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§ 1. 
 

Introduction. 
 

1.  The relations between the various projective differential geometries of Cartan [1-
3], Schouten [1-3], J.M. Thomas [1], T. Y. Thomas [1-6], Veblen [1-7], and Weyl [1-2] 
have recently been clarified in two works of Schouten and Golab 1).  It has thus been 
demonstrated that these various geometries can be regarded as special cases of a more 
general theory of projective connections under a certain assumption (cf. § 14, 49).  
Nonetheless, the theory can hardly be regarded as complete; for one thing, it has many 
unsatisfying aspects from a purely formal standpoint. 

First, the asymmetry of the indices for projective quantities is an impediment, i.e., 
the special role of the index 0 as opposed to the indices 1, …, n.  Second, it is disturbing 
that in general the covariant derivative is not associated with a covariant differential.  
Indeed, the impossibility of defining such a well-defined affine displacement without 
restrictions has already been proved by Schouten and Golab 2), but the deeper basis for 
that fact is still not entirely obvious.  Third, it is not entirely clear whether one is 
necessarily led to the associated admission of densities.  Fourth, the frequent appearance 

of the factor
1

1n+∆  is particularly astounding 3).  One does not completely see whether the 

exponent must be precisely
1

1n+
, much less whether ∆ is a determinant of degree n and 

not (n+1).  Fifth, up till now there is no theory for the induction of a projective 
connection in an embedded space. 

 
2.  The goal of the present work is to seek to eliminate these “beauty marks” from 

the theory by way of a different type of representation.  The key to making this possible 
is given by the first of the aforementioned remarks: the special role of the index 0.  This 

                                                
 † Translated by D.H. Delphenich. 
 1 J. A. Schouten and St. Golab, Über projective Überträgungen und Ableitungen, I. Math. Zeitscr. 32 
(1930), pp. 192-214,  II Annali di Mat. (4) 8 (1931), pp. 141-157.  (The first of these articles will be 
denoted by Sch and G.) 
 2 Loc. cit. 1), pp. 207. 
 3 Cf., e.g., Sch. and G. § 2; Veblen [4] (uM); Veblen and J.M. Thomas (θ); T.Y. Thomas [1], 

1
log

1n xσ
∂ − ∆ + ∂ 

etc. 
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very same difficulty has been encountered previously in ordinary projective geometry; 
there, one succeeded in removing it by the introduction of homogeneous coordinates. 

To be sure, homogeneous coordinates were also introduced into projective 
differential geometry by Cartan, but always only in linear spaces that were associated 
with each point of space, never in the space itself 4).  (By contrast, Weyl has even 
recently replaced the homogeneous coordinates in linear spaces with inhomogeneous 
ones.) 

However, it will now be shown that the introduction of homogeneous ur-variables 
casts a thoroughly illuminating light on some of the phenomena that were just mentioned. 

For example, one immediately sees that a type of “density” can appear.  If vν is a 
point of the associated linear space then the numbers that determine it are generally only 
defined up to a common factor, i.e., they are homogeneous functions (e.g., of degree r) of 

the homogeneous ur-variables xν (cf. § 3, 7)  If one then replaces the xν with ρxν  then vν 
takes on the factor ρr.  If one regards the replacement xν →  ρxν as a coordinate 

transformation (which is usually not recommended), and ∆ is the determinant of the 

transformation then one has ρ =
1

1n+∆ , and vr is therefore a “density” 5) of weight r ≥ 

1

1n+
.  The densities of weight

1

1n+
are therefore, to a certain extent, quantities of first 

degree (on this, cf., however, § 14). 
Furthermore, the lack of a covariant differential in the general case becomes self-

explanatory.  There also “exists” no ordinary differential: the dxν are not homogeneous 
functions of the xν (cf. § 3, 9c).  The basis for the lack of a covariant differential is then 
the same as the basis for the lack of a point difference in ordinary projective geometry. 

However, this shows that one can achieve the existence of a covariant differential by 
a specialization of the displacement (§ 7, 23) and that this can even come about by means 
of a path-preserving change of the displacement (§ 12, 38, 40). 

The theory of geodetic lines (§ 10), of path-preserving transformations (§ 12), and of 
m+1P in n+1P is then effortlessly carried out.  Then one sees that a projective connection is 
uniquely determined for a given curve by – inter alia − the requirement that the quantities 
Qµ that are defined in § 6, 17 must vanish (§ 12, 43).  However, the vanishing of the 
scalar Qµ x

µ + 1 is crucial for the existence of the covariant differential (§ 7).  This 
existence is then inseparable from the unique determination of the projective connection, 
as Schouten and Golab 6) have already proved. 

 
3.  A crucial element of this entire style of representation was the wish that the 

essential features of ordinary projective geometry should be preserved to the greatest 
extent possible, and that projective differential geometry should not degenerate into a 
thinly-veiled affine geometry.  The relationships with inhomogeneous coordinates (§ 13, 

                                                
 4 Except for Euclidian spaces and as local coordinates at a single point of a general space.  In both cases, 
one needs to consider only the ordinary projective group Ln+1, not, however, our general homogeneous 
group Hn+1 (§ 2, 6). 
 5 For the analysis of densities, cf. J.A. Schouten and V. Hlavatý, Zur Theorie der allgemeinen linearen 
Überträgung, Math. Zeitschr. 30 (1929), pp. 414-432.  Cf., also footnote ? 
 6 Cf. loc. cit. 
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14) are also established only by means of more reassuring links with the older theory; as 
usual, they are quite considerable.  The geometry of Schouten and Golab is briefly 
sketched in § 14 on the same basis; we show that it follows from Veblen’s theory (and 
thus all of the older theories), as well as our own. 

Furthermore, a standpoint will be principally taken that is as general as possible.  
Thus, we succeed in establishing not just sufficient, but also necessary conditions for, 
e.g., the existence of covariant differentials, the map to an infinitesimally close n+1E, and 
geodetic lines.  An overview of the complete set of conditions that were introduced, along 
with the most important simplifications in the general formulas, will be given in § 11. 

The relationships that are employed draw upon Schouten’s Ricci Calculus 7) in an 
essential way, in which most of the changes that have, in the course of time, proved to be 
useful will be incorporated.  Some inessential deviations (cf. footnotes ?, ?, ?) are, 
however, introduced, largely for the purpose of avoiding the vast array of indicial 
notations, which completely obscure any intuition about the nature of the formulas.  As 
for the form of the representation that is described here, except for the Schouten Ricci 
calculus, the only older works that had an essential influence on it were those of Cartan 
and Veblen; indeed, the method of Veblen is closest to the one that is presented here. 

 
4.  By the introduction of the homogeneous group Hn+1, which is actually new to the 

theory, projective differential geometry takes on the character of a generalization of 
ordinary projective geometry to a far greater degree that has been true up till now, in 
particular, when one does without the existence of a covariant differential and sets Qµ = 
0.  Differential geometry may then be immediately discussed in the n+1E by means of the 
Ansatz ν

λµΠ = 0; the system of geodetic lines will then be given by the system of straight 

lines in n+1E.  Therefore, the most important thing is then that one can immediately 
discuss the differential geometry of an embedded manifold m+1H, assuming that this is 
desired.  In the event that m+1H is given by equations in the xν, instead of a parametric 
representation, the theory is easily altered correspondingly in § 9. 

Moreover, the connection with the An+1 
8) yields the possibility of a generalization of 

the theory.  Just as in ordinary projective geometry, the n+1E are easily seen to be the 
geometry of the lines in an En+1 that includes a fixed point O relative to the subgroup of 
the affine group of En+1 that leaves this system of lines invariant, and thus one can also 
regard the n+1P as an Ln+1 in which a system of ∞n “lines” (i.e., X1 will be induced under 
Euclidian translation) through a fixed point O is defined; the group of arbitrary 
coordinate transformations of the Ln+1 will be correspondingly replaced by the only group 
that takes the system of lines to itself and induces a linear group (with O as fixed point) 
on any line.  The aforementioned generalization now consists of replacing the “sphere” 
Ln+1 with a “ruled surface” Ln+1, or even Ln+m, i.e., with a space in which a system of ∞n 
pairwise distinct lines, En, resp., hence, Euclidian subspaces, that can be regarded as 
“points” of new n-dimensional space.  The group of Lm+n will be correspondingly reduced 
to those transformations that, first of all, leave the system of ∞n Em invariant, and 

                                                
 7 J.A. Schouten, Der Ricci-Kalkül, Berlin; Julius Springer 1924.  Denoted by R.K. 
 8 Cf. T.Y. Thomas [4], Sch. and G., § 6, Veblen and Hoffmann, pp. 811, and the works cited there by H. 
Mandel and J. H. C. Whitehead. 
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secondly, induce a linear transformation in each Em.  A possible generalization of another 
sort will be briefly indicated in the concluding section. 

Finally, we must remark that Veblen’s projective differential geometry gives us a 
quadratic differential form (Veblen [6]) quite easily by means of the method followed 
here.  One will probably obtain a new connection and a new glimpse into conformal 
differential geometry, which I hope to show on a later occasion. 

 
§ 2. 

 
The group. 

 
5.  In elementary projective geometry, one ordinarily introduces the (n+1)-ary (= n-

dimensional) projective space n+1E  9) in the following way:  In an ordinary n-dimensional 
space En, which is given by Cartesian coordinates ξi (h, …, l = 1, …, n), one sets: 

 

(1)    xν =
0

0

0,
i

x

x i

ν
ξ ν
 =


=
  (α, …, ω = 0, 1, …, n), 

 
in which x0 is an arbitrary variable that is ≥ 0.  Any n+1 numbers xν that do not all vanish 
and satisfy the relation (1) will be regarded as the homogeneous coordinates of the point 
ξi.  One then completes En by means of an “imaginary” hyperplane x0 = 0 and seeks 
invariants under the group Ln+1 of homogeneous linear coordinate 

transformationsx xν ν ′→  10), in which: 
                                                
 9 The left-hand upper index indicates the “point value” of the space (cf., P.H. Schoute, Mehrdimensionale 
Geometrie, Sammlung Schubert, I, pp. 12), i.e., the number of dimensions plus one.  We will call a space 
with a point value of n+1 (n+1)-ary (binary, tertiary, etc.). 
 10 In the older theory, coordinate transformations were mostly indicated by changing the kernel symbol 
(xν →  yν ) or by attaching a prime to the kernel symbol (x xν ν ′→ ).  However, because we (with J. A. 
Schouten) will view the quantities as geometrical structures throughout, independently of any coordinate 
system, it is desirable to always indicate geometrical structure by the same kernel symbol and avoid the 
rather inessential change in the coordinates (numbers that determine them, resp.) defined by changing the 
indices.  Each coordinate system will then be associated, firstly, with a series of n+1 fixed symbols, and 
secondly, with a type of notation in which an index of the type in question is regarded as a variable that 
ranges through the associated series of symbols.  The fact that the series of symbols must also be different 
for different coordinate systems thus implies, e.g., that the null component of a vector must be distinct in 
two different coordinate systems.  Consequently, in R.K., the newer method in the later works of J.A. 
Schouten (since, perhaps, 1928) is still not completely followed (different series of symbols, but only one 
type of notation and primes on the kernel symbol).  In the long run, however, this leads to a much too large 
number of notations, as in Sch. and G, I: 
 
   ι, …, ω = a1, …, an; Ι, …, Ω = A1, …, An; 

   h, …, m = 1, …, n; H, …, M =1, ,nɺ ɺ… ; 

   a, …, g = 0, 1, …, n; A, …, G = θ, 1, ,nɺ ɺ… , 
 
all of which are still in the local En.  To simplify, we would thus like to indicate different coordinate 
systems in the same space by the same notation (for the index) and distinguish them from each other by 
attaching a prime to the index, or a point, or underlining the index, etc. (e.g., xν, , , , ,x x x x xν ν ν ν ν′ ′′ ′ɺ , etc.).  
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(2)    xν = A xν µ
µ

′    ( , ,α ω′ ′…  =0 ,1 , ,n′ ′ ′… ) 

 
and theAν

µ
′ are any (n+1)2 constants with non-vanishing determinant ∆. 

One can also proceed in a somewhat different way as follows:  One starts with an 
En+1, which is given by the Cartesian coordinates xν, and subjects them to homogeneous 
linear coordinate transformations of the given group Ln+1.  Let *

1nE + be the space that 

results from omitting the origin O from En+1.  Two points xν, xν of *
1nE + are collinear with 

O when and only when: 
(3)    xν = ρxν,  ρ ≥ 0. 
 
This relation between xν and xν is reflexive, symmetric, and transitive, and is invariant 
under the group Ln+1; it may then be regarded as an equivalence relation, which we will 

also refer to as coincidence.  The sets of coincident points, hence, the lines through O, 
may be regarded as “points” of a new n-dimensional space that we denote by n+1E.  In 
order to avoid confusion, we briefly refer to a “point of n+1E” as a (contravariant) 
position, whereas we reserve the expression (contravariant) point for the points of *

1nE + .  
There exist the following relations between the three notions of “point,” “position,” and 
“system of n+1 numbers”:  A system of n+1 numbers that do not all vanish uniquely 
determines a point, as well as a position, as long as one says which coordinate system 
they belong to.  A given point will thus be represented by different systems of numbers 
that determine it in different coordinate systems, which relate to each other as in (2); in a 
single coordinate system, however, different systems of numbers determine different 
points.  However, in a single coordinate system two different systems of numbers can 
very well determine the same position, namely, from (2), when they differ only by the 
same factor ρ ≥ 0. 

In pure projective geometry, only the concept of position has any meaning.  Points, 
along with systems of numbers, serve only to facilitate computation; they may not, 
however, enter into projective-geometrical theorems. 

Finally, one may consider functions f(xν) that depend upon only the ratios of the xν 
up to a factor ϕ(ρ) that depends only upon ρ: 

 

                                                                                                                                            
The associated series of symbols is a series of number with the same alteration (e.g., 0,0 ,0 ,0, 0, 0′ ′′ ′ɺ ).  We 
thus use: 

   

, , 0,1, , ,

, , 0 ,1 , , ,

, , 0,1, , , etc.

n

n

n

α ω
α ω
α ω

= 
′ ′ ′ ′ ′= 
= 

… …

… …

… …

 in n+1H, 

   
, , 1, , ,

, , 1 , , , etc.

h l n

h l n

= 
′ ′ ′ ′= 

… …

… …

  in Xn, 

   
, , 1, , ,

, , 1 , , , etc.

a g

a g

= 
′ ′ ′ ′= 

… …

… …

m

m
 in an embedded n+1H. 
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(4)    f = f(ρxν) = ϕ(ρ) f(xν). 
 
One easily proves that ϕ(ρ) always has the form ρr, in which r is any constant number 
(the degree of f(x)):  The functions are homogeneous: 
 
(5)     f = ρr f. 
 
Equation (5) is equivalent to the Euler homogeneity condition: 
 

(6)    xµ ∂µ  f = rf, ∂µ  =
xµ
∂

∂
 

or also to: 
xµ ∂µ  log f = r. 

 
If r = 0, hence, f = f is homogeneous of degree zero, then we call f a function of 

position.  If f is homogeneous of rth degree then the partial derivatives ∂µ f are 

homogeneous of (r – 1)th degree: 

 

(7)    fµ∂  =
( )f x

x

ν

µ
ρ

ρ
∂

∂
= ρr-1∂µ  f, 

(8)   xλ ∂λµ  f = (r – 1) ∂µ  f;  ∂λµ  = ∂λ.∂µ . 
 
 

6.  We would also like to introduce homogeneous coordinates when the n-
dimensional space is subjected to the general group Gn of all uniquely continuously 

invertible and sufficiently many times continuously differentiable transformations (in this 
case, the space will be denoted by Xn).  If Xn is given by the ur-variables ξi then we 
further take an arbitrary variable x0 ≥ 0 11) and introduce the xν precisely as before by way 
of (1).  Now, if the ξi are subjected to an arbitrary transformationi iξ ξ ′→ from Gn, then 

the ratios of the new homogeneous coordinatesxν ′ are functions of the ratios of the xν, i.e., 
thexν ′ are themselves homogeneous functions of null degree of the xν, up to a common 
factor λ.  We further assume that the function λ is homogeneous of first degree 12) 13) in 
the xν (cf., however, § 15).  It follows that thexν ′ are also homogeneous of first degree, 
and, moreover, that they are unique and sufficiently many times differentiable in the 
neighborhood in question, whereas the functional determinant itself is nowhere 
vanishing. 

                                                
 11 This x0 corresponds to the 

0xe of Veblen [5]. [6], [7]. 
 12 Such a thing is completely different from a linear function.  The latter has the form aλ x

λ, in which the 
aλ are constants; the former can also be given this form (but not uniquely); however, the aλ are then 
arbitrary functions of the ratios of the xν. 
 13 The condition that the degree shall equal one can also be omitted, provided that it is ? 0 (otherwise, 
thexν ′ would be dependent).  Cf., also footnotes ?) and  ?), along with § 15. 
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The situation becomes clearer when we choose the second path.  The total system of 
n+1 numbers xν define an (n+1)-dimensional space Xn+1.  If it is subjected to the group of 
all uniquely invertible and continuous and sufficiently many times differentiable 
transformations then neither the notion of “line through the origin” nor the notion of 
origin itself is invariant.  We thus reduce from the group Gn to the subgroup Hn+1, which 

consists of all transformationsx xν ν ′→ in Gn+1 for which thexν ′ are homogeneous of first 

degree 14) in the xν: 
(9)   xν ′ = ( )x xν µρ′ = ρ xν ′ = ( )x xν µρ ′ . 
 
We denote an Xn+1 with this sort of reduced transformation group by Hn+1.  The (now 
invariant) lines through the (now invariant) origin of this Hn+1 can, moreover, be regarded 
as “points” of a new space that we denote by n+1H.  We once again call them 
(contravariant) positions, and once again reserve the term (contravariant) position for the 
points of *

1nH + , i.e., Hn+1 without the origin.  In order to give a position, one must give, 

first, one coordinate system, and second, a system of n+1 numbers that do not all vanish. 
The group Hn+1 includes a subgroup H* that consists of the coordinate 

transformations in Hn+1 for which 0x ′ = x0, and which is (einstufig) isomorphic with the 

group Gn of transformations of the ξi ; the group Hn+1 is then no less “enveloping” than 

the group Gn.  The fact that Hn+1 can be completed by an “imaginary” manifold x0 = 0 is 

inessential since one must usually restrict oneself to a neighborhood (that is chosen to be 
arbitrary small) in differential geometry, in such a way that the imaginary manifold can 
be ignored. 

One must observe that the mapx xν ν→ , although it is a change in the numbers that 
determine the same point, is not to be viewed as a coordinate transformation.  Namely, 
from the degree condition (9), this is possible when and only when the proportionality 
factor ρ is a function of position, hence, homogeneous of null degree in the xν.  The 
invariance requirement, upon which the definition of projectors (§ 3) rests, thus relates 
only to the group Hn+1, not, however, to the change of factor (3) when ρ is not 

homogeneous of null degree. 
We now call a differential geometry in n+1H purely projective when its theorems 

involve only the notion of position, but not the notion of point.  The differential geometry 
that is introduced and developed in the following sections is not purely projective, but 
projective in a broader sense, since we are indeed working with homogeneous functions 
exclusively, but the degree of these functions will also be considered, which introduces a 
non-projective element. 

 
 
 
 
 
 

                                                
 14 Cf., the previous footnote. 
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§ 3. 
 

The quantities. 
 
7.  The group Hn+1 induces a linear group Ln+1 = Ln+1(x

ν ) at every point xν.  It is 

composed of matrices with constant coefficients, which come about when one substitutes 
the coordinates for the point in question into the functions: 

 

(10)    Aν
µ

′ = xν
µ

′∂ ,  ∂µ =
xµ
∂

∂
. 

 
The inverse matrix to (10) is: 

(11)    Aν
µ ′ = xν

µ ′∂ ,  µ ′∂ =
xµ ′
∂

∂
. 

 
For the sake of later use, we remark that theAν

µ
′  (and likewise theAν

µ ′ ) are homogeneous 

of null degree, hence, they are pure functions of position: 
 
(12)    Aν

µ
′ = Aν

µ
′ (ρxλ ) = Aν

µ
′ . 

 
Due to the Euler homogeneity condition this is equivalent to: 
 
(13)    x Aρ ν

ρ µ
′∂ = 0. 

 
We now associate each point xν with an En+1, in such a way that each coordinate 

transformation of Hn+1 from Hn+1 induces a coordinate transformation of E n+1 from Ln+1, 

namely, the one that is given by the associated matrix (10).  In order to give a point of 
En+1 one must first give a coordinate system (e.g., xν) in Hn+1, and secondly a system of 
n+1 numbers.  The coordinate system in Hn+1 is, in fact, uniquely associated with a 
coordinate system in En+1; the given numbers are the coordinates of the points of En+1 
relative to this associated coordinate system.  Ifvν ′ are the coordinates of the same point 
relative to the coordinate system in En+1 that is associated with the coordinate 
systemxν ′ then thevν ′ must go over to the vν by means of a transformation of Ln+1: 

 
(14)   vν ′ = Aν

µ
′ vµ ;  vν = A vν µ

µ
′

′ . 

 
A point field in Hn+1 is composed of a system of n+1 (single-valued, continuous, 

sufficiently many times differentiable) functions of the coordinates that one of the 
coordinate systems in Hn+1 is associated with, in such a way that the functions that are 
associated with two different coordinate systems go to each other by means of associated 
coordinate transformations of Ln+1 according to (14).  Geometrically, a point field simply 

means that each point of Hn+1 is associated with a point of the associated (“local”) En+1. 
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Now, if xν, xν are any two coincident points of Hn+1 then we identify the two 
associated En+1 with each other in such a way that we can identify each point of one En+1 
with that point of the other En+1 that has the same coordinates.  This condition is satisfied 
for any coordinate system whenever it is satisfied for one coordinate system, since theAν

µ
′  

have the same values at xν andxν , due to (12).  Thus, the local n+1E (which we construct 
out of the En+1 as in § 2, 5) to which the coincident points of Hn+1 belong will be 
equivalent and can be identified with each other. 

In general, a point field associates a one-dimensional family of points with each 
position in n+1H, hence, a curve in the local En+1.  In the event that this curve is a straight 
line through the origin of En+1, or also contracts to this origin, we call the point field a 
position field.  Such a construction thus associates each position in n+1H with a unique 
position in the associated local n+1E or with the origin. 

Thus, in order for a point field to be a position field it is necessary and sufficient that 
thevν ≡ vν(ρ xν) be proportional to the vν ≡ vν (xµ ).  We would like to further assume 
something rather far-reaching, that (i.e., we restrict ourselves to such positions fields for 
which) the proportionality factor is a power of ρ whose exponent r (the degree 15) of vν) 

is constant over the n+1H, i.e., that the system of numbers are all homogeneous functions 
of the same (rth) degree in the ur-variables: 

 
(15)    vν = ρr vν . 16) 
 

                                                
 15 Our notion of degree has nothing to do with the notion of  the “degree of an affinor” (R.K., pp. 23), 
i.e., it is actually the degree (number of indices) of the associated form, which is often also called the 
degree.  It appears here for the first in the ordinary elementary sense (the degree of the system of numbers 
when considered to be functions of the ur-variables) of differential geometry, in which, up till now, one 
does not ordinarily bother with the type of functional dependency of the quantities upon the ur-variables 
(except for differentiability, resp., analyticity, requirements). 
 16 One can also regard the association xν → ρxν as a coordinate transformation (which is not possible for 

a general ρ in our theory; cf. § 2, 6, conclusion) and introduce densities of index (weight)
1n+
r

 instead of 

quantities of rth degree.  Such a transition must then transform under the unimodular group (∆ = Det (vλ x
ν) 

= ) according to (14), although like a “point density” according to: 
 

(14a)    ν ′
V = 1n Aν µ

µ
′+∆

r

V . 

 
However, it seems to me that the notion of volume (and thus, the notion of density) possesses a typically 
non-projective (affine) character to a far greater degree than the notion of degree, in such a way that 
statement of the theory that is given in the text has merit.  One will first arrive at a purely projective theory 
(cf. § 2, 6, conclusion) when one combines the Ansatz (14a) with the footnote ?) that was mentioned, and 
defines a position by way of: 

(14b)    vν ′
= rAν

µ
′
vµ  

 
with a completely arbitrary factor r; the geometry that is thus defined will show a certain agreement with 
the theory of pseudo-quantities of Schouten and Hlavatý (cf. ?).  On this, cf. § 15. 
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Two position fields ur, vr are coincident when and only when they differ by a scalar factor 

(see below): 
uν = p vν. 

 
In order for this to be true, it is necessary and sufficient that: 
 

u[λ vµ] = 0. 
 
 

8.  Analogously, we define a covariant position field wµ of degree r by means of: 

 
(16)   wµ ′ = A wν

µ ν′ ,  wµ = A wν
µ ν

′
′ , 

(17)     wµ = ρr wµ. 

 
Geometrically, wµ describes a hyperplane (nE) in the local n+1E.  It includes the 
contravariant position vν when and only when: 
 
(18)     vρ wρ = 0. 
 

We will define general quantities that we would like to call  projectors, 
corresponding to the affinors of affine geometry 17), as a system of (n+1)r+s homogeneous 
functions of rth degree that transform like a product of r covariant and s contravariant 

points: 
(19)   1

1

s

r
X ν ν

λ λ
′ ′• •

′ ′
⋯ …

…
= 1 1 1

1 1 1

r s s

r s r

v vA Xρ ρ σ σ
λ λ σ σ ρ ρ

′ ′
′ ′
… … i⋯i …

… … …
 18) 

(20)    1

1

s

r
X ν ν

λ λ
• •⋯ …

…
= ρr 1

1

s

r
X ν ν

λ λ
• •⋯ …

…
. 

 
Geometrically, a projector describes some algebraic relationship in the local n+1E. 

As usual, one can also refer a quantity to two or more different coordinate systems.  
Thus, e.g., in X ν

λ µ
⋅ ⋅
′ ′ , both of the covariant indices are referred to the system ofxν ′ and the 

contravariant index, to the system of xν: 
 

(21)    X ν
λ µ
⋅ ⋅
′ ′ = A Xρσ ν

λ µ ρσ
⋅ ⋅

′ ′ = A Xν ν
ρ λ µ

⋅ ⋅
′ ′ ′ . 

 
Finally, a scalar is a homogeneous function of rth degree that assumes values that are 

independent of coordinate system at each point.  A scalar is a position function when and 

                                                
 17 We use the expression “affine geometry,” as opposed to projective (differential) geometry, for the 
general linear displacement IIIA α in the classification scheme of R.K., pp. 75, hence, without regard for 
the symmetry condition. 
 18 For the sake of simplicity, we shall not recall the notation for unit-projectors and differential symbols: 
 

Aνσ
λρ = A Aν σ

λ ρ , Bνσ
λρ = B Bν σ

λ ρ , ∂λµ  = ∂λ ∂µ =
2

x xλ µ
∂

∂ ∂
, ∇λµ  = ∇λ ∇µ . 
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only when its degree is zero.  Two quantities that differ only by a scalar factor have the 
same meaning geometrically.  A scalar of r

th degree may always be brought into the form 

prq (e.g., (x0)r q), in which p is an arbitrarily chosen, but fixed, non-vanishing scalar of 

first degree and q is a scalar of null degree.  This was done by Veblen (cf., footnote ?) 
and ?)). 

 
9.  Examples. 
 
a)  The contact position xν.  By means of the Euler homogeneity condition: 
 

(22)     x Aρ ν
ρ

′ = x xρ ν
ρ

′∂ = xν ′ , 

 
which is equivalent to (9), vν = xν satisfies equation (14), i.e., the n+1 numbers determine 
a point of the first degree in En+1 that is associated with the point xν in Hn+1; we can then 
think of the point xν in Hn+1 as being identified with the point xν in the associated En+1, 
just like the associated position in n+1H and n+1E.  In affine geometry (cf., last footnote) 
the xv transform nonlinearly; there, the contact position corresponds to the null point 
(null-vector) in En+1. 
 

b)  The unit projectorAν
λ .  If both of its indices refer to the same coordinate system 

then its values are equal to 1 (0, resp.) whenever both of the indices are equal (different, 
resp.).  However, if one refers the unit projector to two different coordinate systems − 
e.g., xν, xν ′ − then it represents the functional matrixxν

λ
′∂ ( xν

λ ′∂ , resp.), which we have 

denoted by the same kernel symbol A all along (cf., footnote ?)).  The degree of Aν
λ  is 

equal to zero (cf. (13)).  Geometrically, a quantity of the typeX ν
λ
⋅ always means a single-

valued (but not necessarily one-to-one) projective map (collineation) of the local n+1E 
onto itself: an arbitrary position vν in n+1E will be mapped to the positionX ν

λ
⋅ vν; Aν

λ  is the 

identity map. 
 
c)  The differentials of the xν do not determine any position field.  Indeed, if they 

transform according to (14) 
(23)    dxν ′ = Aν

µ
′ dxµ ; 

 
however, they are not homogeneous: 
 

(24)   dx
ν

=dxν = ρ (dxν + xν d log ρ) . 
 
They do define a point field (as long as each point in Hn+1 is uniquely associated with a 
line element dxν, hence, a point in the local En+1), but the point of En+1 that is associated 
with the coincident points of the position xν does not define a line through the origin, but 
a completely undetermined curve in the plane in En+1 that is spanned by origin and both 
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of the points xν and dxν.  The basis for the non-existence of a covariant differential that 
was mentioned in the introduction resides in equation (24). 
 

d)  On the other hand, any infinitesimally neighboring position yν = xν + dxν in n+1H 
uniquely determines, up to quantities of second order, a position in n+1E that has the same 
coordinates relative to any coordinate system in n+1E, up to quantities of second order, as 
the position yν in n+1H relative to the associated coordinate system in n+1H.  One then has 
(up to quantities of second order!): 

 
(25)    yν ′ = x dxν ν′ ′+ = A x A dxν µ ν µ

µ µ
′ ′+ = A yν µ

µ
′  

and: 
(26)   yν = x dxν ν+ = ρxν + ρ dxν  + xν dρ = (ρ + dρ) yν. 
 
The position yν in n+1H can therefore be identified with the position yν in the local n+1H 
(that is associated with the position xν in n+1H), i.e., an infinitesimal neighborhood of the 
contact point xν in n+1H will be uniquely embedded in the local n+1E, up to quantities of 
second order.  Since yν is then embedded in the n+1E belongs to xν, along with the n+1E 
that belongs to yν, there thus exists a link (of first order) between the various local n+1E.  
We thus point out that the differentials dxν are not determined by the being given the 
positions xν and yν; this is the case only when each point xν (yν, resp.) is distinguished.  
Nonetheless, the position yν is determined by being given the position xν and the 
differentials dxν; on the contrary, any position on the line through xν and yν may be 
obtained by a particular choice of the point that represents xν. 

e)  On the other hand, this connecting line is indeed determined, and therefore the 
“bi-position” Jλµ = x[λ yµ] = x[λ dxµ]: 

 
(27)    J λ µ′ ′ = A Jλ µ ρσ

ρσ
′ ′ , 

(28)    J λµ = ρ (ρ + dρ) Jλµ. 
 
Therefore, there are no line elements in projective differential geometry, but only 
directions, i.e., lines through the contact point and an infinitesimally neighboring point in 
the local n+1E. 
 

f)  A (contravariant) (n+1)-point 0 1 nJν ν ν… is a projector whose values are +J, −J, 0, 
whenever the indices v0, v1, …, vn represent an even (odd, resp.) permutation of the 
numbers 0, 1, …, n (contain two equal numbers, resp.).  Therefore, J is any function 
(“density”) that takes on the factor ∆ under a coordinate transformation.  One obtains an 
(n+1)-point as an alternating product of any n+1 linearly independent points.  If J is a 
homogeneous function then the (n+1)-point also determines an (n+1)-position.  If J is (in 
a certain coordinate system) equal to one then (for this coordinate system) 0 1 nJν ν ν… is the 
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unit (n+1)-point (-position, resp.) 19).  If one were to take J to be equal to one in any 
coordinate system then0 1 nJν ν ν… would no longer be a projector, but a density; however, the 
latter (which we will not usually use) is not uniquely determined, without further 
assumptions. 

 
g)  A covariant (n+1)-point (-position, resp.) is defined analogously.  One can 

choose 
1

J
± , 0 for its values, in which J has the meaning described in f).  If the co- and 

contravariant (n+1)-points are associated with each other in that way then the 
computations in §§ 3, 10, and 13 yield the frequently-used relations: 

 
(29)  0 1 1

0 1 1

r r n

r r n
J Jν ν ν σ σ

λ λ λ σ σ
+

+

… …

… …
= (n − r)! (r + 1)! 0

0

[ ]
[ ]

r

r
Aν ν

λ λ
…

…
, 

and, in particular: 
(30)   0

0

n

n
J Jν ν

λ λ
…

…
= (n − r)! 0

0

[ ]
[ ]

r

r
Aν ν

λ λ
…

…
, 

(31)   1

1

n

n
J Jνρ ρ

λρ ρ
…

…
= n! Aν

λ , 

(32)   0 1

0 1

n

n
J Jρ ρ ρ

ρ ρ ρ
…

…
= (n − 1)! 

 
§ 4. 

 
The m+1H in n+1H. 

 
10.  Let an Hm+1 (m < n) be given in Hn+1 in such a way that the xν are given as 

homogeneous functions of the first degree 20) of the m+1 homogeneous parameters xa (a, 
…, g = 0, 1, …, m); let these parameters be subject to the transformation of the group 
Hm+1 that corresponds to the group Hn+1  that was introduced above.  At the same time, 

one is then given a m+1H in n+1H.  Furthermore, let the local spaces Em+1 and m+1E be 
introduced, as above.  As usual, there exist the quantities: 

 

(33)   aBν = ∂a x
ν,   ∂a = ax

∂
∂

, 

 
which associate each (contravariant) point (position, resp.) va in the local m+1E with a 
unique point (position, resp.): 
(34)     vν = aBν va 

 
in the local n+1E, which we can think of being identified with va, and for this reason we 
shall denote them with the kernel symbol v.  Thus, the local m+1E also appears to be a 

                                                

 19 In R.K., pp. 42, the non-vanishing values of the unit n-vector were chosen to be equal to1

!n
, instead of 

= 1.  We have changed the factor, since it is more customary to choose the unit volume of a parallelotope 
to be a simplex with side = 1.  However, formulas (29) to (32) will then become a little less simple. 
 20  The condition that the degree = 1 can also be omitted here.  Cf., footnote ?). 
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manifold that is embedded in n+1E.  In particular, by means of the Euler homogeneity 
condition (6), one has: 
(35)    xa

aBν  = xa ∂a x
ν = xν , 

 
such that, in particular, the point xa in m+1E will be identified with the point xν in n+1E.  
Thus, there are four points (positions, resp.) x that are identified with each other and lie in 
n+1H, m+1H, n+1E, and m+1E, respectively.  Correspondingly, we have immediately denoted 
the parameter in m+1H by xa (instead of, e.g., ua). 

Each hyperplane (hence, each nE) wλ in the local n+1E is associated with a hyperplane 
(hence, an mE): 
(36)    aw′ = aB wλ

λ  

 
in the local m+1E.  Geometrically, aw′  is the intersection of wλ with m+1E.  Objects on m+1E 

that are induced from objects in n+1E (or conversely) by intersection or projection, which 
might not be uniquely determined, will be denoted by attaching a prime to the kernel 
symbol. 

For the sake of later use, we remark thataBν is homogeneous of null degree (in the xa): 

 
(37)    xb∂b aBν  = xb ∂ab x

ν = 0. 

 
11.  If one introduces a quantity 0 mc cJ′ … in m+1H that is analogous to the one in 9. f) 

then the contact m+1E in m+1H will also be represented by the (m+1)-point: 
 

(38)   0 mJ ν ν′ … = 0 0

0

m m

m

c c
c cB Jν ν ′… …

…
= (m + 1)! 0

[0 ]
mBν ν…

…m , 

 
or by the covariant (n – m)-point: 

(39)    
1m n

tλ λ+…
= 0

0

1

( 1)!
m

n
J J

m
λ λ

λ λ ′
+

…

…
. 

Thus, one has: 

(40)   0[ ]m
cJ Bν ν ρ′ … = 0, 

1

p

m n at B
λ

λ λ+ …
= 0  (m + 1 ≤  p ≤ n). 

 
Geometrically, (40) represents the condition for the points of m+1E to be incident with the 
m+1E that is represented in nE-coordinates.  In general, one can represent the tangential 
m+1E in mixed coordinates by way of: 
 

(41)   r m

r n

c ctλ λ
⋅ ⋅⋯ …

…
= 0 1 0

100

1

!
r m

c cr
n

c cJ B J
r

λ λ
λ λ

−
− ′

…

… …

…
  (0 ≤ r ≤ m + 1). 

 
12.  The case m = 0 is trivial.  Therefore, since the xν must be homogeneous functions 

of first degree in the single coordinate x0, the equations for 1H ultimately read like: 
 

(42)     xν = aν x0, 
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in which the aν are constants; 1H is therefore a single position. 
For m = 1, 2H is a “binary” manifold, hence, a curve.  Correspondingly, the tangent 

through the bi-point will be represented by: 
 

(43)   J λµ′  = ab
abB Jλµ ′  = [01]2Bλµ . 

 
For m = n – 1 the tangential hyperplanes nE or hypersurfaces nH will be given, 

analogously to (39), (41), by: 

(44)   tλ  = 0 1 0 1
0 10 1

1

!
n n

a ann

a aJ B J
n

ν ν
ν ν λ

− −
−−

′
…

… …

…
= 

    = (n + 1) [0 1]
[0 1 ]n nB Aλ−

−
…

…

n , 

or by: 

(45)   ctλµ
⋅ ⋅  = 0 2 0 2

0 20 2

1

( 1)!
n n

a ann

a a cJ B J
n

ν ν
ν ν λµ

− −
−−

′
−

…

… …

…
= 

    = n(n + 1) [0 2 ]
[0 2 1 ]

[ ] 1
n n n cB A Bλ µ−

− −
−…

…

n n , 

 
etc.  The incidence condition (40) reads like: 
 
(46)    tλ aBλ  = 0, 
or: 
(47)    c

abt Bλµ
λµ
⋅ ⋅  = 0, 

etc. 
 

13.  m+1H is taut if an n-mE is given at every position in the local n+1E that has no 
points in common with the tangential m+1E.  Let this n-mE be represented by the (n – m)-
point 1 n mnν ν −⋯ ; let it be normalized such that: 

 
(48)    1

1

n m

n m
t nν ν
λ λ

−

−

⋯

⋯
= (n – m)! 21). 

If one then sets: 

(49)   cBλ = 1

1

1

( )!
n m

n m

ct n
n m

µ µ
λµ µ

−

−

⋅ ⋅ ⋅

−
⋯

⋯
= 

  = 0 1 0 1 1
0 10

1

!( )!
m m m m n

c cmn

c c cJ J B A n
m n m

λ λ λ λ λ
λ λ λ

− − +
−

′
−

⋯

⋯ ⋯ ⋯

⋯
= 

  = (m + 1)(n – m) |01 1[ | 1 ]
[01

m c m m nB A nλ
− +⋯ ⋯

⋯m-1m] , 

 
then, due to (30), (31), (39), (48), one has: 
 

                                                
 21 Cf., the “first normalization condition” (193) R.K., pp. 157; consistent with footnote ?), the factor in 
R.K is chosen differently. 
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(50)   c
aBλ

λ = c
aB Bλ

λ = c
aB = ∂a x

c =
1, ,

0, .

c a

c a

=
 ≠

 

 
As in affine geometry, one can also associate any contravariant position vν in n+1E 

with its projection onto n-mE”: 
(51)    cv′ = cBλ vν, 

 
and any covariant position (i.e., mE) wa in m+1E can be associated with its “contact 
hyperplane (i.e., nE) with n-mE”: 
 
(52)    wλ =

aBλ wa, 

 
which is not uniquely possible without tautness. 
 

§ 5. 
 

Projective connections. 
 

14.  A projective connection in n+1H can be given in four ways: 
 A.  By defining a covariant derivative. 
 B.  By defining a covariant differential. 
 C. By defining a map from any n+1E to the infinitesimally close ones 
(“displacement”). 
 D.  By defining a system of curves (geodetic lines; “paths”). 
 

The four corresponding types of definition of an affine connection are equivalent to 
each other and will all be governed by a system of n3 functions k

ijΓ  with well-known 

transformation laws.  We will see that here in projective geometry, as well, the four types 
of definition will be governed by a corresponding system of functions, together with a 
covariant point, but they are by no means equivalent to each other: Namely, the 
corresponding functionsν

λµΠ  cannot be chosen arbitrarily, but they must satisfy certain 

conditions that are different for A, B, and D. 
 
15.  We would now like introduce a corresponding system of (n + 1)3 functions ν

λµΠ  

in n+1H, with a corresponding law of transformation: 
 

(53)    ν
λ µ

′
′ ′Π = A A Aλµν ν ν ρ

λ µ ν λµ ρ λ µ
′ ′

′ ′ ′Π + ∂ , 

 
without concern for which method of definition of a projective connection we have 
chosen. 

We would further like to assume that the νλµΠ  are functions of position, hence, 

homogeneous functions, e.g., of kth degree. 
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16. As in affine geometry there exist: 
the torsion quantities: 
(54)    S ν

λµ
⋅ ⋅ = [ ]

ν
λµΠ  

 
and the curvature quantities: 
 
(55)   N ν

ωµλ
⋅ ⋅ ⋅ = [ | | ] | | | ]2 2ν ν ρ

ω λ µ ρ ω λ µ− ∂ Π − Π Π , 

 
which are homogeneous of kth ((k + 1)th, resp.) degree. 

In contrast to affine geometry, however, there exist two quantities 22) of null order 
(and (k + 1)th degree): 

(56)    P ν
λ
⋅ = ν

λµΠ xµ, 

(57)    Qν
µ⋅ = ν

λµΠ xλ = 2P S xν ν λ
µ λµ
⋅ ⋅ ⋅+ , 

 
as writing out the transformation formulas, by the use of (13), yields immediately. 
 

§ 6. 
 

Covariant derivatives. 
 

17.  As usual, we would like to establish the covariant derivative of a quantity by the 
following three conditions: 
 A.  The covariant derivative of a quantity is itself a quantity (in particular, it is 
therefore homogeneous). 
 B.  The difference between the covariant derivative and the ordinary (partial) 
derivative of a quantity is a homogeneous linear function of the values of the quantity. 
 C.  The covariant derivative of products and contractions of arbitrary quantities 
satisfies the Leibniz rule for differentiation. 

From the second condition, it follows that the most general form for a covariant 
derivative of a scalar of rth degree must be: 

 

(58)     ∇µ q = ∂µ q + Qµ

r

q. 

 

Thus, Qµ

r

can certainly be of degree r, but it can no longer be dependent upon q itself.  If 

one defines ∇µ qr according to (58) then condition C yields: ∇µ qr = rqr−1∇µ q; hence, 

when q is a scalar of null degree: 
0

Qµ = 0.  Furthermore, if the degree r of q is arbitrary 

and p is a scalar of first degree then C, when applied to ∇µ q p−r, and together with 
0

Qµ = 

0, yields: 
                                                
 22 These two quantities roughly correspond to the0

c
aA ( 0

c
aA , resp.) in Sch. and G., etc.  Cf., § 14. 
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Qµ

r

= r Qµ , 

 

in which we have written Qµ, in stead of
1

Qµ . 

Hence, (58) takes the form: 
 

(59)    q Q qµ µ µ∇ = ∂ + r . 

 
Since ∂µ q is homogeneous of (r – 1)th degree and ∇µ q must be homogeneous, Qµ must 
be homogeneous of degree −1.  Since ∇µ q, like ∂µ q, transforms like a covariant point, 
Qµ must also be a covariant point. 

 
18.  Condition B then gives the most general form for the covariant derivative of a 

point of degree r: 

(60)    ∇µ v
ν = ∂µ v

ν + ν
λµΠ

r

vλ . 

 
If one substitutes vν = pr uν in this, in which p is an arbitrary scalar of first degree, then uν 
is a point of null degree, and one finds: 
 

(61)    ν
λµΠ

r

 = ν
λµΠ + r Aν

λ Qµ , 

 

when we write ν
λµΠ , instead of

0
ν
λµΠ .  If one substitutes (61) in (60) then this equation 

takes the form: 

(62)    .v v v Q vµ µ ν λ ν
µ µ λµ µ∇ = ∂ + Π + r . 

 
The condition that ∇µ vν must be a quantity yields the well-known transformation 

laws (53) for the ν
λµΠ .  Since the ∂µ vν are homogeneous of (r – 1)th degree, the ν

λµΠ (like 

the Qµ) are homogeneous of (−1)th degree: 
 

I 23) 
 
 

The quantities Pν
λ⋅  and Q ν

λ
⋅  that were introduced in § 5, 16 thus have degree 0.  The 

torsion quantities and curvature quantities have degrees −1 and −2, resp. 
Thus, we have: 
 

                                                
 23)  The numbering by Roman numerals relates to § 11.  

 
xρ ∂ρ 

ν
λµΠ = − ν

λµΠ ; xλ ∂λ Qµ = − Qµ 



Projective connections in n-dimensional spaces                                     19 

Theorem 1.  In order for a system of functions νλµΠ  with the transformation law (53), 

together with a covariant point Qµ , to define a covariant derivative, it is necessary and 
sufficient that the ν

λµΠ  and the Qµ are homogeneous of degree −1 24). 

 
19.  For a covariant point wλ of rth degree, application of the Leibniz rule to ∇µ wρ v

ρ 

yields: 

(63)    ∇µ wλ = ∂µ wλ  − ν
λµ

−
Π
r

wν , 

 

(64)    w w w Q wν
µ λ µ λ λµ ν µ λ∇ = ∂ − Π + r  

 
For a general quantity of degree r one finds, e.g.: 

 

(65)   

1 1 1 1 1

1 1 1

1 1

1 1 1 1

1

1

.

s s i i i i

r r r

s s

i i i r r

s

i

r

i

X X X

X Q X

ν ν ν ν ν ν ν ρν ν
µ λ λ µ λ λ ρµ λ λ

ν ν ν νρ
λ µ λ λ ρ λ λ µ λ λ

− +

− +

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

=

⋅ ⋅ ⋅ ⋅

=

∇ = ∂ + Π

− Π +

∑

∑

… ⋯ … ⋯ … ⋯ ⋯

⋯ ⋯ ⋯

………………… ⋯ … ⋯

⋯ ⋯ ⋯
r

 

 
We will denote a space in which a covariant derivative is defined by means of (59), 

(62), (64), (65) and satisfies condition I by n+1P. 
We should point out that Qµ itself transforms like a covariant point, although this is 

not the case for ρ
ρµΠ .  Unlike in the analysis of densities one therefore does not set Qµ = 

ρ
ρµΠ  25).  On the other hand, the equation: 

 

IV     0Qµ =  

is completely invariant, i.e., one can define a covariant derivative for which the ν
λµΠ

r

 are 

independent of r.  E.g., the operator: 

(66)     
0

µ∇ = ∇µ − r Qµ , 

 
which agrees with the operator ∇µ in affine geometry, because of (59), (62), (64), (65), is 
such a differential operator that is independent of r.  However, we would like to not make 

                                                
 24)  Whereas, for us, the degree of a quantity is reduced by one under covariant differentiation, for 
Veblen the “weight” of a quantity is invariant under covariant derivative.  On this, cf., § 14, 49. 
 25)  Except when one restricts oneself to unimodular (or at least constant modular) transformations and, 
as in footnote ?), introduces “densities,” which is what was done in most of the older presentations. 
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the assumption IV, since we will see in § 7 that it excludes the existence of a covariant 
differential 26). 
 

20.  Covariant differentiation of (59) and alternation yields: 
 

(67)    ∇[ωµ] q  = T qρ
ωµ ρ

⋅ ⋅ ∇  + r Uωµ q, 

in which we have set: 
(68)    T ν

ωµ
⋅ ⋅ = [ ]S A Qν ν

ωµ ω µ
⋅ ⋅ + , 

(69)    Uωµ  = ∇[ω Qµ] −T Qρ
ωµ ρ

⋅ ⋅ . 

 
Covariant differentiation of (62), (64), and alternation yields: 
 

(70)   ∇[ωµ] vν  =
1

2
N v T vν λ ρ ν

ωµλ ωµ ρ
⋅ ⋅ ⋅ ⋅ ⋅− + ∇

r

 = 

    =
1

2
N v T v U vν λ ρ ν ν

ωµλ ωµ ρ ωµ
⋅ ⋅ ⋅ ⋅ ⋅− + ∇ + r  

(71)   ∇[ωµ] wλ  =
1

2
N w T wν ρ

ωµλ ν ωµ ρ λ

−
⋅ ⋅ ⋅ ⋅ ⋅+ + ∇

r

 = 

    =
1

2
N w T w U wν ρ

ωµλ ν ωµ ρ λ ωµ λ
⋅ ⋅ ⋅ ⋅ ⋅+ + ∇ + r . 

 
Formulas (67), (70), (71) differ from the corresponding formulas of affine geometry 

27) solely by the facts that, firstly, S ν
ωµ
⋅ ⋅  is replaced byT ν

ωµ
⋅ ⋅ , and secondly, that the term in 

Uων appears, which has degree r and is proportional to differentiated quantities, as the 

following relation, which is a result of (66), yields: 
 

(72)   
0 0

[ ] S ρ
ωµ ρωµ

⋅ ⋅∇ − ∇ = =[ωµ] −T ρ
ωµ ρ

⋅ ⋅ ∇  − r Uωµ . 

 
21.  In addition to the first identity 28), which is trivial, the curvature quantities 

satisfy the second identity 29): 
 

(73)   N ν
ωµλ
⋅ ⋅ ⋅ = [ ] [ ] [ ]2 4 2S S S Q Sν ρ ν ν

ω µλ ωµ ω ρ ω µλ
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ + + = 

    = [ ] [ ] [ ]2 4 2T T T U Aν ρ ν ν
ω µλ ωµ ω ρ ωµ λ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ + + , 

 

                                                
 26)  For this reason, assumption IV, in its essential features, may be said to belong to a true projective 
differential operator.  Without it, in any position-like n+1E a covariant point Qµ , hence, an nE, would be 
distinguished, which one can regard as at an “infinite distance” in n+1E; geometry would then take on a 
certain affine character again in the small. 
 27)  Cf., R.K., pp. 85. 
 28)  Cf., R.K., pp. 87. 
 29)  Cf., R.K., pp. 88. 
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which takes on the conventional formN ν
ωµλ
⋅ ⋅ ⋅ = 0 for the symmetric case, as well as for the 

quasi-symmetric case (cf., below 22) when Uων = 0, moreover.  For the Bianchi identity 
30), one finds: 
(74)   [ ]N ν

κ ωµ λ
⋅ ⋅ ⋅∇ = ]2T Nρ ν

κω µ ρλ
⋅ ⋅ ⋅ ⋅ ⋅− . 

 
Furthermore, there exist the following two identities, which do not occur in affine 
geometry: 
(75)   N ν

ωµλ
⋅ ⋅ ⋅ xλ = − [ ] [ ]2 4 2P P T x Sν ν ρ λ ν

ω µ ρ ωµ ω µ λ
⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ + + ∇  

(76)   N ν
ωµλ
⋅ ⋅ ⋅ xω = − P ν

µ λ
⋅∇ . 

 
Finally, we note the following relations: 
 

(77)  ∇λ x
ν = A Q Q xν ν ν

λ λ κ⋅+ + = 2QA P T xν ν ν µ
λ λ λµ

⋅ ⋅ ⋅+ − , 

(78)   xλ ∇λ v
ν = +P vν λ

λ
⋅ + r Q vν , 

(79)   xλ ∇λ wµ = − P wρ
λ ρ
⋅ + r Q wµ , 

in which we have set: 
(80)    Q = 1 + xρ Qρ . 
 
Equation (77) follows from (62) by means of the identity ∂λ x

ν = Aν
λ  by applying (57) and 

(68); (78) and (79) follow from (62) ((64), resp.) by means of (56) and the Euler 
homogeneity condition. 
 

22.  We call the projective connection quasi-symmetric when we have: 
 

Vβ     0.T ν
ωµ

⋅⋅ =  

 
The condition of quasi-symmetry says that the “curvature” ∇[ωµ] q, i.e., the rotation of the 
gradient of a scalar q of null degree, vanishes.  Quasi-symmetry expresses an essential 
property of projective connections by the symmetry condition: 
 

Vα     0.S ν
ωµ
⋅⋅ =  

 
The additional term[ ]A Qν

ω µ  in (68) originates in the fact that the gradient ∇µ q of a scalar 

of null degree is not of null degree, but has degree −1. 
 

Theorem 2.  The condition: 

VI     0Uµν =  

 

                                                
 30)  Cf., R.K., pp. 91. 
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is necessary and sufficient for Qµ to be a gradient 31). 
 

In fact, due to (67), (69) the integrability conditions for the equation: 
 

IVα     logQ gµ µ= ∇  

now read: 
(r – 1) Uωµ  = 0 , 

 
if r is the degree of g.  However, if r ≠ 1 then, due to (59), IVα would take the form: 

∂µ log g = 0, hence, g = constant, which is not possible for a scalar of first degree, except 
for the trivial case (which is usually excluded) in which g vanishes 32).  From IVa, and 
contraction with xµ, by means of (59), (80) it follows that: 
 

(81)     Q =
1

1− r
= const. 

and: 
(82)    Qµ = Q ∂µ log g = ∂µ log gQ. 
 
 

§ 7. 
 

The covariant differential. 
 

23.  In general, there exists no covariant differential.  If one sets: 
 

(83)     δ vν = dxµ ∇µ v
ν  

 
then the δvν indeed transform like the values of a covariant point, but they are not 
homogeneous:  one has (cf., (24), (78)): 
 

(84)   vνδ  = ρr {δ vν + (P vν λ
λ
⋅  + r Q vν) d log ρ}. 

 
A covariant differential obviously exists when and only when the coefficient of d log ρ 
vanishes, hence, for all of the points of a given degree r, when P vν λ

λ
⋅  + r Q vν = 0; hence, 

one has: 

                                                
 31)  The theory of Sch. and G. belongs to the special case Uωµ = 0 (cf., § 14, 49).  Since the older 
presentation may be regarded as a special case of the one in Sch. and G., and, moreover, the newer theory 
of Veblen that was mentioned in § 14, 47 is the same special case, in either event, we have Uωµ = 0. 
 32)  If g is homogeneous of rth degree and r ≠ 0 then log g is not homogeneous, and ∇µ log g does not 

actually exist.  However, we use the expression as an abbreviation for 1
g

g µ∇ , and also speak of 

“gradients,” accordingly. 
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IIa     P PAν ν
κ κ

⋅ =  

and: 

(85)     
P

Q
= const. = − r . 

 
Theorem 3.  There exists a covariant differential for quantities of each degree when 

and only when both of the following conditions: 
 

IIb     0P ν
κ

⋅ =  

 

IVb     0Q =  

are satisfied. 
 

Under the assumption IIa, (77), (78) take the form: 
 

(86) ∇λ x
ν = ( ) 2P Q A T xν ν µ

λ λµ
⋅ ⋅+ − , 

(87) xλ ∇λ v
ν  = (P + r Q) vν , 

 
and under the assumptions IIb, IVβ, they take the form: 
 
(88) ∇λ x

ν  = 2T xν µ
λµ

⋅ ⋅− , 

(89) xλ ∇λ v
ν  = 0 . 

 
These relations will be used in the calculations often. 
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§ 8. 
 

Position displacements. 
 

24.  A displacement is essentially a means of equating quantities that exist at one 
position xν in a space with the quantities that exist at an infinitesimally close position xν + 
dxν  33)  Assuming that one has a means of equating (“simultaneously measuring”) 
quantities that are defined to have the same type at the same position, which is the case in 
projective differential geometry for quantities of the same type and degree, one must then 
define what it means for two quantities of the same type to be called “equal” at two 
neighboring points; i.e., the quantities at xν shall be mapped to the quantities at yν.  
However, in order for this to be the case it suffices to map the two n+1E to each other in a 
one-to-one way 34). 

In fact, such a thing also exists in affine geometry, and indeed there is an affine map 
between neighboring En; it is given by the requirement of “covariant constancy,” i.e., the 
vanishing of the covariant differential.  For example, the vector vν is considered to be 
“equal” to the vector: 
(90)  vν

ɶ = vν + dvν  = vν – vλ ν
λµΓ  dxµ 

at yν. 
We now like to define a displacement in projective differential geometry, as well, 

and indeed, by means of a projective map between neighboring n+1E.  Furthermore, we 
would not like to derive such a thing by means of the covariant differential that was 
introduced in § 7 by means of the requirement of covariant constancy, but independently 
of that, so we will consider the covariant derivative of the most general map, and, from 
that, derive the conditions for theνλµΓ .  These two paths recommend themselves since 

they allow us to proceed in a purely geometric way (up to degree considerations), and 
because the starting point is general, since we will only assume a map of the n+1E, but not 
the En+1.  A displacement for arbitrary projectors will then follow from the displacement 
of the position. 

 
25.  Therefore, let there be given a projective map of the n+1E at a position xν to the 

n+1E at a neighboring point yν = xν + dxν.  It shall satisfy the following conditions: 
 
P.1.  As dxν →  0, it goes to the identity continuously.  By that, we shall mean the 

following:  If vν  is a position in the n+1E at xν and vν
ɶ is its image in the n+1E at yν then the 

ratios of the coordinates of vν
ɶ shall converge continuously to the ratios of the coordinates 

of vν whenever yν converges to xν.  Thus, the coordinates in both of the n+1E must be 
considered relative to two linear coordinate systems, which are both associated with the 
same coordinate system in the n+1H. 

 

                                                
 33)  Cf., D. van Dantzig, Die Wiederholung des Michelson-Versuchs and Relativitätstheorie, Math. 
Annalen 96 (1926), pp. 261-283, in particular, § 7, Metrik and Physik. 
 34)  Cf., J.A. Schouten [3], E. Cartan [2]. 
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P.2.  Coincident positions will be mapped to coincident positions.  Therefore, if u[λ 
vµ] = 0 then one also has[ ]u vλ µ

ɶ ɶ = 0. 
 
P.3.  The degree of a position is preserved by the map. 
 
This map then yields a map of the scalars at xν to the scalars at yν.  Namely, if uν, vν 

are two coincident points at xν, so uν = pvν, then, because of P.2, one can 
definepɶ byu pvν ν=ɶ ɶ ɶ .  We would like to make the following assumptions about this scalar 
map: 

S.1.  As dxν →  0, it goes to the identity continuously. 
S.2. Sums and products of two scalars go to sums and products of scalars (this 

follows from P.2). 
S.3.  The degree of a scalar is preserved by the map (this follows from P.3). 
 
Therefore, we must consider that for scalars of null degree a scalar field associates a 

number with each position of n+1H; a scalar field of higher degree maps the points at a 
position onto the number continuum in a well-defined way.  Only for scalars of null 
degree can we then infer, from the well-known theorem that the field of real numbers 
admits no continuous automorphism other than the identity, thatpɶ = p.  If we also allow 
complex numbers for function values then we must have pɶ = p for scalars of null degree, 
since the only non-identical automorphism that the field of complex numbers admits 
(namely, the one that takes any number to its conjugate) is not continuously reachable 
from the identity. 

From S.2, one then proceeds in the well-known way to infer that for scalars of the 

same degree,
p

p

ɶ
must be independent of p, i.e., thatpɶ must have the form: 

(91)  pɶ = pΘ
r

. 
 

Therefore, pΘ
r

 is a function in the 2(n + 1) arguments xν, yν, or briefly, a two-point 
function.  Furthermore, it follows from S.2 in a well-known way that: 
 

(92)  Θ
r

= Θr, 
 

in which we have written Θ, instead of
1

Θ ; (92) is valid at least for rational degrees, so we 
shall restrict ourselves to such numbers.  If we develop Θ as a power series in dxν with 
coefficients that depend only upon xν, and no longer on yν, and we truncate the 
development at the terms of second order, then this shows that Θ must have the form: 
 
(93)  Θ = 1 – Qµ dxµ , 
 
since S.1 implies that the first term must equal one.  The truncation of the development is 
justified since we call two displacements “equal” when their effects differ only by second 
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order quantities.  All of the following equations are therefore valid only up to second 
order quantities, and the maps are uniquely defined only up to second order quantities. 

Now, if p is any scalar of rth degree then, on account of S.2: 

 
(94)   pɶ = Θr p = (1 – Qµ dxµ )r p = (1 – r Qµ dxµ ) p 

 
is likewise a scalar of rth degree, but at yν.  However, since yν goes to (ρ + dρ) yν as xν →  
ρ xν (cf., § 2, 9d), pɶ includes the factor (ρ + dρ)r = ρr (1 + ρ d log ρ ).  Hence, one has: 
 
(95)   Θr  = Θr (1 + r d log ρ) = 

    = (1 − r Qµ dxµ ) (1 + r d log ρ) = 

    = 1 − r Qµ dxµ  + r d log ρ . 
Equating this with: 
   Θr  = 1 – r ρ Qµ (dxµ + xµ d log ρ) 

 
yieldsQµ = ρ-1Qµ , hence, the homogeneity conditions I for Qµ  (cf., § 6, 18), as well as the 

condition IVβ (cf., § 7, 23). 
 

26.  We now go on to the subject of projective maps of positions of rth degree.  Such 

a thing is well-known to be given by: 
 

(96)    vν
ɶ = ν

λΘ
r

vλ , 

 

in which the ν
λΘ

r

 are two-point functions.  Sincevν
ɶ is a position at yν, its values transform 

by means of the values of theAν
µ

′ at yν, i.e., by means of Aν
µ

′ +dAν
µ

′ .  From this, the 

transformation formulas for the vν
ɶ  become: 

 
    vν ′

ɶ = ( Aν
µ

′ + dAν
µ

′ )vµ
ɶ , 

and for the ν
λΘ

r

 they become: 

(97)    ν
λ

′
′Θ

r

 = ( Aµ
ρ +dAν

ρ
′ ) Aρ σ

σ λ ′Θ
r

. 

 
If vµ
ɶ  is an arbitrary position of rth degree and p is an arbitrary scalar of rth degree then 

the equation vν = p uν defines uν to be a position of null degree that is coincident with vν .  
On account of vν

ɶ = puν
ɶ ɶ and (94), one then has: 

 

(98)    ν
λΘ

r

 = Θr ν
λΘ , 
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in which we have again omitted the upper index 0 in
0

ν
λΘ .  We again develop theν

λΘ in dxν 

with coefficients that depend only upon xν, and truncate the development at terms of 
second order.  Geometrically, the terms that are independent of dxν must represent the 
identity map; hence, up to a factor T, they must equal the unit projectorAν

µ .  For the terms 

that are linear in dxν, we write –T ν
λµΠ  dxµ ; hence, we have: 

 
(99)    ν

λΘ = T ( Aν
µ  − ν

λµΠ  dxµ ) . 

 
Equating the infinitesimal terms in (97) yields the well-known transformation laws (53) 
of the ν

λµΠ .  If uν is any position of null degree then, from P. 3, this must also be true 

foruν
ɶ , and it follows that the ν

λΘ  are also homogeneous of null degree: 

 
(100)    ν

λΘ = ν
λΘ . 

Substitution in (99) yields: 
 
(101)  ( )T A dx x dµ ν µ ν µ

λ λµ λµρ ρ− Π − Π = ( )T A dxµ ν µ
λ λµ− Π . 

 
Equating the finite terms yields: 
 
(102)    T = T, 
 
i.e., T is a scalar of null degree.  Equating the infinitesimal terms, which do not depend 
upon dρ, yields the homogeneity condition I, and the remaining terms yield condition IIb. 

Substituting (98), (92), (93), (99) in (96) yields, for a position of rth degree: 

 
(103)   vν

ɶ = T (1 – Qµ dxµ )r (vν – ν
λµΠ vλ dxµ ), 

 
which we can also write as: 
 
(104)   vν

ɶ = T (vν – ν
λµΠ vλ dxµ  – r Qµ dxµ ). 

 
The image point vν

ɶ  is then identical with the one that is obtained by covariant constancy, 
up to a scalar factor T. 

If the position displacement in an n+1E likewise determines a point-displacement in 
the En+1 then obviously one must have T = 1.  The displacement remains projective-
geometric in the event thatvν

ɶ is changed by an arbitrary scalar factor of null degree.  If 
one decomposes it into a factor that is finite and dependent only on xν and a factor that is 
infinitesimal and deviates from 1 then the first factor causes a change in T, whereas the 
second can likewise cause a change in Qµ in the form of an increase of νλµΠ  by a product 
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of Aν
λ with a covariant point.  Only the sum of these last two changes is determined by the 

change invν
ɶ .  Thus, we have: 

 
Theorem 4.  Conditions I, IIb, and IVβ for the existence of the covariant differential 

are also necessary and sufficient for the existence of a position displacement.  The ν
λµΠ  

are determined by way of the geometric map of the neighboring n+1E, up to a multiplicity 
of Aν

λ , whereas the Qµ remain completely undetermined (naturally while preserving the 

condition). 
 
27.  Covariant constancy of the contact point means that xν is mapped to yν, i.e., that 

[ ]x yλ µ
ɶ = 0.  From (96), (104), we now have: 

 
(105)   xν

ɶ = T {xν (1 – Qµ dxµ) −Q dxν µ
µ⋅ ⋅ }. 

 
Therefore, up to a factor T and quantities of second order, [ ]x yλ µ

ɶ  is equal to: 
 

x[λ dxµ ] −Qλ
ρ⋅ y[µ dxρ ]  = x[λ ( ] ]Q Aµ µ

ρ ρ⋅ + ) dxρ . 

 
Thus, the contact point is covariantly constant under a displacement in an arbitrary 
direction when and only whenQ Aν ν

ρ ρ⋅ + is proportional to xν, i.e., when a covariant point 

qρ exists such that: 
(106)    Qν

µ⋅ = xν qµ − Aν
λ . 

Now, since: 
(107)   Qν

µ⋅ xµ = ν
λµΠ xλ xµ =P ν

µ
⋅ xλ, 

 
vanishes, on account of IIb, contracting (106) with xµ yields: 
 

q = qµ xµ = 1 . 
 
Conditions (106), (108) are also sufficient for the covariant constancy of the contact 
point.  From (57), IIb they are consistent with the symmetry condition Vα ; they are 
consistent with the quasi-symmetry condition Vβ when and only when: 
 
(109)     qµ = − Qµ . 
 
From (105), equation (109) is (under the assumptions IIb, IVb, (106), (108) and for T = 
1) necessary and sufficient for the covariant constancy of the contact point ( xν

ɶ = yν ).  In 
order for this to be the case, quasi-symmetry is sufficient, but not necessary. 

On account of § 2, 9d, the contact point xν = yν − dxν also lies in the local n+1E at yν ; 
we say that it is invariant under the displacement when the position xν in the n+1E at xν is 
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mapped to the position yν − dxν in n+1E at yν .  The condition for this reads [ ]x yλ µ
ɶ = 0.  

From (105), this is the case when and only whenQν
µ⋅ has the form: 

 
(110)     Qν

µ⋅ = xν qµ  , 
which, from (107), IIb, leads to: 
(111)     q = xν qµ  = 0 . 
 
This condition is inconsistent with quasi-symmetry, but for: 
 
(112)     qµ = 0 
 
it is consistent with symmetry.  The case of invariance of the contact point was 
previously established by J. A. Schouten 35).  From (105), (109) is necessary for the 
invariance of contact point, which is impossible, due to the inconsistency of IVβ with 
(109), (111). 

Conditions (106), (108), (110), (111) can be summarized by: 
 

III    ( ) ,Q x q P x q Aν ν ρ ν
µ µ ρ µ⋅ = + −  

 
in which P = 0, with the extra conditions: 
 

III α     1x qρ
ρ =  

for covariant constancy, and: 

III β     0x qρ
ρ =  

 
for the invariance of the contact point, resp. 
 
 

§ 9. 
 

The m+1P in the n+1P. 
 

28.  Let there be given any system of functions ,c
ab aQ′ ′Π  on a m+1H in m+1P that satisfy 

the homogeneity conditionsI′  that correspond to I.  There then exists the curvature 
projector: 
(113)     ab

ν⋅ ⋅Π = c
a b ab c baB B Bν λµ ν ν

µλ ′∂ + Π − Π , 

 
which is a quantity of (−1)th degree in the xν and satisfies the identities: 
 

                                                
 35)  Cf., J. A. Schouten [3]. 
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(114)    ab
ν⋅ ⋅Π xa = c

b c bP B B Pν µ ν
µ
⋅ ⋅′− , 

(115)    ab
ν⋅ ⋅Π xb = c

a c aQ B B Qν λ ν
λ⋅ ⋅′− . 

 
If we denote covariant differentiation with respect to ,c

ab aQ′ ′Π  by V ′  then we have 

identically for the covariant (contravariant, resp.) point wa = aB wν
ν (vν = c

cB vν , resp.) in the 

local m+1E: 
(116)    ba b aB w wµλ

µ λ ′∇ − ∇ = − ba
ν⋅ ⋅Π wν , 

(117)    c
b c bB v B vµ ν ν

µ ′∇ − ∇ = + ba
ν⋅ ⋅Π va , 

 
when, as we would like to do, we define theaQ′ by means of: 

 
(118)    aQ′ = aB Qλ

λ . 

 
29.  If the m+1H is taut (cf., § 4, 13) then, from (118) and: 
 

(119)    c
ab
′Π = c c

ab a bB B Bλµ ν ν
ν µλ νΠ + ∂ , 

 
induces a system ,c

ab aQ′ ′Π  on the m+1H.  Then, one has: 

 
(120)   c

aP ⋅′ = c
aB Pλ ν
ν λ

⋅ ,  c
bQ ⋅′ = c

bB Qλ ν
ν µ⋅ ; 

 
hence, (114), (115) turn into: 
 
(121)     
 
 
In this case there also exist the two curvature quantities: 
 
(122)    c

aL ν
⋅

⋅ = abB Bλµ µ
λ ν∇ , 

and we have, as usual: 
(123)    abH ν⋅ ⋅ = abB Bλµ ν

λ µ∇ , 

(124)   c
abH Bν

ν
⋅ ⋅ = 0 ,  c

a bL Bν
ν

⋅
⋅ = 0 . 

 
The equations of Gauss, Codazzi, Rizzi may be stated quite easily; however, we will 

not go into that here. 
 

§ 10. 
 

Geodetic lines. 
 

30.  The equation for geodetic lines does not have the usual form: 

( ) ,

( ) .

a
ab b

b
ab b

H x A B Q B

H x A B P B

ν ν ν σ ρ
σ σ ρ

ν ν ν σ ρ
σ σ ρ

⋅
⋅

⋅ ⋅

= −

= −
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(125)    
2

2

d x dx dx dx

dt dt dt dt

ν λ µ ν
ν
λµ α+ Π −  = 0 , 

 
since a curve is a binary manifold (2H).  Instead of (125), one obtains: 
 
(126)   abH ν⋅ ⋅ = c

a b ab c baB B Bν λµ ν ν
µλ ′∂ + Π − Π = 0  (a, b, …, = 0, 1). 

 
One easily sees the analogy with (125) when one writes (126) in the form: 
 

2
c

aba b a b c

x x x x

x x x x x

ν λ µ λ
ν
λµ

∂ ∂ ∂ ∂′+ Π − Π
∂ ∂ ∂ ∂ ∂

= 0 , 

 
and replaces α with 1

11′Π  in (125).  The elimination of the c
ab
′Π  from (126) yields (cf., 

(43)): 
(127)   [ ]

baH Jν ρσ⋅ ⋅ ′ = [ [ ]( )a b abB B Jν λµ ν ρσ
µλ ′∂ + Π = 0 . 

 
From (37), contracting with xb yields the necessary condition: 
 
(128)    [ ]

aB P Jλ ν ρσ
λ

⋅ ′  = 0 . 

 
If vν is an arbitrary position inJ ρσ′ that is ≠ xν thenJ ρσ′ is proportional to x[ρ vσ].  If 

one contracts (128) with va then one sees thatv Pλ ν
λ

⋅ must be linearly dependent on vν and 

xν: 
(129)    P vν λ

λ
⋅ = α vν + β xν . 

 
It follows that β must depend on vν: β = pλ v

λ, and since this must be true for arbitrary vν, 
P ν

λ
⋅ must then have the form: 

(130)    P ν
λ

⋅ = pλ x
ν + α Aν

λ . 

 
Contracting this with xλ yields α  = P – pρ x

ρ, in which: 
 
(131)    P xν λ

λ
⋅ = ν

λµΠ xλ xµ  =  P xν, 

hence: 

II    ( ) .P p x P p x Aν ν ρ ν
λ λ ρ λ

⋅ = + −  

 
Likewise, contraction of (127) with xa yields the necessary condition: 
 

III    ( ) .Q x q P x q Aν ν ρ ν
µ µ ρ µ⋅ = + −  

If one brings (127) into the form: 
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(132)     [ ]
( )( )a bB B Jλ ν ρσ

λ ′∇  = 0 , 

 
in which the parentheses around the index b means that this index has been “turned off” 
36), i.e., that bBν  is to be differentiated like a contravariant point, then one sees that the 

integrability conditions for (127) read like: 
 
(133)    ( ) ( )

ac
c a bJ B B J Bµ λ ρσ ν

µ λ′ ′∇ ∇  = 0 . 

 
A small calculation then yields that (133) is satisfied, on the basis of (127), II, and 

III.  Hence, we have: 
 
Theorem 5.  Conditions II, III are necessary and sufficient for a geodetic line to go 

through any position in n+1P in any direction. 
 
31.  Let vν = bBν va be an arbitrary position of first degree that is ≠ xν that determines a 

line (hence, 2E) in the n+1E at xν by way of the bBν .  Then, one has, for a particular k of 

first degree: 

(134)     x[λ vµ] = 21

2
k J λµ′ . 

 
Since, from II, III, the system of equations (127) or (132) becomes an identity when one 
contracts it with xa or xb, it means the same thing as the equation: 
 
(135)     va vb [ ]

abH Jν ρσ⋅ ⋅ ′ = 0 , 

 
which, since the index b in (132) is turned off and [ ]

cB Jν ρσ′  vanishes, can also be brought 

into the form: 
(136)     vλ (∇λ v

[ν ) ]J ρσ′ = 0 . 
 
That is, vλ ∇λ v

ν  must be a linear combination of xν and vν: 
 
(137)     vλ ∇λ v

ν  = α xν + β vν . 
  
Hence: The line in n+1E that is determined by xν and vν (i.e., the tangent to the geodetic 
line) goes to itself under covariant differentiation in its own direction.  If one then 
replaces vν with a certain linear combination of xν and vν  then a brief calculation by 
means of (149), (150), shows that α and (or) β can be taken to vanish.  (137) is then 
equivalent with: 
(138)     vλ ∇λ v

ν  = 0 . 
  

                                                
 36)  Cf., J. A. Schouten, On infinitesimal deformations of Vm in Vn, Amsterdam, Proceedings Kon. Akad. 
31 (1928), pp. 208-218. 
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Instead of this, one can also introduce the weaker condition: 
 
(139)     vλ ∇λ v

ν  = β vν , 
or, equivalently: 

(vλ ∇λ v
[µ ) vν ] = 0 , 

 
which is invariant to a change in vν, up to an arbitrary factor of arbitrary degree.  We 
would like to call a position field vν that satisfies the condition (139) a geodetic position 
field. 
 

32.  One must still point out that geodetic lines are generally not projective-
Euclidian, i.e., the c

ab
′Π  cannot be taken to vanish by a judicious choice of the parameter 

xa (although this is indeed the case with α and β in (137)!).  In order for the 2P to be 
projective-Euclidian it is necessary and sufficient that the c

abS ⋅ ⋅′ , c
aP ⋅′ , c

bQ ⋅′ , and d
abcN ⋅ ⋅ ⋅′ do 

not vanish.  The condition d
abcN ⋅ ⋅ ⋅′  = 0 is, however, equivalent with: 

 
(140)     ab d

abcJ N ⋅ ⋅ ⋅′ ′ = 0 . 

 
On the other hand, it follows from (126) that: 
 
(141)    abcB Nωµλ ν

ωµλ
⋅ ⋅ ⋅′ = d

d abcB Nν ⋅ ⋅ ⋅′ . 

 
If one contracts (141) with abJ′ xc and abJ′ vc and regards vν as an arbitrary position in the 
n+1E at xν then one finds, by means of (134), that (141) is equivalent with the two 
conditions: 
(142)     xω xλ N ν

ωµλ
⋅ ⋅ ⋅′  = 0 , 

(143)     xω [ ]N ν
ω µλ
⋅ ⋅ ⋅′  = 0 . 

 
These conditions together are thus necessary and sufficient for us to have d

abcN ⋅ ⋅ ⋅′ = 0 .  

From c
aP ⋅′ = 0, by means of (126), it follows that: 

 

aB Pλ ν
λ
⋅ = aBλ pλ x

ν + (P – p) aBλ = 0 ; 

 
hence, by contracting with va and considering that v[λ xµ] ≠ 0 and vν is arbitrary, we have: 
 
(143a)     pλ = 0,  P = 0 . 
 
Likewise, it follows from c

bQ ⋅′ = 0 that: 

(143b)      qλ = 0 . 
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Due to (126), c
abS ⋅ ⋅′  = 0 is equivalent with ab

abJ B Sλµ ν
λµ
⋅ ⋅′ ′ = 0; this condition is, however, a 

result of (143a), (143b).  From (76), it follows that (142), (143) are also satisfied, on the 
basis of (143a), (143b).  Thus, we have: 
 

Theorem 6.  In order for all geodetic lines to be projective-Euclidian it is necessary 
and sufficient that P ν

λ
⋅ = Qν

λ⋅ = 0. 

 
Finally, we would like to give the condition d

abcN ⋅ ⋅ ⋅′ = 0 another form without 

assuming c
abS ⋅ ⋅′ = 0, c

aP ⋅′ = 0, c
bQ ⋅′ = 0.  Thus, we prove that: 

 
Theorem 6a.  The necessary and sufficient condition that d

abcN ⋅ ⋅ ⋅′ = 0 for any geodetic 

line reads like: 
(144)     ∇µ P = 0 
together with either: 
(145)    ∇(λ  pµ) + p(λ  Qµ) + p(λ  qµ) = 0 
and: 
(146)     q ≡ xρ qρ = P + 1 
or (instead of (145), (146)): 
(147)     pλ  = 0 . 
 

The latter case is equivalent to IIa with constant P (from (144)); in this case, (145) is 
also satisfied, but not (146).  In the former case, from (146), one also has that q, and, 
from (145) (contracting (145) with xλ and applying (144), (146), (77), (78), II, III), also p, 
is constant.  In the quasi-symmetric case, from II, III, (68), (57) equivalent to: 

 
IVγ     Qµ = pµ – qµ 
and (145) turns into: 
(148)     ∇(λ  pµ) + pµ  pµ = 0 . 
 

Proof of 6a.  From II, III, the identities (77), (78), (79) turn into: 
 

(149)  ∇λ x
ν  = (Qλ + qλ ) x

ν + (P – q + 1)Aµ
λ , 

(150) xλ ∇λ v
ν  =  (P – p + r Q) vν + pλ v

λ xµ, 

(151) xλ ∇λ wµ  = (P – p + r Q) wµ − xρ wρ ⋅ pµ . 

In particular, one also has: 
(152)    xλ ∇λ pµ = − (P + Q) pµ . 
 
Now, from (76), (142) is equivalent with xλ ∇λ P ν

λ
⋅ = 0.  From II, III, (149), (152) this 

yields: 
(153)   xν { ∇µ P – (P – q + 1)pµ } + p(P – q + 1)Aµ

λ  = 0 . 

 



Projective connections in n-dimensional spaces                                     35 

Contracting with an arbitrary non-vanishing covariant point, which we denote by xν, 
shows that both of the terms must each vanish: 
 
(154)     ∇µ P – pµ (P – q + 1) = 0 , 
(155)     p (P – q + 1) = 0 . 
 
Likewise, (143) is equivalent [ ]P ν

λ µ
⋅∇ = 0 ; furthermore, substituting this in II, III, (149), 

(152) yields an equation whose terms must both vanish individually.   The first term gives 
(145), and the second one yields: 
 
(156)    ∇µ P − xρ ∇µ  pρ − p(Qµ + pµ) = 0 . 
 
From (152), (154), (145), the latter equation satisfied; likewise (155), such that (145), 
(154) together are necessary and sufficient.  From (155), it follows that either (146) is 
true, and thus (144), conditions that, along with (145), are sufficient, or that we have: 
 
(157)     P – q + 1 ≥ 0 , 
 
hence, p = 0, and therefore, from (156), (149): 
 

∇µ P = xρ ∇µ  pρ  = − pµ (P – p + 1) . 
 
Together with (154), this again yields (144), hence, from (157), also (147), from which, 
everything else follows.  However, with that we have proved theorem 6a. 
 

§ 11. 
 

Overview. 
 

33.  Little by little, we have now introduced the following conditions: 
 

I.  xω∂ω 
ν
λµΠ = − ν

λµΠ ;  xω∂ω Qµ = − Qµ ; 

II.  P ν
λ

⋅ = pλ x
ν + (P – p) Aν

λ ; p = pρ x
ρ ; (P ν

λ
⋅ = ν

λµΠ xµ ) . 

IIa.  P ν
λ

⋅ = P Aν
λ , or pλ = 0 . 

IIb.  P ν
λ

⋅ = 0, or pλ = 0, P = 0 . 

III.  Qν
µ⋅ = xν qµ  + (P – q) Aν

λ , q = xρ qρ ; (Qν
µ⋅ = ν

λµΠ xλ ) . 

III α.  Qν
µ⋅ = xν qµ  + Aν

λ , or P – q + 1 = 0 . 

III β.  Qν
µ⋅ = xν qµ , or P – q = 0 . 

IV.  Qµ  = 0 . 

IVα.  Qµ  = ∇µ g = ∂µ log gQ ; Q =
1

1− r
 = const., r = degree of g . 

IVβ.  Q = 0 ;  (Q = xρ Qρ + 1). 
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IVγ.  Qµ  = pµ  − qµ  . 
IVδ.  Qµ  = − qµ  . 
Vα.  S ν

λµ
⋅ ⋅ = 0 ; (S ν

λµ
⋅ ⋅  = [ ]

ν
λµΠ ) . 

Vβ.  T ν
λµ
⋅ ⋅ = 0 ; (T ν

λµ
⋅ ⋅  = S ν

λµ
⋅ ⋅ + [ ]A Qν

λ µ ) . 

VI.  Uωµ = 0 ; (Uωµ  = ∇[ω Qµ] − T ρ
λµ
⋅ ⋅ Qρ ) . 

 
Thus, IIa is a specialization of II and IIb is a specialization of IIa; IIIα and IIIβ are 

inconsistent specializations of III.  III follows from II and Vα or Vβ.  IV is a 
specialization of IVα, as well as IVγ , but it is inconsistent with IVγ.  IVγ follows from II, 
III, and Vβ; follows from IVγ and IIa, or also from IIa, III, and Vβ.  IVα and VI are 
equivalent. 

 
34.  Condition I is necessary and sufficient for the existence of a covariant 

derivative. 
Conditions I, IIb, IVβ are necessary and sufficient for the existence of a covariant 

differential, as well as a position displacement for arbitrary quantities of arbitrary degree. 
Conditions II, II, III are necessary and sufficient for the existence of a geodetic line 

through each position in each direction. 
Condition IIIα (III β, resp.) states (assuming I, IIb, IVβ) the covariant constancy 

(invariance, resp.) of the contact point. 
If a taut m+1H in n+1P induces a projective connection by means of (119) then (118), 

(120), shows that each of the conditions I, …, VI is valid in m+1P, as long as it is valid in 
n+1P.  Hence: 

 
Theorem 7.  Conditions I, …, VI are all invariant under the embedding of a 

manifold. 
 
In the next section, it will shown that conditions IIb and IVβ can be satisfied under 

the assumption of I, II, III, as long as either Vα or Vβ can be satisfied under path-
preserving changes of the projective connection. 

 
35.  If we understand the term directionless derivative to mean the effect of the 

operator xω∂ω  then the stronger requirement that the directionless derivative of a quantity 
vanishes is equivalent to conditions IIb and IVβ; on the other hand, the weaker 
requirement that the directionless derivative of any quantity be proportional to this 
quantity is equivalent to condition IIa.  This last requirement has a simple geometric 
meaning:  In the Hn+1 that arises from n+1H by way of § 2, 6 the ν

λµΠ determine an affine 

(cf., ?)) displacement Ln+1.  If one now identifies the various local En+1 that belong to the 
points of the same “ray” ( = line through O) with each other the one obtains an 
“osculating En+1.”  If one now considers a vector field such that the various points of a 
ray are merely Euclidian parallel vectors − hence, vectors with proportional components 
− then one has a position field in our sense.  The aforementioned weak requirement now 
says that these vectors are also parallel in the sense of displacement, and indeed in the 
weak sense, that the vector that results from the displacement of a vector of the field that 
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originates at a point of the same ray is only proportional (but not necessarily equal) to the 
vector of the field that belongs to the new point. 

The covariant derivative of the contact point determines a projectivity (collinearity) 
∇λ x

ν in n+1E.  The stronger requirement that they are undetermined (vanish) is equivalent 
to IIIα and IVδ.  The weaker requirement that when this projective map takes n+1E to 
itself it is geometrically the identity, and thus that =λ xν is proportional toAν

λ , is 

equivalent to III and IVδ.  When interpreted in Hn+1 the weaker requirement states that a 
vector that has the same direction as the ray preserves its direction in the Euclidian sense 
under displacement.  The still weaker condition that P ν

λ
⋅ xλ = Qν

µ⋅ xµ be proportional to xν 

says only that the rays are geodetic lines in Ln+1.  One could further demand that the rays 
be geodetically parallel; this would be equivalent to IIIβ. 

Both strong conditions together yield IIb, IIIα, IVβ, IVδ; both weak conditions 
together yield IIa, III, and IVδ, hence, the unrestricted existence of geodetic lines. 

 
§ 12. 

 
Path-preserving changes of connection. 

 
36.  A general change in a projective connection will be given by a quantityX ν

λµ
⋅ ⋅  

and a covariant point Yµ that are both of degree −1: 
 

(158)   *ν
λµΠ  = ν

λµΠ + X ν
λµ
⋅ ⋅ ;  *Qµ  = Qµ + Yµ  . 

 
We assume that a system of geodetic lines exists in n+1P, such that conditions II, III are 
satisfied.  The requirement that these conditions remain satisfied under the change (130) 
reads like: 
(159)    X ν

λµ
⋅ ⋅ xµ = uλ x

ν + (X – uρ x
ρ) Aν

λ , 

(160)    X ν
λµ
⋅ ⋅ xλ = vµ xν + (X – vρ x

ρ) Aν
µ , 

 
for a certain choice of the covariant point: 
 
(161)     uλ =

*pλ − pλ , 

(162)     vλ = *qλ − qλ , 

and the scalar: 
(163)     X = P* − P . 
 
In order for the new projective connection to have the same paths as the old one it is 
necessary and sufficient that equation (127) remain invariant under the change (158); 
hence: 
(164)    [ ]

abB X Jλµ ν ρσ
λµ
⋅ ⋅ ′ = 0 . 
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Contraction by xa (xb, resp.) yields equations that are satisfied as a result of (159), (160).  
Hence, (164) is equivalent with the equation that arises from it by contraction with va vb, 
in which va ≠ xa, but is otherwise arbitrary.  Therefore, we must have: 
 
(165)    va vb X ν

λµ
⋅ ⋅ = λ xν + µ vν . 

 
However, since such an equation must be valid for an arbitrary point vν (indeed, it must 
give geodetic lines in every direction!), λ (µ, resp.) must be a homogeneous quadratic 
(homogeneous linear, resp.) form in vν: 
 
(166)   λ = Zλµ v

λ vµ,  Zλµ = Zµλ ; µ = zρ v
ρ . 

 
The necessary and sufficient condition for the change to be path-preserving then reads 
like: 
(167)    ( )X ν

λµ
⋅ ⋅ = Zλµ x

ν + 2 z(λ )Aν
µ . 

 
37.  The alternating part ofX ν

λµ
⋅ ⋅ is nowhere to be found in the condition equation 

(167).  If one now sets: 
(168)    [ ]X ν

λµ
⋅ ⋅  = − S ν

λµ
⋅ ⋅ , ( )X ν

λµ
⋅ ⋅  = 0 , 

 
then, from II, III, conditions (159), (160), (167) are satisfied, it becomes: 
 
(169)     *S ν

λµ
⋅ ⋅ = 0 . 

However, if one sets, instead of (168): 
 
(170)    [ ]X ν

λµ
⋅ ⋅  = −T ν

λµ
⋅ ⋅ , ( )X ν

λµ
⋅ ⋅  = 0 , 

 
then the conditions will be likewise satisfied, and one will have: 
 
(171)     *T ν

λµ
⋅ ⋅ = 0 . 

 
Hence: one can always arrange, by a path-preserving change of connection, that a 
projective connection be either symmetric or quasi-symmetric, as one desires. 
 

38.  Since Yµ appears nowhere in the condition equations, one can arrange that *Qµ   

be equal to an arbitrarily chosen covariant point of degree −1.  In particular, one can 
arrange that *Qµ   be a gradient, or vanish completely, or also that Q* = 0. 

 
39.  We would further like to leave the alternating part of ν

λµΠ , as well as Qµ 

unchanged.  One then has: 
(172)    X ν

λµ
⋅ ⋅ = ( )X ν

λµ
⋅ ⋅  = Zλµ x

ν + 2 z(λ )Aν
µ . 
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Substituting of (172) in (159), (160) shows that the latter conditions are satisfied, on the 
basis of (172).  We have: 
(173)     uλ = zλ + Zλµ x

ν , 
(174)     vµ = zλ + Zλµ x

λ , 
(175)     X = 2zλ x

λ + Zλµ x
λ xµ . 

 
In the event that ν

λµΠ  has already been changed as in 37 or 38, we omit the *; we set: 

 
(176)     zλ = − pλ ; Zλµ = 0 , 
which makes: 
(177)      p*

λ = 0 . 
Condition IIa will also be satisfied then. 

 
40.  We further leave pλ unchanged; instead of (173), one now has: 
 

(178)     zλ = − Zλµ xµ , 
Substitution in (141) yields: 
(179)    X ν

λµ
⋅ ⋅ =  Zλµ xν − 2 xρ Zρ(λ )Aν

µ . 

 
We again omit the star and set: 
(180)    X = − Zλµ x

λ xµ = − P . 
 
If one leaves the Zλµ otherwise arbitrary then one has: 
 
(181)     P* = 0 . 
 
Condition IIb is then also satisfied.  Hence, from theorem 3, one has: 
 

Theorem 8.  The existence of a covariant differential may be achieved by means of 
path-preserving changes of connection. 

 
41.  We further leaveP ν

λ
⋅ unchanged.  (175) then turns into: 

 
(182)     Zλµ xλ xµ = 0 . 
 
We again omit the star.  If one now wishes that the displacement be uniquely determined 
then this can happen only under restricted assumptions.  From the transformation laws 
of ν

λµΠ  (53), it follows that: 

 
(183)   ρ

ρ µ
′
′ ′Π = logAν σ

µ σµ µ′ ′Π − ∂ ∆ , ∆ = Det(Aν
λ

′ ) . 

 
If one then sets: 
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(184)    zλ = − Zλµ xµ  = − 1

n
ρ
ρµΠ , 

 
in the given coordinate system, and if one chooses the Zλµ to be otherwise arbitrary then, 
since P = 0, condition (182) is satisfied, and we have, in the given coordinate system: 
 
(185)    * ρ

ρµΠ = 0; 

 
in any other coordinate system, * ρ

ρ µ
′
′ ′Π  will be the gradient of a density. 

Hence, one will also have: 
 

(186)    *N ρ
ωλρ
⋅ ⋅ ⋅ = 0 , 

 
i.e., the displacement is “volume-preserving” 37).  This is again independent of the 
coordinate system. 

From (73), the Ricci tensor then becomes symmetric in the event that the 
displacement is made symmetric by means of 37, as we would like to assume: 

 
(187)    *N ρ

ρλµ
⋅ ⋅ ⋅  = *N ρ

ρµλ
⋅ ⋅ ⋅ . 

 
42.  We again omit the star and would like to further leaveρ

ρµΠ unchanged.  As a 

result, we must have: 
(188)    zλ = − Zλµ xµ = 0 . 
 
Under the assumption of IIb, III, we have: 
 
(189)  *N ρ

ρµλ
⋅ ⋅ ⋅ − N ρ

ρµλ
⋅ ⋅ ⋅ = − =ρ Zµλ x

ρ + 2T σ
ρµ
⋅ ⋅ xρ Zλσ  = − (n – 1)(1 – q) Zλµ . 

 
Thus, if n ≥ 1 and q ≥ 1 then, from (187), one can set: 
 

(190)    Zλµ =
1

( 1)(1 )n q− −
N ρ

ρµλ
⋅ ⋅ ⋅ , 

and we have: 
(191)    *N ρ

ρµλ
⋅ ⋅ ⋅ = 0 . 

 
Thus, the ν

λµΠ  are uniquely established (e.g.) by conditions I, IIb, Vα, (186), (191). 

 
43.  The Qµ are not uniquely determined in this way; in the event that a covariant 

differential exists, they obey only the condition Q = 0.  Thus, n parameters remain 

                                                
 37)  The notion of “volume” is affine, not projective, in character.  However, condition (186) corresponds 
to the condition for volume preservation in the affine case. 
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undetermined, i.e., exactly as many as in the projective change of an affine displacement.  
If one would like to determine the Qµ uniquely then one can set Qµ = 0, which does not, 
however, agree with Q = 0. 

In summation, we have: 
 
Theorem 9.  For a given system of paths, a projective displacement is determined 

uniquely, up to the indeterminacy of Qµ , by the following requirements: Existence of a 
covariant differential, symmetry, “volume preservation,” vanishing of the Ricci tensor 
38). 

 
Theorem 10.  If we forego the existence of a covariant differential then a projective 

connection will be uniquely determined for a given system of paths by the conditions: I, 
IIb, IV, symmetry (= quasi-symmetry), “volume preservation,” and the vanishing of the 
Ricci tensor. 

 
§ 13. 

 
Inhomogeneous coordinates. 

 
44.  In order for the projective connection to be derivable by means of one of the 

known methods from a linear displacement the existence of geodetic lines is necessary in 
any case.  Therefore, let conditions I, II, III be assumed.  Let a geodetic position field vν 
be given: 
(139)     vλ ∇λ v

ν = β vν. 
This condition is equivalent to: 
(192)     va a

′∇ vc = β vc, 

 
in which ′∇ denotes the differential operator on the geodetic line.  If one then sets: 
 

(193)     wa =
1 b

abc d
cd

J v
J x v

′⋅
′

, 

 
in which denotes abJ′  the covariant unit bi-point of the geodetic line (relative to an 

arbitrary coordinate system), then a brief calculation shows that the rotation of wa 
vanishes: 
(194)     ∂[a wb] = 0, 
 
which then implies that wa is a gradient field: 
 
(195)     wa = ∂a log w. 
 

                                                
 38) The symmetry condition Vα cannot be replaced with Vβ here, since then, from IIb, III, IVβ, IVα, IIIα 
would also be valid, such that the substitution (190) would be impossible. 
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From the fact that xa wa = 1, w is a homogeneous function of first degree, for which, 
moreover: 
(196)     va ∂aw = wλ ∂λ v = 0 . 
 
Condition (139) ((192), resp.), as well as the definition of w, remain invariant under a 
change of vν by an arbitrary factor. 
 

45.  Furthermore, let t be any arbitrary, but chosen once and for all, non-constant 
homogeneous function of null degree along the path.  Thus, one has va∂a t ≠ 0, since 
otherwise the fact that xa∂a t = 0 in general would make ∂a t = 0; hence, t would be 
constant.  We normalize va by means of the condition: 

 
(197)     va∂a t = 1 . 
The degree of va will then be = 1 . 

If f is then any other homogeneous function of null degree on the path, so f = f(t), 
then: 

    va ∂a f(t) = va df

dt
∂a t , 

hence, from (197): 

(198)     va ∂a f = 
df

dt
. 

We further set: 

(199)     ξν =
v

w

ν

. 

 
The ξν are therefore n + 1 homogeneous functions of null degree in the xν that can be 
regarded as (over-specified) coordinates in the n+1H that is associated with Xn.  Then 
(198), (196) yields: 

(200)     
d

dt

νξ
=

v

w

ν

 

and (139) gives: 
 

(201)  
v

w

λ

∇λ
v

w

ν

=
v

w w

νγ ⋅ , γ = β – vλ ∇λ log w = β – Qλ v
λ . 

 
If one substitutes (200) in (201) then one finds, from (198), the following equations for 
geodetic lines: 

(202)    
2

2

d d d
w

dt dt dt

ν λ µ
ν
λµ

ξ ξ ξ+ Π = γ 
d

dt

νξ
. 

 
46.  From (202), one can easily derive the equation for geodetic lines in 

homogeneous coordinates.  By means of a coordinate transformation one can, for the 
time being, deduce that: 
(203)     x0 = w. 
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From (199), (200), one then has: 
 
(204)    ξ 0 = 1,  x0 = 0 . 
 
Furthermore, one can perform a path-preserving change that makes the displacement 
symmetric (§ 12, 37) and, moreover, that: 
 
(205)     0

λµΠ = 0 . 

 
In fact, if one takes a covariant point zλ of degree −1 that is arbitrary, up to the condition: 
 
(206)     zλ x

λ = 0 , 
and one sets: 

Zλµ = 0 0
( )0 0

1 2
A z

x xλµ λ µ− Π +  , 

 

then one will have (cf., (158), (172)) *0λµΠ = 0 , hence, also P* = 0 and *pλ  = *qλ  = 
*

0
0

p
A

x λ . 

Let both of these changes be carried out.  From (202), the zero equation is then 
satisfied identically, on account of (200), (204).  If one then lets the indices i, j, k, … 
range through the numbers 1, …, n then (202) gives the well-known equation for geodetic 
lines: 

(207)    
2

2

k i j
k
ij

d d d

dt dt dt

ξ ξ ξ+ Γ  = γ 
kd

dt

ξ
, 

in which we have set: 
(208)     k

ijΓ  = x0 k
ijΠ . 

 
The  k

ijΓ  depend only upon the xν, but not on x0, since the k
ijΠ  are of degree −1 in the 

xν.  For the remaining ν
λµΠ , one then easily finds by means of (56): 

 

(208)   

0

0 0 0

00 0

1
,

1
( ),

1
(2 ).

k k
ij ij

k k k k j
i i i ij

k k k i j
ij

x

pA
x

p
x

ξ

ξ ξ ξ

 Π = Γ

Π = Π = − + Γ

Π = + Γ


 

 
We have thus proved: 
 
Theorem 10.  In the event that n+1P possesses geodetic lines there is (in the n+1H that 

is attached to Xn) also an An with the same geodetic lines. 
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§ 14. 
 

Relationships with the older theory. 
 
 

47.  We would now like to briefly discuss how our theory connects with the older 
theories, in particular, that of Schouten and Golab.  For that reason, we replace the 
homogeneous coordinates xν in the n+1H with “Veblen coordinates”xν . 

Namely, we set: 

(210)    xρ = log x0,  ix = xi =
0

ix

x
, 39) 

, , , 0,1, ,nκ λ ω =… … , , , , 1, ,h i n=… … , 
 
and we briefly denote the transformation (210) by S and an arbitrary transformation of 

Hn+1 by T, then the transformation S−1
TS will be represented by: 

 
(211)   0x ′  = 0 ( )ix xϕ+ , kx ′  = ( )ix xν . 
 

Under the transformation to Veblen coordinates, the group Hn+1 thus goes to a group 

that is conjugate to it, a fortiori, an isomorphic group Fn+1 = S−1
Hn+1S that is represented 

by (211).  This is, however, precisely the group that Veblen established 40).  The 
associated functional matrix is: 

(212)    Aν
λ

′ =
1

0
i

k
i x

ϕ
′

∂ 
 ∂ 

. 41) 

 
The Veblen “projective tensor” is therefore identical with our quantities. 

In order to represent the relationships between our projective connections with the 
older theories, we would like to refer to only the methods of Schouten and Golab, since 
these methods subsume most of the other ones. 

Sch. and G. introduce no (n + 1)th coordinates, but restrict themselves to the 
coordinates ξk.  Thus, our group Hn+1 (Fn+1, resp.) has no precise analog in their theory.  

On the other hand, a matrix Aν
λ

′  appears 42).  In our notation, it is: 

 

(213)   Aν
λ

′ = 01 log

0

i

k
i

c
x ′

 − ∂ ∆ 
  ∂ 

n

, 

 

                                                
 39)  The associated functional matrix will be given by (218), (219). 
 40)  Veblen [5], pp. 144. 
 41)  Veblen [5], pp. 145. 

 42)  Which is denoted by c
AE  by them (loc. cit., pp. 200). 
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in which n =
1

1n+
 and ∆0 is the functional determinant of the transformation k kx x ′→  

(hence, notx xν ν ′→ !).  It therefore differs from (212) by the fact that the arbitrary 

function ϕ(ξk) must be replaced with the special choice 0log
c

− ∆n
.  Therefore, instead of 

the group Hn+1, a subgroup appears in Sch. and G.: 

 

(214)   0x ′ = 0
0logx

c
− ∆n

, kx ′  = ( )ix xν . 

 
There exists the following relation between the determinants ∆ and ∆0: 
 

(215)    ∆  = 
1

1

0
c

−
∆ . 

 
If we convert (214) to our coordinate system by means of (215) then this relation gives: 
 

(216)   0x ′  = 0
0

cx
−

∆
n

 = 
1

0 (1 )( 1)c nx − +∆ . 

 
The group that was established in the work of Sch. and G. is therefore a subgroup of 

our group Hn+1; it is defined by relation (216). 

 
If we write r  instead of x0 then (216) turns into: 

(217)   ′r = r  ∆c, c =
1

(1 )( 1)c n− +
. 

 
Instead of regarding this equation as a defining condition for a subgroup, we can also 
treat it as the transformation equation for a scalar density of weight c and degree 1.  
When we adjoin this scalar density we can then continue to work with our group Hn+1 (its 
conjugate group Fn+1). 

 
48.  In order to correlate the projective connection of Sch. and G. with our own one, 

we must convert the defining equation for the former 43) into homogeneous coordinates. 
In the calculations, we use the following functional matrix that goes with (210): 

 

(218)    Aν
µ  =

2

1
0

1 1k k
ix A

 
 
 
 − 
 

x

x x

, 

or its inverse: 

                                                
 43)  Loc. cit., pp. 209. 
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(219)     Aν
λ  =

0
k k

ix A

 
 
 

x

x
, 

 
respectively.  Elimination of the components of the affine connection gives that the 
defining condition (in our notation) is equivalent to: 
 
(220)  k

k iΠ  = k
i kΠ  = 0, 0

ν
λΠ  = 0

ν
λΠ  = c Aν

λ , i kP ν
ν
⋯  = 0, 0

k iΠ  = 0
i kΠ . 

 
Converting the ν

λµΠ  by means of (218), (219), and the transformation equation (53) gives 

that these equations are equivalent toS ν
λµ
⋅ ⋅ = 0, and: 

 

(221)   i
ρ
ρΠ  = 0 , 0

ρ
ρΠ  =

0

1

x
(c − 1)(n + 1) , 

(222)     P ν
λ

⋅ = (c – 1)Aν
λ , 

(223)     N ρ
ρµλ
⋅ ⋅ ⋅  = 0 . 

 
The first of these equations has no invariant meaning, however, it yields the invariant 
condition: 
(224)     N ρ

ωµρ
⋅ ⋅ ⋅ = 0 

 
that is “volume-preserving” (cf., 44)) since it can be written as ρρλΠ  = ( 1)( 1)log c n

λ
− +∂ x , i.e., 

it states that ρ
ρλΠ  is a gradient.  The second equation shows that condition IIa is satisfied.  

From symmetry, III will also be satisfied then, i.e., the equation of geodetic lines is 
integrable without restriction.  Finally, the third condition states the vanishing of the 
Ricci tensor (which is symmetric, from (224)).  When c = 1, and only when, the weak 
condition IIa turns into the strong condition IIb; this is, however, precisely the case that 
the (older) Veblen theory singles out. 
 

49.  We must point out the remarks of Sch. and G. that their theory subsumes 
Veblen’s theory only in its older form (which is no longer discussed here; Veblen [4]), 
but not, however, the more recent and more general theory that was mentioned in 47 
(Veblen [5]), which first appeared as a discussion in the work of Sch. and G.  The latter is 
based on a group that is isomorphic to ours, whereas Sch. and G. restricted themselves to 
a proper subgroup.  Furthermore, Veblen makes essentially fewer far-reaching 
assumptions than Sch. and G about theν

λµΠ  in his general theory.  In fact, he assumes 

only the symmetry of ν
λµΠ , together with the condition 0

ν
λΠ  = Aν

λ .  From (220), (222), 

the latter is, however, not equivalent to P ν
λ

⋅ = 0 .  On the other hand, his ν
λµΠ

r

 is 

independent of r, i.e., one has Qµ = 0 .  Thus, one has: 

                                                
 44) Loc. cit., pp. 209. 
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Theorem 11.  The generalized Veblen theory is equivalent to the special case of our 
theory that is singled out by conditions IIb, IV, and V, as well as Vα = Vβ.  In 
particular, III is therefore also satisfied, such that the equation of geodetic lines is 
integrable without restriction (it is also projective-Euclidian).  From IV, a covariant 
differential exists in Veblen’s theory only for points of degree 0.  45) 

 
The fact that, for Veblen, the “weight” of a quantity does not change under 

differentiation, whereas the degree is lowered by one that way, implies that the Veblen 
operator is i∂ = x0 ∂i , and thus preserves the degree; the operator0∂ is simply the Euler 

homogeneity operator xλ ∂λ .  Analogous statements are true for the covariant derivative. 
 
50.  In conclusion, we would like to briefly present the relationships between our 

homogeneous functions with the projective densities of Sch. and G. 
Since every projector density can be written as the product of a projector and a 

power of an arbitrary scalar density, in order to define the projective derivative of an 
arbitrary projector density by means of the Leibniz rule for the differentiation of a 
product, it suffices to define the covariant derivative of a single scalar density (whose 
degree we can choose arbitrarily).  We thus choose the x that was introduced above.  The 

expression
1

µ∇ x
x

 may then be taken to be an arbitrary covariant point of degree −1 

(weight = 0!).  We thus choose our Qµ..  We are then in precise agreement with the theory 
of Sch. and G.  Namely, if we make the usual Ansatz for densities p of weight k and null 

degree: 
(225)    ∇µ p = ∂µ p + k ρ

ρµΠ p  

 
then this implies that for an arbitrary density p of weight k and degree r, one has: 
 
(226)    ∇µ p = ∂µ p + k ρ

ρµΠ p + r Qµ p, 

 
and, in particular, for p = x, from x = 1 and k = c, one has: 
 
(227)    ∇µ x = ∂µ x + c ρ

ρµΠ x + Qµ x . 

 

                                                
 45)  In a dissertation that appeared in May 1931, The representation of projective spaces, Ann. of Math. 
32 (1931), pp. 327-360, a student of Veblen, J.H.C. Whitehead, obtained some results that have many 
points of contact with our own.  He has replaced Veblen’s 

0xe with x0 (cf. ?)), and is thus dealing with 
homogeneous coordinates in the Xn, indeed, only with normal coordinates at a single point, such that our 
group Hn+1 does not appear in his work.  His projective connection, like that of Veblen, is characterized by 
IIb, IV, Vα = Vβ. 
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If one calculates this only in a coordinate system in which x = x0  46) then one will have 

∂µ x =
0Aµ .  On the other hand, from (221) one has ρ

ρµΠ   = 01
Aµ−
a

; hence, we find: 

 
(228)     ∇µ x = Qµ x. 

 
Finally, we point out that the projectors are in one-to-one correspondence with the 
projective densities of null degree (as they ultimately occur in Sch. and G.), so if we 
associate, e.g., a point density vν of weight x and degree 0 with the point: 

 

(229)     vν =
ν

r

v

a
 

 

of weight 0 and degree − k
c

 then we see that when one singles out an arbitrary scalar 

density of degree 1 and arbitrary weight c (from which, one calculates c = 1 − 1

( 1)n+ c
) 

the density theory of Sch. and G. is also completely contained in our theory.  In the theory 
of Sch. and G., one comes upon certain “disadvantages” since one must adjoin only a 
scalar density with a single value there, whereas one needs n + 1 values for a covariant 
point.  One thus sacrifices some generality.  One can then work, not only without singling 
out a Qµ (which can probably vanish, as well), but ultimately with projectors and 
projector densities of null degree, whereas one can also operate with the Qµ in (226) with 
arbitrary densities without singling out an x; however, equating (228) with Vα yields, 

moreover, that, from theorem 2, the theory that is obtained in this way is singled out by 
the special case Uωµ = 0 precisely, as was already remarked in footnote ?). 

In summary, we can therefore say: 
 
Theorem 12.  The projective differential geometry of Sch. and G. (and thus, from 

theorem 11, all of the older theories, as well) may be considered to be a special case of 
our own.  It arises by adjoining a scalar density x of degree 1 and arbitrary weight c and 

by the following specializing conditions: 
 

                                                
 46)  Such a thing always exists.  If x ≠ 0 is given as an arbitrary function of first degree in an arbitrary 

coordinate system and c is an arbitrary number ≠ 0 then there is always a homogeneous solution of null 

degree λ of the differential equation λ + x0 ∂0λ =

1
1 0

x
λ
 
  
 

c

c

x
.  If one then sets 0x ′ = λ x0, ix ′ = xi then the 

transformationx xν ν ′→ belongs to Hn+1, and one has ∆ =

1
1 0

x
λ
 
  
 

c

c

x
, hence, ′r = r ∆c = λ x0 = 0x ′ . 
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1.  S ν
λµ
⋅ ⋅ = 0 , 

2.  P ν
λ

⋅ = P Aν
λ , P = c – 1 =

1

( 1)n

−
+ c

= constant, 

3.  N ρ
ωµρ
⋅ ⋅ ⋅ = 0 , 

4.  N ρ
ρµλ
⋅ ⋅ ⋅ = 0 , 

5.  Uωµ = 0 
1

Qµ µ
 = ∇ 
 

x
x

. 

 
§ 15. 

 
Concluding remarks. 

 
51.  We have repeatedly emphasized that the theory that is presented here is not 

purely projective geometric.  To conclude, we would now like to sketch how it is also 
possible to construct a purely projective geometric differential geometry. 

For this, it is necessary that one free oneself from degree conditions, at least from the 
ones that reduce the transformation group.  Instead of the group Hn+1 one must therefore 

establish an enveloping subgroup Kn+1 of the group Gn+1, which is defined such that the 

ratios of thexν ′ are functions of the ratios of the xν, or else one would have to say 
something about the proportionality factor.  We can then always give the transformation 
in the form: 
(230)     xν ′ = νχξ ′ , 
 
in which νξ ′ is homogeneous of null degree in the xν, whereas χ is a completely arbitrary 

function of the xν with xµ ∂µ χ ≠ 0 .  For the functional matrix, one then finds: 
 
(231)    Aν

µ
′ = χ ∂µ 

νξ ′ + xν ′ ∂µ log χ . 

 
The differentials dxν transform as usual according to (17a).  We now also establish a 
definition of general quantities.  By a contravariant (covariant, resp.) point, we 
understand a system of n + 1 numbers that transform, up to a common arbitrary factor, 
like the differentials dxν (contragrediently, resp.).  This factor may be a completely 
arbitrary function of the coordinates, hence: 
 

(232)    vν ′ = ϕ Aν
µ

′ vµ ,  vν =
1

A vν µ
µϕ

′
′ , 

(233)    wµ ′ = ψ Aν
µ ′ wν , wµ =

1
A wν

µ νϕ
′

′ . 

 



Projective connections in n-dimensional spaces                                     50 

Moreover, we replace the homogeneity condition with a weaker condition: The ratios of 
the values of a projector are pure functions of position; hence they are homogeneous of 
null degree.  An arbitrary contravariant point vν can therefore always be given the form: 
 
(234)     vν = v uν , 
 
in which uν is a contravariant point of null degree and v is an arbitrary scalar factor ≥ 0.  
The criterion that vν must satisfy the homogeneity condition (234) reads like: 
 
(235)     xω ∂ω vν = ϕ vν , 
or also: 
(236)     xω (∂ω v[ν ) vµ] = 0 ; 
 
i.e., the differential operator xω ∂ω  must be a multiplier.  Since theνξ ′ are homogeneous of 

null degree and this makes xρ ∂ρ 
νξ ′ = 0, we find, by means of (202), that: 

 
(237)   Aν

µ
′ xµ = ψ xν ′ ,   ψ = xρ ∂ρ  log χ ,  

 
such that the contact position exists as a projective quantity here, as well. 
 

52.  However, some difficulties arise in the definition of a projective derivative that 
will only be briefly discussed here, and whose resolution we will however defer to a later 
occasion.  Naturally, we would like to avoid the introduction of a covariant point, since 
otherwise a hyperplane nE would be distinguished in every n+1E, which would be 
regarded as “imaginary,” such that geometry, at least infinitesimally, would again take on 
an affine character.  If one then defines: 

 
(238)     ∇µ v

ν = ∂µ v
ν + ν

λµΠ vλ , 
 
then ∇µ vν  satisfies the homogeneity condition when this is the case with vν and 
the ν

λµΠ are homogeneous of degree −1.  Namely, a brief calculation shows that from 

xρ ∂ρv
ν = ϕ vν it follows that: 

 
(239)    xρ ∂ρ ∇µ vν = (ϕ  − 1) ∇µ vν . 
 

The difficulty is, however, that ∇µ vν does not have a covariant character.  Namely, if 
one transforms theν

λµΠ according to (53) then one has: 

 
(240)    vµ

µ
′

′∇ = ( log )A v vν ρ σ ν
σµ ρ µϕ ϕ′ ′

′ ′∇ + ∂ . 

 
A term thus appears that is proportional to the differentiated quantities, and whose 
cofactor is a gradient.  One can also not include this term in the transformation laws for 
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the ν
λµΠ  since ϕ is not, as in the theory of densities or pseudo-quantities of Schouten and 

Hlavatý, a power of a fixed factor here, but it can depend on the vν . 
 

53.  The question is now raised of whether of whether one can once more extend the 
notion of quantity.  In order to do this, we thus introduce an equivalence relation, and 
indeed we call the contact point and any gradient null equivalent, along with 
multiplicities of the two with arbitrary (not necessarily scalar) cofactors.  We now call 
two projectors equivalent when a linear combination of them with non-vanishing 
coefficients is null equivalent, and we extend the notion of quantity by calling a system of 
numbers a projector in the broader sense when it transforms like a projector in the 
narrower sense, up to terms that are null equivalent. 

Another possibility resolution is consequently to restrict oneself to alternating 
products and only to operate with derivative quantities like: 

 
(∇µ v[ν) vρ] 

 
(and not with ∇µ vρ  itself), which, as one easily verifies, possess a completely covariant 
character. 

However, we shall pursue the consequences of this far-reaching step, which promises 
to be rich in results, no further − in particular, when one introduces condition IIa − so it 
will remain just this fleeting hint. 

 
Supplement  47). 

 
The later work on projective differential geometry has shown that the foregoing 

investigation can be simplified considerably in its formal respects, and indeed, in the 
following ways: 

If X ⋅
⋅ is a projector with t contravariant and s covariant indices then we call t the 

contravariant, s, the covariant, t – s the algebraic, and t + s the total valence (or simply, 
the valence)  48) of X ⋅

⋅ .  If X ⋅
⋅ is homogeneous of rth degree then we call the surplus ε = r – 

(t – s) of the degree over the algebraic valence the excess of X ⋅
⋅ .  49)  This number is 

invariant under addition, contraction with xν, and partial or covariant differentiation.  The 
excess of a product is the sum of the excesses of the factor.  The contact point xν has null 
excess.  Even though νλµΠ  is not a projector, we also define its excess as its degree plus 

one. 
Condition I then states that νλµΠ  and Qµ have null excess.  If we further introduce the 

functions: 

                                                
 47)  [Added on 6.1. 1932.] 
 48)  From a suggestion of J.A. Schouten, we will apply the word “valence” to the difference of the 
degrees of homogeneity to describe the notion that we have called “degree” up till now (e.g., in R.K. pp. 
23). 
 49)  The excess is identical with the number that Veblen introduced (in a completely different way), and 
in the beginning [5, pp. 147] he called it “weight,” but later [6, pp. 61] called it “index.”  Since both words 
already occur with other meanings, we prefer the word “excess.” 
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*
ν
λµΠ  = 

1
ν
λµΠ  = A Qν ν

λµ λ µΠ +  , 

 
instead of the ν

λµΠ  (cf., (61), which are associated with covariant derivatives of 

contravariant points of first degree, hence, of null excess, and ε is the excess of the 
differentiated quantities, then (59), (62), (63), turn into: 
 
(59*)   ∇µ q  =  ∂µ q + ε Qµ q , 

(62*)   ∇µ v
ν  =  ∂µ v

ν + 
*

ν
λµΠ vλ + ε Qµ v

ν , 

(63*)   ∇µ wλ  = ∂µ wλ − 
*

ν
λµΠ  wν + ε Qµ wλ . 

Furthermore, one has: 

(68*)   T ν
λµ

⋅ ⋅ =
*

S ν
λµ
⋅ ⋅ , 

 

such that quasi-symmetry simply turns into the symmetry of the
*

ν
λµΠ . 

(69*)   Uωµ = ∇[ω Qµ] + 
*

S ρ
ωµ
⋅ ⋅ Qρ  =  ∂[ω Qµ] , 

(67*)   ∇[ωµ] q = 
*

S ρ
ωµ
⋅ ⋅ ∇ρ q + ε Uωµ q , 

(70*)   ∇[ωµ] v
ν  = − 

*1

2
N ν

ωµλ
⋅ ⋅ ⋅ vλ +

*

S ρ
ωµ
⋅ ⋅ ∇ρ v

ν + ε Uωµ vν , 

(71*)   ∇[ωµ] wλ  = + 
*1

2
N ν

ωµλ
⋅ ⋅ ⋅  wν +

*

S ρ
ωµ
⋅ ⋅ ∇ρ wλ + ε Uωµ wλ  , 

in which: 

(55*)   
*

N ν
ωµλ
⋅ ⋅ ⋅  = − 2

* * *

[ | | ] [ | | ]2ν ν ρ
ω λ µ ρ ω λ µ∂ Π − Π Π  = N A Uν ν

ωµλ λ ωµ
⋅ ⋅ ⋅ + . 

 
For the second identity, one finds: 
 

(73*)   
*

[ ]N ν
ωµλ
⋅ ⋅ ⋅ = 2

* * *

[ ] [ ]4S S Sν ρ ν
ω µλ ωµ λ ρ

⋅ ⋅ ⋅ ⋅ ⋅ ⋅∇ + , 

 
and for the Bianchi identity: 
 

(74*)   
*

[ ]N ν
κ ωµ λ

⋅ ⋅ ⋅∇  = − 2
* *

[ ]S Nρ ν
κω µ ρλ
⋅ ⋅ ⋅ ⋅ ⋅ , 

 
whereby we likewise note the identity: 
 

(74 1
2

*)   ∇[κ Uωµ]  = − 2
*

[ ]S Uρ
κω µ ρ
⋅ ⋅ . 

 
If we further introduce, instead of the quantities: 
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(56*)   
1

P ν
λ
⋅  = 

*
ν
λµΠ xµ ,  

1

Q ν
µ⋅  = 

*
ν
λµΠ xλ , 

the quantities: 

(56*)   
*

P ν
λ
⋅  = 

*
ν
λµΠ xµ  + Aν

λ  = P ν
λ
⋅ + Q Aν

λ , 

(57*)   
*

Q ν
µ⋅  = 

*
ν
λµΠ xλ  + Aν

µ  = Q ν
µ⋅ + Aν

µ + xν Qµ , 

then one has: 

(75*)   
*

N ν
ωµλ
⋅ ⋅ ⋅ xλ  = 

* * *

[ ]2 2Q S Qν ρ ν
ω µ ωµ ρ

⋅ ⋅
⋅ ⋅− ∇ +  

(76*)   xω 
*

N ν
ωµλ
⋅ ⋅ ⋅  = ∇µ 

*

P ν
λ
⋅ , 

(76 1
2

*)   xω Uωµ  = − 1
2 ∇µ Q, 

(77*)   ∇µ x
ν  = 

*

Q ν
µ⋅  = 

*

P ν
λ
⋅ − 2

*

S ν
λµ
⋅ ⋅  xµ , 

(78*)   xλ ∇λ v
ν  = 

*

P ν
λ
⋅ vλ + ε Q vν, 

(79*)   xλ ∇λ wµ  = −
*

P ν
λ
⋅ wν  + ε Q wµ . 

 
The existence condition for the covariant differential of an arbitrary projector of 

excess ε is: 

(IIa*)    
*

P ν
λ
⋅  = P Aν

λ , 

along with: 

(85*)    

*

P

Q
 = const. = ε . 

 
Theorem 3 preserves the same form (up to a replacement of the quantities without stars 
with ones with stars).  The form of the existence conditions II, III for the geodetic lines 
also remains unchanged.  Thus, one has: 
 

*

pλ = pλ ,  
*

qµ = pµ  + Qµ , 
*

P = P + Q , 
*

p = p,  
*

q= q + Q – 1 . 
 

If one replaces d
abcN ⋅ ⋅ ⋅′  in the assumptions of theorem 6a with 

*
d

abcN ⋅ ⋅ ⋅′  then the form of 

(144), (147) stays the same, whereas (145), (146) simplify to: 
 

(145*)    
*

( )pλ µ∇ +
* *

( )p pλ µ = 0 , 

(146*)     
*

qµ =
*

P . 
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The corresponding formal changes in the other theorems and formulas may be easily 
carried out.  On the whole, they therefore change nothing. 

In order to make the comparison with the older theories more comfortable, we then 
decide to also write (218), (219) in the form: 

 

(218a)    0Aν  = 0
0

1
A

x ν , kAν  = [ 0]
0

2 kA x
x ν , 

(219a)    0Aν  =  xν , iAν   = x0
iAν . 

 
The covariant Veblen index 0 (which is our0 ) thus means contraction by xν, from which, 
the scalar nature of the index is clarified.  On the other hand, the contravariant Veblen 
index 0 (as Veblen himself remarked) has no invariant meaning (one must give the field 
x0 or r).  In general, one has: 
 

(A)    0v  = 
0

1

x
v0 , kv  = 0

0 0

1 k
k x

v v
x x

 
− 

 
,  50) 

(B)   0w = wλ x
λ ,  iw = x0 wi . 

 
From (219a), it then follows that: 
 
(219b)   0 0Aν∂ = xν, 0 iAν∂ = 0i A

ν∂ = 0
ix Aν , k iAν∂ = 0 , 

hence: 
 
 
 
 
 
(C) 
 
 
 
 
 
 
in which we have set: 

                                                
 50)  In order to avoid ambiguity, we recommend that the Veblen coordinates not be denoted (as we did in  
§ 14) by xν, but by, e.g., ξν: 

0ξ  = log x0 ,  kξ  =
0

kx

x
. 

From (A): 
0x  = 1 ,  kx  = 0 , 

 

are the values of the contact point xν, whereas the νξ  are its Veblen coordinates. 

 
*

0
00Π =

*
0

0

1
b

x
,  

*

00
kΠ =

* *
0 0

0 2

1

( )
k kb x b x

x

 − 
 

, 

*
0

0iΠ =
*

0
iP ⋅ ,  

*

0
k
iΠ =

* *
0 0

0

1 k k
i iP x P x

x
⋅ ⋅ − 

 
, 

*
0
0 jΠ =

*
0

jQ ⋅ ,  
*

0
k

jΠ =
* *

0 0
0

1 k k
i iQ x Q x

x ⋅ ⋅
 − 
 

, 

*
0
i jΠ = x0

*
0
ijΠ ,  

*
k
i jΠ =

*
k
ijΠ x0 − 

*
0
ijΠ xk, 



Projective connections in n-dimensional spaces                                     55 

(D)   
*

bν =
*

P xν λ
λ
⋅ =

*

Q xν µ
µ⋅ =

*
ν
λµΠ xλ xµ + xν . 

 
Ultimately, since they are both valid, one must decide whether to identify the 

Veblen ν
λµΠ  with our ν

λµΠ or our
*

ν
λµΠ , since for Veblen, one has Qµ = 0, whereas the 

theory of Sch. and G. can be identified with ours in two kinds of ways.  Namely, if one 
demands that the values of the Sch. and G. points relative to the homogeneous 
coordinates be pure functions of position then the point quantities correspond to our 
projectors of null degree.  However, if one then demands that the values relative to the 
Veblen coordinates be pure functions of position then the point quantities correspond to 
our quantities with null excess.  In the latter case, equations (220), (221), (223), (224) are 
replaced with the corresponding equations with a *, whereas, from the anomalous 

definition of 
*

P ν
λ
⋅ , (222) turns into: 

 

(222*)    
*

P ν
λ
⋅ = c Aν

λ . 

 
Corresponding statements are valid for theorem 12.  We also remark that for Sch. and G. 
the weight of the quantities relates to the determinant ∆0, hence, from (215), upon 

multiplying by
1c

c

−
, it emerges from the projective weight (relative to ∆). 

 
(Received on 11. 5. 1931.) 
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