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On general projective differential geometry.
|. Relationship to affine geometry.

By D. van Dantzig

(Communicated at the meeting of April 30, 1932).

8§ 1. Introduction

In a work that appeared recently | have shown that it is possible to construct aithe
of projectively connected manifolds that subsumes and demesraall of the older

theories?). The essential step was the replacement of the gmwpf all )
transformations im variables with the groufn.1 of all *) homogeneous transformation

of first degree®) in n+1 variables. Furthermore, the notion of a generaleptivie
connection was introduced, for which neither geodetesinor a displacement (covariant
differential, resp.) needs to exist, such that it camo way be obtained from am-(
dimensional) affine connection. Thus, general projectieemetry®) becomes an
autonomous part of differential geomef)y and it also suggests the question of how to
extend the Kleinian program to these curved manifolds.

The problem that arises is: to relate the theoryffofeaconnections to the theory of
projective connections. As is well known, (ordinarypjpctive geometry arises from
(ordinary) affine geometry by singling out an (“infinitelyischnt” or “imaginary”)
hyperplane. In general differential geometry, thiati@nship is completely analogous:
affine geometry) can be obtained from projective differential geomeély singling out a
hyperplane in eachocal manifold that does not include the contact point (8 3).
Moreover, in this case, an affine connectfncan be uniquely derived from each
projective connection. In conclusion, the most imgatrtthing that is determined by a

" Translated by D.H. Delphenich.

1) D. VAN DANTZIG. Theorie des projektiven Zusammenhangmensionaler Raume. Math. Ann.
106 (1932), 400-454; denoted by TPZ. The notation ofShpplemento TPZ will be used, by omitting
the * that was used there. For various deviations ftos cf. footnote ?), ?), as well as the beginnin§ of
2.

2) For the most important literature, cf. TPZ, adlas ENEA BORTOLOTTI, Connessioni proiettive,
Boll. Un. Mat. Ital.9 (1930) 258-29410 (1931) 28-34; 38-90.

) All of the functions that are used are (unless eitser noted) assumed to be analytic and regular in
the region considered; all of the transformations asermed to have a unique inverse there.

*) But not necessarilynear!

®) We use this expression for the theory of projegiizennected manifolds, as opposed to the ordinary
projective differential geometry of flat (“Euclidian”) maalifls.

) In the older theory, the differentiation indicst#ll had a vector character, except for VEBLEN, in
which, however, a formal difference still exists.

") Briefly, for manifolds with a general grow, .

8 ) Briefly, for the general linear (not necessardlymmetric) displacement, (Il Aa) in the
classification of J. A. Schouten, Der Ricci-Kalkil,riBe Springer (1924), pp. 75.
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projective connection, the system of curves (“geodetest), will be examined (8 4). In
the introductory section (8 2), a brief overview of thest important basic notions will
be given; for a thorough presentation, cf., TPZ, as aslh work by Prof. J.A. Schouten
that will appear soon.

As for the relationship between projective differengjabmetry with affine geometry
in one higher dimension, as well as the relationshiprojective to conformal geometry,
| hope to go into this on a later occasion.

8§ 2. Generalities.

We use the following notations:

®, the group of alf) transformations® — & =& (&, ..., &) inn variables |, ...,
=1, ...,n; h,---I"'=1 ... n");

91 the group of al®) homogeneousransformations of first degre® x” — x’'=

X ¢, x ..., X") in n+l variables { «, ..., w =0, 1, ..., n;/'\k',...,a
=0,1...,0);
3 the group of all point transformatiom$ - X" = p x” (o homogeneous of null

degree in th&”);

Xn ann-dimensional manifold with ur-variable® and&, as its group of coordinate
transformations;

Hn ann-dimensional manifold witlm+1 (excess, “homogeneous”) coordinatéand
Hn+1 (S, resp.) as its group of coordinate (point, regansformations (in TPZ, it

was denoted b§/*H):;
Ln andX, with a general linear displacement;

Pn anH, with a general projective connection (in TPZ, @sadenoted by 'P; in the
older works of J.A. Schouten, it was denoteddy;

En a (“Euclidian”) plane irLp;
E a (“projective Euclidian”) plane i, (i.e., a manifold with ordinary projective

geometry) (in TPZ, it was denoted BY'E, and for J.A. Schouten, it was
previously denoted bi),).
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Overview of the transformation laws:

for Hns1 for§g
" ) _
Scalar oft™ degree p=p P=0p
Contravariant point) of " degree Vo= 30V V=gV
Covariant poinf) of " degree w, = Juw, W,= 0w,
Projector oft™ degree (e.g.) Xyt =T, X0 X' =0 X,
. . . h v - v) _
(Projective) density of" degree and p=A"p p=0p
weightt
Projector density of" degree and Ry =aT o Rl XA =g Xy
weightt (e.g.)
(Projective) geometric object (anything) (anything)
in which:
J,=0,x, 0,= 6?(”
3 Wy (1)
J,=0,X, 0,=—
ox
are the mixed values (functional matrix) of that projectorjﬁ', and:
A = Det(3") o (2)

is the functional determinant.

°) In TPZ, this was denoted by “contravariant positiohg" degree.” It is, however, better to reserve

the expression “position” for sets of coincident poihts’ with acompletely arbitraryfactor A, which will
also be done here. With no loss of generality, ome lsawever, assume thatis homogeneous of null
degree.

9y In TPZ, the notation foﬁﬁ' wasA’ . Here, however, we would like to reserves the ordisgnybol

A for the unitaffinor.

) We employ the sigr= when the left-hand or right-hand side of an equation i®jeqtor, and the
equation isnot invariant underall holonomic or anholonomic transformatioirs the system of reference
(and indeed for each individual index in it).
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If a geometric object acquires the factgf when one first performs the
transformationk’” — px’ from§ and then the transformatioti — X' = g x’ from $Hns1

13 for a constantg, thene is called theexcesof the geometric object. For (a projector
or) a projector density of” degreet e of weightt (t is called thecontravariant

valences, thecovariant valences + t, thevalencg one has:
E=r—(t-9—(M+1p Coe e (3)

13)

Theweight™) of a covariant point, is the scalar:

w=w, X Ce (4)

Each hyperplane in the lodg]that does not include that contact poifitan beuniquely

associated with a covariant point of weight 1. Fontavariant points, such an
association is only possible in the projective-affinsec(8 3).

If &(h, ..., =1, ...,n) are anyn independent homogeneous functions of null degree
in thex” ¥ (i.e., x* Oy X = 0) that come from the grou, then they determine %,

whose points correspond to tpesitionsof H, in a one-to-one way; hence, they can be
identified with them?'®). Let the transformations o6, and $n.1 be completely

independent of each other, i.e., let #1€xX°, resp.) be scalars relative 5.1 (&, resp.).
If one sets:
E,=0,¢" C (5)

then theE; transform like an affinor in the indde and like a projector in the index
kK -~ k K
E, =7, E, A" Coe (6)
Thus,A¢ denotes a unit affinor iX, . E!'j defines the connecting term between

affinors and projectors; it uniquely associates eaomtravariant point with a
contravariant vector and eacbivariant vectowith a covariant point of weight O:

V= BV, W = ERwe, w X =0. L L L (7

12y This process is a special case of the well-kntawagging” of a coordinate system in the study of
deformations.

13) In the sense of Mébius. Not to be confused withwiigiht of a density. VEBLEN's “weight” or
“index” does not correspond to our weight, but to our excess

k
) In TPZ, § 14, only the special functioﬁ%gx_o were considered.
X

5) Thus, the difference betwedq andH, will no longer be tacit, sinogeometric objecti X, can be
completely different from ones i,.
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One must note thdt* does not depend upon the positidvt, but on the point”
itself.
§ 3. Projective-affine manifolds.

In each locaE in Hy, let there be given, once and for all, a hyperplanedbes not pass

throughx”. From what was said above, we can represent it unidpyedycovariant point
t, of weight 1 and excess O:
t,x" = 1. Co (8)

We call such a field of hyperplaneshiy projective-affine In aprojective-affineH,
one can also associate eaontravariantpoint v’ with a weight:

v=v't,, Co 9)

and each contravariamosition that does not lie irt, is uniquely associated with its
contravariant point of weight 1. The affine proje(EEQrmay now be associated with a

unique corresponding du&, that is a solution of the equations:
E'E =A", t,E =0. S (10)

In a projective-affineH,, there is aone-to-onemap from the covariant and
contravarianpoints of null weight and excess E. to the covariant and contravariant
vectorsin E, :

k k
V= EV for V't =0 V=EV,
" b i ) (11)

w =Ew forw,X=0;, w=Ew

We can thus identify these objects with each ofberwe express them by the same
symbol) and consider affinors to be a special typgrojector; in particular, vectors are a
special type of point, namely, a point of null watigand excess. By means of this

association, the affine projeclléj’ is identical with the unit affinor (but not withe unit
projector 3’ 1); correspondingly, we will replace the symiowith A:

A=0, &, X A=0;  AF=A, L A=0. . .(12)

The difference of two covariant (contravariant,ptggoints is a vector when and
only when the points have equal weight. It theliofes that one can associate each
covariant (contravariant, resgpsition tw, (A V', resp.) that does not pass through

(does not lie iy, resp.) uniquely with a vectef, (v, resp.) by means of the relation:



On general projective differential geometry. |. Relastop with affine geometry. 6

v=lvow=tav = vgzo
‘1 V1 . (13)
W":v_vw"_t":VvA;W’ w= v, X #0,
or with affine values:
1 1.
\/k:;,ow, V\Q:V—VA;WJ. ... (19

v"‘andV\/ﬂ are invariant under the replacementvbf(w,, resp.) by the points that are

coincident with them. Geometrically)v” is the intersection of, with the line that
connectsy” andx” ; the factord changes when and only when the position'ofmoves
along this line, and will be null when and only wheh coincides withx” .

Correspondingly,zw/ is theE,  that connectx” with the intersectionE._, of the two
E..,’s, w, andt,; the factorm changes when and only when theSe,’s rotate around
this E,_, in a clump ofE, ,’s, and are null when and only when they coincide with

From (13), the incidence conditiafi w, = O for covariant (contravariant, resp.) points is
equivalent to the incidence conditioff w, = 1 for the associated vectors. Each paint

(wy, resp.) is uniquely determined by its vect§r(w/ , resp.) and its weight (w, resp.):

Y + for wz 0
Vo= v(V'+X) forv£0 W, = w(w, +1,) w (15)
v forv=0 W, for w=0.
If one defines thélifference of two positiongu”, Av, by:
K_u_’ u=u"t,#0, v=Vv"t, 20.. . . . . (16)
vV u

then it is always a vector, and one easily veritieat it is identical with the point
difference of the MOBIUS-GRASSMANN point calculusf dne interprets, as an
“infinitely distant” hyperplane then one can construdtnitesimal parallelograms that
are accurate up to quantities of second order, in nottbalfz. ’s, but also irH, itself 19
that obey the addition properties of line elements. Nganikey", z, u", v/ are four

positions inH, that lie in an infinitesimal neighborhood of the pasitk” in H, then one
easily verifies'”) that the condition for the parallelogram:

8) The existence of a displacement does not natudadlibuy from this, since that demands a parallelism
that is accurate up to quantitiestioird order.

") For this, one needs to regard the transformédionula fory” = x” + dx’, etc., as points iHl, (not in
E):

Y= () =X () +dX T+ %dﬁd% O X+ ... =y"33'+%d>(‘d>d Ba X+ ...
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y _Z _u Vv
yit, 2t uft, vt

(tu =t (X))

is exactly invariant unde§ and up to quantities of second order unégr,, and

independent of the position ®f .
If y”in Hy is an infinitesimally neighboring point td then the differentiadlx” = y” —
x” is well-known to not be invariant undgr

dx’ = pdx’+x"dp. ... .. @an

In a projective-affineH, one can associate it with a unique vector differential
d'x’'that is totally (relatively) invariant und€¥, depends only upon thgosition of y",
agrees with the ordinary line element:

v

d'x”:A;dx”:de—(t/,d><")x”:yy7t—x”:A:dfk. (18)
U

The affinization of projective differential geometry means of a covariant poitt
of weight 1 also clarifies the meaning of the projeetiensities in the older theori&s:
If & is an arbitrary projective density of degeesnd weightz O then:

.1

is a piecewise undetermined hyperplane that does ntirgagh the contact point. In
fact, in the older theories (in a certain formulatignyltimately appears in the link (21).

From the fact that:
X0,6=t6=c6+t(n+1)&,
one has thdli, is normalized for densities of null excess when ang whlent = %1
n
8 4. Projective and affine connections.

Now, let an arbitrary projective connection be given éysystem of homogeneous
functions inH,, M}, of degree-1, and with the transformation law:

ny, = Jy,n,, +3,034 N 1)

For the sake of later applications, we mention the ditaim

18) cf.,, TPZ, § 14.
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X Oy v =+P v X O,w =-PL,w, . . . . (20)

Py, =YX+ 34 19 Q=N x' +3"; b= PD”ﬂx" =QuX'.  (21)

The projective connection uniquely determinesoarespondencehat associates
each pointv” with the pointx” 0, v’. Sincex” 0,/ vanishes for every scalar of null
excess, one ha€ 0, AV = A x“ 0, V", such that the correspondence uniquely determines
a projective map (for th@ositiong fromE, to itself. For its own part, this map
determines the correspondence only up to an arbitrary fdetocan be established up to
an arbitrary non-vanishing invariant 8f ,, e.g.P5, or P:, P/, 29),

From (16),x* 0, v’ does not, in general, determine any well-defined point; the
expression is determined only up to an arbitrary mulifglicf corresponding pointz”

Ou V' . There thus exists, in genenad covariant differential. In order to obtain such a
thing there are two possibilities: first, the additibterms that are responsible for the
indeterminacy can vanish becale= 0 ?)); second, however, one can succeed in
choosing one of the infinitely many possible points unigué& his case comes about in a
projective-affineP,, since one can normalize the differential by mednd®) in such a
space. We denote the thus-defined covariant differemieator byo:

S=d'x' 0 0d¢ ADp,=dX 0y (t, dx') X' 0, ). .. (22)

In general, this covariant differential defines noredfdisplacement, since the covariant
differential of an affinor is not generally an afiin but a projector. However, an affine
connection is completely determined by way of the pteconnection, along with the

A
differential operatarl, that one obtains when one takes the affinor pathefovariant
derivative of araffinor:

A
O.v'=Av0,V  forvi=0, A
O, % =0. ... (23

A

Ouw, =A70,w,  for w X =0;

A -
If Y, =AM + A0A is the associated displacement parameter andasne h

19) In the supplement to TPZ this is denotecﬁbtfy.

20y For the most important physical applicatimg,ﬂ P/, is, up to a constant factor, the energy density
of the electromagnetic field.

2y cf., TPZ, §7, 8.

?2) One can also arrange this so that the differeapiatator=,, is replaced witlm’;j: A;’ O, . One then
hasn D;ﬂz n';ﬂ - PD"atﬂ, such thaPD’m =0. Fonj;j, the analysis of TPZ is still valid, and the covariant

differential that is defined by (22) is equal to the ordinaffedintial (TPZ, § 7) relative l(g;.
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X2 =ny -nY, @
then one has:
Xy ==X O +PLt+ Q0 + ATPS tot, X+ tat, b+ x"t) Q5 t,, (25)
in which:
Ot =A70,t,, Py, =AZP, Qb, =ATQ,, b’”=A;b” (26)

denote the affinor parts of the unprimed quantitiesortter for the differential operator

A
0, itself to be identical withl, when applied to affinorst is necessary and sufficient
that, x", O, t,, andP, have the following form:

O0,x" =gy X, Out, =—qut”, e e (@D
PL=PX't, P=q,x. N )|

In this case, one can thus take the projective conmetttibe araffine connectiopas
well. Conversely, an affine connection with the parlzamel‘li'i‘ uniquely determines a

projective connection (if one further demands that 0, hence, that one also Has 0),
as long as the hyperplaneH that is identified with the “imaginary” one is gwn. (27)
states that the contact point and the imaginary hyperplaffine: the contravariant and
covariant null vectors) is covariantly constant undepldeement. On the other hand,
(28) states that the correspondence degenerates completehely, each covariant
(contravariant, resp.) position goes to infinity (theéteat point, resp.) Only fd? = 0 is
the displacement identical with the one that wasinétiby the first method.
A geodetic position fielavill be given by an equation of the form:

VO, v =gV, e e e (29

This equation preserves its form under the replacement with Av'. For a certain
choice of/ one can arrange thgt = 0; if one links each positioAv” in E. with the

associatec” by a line then a direction field is determinedHg the associated curves,
which we call pseudo-geodetic lineslepend only upon the positidn” (not on the

weight ofv"). In general, the pseudo-geodetic lines change, hoywetien one replaces
the initial positiondv” with one that is collinear with it and (hence, under preservation
of the initial direction). In order for the pseudo-geadhes to remain invariant under
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all such changes (in which case, we caliebdetig, it is necessary and sufficient that
P, +Q, has the fornf®):

PL+Q,=x"zz+R3%. . . . . . . .. (30

This is thefirst possibilityfor uniquely determining a system of curves iR,apseudo-
geodetic lines exist irach B. Thesecondoossibility is, in turn, to choose one position
AV’ uniquely out of all possible ones. In the projectivénaftase, this possible through

the condition that” V" be avector The defining equation of the line that results in
that manner:

VA V=g v N (<X D)
is integrable when and only whelft,, = 0 (cf., 26), hence, wheny, t; has the form:

D(yt,]):l,l(yt,]),. e e e e (32)

One then has, = - t, P5, —t, Q% +1,b°t,. Inthe event that solutions of (31) exist,

they are identical with theffine geodetic lingg.e., the (ordinarypeodetic linesof the
affine connection, which are defined by:

VALV =@V . ... .. (33)

In the event that the projective connection itseliffine, then, from (27), this is always
the case. Except for the pseudo-geodetic, the pseudo-gdfatetic, and affine geodetic
lines, only thesemi-affine geodetic lindsave any particular meaning for the unification
problem in physicé®). There definition reads like:

VROV =@V . (34)

They arise from performing displacementof a position (setting the covariant
differential (22) to zero) in the direction of itsoter (the line connecting it witk"), and
are independent of the weight vf but dependent on where the position is along the
connecting line. They agree with the affine (the psedfilbearesp.) geodetic lines when
and only wherQ", = 0, i.e., wheiQ'/, has the form:

Qy =b'tu+x"qu—q3J, @=0.x"), (35)

%) In TPZ, individual condition equations of the for80) were given foli’g1 and va . The geodetic

lines that are defined here aret identical with the ones that were defined there; adstef the defining
equationH ¥ = 0 found there (TPZ, 8§ 10), they satisfy only the weakeditionH .} =0.

(ab)
) They essentially agree with the ones that wereduced by EINSTEIN and MAYER; cf., also, J.A.
Schouten and D. VAN DANTZIG, Uber eine vierdimensien@leutung der neuesten Feldtheorie, these

Proceedings34 (1931) 1398-1407.



On general projective differential geometry. |. Relastop with affine geometry. 11

(when (35) and (32) are valid, resp.). In the latter,dhgesemi-affine geodetic, pseudo-
affine geodetic, and the affine geodetic (but not the psgeddetic) lines are identical.
In the physical interpretation, the deviation of the isaffime geodetic lines from the
affine geodetic ones implies the presence of an elragoetic field.
One can introduce a curve parametéa scalar of null degree) on any geodetic line
by the defining equation:
VA s=1, N 1))

that dependenly upon the currertlirectionof the curvé™). If t is an arbitrary parameter

(a scalar of null degree) along the curve th%%z BV, and the integral in (36) reads

like s=[ Sdt. From (36), it follows that:

, d&"

d'><’:Afdfk=ﬂEds:A{(\/“6ﬂE")ds:v’”ds, ... 37

such that one finds the differential operat6r] ,to be:

WDﬂ:dés' N € 2))

%) e[t”dxy (N.B.: dx” itself, not d'X’, exists on any curve as a homogeneous function ofrttelégree
(excess = 1), up to an arbitrary factor of null degree.)



On general projective differential geometry.
[I. Xn+1 with a one-parameter group.

By D. VAN DANTZIG '

(Communicated at the meeting of April 30, 1932.)

l. In the previous parf), | showed that affine geometfy can be related to general
projective geometry in a manner that is analogous towag that ordinary affine
geometry relates to ordinary projective geometry indfsces, namely, by singling out a
field of hyperplanes in the locB], with the single condition that they not pass through

the contact point. In the present part, | will trda converse problem: the relationship
between projective differential geometry to affine getrmin one higher dimensiof).

It is well-known that ordinary projective geometry eégisvithin affine geometry in
one higher dimension, when one regards the lines throtigédapoint as the elements of
new space. In the present note, | will show thatraptetely analogous fact is true in the
general differential geometry of curved spaces: genamective geometry may be
obtained from the affine geometry of one higher dingemsin whichone regards the
curves of an arbitrary one-parameter gro(ip the flat case: the homothety group of a
fixed point) as the elements of a new spader the basic notions and notation, confer
TPZ% and APD I.

2. Then+1 “homogeneous” coordinates in a H, can be regarded as the ur-
variables of arXn.+;. The group$Hn+1 thus goes to that subgroup ®f.1 that fixed the

coordinates of the null point and preserves the forth@fquatiox” =t a’ (@” = const.)

of the lines through the null point; the grobpcorresponds to the group of those point
transformations oK. that leave each line through the null point invariamt smduce a
homothety on each such line. These lines themselvesspond to th@ositionsin H, .
Now, if =N (I, K, ..., Q =0,1,--,n) are any (“curvilinear”) coordinates in tb&.1 then
one cartransform the projectors as affinors in.X i.e., introduce affinors whose values
relative to the special coordinate systefin which the projectors in question are equal
to, e.g.:

") Translated by D.H. Delphenich.

1) D. VAN DANTZIG, Zur allgemeinen projectiven Diffentialgeometrie, . Einordnung der
Affinegeometrie, these Proceedir®fs(1932), denoted by APD I.

2) Briefly, for manifolds with general linear (noecessarily symmetric) displacement (ll,An the
classification of J.A. SCHOUTEN, Der Ricci-Kalkul, i8mer (1924), pp. 75).

%) Cf., also D. VAN DANTZIG, Theorie des projektivéfusammenhangs-dimensionaler Raume,
Math. Ann.106 (1932), 400-454, denoted by TPZ, pp. 408. In that work, | briefigited on the questions
without completely following through, since in that worletheneral coordinate$" for n+1 were not
introduced. For a special class of projective displacenfeintg PZ, footnote 44a), J.H.C. WHITEHEAD,
The representation of projective spaces, Ann. of M3th(1931), 327-360, treated a closely related
problem, without which the aforementioned questions evbel regarded as completely resolved.

*) The notation of theupplemenwill be used, with the omission of the * that appeaesehsome
deviations were given in APD I.
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PyM=3m P 30 =0,=", Iz 0,=—, = —.

In particular, the field of “contact pointx”’, when regarded as a points in the local
E. (not theH, itself!), goes to a contravariant vector fiedtt

XN=aNx, L, (2)

that has the character of a field mddius vectorsin X,.;, relative to the special

coordinatex”, but seems to be a completely arbitrary field redatev more general ones.
Naturally, one thus has, in general:

XV oz =N e (3)

3. The vector fieldx" determines an infinitesimal transformati@nwith the LIE
symbol:
Xf = xNonf. e (4)

The expression (4) has an invariant meaning only whera scalar. However, it
may be extended to an invariant operator on arbitrdiyoa$ that we will callthe Lie
derivative and denote by the symblLﬂ. 1y For its definition, one needs to be given only

a contravariant vector field', but no displacement .1

Namely, if one considers thHe" to be new coordinates of those points whose old
coordinates wer&" + x" dt then we say that the coordinate system has Hesgged
along by the infinitesimal transformation. The LIE derivatiof any geometrical object
at a point ofX,.1 will now be defined as the difference of its valuestiadato the
dragged and the original coordinate systems (both of #tahe point in question). The
operator satisfies the following requirements:

I. 1 X: andY: are any sort of affinor§ then:

D(X:+Y:)=DX:+DY:.
L L L

ll.  For products and contractions, one has the LEIBNIZ for differentiation:
IZL)X: Y: :([L)X:)Y: +X:IZL)Y: .

[1l. For a scalaf one has:

1) The operator was first introduced by WLEBODZINSKI. Sur les équations canoniques de
Hamilton, Bull. Acad. Roy. Belg. (5)7 (1931), 864-870. For the definition that is given here,uldidike
to thank a still quite obscure work of J.A. SCHOUTEN Bnafd. VAN KAMPEN on deformations of ¥, .

2 ) By the word “affinors” here we mean affinorsXp,;, not affinors inX, as in APD I. The points
remain for arbitrary sets of indices.
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Df=Xf.
L

I\V. The LIE derivative of a contravariant vectoreigual to the LIE bracket:

Qw:mwN:%mw—wmﬂ. A ()

For a covariant vector, one finds that:

D g = X" On Wha +Wa O X =0 (WA X) + 2X Opwng s+ . . (6)

for a general affinor:

DX =X, Xy N -

L
t
............ Ny N AN, g
> X YooxN b Lo L @)
=
S

TSP <Ny N
+Z le MI l/\M|+1 Mt " a )(/\

i=1

and for the parametdrt,, of an affine transformation:
I?I‘Ik‘,,,\zx"a,(l'lh“,‘,,\ -nyo,x¥+nN o, xN+nta, X'+nlta, X. ... (8)

It is noteworthy thaItL)I‘I'““,,,\is an affinor?) whether or not this is the case with

thel,, , themselves, namely:

DM =XNeay" ~Or Py N )
in which:
Ph=0a X" +MN, x" ==+ 250 . L 0 L L 0L (10)
and:
N = 2a[KHIM NI ZHE[KI_IIEMI/\] N (N Y

is the curvature quantity associated Wi}, .
We call a geometric objedhvariant under the transformatio® when the LIE
derivative vanishes. In particular, the displacemeadliedinvariant when:

DMNA=0. . o o (12)

1) This equation was used as the definitiorssbgBODZINSKI.
2) 1 would like to thank Professor J.A. SCHOUTEN faisttemark, as well as the relation (8).
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Equivalent to this is the condition tHLaandzM commute.
With the intended interpretation of th in a Xn+; with a restricted group, we infer
the following: projectors of null excess are invariarfinafs under¥, which follows

immediately by setting the LIE derivative equal to zerdhe special coordinates, with
the help of the EULER homogeneity condition. In gahex projectoiX : of excesse is
an affinor with:

?XZZSXZ. N (RS))

(= constant). In this case, we say tKatis relatively invariantunder®. The condition
that M), has degreel (excess 0) is equivalent to (12) (which follows immesdjaby

writing out the LIE derivative in the special coordesit” ). Substitution of (12) in (9)
yields a well-known formula of projective differentisdgmetry:

N e N N ¢ ) B

4. Conversely, if ararbitrary vector field X" is given in anXn.1 in general
coordinates then there are always 1 independent solutions of the scalar equation:

I?E:XE:E. C e . . . . . . . . 159

If we call them=" (1, «, ..., w=0, 1, ..., n) and choose them to be new coordinates then,
from (15), we have:

x/= xN =xNoyzV=Xz"=2", .. . . . . (16

i.e., thevaluesof the vectorsx relative to the special coordinate$ are equal to the
coordinatesof the associated “eigenpoint.” From (16), it imméehafollows that:

9ux’ =7, N (4

If one now regards the" curves of the transformatiof as elements (called

“positions”) of a newn-dimensional manifoldH, then one can regard th& = =" as

surplus (“homogeneous”) coordinates in tHis. Namely, i=" aren + 1 other solutions
of equation (15) then one has:

=V9,="=x"0,="=X="==", . . . . .. . (18)

i.e., (due to the EULER homogeneity condition) that=hare homogeneous of first
degree in th&” . TheZ=" = x" thus lie in the grougn.1 . (One obtains the VEBLEN

coordinatest’ (1, , ...,w=0, 1, ..., n) (cf., TPZ, §14) when one choos&sé&?,...,&"to
be anyn independent integrals of the transformatiirX = 0 , whereasf’is the curve

1) Cf., TPZ (76), pp. 422 (76*), pp. 452. Whitehead, lac.(&i7), pp. 334.
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parameter, which is defined b§¢°= 1.) The infinitesimal transformatichitakes a point
=V=x"to =" + x" dt = (1 +dt) x’; a finite transformation of the group that is generated by
T thus takex” to a point whose coordinates are proportional to tbbsiee prototype” ;
i.e., two points ofX,.; lie on the same curve of the group (which belongs tcsémee
position then and only then) when and only when one goetheoother under a
transformation of the group. For an affinoy " "™ on Xn.1 that satisfies (13), we have,
from (7):

X'0) X = (g t—g) X L (19)
I.e., the affinor goes to a projector of degtees +t — 2, hence, of excess (The most
general projective connection that was considered in $f4joes notcorrespond to the
case of a general affine displacemeniXja;, but to a generalization of it in which a
displacement is always defined for vectors with défe £ that are relatively invariant
under®.) We call the process so described of generatird,drom aX,.; acollapsing
of X,+1 along the given system of curvel the particular case in which thg.1 is an

E.+1 and the curves are parallel lines, it becomes the ggabat was introduced by H.
WEYL of “collapsing aEn.1 in a given direction.”

5. A field of hyperplanes, (covariant positions) in the loc&l, of H, yields a field

of n-directions, by their interpretation X..; . The condition that the hyperplane does
not go through the contact point states thatntlkirection does not include the direction
of the curve. The local-directions define a systeX(,, %) that is invariant undeF and
generally anholonomic. I1K" ty # O then one can choosé to be an attaching
(Einspannung = clamp, hold) vector. The normalizationdition x™ ty = ¥ t, = 17
corresponds to the well-known “first normalization dion” ) for an embedded
structure in arXn+; and one can (in the case for which a linear displanee; is given

in Xq+1 that is invariant undeg) carry the entire well-known theory of the curvatofe

anL;,, in Ln+1 over toH, (which then becomesR,) completely, but we shall go into this

no further.

6. If a geodetic line in,+; is dragged along by the grog@then there exists a
family of ' geodetic lines that are invariant under(naturally, under the assumption
that the displacement In..1 is invariant undef) that corresponds to@seudo-geodetic

line ®) in H, . If a contravariant vector i is assumed to be pseudo-parallel displaced
in the direction of its projection dp atx" (instead of its own direction), and we drag the
resulting curve alon@ then we produce a family of' curves that are invariant undgr

1) For the theory of anholonomic systems, cf., 8HOUTEN, On non-holonomic connexions, these
Proceedings3l (1928), 291-299; J.A. SCHOUTEN and E.R. VAN KAMPEN, Zur Eitbngs- und
Krimmungstheorie nichtholonomer Gebilde, Math. A8 (1930), 752-783.

2) Cf., APD 1§ 3, (18).

%) For the various types of geodetic lines in a ptdjeaffineH,, cf., APD | § 5.
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and which correspond to semi-affine geodetiine in H, . This definition essentially
agrees with the one that is given by EINSTEIN and MAY¥R Likewise, thepseudo-
affine geodetidines correspond to families of geodetic linesLip: whose direction
always points in the local-direction; on the other hand, tladfine geodetidines are

simply the geodetic lines of the anholonomic systemitself.
Finally, under the action &, the geodetic lines iH, that were defined in TPZ, 810
correspond taotally geodesic surfaces L+1, when such things exist.

7. The meaning given above for By in anX,.; with a one-parameter group also
allows us to clarify the relation between the oldee-ilimensionaf) projective relativity
theory and the newer four-dimensional one. Here,Xhe is aVs, in which a one-
parameter group is given. The only difference between fikke-dimensional
interpretation of the formulas and the four-dimengiame thus amounts to whether one
regards thev/s beforeor after the collapsing, i.e., whether one regardsgbmtsor the
curvesof Vs as the elements of the space. (Differences comzethis appear among the
various authors, independently of the particular locatibthe curves and any possible
asymmetry in the displacement.) Here, we restricelues to the case in which the
displacement in th&s is RIEMANNIAN, hence, symmetric) The condition for the

displacement to be invariant undeis then, from (9), (10), equivalent to:
XENegoN—=mx¥=0.. . . . . . . . (20

A sharper requirement is that the fundamental te@s@ron Vs is itself invariant under
¢. The condition for this, nameI)EL) Gam =0, is, from (7), equivalent to:

D[AXM]ZO, e e e e (21)

viz., the KILLING equation. A necessary and sufficieoindition for the invariant of
G v is then that? should be an infinitesimahotion which can be also be seen by a

simple calculation. We further assume that the ‘sigfovector”xy has a constamength
and does not point in a null direction of the fundataktensor.

In a Vi1, the fieldxy uniquely determines the fietd =t xy, t = const. (namely, the
local Eq+1 that is perpendicular to the curve direction; in priogecgeometry: the polar

1) A. EINSTEIN and W. MAYER, Einheitliche Theorie woGravitation and Elektrizitat, Berlin,
Sitzungsberichte?5 (1931), 541-557; (for the case in whith.,; is a Vs). However, it is not an
anholonomic system of 4-directions\i that is given, but &, with local R, which one can think of as a
V, that exists invs .

2) TH. KALUZA, Zum Unitatsproblem der Physik, BerliBjtzungsber. Pr. Ak. (1921) 966-972; O.
KLEIN, Quantentheorie und finfdimensionale Relatigtideorie, Z. f. Phys37 (1926), 895-906; L.
ROSENFELD, L'univers a cinq dimensions et la mécanigaéulatoire, Bull. Acad. Roy. Belg. (88
(1927); J.A. SCHOUTEN, Dirac equations in general relgti@. Five-dimensional theory, J. for Math.
and Phys10 (1931), 272-283, and others.

%) This case isotto be combined with the complete set of physical remeérgs. Since it is, however,
inessential for the sake of recognizing the differemetaieen the five-dimensional theories, we would like
to ignore the asymmetry, for the sake of simplicity.
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*

E,., to the contact point" relative to the quadric). The most definitive conditionthe

existence of an electromagnetic field is the anholothmwi the field ty , which is
expressed, upon normalizibg by the non-vanishing of the bivector:

taw =04 tv = Opa tuy, N 2223
which can be identified with the electromagnetic biveaip to a constant factor
Fav =ftam. N (25))
If the KILLING equation (21) is satisfied then one has:
taw =0atm, N 2N

and conversely, (21) (wheB,," = 0!) follows from (24). Condition (24) is therefore

important since it allows one to bring the equatiommition for the electromagnetic
field:

Ol e .

v = ——|H*F . . . . . . . (25

dr mc “ (29)
in the simpler form:

i(iv+iftvj=0. C .. (26)

dr mc

In theH, that comes about after collapsing there is not onlyptbgctive connection
(viz., the RIEMANNIAN displacement iNs), but a RIEMANNIAN displacement that is
induced and can be identified with the well-known displaeet of general relativity
theory (which implies the geodetic precession). Invhehis translates into nothing but

the displacement that is inducedvjh (which is invariant undef). It is clear that the

latter does not need to be Euclidian whenuhéself is Euclidian. (One already obtains
the simplest counter-example 3 when one takes to be an infinitesimal twist.) Since

one easily sees that the “second fundamental ten$¥f*i®=, tv in this case, hence,
under the assumption of (24), it is proportionalRgy, it follows from the GAUSS
equation (extended to the case df'a 1y that the RIEMANNIAN displacement in e,

that comes about by collapsindraby a group of motions with constant (scalar) velocity,
is itself Euclidian when and only when the figlds holonomic?)

1) Cf., J.A. SCHOUTEN, Uber nicht-holonome Ubertragem in einer_,, Math. Z.30 (1929), 149-
172; J.A. SCHOUTEN and E. R. VAN KAMPEN, Zur Einbettungsnd Krimmungstheorie
nichtholonomer Gebilde, Math. Anh03 (1930), 752-783, Formulas (128), pp. 778.

2) Editor’s footnote: In a note that recently appeahed has many points of contact with ours (Sur les
transformations isomorphiques d’une variété a connexaffine. Prac Mat.-Fiz. (Warszawgd (1932),
55-62), W.SLEBODZINSKI, et al., presented the integrability cdiafis for equations (12). They state

that RKD/?Af“ and SADMEN , as well as all of their covariant derivatives, ian@riant undei.
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In conclusion, we would like to further remark thag wit-investigated notion of a
stationaryuniverse in the arena of relativity theory leads backdonrapletely analogous
way to the notion of &/; with a one-parameter group of motions. The curves then
determine a distinguished time direction and are thedalmrs of particles at rest. The
Hs that results from collapsing is nothing but the ordirtarge-dimensional space, which
is regarded as the totality of all objects that are indidgranof time, not as “momentum
space.” If, moreover, the fietg is holonomic then the universesistic in this case, and
only in this case, there is “momentum space” at eacht @d time, i.e., aVs that is
perpendicular to all curves.




