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Theory of projective connections on n-dimensional spaces.
By

D. van Dantzig in Delft

8 1.
Introduction.

1. The relations between the various projective diffaad geometries of Cartan [1-
3], Schouten [1-3], J.M. Thomas [1], T. Y. Thomas [1\&blen [1-7], and Weyl [1-2]
have recently been clarified in two works of Schouteth @olab?). It has thus been
demonstrated that these various geometries can be regardpedcal cases of a more
general theory of projective connections under a cerasumption (cf. 8 1449).
Nonetheless, the theory can hardly be regarded aslemmnfor one thing, it has many
unsatisfying aspects from a purely formal standpoint.

First, the asymmetry of the indices for projective diti@s is an impediment, i.e.,
the special role of the index 0 as opposed to the indices, n. Second, it is disturbing
that in general the covariant derivative is not asgedi with a covariant differential.
Indeed, the impossibility of defining such a well-definednaffdisplacement without
restrictions has already been proved by Schouten arab&plbut the deeper basis for
that fact is still not entirely obvious. Third, it i®thentirely clear whether one is

necessarily led to the associated admission of desisifleurth, the frequent appearance
1

of the factoA™ is particularly astounding). One does not completely see whether the
.1 . .
exponent must be preC|selya, much less whethek is a determinant of degreeand
n

not (n+1). Fifth, up till now there is no theory for theduction of a projective
connection in an embedded space.

2. The goal of the present work is to seek to elimitia¢se “beauty marks” from
the theory by way of a different type of represeatati The key to making this possible
is given by the first of the aforementioned remarks: $pecial role of the index 0. This

" Translated by D.H. Delphenich.

1 J. A. Schouten and St. Golab, Uber projective Ubertragunige Ableitungen, 1. Math. ZeitscB2
(1930), pp. 192-214, 1l Annali di Mat. (8 (1931), pp. 141-157. (The first of these articles will be
denoted by Sch and G.)

2 Loc. cit.Y), pp. 207.

3 Cf., e.g.,, Sch. and G. § 2; Veblen [4]"); Veblen and J.M. Thomaséf T.Y. Thomas [1],

(—i 0 |ogAj etc.
n+10x°




Projective connections imdimensional spaces 2

very same difficulty has been encountered previouslgréinary projective geometry;
there, one succeeded in removing it by the introductidrorfogeneous coordinates.

To be sure, homogeneous coordinates were also introduced pnojective
differential geometry by Cartan, but always onlylimear spaceghat were associated
with each point of space, never the space itself). (By contrast, Weyl has even
recently replaced the homogeneous coordinates in linqesres with inhomogeneous
ones.)

However, it will now be shown that the introductionfmmogeneous ur-variables
casts a thoroughly illuminating light on some of the pinegioa that were just mentioned.

For example, one immediately sees that a type ofisith® can appear. ¥ is a
point of the associated linear space then the numbatsiétermine it are generally only
defined up to a common factor, i.e., they are homogerfeaatons (e.g., of degreg of

the homogeneous ur-variabbes(cf. § 3, 7) If one then replaces tkewith ox” thenv”

takes on the factop. |If one regards the replacemexit -~ px” as a coordinate

transformation (which is usually not recommended), Ang the determinant of the
1

transformation then one has=A™!, andV is therefore a “density®) of weightt =

1 . 1 : . ,
e The densities of welght+—1are therefore, to a certain extent, quantities of firs
n n

degree (on this, cf., however, § 14).

Furthermore, the lack of a covariant differentialtve general case becomes self-
explanatory. There also “exists” modinary differential: thedx” are not homogeneous
functions of thex” (cf. § 3,9¢c). The basis for the lack of a covariant differahis then
the same as the basis for the lack of a point differémordinary projective geometry.

However, this shows that one can achieve the existdreeovariant differential by
a specialization of the displacement (83), and that this can even come about by means
of apath-preserving changef the displacement (8 138, 40).

The theory of geodetic lines (8 10), of path-preserving foamations (8 12), and of
™1pin "!p is then effortlessly carried out. Then one seesahmbjective connection is
uniquely determined for a given curve bynter alia — the requirement that the quantities
Qu that are defined in 8 @7 must vanish (8 1243). However, the vanishing of the
scalarQ,x* + 1 is crucial for the existence of the covariant etéhtial (8 7). This
existence is then inseparable from the unique determinatithe projective connection,
as Schouten and Gol8phave already proved.

3. A crucial element of this entire style of repréaéion was the wish that the
essential features of ordinary projective geometry lshbe preserved to the greatest
extent possible, and that projective differential gegoyehould not degenerate into a
thinly-veiled affine geometry. The relationships with infegeneous coordinates (8 13,

* Except forEuclidianspaces and dscal coordinates at a single point of a general space. tindases,
one needs to consider only the ordinary projective gioup not, however, our general homogeneous
groupﬁml (§ 2,6).

® For the analysis of densities, cf. J.A. Schouten anHl&vaty, Zur Theorie der allgemeinen linearen

Ubertragung, Math. Zeitsch80 (1929), pp. 414-432. Cf., also footnote ?
® Cf. loc. cit.
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14) are also established only by means of more reassurirsgwiktk the older theory; as
usual, they are quite considerable. The geometry obuieh and Golab is briefly
sketched in 8 14 on the same basis; we show that iim®lfoom Veblen’s theory (and
thus all of the older theories), as well as our own.

Furthermore, a standpoint will be principally taken tisaas general as possible.
Thus, we succeed in establishing not just sufficient, lBat mecessary conditions for,
e.g., the existence of covariant differentials, ttaprto an infinitesimally clos&’E, and
geodetic lines. An overview of the complete set ofdations that were introduced, along
with the most important simplifications in the gendoaiulas, will be given in § 11.

The relationships that are employed draw upon SchouRint Calculus’) in an
essential way, in which most of the changes that,hiaw@e course of time, proved to be
useful will be incorporated. Some inessential deviati¢ef. footnotes ?, ?, ?) are,
however, introduced, largely for the purpose of avoiding thst array of indicial
notations, which completely obscure any intuition abbatriature of the formulas. As
for the form of the representation that is describa@,hexcept for the Schouten Ricci
calculus, the only older works that had an essentilaleince on it were those of Cartan
and Veblen; indeed, the method of Veblen is closest tortbdhat is presented here.

4. By the introduction of the homogeneous grep, which is actually new to the

theory, projective differential geometry takes on tiaracter of egeneralization of
ordinary projective geometrio a far greater degree that has been true up till now, i
particular, when one does without the existence of arcawt differential and set9, =

0. Differential geometry may then be immediatelycdssed in th&'E by means of the

AnsatzIl) = 0; the system of geodetic lines will then be givenhgysystem of straight

lines in ™E. Therefore, the most important thing is then that ean immediately
discuss the differential geometry of an embedded manftdld, assuming that this is
desired. In the event th&'H is given by equations in the, instead of a parametric
representation, the theory is easily altered correspglydn § 9.

Moreover, the connection with thg.1 ®) yields the possibility of a generalization of
the theory. Just as in ordinary projective geometrg,"t'E are easily seen to be the
geometry of the lines in df,.; that includes a fixed poir® relative to the subgroup of
the affine group oE.1 that leaves this system of lines invariant, and thuscanealso
regard thé"'P as arlL,.1 in which a system ob" “lines” (i.e., X; will be induced under
Euclidian translation) through a fixed poif@ is defined; the group of arbitrary
coordinate transformations of the.; will be correspondingly replaced by the only group
that takes the system of lines to itself and indudasear group (withO as fixed point)
on any line. The aforementioned generalization now stmsif replacing the “sphere”
Ln+1 With a “ruled surfacel.1, or evenL.m, i.e., with a space in which a systemedf
pairwise distinct linesg,, resp., henceluclidian subspaceghat can be regarded as
“points” of newn-dimensional space. The grouplef., will be correspondingly reduced
to those transformations that, first of all, leave tsystem of" E,, invariant, and

" J.A. Schouten, Der Ricci-Kalkiil, Berlin; Julius Springe24. Denoted by R.K.
8 Cf. T.Y. Thomas [4], Sch. and G., § 6, Veblen and Hafim pp. 811, and the works cited there by H.
Mandel and J. H. C. Whitehead.
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secondly, induce Bnear transformation in eacl,. A possible generalization of another
sort will be briefly indicated in the concluding section

Finally, we must remark that Veblen’'s projective diffgi@l geometry gives us a
guadratic differential form (Vebler6]) quite easily by means of the method followed
here. One will probably obtain a new connection antkw glimpse into conformal
differential geometry, which I hope to show on a latszasion.

§ 2.
Thegroup.

5. In elementary projective geometry, one ordinarilyadtices ther+1)-ary (=n-
dimensional) projective spal€E °) in the following way: In an ordinany-dimensional

spacekE,, which is given by Cartesian coordinagééh, ...,1 =1, ...,n), one sets:
0 —

Q) x":{x. i v=0, @ ..., 0=0,1, ..0),
X v=i

in whichx’ is an arbitrary variable thatis0. Anyn+1 numbers" that do not all vanish
and satisfy the relation (1) will be regarded as thedgemeous coordinates of the point
&. One then complete’, by means of an “imaginary” hyperplan® = 0 and seeks
invariants under the group £,.1 of homogeneous linear coordinate

transformations’ — ¥ 9, in which:

° The left-hand upper index indicates the “point value” of thees (cf., P.H. Schoute, Mehrdimensionale
Geometrie, Sammlung Schubert, I, pp. 12), i.e., the eammbdimensions plus one. We will call a space
with a point value of+1 (n+1)-ary (binary, tertiary etc.).

9In the older theory, coordinate transformations weostly indicated by changing the kernel symbol
(X" - y") or by attaching a prime to the kernel symbgl (, ¥'). However, because we (with J. A.
Schouten) will view the quantities as geometrical $tmes throughout, independently of any coordinate
system, it is desirable to always indicate geometstraicture bythe same kernel symbahd avoid the
rather inessential change in the coordinates (nuntbatdetermine them, resp.) defined by changing the
indices Each coordinate system will then be associatest]yfirwith a series ofi+1 fixed symbols, and
secondly, with a type of notation in which an index & tipe in question is regarded asaaiable that
ranges through the associated series of symbols. Thinddhe series of symbols must also be different
for different coordinate systems thus implies, e.@t the null component of a vector must be distinct in
two different coordinate systems. Consequently, in RH€,newer method in the later works of J.A.
Schouten (since, perhaps, 1928) is still not completelgvied (different series of symbols, but only one
type of notation and primes on the kernel symbol)th&énlong run, however, this leads to a much too large
number of notations, as in Sch. and G, I:

l, ..., =@, ..., 8, I, ..., Q=A, ..., Ay
h,...m=1,..n H, ...M=1,....,n;
a..9=01..n A ..G=61..,n,

all of which are still in the locak,. To simplify, we would thus like to indicawifferent coordinate
systemsdn the same spacey the samenotation (for the index) and distinguish them from eaitieroby

attaching a primeo the indexor a point, or underlininghe index etc. (e.g.x",x",x", X, ¥, ¥ , etc.).
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(2) X" = A X (a',...,dd =0,1,...n")

and the%”' are any if+1)? constantsvith non-vanishing determinant

One can also proceed in a somewhat different walplisvs: One starts with an
En+1, Which is given by the Cartesian coordinatésand subjects them to homogeneous
linear coordinate transformations of the given grals.;. LetE be the space that

n+l
results from omitting the origi® from E,.1. Two pointsx”, X" of E;,, are collinear with
O when and only when:

(3) X' = ox’, p=0.

This relation betweer” and X" is reflexive, symmetric, and transitive, and isarignt
under the group+1; it may then be regarded as an equivalence rajattich we will

also refer to asoincidence. The sets of coincident points, hence, the litesughO,
may be regarded as “points” of a newdimensional space that we denote"H¥. In
order to avoid confusion, we briefly refer to a ifmoof ™'E” as a (contravariant)
position whereas we reserve the expression (contravaniy for the points oE ..

There exist the following relations between theséhnotions of “point,” “position,” and
“system ofn+1l numbers”: A system ai+l numbers that do not all vanish uniquely
determines a point, as well as a position, as Es)@ne says which coordinate system
they belong to. A given point will thus be repnesel by different systems of numbers
that determine it in different coordinate systewiich relate to each other as in (2); in a
single coordinate system, however, different systexh numbers determine different
points. However, in a single coordinate system titerent systems of numbers can
very well determine the sanposition namely, from (2), when they differ only by the
same factop = 0.

In pure projective geometry, only the conceppositionhas any meaning. Points,
along with systems of numbers, serve only to fatéi computation; they may not,
however, enter into projective-geometritaorems.

Finally, one may considdunctionsf(x") that depend upon only thatios of the x”
up to a factoi(p) that depends only upgm

The associated series of symbols is a series of nunitbethe samealteration (e.g., @,0',0,0,0). We
thus use:

a,..,.w=01..n,
a,..o=01,.n, in "H,
g! -"@:91_11- ﬁ!et
h,...,1=1...,n, inX.,
h,.,KI'=1,...n, etc

o

} in an embedde®H.
C

O
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(4) f=1(ox") = #(0) 7(x").

One easily proves thai(o) always has the forrg, in whichr is anyconstantnumber
(thedegreeof f(x)): The functions are homogeneous:

(5) f=gf
Equation (5) is equivalent to tiiler homogeneity condition:

0
6 xto,f=rf, 09,=—-——
(6) P T
or also to:

X0, logf=r.

If r = 0, hencef =f is homogeneous of degree zero, then we fcalfunction of
position If f is homogeneous of" degree then the partial derivativegf are
homogeneous of  1)" degree:

> _0f(pX) _
7) 0,f _W_d d,f,
(8) X' 9, f=(—-1)a,f; 01 =0,.0,.

6. We would also like to introduce homogeneous cmatds when then-
dimensional space is subjected to the general geupf all uniquely continuously
invertible and sufficiently many times continuousdifferentiable transformations (in this
case, the space will be denotedXy. If X, is given by the ur-variableé then we
further take an arbitrary variabte=> 0% and introduce the" precisely as before by way
of (1). Now, if thed are subjected to an arbitrary transforma#ibn. & from &, then

the ratios of the new homogeneous coordingtese functions of the ratios of th& i.e.,
thex” are themselves homogeneous functions of null degfélke x’, up to a common
factor . We further assume that the functidiis homogeneous of first degréd =) in

the x” (cf., however, § 15). It follows that tl&are also homogeneous of first degree,
and, moreover, that they are unique and suffigientbny times differentiable in the
neighborhood in question, whereas the functionalerd@nant itself is nowhere
vanishing.

1 Thisx® corresponds to the”’ of Veblen BJ. [6], [7].

12 Such a thing is completely different frontiear function. The latter has the forayx’, in which the
a, are constants the former can also be given this form (but not urigudowever, thea, are then
arbitrary functions of the ratios of the.

'3 The condition that the degree shall equal one can alsmiited, provided that it i® O (otherwise,

thex” would be dependent). Cf., also footnotes ?) and ?), alhc 15.
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The situation becomes clearer when we choose thedgath. The total system of
n+1 numberx” define an if+1)-dimensional spacé,.;. If it is subjected to the group of
all uniquely invertible and continuous and sufficiently mamyet differentiable
transformations then neither the notion of “line througé origin” nor the notion of
origin itself is invariant. We thus reduce from the gr@ypto the subgroumn.1, which

consists of all transformation$ — X’ in .1 for which thex” arehomogeneous of first
degree™) in thex":
9) X=X (px)=p X' = px’ (¥ .

We denote an 2 with this sort of reduced transformation group by.H The (now
invariant) lines through the (now invariant) origin ofstHi,.; can, moreover, be regarded
as “points” of a new space that we denote "5§H. We once again call them
(contravariantpositions and once again reserve the term (contravarjzoitionfor the
points ofH .., i.e., Hn.1 Without the origin. In order to give a position, onasingive,

first, one coordinate system, and second, a systerlofumbers that do not all vanish.
The group $n+: includes a subgroup)’ that consists of the coordinate

transformations im,+1 for whichx? = x°, and which is (einstufig) isomorphic with the
group &, of transformations of thé ; the group$),.1 is then no less “enveloping” than

the group®,. The fact thatl.; can be completed by an “imaginary” manifoft= 0 is

inessential since one must usually restrict oneselfrighborhood (that is chosen to be
arbitrary small) in differential geometry, in suctway that the imaginary manifold can
be ignored.

One must observe that the mdp- X", although it is a change in the numbers that
determinethe sameoint, is not to be viewed as a coordinate transformatiddamely,
from the degree condition (9), this is possible wheth anly whenthe proportionality
factor p is a function of position, hence, homogeneousutlf degree in the % The
invariance requirement, upon which the definition of ptmes (8 3) rests, thus relates
only to the group$n:1, not, however, to the change of factor (3) whenis not

homogeneous of null degree.

We now call a differential geometry ini:H purely projectivewhen its theorems
involve only the notion of position, but not the notidrpoint. The differential geometry
that is introduced and developed in the following sectionsispurely projective, but
projective in a broader sense, since we are indeed workihghomogeneous functions
exclusively, but thelegreeof these functions will also be considered, whichoidtices a
non-projective element.

14 Ct., the previous footnote.
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8§ 3.
The quantities.

7. The group$n+1 induces dinear group £n+1 = £n+1(X") at every pointx”. It is

composed of matrices with constant coefficients, whizime about when one substitutes
the coordinates for the point in question into the fuomsti

v V' - a
(20) A, =0,X", 6/,—67.
The inverse matrix to (10) is:

| - vV —_— a
(11) A, =0,X, aﬂ._axﬂ, :

For the sake of later use, we remark thawgﬁe(and likewise théy, ) are homogeneous
of null degree, hence, they are pure functions of positio

(12) z&i':A{;(@a)=A{;-
Due to the Euler homogeneity condition this is equivatient
(13) x°0,A, = 0.

We now associate each poidt with anEn.1, in such a way that each coordinate
transformation oHn.1 from $Hn.1 induces a coordinate transformationEgfi; from L1,
namely, the one that is given by the associated mgitix In order to give a point of
En+1 one must first give a coordinate system (ex$).in Hq.1, and secondly a system of
n+1l numbers. The coordinate systemHp.; is, in fact, uniquely associated with a
coordinate system ikn+1; the given numbers are the coordinates of the point,.aef

relative to this associated coordinate system’ dfe the coordinates of the same point
relative to the coordinate system .1 that is associated with the coordinate

systermx” then the/ must go over to the” by means of a transformation 8.1
(14) V= AV V=AWV

A point field in Hn+1 is composed of a system ol (single-valued, continuous,
sufficiently many times differentiable) functions diet coordinates that one of the
coordinate systems iH,:1 is associated with, in such a way that the functitvas are
associated with two different coordinate systems geatth other by means of associated
coordinate transformations @f.1 according to (14). Geometrically, a point field simply

means that each point Hf.; is associated with a point of the associated (“lgdal;.
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Now, if x",X"are any two coincident points df,.; then we identify the two
associatedE,.1 with each other in such a way that we can identihgaint of oneEn.
with that point of the otheE,.; that has the same coordinates. This condition isfieat

for any coordinate system whenever it is satisfieddioe coordinate system, since thfg

have the same valuesxtandx”, due to (12). Thus, the locdlE (which we construct
out of theE,+1 as in 8 2, 5) to which the coincident points Hf;; belong will be
equivalent and can be identified with each other.

In general, a point field associates a one-dimensiarally of points with each
positionin "™'H, hence, a curve in the lodal.1. In the event that this curve is a straight
line through the origin oE:;, or also contracts to this origin, we call the pdiald a
position field. Such a construction thus associates gaxditionin ™'H with a unique
positionin the associated locAI'E or with the origin.

Thus, in order for a point field to be a position fidlgsinecessary and sufficient that
thev” = v'(o x) be proportional to the” = v" (¥*). We would like to further assume
something rather far-reaching, that (i.e., we restiicselves to such positions fields for
which) the proportionality factor is a power @f whose exponent (the degree'®) of v*)

is constant over th&H, i.e., that the system of numbers arehalinogeneous functions
of the samé™) degreein the ur-variables:

(15) v=dgv'. 19

15 Our notion of degree has nothing to do with the notibrthe “degree of an affinor” (R.K., pp. 23),
i.e., it is actually the degree (number of indicesYh® associatetbrm, which is often also called the
degree. It appears here for the first in the ordiesmnentarysense (the degree of the system of numbers
when considered to Wenctions of the ur-variabl¢f differential geometry, in which, up till now, one
does not ordinarily bother with the type of functional dejeercy of the quantities upon the ur-variables
(except for differentiability, resp., analyticity, recgrnents).

' One can also regard the associatibn, ox’ as a coordinate transformation (which is not possible

t
a generapin our theory; cf. § 2, 6, conclusion) and introduce densitiésdex (weight)—1 instead of
n+

quantities o™ degree. Such a transition must then transform undemimodulargroup @ = Det {/;x")
=) according to (14), although like a “point density” accogdio:

(14a) P =A™ A B

However, it seems to me that the notion of volume (and,tthe notion of density) possesses a typically
non-projective (affine) character to a far greategree than the notion of degree, in such a way that
statement of the theory that is given in the textrhast. One will first arrive at a purely projectivestiry

(cf. 8 2, 6, conclusion) when one combines the An@ata) with the footnote ?) that was mentioned, and
defines a position by way of:

(14b) V= AV

with a completely arbitraryfactorr; the geometry that is thus defined will show a cerggreement with
the theory of pseudo-quantities of Schouten and Hlavat?).cfOn this, cf. § 15.
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Two position fieldau, v* arecoincidentwhen and only when they differ by a scalar factor

(see below):
u’=pv-.

In order for this to be true, it is necessary and sefiicthat:

Wi =0,

8. Analogously, we define eovariant position field wof degree: by means of:

(16) w, =AW, Wy =AW,
(17) W,= 0w,

Geometrically, w, describes a hyperplanéE} in the local™E. It includes the
contravariant positiom” when and only when:

(18) V' w, = 0.

We will define general quantities that we would like toll carojectors
corresponding to the affinors of affine geomét)y as a system of¢1)** homogeneous
functions oft™ degree that transform like a productrofovariant ands contravariant

points:

VLWL NP PV Ny Ny e OO 18
(19) x/il’.“/i:’/l ’ _Ail.“/i[,’)c\rlllmas Xpl.“p,gl 7 )
(20) Xy rte=g X,

Geometrically, a projector describes some algebréitarship in the locdl™'E.
As usual, one can also refer a quantity to two or mdfereint coordinate systems.

Thus, e.g., inX,.”, both of the covariant indices are referred tosygtem ok” and the
contravariant index, to the systenmxtf

O _ pApo O — AV v O
(21) Xy =B X =R~ X5,

AU " po

Finally, ascalaris a homogeneous function &f degree that assumes values that are

independent of coordinate systenmeathpoint. A scalar is positionfunction when and

" We use the expression “affine geometry,” as opposed fectike (differential) geometry, for the
generallinear displacement IllAx in the classification scheme of R.K., pp. 75, hendthout regard for
the symmetry condition.

18 For the sake of simplicity, we shalbtrecall the notation for unit-projectors and differehsigmbols:

2

AC=AA, BC=B/BI, 0,=00, .

, Dg'uz DA Dy.
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only when its degree is zero. Two quantities that ddfdy by a scalar factor have the
same meaning geometrically. A scalarBfiegree may always be brought into the form
p'g (e.g., &) q), in whichp is an arbitrarily chosen, but fixed, non-vanishing scafar

first degree andj is a scalar of null degree. This was done by Veblen fdtnote ?)
and ?)).

9. Examples.
a) Thecontact position & By means of the Euler homogeneity condition:
(22) X* A =xP0, X =X,

which is equivalent to (9) = x” satisfies equation (14), i.e., thel numbers determine
a point of the first degree i..1 that is associated with the pokitin Hn.1; we can then
think of the pointx” in Hy.; as being identified with the point’ in the associatef,.,
just like the associated positionHH and™'E. In affine geometry (cf., last footnote)
the X’ transform nonlinearly; there, the contact positionresponds to the null point
(null-vector) inEqs1.

b) The unit projectod; . If both of its indices refer to theamecoordinate system

then its values are equal to 1 (0, resp.) wheneverdddtie indices are equal (different,
resp.). However, if one refers the unit projector to thifferent coordinate systems
e.g.,x",x” — then it represents the functional marjx” (8, x", resp.), which we have

denoted by the same kernel symBodll along (cf., footnote ?)). The degree Af is
equal to zero (cf. (13)). Geometrically, a quantityhef typeX ;” always means a single-
valued (but not necessarily one-to-one) projective maglirieation) of the local*‘E
onto itself: an arbitrary positiort in ""*E will be mapped to the position,” v*; A’ is the
identity map.

c) Thedifferentialsof the x” do not determinany position field. Indeed, if they
transform according to (14)

(23) dx’ = A7 dx';

however, they araot homogeneous:

(24) dx =dx’ = p(dx’ +x" dlog p) .

Theydo define a point field (as long as each poinHip; is uniquely associated with a
line elementdx’, hence, a point in the lock.1), but the point o0& that is associated

with the coincident points of the positi@hdoes notdefine a line through the origin, but
a completely undetermined curve in the plan&jn that is spanned by origin and both
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of the pointsx” anddx”. The basis for the non-existence of a covariariemiftial that
was mentioned in the introduction resides in equation (24)

d) On the other hand, ainyfinitesimally neighboring position*y= x” + dx” in "™*H
uniquely determines, up to quantities of second order, agogit!*'E that has the same
coordinates relative to any coordinate systeffi'is, up to quantities of second order, as
the positiony” in "™H relative to the associated coordinate systeffi'id. One then has
(up to quantities of second order!):

(25) y=x"+dx :AZ' X+ Pg dx'= Af,y"’
and:
(26) 7":7’+d7(”:l@(v+pdxv +de,0: (o+dp) y"_

The positiony” in ™H can therefore be identified with the positighin the local™*H
(that is associated with the positighin "*H), i.e., an infinitesimal neighborhood of the
contact poinix” in "H will be uniquely embedded in the lo¢&tE, up to quantities of
second order. Sinog is then embedded in tH&'E belongs tox”, along with theé™'E
that belongs tg", there thus exists a link (of first order) between théousr local™'E.
We thus point out that the differentiadx” are not determined by the being given the
positionsx” andy"; this is the case only when egabint x” (y", resp.) is distinguished.
Nonetheless, the positioyt is determined by being given thaosition X and the
differentials dx”; on the contraryany position on the line througk” andy” may be
obtained by a particular choice of the point that regmesx”.

e) On the other hand, tht®nnecting lineis indeed determined, and therefore the
“bi-positiort J% = xA¥ = x4 ¢4

(27) I =AK I,
(28) J%=p(p+dp) I*.

Therefore, there ar@mo line elementsan projective differential geometry, but only
directions i.e., lines through the contact point and an infimbadly neighboring point in
the local™'E.

f) A (contravariant) if+1)-point J”"*ris a projector whose values aré, +J, 0,
whenever the indices, Vi, ..., Vs represent an even (odd, resp.) permutation of the
numbers 0, 1, ...n (contain two equal numbers, resp.). Therefdres any function
(“density”) that takes on the factérunder a coordinate transformation. One obtains an
(n+1)-point as an alternating product of amyl linearly independent points. Jfis a
homogeneous function then ther{)-point also determines antl)-position If Jis (in

a certain coordinate system) equal to one then (forctosdinate systend’®**is the
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unit (n+1)-point (-position resp.)*?). If one were to takd to be equal to one iany

coordinate system thek"*“» would no longer be a projector, butlensity however, the
latter (which we will not usually use) is not uniquely deteed, without further
assumptions.

g) A covariant (n+1)-point (-position resp.) is defined analogously. One can
choosei%, 0 for its values, in whicll has the meaning described in f). If the co- and

contravariant rf+1)-points are associated with each other in that wasn the
computations in 88 3, 10, and 13 yield the frequently-used nesatio

(29) Jvovl.“v,arﬂ..ﬂn ‘]Aoﬂl..ﬁrarﬂ--ﬂn - (n - r)! (r + 1)! [:sz:]] ,
and, in particular:
(30) 3o g, ==t ARed,
(31) N LT
(32) JPoPr--n Jopp = (M= 1)
§4.

The ™H in "H.

10. Let anHm.: (M < n) be given inHy.1 in such a way that the” are given as
homogeneous functions of the first dedgi®ef them+1 homogeneous parametefya,
.. 9=0,1, ....,m); let these parameters be subject to the transfayrmati the group
$Hm+1 that corresponds to the grosip:1 that was introduced above. At the same time,

one is then given &H in ™H. Furthermore, let the local spadgs.; and ™'E be
introduced, as above. As usual, there exist the quantities

(33) B! = 0a X, 0a =ia ,
0x

which associate each (contravariant) point (positiosp.je? in the local™E with a
unique point (position, resp.):
(34) V=BV

in the local™E, which we can think of being identified with, and for this reason we
shall denote them with the kernel symhol Thus, the local*'E also appears to be a

¥In R.K., pp. 42, the non-vanishing values of the oniector were chosen to be equaﬂto instead of
n!
= 1. We have changed the factor, since it is mor@maty to choose the unit volume oparallelotope
to be asimplexwith side = 1. However, formulas (29) to (32)lilen become a little less simple.
% The condition that the degree = 1 can also bétedihere. Cf., footnote ?).
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manifold that isembedded if*'E. In particular, by means of the Euler homogeneity
condition (6), one has:

(35) XBY =x0, X" =x",

such that, in particular, the poirt in ™E will be identified with the poink” in ™'E.
Thus, there are four points (positions, regghat are identified with each other and lie in
™H, ™4, ™E, and™'E, respectively. Correspondingly, we have immediatelytish
the parameter ifi"'H by »? (instead of, e.guf).

Each hyperplane (hence, ed&h w; in the local"™'E is associated with a hyperplane
(hence, affE):

(36) w,=Bw,

in the local™'E. Geometricallyw, is the intersection ofi, with ™'E. Objects orfi™'E
that are induced from objectsTHE (or conversely) by intersection or projection, which
might not be uniquely determined, will be denoted by attgchirprime to the kernel
symbol.

For the sake of later use, we remark Bfas homogeneous of null degree (in #ig

(37) X0, B! =X 94X’ = 0.

11. If one introduces a quantify®-*in ™'H that is analogous to the onednf)
then the contact™E in ™*H will also be represented by the1)-point:

(38) Jretn =Bt o= (+ 1)1 BY

or by the covariantn(—m)-point:

_ 1 1q... A0
(39) tamﬂ.uan _m ‘]/10..‘/1” J .
Thus, one has:

(40) Jlo-in gl = 0, t, . Br=0 M+ 1< p<n).

1 An @

Geometrically, (40) represents the condition far points of ™'E to be incident with the
™IE that is represented [tE-coordinates. In general, one can represent thgetdial
"™1E in mixed coordinates by way of:

1

(41) LSNP D PN = P (O<r<m+1).

12. The casen = 0 is trivial. Therefore, since tk& must behomogeneous functions
of first degredn the single coordinaté, the equations foiH ultimately read like:

(42) x'=a’ ¥,
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in which thea” areconstants;H is therefore a single position.
Form = 1,%H is a “binary” manifold, hence, a curve. Correspondingig, tangent
through the bi-point will be represented by:

(43) I =B Y™ =2BM

01] *

For m = n — 1 the tangential hyperplané& or hypersurface8H will be given,
analogously to (39), (41), by:

1 Vi V, 1a,...
(44) tA :E 'Jvo.uvn_l/i Bag--;w—nl_l J fri=
=(+1) BYA AT,
or by:
1 Vo Va2 7'8g-+-8n-2C —
(45) t/‘DﬂR ZMJVO...VH_ZA,U Ba{g--aq-nz J 2t

=n(n+ 1) BY, 5 AT B,

etc. The incidence condition (40) reads like:

(46) tB; =0,
or:

(47) t, B =0,
etc.

13. ™MH is taut if an "™E is given at every position in the locl'E that has no
points in common with the tangenti8I'E. Let this"™E be represented by tha £ m)-

pointn” - let it be normalized such that:

(48) t,., NV = (n—m)! ),

If one then sets:

(49) BS = T _1m)!t;?_._l,n_fnpl...ﬂn-m =
= a0 B A

= (m+ 1) —m) Boy AT,

then, due to (30), (31), (39), (48), one has:

2L Cf., the “first normalization condition” (193) R.K., pp57; consistent with footnote ?), the factor in
R.K is chosen differently.
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1, c=a
50 B =B/Bj=B’=0.X =1 ’
(50) @ TaTA T e e {O, c#a.

As in affine geometry, one can also associate any aaiant position/” in "™'E
with its projection ontd™E”:
(51) Ve=BS VY,

and any covariant position (i.€"E) w, in ™'E can be associated with its “contact
hyperplane (i.e.E) with "™E”:

(52) W)y =B W,
which is not uniquely possible without tautness.
§ 5.

Proj ective connections.

14. A projective connection ifi*H can be given in four ways:
A. By defining a covariant derivative.
B. By defining a covariant differential.
C. By defining a map from any*™E to the infinitesimally close ones
(“displacement”).
D. By defining a system of curves (geodetic lines; “paths”)

The four corresponding types of definition of affine connection are equivalent to
each other and will all be governed by a systenm®ofunctions” :j with well-known

transformation laws. We will see that herginjectivegeometry, as well, the four types
of definition will be governed by a corresponding systenfuottions, together with a
covariant point, but they arby no meansequivalent to each other. Namely, the

corresponding functiori$,, cannotbe chosen arbitrarily, but they must satisfy certain
conditions that are different faé, B, andD.

15. We would now like introduce a corresponding systermof 1)* functiond »
in "H, with a corresponding law of transformation:

(53) ny, =AY, + Ao, A,

A'u'v

without concern for which method of definition of a poijee connection we have
chosen.

We would further like to assume that th&,, are functions of position, hence,
homogeneous functions, e.g.tBfdegree.
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16. As in affine geometry there exist:
thetorsion quantities:

(54) s =n’

(44
and thecurvature quantities:

(55) NS = =29, 1%, — 21%,1%

[@ "Alu] plw” "R

which are homogeneous 8 (¢ + 1)", resp.) degree.
In contrast to affine geometry, however, there exist guantities??) of null order
(and ¢ + 1)" degree):
(56) P =1,
(57) Q. =My, X' =P} +28" X,

as writing out the transformation formulas, by the aflsgl3), yields immediately.
§ 6.

Covariant derivatives.

17. As usual, we would like to establish the covariant davieaf a quantity by the
following three conditions:
A. The covariant derivative of a quantity is itself a quantity (in particukais
therefore homogeneous).
B. The difference between the covariant derivative and the ordinanmgigpa
derivative of a quantity is a homogeneous linear function of the valdles qtiantity.
C. The covariant derivative of products and contractions of arbitrary quantities
satisfies the Leibniz rule for differentiation.
From the second condition, it follows that the mgeheral form for a covariant
derivative of a scalar of' degree must be:

(58) 0ya=0.9+Q,q.

Thus, Qrﬂ can certainly be of degreebut it can no longer be dependent upatself. If
one defined], g according to (58) then conditidd yields: 0, o = rq“‘lm,, g; hence,

0
whengq is a scalar of null degre®, = 0. Furthermore, if the degreeof q is arbitrary

0
andp is a scalar of first degree thén when applied tal, q p*, and together witlQ , =
0, yields:

2 These two quantities roughly correspond toAQ)e( A{;a, resp.) in Sch. and G., etc. Cf., § 14.
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T

Qﬂ:tQ,u,

1
in which we have writteQ), in stead 0@, .
Hence, (58) takes the form:

(59) 0,=0,a+:Q,q.

Sinced, q is homogeneous of ¢ 1)" degree andl, g must behomogeneoyx), must
be homogeneous of degred. Sincell, q, like d, g, transforms like a covariant point,
Qu must also be eovariant point

18. ConditionB then gives the most general form for the covarianivaeve of a
point of degree:

(60) BT RV LV

If one substitutes” = p' u” in this, in whichp is an arbitrary scalar of first degree, th&n
is a point of null degree, and one finds:

(61) MY, =M%, +rAQy,

¥
0

when we writelT) , instead of1’, . If one substitutes (61) in (60) then this equation

takes the form:

(62) OV =0,V +MY V' +e Q..

The condition thaf], v/ must be aguantity yields the well-known transformation
laws (53) for thél’, . Since thel, v* are homogeneous of £ 1J" degree, thél’, , (like

the Q,) are homogeneous ofl)" degree:

23
1) X, MY, =-1"%; x'0,Qu=-Qu

The quantitiesP;, and Q) that were introduced in § 36 thus have degree 0. The

torsion quantities and curvature quantities have degikasd-2, resp.
Thus, we have:

%) The numbering by Roman numerals relates to § 11.
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Theorem 1.In order for a system of function$,, with the transformation la63),

together with a covariant point £ to define a covariant derivative, it is necessary and
sufficient that the1%, and the Q are homogeneous of degrek®).

19. For a covariant poink, of t" degree, application of the Leibniz rulefig w, v*
yields:

(63) Oy Wy =0, Wy —I_'ijﬂw./,

(64) Dﬂwﬂzaﬂvvﬂ—l'ljﬂvm+tq,vy

For a general quantity of degreene finds, e.g.:

D XAD ?1 ve _a XAD /]ml ° +Zn )(D ml Viia PVisr Vi
(65) |

L. Loy 0. By vy
Zn A /]—1/74+1 4 ' +tQ,u X/ll-n/}l

i=1

We will denote a space in which a covariant derivative is defined agsw(59),
(62), (64), (65)\and satisfies condition | BY*P.

We should point out tha, itself transforms like a covariant point, althougrstisi
notthe case fdf/,. Unlike in the analysis of densities one therefavesdnot seQ, =

%, %. Onthe other hand, the equation:

W Q,=0

is completelyinvariant, i.e., one can define a covariant derivatorenfhich ther*  are
independenof . E.g., the operator:

0
(66) D!,:D,u_'c Qu.»

which agrees with the operatay, in affine geometry, because of (59), (62), (64), (65), is
such a differential operator that is independent dflowever, we would like taot make

2 Whereas, for us, the degree of a quantity is reduced byrmer covariant differentiation, for
Veblen the “weight” of a quantity is invariant under agant derivative. On this, cf., § 14b.
%) Except when one restricts oneself to unimodular {¢east constant modular) transformations and,

as in footnote ?), introduces “densities,” which is whas wone in most of the older presentations.
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the assumption 1V, since we will see in § 7 that it edeb the existence of a covariant
differential %°).

20. Covariant differentiation of (59) and alternationlgse

(67) Otea @ =T,,°0,0 +t Uay g,
in which we have set:
(68) T =S + K, Q)

Covariant differentiation of (62), (64), and alternatjoelds:

1:
(70) Oy V" ==5N wa V' FTPOV =
- 1 00w Ip
==5 N VAT POV +e U,V
1
(71) Oty Wa =45 N "W +T,0,w =

— 1 oo Ip
—+§NW w+ T, 0,w+e U, w.

Formulas (67), (70), (71) differ from the corresponding forsaibaffine geometry

?") solely by the facts that, firstlys, is replaced by, , and secondly, that the term in

U, appears, which has degreand is proportional to differentiated quantities, as the
following relation, which is a result of (66), yields:

0 0
(72) D[@u] - S(Eut‘b Dp: o] —TQEIDOD[J -t Uw/,.

21. In addition to thefirst identity ), which is trivial, the curvature quantities
satisfy thesecond identit?®):

73) NG =20, S + 457 §2+2Q 8
=0T AT 2, A

% For this reason, assumption 1V, in its essentiaufeat may be said to belong to a tprejective
differential operator. Without it, in any position-liREE a covariant poinQ,, hence, alE, would be
distinguished, which one can regard as at an “infiniteadé®” in™'E; geometry would then take on a
certain affine character again in the small.

2 Cf., R.K., pp. 85.

2 Cf., R.K., pp. 87.

29 Cf., R.K., pp. 88.
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which takes on the conventional fohmy,,” = 0 for the symmetric case, as well as for the
quasi-symmetric case (cf., bel®&) whenU,, = 0, moreover. For thBianchi identity
%% one finds:

(74) 0, N2 =T P NI

[« Yap]A ] pA

Furthermore, there exist the following two identitiedhiehh do not occur in affine
geometry:

(75) me”:— 20, P +4P TP+ 2X0,, S5
(76) N x’=-0,P".

Finally, we note the following relations:

(77) ix’=A7+Q + QX =QA + B' -2T" X/,
(78) X' 0= +P"V+ e QV,

(79) X' Dhw, = —PPw,+t Q wy,

in which we have set:

(80) Q=1+¥"Q,.

Equation (77) follows from (62) by means of the idenditx” = A’ by applying (57) and

(68); (78) and (79) follow from (62) ((64), resp.) by means 8) (and the Euler
homogeneity condition.

22. We call the projective connectigasi-symmetrievhen we have:

4 T =0.

The condition of quasi-symmetry says that the “cuneitll.,, g, i.e., the rotation of the
gradient of a scalag of null degree, vanishes. Quasi-symmetry expresses antiakse
property of projective connections by the symmetry caonalit

Va S® =0.

(7]

The additional ternd Q,, in (68) originates in the fact that the gradieipg of a scalar
of null degree is not of null degree, but has degfee

Theorem 2.The condition:
VI Uu =0

3 cf., RK,, pp. 91.
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is necessary and sufficient for, @ be a gradient?).

In fact, due to (67), (69) the integrability conditionsttee equation:

IV a Q,=0,logg

now read:
(t—1)Uy =0,

if v is the degree of. However, ift # 1 then, due to (59), I¥ would take the form:
d.log g = 0, henceg = constant, which is not possible for a scalar st filegree, except
for the trivial case (which is usually excluded) in whighanishes®). From IVa, and
contraction withx”, by means of (59), (80) it follows that:

(81) Q S . const.
1-¢
and:
(82) Qu=Qdylogg=0,log q°.
87.

The covariant differential.
23. In general, there exists no covariant differentiabne sets:
(83) oV =dx' 0,V

then the” indeed transform like the values of a covariant pdint; they are not
homogeneous: one has (cf., (24), (78)):

(84) OV =g {V+ (P"V' +tQ V) dlog g}.

A covariant differential obviously exists when and only whie coefficient ofl log p
vanishes, hence, for all of the points afieendegreer, whenP*v! +t Q V' = 0; hence,

one has:

3 The theory of Sch. and G. belongs to the specia Oas = 0 (cf., § 14,49). Since the older
presentation may be regarded as a special case of tlre Sale. and G., and, moreover, the newer theory

of Veblen that was mentioned in 8 ¥4,is the same special case, in either event, we Ugye 0.
) If g is homogeneous af’ degree and # 0 then logg is not homogeneous, ang, log g does not

actually exist. However, we use the expression as arewaation for ED g and also speak of
H

“gradients,” accordingly.
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lla P’ =PK

and:
P

(85) —=const. =t
Q

Theorem 3. There exists a covariant differential for quanttief each degree when
and only when both of the following conditions:

lIb PY =0

K

Vb

are satisfied.

Under the assumption lla, (77), (78) take the form:

(86) ix'=(P+Q A -2T X,
(87) X v =P+rQ Vv,

and under the assumptions Ilb,A\Mhey take the form:

(88) ,xV = —ZTATX”,
(89) x! vy =0.

These relations will be used in the calculatiorierof
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§ 8.
Position displacements.

24. A displacement is essentially a means of equatingtiies that exist at one
positionx” in a space with the quantities that exist at an infimtally close positiox” +
dx” %) Assuming that one has a means of equating (“simulteheaneasuring”)
guantities that are defined to have the same type aatheposition, which is the case in
projective differential geometry for quantities of $a&me typend degregone must then
define what it means for two quantities of the same tgpée called “equal” at two
neighboring points; i.e., the quantities xdt shall be mapped to the quantities yet
However, in order for this to be the case it suffitemap the twS*'E to each other in a
one-to-one way".

In fact, such a thing also exists in affine geometry,iadded there is aaffine map
between neighboring,; it is given by the requirement ofdvariant constancy,.e., the
vanishing of the covariant differential. For examphe vectorv’ is considered to be
“equal” to the vector:

(90) ¢ =vHdv =v -V Y, dX
aty”.

We now like to define a displacement in projective edéhtial geometry, as well,
and indeed, by means ofpaojectivemap between neighborid§'E. Furthermore, we
would not like to derive such a thing by means of the covariant réifiigal that was
introduced in 8 7 by means of the requirement of covacamstancy, but independently
of that, so we will consider the covariant derivatofethe most general map, and, from

that, derive the conditions for the, . These two paths recommend themselves since
they allow us to proceed in a purely geometric way (upegree considerations), and
because the starting point is general, since we will assyme a map of tA€'E, but not

the En+1. A displacement for arbitrary projectors will thietlow from the displacement

of the position.

25. Therefore, let there be giverpeojective mapof the™ E at a positiorx” to the
™1E at a neighboring point’ = x” + dx". It shall satisfy the following conditions:

P.1. Asdx’ - 0, it goes to the identity continuously. By that, valkmean the
following: If V" is a position in th8"'E atx” and ¥ is its image in th&'E aty then the
ratios of the coordinates o§” shall converge continuously to the ratios of the cootdga
of v“ whenevery” converges to’. Thus, the coordinates in both of tHéE must be

considered relative to two linear coordinate systenmschware both associated with the
samecoordinate system in tH&'H.

%) Cf., D. van Dantzig, Die Wiederholung des Michelsomsuehs and Relativitatstheorie, Math.
Annalen96 (1926), pp. 261-283, in particular, 8§ 7, Metrik and Physik.
3 Cf., J.A. Schouter], E. Cartan ).
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P.2. Coincident positions will be mapped to coincident timss. Therefore, ifil?
V! = 0 then one also h&<$v = 0.

P.3. The degree of a position is preserved by the map.

This map then yields a map of thealarsat x” to thescalarsaty’. Namely, ifu”, v*
are two coincident points ax’, so u” = pV*, then, because oP.2, one can
definepbyd” = p¥ . We would like to make the following assumptions abbistgcalar
map:

S1. Asdx’ - 0, it goes to the identity continuously.

S2. Sums and products of two scalars go to sums and produstalars (this
follows fromP.2).

S3. The degree of a scalar is preserved by the mapdtioie$ fromP.3).

Therefore, we must consider that for scalaraudf degree a scalar field associates a
numberwith each position of*'H; a scalar field of higher degree maps the points at a
position onto the number continuum in a well-defined wanly for scalars ofull
degree can we then infer, from the well-known theorkat the field of real numbers
admits no continuous automorphism other than the idenhi&gp = p. If we also allow
complex numbers for function values then we must hawep for scalars of null degree,
since the only non-identical automorphism that the fidlccamplex numbers admits
(namely, the one that takes any number to its conjugatedti continuously reachable
from the identity.

From S2, one then proceeds in the well-known way to infet thiascalars of the

same degreegmust be independent pfi.e., thad must have the form:
(91) p=0Op.

Therefore,é) p is a function in the 2(+ 1) argumentx”, y*, or briefly, atwo-point
function. Furthermore, it follows fror®.2 in a well-known way that:

(92) 0=0,

in which we have writte®, instead 061); (92) is valid at least for rational degrees, so we
shall restrict ourselves to such numbers. If we dev@l@gs a power series ax” with
coefficients that depend only upotf, and no longer ory’, and we truncate the
development at the terms of second order, then thigsstimt© must have the form:

(93) 0=1-Q,d¥,

sinceS1 implies that the first term must equal one. Thedation of the development is
justified since we call two displacements “equal” when thefiects differ only by second
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order quantities All of the following equations are therefore valid onily to second
order quantities, and the maps are uniquely defined only updodecder quantities.
Now, if p is any scalar of" degree then, on account®2:

(94) P=0"p=(1-QuadxX) p=(1-rQudx)p

is likewise a scalar af degree, but at”. However, sincg” goes to o+ dpo) y’asx’ —
ox’ (cf., 8 2,9d), pincludes the factord+ do)' =d (1 +pdlog p). Hence, one has:

(95) O =O(l+tdlogp =
=(1-tQ,dxX) (L +tdlog p) =
=1-vQ,d¥ +tdlogp.

Equating this with:

o =1-rpQ,(dx'+x"dlog p)

yields(jﬂz ,o'lQ,,, hence, the homogeneity conditidrer Q, (cf., § 6,18), as well as the
condition V3 (cf., § 7,23).

26. We now go on to the subject of projective maps of jpositoft" degree. Such
a thing is well-known to be given by:

(96) V=04V,

in which the®", are two-point functions. Singis a position ay", its values transform
by means of the values of tA¢at y’, i.e., by means ofA) +dA,. From this, the
transformation formulas for th& become:

V= (A +dA) )V,
and for the(:)j they become:
(97) O = (A+dA)O LA

If V¥ is an arbitrary position of" degree ang is an arbitrary scalar aof" degree then

the equatiorv’ = p U definesu” to be a position of null degree that is coincideithw” .
On account o7’ = pt’ and (94), one then has:

T

(98) 0] =0 0,
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0
in which we have again omitted the upper index®'jn We again develop ti@ in dx”

with coefficients that depend only upo?y and truncate the development at terms of
second order. Geometrically, the terms that are indigperofdx” must represent the
identity map; henceyp to a factor Tthey must equal the unit projec#y. For the terms

that are linear inlx’, we write I 1", dx’; hence, we have:
(99) @ =T (A, - MY, d¥).

Equating the infinitesimal terms in (97) yields the wellAkmnotransformation laws (53)
of the M’ . If u” is any position of null degree then, from P. 3, this nalsb be true

ford”, and it follows that the®’, are also homogeneous of null degree:

(100) o= 0.
Substitution in (99) yields:

(101) T(A - P, de =15, % do) =T (A =1, dx’).
Equating the finite terms yields:
(102) T=T,

i.e., T is a scalar of null degree. Equating the infinitesiteains, which do not depend
upondp, yields the homogeneity condition |, and the remainingseyield condition llb.
Substituting (98), (92), (93), (99) in (96) vields, for a positdft™ degree:

(103) V=T -Qudx')y (v -1,V dxX'),
which we can also write as:

(104) =TV -4,V dX' —cQ,dx').

The image point?” is then identical with the one that is obtained by dawn constancy,
up to a scalar factar.

If the position displacement in &f'E likewise determines a point-displacement in
the En+1 then obviously one must have= 1. The displacement remains projective-
geometric in the event thdtis changed by an arbitrary scalar factor of null degiée.
one decomposes it into a factor that is finite and ddgetnonly orx” and a factor that is
infinitesimal and deviates from 1 then the first faactauses a change T whereas the

second can likewise cause a chang®jrn the form of an increase @t} , by a product
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of A/ with a covariant point. Only the sum of these |ag thanges is determined by the
change i’ . Thus, we have:

Theorem 4.Conditionsl, Ilb, and IV Sfor the existence of the covariant differential
are also necessary and sufficient for the existence of a positiomctspént. Thél’,

are determined by way of the geometric map of the neighbBfiEgup to a multiplicity
of A}, whereas the Qremain completely undeterminédaturally while preserving the
condition).

27. Covariant constancy of the contact point meaasxthis mapped tg", i.e., that
x4y = 0. From (96), (104), we now have:

(105) =T {x" (1 -Qudx) —QY,dx:}.
Therefore, up to a fact@rand quantities of second ordéf! y* is equal to:
X dx QL ¥ dx! =X (QU + Al dxX’.

Thus, the contact point is covariantly constant uraletisplacement in aarbitrary
direction when and only whef, + A’is proportional tax’, i.e., when a covariant point

gp exists such that:

(106) Q=X qu= A
Now, since:
(107) Qx= 1y, x ¥ =P X,

vanishes, on account of llb, contracting (106) witlyields:
q=q,xX'=1.

Conditions (106), (108) are also sufficient for the ca@rdrconstancy of the contact
point. From (57), llb they are consistent with the syetry condition \& ; they are
consistent with the quasi-symmetry conditiod When and only when:

(109) Oy == Qu.

From (105), equation (109) is (under the assumptions llb, (106), (108) and fofl =
1) necessary and sulfficient for the covariant cowstar the contacpoint (X" =y"). In
order for this to be the case, quasi-symmetry is safficibut not necessary.

On account of § 29d, the contact point’ = y* — dx’ also lies in the locdl"'E aty";
we say that it isnvariantunder the displacement when the positidin the™ E atx” is
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mapped to the positiog — dx” in "™E aty”. The condition for this readg” y* = 0.
From (105), this is the case when and only wgias the form:

(110) Qo =x"tu ,
which, from (107), llb, leads to:
(111) q=x"q,=0.

This condition is inconsistent with quasi-symmetry, lout f
(112) qu="0

it is consistent with symmetry. The case of invas@arof the contact point was
previously established by J. A. Schoutéh From (105), (109) is necessary for the
invariance of contagpoint, which is impossible, due to the inconsistency off With
(109), (112).

Conditions (106), (108), (110), (111) can be summarized by:

1 Qr, =xXq,+(P-Xq) 4,

in which P = 0, with the extra conditions:

o x’q, =1

for covariant constancy, and:
11 x°q, =0

for the invariance of the contact point, resp.

§9.

The™Pinthe™p.

28. Let there be given any system of functidh§,Q, on a™'H in ™'P that satisfy

the homogeneity conditio's that correspond to |I. There then exists the curvature
projector:

(113) n.,’ =o,B +BxNY, - BN,

which is a quantity of1)" degree in the” and satisfies the identities:

%) Cf., J. A. Schouterf].
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(114) N, x=P'B'-B R,
(115) N’ =QYB! - B QS.

c
ab?

identically for the covariant (contravariant, regm)nt w, = B! w, (v =B/\*, resp.) in the
local ™E:

(116) BAO,w, —Oyw,= -, w,,

(117) B/O,V - BO,V =+, va,

If we denote covariant differentiation with respeot N ,Q, by V' then we have

when, as we would like to do, we define @jdy means of:
(118) Q,=BQ,.

29. If the™H is taut (cf., § 413) then, from (118) and:
(119) N =By, +Bo.B,
induces a systerfi’S,Q, on the™'H. Then, one has:

(120) P'=BJR", '5=BLQ;

hence, (114), (115) turn into:
(121) Haﬁtlgxa:(A)I;_Bz)Qgg Bf,
HoX' =(A - B) R’ .

In this case there also exist the two curvature questtiti

(122) L5 =B 0,8/,

and we have, as usual:

(123) H,, =By 0,B;,

(124) HIB°=0, L5B/=0.

The equations of Gauss, Codazzi, Rizzi may be stateel eastly; however, we will
not go into that here.

8 10.
Geodetic lines.

30. The equation for geodetic lines doed have the usual form:
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d?x dx' dy¥ dk
125 —— 4 -a =0,
(125) dt? Modt dt dt

since a curve is a binary manifoftH). Instead of (125), one obtains:
(126) Hy =0,By +Bxn’, —BMN'¢=0 @b,...,=0,1).
One easily sees the analogy with (125) when one wWfit) in the form:

0°X v OX 09X’ _ . 0X

M =0,
XX A axX  Poax

and replacesr with M'}, in (125). The elimination of thl’S from (126) yields (cf.,

(43)):

(127) H 377 = (0,8 + BYMY,) 7= 0.

From (37), contracting witk” yields the necessary condition:

(128) B/R¥J =0.

If V" is an arbitrary position id'* that is# x” thend'” is proportional tad” V2. If
one contracts (128) withf' then one sees thatP” must be linearly dependent ghand
X"

(129) P*V'=aVv'+pBx.

It follows that3 must depend on”: B=p; V', and since this must be true for arbitrafy
P,” must then have the form:

(130) PY=pmx'+a A.
Contracting this with(' yieldsa =P — Pp X°, in which:

(131) P¥x'=nY, x'x' = PX,
hence:
I P"=pX +(P-pX) A

Likewise, contraction of (127) witkf yields the necessary condition:

1] Qr, =xXq,+(P-Xq) A
If one brings (127) into the form:
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(132) (B/0,B) I =0,

in which the parentheses around the indereans that this index has been “turned off”
%), i.e., thaB’ is to be differentiated like a contravariant poitert one sees that the
integrability conditions for (127) read like:

(133) J*B'0,8,J*0,B, =0.

A small calculation then yields that (133) is satisfied,the basis of (127), Il, and
lll. Hence, we have:

Theorem 5. Conditionsll, Ill are necessary and sufficient for a geodetic line to go
through any position ifi”P in any direction

31. Letv’=B/V"be an arbitrary position of first degree that is’ that determines a

line (henceE) in the™'E at x” by way of theB. Then, one has, for a particulaof
first degree:

(134) XA :% QU

Since, from Il, 1, the system of equations (127) or (182¢omes an identity when one
contracts it withé orx°, it means the same thing as the equation:

(135) VWV HI ' #l=0

which, since the indela in (132) is turned off and!” J'*”! vanishes, can also be brought
into the form:
(136) V(O W) J#=0.

That is,v' (1, v/ must be a linear combination xdfandv":
(137) VOV =ax'+ BV,

Hence:The line in™'E that is determined by’ and V (i.e., the tangent to the geodetic
line) goes to itself under covariant differentiation s iown direction. If one then
replacesv” with a certain linear combination o andv” then a brief calculation by
means of (149), (150), shows thatand (or)S can be taken to vanish. (137) is then
equivalent with:

(138) ViV =0.

36) Cf., J. A. Schouten, On infinitesimal deformatiof&/qin V,, Amsterdam, Proceedings Kon. Akad.
31 (1928), pp. 208-218.
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Instead of this, one can also introduce the weaker gondi

(139) VOV =BV,
or, equivalently:

'O Wv =0,

which is invariant to a change uf, up to anarbitrary factor of arbitrary degree. We
would like to call a position fiel#” that satisfies the condition (139)gaodetic position
field.

32. One must still point out that geodetic lines are gmhe not projective-
Euclidian, i.e., thd1';, cannot be taken to vanish by a judicious choice of thenpeter

X% (although this is indeed the case wittend S in (137)!). In order for théP to be
projective-Euclidian it is necessary and sufficient thaS ., P'2°,Q'¢ , andN' ;;'* do

a ! abc

1 00
abc

not vanish. The conditiolN = 0 is, however, equivalent with:

(140) JON =

abc

On the other hand, it follows from (126) that:

(141) B N' o =By N .
If one contracts (141) witd'**x° and J'®*\* and regards” as ararbitrary position in the

"1E at x” then one finds, by means of (134), that (141) is equivaigtfit the two
conditions:

(142) xx' N'OV =0,
(143) X? N =0,

These conditions together are tmecessary and sufficient for us to havig, "= 0 .
From P' .°= 0, by means of (126), it follows that:

B/P”=Bprx"+(P-p)B/=0;
hence, by contracting witif and considering that’ ¥ # 0 andv” is arbitrary, we have:
(143a) pr =0, P=0.

Likewise, it follows fromQ' 3 = O that:
(143b) q=0.
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Due to (126)S' . = 0 is equivalent with)"*Bj¥' S |7 = 0; this condition is, however, a

result of (143a), (143b). From (76), it follows that (1424 3) are also satisfied, on the
basis of (143a), (143b). Thus, we have:

Theorem 6.In order for all geodetic lines to be projective-Euclidian it isessary
and sufficient thaP,” = Q/, = 0.

r OO0

Finally, we would like to give the conditiow' ,,.°= O another formwithout

assumingS =0, P'.°*=0,Q'5,=0. Thus, we prove that:

Theorem 6a.The necessary and sufficient condition i, = 0 for any geodetic
line reads like:

(144) O0,P=0

together with either:

(145) U Py +Pp Qo +pu Gy =0
and:

(146) q=x"g,=P+1

or (instead of (145), (146)):

(147) Py =0.

The latter case is equivalent to lla with consRuirom (144)); in this case, (145) is
also satisfied, but not (146). In the former case, f{@46), one also has thgt and,
from (145) (contracting (145) witk! and applying (144), (146), (77), (78), II, 1I1), alpp
is constant. In the quasi-symmetric case, fromlll(@8), (57) equivalent to:

IV y Qu=Pu—
and (145) turns into:
(148) o P + Py Pu=0.

Proof of 6a. From Il, lll, the identities (77), (78), (Z@)n into:
(149) X =@+au) X"+ (P-q+ 1A/,
(150) XV = P=p+tQ V' +pa V' ¥,
(151) X' Oyw, = P—p+t Q) wy,— X°w, .
In particular, one also has:

(152) X' Orpu=—(P+Q) pu.
Now, from (76), (142) is equivalent witk! 0, PY=0. From Il, lll, (149), (152) this
yields:

(153) X'{0,P-P-q+Lp,}+p(P-qg+ 1A' =0.
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Contracting with an arbitrary non-vanishing covariant poimbich we denote by’,
shows that both of the terms must each vanish:

(154) O,P-p.(P-gq+1)=0,
(155) p(P-q+1)=0.
Likewise, (143) is equivaleri] , Pﬂ]D” = 0 ; furthermore, substituting this in II, Ill, (149),

(152) yields an equation whose terms must both vanish ¢chdilty. The first term gives
(145), and the second one yields:

(156) 0uP =% 0y po—p(Qu+p) =0.

From (152), (154), (145), the latter equation satisfied; likewil55), such that (145),
(154) together are necessary and sufficient. From (158)llatvs that either (146) is
true, and thus (144), conditions that, along with (145), @fecient, or that we have:
(157) P-q+1=0,

hencep = 0, and therefore, from (156), (149):

Together with (154), this again yields (144), hence, from (1539, @47), from which,
everything else follows. However, with that we haveved theorem 6a.

8 11.
Overview.

33. Little by little, we have now introduced the followingrditions:

l. X0, MY, ==, X“00Qu =~ Qu;

. P/ =mx'+(P-p A p=p,X;  (BY=N5,X).

lla. PY=PA, o p=0.

llb. PY=0, or pm=0,P=0.

1 Q=x"qy +P-0) A, q=x"0,; (Q=0N4x").

I a. Qr=x"qu +A;, or P-g+1=0.

1 . Q,=x"qu, or P-g=0.

\V2 Q.=0.

IV a. Qu=0,9=0,logg%; Q:rlt:const., ¢ = degree 0§ .

7 Q=0; Q=xQy+1).
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IV y. Qu =Pu ~Qu-

|V5 Q/I :_q/l-

Va. Sﬁw =0; (Sﬁ,ﬁy = I_II[//];[]) .

VB T =05 (T, =S, + AiQy) .
VI. Uyw=0; (Ua)y =UwQy — TA,D,Eb Qp) .

Thus, lla is a specialization of Il and Ilb is a spkzadion of lla; llla and IS5 are
inconsistent specializations of 1ll. 1l follows frofl and Va or VG IV is a
specialization of I\&, as well as 1\, but it is inconsistent with 1Y IV yfollows from Il,
lll, and Vg, follows from IVy and lla, or also from lla, Ill, and & IVa and VI are
equivalent.

34. Condition | is necessary and sufficient for theseeace of a covariant
derivative.

Conditions I, 1lb, I\jB are necessary and sufficient for the existence advariant
differential, as well as a position displacementaidaitrary quantities of arbitrary degree.

Conditions 11, 11, Il are necessary and sufficidat the existence of a geodetic line
through each position in each direction.

Condition llla (lll 5, resp.) states (assuming 1, llb, AVthe covariant constancy
(invariance, resp.) of the contact point.

If a taut™*H in "™'P induces a projective connection by means of (119) then (118),

(120), shows that each of the conditions |, ..., VI isdvad ™'P, as long as it is valid in
™1p_ Hence:

Theorem 7. Conditionsl|, ..., VI are all invariant under the embedding of a
manifold.

In the next section, it will shown that conditioltls and IV can be satisfied under
the assumption of I, II, lll, as long as either\or VS can be satisfied under path-
preserving changes of the projective connection.

35. If we understand the tertirectionless derivativéo mean the effect of the
operatorx“d,, then thestrongerrequirement that the directionless derivative of a tityan
vanishes is equivalent to conditions Ilb andgj\Von the other hand, theveaker
requirement that the directionless derivative of anyntjtya be proportional to this
guantity is equivalent to condition lla. This last requmest has a simple geometric
meaning: In théd,.1 that arises from"™H by way of § 2,6 thell ,.determine an affine

(cf., ?)) displacemerit,.1. If one now identifies the various lodal., that belong to the
points of the same “ray” ( = line througB) with each other the one obtains an
“osculatingEn+1.” If one now considers a vector field such that Yaeious points of a
ray are merely Euclidian parallel vecterdience, vectors with proportional components
— then one has a position field in our sense. The @ndoned weak requirement now
says that these vectors are also parallel in the sdrdisplacement, and indeed in the
weak sense, that the vector that results from thdadisment of a vector of the field that
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originates at a point of the same ray is only proportima not necessarilgqua) to the
vector of the field that belongs to the new point.

The covariant derivative of the contact point detersiagrojectivity (collinearity)
0, X in™E. The stronger requirement that they are undeternfirartsh) is equivalent
to llla and IVA The weaker requirement that when this projective taips™ E to
itself it is geometrically the identity, and thus that x’ is proportional t@y, is
equivalent to 1ll and I\ When interpreted iHl.1 the weaker requirement states that a
vector that has the same direction as the ray pesds direction in the Euclidian sense
under displacement. The still weaker condition tﬁﬂb(" = Qgpx" be proportional to”
says only that the rays are geodetic lineknin. One could further demand that the rays
be geodetically parallel; this would be equivalent t@.1ll

Both strong conditions together yield lIb, &ll IVS, 1V J, both weak conditions
together yield lla, 1ll, and 14, hence, the unrestricted existence of geodetic lines.

§ 12.

Path-preserving changes of connection.

36. A general change in a projective connection will be giver lantityX ,,”
and a covariant point, that are both of degred.:

(158) My = Mo+ X, Q, =Qu+ Yy .

Au !

We assume that a system of geodetic lines existsmn such that conditions Il, IIl are
satisfied. The requirement that these conditions iresatisfied under the change (130)
reads like:

(159) X K =ux + (X—up X)) A,
(160) X X = v X+ (X =vp X)) A

for a certain choice of the covariant point:

(161) UL=p,—pi,
(162) Vi=d,— i,
and the scalar:

(163) X=P*-P.

In order for the new projective connection to have same paths as the old one it is
necessary and sufficient that equation (127) remain imtatader the change (158);
hence:

(164) B X, J*=0.
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Contraction by@ (3, resp.) yields equations that are satisfied as atres(159), (160).
Hence, (164) is equivalent with the equation that arises ft by contraction with? Vv,
in whichV? # X2, but is otherwise arbitrary. Therefore, we must have:

(165) \/’"\/bxﬁwz)lx"+yv".

However, since such an equation must be valid faarhitrary point v” (indeed, it must
give geodetic lines irverydirection!), A (&, resp.) must be a homogeneous quadratic
(homogeneous linear, resp.) formvin

(166) A=Zy V'V, Zu=Zn, U=V .
The necessary and sufficient condition for the changbe path-preserving then reads

like:
(167) X(E%: Ziy X" + 27, A&'ﬁ) .

37. The alternating part (XE? is nowhere to be found in the condition equation
(167). If one now sets:

(168) Xom =—S," Xom =0,

then, from Il, 1ll, conditions (159), (160), (167) are sfd, it becomes:
(169) S*El? =0.

However, if one sets, instead of (168):

(170) Xom =T Xom =0,

then the conditions will be likewise satisfied, and wailehave:
(171) T, =0.

Hence:one can always arrange, by a path-preserving change of connection, that a
projective connection be either symmetric or quasi-symmetrianaslesires.

38. SinceY, appears nowhere in the condition equations, one camgarlthatQ;

be equal to an arbitrarily chosen covariant point of degfle In particular, one can
arrange thaQ; be a gradient, or vanish completely, or also @tat 0.

39. We would further like to leave the alternating partl®f,, as well asQ,
unchanged. One then has:
(172) XEIWZXDW :Z,]/,XV+ 22(,]/6;1).

()
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Substituting of (172) in (159), (160) shows that the latter itiond are satisfied, on the
basis of (172). We have:

(173) U=z +Zy X,
(174) V=i + Zy X,
(175) X=2z X+ 2, X %

In the event thdll’,, has already been changed aS7ror 38, we omit the *; we set:

(176) Zy=—pP, ZA/I =0,
which makes:
(177) p,=0.

Condition Illa will also be satisfied then.

40. We further leav@, unchanged; instead of (173), one now has:

(178) == 2y X,
Substitution in (141) yields:
(179) XEIW = ZA,u X/ =2 X’D Zp(g A&'ﬁ) .

We again omit the star and set:
(180) X==Z,X'x=-P.

If one leaves th&,, otherwise arbitrary then one has:
(181) P=0.
Condition Ilb is then also satisfied. Hence, frdradrem 3, one has:

Theorem 8. The existence of a covariant differential may be achieved by means of
path-preserving changes of connection.

41. We further leav®,” unchanged. (175) then turns into:
(182) Zu X' x=0.
We again omit the star. If one now wishes that ibplacement be uniquely determined

then this can happen only under restricted assumptiorsn the transformation laws
of M}, (53), it follows that:

(183) ne,=AMn7 -d,logA, A=Det(A)).

If one then sets:
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(184) Z) :—Z,V,X'u :—EI'I”
n

ou?

in the given coordinate system, and if one chooseg th® be otherwise arbitrary then,
sinceP = 0, condition (182) is satisfied, and we have, in tlkergcoordinate system:

(185) n* =0;

ou

in any other coordinate systenﬁ,*gﬁy, will be the gradient of a density.

Hence, one will also have:
(186) N*E}p@: 0,

i.e., the displacement is “volume-preservintfj. This is again independent of the
coordinate system.

From (73), the Ricci tensor then becomes symmetric & ekent that the
displacement is made symmetric by mean3/ofis we would like to assume:

(187) NI (i

pAU 7

42. We again omit the star and would like to further lgageunchanged. As a

result, we must have:
(188) Z) :—Z,VIXU:O.

Under the assumption of Ilb, IIl, we have:

(189) N P =N ===pZu X+ 2T "X 2o == (n—1)(1 Q) Zyy.-

7 o

Thus, ifn> 1 andq = 1 then, from (187), one can set:

1
190 Zyy = NP,
4 Y (n-ne-q)
and we have:

(191) N'IP=0,

Thus, thel’ , are uniquely established (e.g.) by conditiongl, Va, (186), (191).

43. TheQ, are not uniquely determined in this way; in themvthat a covariant
differential exists, they obey only the conditigh= 0. Thus,n parameters remain

¥ The notion of “volume” is affine, not projectivie, character. However, condition (186) corresponds
to the condition for volume preservation in the affiase.
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undetermined, i.e., exactly as many as in the projechiaage of an affine displacement.
If one would like to determine th@, uniquely then one can s@}, = 0, which does not,
however, agree witfp = 0.

In summation, we have:

Theorem 9. For a given system of paths, a projective displacement is determined

uniquely, up to the indeterminacy of, Qoy the following requirements: Existence of a

covariant differential, symmetry, “volume preservation,” vanishingh@ Ricci tensor
38
).

Theorem 10.If we forego the existence of a covariant differential then a progct
connection will be uniquely determined for a given system of pathmee monditionsi,
lIb, IV, symmetry(= quasi-symmetiy “volume preservation,” and the vanishing of the
Ricci tensor.

§ 13.
I nhomogeneous coor dinates.

44. In order for the projective connection to be derivableni®ans of one of the
known methods from a linear displacement the existehgeodetic lines is necessary in

any case. Therefore, let conditions I, 11, lll Es@amed. Let a geodetic position fietd
be given:

(139) VO v =BV

This condition is equivalent to:

(192) VOV = BV,

in which[O' denotes the differential operator on the geodetic lihend then sets:

1
193 Wa =——— D/,
(193) IO T
in which denotesJ,, the covariant unit bi-point of the geodetic linelgtive to an

arbitrary coordinate system), then a brief calecofatshows that the rotation ofi,
vanishes:
(194) 6[a W = 0,

which then implies thaty, is a gradient field:

(195) W, = 04 log w.

) The symmetry condition & cannot be replaced withBhere, since then, from Iib, IIl, |8 IVa, Il a

would also be valid, such that the substitution (190) woulidnipessible.
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From the fact thai® wy = 1, w is @ homogeneous function of first degree, for which,
moreover:
(196) Vow=w'9,v=0.

Condition (139) ((192), resp.), as well as the definitibrwpremain invariant under a
change of/” by an arbitrary factor.

45. Furthermore, let be any arbitrary, but chosen once and for all, non-aanhst
homogeneous function of null degree along the path. Tdnes,has/9,t # 0, since
otherwise the fact that®d, t = 0 in general would make, t = 0; hencet would be
constant. We normalizaé by means of the condition:

(297) Vo t=1
The degree of® will then be = 1

If f is then any other homogeneous functadmull degreeon the path, sé = f(t),
then:

VoL f(t) = va%aat :
hence, from (197):

df
198 V0.f=—
(198) of =
We further set:
(199) g=Y
W

The & are thereforen + 1 homogeneous functions of null degree inxhéhat can be
regarded as (over-specified) coordinates in "t that is associated witX,. Then
(198), (196) yields:

(200)
and (139) gives:

dé&” :ﬂ
d w

(201) 0, =YY =V O logw= 8-V
w W W

4
W

If one substitutes (200) in (201) then one finds, from (18®),following equations for
geodetic lines:

d2¢& d&t d&*  d&
+W) = :
dt? ot dt

(202)
46. From (202), one can easily derive the equation for geodetes in

homogeneous coordinates. By means of a coordinatefamasagion one can, for the

time being, deduce that:

(203) XX =w.
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From (199), (200), one then has:
(204) £0=1, X=0.

Furthermore, one can perform a path-preserving changenthkes the displacement
symmetric (8 1237) and, moreover, that:

(205) ne,=o.

In fact, if one takes a covariant pomtof degree-1 that is arbitrary, up to the condition:

(206) X' =0,
and one sets:
_ 1 6,2 .0
Zjy ‘_an +QAU Zyy

*

then one will have (cf., (158), (172)9,= 0 , hence, alsB" = 0 andp, = ¢ = %Af.

Let both of these changes be carried out. From (2602)zero equation is then
satisfied identically, on account of (200), (204). If dhen lets the indices |, k, ...
range through the numbers 1, nthen (202) gives the well-known equation for geodetic
lines:

d25k+rk d¢' df’ :ydfk

207 k
(207) dt? Yodt dt dt

in which we have set:
(208) r =x’ne.

The Fi‘} depend only upon the, but not ond, since thel‘li'].‘ are of degreel in the
x". For the remainindT’, ,, one then easily finds by means of (56):

1
ah :Frijk,
1 .
(208) N =Mg =—F(pAik+Fuk<"),
1 -
”SO=F(2|OEK+F§E<“)-

We have thus proved:

Theorem 10.In the event thdt"™'P possesses geodetic lines ther@righe™'H that
is attached t,) also an A with the same geodetic lines.
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§ 14.

Relationshipswith the older theory.

47. We would now like to briefly discuss how our theoryects with the older
theories, in particular, that of Schouten and Goldfor that reason, we replace the

homogeneous coordinatesin the™H with “Veblen coordinatesi” .
Namely, we set:

(210) x? = log X, xXt=x =2 39

11
=

KA,...,.w=01,.n, hi,...,

and we briefly denote the transformation (210)@&yand an arbitrary transformation of
$Hne1 by T, then the transformatio® <& will be represented by:

(211) X =x2+g(x), X = x(X).

Under the transformation to Veblen coordinates gifteip$n+1 thus goes to a group

that is conjugate to it, a fortiori, an isomorpgioUPFn:1 = & *Hn+1S that is represented
by (211). This is, however, precisely the groupttWeblen establishe®®). The

associated functional matrix is:

v 1 al¢ 41
(212) A ‘(o aixk'j' )

The Veblen “projective tensor” is therefore ideatiwith our quantities.

In order to represent the relationships betweenpoojective connections with the
older theories, we would like to refer to only timethods of Schouten and Golab, since
these methods subsume most of the other ones.

Sch. and G. introduce nan (+ 1) coordinates, but restrict themselves to the

coordinates®. Thus, our groun:1 (Sn+1, resp.) has no precise analog in their theory.
On the other hand, a matrié(j appear$?. In our notation, it is:

n
. |1 -=0, loghA
(213) v = ¢ o1 09%

0 9, X<

39) The associated functional matrix will be given by (218)9).
“%) Veblen B, pp. 144.
“1 Veblen p], pp. 145.

*) Which is denoted b¥e; by them (loc. cit., pp. 200).



Projective connections imdimensional spaces 45

in whichn :—+1 and X, is the functional determinant of the transformatign— x*
n

(hence, nox’ — X’ 1). It therefore differs from (212) by the fact thdietarbitrary

function ¢(&) must be replaced with the special cheié;elong. Therefore, instead of

the groupHn+1, @ subgroup appears in Sch. and G.:
(214) X =x0-Tlogh,, X< = x(x).
C
There exists the following relation between the deireantsA andAo:

1
(215) A=A, c°

If we convert (214) to our coordinate system by means of (d&h)this relation gives:

n 1
(216) x? = XA, o = yOAU-CNmD)

The group that was established in the work of 8ol.G. is therefore a subgroup of
our group$Hn+1; it is defined by relatiof216).

If we write t instead o#C then (216) turns into:

(217) =t A, ¢ :;.
@-c)(n+1)

Instead of regarding this equation as a definingdé@n for a subgroup, we can also
treat it as thdransformation equation for a scalar density of gieic and degreel.
When we adjoin this scalar density we can theniooatto work with our groupln.; (its
conjugate grougn+1).

48. In order to correlate the projective connectibéisoh. and G. with our own one,
we must convert the defining equation for the farfifeinto homogeneous coordinates.
In the calculations, we use the following functibmetrix that goes with (210):

1
(218) A = ,

|
o

or its inverse:

*9 Loc. cit., pp. 209.
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r O
219 A = :
(&9 ’ [Xk xAkj
respectively. Elimination of the components of thdanaffconnection gives that the
defining condition (in our notation) is equivalent to:

:|_|9

ik -

@200 L=mh-0 M =mgom, B0 T

|x 1o

Converting thel'lﬁg by means of (218), (219), and the transformation equation (&3 g

that these equations are equivaler§,{6= 0, and:

1
(221) N5 =0, MNi="g-Hn+1),
(222) P’=(c- 1A,

(223) NZP =0.

The first of these equations has no invariant meaningeber, it yields the invariant
condition:

(224) N,,”=0

that is “volume-preserving” (cf’) since it can be written @32, = 9, logr*™™, ie.,
it states thaf?, is a gradient. The second equation shows that condlt is satisfied.

From symmetry, Il will also be satisfied then, i.éhe equation of geodetic lines is
integrable without restriction. Finally, the third cdmh states the vanishing of the

Ricci tensor (which is symmetric, from (224)). When &,=and only when, the weak

condition lla turns into the strong condition lIb; tss however, precisely the case that
the (older) Veblen theory singles out.

49. We must point out the remarks of Sch. and G. thair ttheory subsumes
Veblen’s theory only in its older form (which is no longkscussed here; Vebled]],
but not, however, the more recent and more general theorywhatmentioned 7
(Veblen B]), which first appeared as a discussion in the woi®abf. and G. The latter is
based on a group that is isomorphic to ours, whereas &tlG . arestricted themselves to
a proper subgroup. Furthermore, Veblen makes essentiallgr fdar-reaching

assumptions than Sch. and G aboutltfye in his general theory. In fact, he assumes

only the symmetry of1;,, together with the conditiofl}, = Aj. From (220), (222),

AU

the latter is, however, not equivalent "= 0 . On the other hand, hig b 1S
independent of, i.e., one ha®, = 0. Thus, one has:

** Loc. cit., pp. 209.
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Theorem 11.The generalized Veblen theory is equivalent to the special case of our
theory that is singled out by conditiotid, IV, and V, as well asVa = VG In
particular, 11l is therefore also satisfied, such that the equation of geodetic lines is
integrable without restrictior(it is also projective-Euclidign From IV, a covariant
differential exists in Veblen’s theory only for points of de@re®)

The fact that, for Veblen, the “weight” of a quantithpes not change under
differentiation, whereas the degree is lowered by oaewhy, implies that the Veblen
operator i), = x° 9, , and thus preserves the degree; the opeatgsimply the Euler

homogeneity operatof 3, . Analogous statements are true for the covariantatéré.

50. In conclusion, we would like to briefly present théatenships between our
homogeneous functiomath theprojective densitiesf Sch. and G.

Since every projector density can be written as thelymtoof a projector and a
power of an arbitrary scalar density, in order to deflme projective derivative of an
arbitrary projector density by means of the Leibniz rue the differentiation of a
product, it suffices to define the covariant derivatifeacsingle scalar density (whose
degree we can choose arbitrarily). We thus choose tihat was introduced above. The

-1 . .
expressiorJ r may then be taken to be an arbitrary covarianhtpof degree-1
L

(weight = 0!). We thus choose oQy.. We are then in precise agreement with the theor
of Sch. and G. Namely, if we make the usual Angatzlensitieg of weightt and null

degree:
(225) Oup=0up +kMOL,p

then this implies that for an arbitrary dengitpf weightk and degree, one has:
(226) Oup =0up +KO2,p +t Qup,
and, in particular, fop =, fromg = 1 andé = ¢, one has:

(227) Our=0ur+cNs r+Qur.

%) In a dissertation that appeared in May 1931, The repasm of projective spaces, Ann. of Math.
32 (1931), pp. 327-360, a student of Veblen, J.H.C. Whiteheadinettgsome results that have many
points of contact with our own. He has replaced \eble with x° (cf. ?)), and is thus dealing with
homogeneous coordinates in e indeed, only with normal coordinates at a single painth that our
groupHn.; does not appear in his work. His projective connectika that of Veblen, is characterized by
lb, IV, Va=Vg.
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If one calculates this only in a coordinate system inctvhi= x° *°) then one will have

d,x =A,. Onthe other hand, from (221) one &g, = —%A&‘j; hence, we find:

(228) Our =Qur.

Finally, we point out that the projectors are in on@#te correspondence with the
projective densities of null degree (as they ultimatatgur in Sch. and G.), so if we
associate, e.g., a point densityof weighty and degree 0 with the point:

w9

T

a

(229) v

. ¢ . .
of weight O and degree— then we see that when one singles out an arbitratarsc
¢

density of degree 1 aratbitrary weight ¢ (from which, one calculates= 1 -

(n+1)
thedensity theorpf Sch. and G. is also completely contained intbaory. In the theory
of Sch. and G., one comes upon certain “disadvastagince one must adjoin only a
scalar density with a single value there, whereas reeeds + 1 values for a covariant
point. One thus sacrifices some generality. Garetben work, not only without singling
out a Q, (which can probably vanish, as well), but ultinhatevith projectors and
projector densities afull degree whereas one can also openatth the Q,, in (226) with
arbitrary densitieswithout singling out arn; however, equating (228) with &/yields,
moreover, that, from theorem 2, the theory thatbtained in this way is singled out by

the special casd.y, = 0 precisely, as was already remarked in footfApte
In summary, we can therefore say:

Theorem 12. The projective differential geometry of Sch. and(&hd thus, from
theorem 11, all of the older theories, as wely be considered to be a special case of
our own. It arises by adjoining a scalar dengityf degre€l and arbitrary weightt and

by the following specializing conditions:

% Such a thing always exists. rlf 0 is given as aarbitrary function of first degree in an arbitrary
coordinate system andis anarbitrary number# 0 then there is always a homogeneous solution of null

1( 0\
2 x L
degreel of the differential equatiod + x° 9pA =A° {—J . If one then sets’ = A X, X' = X then the
L

1
¢

1.0
transformationk’” - X’ belongs taf,.1, and one ha& =A¢| — | , hencex' =t A=A X =x7.
L
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1. §,'=0,
2. B"=PA/, P=c-1= -1 = constant,
(n+1)
3. NZP=o0,
4. N_,*=0,
1
5. Uy =0 [Qﬂ:;D#;)
§ 15.

Concluding remarks.

51. We have repeatedly emphasized that the theotyigharesented here is not
purely projective geometric. To conclude, we wontdv like to sketch how it is also
possible to construct a purely projective geometifierential geometry.

For this, it is necessary that one free onesethfdegree conditions, at least from the
ones that reduce the transformation group. Instédkde groupHn.1 one must therefore

establish an enveloping subgro@p.; of the group®,.1, which is defined such that the

ratios of the” are functions of theatios of the x", or else one would have to say
something about the proportionality factor. We taen always give the transformation
in the form:

(230) X' =x¢&",

in whiché”'is homogeneous of null degréethex”, whereasy is acompletely arbitrary
functionof thex” with x 9, y# 0 . For the functional matrix, one then finds:

(231) A= x0, & +x" 0,log x.

The differentialsdx” transform as usual according to (17a). We now alstablish a
definition of general quantities. By a contravatialcovariant, resp.) point, we
understand a system of+ 1 numbers that transformp to a common arbitrary factor,
like the differentialsdx” (contragrediently, resp.). This factor may be ocanpletely
arbitrary function of the coordinates, hence:

(232) V=g AV, V== AV,

AW,

|k

(233) w,= ¢ A Wy, Wy, :%
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Moreover, we replace the homogeneity condition withieaker conditionThe ratios of
the values of a projector are pure functions of posjtimence they are homogeneous of
null degree. An arbitrary contravariant poifitcan therefore always be given the form:

(234) vi=vu,

in whichu” is a contravariant point of null degree ani$ anarbitrary scalar factoe 0.
The criterion that” must satisfy the homogeneity condition (234) reads like:

(235) x?0,V =gV,
or also:
(236) X2 (@, )V =0;

i.e., the differential operatof’d,, must be a multiplier. Since thé are homogeneous of
null degree and this mak&sd, & = 0, we find, by means of (202), that:

(237) A X=X, W=x°0, log x,
such that the contact position exists as a projectivetiyyhere, as well.

52. However, some difficulties arise in the definitioha projective derivative that
will only be briefly discussed here, and whose resmiutve will however defer to a later
occasion. Naturally, we would like to avoid the intrattut of a covariant point, since
otherwise a hyperplanBE would be distinguished in ever§’E, which would be

regarded as “imaginary,” such that geometry, at leastitesimally, would again take on
an affine character. If one then defines:

(238) Ou v =0,V + MY,V

then 0, v’ satisfies the homogeneity condition when this is dase withv’ and
thel’ ,are homogeneous of degred. Namely, a brief calculation shows that from

xX°o " = ¢ Vit follows that:
(239) X0, 0,V =(¢p —1)0, V.

The difficulty is, however, thdil, v’ does not have a covariant character. Namely, if
one transforms tha),  according to (53) then one has:

(240) 0,V =g(A20,V +V'9, logg).

A term thus appears that is proportional to the dfféiated quantities, and whose
cofactor is a gradient. One can also not includetdrni® in the transformation laws for
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the I, since¢ is not, as in the theory of densities or pseudo-quesititf Schouten and
Hlavaty, a power of §ixedfactor here, but it can depend on tie

53. The question is now raised of whether of whetheraameonce more extend the
notion of quantity. In order to do this, we thus introdaceequivalence relation, and
indeed we call thecontact pointand anygradient null equivalent along with
multiplicities of the two with arbitrary (not necessy scalar) cofactors. We now call
two projectorsequivalent when a linear combination of them with non-vanishing
coefficients is null equivalent, and we extend the nodibguantity by calling a system of
numbers aprojector in the broader sensehen it transforms like a projector in the
narrower senselp to terms that are null equivalent

Another possibility resolution is consequently to restoneself to alternating
products and only to operate with derivative quantities like:

(0, ¥ VA

(and not with(l, V° itself), which, as one easily verifies, possess aptetely covariant
character.
However, we shall pursue the consequences of thisdahireg step, which promises

to be rich in results, no furtherin particular, when one introduces condition H&o it
will remain just this fleeting hint.

Supplement ).

The later work on projective differential geometry Is®wn that the foregoing
investigation can be simplified considerably in its formedpects, and indeed, in the
following ways:

If Xjis a projector witht contravariant ang covariant indices then we cdllthe
contravariant,s, thecovariant, t— s thealgebraic,andt + sthetotal valencgor simply,
thevalence *®) of X_. If Xis homogeneous af" degree then we call the surplas © —

(t —s) of the degree over the algebraic valenceeeessof X5. *°) This number is
invariant under addition, contraction withy and partial or covariant differentiation. The
excess of a product is the sum of the excesses €d¢t@. The contact point” has null
excess. Even though’  is not a projector, we also define its excess as gsedeplus
one.

Condition | then states that) , andQ, have null excess. If we further introduce the
functions:

" [Added on 6.1. 1932.]

8 From a suggestion of J.A. Schouten, we will apply tloedwvalence” to the difference of the
degrees of homogeneity to describe the notion that we talled “degree” up till now (e.g., in R.K. pp.
23).

*9) The excess is identical with the number that Vebitnoduced (in a completely different way), and
in the beginningq, pp. 147] he called it “weight,” but late8,[pp. 61] called it “index.” Since both words
already occur with other meanings, we prefer the word ‘$sxte
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* 1
nh,=nj, =n,+AQ,,

Y

instead of thell), (cf, (61), which are associated with covariant derivativd

contravariant points of first degree, hence, of nultess, ands is the excess of the
differentiated quantities, then (59), (62), (63), turn into:

(59) Uuq = 0,0+eQuq,

(62) OuVv = 8,V + N5,V + eQuV,
Furthermore, one has:

(68) T =S,

such that quasi-symmetry simply turns into the symnuttizer ’ .

(69) U= Do Qu + SZQp = 30 Qu

(67) D[W]CI:*SQ?quﬂUwq,

(70) [qmv”:—%ﬁng+égﬁbW+euwvh
(71) qmmu=+%&£?mﬁégﬂmm+£wwm,
in which:

(55) N ¥ =—20 MY, —20% A = N2V AU,

For the second identity, one finds:

4 \( DO¥ _ COV, 4 o0l QO
(73) N 20,S 4+t4 S, S,

[ap] —

and for the Bianchi identity:

00w — _ Op pny DO
wdd "~ 2S[/«u Nﬂ]ﬂ/‘ J

(74) 0,N
whereby we likewise note the identity:

(74%7) O Uag == 2S3fU,,-

[kw

If we further introduce, instead of the quantities:



(56)

the quantities:

(56)
(57)

then one has:

Projective connections imdimensional spaces
1 w * M 1 *
—_ v 1% —_ 1%
PY=nY x, QY =nyx',

Py =N X' +A =P/+QA,

Qi =N +A = Qy+ A+X'Qy,

(75) ﬁfﬁx” = —ZD[M(*) ~ zéfw@*Qgg
(76) X N o =0y |5§”,

(76%7) X“Uay ==30,Q,

(77) D,,x"z(salzl*:’fy—Z*Sj”j X,
(78) xﬂmvvzﬁ?w+gQw,

(79) X/‘D,\W/,:—E’EI'WV +eQw,.

53

The existence condition for the covariant differdnt& an arbitrary projector of

exces< is:
(na’) PY=PA,
along with:
» P
(85) — =const. =.

Theorem 3 preserves the same form (up to a replacerhédm quantities without stars
with ones with stars). The form of the existencaduions II, Il for the geodetic lines
also remains unchanged. Thus, one has:

Py =P, 0, =Pu +Qu,
P=P+Q, p=p, q=q+Q-1.

If one replacesN’ [

(144), (147) stays the same, whereas (145), (146) simplify to:

in the assumptions of theorem 6a wikh "' then the form of

abc

(145) Uy Pyt PsP,y=0,
(146) q,=P.
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The corresponding formal changes in the other theoamahdormulas may be easily
carried out. On the whole, they therefore change ngthin

In order to make the comparison with the older theomere comfortable, we then
decide to also write (218), (219) in the form:

(218a) iOAf, A :%AW”,

X
XI/ AV — XO AV

o
1

<

(219a)

ThecovariantVeblen index 0 (which is oulr) thus means contraction &Y, from which,
the scalar nature of the index is clarified. Oe tther hand, theontravariantVeblen
index 0 (as Veblen himself remarked) has no inwanmeaning (one must give the field
X% ort). In general, one has:

(A) Y :ivo’ VL( :io[vk_x_zvoj’ 50)
X X X
0

(B) W, =wy X, w =x"w .

From (219a), it then follows that:

(219Db) 0yA =X, 0, A/ =0, A/ =x"A", O A=0,
hence:
Mn gozx—lobo, Mn goz%)z[bk X - %j
0 _pmD "k _1(Sxpo_po
©) no%=pP?, I'IiO—XO(Pi X - P! %j
. . 1(- \
ng,=q°, ns,:—o(cgaxf)—qg%j,
n{=xng, NE=mnH-npx,

in which we have set:

*9 In order to avoid ambiguity, we recommend that thel&fe coordinates not be denoted (as we did in
§ 14) byx", but by, e.g.&"

&2 =logx’, & ==
From (A):

are thevaluesof the contact point”, whereas the&” are its Veblercoordinates.
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(D) b =P x'=Qy,x'=M",x ¥ +x".

Ultimately, since they are both valid, one must decwleether to identify the

Veblen*  with ourl’ or ourl17,, since for Veblen, one ha3, = 0, whereas the

theory of Sch. and G. can be identified with ours in kivals of ways. Namely, if one
demands that the values of the Sch. and G. pointsiveeléd the homogeneous
coordinates be pure functions of position then the poinhtdies correspond to our
projectors of null degree. However, if one then demdhdsthe values relative to the
Veblencoordinates be pure functions of position then the pmiaintities correspond to
our quantities with nukexcess In the latter case, equations (220), (221), (223), (224) are
replaced with the corresponding equations with a *, wdsgrdrom the anomalous

definition of P )", (222) turns into:

(222%) PY=cA.

Corresponding statements are valid for theorem 12.aMéeremark that for Sch. and G.
the weight of the quantities relates to the determidgnthence, from (215), upon

multiplying byc—_l, it emerges from the projective weight (relativé\)o
o

(Received on 11. 5. 1931.)
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