir cks and gik of the minimal 

lines of the first sheet and the contact family, resp., are proportional.  Instead of (85), we 
now choose the normalization that makes grs cir cks = gik .  From (44), we will then have k 
= − 1, and we will easily see from this that the surface point v is normalized in entirely 

the same way (except for an inessential factor) as was done in § 5 in the conformal 
(Laguerre, resp.) theory of surfaces “external to the surface.”  With that, it will no longer 
be difficult to exhibit the connection with the formulas of § 5.  For Laguerre geometry, 
we will now be led directly to Blaschke’s formulas.  The intersecting tangent curves cik 
of the sphere system now go to the intersecting tangent curves of the surface in the sense 
of § 5. 
 The extremals of the variational problem above will yield the sphere systems that are 
the systems of central (middle, resp.) spheres for both sheets.  Naturally, the sheets of 
such systems are entirely special surfaces.  They will also be the extremals of the simplest 
invariant variational problem for surfaces.  For conformal geometry, they will be 
conformal minimal surfaces, while for Laguerre geometry, they will be the L-minimal 
surfaces.  According to Blaschke, the latter interesting class of surfaces can be 
represented in a manner that is completely free of integrals. 
 In the conformal geometry of the surfaces with distinguished sheets, the sphere 
systems with i

ic  = 0, d = 0 will yield the isothermals, while for Laguerre geometry, they 

will yield the surfaces for which the spherical images of the lines of curvature define a 
system of isotherms on the sphere (30). 
 
 

§ 8. 
 

Non-Euclidian and Euclidian theories of surfaces in point and plane coordinates. 
 
 We continue the investigations of the previous paragraph directly and set, not only 
(84), but: 
(88)    cik = ikc ,  nl = 0. 

 
Analogous to § 4, we then obtain: ε v − v  = q = const.  We then once more consider the 

sphere system that belongs to a linear complex, but this time from the standpoint of 
conformal geometry, instead of Lie geometry. 
 We can give our equations yet another interpretation.  From § 4, we will arrive at the 
conformal theory of surfaces by the conditions cik = ikc , wl = lw , nl = 0.  In the same way 

as in § 5, the constancy of z + 1
2 δp will be required by aik = − 1

2 δ ⋅⋅⋅⋅ gik ,  wl = lw  = 0, and 

with that, one firstly adjoins a linear complex, and secondly completes the definitions of 
v, v , and z.   However, from § 4, we can make that linear complex correspond to a 

                                                
 (30) See the paper of W. Blaschke that was cited in (5).  
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sphere in conformal geometry that will degenerate to a point for δ = 0, so for δ = 0, ζ = z 

will be a sphere in Lie geometry.  We will rise to conformal geometry by the adjunction 
of the complex q = v = v , so (ζ q) = 0, and ζ will thus belong to that complex, and will 

then be a point.  However, by adjoining a sphere, one will arrive at conformal non-
Euclidian geometry, while the adjunction of a point will give conformal Euclidian 
geometry.  We will thus be led to the non-Euclidian theory of surfaces by our conditions 
(84), (88) in the case of δ ≠ 0, and to the Euclidian theory in the case of δ = 0. 

 We next once more set q = v −v  = (0, 0, 0, 0, 0, 2 ).  The first five coordinates are 

then penta-spherical.  We then introduce penta-spherical coordinates in the case δ ≠ 0 

such that z = (0, 0, 0, 0, δ ) (31).  Since: 

 

[p p] = 0, [p ζ] = − 1, p5 = 
1

δ
, 

we will then have: 
2 2 2 2
1 2 3 4+ + +p p p p  = 

1

δ
 

 
for the surface point p.  If one sets δ = 1 then p1, p2, p3, p4 will be the Weierstrass 

coordinates of the points of the surface (32).  ξ = v +v  is the tangential plane. 

 For δ = 0, one can given the values (0, 0, 0, 1, 1) to the penta-spherical coordinates of 
the point ζ = z.  Corresponding to the arbitrariness in the unit of measurement, the 

normalization of p is established by (p ζ) = − 1 only up to the constant factor that is 

applied to ζ.  p1, p2, p3 are the Cartesian coordinates of the point of the surface.  ξ = 

2

2
(v +v ) is the tangential plane.  ξ1, ξ2, ξ3 are the direction cosines of the surface 

normal.  Cik = 2  ⋅⋅⋅⋅ cik is the form of the asymptotic lines [(ξ d2
p) = Cik dui duk !], 2 ⋅⋅⋅⋅ h 

and 2k are the mean and Gaussian curvatures, resp.  By dropping the last three equations, 
one will get from (30), (31) that: 
 
 pik = + Cik ζ (Gauss equations), 

 ξl = − s
l sC p   (Weingarten equations). 

 
What will remain are two integrability conditions, namely, (35) and (38): 
 
 K = 2k  (Gauss’s Theorema egregium), 
 ekl cikl = 0  (Codazzi equations). 
 

                                                
 (31) Since (ζ ζ) = − δ, (ζ q) = 0, one will have [ζ ζ] = − δ.  
 (32) At least, for the elliptical case.  
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 We can then arrive at the non-Euclidian and Euclidian theories of surfaces from yet 
another direction. 
 If we consider sphere systems whose spheres are all orthogonal to a fixed sphere then 
we will be forced into the study of a non-Euclidian surface theory of one of the sheets.  
By considering sphere systems whose spheres all go through a fixed point, we will 
similarly arrive at Euclidian surface theory.  Since the spheres of the systems are 
orthogonal to the fixed sphere (go through the fixed point, resp.) they will be the planes 
of non-Euclidian (Euclidian, resp.) geometry, and indeed they will be the tangential 
planes to the sheet in question. 
 These formulas are then written in plane coordinates.  The intersection tangent curves 
of the system go to the asymptotic lines of the sheet.  The form gik is the form of the line 
element on the unit sphere in the spherical image. 
 In the context of the theory of congruences of central spheres, one can now derive 
theorems that represent relations between conformal, non-Euclidian, and Euclidian 
geometry, such as perhaps the following one: 
 
 The conformally-minimal surfaces that are, at the same time, isothermal surfaces are 
the minimal surfaces of non-Euclidian and Euclidian geometry and the ones that are 
conformally-related to them. 
 If the congruence of circles of a congruence of central spheres all go through a fixed 
point then the distinguished sheet will be a surface of fixed (Euclidian) mean curvature or 
one that is conformally-related to it. 
 
 

§ 9. 
 

Affine geometry of ray systems. 
 

 We now employ the terminology of the projective geometry of ray systems.  We 
demand that: 
(89)    grs air aks + i k k iw w w w+  = 0. 

 
One calculates from (33) that the expression on the left is equal to (zi zk).  However, (zi zk) 

= 0 is the necessary and sufficient condition for all rays of the system z (u1, u2) to lie in a 

fixed plane.  If we choose parameters such that (z1 z1) = (z2 z2) = 0 then the rays z + z1 du1 

and z + z2 du2 must intersect and give (z1 z2) = 0.  For that reason, the condition is 

necessary; however, it is also sufficient, since all further scalar products (z zik), (z zikl), 

etc., will vanish.  If we adjoin the plane that is defined by the ray z then we can now 

given the following twist to the requirement (89): z shall continually lie in a given fixed 

plane. 
 If a, b, c [(a a) = (b b) = (c c) = (a b) = (b c) = (a c) = 0, resp.] are three rays that lie 

in general position in a fixed plane then the rays p of the system can be given a 

distinguished normalization relative to that plane that is well-defined up to a constant 
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factor by the demand that ers | p, pr, pr, a, b, c | = 1.  Namely, if one replaces the rays a, b, 

c with other ones that lie in the plane then they will be linear combinations of the latter, 

while the normalization will change by only a constant factor.  If we think of p as having 

been normalized in that way relative to the given plane then we can normalize z by the 

demand that (z p) = − 1.  (z pi) = 0 are then two conditions that will determine the 

position of z in the fixed plane.  Since the normalized p depends upon first-order 

derivatives, z will be of second order, due to (z pi) = 0. 

 We can now introduce a normal coordinate system [cf., § 1 (1a)] such that z takes on 

the coordinates: (0, 0, 0, z4, z5, z6), so from (1a), we will have (z z) = 0, and all z will lie 

in the plane that is defined by the three lines (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 
0, 0).  If we restrict ourselves to distinguished coordinate systems such that the only 
possible transformations of the line coordinate p are the ones that transform the first 

coordinates p1, p2, p3 amongst themselves then any line whose first three coordinates are 

equal to zero must also possess that property under the transformation.  The first three 
line coordinates then define a vector.  Now, the ratios p1 : p2 : p3 give the direction of the 

ray, so all rays with the same ratios of the first three coordinates will be intersected by 
that pencil of planes in the fixed (i.e., “infinitely-distant”) plane (33). 
 If we take the ray p of the system with its distinguished normalization then the first 

three coordinates of the vector must acquire an invariant meaning.  That vector must have 
the direction of p and depend upon first-order derivatives.  Now, the vector that connects 

the two focal points has those properties.  Since there are no affine invariants of a ray 
system that depend upon only first-order derivatives, (p1, p2, p3) = p will then be the 

vector that connects the focal points, up to an inessential constant factor.  One can gain 
the insight from this that our coordinates essentially coincide with the ones that W. 
Krause (34) employed for the treatment of the affine geometry of ray systems.  (z p) = − 

1, (z pi) = 0 implies that the last three components of z define a contravariant vector z.  

One has: 

(90)     z = − 1 2

1 2| , , |

p p

p p p

×
, 

 
where p1 × p2 is the vectorial product, and | p, p1, p2 | the determinant of the vectors.  If 
we displace all of the vectors p from a fixed point then we will obtain a surface p(u1, u2): 

                                                
 (33) The bilinear form that belongs to (1a) is: 
  

(ζ η) = ζ1 η4 + ζ2 η5 + ζ3 η6 + ζ4 η1 + ζ5 η2 + ζ6 η3 , 
 

and only ζ1, ζ2, ζ3 enter into the condition for the intersection of a line ζ with an infinitely distant line η [η1 
= η2 = η3 = 0], namely : (ζ η) = 0. 
 (34) W. Krause.  Dissertation, Hamburg 1922 (Abstract).  The complete work is found at the 
Hamburgischen Staats- und Universitätsbibliothek and the preussischen Staatsbibliothek (typescript). 
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namely, the affine curvature image of the ray system.  Now, as we see in (90), z is the line 

of intersection of the tangential plane of the curvature image with the fixed plane.  One 
also sees from this that v and v  are the tangents to the focal sheet that are parallel to that 

plane. 
 Similar to what we did in the conformal geometry of sphere congruences, one 
concludes here that there are four affine differential invariants of a second-order ray 
system.  As was true there, the principal curves fik dui duk = 0 of the system will also play 
an important role here.  The calculation of the affine normals to the sheet will involve no 
complications. 
 
 

Appendix. 
 

On the projective and affine theories of surfaces. 
(Higher sphere-geometric theory of surfaces.) 

 
 Looking back upon the remarks that were made in the Introduction, we would now 
like to present the condition for a ray p to coincide with a Darboux tangent to one sheet 

in the context of the projective geometry of ray systems that was developed in § 4.  If one 
introduces torses as families of parameters then one will have g11 = g22 = 0, and since p 

contacts the curves on the sheet that correspond to one of the torses, from (74), one must 
have, say, s111 = 0.  A tangent to the curve dv = 0 is then a Darboux tangent. From (74), 
and since c11 ≠ 0, 1

1c  = 0, 2
1c  ≠ 0 (35),  s111 = 0 then implies the condition that m2 = 0.  

However, that can be written invariantly as: J = mi mi = 0 ([cf., (76)]. 
 The null lines of the form gik on the first sheet are now the one Darboux tangent and 
its conjugate.  If we exclude the case in which the surface of the first sheet is an F2 (mi = 
0) (36) then we can show that S ≠ 0.  [Cf., (76)]  Now, due to the two equations J = 0, S = 
pik mi mk, from (76), one can calculate the form mi in terms of the forms gik, cik, ikc , and S 

from (76), and also the form ni from (71), (63).  Since one can calculate the coefficients 
of gik from the coefficients of cik and ikc  as in § 4, we can now make the following 

statement in connection with the theorem that was stated in the conclusion to § 4: In 
general (37), a surface will be determined by being given the forms cik, ikc , and the 

invariant S, up to projective transformations. 
 Imposing the same condition in the affine geometry of ray systems would lead to an 
affine theory of surfaces. 
 However, it is possible that other conditions might be more convenient.  One can let 
the null lines of the form gik coincide with any invariant conjugate net of curves on the 
surface of the sheet.  The tangents to that curve net then define the ray systems p and v 

                                                
 (35) Cf., (66), (67).  
 (36) Cf., § 4.  
 (37) Namely, if the surface has disjoint focal sheets, if it is not developable and is not a F2, and if the 
three ray systems that are defined by the systems of Darboux tangents are not all three of them W-ray 
systems. 
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(38).  An apparent difficulty in such investigations must be emphasized, namely, that in 
projective geometry, a purely line-geometric treatment of the theory of surfaces on the 
basis of the duality principle might be the most appropriate one, and that theorems on the 
surface theory of the sheet are already relatively simple to obtain in the general theory of 
ray systems (39). 
 
 Hamburg, 7 April 1924. 
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 (38) In projective geometry, one can imagine the null lines of the third differential form that Fubini 
introduced, and the affine lines of curvature in affine geometry. 
 (39) However, one will get the simplest line-geometric way of treating the projective and affine theories 
of surfaces from the study of the ray systems that consist of the asymptotic tangents to one of the two 
families, which can be extracted from the theory that was given here, according to § 2.  Cf., footnote (11a). 


