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§ 1.  Introduction. 
 

In a work that appeared recently 1), I have shown that it is possible to construct a theory 
of projectively connected manifolds that subsumes and generalizes all of the older 
theories 2).  The essential step was the replacement of the group Gn of all 3) 

transformations in n variables with the group Hn+1 of all 4) homogeneous transformation 

of first degree 5) in n+1 variables.  Furthermore, the notion of a general projective 
connection was introduced, for which neither geodetic lines nor a displacement (covariant 
differential, resp.) needs to exist, such that it can in no way be obtained from an (n-
dimensional) affine connection.  Thus, general projective geometry 6) becomes an 
autonomous part of differential geometry 7), and it also suggests the question of how to 
extend the Kleinian program to these curved manifolds. 

The problem that arises is: to relate the theory of affine connections to the theory of 
projective connections.  As is well known, (ordinary) projective geometry arises from 
(ordinary) affine geometry by singling out an (“infinitely distant” or “imaginary”) 
hyperplane.  In general differential geometry, the relationship is completely analogous: 
affine geometry 8) can be obtained from projective differential geometry by singling out a 
hyperplane in each local manifold that does not include the contact point (§ 3).  
Moreover, in this case, an affine connection 8) can be uniquely derived from each 
projective connection.  In conclusion, the most important thing that is determined by a 

                                                
 † Translated by D.H. Delphenich. 
 1 )  D. VAN DANTZIG.  Theorie des projektiven Zusammenhangs n-dimensionaler Räume.  Math. Ann. 
106 (1932), 400-454; denoted by TPZ.  The notation of the Supplement to TPZ will be used, by omitting 
the * that was used there.  For various deviations from this, cf. footnote ?), ?), as well as the beginning of § 
2. 
 2 )  For the most important literature, cf. TPZ, as well as ENEA BORTOLOTTI, Connessioni proiettive, 
Boll. Un. Mat. Ital. 9 (1930) 258-294; 10 (1931) 28-34; 38-90. 
 3 )  All of the functions that are used are (unless otherwise noted) assumed to be analytic and regular in 
the region considered; all of the transformations are assumed to have a unique inverse there. 
 4 ) But not necessarily linear! 
 5 )  We use this expression for the theory of projectively connected manifolds, as opposed to the ordinary 
projective differential geometry of flat (“Euclidian”) manifolds. 
 6 )  In the older theory, the differentiation indices still had a vector character, except for VEBLEN, in 
which, however, a formal difference still exists. 
 7 )  Briefly, for manifolds with a general group Gn . 

 8 )  Briefly, for the general linear (not necessarily symmetric) displacement Ln (III A α) in the 
classification of J. A. Schouten, Der Ricci-Kalkül, Berlin, Springer (1924), pp. 75. 
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projective connection, the system of curves (“geodetic lines”), will be examined (§ 4).  In 
the introductory section (§ 2), a brief overview of the most important basic notions will 
be given; for a thorough presentation, cf., TPZ, as well as a work by Prof. J.A. Schouten 
that will appear soon. 

As for the relationship between projective differential geometry with affine geometry 
in one higher dimension, as well as the relationship of projective to conformal geometry, 
I hope to go into this on a later occasion. 

 
§ 2.  Generalities. 

 
We use the following notations: 
 
Gn the group of all 3) transformations ξk k kξ ξ′ ′→ =  (ξ1, …, ξn ) in n variables (h, …, 

l = 1, …, n; , ,  , , )h l′ ′ ′ ′= 1 n⋯ ⋯ ; 
 
Hn+1 the group of all 3) homogeneous transformations of first degree 4) xν xν ′→ = 

xν ′ (x0, x1, …, xn) in n+1 variables (ι, κ, …, ω = 0, 1, …, n; , , ,ι κ ω′ ′ ′…  
=0 ,1 ,n′ ′ ′… ); 

 
F the group of all point transformations xν xν→  = ρ xν (ρ homogeneous of null 

degree in the xν ); 
 
Xn an n-dimensional manifold with ur-variables ξk and Gn as its group of coordinate 

transformations; 
 
Hn an n-dimensional manifold with n+1 (excess, “homogeneous”) coordinates xν and 

Hn+1 (F, resp.) as its group of coordinate (point, resp.) transformations (in TPZ, it 

was denoted by n+1H); 
 
Ln and Xn with a general linear displacement; 
 
Pn an Hn with a general projective connection (in TPZ, it was denoted by n+1P; in the 

older works of J.A. Schouten, it was denoted by Pn); 
 
En a (“Euclidian”) plane in Ln; 
 

*
nE  a (“projective Euclidian”) plane in Pn (i.e., a manifold with ordinary projective 

geometry) (in TPZ, it was denoted by n+1E, and for J.A. Schouten, it was 
previously denoted by Pn). 
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Overview of the transformation laws: 
 

 for Hn+1   for F 

 

Scalar of rth degree 
( )

p
ν ′

=
( )

p
ν

   p = ρr p 

 
Contravariant point 9) of rth degree vν ′ = vν ν

ν
′
I   vν = ρr vν  

 
Covariant point 9) of rth degree wν ′ = wν

ν ν′I   wν = ρr wν  
 
Projector of rth degree (e.g.) X ν

λ µ
′⋅ ⋅

′ ′ = Xλµν ν
λ µ ν λµ

′ ⋅ ⋅
′ ′I  X ν

λµ
⋅ ⋅ = ρr X ν

λµ
⋅ ⋅  

 

(Projective) density of rth degree and  
( )ν ′

p = ∆−k
( )ν
p   p  = ρr p 

weight r 

 
Projector density of rth degree and  λ ν

µ
′ ′⋅

′⋅I = ∆−k λ µν λ ν
λµ ν µ

′ ′ ⋅
′ ⋅I X  λ ν

µ
⋅

⋅X  = ρr λ ν
µ
⋅

⋅X  

weight k (e.g.) 

 
(Projective) geometric object   (anything)  (anything) 
 
in which: 

,

,

x
x

x
x

ν ν
ν ν ν ν

ν ν
ν ν ν ν

′ ′

′ ′ ′ ′

∂ ∂ ∂ = ∂
∂ ∂ ∂ =
∂ 

≐

≐

I

I

 10) 11) .   .   .   .   (1) 

 
are the mixed values (functional matrix) of the unit projector ν

ν
′
I , and: 

 
∆ = Det( ν

ν
′
I )   .   .   .   .   (2) 

is the functional determinant. 

                                                
 9 )  In TPZ, this was denoted by “contravariant positions of rth degree.”  It is, however, better to reserve 

the expression “position” for sets of coincident points λ vν with a completely arbitrary factor λ, which will 
also be done here.  With no loss of generality, one can, however, assume that λ is homogeneous of null 
degree. 

 10 )  In TPZ, the notation for νν
′
I  wasAν

ν
′ .  Here, however, we would like to reserves the ordinary symbol 

A for the unit affinor. 
 11 )  We employ the sign ≐  when the left-hand or right-hand side of an equation is a projector, and the 
equation is not invariant under all holonomic or anholonomic transformations in the system of reference 
(and indeed for each individual index in it). 



On general projective differential geometry. I.  Relationship with affine geometry.                4 

If a geometric object acquires the factor ρε when one first performs the 
transformation xν →  ρ xν from F and then the transformation xν xν ′→ = ρ-1 xν from Hn+1  
12) for a constant ε, then ε is called the excess of the geometric object.  For (a projector 
or) a projector density of rth degree 1

1

t

s

ν ν
µ µ
⋅ ⋅ ⋅ ⋅ ⋯
⋯

X  of weight k (t is called the contravariant 

valence, s, the covariant valence, s + t, the valence) one has: 
 

ε = r – (t – s) – (n + 1)k   .   .   .   .   (3) 

 
The weight 13) of a covariant point wµ is the scalar: 
 

w = wµ xµ .   .   .   .   .   (4) 
 

Each hyperplane in the local*nE that does not include that contact point xν can be uniquely 

associated with a covariant point of weight 1.  For contravariant points, such an 
association is only possible in the projective-affine case (§ 3). 

If ξk (h, …, l = 1, …, n) are any n independent homogeneous functions of null degree 
in the xν 14) (i.e., xµ ∂µ xk  = 0 ) that come from the group Gn then they determine a Xn 

whose points correspond to the positions of Hn in a one-to-one way; hence, they can be 
identified with them 15).  Let the transformations of Gn and Hn+1 be completely 

independent of each other, i.e., let the ξk (x0, resp.) be scalars relative to Hn+1 (Gn, resp.).  

If one sets: 
k kEµ µξ∂≐    .   .   .   . (5) 

 
then the kEµ  transform like an affinor in the index k, and like a projector in the index µ: 

 
k k k

kE E Aµ
µ µ µ

′ ′
′′ ′′≐ I .   .   .   .   .  (6) 

 
Thus, k

kA ′ denotes a unit affinor in Xn .  kEµ  defines the connecting term between 

affinors and projectors; it uniquely associates each contravariant point with a 
contravariant vector and each covariant vector with a covariant point of weight 0: 

 
′vk  = kEµ vµ , ′wµ  = kEµ wκ , ′wµ xµ  = 0 . .   .   .   .  (7) 

 

                                                
 12 )  This process is a special case of the well-known “dragging” of a coordinate system in the study of 
deformations. 
 13 )  In the sense of Möbius.  Not to be confused with the weight of a density.  VEBLEN’s “weight” or 
“index” does not correspond to our weight, but to our excess. 

 14 )  In TPZ, § 14, only the special functions ξ k 
k

0

x

x
≐  were considered. 

 15 )  Thus, the difference between Xn and Hn will no longer be tacit, since geometric objects in Xn can be 
completely different from ones in Hn.  
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One must note that ′vk does not depend upon the position λvν, but on the point vν 
itself. 

§ 3.  Projective-affine manifolds. 
 

In each local *
nE  in Hn, let there be given, once and for all, a hyperplane that does not pass 

through xν.  From what was said above, we can represent it uniquely by a covariant point 
tν of weight 1 and excess 0: 

tν x
ν = 1.    .   .   .   . (8) 

 
We call such a field of hyperplanes in Hn projective-affine.  In a projective-affine Hn 

one can also associate each contravariant point vν with a weight: 
 

v = vν tν ,     .   .   .   . (9) 
 
and each contravariant position that does not lie in tν is uniquely associated with its 
contravariant point of weight 1.  The affine projectorkEµ  may now be associated with a 

unique corresponding dual kEν   that is a solution of the equations: 

 
 jEν kEν  = k

jA , tν jEν  = 0.     .   .   .  (10) 

 
In a projective-affine Hn there is a one-to-one map from the covariant and 

contravariant points of null weight and excess in *
nE  to the covariant and contravariant 

vectors in En : 

for 0; ,

for w 0; .

k k k
k
k

j j k

v E v v t v E v

w E w x w E w

µ µ ν ν
µ µ
ν ν

ν ν µ µ

= = = 
= = = 

   .   .   .  (11) 

 
We can thus identify these objects with each other (so we express them by the same 

symbol) and consider affinors to be a special type of projector; in particular, vectors are a 
special type of point, namely, a point of null weight and excess.  By means of this 
association, the affine projectorkEµ  is identical with the unit affinor (but not with the unit 

projector ν
µI !); correspondingly, we will replace the symbol E with A: 

 
kAµ = ∂µ ξk, xµ kAµ = 0 ;    k

jAν
ν = k

jA , tν kAν = 0 .   .   . (12) 

Aν
µ  = ν

µI − xν tν . 

 
The difference of two covariant (contravariant, resp.) points is a vector when and 

only when the points have equal weight.  It then follows that one can associate each 
covariant (contravariant, resp.) position µwν (λ vν, resp.) that does not pass through xν 
(does not lie in tν , resp.) uniquely with a vectorwµ′  (v ν′ , resp.) by means of the relation: 
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1 1
, 0,

1 1
, 0,

v v x A v v v t
v v

w w t A w w w x
w w

ν ν ν ν µ ν
µ ν

ν µ
µ µ µ µ ν µ

′ = − = = ≠ 

′ = − = = ≠


 .   .   . (13) 

or with affine values: 
kv′ =

1 kA v
v

ν
ν , wµ′ =

1 j
jA w

w µ .   .   .   .  (14) 

 
kv′ andwµ′  are invariant under the replacement of vν (wµ, resp.) by the points that are 

coincident with them.  Geometrically, v νλ ′  is the intersection of tν with the line that 
connects vν and xν ; the factor λ changes when and only when the position of vν moves 
along this line, and will be null when and only when vν coincides with xν .  
Correspondingly, wνµ ′ is the *

1nE − that connects xν with the intersection *
2nE −  of the two 

*
1nE − ’s, wν and tν ; the factor m changes when and only when these *

1nE − ’s rotate around 

this *
2nE −  in a clump of *

1nE − ’s, and are null when and only when they coincide with tν .  

From (13), the incidence condition vν wν = 0 for covariant (contravariant, resp.) points is 
equivalent to the incidence condition v wν

ν′ ′ = 1 for the associated vectors.  Each point vν 

(wν , resp.) is uniquely determined by its vector v ν′ ( wν′ , resp.) and its weight v (w, resp.): 

 

vν  = 
( ) for 0

for 0

v v x v

v v

ν ν

ν

′ + ≠
 ′ =

  wν  = 
( ) for 0

for 0.

w w t w

w w
ν ν

ν

′ + ≠
 ′ =

  (15) 

 
If one defines the difference of two positions µuν, λvν by: 
 

v u

v u

ν ν

− , u = uν tν ≠ 0, v = vν tν  ≠ 0 . .   .   .   .   . (16) 

 
then it is always a vector, and one easily verifies that it is identical with the point 
difference of the MÖBIUS-GRASSMANN point calculus.  If one interprets tν as an 
“infinitely distant” hyperplane then one can construct infinitesimal parallelograms that 
are accurate up to quantities of second order, in not only the *

nE ’s, but also in Hn itself 16), 

that obey the addition properties of line elements.  Namely, if yν, zν, uν, vν are four 
positions in Hn that lie in an infinitesimal neighborhood of the position xν in Hn then one 
easily verifies 17) that the condition for the parallelogram: 

                                                
 16 )  The existence of a displacement does not naturally follow from this, since that demands a parallelism 
that is accurate up to quantities of third order. 
 17 )  For this, one needs to regard the transformation formula for yν = xν + dxν , etc., as points in Hn (not in 

*
nE ): 

yν ′ = xν ′ (y) =xν ′ (x) + dxλ ν
λ

′
I  + 

1

2
dxκ dxλ ∂κλ xν ′ + … = yµ ν

λ
′
I +

1

2
dxκ dxλ ∂κλ xν ′ + … 
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y z

y t z t

ν ν

µ µ
µ µ

− =
u v

u t v t

ν ν

µ µ
µ µ

− ,  (tµ = tµ (x)) 

 
is exactly invariant under F and up to quantities of second order under Hn+1, and 

independent of the position of xν . 
If yν in Hn is an infinitesimally neighboring point to xν then the differential dxν = yν – 

xν is well-known to not be invariant under F: 

 
dxν = ρ dxν + xν dρ .  .   .   .   .   . (17) 

 
In a projective-affine Hn one can associate it with a unique vector differential 

d xν′ that is totally (relatively) invariant under F, depends only upon the position of yν, 

agrees with the ordinary line element: 
 

d xν′ = Aν
µ dxµ = dxν – (tµ dxµ) xν =

y

y t

ν

µ
µ

− xν = kAν dξ k .  (18) 

 
The affinization of projective differential geometry by means of a covariant point tµ 

of weight 1 also clarifies the meaning of the projective densities in the older theories 18): 
If G is an arbitrary projective density of degree r and weight ≠ 0 then: 

 

tµ  
1
≐
G

∂µ G 

 
is a piecewise undetermined hyperplane that does not go through the contact point.  In 
fact, in the older theories (in a certain formulation) G ultimately appears in the link (21).  

From the fact that: 
xµ ∂µ G = r G = ε G + k (n + 1) G , 

 

one has that tµ is normalized for densities of null excess when and only when k = 
1

1n+
. 

 
§ 4.  Projective and affine connections. 

 
Now, let an arbitrary projective connection be given by a system of homogeneous 
functions in Hn, 

ν
λµΠ , of degree −1, and with the transformation law: 

 
ν
λ µ

′
′ ′Π  = λµν ν ν ρ

λ µ ν λµ ρ λ
′ ′

′ ′ ′Π + ∂I I I   .   .   .   .   (19) 

 
For the sake of later applications, we mention the formulas: 
                                                
 18 )  Cf., TPZ, § 14. 
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xµ ∇µ v
ν  = +Pν

µ⋅ vµ ;  xµ ∇µ wλ  = − Pν
λ⋅ wν

 .   .   .   .   (20) 

Pν
µ⋅ xν µ ν

λµ λΠ +≐ I  19)  Qν
µ⋅ xν λ ν

λµ µΠ +≐ I ;  bν = Pν
µ⋅ xλ  = Qν

µ⋅ xµ .      (21) 

 
The projective connection uniquely determines a correspondence that associates 

each point vν with the point xµ ∇µ vν .  Since xµ ∇µλ vanishes for every scalar of null 
excess, one has xµ ∇µ λvν = λ xµ ∇µ vν , such that the correspondence uniquely determines 
a projective map (for the positions) from *

nE  to itself.  For its own part, this map 

determines the correspondence only up to an arbitrary factor that can be established up to 
an arbitrary non-vanishing invariant of Pν

µ⋅ , e.g. Pρ
ρ⋅  or Pν

µ⋅ Pµ
ν⋅  20). 

From (16), xµ ∇µ vν  does not, in general, determine any well-defined point; the 
expression is determined only up to an arbitrary multiplicity of corresponding points xµ 
∇µ vν  .  There thus exists, in general, no covariant differential.  In order to obtain such a 
thing there are two possibilities: first, the additional terms that are responsible for the 
indeterminacy can vanish becausePν

λ⋅ = 0 21); second, however, one can succeed in 

choosing one of the infinitely many possible points uniquely.  This case comes about in a 
projective-affine Pn, since one can normalize the differential by means of (18) in such a 
space.  We denote the thus-defined covariant differential operator by δ: 

 
δ = d′ xλ ∇λ ∇ dxµ Aρ

µ ∇ρ = dxλ ∇λ – (tµ  dxµ ) xλ ∇λ  
22). .   .   .   (22) 

 
In general, this covariant differential defines no affine displacement, since the covariant 
differential of an affinor is not generally an affinor, but a projector.  However, an affine 
connection is completely determined by way of the projective connection, along with the 

differential operator
A

λ∇  that one obtains when one takes the affinor part of the covariant 
derivative of an affinor: 
 

for 0,
0.

for 0;

A

A

A

v A v v t
x

w A w w x

ν ρν σ ν
µ µσ ρ ν ν

µ
ρσ ν

µ ν µν ρ σ ν

∇ = ∇ = ∇ = 
∇ = ∇ = 

  .   .   .   (23) 

 

If 
A

ν
λµΠ  = ij k k

k ij kA A Aν ν
λµ λΓ + ∂  is the associated displacement parameter and one has: 

                                                

 19 )  In the supplement to TPZ this is denoted by
*

P ν
λ
⋅ . 

 20 )  For the most important physical application, Pν
µ⋅ Pµ

ν⋅  is, up to a constant factor, the energy density 

of the electromagnetic field. 
 21 )  Cf., TPZ, § 7, 8. 
 22 )  One can also arrange this so that the differential operator =µ is replaced with *

µ∇ = Aρ
µ ∇ρ .  One then 

has ν
λµ

∗Π = P tν ν
λµ λ µ⋅Π − , such thatP ν

λ
∗

⋅  = 0 .  For *
µ∇ , the analysis of TPZ is still valid, and the covariant 

differential that is defined by (22) is equal to the ordinary differential (TPZ, § 7) relative to*
µ∇ . 
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X ν
λµ
⋅ ⋅  = 

A
ν ν
λµ λµΠ − Π  ,  .   .   .   .   .   .   .   .   .   (24) 

then one has: 
 

X ν
λµ
⋅ ⋅ = − xν µ′∇ tλ + P ν

µ⋅′ tµ + tλ Q ν
µ⋅′ + A Pρ σ

λ ρ⋅ tσ tµ xν + tλ tµ b
ν′ + xν tλ Q

ρ
µ⋅ tρ,   (25) 

 
in which: 
 

tµ λ′∇ = A tσρ
µλ σ ρ∇ , P ν

µ⋅′  = A Pσρ σ
µλ ρ⋅ ,  Q ν

µ⋅′  = A Qσρ σ
µλ ρ⋅ ,  b ν′ = Aν

ρ bρ (26) 

 
denote the affinor parts of the unprimed quantities.  In order for the differential operator 

∇µ  itself to be identical with
A

µ∇  when applied to affinors, it is necessary and sufficient 

that ∇µ xν, ∇µ tν , andPν
λ⋅ have the following form: 

 
∇µ x

ν = qµ xν,  ∇µ tν  = − qµ tν  , .   .   .   .   .   .   .   .   (27) 
Pν

λ⋅ = P xν tλ ,  P = qρ x
ρ .  .   .   .   .   .   .   .   .   (28) 

 
In this case, one can thus take the projective connection to be an affine connection, as 

well.  Conversely, an affine connection with the parameters k
ijΠ  uniquely determines a 

projective connection (if one further demands that qµ = 0, hence, that one also has P = 0), 
as long as the hyperplane in*nE  that is identified with the “imaginary” one is given.  (27) 

states that the contact point and the imaginary hyperplane (affine: the contravariant and 
covariant null vectors) is covariantly constant under displacement.  On the other hand, 
(28) states that the correspondence degenerates completely, namely, each covariant 
(contravariant, resp.) position goes to infinity (the contact point, resp.)  Only for P = 0 is 
the displacement identical with the one that was obtained by the first method. 

A geodetic position field will be given by an equation of the form: 
 

vµ ∇µ v
ν  = ϕ vν .  .   .   .   .   .   .   .   .   (29) 

 
This equation preserves its form under the replacement of vν with λvν.  For a certain 
choice of λ one can arrange that ϕ = 0; if one links each position λvν in *

nE  with the 

associated xν by a line then a direction field is determined in Hn; the associated curves, 
which we call pseudo-geodetic lines, depend only upon the position λvν (not on the 
weight of vν).  In general, the pseudo-geodetic lines change, however, when one replaces 
the initial position λvν with one that is collinear with it and xν (hence, under preservation 
of the initial direction).  In order for the pseudo-geodetic lines to remain invariant under 
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all such changes (in which case, we call it geodetic), it is necessary and sufficient that 
P Qν ν

λ λ⋅ ⋅+  has the form 23): 

P Qν ν
λ λ⋅ ⋅+ = xν zλ + R ν

λI . .   .   .   .   .   .   .   .   (30) 

 
This is the first possibility for uniquely determining a system of curves in a Pn; pseudo-
geodetic lines exist in each Pn .  The second possibility is, in turn, to choose one position 
λvν uniquely out of all possible ones.  In the projective-affine case, this possible through 
the condition that vν ∇v ν′  be a vector.  The defining equation of the line that results in 
that manner: 

v vµ ν
µ′ ′∇ = ϕ v ν′  .   .   .   .   .   .   .   .   (31) 

 
is integrable when and only when( )tµ ν′∇  = 0 (cf., 26), hence, when ∇(µ tλ) has the form: 

 
∇(µ tλ) = u(µ tλ)  ..    .   .   .   .   .   .   .   (32) 

 
One then has uµ = − tρ P

ρ
µ⋅  – tρ Qρ

µ⋅ + tρ b
ρ tµ .  In the event that solutions of (31) exist, 

they are identical with the affine geodetic lines, i.e., the (ordinary) geodetic lines of the 
affine connection, which are defined by: 

A

v vµ ν
µ′ ′∇ = ϕ v ν′ .   .   .   .   .   .   .   .   (33) 

 
In the event that the projective connection itself is affine, then, from (27), this is always 
the case.  Except for the pseudo-geodetic, the pseudo-affine geodetic, and affine geodetic 
lines, only the semi-affine geodetic lines have any particular meaning for the unification 
problem in physics 24).  There definition reads like: 
 

v vµ ν
µ′ ′∇ = ϕ v ν′ . .   .   .   .   .   .   .   .    (34) 

 
They arise from performing a displacement of a position (setting the covariant 

differential (22) to zero) in the direction of its vector (the line connecting it with xν ), and 
are independent of the weight of vν, but dependent on where the position is along the 
connecting line.  They agree with the affine (the pseudo-affine, resp.) geodetic lines when 
and only when Q ν

µ⋅′ = 0, i.e., whenQ ν
µ⋅′ has the form: 

 
Qν

µ⋅  = bν tµ + xν qµ – q ν
µI   (q = qµ xµ ),   (35) 

 

                                                
 23 )  In TPZ, individual condition equations of the form (30) were given forPν

λ⋅ and Qν
λ⋅ .  The geodetic 

lines that are defined here are not identical with the ones that were defined there; instead of the defining 
equation 

abH ν⋅ ⋅ = 0 found there (TPZ, § 10), they satisfy only the weaker condition 
( )abH ν⋅ ⋅  = 0 . 

 24 )  They essentially agree with the ones that were introduced by EINSTEIN and MAYER; cf., also, J.A. 
Schouten and D. VAN DANTZIG, Über eine vierdimensionale Deutung der neuesten Feldtheorie, these 
Proceedings, 34 (1931) 1398-1407. 
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(when (35) and (32) are valid, resp.).  In the latter case, the semi-affine geodetic, pseudo-
affine geodetic, and the affine geodetic (but not the pseudo-geodetic) lines are identical.  
In the physical interpretation, the deviation of the semi-affine geodetic lines from the 
affine geodetic ones implies the presence of an electromagnetic field. 

One can introduce a curve parameter s (a scalar of null degree) on any geodetic line 
by the defining equation: 

v sµ
µ′ ∇ = 1,  .   .   .   .   .   .   .   .    (36) 

 
that depends only upon the current direction of the curve 25).  If t is an arbitrary parameter 

(a scalar of null degree) along the curve then 
d x

dt

ν′
= β vν, and the integral in (36) reads 

like s = ∫ β dt .  From (36), it follows that: 
 

d xν′  = k
kA dν ξ  =

k

k

d
A ds

ds
ν ξ

 = ( )k
kA v dsν µ

µξ′ ∂  = v ν′ ds , .   .   .   .   (37) 

 
such that one finds the differential operatorv µ

µ′ ∇ to be: 

 

v µ
µ′ ∇  =

ds

δ
.  .   .   .   .   .   .   .   .    (38) 

 
___________ 

 

                                                

 25 )  
t dx

e
µ

µ∫  (N.B.: dxν itself, not d xν′ , exists on any curve as a homogeneous function of the first degree 
(excess = 1), up to an arbitrary factor of null degree.) 



On general projective differential geometry.   
II.  Xn+1 with a one-parameter group. 

 
By D. VAN DANTZIG † 

 
(Communicated at the meeting of April 30, 1932.) 

 
 

 I.  In the previous part 1), I showed that affine geometry 2) can be related to general 
projective geometry in a manner that is analogous to the way that ordinary affine 
geometry relates to ordinary projective geometry in flat spaces, namely, by singling out a 
field of hyperplanes in the local*nE , with the single condition that they not pass through 

the contact point.  In the present part, I will treat the converse problem: the relationship 
between projective differential geometry to affine geometry in one higher dimension. 3) 

It is well-known that ordinary projective geometry exists within affine geometry in 
one higher dimension, when one regards the lines through a fixed point as the elements of 
new space.  In the present note, I will show that a completely analogous fact is true in the 
general differential geometry of curved spaces: general projective geometry may be 
obtained from the affine geometry of one higher dimension, in which one regards the 
curves of an arbitrary one-parameter group (in the flat case: the homothety group of a 
fixed point) as the elements of a new space.  For the basic notions and notation, confer 
TPZ 4) and APD I. 

 
2.  The n+1 “homogeneous” coordinates xν in a Hn can be regarded as the ur-

variables of an Xn+1.  The group Hn+1 thus goes to that subgroup of Gn+1 that fixed the 

coordinates of the null point and preserves the form of the equation xν = t aν (aν = const.) 
of the lines through the null point; the group F corresponds to the group of those point 
transformations of Xn+1 that leave each line through the null point invariant and induce a 
homothety on each such line.  These lines themselves correspond to the positions in Hn .  
Now, if ΞN (I, K, …, Ω =0 1,, ,n⋯ ) are any (“curvilinear”) coordinates in the Xn+1 then 
one can transform the projectors as affinors in Xn+1, i.e., introduce affinors whose values 
relative to the special coordinate system xν in which the projectors in question are equal 
to, e.g.: 

                                                
 † )  Translated by D.H. Delphenich. 
 1 ) D. VAN DANTZIG, Zur allgemeinen projectiven Differentialgeometrie, I.  Einordnung der 
Affinegeometrie, these Proceedings 35 (1932), denoted by APD I. 
 2 )  Briefly, for manifolds with general linear (not necessarily symmetric) displacement (III Aa, in the 
classification of J.A. SCHOUTEN, Der Ricci-Kalkül, Springer (1924), pp. 75).  
 3 )  Cf., also D. VAN DANTZIG, Theorie des projektiven Zusammenhangs n-dimensionaler Räume, 
Math. Ann. 106 (1932), 400-454, denoted by TPZ, pp. 408.  In that work, I briefly touched on the questions 
without completely following through, since in that work the general coordinates XN for n+1 were not 
introduced.  For a special class of projective displacements (cf., TPZ, footnote 44a), J.H.C. WHITEHEAD, 
The representation of projective spaces, Ann. of Math. 32 (1931), 327-360, treated a closely related 
problem, without which the aforementioned questions would be regarded as completely resolved. 
 4 )  The notation of the supplement will be used, with the omission of the * that appears there; some 
deviations were given in APD I. 
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N
MP⋅ = N

M Pµ ν
ν µ⋅I ; N N

ν ν∂ Ξ≐I , N Nxν ν∂≐I ; 
xν ν
∂∂

∂
≐ , N N

∂∂
∂Ξ
≐ .  (1) 

 
In particular, the field of “contact points” xν, when regarded as a points in the local 

*
nE  (not the Hn itself!), goes to a contravariant vector field xN : 

 
xN = N xν

νI ,  .  .  .  .  .  .  .  .  .  .  . (2) 

 
that has the character of a field of radius vectors in Xn+1, relative to the special 
coordinates xν, but seems to be a completely arbitrary field relative to more general ones.  
Naturally, one thus has, in general: 

xN  ≠  ΞN .  .   .  .  .  .  .  .  .  .  .  .  . (3) 
 

3.  The vector field xN determines an infinitesimal transformation T with the LIE 

symbol: 
Xf  =  xN ∂N f .   .   .  .  .  .  .  .  .  .  .  .  . (4) 

 
The expression (4) has an invariant meaning only when f is a scalar.  However, it 

may be extended to an invariant operator on arbitrary affinors that we will call the Lie 
derivative, and denote by the symbol 

L
D . 1)  For its definition, one needs to be given only 

a contravariant vector field xN, but no displacement in Xn+1. 
Namely, if one considers the ΞN to be new coordinates of those points whose old 

coordinates were ΞN + xN dt then we say that the coordinate system has been dragged 
along by the infinitesimal transformation.  The LIE derivative of any geometrical object 
at a point of Xn+1 will now be defined as the difference of its values relative to the 
dragged and the original coordinate systems (both of them at the point in question).  The 
operator satisfies the following requirements: 

 
I.   If X : and Y : are any sort of affinors 2) then: 
 

L
D (X : + Y :) =

L
D X : + 

L
D Y : . 

  
 
II. For products and contractions, one has the LEIBNIZ rule for differentiation:   
 

L
D X : Y : = (

L
D X :) Y : + X :

L
D Y : . 

 
III. For a scalar f one has: 

                                                
 1 )  The operator was first introduced by W. ŚLEBODZINSKI.  Sur les équations canoniques de 
Hamilton, Bull. Acad. Roy. Belg. (5) 17 (1931), 864-870.  For the definition that is given here, I would like 
to thank a still quite obscure work of J.A. SCHOUTEN and E.R. VAN KAMPEN on deformations of a Xn . 
 2 )  By the word “affinors” here we mean affinors in Xn+1, not affinors in Xn as in APD I.  The points 
remain for arbitrary sets of indices. 
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L
D f = X f . 

 
IV. The LIE derivative of a contravariant vector is equal to the LIE bracket: 
 

L
D vN = [x, v]N = xΛ ∂Λ v

N − vΛ ∂Λ x
N . .   .   .   .   .   (5) 

 
For a covariant vector, one finds that: 
 

L
D wM = xΛ ∂Λ wM + wΛ ∂Μ  x

Λ = ∂Μ  (wΛ x
Λ) + 2 xΛ ∂[Λ wM] , .   .   .   (6) 

 
for a general affinor: 

1 1

1 1

1 1 1

1

1

1 1 1

1

1

,

t t

s s

j j t j

s

t

i i t i

N N N N
M M M M

L

t
N N N N N

M M
j

s
N N

M M M M M
i

D X x X

X x

X x

− +

− +

Λ
Λ

Λ
Λ

=

Λ
Λ

=


= ∂ −



− ∂ +



+ ∂ 


∑

∑

⋯⋯⋯⋯ ⋯ ⋯⋯⋯⋯ ⋯

⋯ ⋯

⋯⋯⋯⋯ ⋯ ⋯

⋯

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ ⋯

⋯ ⋯

 .   .   .   .   .   (7) 1) 

 
and for the parametersN

M ΛΠ  of an affine transformation: 

 
N
M

L
D ΛΠ = K N N N N N N N

K M M M M Mx x x x xΠ Π
Λ Λ Π Λ Π Π Λ ΠΛ∂ Π − Π ∂ + Π ∂ + Π ∂ + Π ∂ . .   .   .  (8) 

 
It is noteworthy that N

M
L
D ΛΠ is an affinor 2) whether or not this is the case with 

the N
M ΛΠ themselves, namely: 

N
M

L
D ΛΠ = K N N

K M Mx N P⋅ ⋅ ⋅
Λ Λ ⋅− ∇ ,  .   .   .   .   .   .   .   (9) 

in which: 
NP⋅ Λ = ∂Λ xN + N M

M xΛΠ = =ΛxN + 2 N
MS⋅ ⋅

Λ xM  .   .   .   .   .   .   .   (10) 

and: 
N

K MN ⋅ ⋅ ⋅
Λ = − 2∂[Κ | | ]

N
M ΛΠ − 2 [ | | ]

N
K M

Σ
Σ ΛΠ Π     .   .   .   .   .   .   .   (11) 

 
is the curvature quantity associated withNM ΛΠ . 

We call a geometric object invariant under the transformation T when the LIE 

derivative vanishes.  In particular, the displacement is called invariant when: 
 

N
M

L
D ΛΠ = 0 .  .   .   .   .   .   .   .   .   .   .   .   .   .   .   (12) 

 
                                                
 1 )  This equation was used as the definition by ŚLEBODZINSKI. 
 2 )  I would like to thank Professor J.A. SCHOUTEN for this remark, as well as the relation (8). 
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Equivalent to this is the condition that
L
D and =M commute. 

With the intended interpretation of the Hn in a Xn+1 with a restricted group, we infer 
the following: projectors of null excess are invariant affinors under T, which follows 

immediately by setting the LIE derivative equal to zero in the special coordinates, with 
the help of the EULER homogeneity condition.  In general, a projector X : of excess ε is 
an affinor with: 

L
D X : = ε X : .   .   .   .   .   .   .   .   .   .   .   .   .   .   (13) 

 
(ε = constant).  In this case, we say that X : is relatively invariant under T.  The condition 

that N
M ΛΠ  has degree −1 (excess 0) is equivalent to (12) (which follows immediately by 

writing out the LIE derivative in the special coordinates xν ).  Substitution of (12) in (9) 
yields a well-known formula of projective differential geometry: 
 

x Nν ν
κλµ
⋅ ⋅ ⋅ = Pν

λ µ⋅∇ .  .   .   .   .   .   .   .   .   .   .   .   .   (14)  1) 

 
4.  Conversely, if an arbitrary vector field xN is given in an Xn+1 in general 

coordinates then there are always n + 1 independent solutions of the scalar equation: 
 

L
D Ξ = X Ξ = Ξ.     .   .   .   .   .   .   .   .   .   .   .   (15) 

 
If we call them Ξν (ι, κ, …, ω = 0, 1, …, n ) and choose them to be new coordinates then, 
from (15), we have: 

xν = N
N xνI  = xN ∂N Ξν = X Ξν = Ξν ,    .   .   .   .   .   .   (16) 

 
i.e., the values of the vectors x relative to the special coordinates Ξν are equal to the 
coordinates of the associated “eigenpoint.”  From (16), it immediately follows that: 
 

∂µ x
ν = ν

µI .      .   .   .   .   .   .   .   .   .   .   .   (17) 

 
If one now regards the ∞n curves of the transformation T as elements (called 

“positions”) of a new n-dimensional manifold Hn then one can regard the xν = Ξν as 
surplus (“homogeneous”) coordinates in this Hn .  Namely, if ν ′Ξ are n + 1 other solutions 
of equation (15) then one has: 

Ξν ∂ν 
ν ′Ξ = xν ∂ ν 

ν ′Ξ = X ν ′Ξ = ν ′Ξ ,   .   .   .   .   .   .   .   (18) 
 

i.e., (due to the EULER homogeneity condition) that theν ′Ξ are homogeneous of first 
degree in the Ξν .  The Ξν = xν thus lie in the group Hn+1 .  (One obtains the VEBLEN 

coordinates νξ− (ι, κ, …, ω = 0, 1, …, n ) (cf., TPZ, §14) when one chooses 1 2, , , nξ ξ ξ− − −… to 

be any n independent integrals of the transformation T: X kξ− = 0 , whereas 0ξ− is the curve 

                                                
 1 )  Cf., TPZ (76), pp. 422 (76*), pp. 452.  Whitehead, loc. cit. (1.7), pp. 334. 
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parameter, which is defined by X 0ξ− = 1.)  The infinitesimal transformation T takes a point 

Ξν = xν to Ξν + xν dt = (1 + dt) xν ; a finite transformation of the group that is generated by 
T thus takes xν to a point whose coordinates are proportional to those of the prototype xν ; 

i.e., two points of Xn+1 lie on the same curve of the group (which belongs to the same 
position then and only then) when and only when one goes to the other under a 
transformation of the group.  For an affinor 1

1

t

s
X ν ν

µ µ
⋯⋯⋯ ⋯

⋯
on Xn+1 that satisfies (13), we have, 

from (7): 
xλ ∂λ 1

1

t

s
X ν ν

µ µ
⋯⋯⋯ ⋯

⋯
= (ε + t – s) 1

1

t

s
X ν ν

µ µ
⋯⋯⋯ ⋯

⋯
, .   .   .   .   .   .   .   (19) 

 
i.e., the affinor goes to a projector of degree r = ε + t – 2, hence, of excess ε .  (The most 

general projective connection that was considered in TPZ, § 6 does not correspond to the 
case of a general affine displacement in Xn+1, but to a generalization of it in which a 
displacement is always defined for vectors with different ε that are relatively invariant 
under T.)  We call the process so described of generating an Hn from a Xn+1 a collapsing 

of Xn+1 along the given system of curves.  In the particular case in which the Xn+1 is an 
En+1 and the curves are parallel lines, it becomes the process that was introduced by H. 
WEYL of “collapsing a En+1 in a given direction.” 

 
5.  A field of hyperplanes tν (covariant positions) in the local *nE  of Hn yields a field 

of n-directions, by their interpretation in Xn+1 .  The condition that the hyperplane does 
not go through the contact point states that the n-direction does not include the direction 
of the curve.  The local n-directions define a system 1

n
nX +  1) that is invariant under T and 

generally anholonomic.  If xM tM ≠ 0 then one can choose xN to be an attaching 
(Einspannung = clamp, hold) vector.  The normalization condition xM tM = xµ tµ = 1 2) 
corresponds to the well-known “first normalization condition” ) for an embedded 
structure in an Xn+1 and one can (in the case for which a linear displacement Ln+1 is given 
in Xn+1 that is invariant under T) carry the entire well-known theory of the curvature of 

an 1
n
nL +  in Ln+1 over to Hn (which then becomes a Pn) completely, but we shall go into this 

no further. 
 
6.  If a geodetic line in Ln+1 is dragged along by the group F then there exists a 

family of ∞1 geodetic lines that are invariant under T (naturally, under the assumption 

that the displacement in Ln+1 is invariant under T) that corresponds to a pseudo-geodetic 

line 3) in Hn .  If a contravariant vector in Ln+1 is assumed to be pseudo-parallel displaced 
in the direction of its projection on tM at xN (instead of its own direction), and we drag the 
resulting curve along F then we produce a family of ∞1 curves that are invariant under T 

                                                
 1 )  For the theory of anholonomic systems, cf., J.A. SCHOUTEN, On non-holonomic connexions, these 
Proceedings, 31 (1928), 291-299; J.A. SCHOUTEN and E.R. VAN KAMPEN, Zur Einbettungs- und 
Krümmungstheorie nichtholonomer Gebilde, Math. Ann. 103 (1930), 752-783. 
 2 )  Cf., APD I § 3, (18). 
 3 )  For the various types of geodetic lines in a projective-affine Hn, cf., APD I § 5. 
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and which correspond to a semi-affine geodetic line in Hn .  This definition essentially 
agrees with the one that is given by EINSTEIN and MAYER 1).  Likewise, the pseudo-
affine geodetic lines correspond to families of geodetic lines in Ln+1 whose direction 
always points in the local n-direction; on the other hand, the affine geodetic lines are 
simply the geodetic lines of the anholonomic system1

n
nL +  itself. 

Finally, under the action of T, the geodetic lines in Hn that were defined in TPZ, §10 

correspond to totally geodesic surfaces in Ln+1, when such things exist. 
 
7.  The meaning given above for an Hn in an Xn+1 with a one-parameter group also 

allows us to clarify the relation between the older five-dimensional 2) projective relativity 
theory and the newer four-dimensional one.  Here, the Xn+1 is a V5, in which a one-
parameter group is given.  The only difference between the five-dimensional 
interpretation of the formulas and the four-dimensional one thus amounts to whether one 
regards the V5 before or after the collapsing, i.e., whether one regards the points or the 
curves of V5 as the elements of the space.  (Differences concerning this appear among the 
various authors, independently of the particular location of the curves and any possible 
asymmetry in the displacement.)  Here, we restrict ourselves to the case in which the 
displacement in the X5 is RIEMANNIAN, hence, symmetric. 3)  The condition for the 
displacement to be invariant under T is then, from (9), (10), equivalent to: 

 
XK N

K MN ⋅ ⋅ ⋅
Λ − =ΛM xN = 0 . .   .   .   .   .   .   .   . (20) 

 
A sharper requirement is that the fundamental tensor GΛΜ on V5 is itself invariant under 
T.  The condition for this, namely, 

L
D GΛΜ = 0, is, from (7), equivalent to: 

 
∇[Λ xM] = 0 ,  .   .   .   .   .   .   . (21) 

 
viz., the KILLING equation.  A necessary and sufficient condition for the invariant of 
G ΛΜ is then that T should be an infinitesimal motion, which can be also be seen by a 

simple calculation.  We further assume that the “velocity vector” xN has a constant length, 
and does not point in a null direction of the fundamental tensor. 

In a Vn+1, the field xN uniquely determines the field tN = t xN, t = const. (namely, the 
local En+1 that is perpendicular to the curve direction; in projective geometry: the polar 

                                                
 1 )  A. EINSTEIN and W. MAYER, Einheitliche Theorie von Gravitation and Elektrizität, Berlin, 
Sitzungsberichte 25 (1931), 541-557; (for the case in which Ln+1 is a V5).  However, it is not an 
anholonomic system of 4-directions in V5 that is given, but a V4 with local R5, which one can think of as a 
V4 that exists in V5 . 
 2 )  TH. KALUZA, Zum Unitätsproblem der Physik, Berlin, Sitzungsber. Pr. Ak. (1921) 966-972; O. 
KLEIN, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. f. Phys. 37 (1926), 895-906; L. 
ROSENFELD, L’univers à cinq dimensions et la mécanique ondulatoire, Bull. Acad. Roy. Belg. (5) 13 
(1927); J.A. SCHOUTEN, Dirac equations in general relativity; 2.  Five-dimensional theory, J. for Math. 
and Phys. 10 (1931), 272-283, and others. 
 3 )  This case is not to be combined with the complete set of physical requirements.  Since it is, however, 
inessential for the sake of recognizing the differences between the five-dimensional theories, we would like 
to ignore the asymmetry, for the sake of simplicity. 
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*
1nE +  to the contact point xN relative to the quadric).  The most definitive condition for the 

existence of an electromagnetic field is the anholonomity of the field tN , which is 
expressed, upon normalizing tN, by the non-vanishing of the bivector: 

 
  tΛΜ = ∂[Λ tM] = ∇[Λ tM] ,   .   .   .   .   .   .   .  (22) 

 
which can be identified with the electromagnetic bivector, up to a constant factor 
 

  FΛΜ  = f tΛΜ .    .   .   .   .   .   .   .  (23) 
 
If the KILLING equation (21) is satisfied then one has: 
 

tΛΜ  = ∇Λ tM ,    .   .   .   .   .   .   .  (24) 
 
and conversely, (21) (when N

MSΛ
⋅ ⋅ = 0!) follows from (24).  Condition (24) is therefore 

important since it allows one to bring the equation of motion for the electromagnetic 
field: 

i

d
νδ
τ

 = 
e

i F
mc

µ
µν−   .   .   .   .   .   .   .  (25) 

in the simpler form: 
e

i t
d mcν ν
δ
τ
 + 
 

f = 0.  .   .   .   .   .   .   .  (26) 

 
In the H4 that comes about after collapsing there is not only the projective connection 

(viz., the RIEMANNIAN displacement in V5), but a RIEMANNIAN displacement that is 
induced and can be identified with the well-known displacement of general relativity 
theory (which implies the geodetic precession).  In the V5, this translates into nothing but 
the displacement that is induced in45V  (which is invariant under T).  It is clear that the 

latter does not need to be Euclidian when the V5 itself is Euclidian.   (One already obtains 
the simplest counter-example in R3 when one takes T to be an infinitesimal twist.)  Since 
one easily sees that the “second fundamental tensor” of 4

5V is =Λ tM in this case, hence, 

under the assumption of (24), it is proportional to FΛΜ, it follows from the GAUSS 
equation (extended to the case of a4

5V ) 1) that the RIEMANNIAN displacement in a H4 

that comes about by collapsing a R5 by a group of motions with constant (scalar) velocity, 
is itself Euclidian when and only when the field tN is holonomic. 2) 

                                                
 1 )  Cf., J.A. SCHOUTEN, Über nicht-holonome Überträgungen in einer Ln, Math. Z. 30 (1929), 149-
172; J.A. SCHOUTEN and E. R. VAN KAMPEN, Zur Einbettungs- und Krümmungstheorie 
nichtholonomer Gebilde, Math. Ann. 103 (1930), 752-783, Formulas (128), pp. 778. 
 2 )  Editor’s footnote: In a note that recently appeared that has many points of contact with ours (Sur les 
transformations isomorphiques d’une variété à connexione affine.  Prac Mat.-Fiz. (Warszawa) 39 (1932), 
55-62), W. ŚLEBODZINSKI, et al., presented the integrability conditions for equations (12).  They state 
that N

KR ΛΜ
⋅ ⋅ ⋅  and NSΛΜ

⋅ ⋅ , as well as all of their covariant derivatives, are invariant under T. 
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In conclusion, we would like to further remark that the oft-investigated notion of a 
stationary universe in the arena of relativity theory leads back in a completely analogous 
way to the notion of a V4 with a one-parameter group of motions.  The curves then 
determine a distinguished time direction and are the world-lines of particles at rest.  The 
H3 that results from collapsing is nothing but the ordinary three-dimensional space, which 
is regarded as the totality of all objects that are independent of time, not as “momentum 
space.”  If, moreover, the field tN is holonomic then the universe is static; in this case, and 
only in this case, there is “momentum space” at each point of time, i.e., a V3 that is 
perpendicular to all curves. 

 
___________ 


