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 1. – One knows that the motion without friction of a holonomic or non-holonomic 
system is characterized by the function S = 21

2 m J∑ , where J denotes the acceleration of 

a point of mass m.  If q1, q2, …, qk are the independent parameters whose virtual 
variations are arbitrary then the function S will be a function of degree two in 1q′′ , 2q′′ , …, 

kq′′  that one can suppose to have been reduced to only the terms that contain 1q′′ , 2q′′ , …, 

kq′′ .  The coefficients of that function can depend upon even more parameters whose 

virtual variations are given functions that are linear and homogeneous in q1, q2, …, qk .  
For a given virtual displacement of the system, the sum of the works done by applied 
forces will be: 

Q1 δq1 + Q2 δq2 + … + Qk δqk . 
 

 The equations of motion are (1): 
 

S

qα

∂
′′∂

= Qα  (α = 1, 2, …, k). 

 
 The function S is called the energy of acceleration, by analogy with the name kinetic 
energy, which is given to the semi-vis viva of system: 
 

T = 21
2 m v∑ , 

 
in which v is the velocity of a point of mass m. 
 If the system is holonomic then the equations of motion that were given by Lagrange 
are: 

d T T

dt q qα α

∂ ∂−
′∂ ∂

 = Qα  (α = 1, 2, …, k). 

 

                                                
 (1) Paul APPELL, “Développement, sur une forme nouvelle, des équations de la Dynamique,” paper 
published in J. Math. pures appl. (1900). 
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 Our objective is to write the general equations of motion of a non-holonomic system 
in a different form, by means of which we will arrive at the differential equations of 
motion more easily in most cases. 
 
 
 2. – Suppose that a system of material points is subject to constraints that are 
expressed by finite and differential equations in the parameters that define the position of 
the system.  The left-hand sides of the differential equations are not total differentials and 
do not have integrating factors. 
 Let the number of parameters q1 , q2 , …, qk , qk+1 , …, qk+p that fix its position be k + p 
when one takes into account the finite constraints that are imposed upon the system.  
Upon supposing that those constraints also depend upon time t, one will have: 
 

(1)    
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for the coordinates of an arbitrary point of the system. 
 We obtain a virtual displacement of the system that is compatible with those 
constraints at the moment t by giving arbitrary infinitely-small increments dq1 , dq2 , …, 
dqk , dqk+1 , …, dqk+p  to the parameters q1 , q2 , …, qk , qk+1 , …, qk+p, which will give: 
 

(2)  

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2 1

,

, ,
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+ +

+ +
+ +

 ∂ ∂ ∂ ∂ ∂= + + + + + + ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ = + + + + + + ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂
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∂ ∂ ∂ ∂ ∂

… …

… …

… …

 

 
 Now suppose that we add some new constraints to the finite constraints above that 
depend upon time t, are expressed by p non-integrable differential relations in the 
parameters q1 , q2 , …, qk , qk+1 , …, qk+p , and when those relations are solved for the 
dqk+1, dqk+2 , …, dqk+p , they will have the form: 
 

(3)    

1 1 1 2 2

2 1 1 2 2

1 1 2 2

,

,

...................................................................

,

k k k

k k k

k p k k

dq dq dq dq dt

dq dq dq dq dt

dq dq dq dq dt

α α α α
β β β β

λ λ λ λ

+

+

+

= + + + +
 = + + + +


 = + + + +

⋯

⋯

⋯

 

 
in which the coefficients of dq1, dq2 , …, dqk , dt are generally functions of q1 , q2 , …, qk , 
qk+1 , …, qk+p .  For a virtual displacement that is compatible with those constraints at the 
moment t, we have: 
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(4)    

1 1 1 2 2

2 1 1 2 2

1 1 2 2

,

,

...........................................................

.

k k k

k k k

k p k k

q q q q

q q q q

q q q q

δ α δ α δ α δ
δ β δ β δ β δ

δ λ δ λ δ λ δ

+

+

+

= + + +
 = + + +


 = + + +

⋯

⋯

⋯

 

 
 We will then obtain a virtual displacement of the system that is compatible with two 
sorts of constraints at the moment t when we introduce the values of δ qk+1, δ qk+2, …, 
δ qk+p in (4) into (2); hence, we will have: 
 

(5)    

1 1 1 1
1 1 2

2 2 2 2
2 1 2

1 2

........................................................................

k k k p

k k k p

k k
k k k

x x x x
x q

q q q q
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q

q q q q
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q q q

δ α β λ δ

α β λ δ

α β

+ + +

+ + +

+ +

 ∂ ∂ ∂ ∂= + + + +  ∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂+ + + + +  ∂ ∂ ∂ ∂ 

+

∂ ∂ ∂+ + + +
∂ ∂ ∂

⋯

⋯

,

............................................................................

............................................................................
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y

z
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δ
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  ∂+   ∂ 
 =


=

⋯

 

for the displacement. 
 Upon taking into account all of the constraints that were imposed upon the system, its 
position will be completely defined at any instant if we know the parameters q1 , q2 , …, 
qk at that moment, because the other p parameters qk+1 , qk+2 , …, qk+p are determined by 
equations (3); hence, the position of the system depends upon k independent parameters 
q1 , q2 , …, qk . 
 The general equation of dynamics, which is deduced from d’Alembert’s principle and 
the principle of virtual work, is: 
 

( )m x x y y z zδ δ δ′′ ′′ ′′+ +∑ = ( )X x Y y Z zδ δ δ+ +∑ . 

 
x″, y″, z″ are the second derivatives of the coordinates with respect to time, and X, Y, Z 
are the projections of any of the forces that are applied directly. 
 That equation must be satisfied for all displacements (5) that are compatible with all 
of the constraints.  It therefore decomposes into k equations of the form: 
 

(6)  1 1 1
1 1 2k k k p

x x x x
m x

q q q q
α β λ

+ + +

  ∂ ∂ ∂ ∂′′ + + + +   ∂ ∂ ∂ ∂  
∑ ⋯  

 + y″ 1 1 1
1 1 2k k k p

y y y y

q q q q
α β λ

+ + +

 ∂ ∂ ∂ ∂+ + + +  ∂ ∂ ∂ ∂ 
⋯  
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 + z″ 1 1 1
1 1 2k k k p

z z z z

q q q q
α β λ

+ + +

 ∂ ∂ ∂ ∂+ + + +   ∂ ∂ ∂ ∂  
⋯  = Q1 , 

 
in which Q1 is the coefficient of dq1 in the expression for the sum of the virtual works 
done by applied forces: 
 

( )X x Y y Z zδ δ δ+ +∑  = Q1 δq1 + Q2 δq2 + … + Qk δqk . 

 
 Transform the left-hand side of equation (6), which we denote by P1 .  We have: 
 

P1 = 1 1 1
1 1 2k k k p

d x x x x
m x

dt q q q q
α β λ

+ + +

  ∂ ∂ ∂ ∂′ + + + +   ∂ ∂ ∂ ∂  
∑ ⋯  

 + y′ 1 1 1
1 1 2k k k p

y y y y

q q q q
α β λ

+ + +

 ∂ ∂ ∂ ∂+ + + +  ∂ ∂ ∂ ∂ 
⋯  

 + z′ 1 1 1
1 1 2k k k p

z z z z

q q q q
α β λ

+ + +

 ∂ ∂ ∂ ∂+ + + +   ∂ ∂ ∂ ∂  
⋯  

 

 − 1 1 1
1 1 2k k k p

d x d x d x d x
m x

dt q dt q dt q dt q
α β λ

+ + +

       ∂ ∂ ∂ ∂ ′ + + + +         ∂ ∂ ∂ ∂         
∑ ⋯  

 + 1 1 1
1 1 2k k k p

d y d y d y d y
y

dt q dt q dt q dt q
α β λ

+ + +

      ∂ ∂ ∂ ∂′ + + + +        ∂ ∂ ∂ ∂         
⋯  

 + 1 1 1
1 1 2k k k p

d z d z d z d z
z

dt q dt q dt q dt q
α β λ

+ + +

      ∂ ∂ ∂ ∂ ′ + + + +         ∂ ∂ ∂ ∂         

⋯ . 

 
 We get from equations (1) that: 
 

(7)   

1 2 1
1 2 1

1 2 1
1 2 1

1 2 1
1 2 1

,

,
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t q q q q q

+ +
+ +

+ +
+ +

+ +
+ +

 ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′= + + + + + + + ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′= + + + + + + + ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′= + + + + + + +
∂ ∂ ∂ ∂ ∂ ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯








 

 
 Equations (3) give: 
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(8)    

1 1 1 2 2

2 1 1 2 2
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,
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+
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⋯

⋯
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 Hence, by virtue of (7) and (8), we will have: 
 

 
1

x

q

′∂
′∂
= 1 1 1

1 1 2k k k p

x x x x

q q q q
α β λ

+ + +

∂ ∂ ∂ ∂+ + + +
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⋯ , 

 

 
1

y

q

′∂
′∂
= 1 1 1

1 1 2k k k p
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+ + +
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1
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q
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α β λ

+ + +

∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂

⋯ , 

 
and the function P1 will take the form: 
 

 P1 = 
1 1 1

d x y z
m x y z

dt q q q

 ′ ′ ′∂ ∂ ∂′ ′ ′+ + ′ ′ ′∂ ∂ ∂ 
∑  

 − 
1 1 1

d x d y d z
m x y z

dt q dt q dt q

      ∂ ∂ ∂′ ′ ′+ +      ′ ′ ′∂ ∂ ∂      
∑  

 − 1 1 1
1 2k k k p

d x x x
m x

dt q q q
α β λ

+ + +

  ∂ ∂ ∂′ + + +   ∂ ∂ ∂  
∑ ⋯  

 + 1 1 1
1 2k k k p

d x x x
x

dt q q q
α β λ

+ + +

 ∂ ∂ ∂′ + + +  ∂ ∂ ∂ 
⋯  

 + 1 1 1
1 2k k k p

d z z z
z

dt q q q
α β λ

+ + +

 ∂ ∂ ∂′ + + +   ∂ ∂ ∂  
⋯ . 

 
 In equations (1), x, y, z are functions of t, q1 , q2 , …, qk , qk+1, …, qk+p ; hence, 

1

x

q

∂
∂

,
1

y

q

∂
∂

, 
1

z

q

∂
∂

will be functions of the same parameters.  If we take the derivatives with 

respect to time of the latter quantities and take equations (8) into account then we will 
have: 

 
1

d x

dt q

 ∂
 ∂ 

 = 
2 2 2 2

1 22
1 1 1 2 1

k
k

x x x x
q q q

q t q q q q q

∂ ∂ ∂ ∂′ ′ ′+ + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⋯  
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 + 
2

1 1 2 2
1 1

( )k k
k

x
q q q

q q
α α α α

+

∂ ′ ′ ′+ + + +
∂ ∂

⋯  

 + 
2

1 1 2 2
2 1

( )k k
k

x
q q q

q q
β β β β

+

∂ ′ ′ ′+ + + +
∂ ∂

⋯  

 + ………………………………………... 

 + 
2

1 1 2 2
1

( )k k
k p

x
q q q

q q
λ λ λ λ

+

∂ ′ ′ ′+ + + +
∂ ∂

⋯ , 

 
1

d y

dt q

 ∂
 ∂ 

 = …………………………………………………., 

 

 
1

d z

dt q

 ∂
 ∂ 

 = …………………………………………………. 

 
 On the other hand, if we take the partial derivatives with respect to q1 of x′, y′, z′, as 
given by equations (7), and take equations (8) into account then we will get: 
 

 
1

x

q

′∂
∂

 = 
2 2 2 2

1 22
1 1 1 2 1

k
k

x x x x
q q q

q t q q q q q

∂ ∂ ∂ ∂′ ′ ′+ + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

⋯  

 + 
2

1 1 2 2
1 1

( )k k
k

x
q q q

q q
α α α α

+

∂ ′ ′ ′+ + + +
∂ ∂

⋯  

 + 
2

1 1 2 2
2 1

( )k k
k

x
q q q

q q
β β β β

+

∂ ′ ′ ′+ + + +
∂ ∂

⋯  

 + ………………………………………... 

 + 
2

1 1 2 2
1

( )k k
k p

x
q q q

q q
λ λ λ λ

+

∂ ′ ′ ′+ + + +
∂ ∂

⋯ , 

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qx x x

q q q q q q
++ +

+ + +

′∂′ ′∂ ∂∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂

⋯ , 

 
1

y

q

′∂
∂

 = …………………………………………………., 

 
1

z

q

′∂
∂

 = …………………………………………………. 

Hence: 

 
1

d x

dt q

 ∂
 ∂ 

 = 1 2

1 1 1 2 1 1

k pk k

k k k p

qq qx x x x

q q q q q q q
++ +

+ + +

 ′∂′ ′′ ∂ ∂∂ ∂ ∂ ∂− + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
⋯ , 

 
1

d y

dt q

 ∂
 ∂ 

 = 1 2

1 1 1 2 1 1

k pk k

k k k p

qq qy y y y

q q q q q q q
++ +

+ + +

 ′∂′ ′′ ∂ ∂∂ ∂ ∂ ∂− + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
⋯ , 
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1

d z

dt q

 ∂
 ∂ 

 = 1 2

1 1 1 2 1 1

k pk k

k k k p

qq qz z z z

q q q q q q q
++ +

+ + +

 ′∂′ ′′ ∂ ∂∂ ∂ ∂ ∂− + + +  ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
⋯ . 

 

 Upon taking these expressions for 
1

d x

dt q

 ∂
 ∂ 

, 
1

d y

dt q

 ∂
 ∂ 

, 
1

d z

dt q

 ∂
 ∂ 

 into account, along 

with equations (8), we will have: 
 

1

1

kq

q
+′∂
′∂

= α1 ,  2

1

kq

q
+′∂
′∂

= β1 , …, 
1

k pq

q
+′∂
′∂

= λ1 , 

 
and from equations (7): 
 

 
1k

x

q +

′∂
′∂

= 
1k

x

q +

∂
∂

, 
2k

x

q +

′∂
′∂

= 
2k

x

q +

∂
∂

, …, 
k p

x

q +

′∂
′∂

= 
k p

x

q +

∂
∂

, 

 
1k

y

q +

′∂
′∂

= 
1k

y

q +

∂
∂

, 
2k

y

q +

′∂
′∂

= 
2k

y

q +

∂
∂

, …, 
k p

y

q +

′∂
′∂

= 
k p

y

q +

∂
∂

, 

 
1k

z

q +

′∂
′∂

= 
1k

z

q +

∂
∂

, 
2k

z

q +

′∂
′∂

= 
2k

z

q +

∂
∂

, …, 
k p

z

q +

′∂
′∂

= 
k p

z

q +

∂
∂

, 

 
so the function P will take the form: 
 

 P1 = 
1 1 1

d x y z
m x y z

dt q q q

 ′ ′ ′∂ ∂ ∂′ ′ ′+ + ′ ′ ′∂ ∂ ∂ 
∑  

 − 
1 1 1

x y z
m x y z

q q q

 ′ ′ ′∂ ∂ ∂′ ′ ′+ + ∂ ∂ ∂ 
∑  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qx x x
m x

q q q q q q
++ +

+ + +

  ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
∑ ⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qy y y
y

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +  ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 
⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qz z z
z

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
⋯  

 − 1 2

1 1 2 1 1

k pk k

k k k p

qq qd x x x
m x

dt q q q q q q
++ +

+ + +

  ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
∑ ⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qd y y y
y

dt q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +  ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 
⋯  
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 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qd z z z
z

dt q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
⋯ . 

 
 Upon denoting the last sum in the function P1 by M, for the moment, we will have: 
 

 M = 1 2

1 1 2 1 1

k pk k

k k k p

qq qd x x x
m x

dt q q q q q q
++ +

+ + +

  ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
∑ ⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qy y y
y

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +  ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 
⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qz z z
z

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
⋯  

 

 − 1 2

1 1 2 1 1

k pk k

k k k p

qq qx x x
m x

q q q q q q
++ +

+ + +

  ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
∑ ⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qy y y
y

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′′ + + +  ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 
⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qz z z
z

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
⋯ . 

 
 However, the last sum in that expression for M can take another form.  Upon taking 
equations (7) and (8) into account, we will have: 
 

 
1k

x

q +

′∂
′∂

= 
1k

x

q +

′′∂
′′∂

, 
2k

x

q +

′∂
′∂

= 
2k

x

q +

′′∂
′′∂

, …, 
k p

x

q +

′∂
′∂

= 
k p

x

q +

′′∂
′′∂

, 

 

 
1k

y

q +

′∂
′∂

= 
1k

y

q +

′′∂
′′∂

, 
2k

y

q +

′∂
′∂

= 
2k

y

q +

′′∂
′′∂

, …, 
k p

y

q +

′∂
′∂

= 
k p

y

q +

′′∂
′′∂

, 

 

 
1k

z

q +

′∂
′∂

= 
1k

z

q +

′′∂
′′∂

, 
2k

z

q +

′∂
′∂

= 
2k

z

q +

′′∂
′′∂

, …, 
k p

z

q +

′∂
′∂

= 
k p

z

q +

′′∂
′′∂

, 

 

 1

1

kq

q
+′∂
′∂

= 1

1

kq

q
+′′∂
′′∂

, 2

1

kq

q
+′∂
′∂

= 2

1

kq

q
+′′∂
′′∂

, …, 
1

k pq

q
+′∂
′∂

= 
1

k pq

q
+′′∂
′′∂

. 

 
 We will then have the following expression for P1 : 
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 P1 = 
1 1 1

d x y z
m x y z

dt q q q

 ′ ′ ′∂ ∂ ∂′ ′ ′+ + ′ ′ ′∂ ∂ ∂ 
∑  

 − 
1 1 1

x y z
m x y z

q q q

 ′ ′ ′∂ ∂ ∂′ ′ ′+ + ∂ ∂ ∂ 
∑  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qx x x
m x

q q q q q q
++ +

+ + +

  ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
∑ ⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qy y y
y

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +  ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 
⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qz z z
z

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
⋯  

 − 1 2

1 1 2 1 1

k pk k

k k k p

qq qd x x x
m x

dt q q q q q q
++ +

+ + +

  ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
∑ ⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qy y y
y

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +  ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂ 
⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qz z z
z

q q q q q q
++ +

+ + +

 ′∂′ ′′ ′ ′∂ ∂∂ ∂ ∂′ + + +   ′ ′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂ ∂  
⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qx x x
m x

q q q q q q
++ +

+ + +

  ′′∂′′ ′′′′ ′′ ′′∂ ∂∂ ∂ ∂′′ + + +   ′′ ′′ ′′ ′′ ′′ ′′∂ ∂ ∂ ∂ ∂ ∂  
∑ ⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qy y y
y

q q q q q q
++ +

+ + +

 ′′∂′′ ′′′′ ′′ ′′∂ ∂∂ ∂ ∂′′ + + +  ′′ ′′ ′′ ′′ ′′ ′′∂ ∂ ∂ ∂ ∂ ∂ 
⋯  

 + 1 2

1 1 2 1 1

k pk k

k k k p

qq qz z z
z

q q q q q q
++ +

+ + +

 ′′∂′′ ′′′′ ′′ ′′∂ ∂∂ ∂ ∂′′ + + +   ′′ ′′ ′′ ′′ ′′ ′′∂ ∂ ∂ ∂ ∂ ∂  
⋯ , 

 
and equation (6) will have the form: 
 
(6′)    P1 = Q1 . 
 
 Let T denote the semi-vis viva of the system when we take into account the finite and 
differential constraints that are imposed upon it, and let T0 denote the semi-vis viva of the 
system when we take into account only the finite constraints.  The function T is obtained 
from T0 by substituting the values that are defined by equations (8) for the 1kq +′ , 2kq +′ , …, 

k pq +′  in it.  The function T0 is composed of two parts: One of them contains terms that 

depend upon 1kq +′ , 2kq +′ , …, k pq +′ , and we denote it by T1 .  The other one contains the 

other terms, and we denote it by 0T′ .  In that manner, we have: 
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T0 = T1 = 0T′ . 
 
 On the other hand, let S0 denote the semi-energy of acceleration of the system when 
one takes into account only the finite constraints, and let S1 be the function that is 
obtained from S0 by keeping only the terms that contain the quantities 1kq +′′ , 2kq +′′ , …, 

k pq +′′  that are also defined by equations (8) when one differentiates them with respect to t. 

 The equation of motion (6′) will then take the form: 
 

1 1 1

1 1 1 1 1

T T Sd T T d

dt q q q dt q q

   ∂ ∂ ∂∂ ∂− + − +   ′ ′ ′′∂ ∂ ∂ ∂ ∂   
 = Q1 , 

or rather: 

0 0 1

1 1 1

T T Sd

dt q q q

′ ′ ∂ ∂ ∂− + ′ ′′∂ ∂ ∂ 
 = Q1 . 

 
 Hence, the equations of motion of the system are: 
 

(9)   1 1 1T T Sd T T d

dt q q q dt q qα α α α α

   ∂ ∂ ∂∂ ∂− + − +   ′ ′ ′′∂ ∂ ∂ ∂ ∂   
 = Qα  (α = 1, 2, …, k) 

or 

(10)    0 0 1T T Sd

dt q q qα α α

 ′ ′∂ ∂ ∂− + ′ ′′∂ ∂ ∂ 
 = Qα   (α = 1, 2, …, k), 

 
in which is a function of only the true independent parameters q1, q2, …, qk , and their 
derivatives, and S1 is a function of only the second derivatives of the dependent 
parameters, which are determined as functions of the second derivatives of the 
independent parameters by means of equations (8). 
 In most cases, the functions T0 and S1 are easier to determine than the part of the 
function S that Appell introduced that gives the semi-energy of acceleration by taking 
into account all of the constraints that are imposed on the system. 
 We shall explain that with some examples that present themselves in non-holonomic 
systems. 
 Upon writing the differential equations of motion in the form (9), we deduce the 
following corollaries: 
 
 1. If any of the independent parameters does not enter into equation (8) then the 
differential equation for that parameter will be obtained by Lagrange’s method. 
 
 However, one can also obtain the differential equation for any of the independent 
parameters by Lagrange’s method – for example, the parameter qs that enters into 
equations (8) – provided that we have: 
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1 1 1

s s s

T T Sd

q dt q q

 ∂ ∂ ∂− + ′ ′′∂ ∂ ∂ 
 = 0. 

 2. The expression: 

1 1 1T T Sd

q dt q qα α α

 ∂ ∂ ∂− + ′ ′′∂ ∂ ∂ 
 

 
contains terms that must be added to the left-hand side of the equation of motion that one 
deduces for the parameter qα by Lagrange’s method in order to have the true differential 
equation of motion that pertains to that parameter. 
 
 
 3. Example 1. – A circle of radius a and mass unity (viz., a hoop) rolls without 
friction or slipping on a fixed horizontal plane (1). 
 Take two fixed axes Ox and Oy in the horizontal plane xOy and draw a third axis Oz 
through the point O that is perpendicular to the plane and points upward.  Draw three 
axes Gx′ y′ z′ through the center of gravity G of the circle that are parallel to the axes 
Oxyz.  Let GX be the intersection of the plane of the circle with the plane x′ G′ y′, let GY 
denote the axis that passes through G and the point of contact H of the circle and the 
plane xOy, and finally let GZ be the axis of the hoop.  If we let GD denote a line that is 
invariantly coupled to the circle and situated in its plane then the position of the circle 
around G will be defined by angles: 
 

�x X′ = ψ, �X D = ϕ, �z Z′ = θ. 
 
 The projections of the instantaneous rotation of the rectangular trihedron GXYZ onto 
the axes GX, GY, GZ are: 
 
(11)   P = θ′,  Q = ψ′ sin θ′,  R = ψ′ cos θ′, 
 
and those of the instantaneous rotation of the solid body for its motion around G are: 
 
(12)   p = θ′,  q = ψ′ sin θ′,  r = ψ′ cos θ′ + ω′, 
 
so: 
 
(13)   P = p,  Q = q,   R = q cos tan θ. 
 
 If u, v, w are the projections of the velocity V0 of the point G onto the axes GXYZ then 
in order to write down that the idea the circle rolls without slipping on the plane yOx, one 
must express the idea that the velocity of the material point H (0, − a, 0) is equal to zero; 
one will then have: 

u + a r = 0, v = 0,  w – a p = 0. 

                                                
 (1) Paul APPELL, Traité de Mécanique rationelle, t. II, pp. 241, 372, 381.  
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Those equations are equations (8). 
 If θ, ψ, ϕ are independent parameters then the function T0 in that case will be the 
semi-vis viva for the motion around G : 
 

0T′ = 1
2 [A (p2 + q2) + C r2)], 

 
and the function S1 , which is the semi-energy of acceleration when all of the mass of the 
circle is concentrated at G, will be: 
 

S1 = 1
2 [(u′ + Qw)2 + (w′ − Q u)2] + … 

 
 The applied force, which is the weight Mg, is derived from the force function: 
 

u = − M g a sin θ. 
 The equation for ϕ is then: 
 

d

dt
(C r) + (u′ + Q w) (− a) = 0 

or 
 
(I)      (C + a2) r′ – a2 pq = 0. 
 The equation for θ is: 
 

d

dt
(A q sin θ + C r cos θ) + (u′ + Q w) (a cos θ) = 0, 

 
or when one takes (I) into account, one will have: 
 
(II)     A q′ + (A R – C r) p = 0. 
 
Finally, the equation for θ is: 
 

d

dt
(A p) − A g ψ′ cos θ + C r ψ′ sin θ + (w′ − Q u) a = − a g cos θ 

or 
 
(III)   (A + a2) p′ – (A R – C r) q + a2 q r = − a g cos θ ; 
 
equations (I), (II), (III) are the equations of motion. 
 It is easy to see that the Lagrange method will give equation (III) when it is applied to 
the parameter θ.  Indeed, the function T will be: 
 

T = 1
2 [(A + a2) p2 + A g2 + (C + a2) r2] 
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in that case, and the function T1 will be: 
 

T1 = 1
2 (u2 + w2) ; 

obviously, we will have: 

1 1 1T T Sd

dtθ θ θ
∂ ∂ ∂ − + ′ ′′∂ ∂ ∂ 

= 0. 

 
 

 4. Example II. – A heavy, homogeneous, solid body of revolution rolls without 
slipping on a moving horizontal plane that rotates uniformly around a fixed vertical axis 
(1). 
 Let Ox and Oy be two perpendicular axes in the moving horizontal plane, and let OZ 
be a third axis that coincides with the fixed vertical axis and is directed upwards. 
 The relative motion of the body will be known when we know the motion of its center 
of gravity G and its motion around G. 
 The motion of G will be defined when we know the coordinates ξ, η, ζ of that point 
with respect to the axes Oxyz as a function of time. 
 The point G of the body is situated on the rotational axis that we denote by GZ. 
 The relative motion around G – i.e., around the axes G x′ y′ z′, which are parallel to 
the axes Oxyz – is a motion of a body around a fixed point. 
 Take a horizontal axis GX that is perpendicular to the vertical plane Z′ G Z and 
another axis GY that is perpendicular to the plane XGZ.  In that manner, we will 
determine a rectangular trihedron GXYZ whose position with respect to the trihedron G x′ 
y′ z′ is determined by the angles ψ = �X G x′ , θ = �z G Z′ . 
 The motion relative to the body around G is defined by the angles: 
 

ψ, θ, ϕ = �X G D, 
 
in which GD is a line that is coupled to the body and situated in the plane XGY. 
 The condition for the body to touch the moving horizontal plane is expressed by the 
finite constraint: 

ζ = f (θ), 
in which f is a given function. 
 The parameters q1 , q2 , …, qk , …, qk+p in this case are: 
 

ϕ, ψ, θ, ξ, η . 
 
 The components of the rotation of the trihedron GXYZ and those of the rotation of the 
body for its motion around G are given by equations (11) and (12), respectively. 
 The body rolls on the horizontal plane when its velocity relative to the material point 
of contact is zero.  Let us find the coordinates of that point.  The meridian curve, which 

                                                
 (1) Iv. TSENOFF, “Mouvement sans frottement d’un corps solide pesant der révolution sur un plan 
horizontal,” Annuaire de l’Université de Sofia, 1916, 1917, 1918. 
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generates the surface of revolution, is situated in the vertical plane YGZ.  One will obtain 
it as the envelope of the tangent.  The equation of the tangent at H is: 
 

− y sin θ – z cos θ = ζ ; 
 
from that equation and the equation: 
 

− y cos θ + z sin θ = ξ′ , 
one will then get: 

(14)    

0,

( )sin ( )cos ,

( )cos ( )sin

x

y f f

z f f

θ θ θ θ
θ θ θ θ

=
 ′= − −
 ′= − +

 

 
for the coordinates of the point M with respect to the axes GXYZ.  The relative velocity of 
that point is the resultant of the velocity of translation of the axes G x′ y′ z′ and the 
velocity that is due to the rotation of the body around G.  The projections of that velocity 
onto the axes GXYZ are: 
 ξ′ cos ψ + η′ sin ψ + q z – r y = 0, 
 − ξ′ sin ψ cos θ + η′ cos ψ cos θ + f′ p sin θ – p z = 0, 
 ξ′ sin ψ sin θ  − η′ cos ψ sin θ + f′ p cos θ + p y = 0, 
 
or, upon taking into account the values of y and z, those three equations will reduce to the 
following two: 
 
 ξ′ = q cos ψ (f cos θ – f′ sin θ) – r cos ψ (f sin θ + f′ cos θ) + p f sin ψ, 
 η′ = q sin ψ (f cos θ – f′ sin θ)  – r sin ψ (f sin θ + f′ cos θ) + p f cos ψ, 
 
which correspond to equations (8). 
 The independent parameters are ϕ, θ, ψ and the dependent ones are – ξ, η. 
 The function 0T′  is found immediately in this case; it is: 

 

0T′  = 1
2 [A p2 + A (q + µ sin θ)2 + C (r + µ cos θ)2] + M f′ 2 p2, 

 
in which µ is the velocity with which the horizontal plane turns around the fixed vertical 
axis.  The function S1 exhibits the part that comes from the absolute energy of 
acceleration of G1, which is a function that is also easy to find: 
 

S1 = 1
2 M [ξ″ 2 + η″ 2 – 2ξ″ (2µ η′ + µ 2 ξ) + 2η″ (2µ ξ′ − µ 2 η)] + … 

 
 The equation for ϕ will then be: 
 

d

dt
C (r + µ cos θ) + 1 1S Sr r

r r

ξ η
ξ ϕ η ϕ

′′ ′ ′′ ′∂ ∂∂ ∂ ∂ ∂+
′′ ′ ′′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂

= 0 
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or 
 
(I)   C (r′ – µ sin θ p) – M (ξ″ – 2 µ η′ – µ 2ξ) cos ψ (f sin θ + f′ cos θ) 
  – M (η″ + 2 µ ξ′ – µ 2η) sin ψ (f sin θ + f′ cos θ) = 0. 
 
 The equation for ψ will be: 
 

 
d

dt
[A (q + µ sin θ) sin θ + C (r + µ cos θ) cos θ] 

 + 1 1S Sq r q r

q r q r

ξ ξ η η
ξ ψ ψ η ψ ψ

′′ ′ ′′ ′ ′′ ′ ′′ ′   ∂ ∂∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + +   ′′ ′ ′′ ′ ′′ ′′ ′ ′′ ′ ′′∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
= 0, 

 
or, upon taking into account equation (I), we will get: 
 
(II) A q′ + (A q cot θ – C r) p + (2A – C) µ p cos θ 
 + (f cos θ – f′ sin θ) [M (ξ″ – 2µη′ – µ 2ξ) cos ψ + M (η″ + 2µξ′ – µ 2η) sin ψ] 
 
 = 0. 
 
Finally, the equation for q will be: 
 
d

dt
(A + M f′ 2) p – A (q +µ sin θ) (ψ′ cos θ +µ cos θ) – C (r +µ cos θ)(− ψ′ sin θ –µ sin θ) 

 − M f′ f″ p2 + 1 1S S

p p

ξ η
ξ η

′′ ′′∂ ∂∂ ∂+
′′ ′ ′′ ′∂ ∂ ∂ ∂

 = − M g f′ 

or 
 
(III)  (A + M f 2) p′ + M f′ f″ p2 – A (q +µ sin θ) (q cot θ +µ cos θ) 
 
 + C (r +µ cos θ)(q + µ sin θ) + M (ξ″ – 2µη′ – µ 2ξ) f sin ψ  
 
 − M (η″ + 2µξ′ – µ 2η) f cos ψ = − M g f′. 
 
 In the case where the plane is fixed, we have the following problem: 
 
 A heavy solid body of revolution rolls without slipping on a fixed horizontal plane (1). 
 
 The equations of motion are obtained from (I), (II), (III) by setting µ = 0 in them.  
They are: 

C r′ – (f sin θ + f′ cos θ) M (ξ″ cos ψ + η″ sin ψ) = 0, 
 

A q′ + (A q cot θ – C r) p + (f cos θ – f′ sin θ) M (ξ″ cos ψ + η″ sin ψ) = 0, 
                                                
 (1) Paul APPELL, “Développement sur une forme nouvelle des équations de la Dynamique,” J. Math. 
pures appl. (1900), pp. 33. 
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(A + M f′ 2) p′ + M f′ f″ p2 − (A cot θ – C r) q + M f (ξ″ sin ψ − η″ cos ψ) = − M g f′. 
 

However, by virtue of equations (14), we will have: 
 

C r′ + M y (ξ″ cos ψ + η″ sin ψ) = 0, 
 

A q′ + (A q cot θ – C r) p − M z (ξ″ cos ψ + η″ sin ψ) = 0 
 
for those equations. 
 Appell gave another form to those two equations by introducing the projections u, v, 
w or the velocity of the center of gravity G onto the axes GX, GY, GZ. 
 Let us find those equations.  The function 0T′  will be: 

 
2T0 = M (u2 + v2 + w2) + A (p2 + q2) + C r2 . 

 
 The equations that express the condition that the body must roll will be: 
 

u + q z – r y = 0, v – p z = 0, w + p y = 0. 
Hence: 

u = r y – q z,  v = p z,  w = − p y ; 
 
those equations correspond to equations (8). 
 Hence: 

0T′ = 1
2 [A (p2 + q2) + C r2] + … 

 
reduces to just the semi-vis viva for the motion around G. 
 The function S1 is the semi-energy of acceleration of the entire mass when it is 
concentrated at G: 
 

S1 = 1
2 M [(u′ + q w – R v)2 + (v′ + R u – p w)2 + (w′ + p v – q u)2]. 

 
 The equation for ϕ is: 

d

dt
(C r) + M (u′ + q w – R v) y = 0 

or 
 
(IV)    C r′ + M u′ + M (q y + R z) w = 0 . 
 
 The equation for ψ is: 
 

d

dt
(A q sin θ + C r cos θ) + M (u′ + q w – R v) (y cos θ – z sin θ) = 0 

or 
 A q′ sin θ + C r′ cos θ + A p q cos θ – C r p sin θ 
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+ M (u′ + q w – R v) y cos θ – M (u′ + q w – R v) y cos θ – M (u′ + q w – R v) z sin θ = 0, 
 
or finally, upon taking into account equation (IV) and dividing the two sides by sin θ, we 
will get: 
 
(V)   A q′ + (A q cot θ – C r) p – M u′ z + M (q y + R z) v = 0. 
 
(IV) and (V) are the desired equations. 
 The equation above for θ can be replaced with the integral of the vis viva. 
 
 
 5. Example III. – A sphere rolls without slipping on a horizontal plane that turns 
with a constant angular velocity µ around a vertical axis (1). 
 That problem is a special case of the preceding one.  Here, ζ = a, where a is the radius 
of the sphere.  If we take ϕ, ψ, θ to be independent parameters then we will proceed as in 
§ 4.  However, we shall take the independent parameters to be ξ, η, ζ . 
 If we equate to zero the projections onto the axes Gx′, y′, z′ of the velocity relative to 
the contact point H with coordinates 0, 0, − a then, as with equations (8), we will get the 
following equations: 
 ξ′  – a q = 0, 
 η′ + a p = 0, 
in which: 
 p = θ′ cos ψ + ϕ′ sin θ sin ψ, 
 q = θ′ sin ψ − ϕ′ sin θ cos ψ . 
 
 In order to find the functions 0T′  and S1, one must necessarily calculate T0 and S0 

completely. 
 The absolute vis viva T0 and the absolute energy of acceleration S0 of the sphere, 
when one takes into account only the finite constraint ζ = 0, are very easy to calculate.  
Those functions are: 
 
2 T0 = M [(ξ′ – µ η)2 + (η′ + µ ξ)2] + A [p2 + q2 + (r + µ)2], 
 
2 S0 = M [(ξ″ – 2µη − µ 2ξ)2 + (η″ + 2 µξ′ − µη)2] + A [p′ 2 + q′ 2 + r′ 2 + 2µ (pq′ – qp′)]  
 + …, 
 
respectively, where (2): 

r = ψ′ + ϕ′ cos θ. 
 We will then have: 
 

                                                
 (1) Iv. TSENOFF, “Mouvement sans frottement, etc.” Annuaire de l’Université de Sofia, 1916, 1917, 
1918.  
 (2) The expressions p, q, r are the projections of the relative instantaneous angular velocity of the sphere 
onto the axes G x′, y′, z′. 
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02T′  = M [(ξ′ – µ η)2 + (η′ + µ ξ)2] + A (r + µ)2. 

 
We omit the term A (p2 + q2), because it is equal to A (θ′ 2 + ϕ′ 2 sin2 θ), and: 
 

2S1 = A [p′ 2 + q′ 2 + r′ 2 + 2µ (pq′ – qp′)]. 
 
 The equation for ξ is: 
 

d

dt
M (ξ′ – µ η) + (η′ + µ ξ) µ + 2

A A
q p

a a
µ′ + = 0 

or 

(15)    27 12

5 15
ξ µη µ ξ′′ ′− − = 0. 

 The equation for η is: 
 

d

dt
(η′ + µ ξ) µ + M (ξ′ – µ η) − 2

A A
p q

a a
µ′ + = 0 

or 

(16)    27 12

5 15
η µξ µ η′′ ′+ − = 0. 

 
 Finally, the equation for ψ is: 

d

dt
A (r + µ) = 0 

or 
r′ = 0. 

 
 That equation is obtained by the Lagrange method, because ψ′ does not enter into ξ′ = 
a q, η′ = − a p. 
 The general integrals of the system of equations (15) and (16) are: 
 

 ξ =   A cos (µ t + α) + B cos 
5

7
tµ β + 

 
, 

 

 η = − A sin (µ t + α) − B sin 
5

7
tµ β + 

 
. 

 
 Those equations give the law of motion for the center of gravity of the sphere. 
 The absolute trajectory of the projection of G onto a fixed horizontal plane is a circle. 
 

___________ 


