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 1. Problem statement (1). – In the present article, I will develop a general theory of the stability 

of elastic equilibrium. In order to exhibit such a theory, one can either start from the fact that an 

equilibrium state is at the limit of stability when one has not only the equilibrium state under 

scrutiny, but also an “infinitely-close” equilibrium state, or one can appeal to the energetic 

formulation, in which an equilibrium state ceases to be stable when the potential energy is no 

longer a true minimum. I prefer the energetic formulation, because it seems simpler to me, and 

since it is simplest to adapt to non-rectangular coordinates. For the sake of brevity, I shall confine 

myself here to rectangular coordinates and external forces that do not change with the 

displacement. However, a generalization of that presents no complications. 

 

 

 2. Notations. Coordinates. – We shall refer to the equilibrium state whose stability is being 

examined as the “initial state” and a state that emerges from the initial state when we impart any 

“allowable” displacements to the points of the elastic body as a “neighboring state.” “Allowable” 

means displacements that are compatible with the geometric constraints (e.g., support conditions). 

We introduce the following coordinates: 

 

 a) Spatially-fixed, rectangular normal coordinates 1, 2, 3, which are referred to the three 

rectangular unit vectors E1, E2, E3 . The vector from the origin to the point 1, 2, 3 is then 

 


 E . 

 

 
 (1) Confer: 

 1. R. v. Mises, “Über die Stabilitätsprobleme der Elastizitätstheorie,” this journal 3 (1923), pp. 406. 

 2. H. Reissner, “Energiekriterium der Knicksicherheit,” this journal 5 (1925), pp. 475. 

 3. C. B. Beizeno and H. Hencky, “On the general theory of elastic stability I and II,” Kon. Akademie van 

Wetenschappen te Amsterdam, Proceedings 31 (1928), pp. 569. 

 4. E. Trefftz, “Über die Ableitung der Stabilitätskriterien des elastischen Gleichgewichts, etc.” Verhandlungen 

des III intern. Kongresses für Techsniche Mechanik, Stockholm 1930, v. 3, pp. 44. 

 Furthermore, confer the literature that is cited in those works. 
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 b) Substantial coordinates x1, x2, x3. They are attached to the mass-particles of the elastic body. 

In the initial state, they shall agree with the coordinates 1, 2, 3, and in the neighboring state, they 

will be curvilinear coordinates. 

 

 Let the displacement that takes the initial state to the neighboring state be u = u1 E1 + u2 E2 + 

3 3 ,u E where u are functions of x1, x2, x3. One then has that: 

 

 = x  and the radius vector from the origin is R = x 


 E    (1) 

in the initial state and: 

 

 = x + u and the radius vector from the origin is r = ( )x u  


+ E   (2) 

in the neighboring state.  

 We consider external forces that take the form of: 

 

 a) Volume forces with the components X1, X2, X3 per unit initial volume. 

 

They shall be constant in the following sense: The force (X1 E1 + X2 E2 + X3 E3) dx1 dx2 dx3 shall 

act upon the mass-particles that lie within a parallelepiped with edges dx1, dx2, dx3 that are parallel 

to the axes in the initial state, and also when the parallelepiped has experienced a displacement 

and deformation into the neighboring state (example: gravity). 

 

 b) Surface tractions with the components 1, 2, 3 per unit area in the initial state, i.e., the 

force (1 E1 + 2 E2 + 3 E3) dO on the part of the surface that meets the element dO, and also 

when the element in the neighboring state has experienced a displacement, rotation, or deformation 

(example: pressure on the end surface of a buckled rod). 

 

Let E be the total internal energy of the elastically-deformed body, and let e be the same thing per 

unit initial volume. Let A be the work that the external forces do when going from the initial state 

to the neighboring state.  

 

 

 3. Elementary parallelepiped. Lattice vectors. Line element. – We consider an elementary 

parallelepiped that is included between the pair of surfaces x = const. and x + dx = const. In the 

initial state, it has the three edges dx1, dx2, dx3 that are parallel to the axes. In a neighboring state, 

its edges will be defined by the three vectors 1

1

dx
x





r
, 2

2

dx
x





r
, 3

3

dx
x





r
 (see. Fig. 1). We call those 

vectors eh = 
1x





r
 the “lattice vectors.” From (2), we calculate them to be: 
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eh = 
1x





r
 = Eh + 

h

u

x









 E .     (3) 

 

The lattice vectors produce the coefficients of the line element. Two points whose coordinates 

differ by dx1, dx2, dx3 are connected by the vector: 

 

d r = dx
x


 






r
 = dx 



 e .    (4) 

The square of its length is: 

d r2 = 2[ ]dx 


 e  = dx dx   
 

 e e .   (5) 

 

Comparing the coefficients of that with the usual form g dx dx  
 

  gives: 

g = e  e .       (6) 

From formula (3), that will give us: 

g = e  e = E  E + h h

h

u u u u

x x x x

 

   

    
+ +      

 ,    (7) 

 

in which one considers the fact that one will have E  E = 0 for    for rectangular unit vectors. 

 Set u = 0 for the initial state. If we denote the coefficients of the line element by upper-case 

G here then: 

G = E  E .      (8) 

 

In particular, we will later need the changes g that the g experience under the transition from 

the initial state to the neighboring one: 

 

g = g − G = h h

h

u u u u

x x x x

 

   

   
+ +

   
 .    (9) 

 

 

 4. The stresses and the internal energy of the elastic body. – We again consider an 

elementary parallelepiped (Fig. 1). If the force k1 dx2 dx3 acts on the vectors e2 dx2 and e3 dx3 of 

the stressed parallelogram that bounds the parallelepiped on the side of increasing x1 then we will 

call k1 the “stress vector” that belongs to the surface x1 = const. The stress vectors k2 and k3 will be 

defined correspondingly on the surfaces x2 = const. and x3 = const. If we decompose the stress 

vectors along the lattice vectors: 

kh = hk  


 e ,      (10) 
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then we will get the stress components k . If we considers rotational equilibrium then we will 

establish the symmetry: 

k  = k .         (11) 

 

Now let e dx1 dx2 dx3 be the energy that is stored in the parallelepiped. If we then impart the 

infinitesimal displacement  r on the points of the elastic body then that will raise the internal 

energy by the amount of work that is performed by the stresses in that way. If  r is the 

displacement at the center of the parallelepiped then the displacement on the left boundary face 

will be  r − 1

1

1

2
dx

x





r
 and  r + 1

1

1

2
dx

x





r
  on the right-hand one, and the associated stress 

vectors – k1 dx2 dx3 (+ k1 dx2 dx3, resp.) will perform an amount of work equal to: 

 

– k1 dx2 dx3  1

1

1

2
dx

x




 
− 

 

r
r  + k1 dx2 dx3  1

1

1

2
dx

x




 
− 

 

r
r  = k1  1 2 3

1

dx dx dx
x





r
. (12) 

 

When the same considerations are applied to the vectors k2 and k3 , that will give the total work, 

i.e., the increase in the internal energy, as: 

 

 e dx1 dx2 dx3 = 1 2 3dx dx dx
x


 







r
k .   (13) 

 

If we substitute kh = hk  


 e  here and observe that eh = 
hx





r
, so  eh =

hx





r
, then we will get: 

 

 e = k11 e1   e1 + k11 (e1   e1 + e2   e2) + etc. = hk   
 

  e e , 

 

but g = e  e , so  g = e   e  + e   e . With that, we will have: 

 

 e = 
,

hk g 
 

 .     (14) 

 

We would now like to calculate the change in the elastic energy under the transition from the initial 

state to the neighboring state. In order to do that, we decompose the stresses k into the stresses 

 in the initial state and the additional stresses  that are produced by the deformation: 

 

k =  +  .     (15) 

 

The change in internal energy per unit volume will then be: 
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e = e  = 1 1
2 2

, ,

g g   
   

   +   .   (16) 

 

The first integral on the right can be evaluated because the initial stresses  are constant during 

the transition, i.e., for the integration. That will give [see formula (9)]: 

 

1
2

,

g 
 

   = 1
2

,

g 
 

  = 1
2

,

h h

h

u u u u

x x x x

 


     


    

+ + 
     

   . (17) 

 

The second integral 1
2

,

g 
 

  is the work done by the additional stresses  under the 

deformation that produced them. We make the assumption for it that is at the basis of all of the 

cases that were calculated up to now, namely, that we find ourselves in the domain of validity of 

the law of superposition, such that we can formulate the connection between the displacements u 

and the stresses  precisely as we do in the classical theory of elasticity. If we then denote the 

shear modulus by G and the lateral contraction number of the material m, and set: 

 

 = 
u

x








,  = 

u u

x x

 

 

 
+

 
,  = 

u

x



 




 ,   (18) 

 

to abbreviate, then the deformation energy will become: 

 

1
2

,

g 
 

   = a = 
2 2 2 21

1 2 2 3 3 1 12 23 312

1
2( ) ( )

2

m
G

m
        

− 
 − + + + + + 

− 
 , (19)  

 

and the known stress-extension equations will be valid: 

 

11 = 
1

a






 = 12

2
G

m


 
+ 

− 
 , 12 = 

12

a






 = G 12 , and cycl. perm. (20) 

 

After integrating over the entire body, we will get the total change in internal elastic energy in the 

form: 

 

1 1
1 2 32 2

, , ,

( ).h h

h

E ed

u u u u
d d a d d dx dx dx

x x x x

 

 
      



     

 = 

    

= + + + =  
      



   
(21) 
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 5. The energy criterion for the stability limit. – An elastic body is then found to be in stable 

equilibrium when the increase E in the internal elastic energy under an allowable displacement 

to a neighboring state is greater than the work A that is done by the external forces. If the stability 

limit is attained then there will be at least one system of displacements for which E = A, but no 

system for which E < A . As long as E < A, instability will prevail. Therefore, at the limit of 

stability, one will have: 

 

1 1
2 2

, , ,

.

h h

h

u u u u
E d d a d

x x x x

A X u d u dO

 

 

      

   
 

    



    
 = + + +        

  = + 


   

  

 (22) 

 

If the left-hand side is to be greater than the left-hand side for all allowable displacements u then 

the predominantly linear terms must drop out for sufficiently-small displacements, i.e., one must 

have: 

1
2

,

u u
d

x x

 


   

 
  

+ 
  

  = X u d u dO   
 

 +      (23) 

 

for all allowable u . After partial integration, that will yield the known equilibrium conditions of 

the initial state: 

in the interior:  h
hX

x



 


+


  = 0 ,      (24) 

(h = 1, 2, 3),   

 

on the surface:  cos ( , )h N


   = h .     (25) 

 

In the last equation, cos (, N) is the direction cosine of the exterior normal to the elastic body with 

respect to the th axis. 

 After dropping the linear terms, what will remain in (22) are the quadratic terms, which we 

would like to denote by Q : 

Q = 1
2

, ,

h h

h

u u
d a d

x x


   

  
 

+
 

    0 .   (26) 

 

At the limit of stability, there will now be at least one “dangerous” (gefährlich) system of 

displacements u1, u2, u2 for which the equal sign will be valid in (26). Since Q cannot become 

negative, the value 0 that is attained by the “dangerous” system must be a minimum then. It follows 

from that minimal property that we must have: 

 

Q = 0       (27) 
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for all allowable variations u . We will get the differential equations and boundary conditions 

for the “dangerous” displacements from that variational demand. If we form Q then the first 

integral will yield: 

1
2

, ,

h h

h

u u
d

x x


   

  
 

 
  = 

, ,

h h

h

u u
d

x x


   


 

 

 
 . 

 

(Two summands actually appear, but the differ by only the notation of the summation sign, so they 

are equal.) A partial integration gives: 

 

− 
, , , ,

cos( , )h h
h h

h h

u u
u d u N dO

x x x
 

     

     
  

+     
   , 

 

in which the first integral is taken over the interior of the body and the second one, over its surface, 

and if we use eq. (25) to set cos ( , )N


   =  then that will give: 

− 
, , ,

h h
h h

h h

u u
u d u dO

x x x
 

    

   
  

+      
   . 

 

The variation of the second integral is known from the classical theory of elasticity: 

 

( , )a d     = − cos( , )h h h

h h

u d u N dO
x




 


    


+


     . 

 

In total, we will then get: 

,

cos ( , ) .

h h
h

h

h
h

h

u
Q u d

x x x

u
u N dO

x




    

 
  


   

  

    
= − +   

      


  
+ +     

  

  

  (28) 

 

Should that vanish for all allowable uh, then the spatial and surface integrals would have to vanish 

by themselves, and that would only be possible if the differential equations: 

 

,

h hu

x x x




    




  
+  

   
   = 0     (29) 

 

were fulfilled in the interior, while the boundary conditions: 
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cos ( , ) hu
N

x
 

  

 


+ 


   = 0     (30) 

 

were fulfilled on the surface. Mechanically, those equations mean that, along with the initial state, 

there exists an infinitely-close equilibrium state. Mathematically, one is dealing with an eigenvalue 

problem: Equations (29) and (30), along with the stress-extension equations (20), are 

homogeneous. If the loading remains outside the stability limit then they will have no non-zero 

solution, since such a thing will first appear as soon as the stability limit is attained. 

 In order to show that the solubility of equations (29) with the boundary conditions (30) is not 

only necessary, but sufficient, for the attainment of the stability limit, one must further show that 

one also has Q (u) = 0 for the solutions u . Up to now, it has only been shown that Q = 0 for all 

allowable  u . However, if one makes  u = 1
2
u , in particular, then one will have Q = Q (u) . 

Since Q vanishes, it will follow that Q (u) = 0 . Q. E. D. 

 

 

 6. Application. – If one would like to the use the general three-dimensional theory of the 

stability of elastic equilibrium that was developed here in order to arrive at the usual approximation 

methods in engineering then one would do best to start with the variational problem that is 

formulated in equations (26) and (27). One must only 

replace the expression for the elastic energy of the 

additional deformation ( , )a d    with the 

approximate expressions in the elementary methods. 

In order to show that in an example, I would like to 

derive the equations for the tipping of a rectangular 

cantilever (Fig. 2). 

 Let a beam of narrow rectangular cross-section 

be anchored at one end (x = 0), and at the other end 

(x = l), let it be loaded with an isolated force P in the direction of the longer side of the rectangle 

(viz., the y-direction). The notations are the usual ones: The x-axis is along the centerline of the 

beam, Jy and Jz are the moments of inertia of the cross-section, E J is the bending stiffness, and 

G  is the torsional stiffness. From the elementary theory, the force P produces the stresses xx 

and xy , where one has: 

xx = − 
( )

z

P l x y

J

−
,  xy dy dz = P .    (31) 

 

(N. B. Double integrals are taken over the cross-section.) 

 For a sufficiently-large load P, the rod will buckle laterally, i.e., in the z-direction, and 

simultaneously experience a torsion. We make the following simplifying assumption for that 

displacement from the equilibrium configuration: 

 

v = −  (x) z ,  w = W (x) +  (x) y .        (32) 

Figure 2. 

x 

P 

z 

P 

y 
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We must now calculate the two integrals for Q in equation (26). From the elementary theory, the 

deformation energy of the bent and twisted rod will be: 

 

a d  = 
2 21 1

2 2

0 0

( ) ( )

l l

yE J W x dx G x dx +    .   (33) 

 

When one uses the stress formulas (31) and the law of displacement (32), the integral that 

represents the work done by the initial stresses will be, with the altered notation: 

 

2 21 1
2 2

, ,

1
2

( )
{[ ( ) ( ) ] [ ( ) ] }

2 [ ( ) ( ) ] ( ) .

h h

h z

xy

u u P l x y
d W x x y x z dx dy dz

x x J

W x x y x dx dy dz


   

   

  

  − 
  = − + +  


 + +


 



    (34) 

 

If one integrates over y and z, which will make the integrals y dy dz , 
3y dy dz , 

3y z dy dz , 

and xy y dy dz  drop out, due to the double symmetry in the cross-section, then one will get: 

 

− 
0 0

( ) ( ) ( ) ( ) ( )

l l

P l x W x x dx PW x x dx   − +   = − 
0

( ) [( ) ( )]

l
d

PW x l x x dx
dx

 − . (35) 

 

In that way, one will have: 

 

Q = − 
2 21 1

2 2

0 0 0

( ) [( ) ( )] ( ) ( )

l l l

y

d
PW x l x x dx E J W x dx G x dx

dx
   − + +    . (36) 

 

We now form: 

 

0 0

0 0

( ) [( ) ( )] ( ) [( ) ( )]

( ) ( ) ( ) ( ) .

l l

l l

y

d d
Q P W x l x x dx PW x l x x dx

dx dx

E J W x W x dx G x x dx

   

  


 = − − − − 



   + + 



 

 

 (37) 

 

In the partial integration by which we eliminate the derivatives W   and   from the integrals, 

we must observe that due to the initial stress conditions for x = 0: 

 

W (0) = 0 , (0)W   = 0 ,  (0) = 0    (38) 

 

we must also have: 
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W (0) = 0 , (0)W   = 0 ,  (0) = 0 . 

 

Q can vanish for all allowable variations  W and   only when the factors of  W (l), ( ) ,W l 

and   (l), and bracketed expressions in the integrals vanish in their own right. With that, we will 

get the differential equations: 

 
4 2

4 2
[ ( ) ]

d W d
E J P l x

dx dx
+ −  = 0 , 

2 2

2 2
( )

d d W
G P l x

dx dx


 − −  = 0 ,  (40) 

 

and the boundary conditions: 

 

( )W l  = 0 , ( )yE J W l  = P  (l) , ( )l  = 0    (41) 

 

Those differential equations and boundary conditions are identical to the equations that Prandtl 

gave. 

 One can arrive at the differential equations and boundary conditions for all known problems 

of the buckling and tipping of plates and rods from the general Ansatz in the same way. 

 

 

 7. Concluding remark. – In conclusion, I would like to go into the connection between what 

I did and the theory of Biezeno and Hencky, as well as my own previous investigations. Biezeno 

and Hencky (“On the general theory of elastic stability,” loc. cit., footnote on pp. 1) based their 

theory on a consideration of the infinitely-close equilibrium states. The essential difference 

between their method and my own consists of the way that the “neighboring” stress state is 

described. B and H always referred to a spatially-fixed coordinate system, while I employed the 

substantial coordinates that move with the mass-particles. I believe that I have achieved a 

simplification in the representation with the use of that natural coordinate system. Naturally, the 

results are the same in both cases, but the work of B and H goes further than my own. 

 My own previous investigations (“Über die Ableitung der Stabilitätskrieterien des elastischen 

Gleichgewichts, etc.,” loc. cit., footnote on pp. 1) are more general than the theory that was 

developed here, insofar as they did not include the assumption that the stress-extension equations 

for the additional stresses and the displacements had the simple form of the classical theory of 

elasticity. The advantage of the greater generality of my previous investigations is to be contrasted 

with the greater practical utility of the theory that is developed here. 

 

___________ 

 


