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On the general equations of motion of non-holonomisystems
By Iv. TZENOFF

Translated by D. H. Delphenich

1. — One knows that the motion without friction of admdmic or non-holonomic
system is characterized by the functi®n %Zm J?, whereJ denotes the acceleration of
a point of masan. If g1, Oz, ..., Ok are the independent parameters whose virtual
variations are arbitrary then the funct®mwill be a function of degree two iq, , q,, ...,

g. that one can suppose to have been reduced to only the tteat contairg;, ¢, ...,
g.. The coefficients of that function can depend upon ewere parameters whose

virtual variations are given functions that are linead Aomogeneous iq, o, ..., Ok -
For a given virtual displacement of the system, the ®f the works done by applied
forces will be:

Qg +Q2de + ... +Qx Ak -
The equations of motion ar8:(

a—?:Qa (@=1,2, ..K.

oq,

The functionS is called theenergy of acceleratiqgrby analogy with the namanetic
energy which is given to theemi-vis viva of system:

T=1) mV,

in whichv is the velocity of a point of mass
If the system is holonomic then the equations ofienathat were given by Lagrange
are:

- - :Qa (a': 1, 2,,k)

() Paul APPELL, “Développement, sur une forme nouvells, éguations de la Dynamique,” paper
published in J. Math. pures appl. (1900).
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Our objective is to write the general equations of nmotiba non-holonomic system
in a different form, by means of which we will arrieg¢ the differential equations of
motion more easily in most cases.

2. — Suppose that a system of material points is subgeatohstraints that are
expressed by finite and differential equations in the params that define the position of
the system. The left-hand sides of the differentjalagions are not total differentials and
do not have integrating factors.

Let the number of parameteys, ¢, ..., Ok, Ok+1, -.., Osp that fix its position bd + p
when one takes into account the finite constraints &énatimposed upon the system.
Upon supposing that those constraints also depend upot) tme will have:

X= (LG, Qs Gy Gugreee s G p )
(1) Y=t G G & Gurree s Gup),
Z=atq, G G Quyree s Ghp)

for the coordinates of an arbitrary point of thetsyn.

We obtain a virtual displacement of the systemt tisacompatiblewith those
constraintsat the moment by giving arbitrary infinitely-small incrementky , do, ...,
dog, dg1, ..., dgep to the parameters , gz, ..., Ok, Ok+1, --., Qkrp, Which will give:

0X [6)4 0Xx 0X 0 X
OX=—0q+—oq+...+—9oq + oQ,+...+ -
dg, g, og % 9q, T g, b

_ oy oy ay oy oy
(2) oy=—o0q+—oq,+...+—9oq + oQ,+...+ o
dg,  0g, og, "% 9. T ag,,

0z 0z 0z 0z 0z
0z=—0q+—0qg+...+—oq+ oQ,+...+ .
dg, g, og % 9q, T T og,,

Now suppose that we add some new constraintsetdirihe constraints above that
depend upon time, are expressed bg non-integrable differential relations in the
parameters);, o, ..., Gk, Ok+1, ..., Owsp , and when those relations are solved for the
dg1, dGe2, .., dGap , they will have the form:

dq., =a,dq+a, dg+--+a, dg+a dt
dQ<+2::81dq+:82 d02+"'+,8k dg‘*’ﬁ d,t

dg.,,=4dgq+A4, dg+---+A dg+A dt

3)

in which the coefficients g, dop, ..., dg, dt are generally functions of , 2, ..., Gk,
Ok+1, ---, Qp. FOr a virtual displacement that is compatibléhvwithose constraints at the
momentt, we have:
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oq.,, =a,0q+a,o0,+---+a,dq,
5qk+2 ::815Q1+:825q2+"'+:8k 5q<’

O0G,, =A0q +4,0q,+--+ A dq.

(4)

We will then obtain a virtual displacement of thsteyn that is compatible with two
sorts of constraints at the moménwhen we introduce the values 6ty:1, 0Gk+2, ...,
O0w+p In (4) into (2); hence, we will have:

0x oXx
oX=|—+a A, —— |0
{6% 6% ﬁlaam 16%} *
0x 0x 0x 0X
+ +a + +.-+ A, ——— | O
{aqz “3. 7oa. "0 +J e
) ettt
0x 0X 0Xx 0x
+ 5, +...4+ ] oq,,
{GQk kaqkﬂ kaok+2 ‘ k+pj ‘
O et
OZ T e

for the displacement.

Upon taking into account all of the constraints thateimposed upon the system, its
position will be completely defined at any instant if kv@w the parameters , 0z, ...,
g« at that moment, because the otpgrarametersj:1, Q2 , ..., Oup are determined by
equations (3); hence, the position of the system depgrask independent parameters
i, 92, ...y Ok

The general equation of dynamics, which is deduced frorediBert’s principle and
the principle of virtual work, is:

D m(XIx+ YOy 20 ¥= D (XOx+YIy+ ZJ 3.

x” y” z” are the second derivatives of the coordinates withetgo time, anK, Y, Z
are the projections of any of the forces that areiegplirectly.

That equation must be satisfied for all displaceméjtshat are compatible with all
of the constraints. It therefore decomposes krequations of the form:

6) Zm{ X'(—qf T f A, ax}

"0, 6%2 00,

.| oy Y oy
+ —+a, + +...4+ 1
’ (aql s g 16%J
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0z 0z 0z 0z
+77| —+a. + +---+ A =Qu,
{6% ‘g, P, 16%H o

in which Q; is the coefficient ofig, in the expression for the sum of the virtual works
done by applied forces:

D(XOX+YOy+ Z0 3 =Qudp + Qo Xfp + ... +Qu K.

Transform the left-hand side of equation (6), which weote byP; . We have:

d 0Xx 0Xx 0X 0 X
Pr=—>m X/ —=+a, + +ot
ST { {aql A j

'0q,, ©0q,, 0q,,
Y oy ay ay
+ —+q + +...+ A
Y {6% ‘9., Poa., 16%J
+Z,{g+al 0z 5 0z, L, azj
g, 0¢,  0q,, 04, ,

d oX d 0 X d 0 X
+—|a; +—| B, ot —| A
dt{ “aq,,) di""ogq,, dt "o g,
0

| d{oz), d 0z d 0z z
+Z|—| — |t—=|lag— |+—| B— |+ +—] A :

We get from equations (1) that:

+
<
S|a
7 N\
Dl
po‘~<
N—e
+
2o
7 N\
K
Do
£ l<
N—
+
Q—|Q.
A
i)

oY)
=
RS
+
+
ola
A
N
o
oY)
<3} (@3]
<
N—

, _0OX O0X 0X 0X 0 X 0 X
X=—+—g+—0qd+ - -+—qd +— +... 4+ ,
ot 6q1q 6qu2 Mq 6%% 6q+pq”’
,_0y oy , 0y ay ay oy
7 =2+ 2g+—2=qd+.---+— g +—— +...+ ,
( ) y ot aqlql aqz% aq( q aq(+l cLrl aq+p q+p
, 0z 0z 0z 0z 0z 0 z
=——+—d+—d+.--+——q + + )
ot aqlq aon“ aqq 00, A aqwq*p

Equations (3) give:
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q'k+1:a1q,1+a2d2+"'+ak CL+0’,

q,k+2 :,qu'l+,82 d2+"'+,8k CL+,[>’,

q,k+p :Alq;'*'/]z d2+"'+/]k CL+/]-

(8)

Hence, by virtue of (7) and (8), we will have:

ox _ 0X 0X
_’__+ :81 +...+/]l ,
oo 0g 6% 6%2 00,
a_y:: ﬂ+a ay +ﬁ1 +...+/]l ay ,
oG dg, 0q., 6%2 00,
a_Z’: E+ +ﬁ1 +...+/]l 02 ,
oo 0g 6% 6%2 00,

+...+/]l 0X j

0z
122 +5,-2% 4.4 .
{ "0q., 16%2 16%H

In equations (1)x, y, z are functions ot, g1, 02, ..., Ok, Ow1, ..., Qp ; hENCE,

o ﬂ EwiII be functions of the same parameters. If we tidleederivatives with

dq, dq, 0q,
respect to time of the latter quantities and take equa@ninto account then we will
have:

q

dlox)_ 0° 0°x_, 0°x 9°x
—| — = +—q + g, +---+
dt{ aq 0q, 0t 0q 0900, 0qdq
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2
+ aofaa+l(alqi+azq'2+"'+ak CL'*'O’)
b X BByt B A+ )
aq26q<+1 H 2 “
XAyt A )
aq16q<+p 1M1 2 112 k ’
dfoy) _
dtloq )
dfodz) _
dtl aq )

On the other hand, if we take the partial derivatives waspect tay; of X', y’, 2, as
given by equations (7), and take equations (8) into accoumintbevill get:

ox _ 98°x 0°x ., 0°x 9°x
— = t——q+ G+t q
oq, 0qg o0t o0q 0900, 000 g
2
+ aq?aa+l(alqi+azd2+"'+ak CL‘*‘O’)
¢ OX (B p,d et o+ )
aqzaq<+1 t = “
X Ayt A )
aqlaqu 1™ 2 112 k !
L, OX 0, OX 0du,, ., OX 0y
0q., 09 0q., 0q 0q,, 09
oy _
oq, -
0z _
-
Hence:
d gj :a_x'_{ 0X 3q., , 0X 3, . 0X aqmj
dtloq ) g |0q., dq 0q,, 99 0G., 09 )

d (dy _a_y'_{ oy 06, , 0y dq.,, , 0y 6%}
dt{dg) 0q (9q. 0¢ 0q,, 0q 0q., 09
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d (azj _ az'_( 0z 06, , 0z 0q.,,, , 02 6q’k+pj

dt\dag ) oq, (dq., dq aq., dq 9q., 09
Upon taking these expressions d ox i 9y i 9z into account, along
dt{ dq ) dt{dq ) dtldq
with equations (8), we will have:
aq{(:tl - al, aqllm:z :ﬁl, . aqllw:P:Al,
00, 00, 00,
and from equations (7):
ox’ _ 0x ox’ _ 0x ox _ 0x
0 00y 00, OC., " o0q., 0q,,
oy _ oy oy _ 0y oy _ oy
0 00 00, OC., " o0q., 0q,,
0z _ 0z 0z _ 0z 0z _ 0z
0 00 00, OC., " o0q., 0q.,
so the functiorP will take the form:
d oX oy 0z
Pi=—) m X—+y—+ 72—
17 g aq yaq aqj
- m Xy, 402
o ~0dgq dq
+.m X{ 6>,< 0 OX 0, OX aqkwj
00, 00y 0q,, 0q 0d,, 0q
+ y:( aY' aQIIle_*_ ay aq:(+2 +. 4+ ay aq{ﬁpj
00, 0y 0dd,, 0q 0q,, 09
+Z,{ 07 ., 07 0y, , 02 aqmj
00,y 00y 0q,, 0 0d,, 09

S Xg( 0X dq, , X 3q.,, ., 0% 6%}
dt\od., od od., 0d 9., 94

,g{ 0y 0q.,, 9y 3d.,, ., 0Y aq'mj

dt\od., od od., o4  9q., a4

ty
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Z.g{ 07 0., 02 0., , 0% aq'mj |
dt{od., od "0d,, 04 9q,, 94

Upon denoting the last sum in the functidnby M, for the moment, we will have:

— d zm X( o aql,<+1_+_ 0X aq:(+2 +oot X aq;ﬁpj
0d., o4 9d., 0 g, 94

. y,{ oy 00, 0y 0d,, . 0y aq'mj
0. 04 9d., 04 94, 94

Z,( 07 3, , 92 3q.,, , 0% aqmj
0. 0 9d., 0 94, 94

-S'm ){ 6>’<’ 00y , OX 0q., . OX ath}
0., 0q 0d,, 0q 0d,, 09

+ y"( ay' aq|'<+1_*_ ay aq<+2 +... y aqkﬂ)j
G, 09 0d., 0q 6C1+p o9

Z"( az’ aq|’(+l_+_ az aq:(+2 +... 4 az aqk'*pj )
g, 909 0q,, 0q 0d., 09

However, the last sum in that expressionNbcan take another form. Upon taking
equations (7) and (8) into account, we will have:

ox’ _ ox’ ox’ _ ox" ox _ ox"
od., OC., od., 00, " 0q,, O,
ayl _ ay" ayl _ ayll ayl _ ayll
od., 00, od., 00, " 0q,, O,
0z _ 0z" 0z _ 0z" 0z _ 0z
od., 00, od., 00, " 0q,, O,
00y _ 0% 00z _ 0k 00, _ 0%,
aq o aq  oq ' g oq

We will then have the following expression oy :
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d 3y
Pr=—>)m )( + 72—
1= aq; aq aqj
->m x4 yay+ 392
oq, o, 0q
+ym X{ a>,<' 0y | OX 0, OX aquj
“loq, 9q, od,, 9q 04, 0q
+ y:( aY' aQII<+1_*_ ay aq:(+2 +.oo 4+ ay aqkﬂ)j
0., 0 0d,, 0q 0q,, 09
Z,{ 07 %y, 07 0y, , 02 aq'mj
00, 00 0., 0q 0d,, 09

_dy ){ 0X 0d, , OX 3d,, . 0% 6q’k+pj
a=""\od. od od., 0d 04, 04
(0 s, 0Y 0Gu,, ., Y aqL+pj
0q., 0¢ 0d., oq 04,, 09

ty

d{ 07 3, , 92 3q.,, , 0% aqmj
00, 0 9d., 94 0d., 94

. Zm{*( ox' dqy., X dd.,, . oX 6qk+pJ

00, 0q 0d., 0q GCLp od

00, 00 0., 0d{ 6ch oq
+z"( 07 iy, 02 s, 02 "’q'k'wj
o, of od., of  od,, od

and equation (6) will have the form:

(6) P1=0Q:.

Let T denote the semiis vivaof the system when we take into account the finitk an
differential constraints that are imposed upon it, ahddeenote the senvis vivaof the
system when we take into account only the finite coméa The functiorT is obtained
from Ty by substituting the values that are defined by equatiorfer(8)e q.,,, 0., ---,

0, Init. The functionT, is composed of two parts: One of them contains terats th
depend upomg,,;, G, ---» G ,» @nd we denote it by; . The other one contains the
other terms, and we denote it By. In that manner, we have:
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To:T]_:T()'.

On the other hand, I& denote the semi-energy of acceleration of the systaen
one takes into account only the finite constraints, l@hds, be the function that is
obtained fromS by keeping only the terms that contain the quantitigs, q..,. ...,

d.., that are also defined by equations (8) when one diffiatestthem with respect to
The equation of motion (pwill then take the form:

dfoT)_oT ot _d(on), 08 _
datlaq ) oq oq diag) ag

or rather:

d(om) 0% 08 _
atlaq ) oq od

Hence, the equations of motion of the system are:

9) i[aTj—aTﬁTl——d{ﬂj 93 =Qq (@=1,2,..K
dt\oq, )] dgq, dq dilag) 0
or
d(0T;) 0T, oS _ _
(10) dt[a%j oq, aq, =Qq (@=1,2,..K,

in which is a function of only the true independent paramseg, ¢, ..., 0k , and their
derivatives, andS; is a function of only the second derivatives of the ddpat
parameters, which are determined as functions of thendederivatives of the
independent parameters by means of equations (8).

In most cases, the functiofig and S, are easier to determine than the part of the
function S that Appell introduced that gives the semi-energy otlkecation by taking
into account all of the constraints that are imposethe system.

We shall explain that with some examples that ptegemselves in non-holonomic
systems.

Upon writing the differential equations of motion imetform (9), we deduce the
following corollaries:

1. If any of the independent parameters does not ertereguation (8) then the
differential equation for that parameter will be ob&al by Lagrange’s method.

However, one can also obtain the differential equator any of the independent
parameters by Lagrange’s method — for example, the paramethat enters into
equations (8) — provided that we have:
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oT, _dfoT |, 98 _
og, dtlad ) ad '
2. The expression:

oT, _d (9T, 8S
dq, dtlad, ) od

contains terms that must be added to the left-hand ide @quation of motion that one
deduces for the parametgy by Lagrange’s method in order to have the true differential
equation of motion that pertains to that parameter.

3. Example 1.— A circle of radiusa and mass unity (viz., a hoop) rolls without
friction or slipping on a fixed horizontal plan®.(

Take two fixed axe®x andOy in the horizontal plangOy and draw a third axi®z
through the poinO that is perpendicular to the plane and points upwarcawDRhree
axesGx’y’ z’ through the center of gravitg of the circle that are parallel to the axes
Oxyz LetGX be the intersection of the plane of the circle itk planex’G’y’, let GY
denote the axis that passes thro@land the point of contadt of the circle and the
planexQy, and finally letGZ be the axis of the hoop. If we D denote a line that is
invariantly coupled to the circle and situated in its pldren the position of the circle
aroundG will be defined by angles:

X X =, X D= ¢, 727=86,

The projections of the instantaneous rotation of theangeilar trihedrorfGXYZonto
the axesGX GY, GZ are:

(11) P=20, Q=y’sing, R=¢’cos@,

and those of the instantaneous rotation of the soligt fardts motion arounds are:

(12) p=2a, g=¢’sin@, r=¢’cosé’+ w,
so:
(13) P=p, Q=q, R = q cos tand.

If u, v, ware the projections of the velochy of the pointG onto the axe&XYZthen
in order to write down that the idea the circle rolithaut slipping on the plangOx one
must express the idea that the velocity of the mateoiat H (0, — a, 0) is equal to zero;
one will then have:

ut+tar=0, v=0, w—ap=0.

() Paul APPELL Traité de Mécanique rationellé I, pp. 241, 372, 381.
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Those equations are equations (8).
If 6 ¢, ¢ are independent parameters then the funcliom that case will be the
semivis vivafor the motion arouné :
T,= 1A (P’ +q) +C ),

and the functiors, , which is the semi-energy of acceleration whembthe mass of the
circle is concentrated &, will be:

S =1[(u+ QW+ W -Q U+ ...
The applied force, which is the weightt, is derived from the force function:

u=-Mgasiné.
The equation fop is then:

%(Cr)+(U’+QV\b(—a)=0
or

(1) C+ad)r'—a’pq=0.
The equation fofis:

%(A gsin@+Crcosf + Uu'+Qw (acosé =0,

or when one takes (I) into account, one will have:
(1 Ag+AR-Cjp=0.
Finally, the equation foéis:
%(A pPp-Agyg'cos@+Cry¢’'sin@+ (w-Qua=—-agcosé

or
(n (A+a)p'-(AR-CJyq+a’qr=-agcosd;
equations (1), (1), (1ll) are the equations of motion.

It is easy to see that the Lagrange method will ggeeagon (I11) when it is applied to

the parameteé. Indeed, the functiom will be:

T=3[(A+a)p’+Ad +(C+a)r]
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in that case, and the functidn will be:

Ti= (W +W);
obviously, we will have:

06 dtlag -

mS(o).08
04d ) 06"

4. Example Il. — A heavy, homogeneous, solid body of revolution ralithout
sllipping on a moving horizontal plane that rotates unifgranbund a fixed vertical axis
).

Let Ox andOy be two perpendicular axes in the moving horizontal pland,letOZ
be a third axis that coincides with the fixed verticabaad is directed upwards.

The relative motion of the body will be known when kv@w the motion of its center
of gravity G and its motion aroun@.

The motion ofG will be defined when we know the coordinatgs;, { of that point
with respect to the ax&3xyzas a function of time.

The pointG of the body is situated on the rotational axis thatiemote byGZ

The relative motion aroun@ — i.e., around the ax&3 x"y’ z’, which are parallel to
the axe®Oxyz— is a motion of a body around a fixed point.

Take a horizontal axi&X that is perpendicular to the vertical pladéG Z and
another axisGY that is perpendicular to the pladéGZ In that manner, we will
determine a rectangular trinedrGiXYZwhose position with respect to the trihed®x’

y’z’is determined by the angles= XGX,0=7GzZ
The motion relative to the body arou@ds defined by the angles:

Y, 6 ¢=XGD,

in whichGD is a line that is coupled to the body and situated ipldngeXGY.
The condition for the body to touch the moving horiabpilane is expressed by the
finite constraint:

¢=1(9),
in whichf is a given function.
The parameters:, 0z, ..., 0k, ..., Qwp IN this case are:

Y. 6¢ 1.

The components of the rotation of the trihed@XYZand those of the rotation of the
body for its motion aroun@ are given by equations (11) and (12), respectively.

The body rolls on the horizontal plane when itoe#y relative to the material point
of contact is zero. Let us find the coordinates of gmant. The meridian curve, which

(*) Iv. TSENOFF, “Mouvement sans frottement d’'un corptide pesant der révolution sur un plan
horizontal,” Annuaire de I'Université de Sofia, 1916, 19918
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generates the surface of revolution, is situated ivenical planeYGZ One will obtain
it as the envelope of the tangent. The equation datigent aH is:

-ysin@-zcosf=7,;
from that equation and the equation:

—-ycos@+zsinfd=¢’,
one will then get:
x=0,
(14) y=-f(8)sind- f'(@)coLb
z=-f(@)cosf+ f' @)sing

for the coordinates of the poilt with respect to the ax&sXYZ The relative velocity of
that point is the resultant of the velocity of skion of the axe& x’y’z’ and the
velocity that is due to the rotation of the body aroGadThe projections of that velocity
onto the axe&XYZare:
fcosy+n'sing+qz-ry=0,
= ¢’sinygcos@+ n’cosycosf+f'psind—-pz=0,
&'sinygsind —n’cosysin@+f’'pcosf+py=0,

or, upon taking into account the valueg/@ndz, those three equations will reduce to the
following two:

&'=qcosy(fcos@—-f'sinf —r cosy (fsin@+f’cosh +pfsiny,
n'=qsinyg (f cosfd—-f’'sind —rsinyg(fsin@+f’'cosd +p fcosy,

which correspond to equations (8).
The independent parameters @ré, ¢ and the dependent ones arg .
The functionT, is found immediately in this case; it is:

T, =i[AF+A(Q+using*+C(r +pucosd?+Mi?p?
in which g is the velocity with which the horizontal plane tsirground the fixed vertical

axis. The functionS, exhibits the part that comes from the absolute enerfgy o
acceleration o6, which is a function that is also easy to find:

S=AM[E P+ n =2 un +u* § +2n"(2ué - pP )+ ...
The equation fop will then be:

iC(r+,ucosé)+ 65111651 ar"+6§"6/7’ ar":O
dt o&" or' ag" on" o' 0¢
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or

(1) C(r’'=usin@p) =M (§"=2un’—u?d cosy (f sin @+ f’coso)
—M(n”+2u & —pu?n) siny (f sin @+’ cosé) = 0.

The equation fory will be:

%[A (q+usinf sin@+C (r + ucosb cosé

+aa(ag” aql +ag” arl j+a§[a,7" aql +a,7" arlj_o

ag" aq' aw" ar' aw" 6,7" aq' aw" ar' aw" -

or, upon taking into account equation (1), we will get:

am Ad+Aqcotd-Cnp+(2A—-Q upcosé
+ (f cos@—1/sin @) [M (6" 2un’—p?é) cosy+M (n”+ 2ué’ - p1%n) sin Y

=0.

Finally, the equation fog will be:

%(A +Mf?) p—A(q+usin (¢ cos@+ucos —C (r +ucos(- ¢’ sin @—u sin )

-M £ + 68%’651+6§"6/7’ =—Mgf
0" op'  on" op

or
an  (A+Mf)p’+Mff7p?—A(q+usin 6 (qcot 8+u cosh
+C (r +u cos@)(q + psing) +M ("= 2un’—u*d fsiny
~M (n”+ 2ué' - u’n) fcosy=-Mgf
In the case where the plane is fixed, we have thenfoitp problem:
A heavy solid body of revolution rolls without glipg on a fixed horizontal plar@).
The equations of motion are obtained from (1), (lI)) (by setting ¢z = 0 in them.
They are:
Cr'—(fsin@+f'cos@ M (”cosy+ n”siny) =0,

Ag+(Aqgcotd-Cr)p+ (fcosd—f'sin@ M ({”cosy+ n”siny) =0,

() Paul APPELL, “Développement sur une forme nouvelleétpstions de la Dynamique,” J. Math.
pures appl. (1900), pp. 33.
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A+MFfAp +MffpP-(Acotd-Cr)gq+Mf(E”sing—-n"cosy)=-Mgf
However, by virtue of equations (14), we will have:
Cr'+My(é”cosy+n”siny) =0,
Ag+(Aqgcotd-Cr)p—-Mz(é"cosy+n”sinyg) =0
for those equations.
Appell gave another form to those two equations bydhicing the projections, v,

w or the velocity of the center of gravi/onto the axe&X, GY, GZ
Let us find those equations. The functighwill be:

2To =M (> + V2 + W) + A (P> + ) +C r*.
The equations that express the condition that the gy roll will be:
u+qz-ry=0, v—-pz=0, w+py=0.
Hence:
u=ry-qz V=pz W=-pYy,

those equations correspond to equations (8).
Hence:
T,=i[AE+)+Cr]+ ...

reduces to just the semis vivafor the motion arounc.

The functionS, is the semi-energy of acceleration of the enti@ssnwhen it is
concentrated &b:

S=iM[U+gw-RY+V+Ru—pW+W+pv-qu.

The equation fop is:
%(C N+M@u’+qgqw-RYyy=0

or
(V) Crr+Mu+M(Qy+R2w=0.
The equation foyyis:
%(A gsin@+Crcos@ +M (u'+qgw—-RYy(ycosfd-zsing =0
or

AQg'sind+Cr’cos@+Apqcosfd—-Crpsind
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+M@Uu'+gw—-RYyycosé-M (u'+gw—-RYyycoséd-Mu'+qgw—-RYyzsind=0,

or finally, upon taking into account equation (IV) and dinglthe two sides by si@ we
will get:

V) Ag+(Aqcotd-Cryp—-Mu'z+M(Qy+R2v=0.

(IV) and (V) are the desired equations.
The equation above fd can be replaced with the integral of the viva

5. Example Ill. — A sphere rolls without slipping on a horizontal gahat turns
with a constant angular velocityaround a vertical axis)(

That problem is a special case of the preceding onee, e a, wherea is the radius
of the sphere. If we takg, ¢, dto be independent parameters then we will proceed as in
8 4. However, we shall take the independent parameté&esdor, ¢ .

If we equate to zero the projections onto the &esy’, z’ of the velocity relative to
the contact poinH with coordinates 0, G; a then, as with equations (8), we will get the
following equations:

¢’ —ag=0,
n'+ap=0,
in which:
p=6@cosy+ g’sindsiny,
g=8&'siny—-¢’sinfdcosy.

In order to find the functiond, andS;, one must necessarily calculaie and S
completely.
The absolutevis vivaTy and the absolute energy of acceleratrof the sphere,

when one takes into account only the finite constrdintO, are very easy to calculate.
Those functions are:

2To=M[(E—puny + '+ p &7+ AP+ + ( + )7,

2S=M[(E"=2un—u?d> + "+ 2uE —un)’1+ Alp’>+q’?+r1> + 2u(pq’ - qp)]
+ ..

respectively, wherée’):
r=y’ + ¢’ cosé.
We will then have:

() Iv. TSENOFF, “Mouvement sans frottement, etc.” Annudieel’'Université de Sofia, 1916, 1917,
1918.

(® The expressiong, q, r are the projections of the relative instantanemgsilar velocity of the sphere
onto the axe& Xy’ z".
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2T =M [(E—pn)’ + '+ O+ A(r + 1>

We omit the tern (p? + ¢?), because it is equal (8’2 + ¢’ sirf 6), and:

2S =A[p?+q?+r"*+ 2u(pq’— qp)].

The equation fof is:

18

d , , A, _A
—M—um+ ' +pudu+—q+2—up=0
dt a a
or
7 12
15 =& -=un'-x’éE=0.
(15) 55 =H T H '3
The equation for is:
d ., , A, A
— '+ pudu+M(—pun-—p+2—-4uq=0
dt a a
or
7 12
16 —n"+=u&' - u’n=0.
(16) = 15#5 un
Finally, the equation fog is:
d
—Ar+u)=0
o (r+4)
or
r’'=0.
That equation is obtained by the Lagrange method, begaukees not enter inté’ =
agn=-ap

The general integrals of the system of equations (15)1&)care:

&= Acos (ut+a)+Bcos(§,ut+,[>’j,

n=-Asin (ut+a)—Bsin(§,ut+,3j.

Those equations give the law of motion for theteeaf gravity of the sphere.

The absolute trajectory of the projection@®bnto a fixed horizontal plane is a circle.




