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|. Linear groupsin arbitrary fields.

The source for the theory of linear groups in finiedds (i.e., Galois fields) is, to this
day, the book of DICKSON'. Later on, DICKSON himself adapted many of his results
to infinite fields. However, a complete overview bfst domain that likewise clearly
emphasizes the relationships with the theory of cootis groups and projective
geometry does not exist. On those grounds, the subjdut ekposition that follows will
be that of treating the recent work once more fronfoitsxdations, in which, however,
some of the details — in particular, the proofs of thep$city of the groups examined —
will be referred to the DICKSON book. The isomorphgsof the orthogonal groups in
the singular casas= 3, 4, 5, 6, which make up an attractive part of the DICKS00Kk,
will be derived below from the ground up, while emphasizingr dleundant geometric
and algebraic relationships.

The last paragraphs will treat the encyclopedia aro€lA. WIMAN and R. FRICKE
on the discrete groups of linear transformations withglex number coefficients, while
expanding it with discussions of recent investigations.

§ 1. Linear transformations (%).

One understands amdimensional vector space,(K) over a fieldK to mean an

additive Abelian group (whose elements are callectorg with K as an operator domain
that (in addition to the axioms of an Abelian group) asshe following axiomsy, v,
... are vectors, while 1g, g, ... are elements d&):

1. U+tv)a =ua+va,
2. u(a+ p =ua+upg
3. u(ap) =(ua)p

4. ul =u.

5

. There aren “basis vectors'u,, ..., u, such that any vector can be written as a
unique linear combination:

Two vector spaces are operator-isomorphic &vefand only if they have the same
dimensionn (i.e., the saméinear rank. One can then take an arbitrargimensional

() L. E. DICKSON,Linear Groups, with an exposition of the Galois field thebgipzig, 1901.

() The basic concepts of linear algebra that will bedadein what follows will all be briefly
summarized in this paragraph. For a thorough presemtaiee, perhaps, B. L. VAN DER WAERDEN:
Moderne Algebra |l Berlin, 1931, chap. 15, or L. E. DICKSOModern algebraic theoriesChicago,
1926.



2 I. Linear groups in arbitrary fields.

vector space to be a model for all of them by definingcor to be — say — a linear form
n

Y u,é, innindeterminatesy, ..., Uy.

v=1

The admissible subgroups of a vector spgcgelative toK as an operator domain)

are calledlinear subspace®r subspacef R. Moreover, the proper subspaces are
vector spaces of dimensiom< n. It follows from this that any decreasing or increasing
sequence of subspaces will truncate after a finite nuofiibem.

The homomorphic maps of a vector spgce a vector spacé& will be calledlinear
transformation®fR to &. A linear transformation is then a mamf R to & for which
one has:

A(u+v) =Au+Ay,
Aua) =Auva.

For an arbitrary choice of basas,(..., u,) and ¢, ..., vm) for R and G, resp., a
linear transformatio’ that takesi to:

A=Y va,
j

will be given completely by itsnatrix A = (ax) (j is the row index, and is the column
index): Namely, it will then necessarily take the chukEk with components to

the vector)_ (Au,) & = >V, & Wwith the components:
1) &= a4
j

The productAB of two linear transformations will then correspondhe productAB of
the matrices (naturally, assuming that the product ianmgful; i.e., thatA indeed
operates on the image spacdpf

On the basis for formula (1), one can also regard aewiitransformation asliaear
substitutionof the variablest, ..., & that takesé, ..., &to &, ..., &.. This way of

m
looking at things will then be employed, in particulahenm = n, soA will become a
square matrix oflegree ni.e., withn rows and columns).
If the transformatior takes then basis vectorsy, ..., U, to linearly-dependent basis

vectors, so the vector spacB goes to a space of lower dimension, then the
transformation will be calledingular. A non-singular transformatioA will map R to

an image space of the same dimension in a one-to-one mamae will possess an
inverseA™! such thad™ A = A A™ =1 (i.e., the identity).

The linear transformations of a vector sp&G€K) into itself (or their matrices)

define a ring: viz., thé&ull matrix ring of degree n ovék. This ring can be regarded as a
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hypercomplex system with? basis elements, for which one can choose, e.g.nthe
matrix units Gk that have a one in th& row andk™ column, but zero everywhere else.
These matrice€j satisfy the rules of calculation:

Cik Ca =G,
CjCd =0 forjzk

The unity element of the ringlissCy1 +Coo + ... +Cyp .
From now on, we will consider only linear transforimas of a vector spac® =

En(K) into itselfand also assume that the fi&®ds commutative

One understands tleharacteristic polynomiak(t) of a square matriA to mean the
determinant ofl — A. The individual coefficients of this characteristidymomial — in
particular, thetrace SA) = Zaw and thenorm, or determinant, A | — are invariant

under the transformatiorBAT*. The zeroes of(t), in a suitable extension field @,

are called theharacteristic rootof the matrixA.
One achieves the classification of linear transfoionat with the help of their
elementary parts most easily when one regards thernvgaacer in which a given linear

transformatiorA lives as an additive Abelian group with the polynomiahdon K[A] as

its operator domain and then applies the main theoreimeodeécomposition of Abelian
groups into cyclic ones. Here, | will briefly give grthe main result, and refer to the
textbooks %) for the proof.

Theminimal polynomiabf A — i.e., the polynomial of smallest degrgg) for which
one hasp(A) = 0 — is a divisor of the characteristic polynonaalthe matrixA. If one
decomposeg(t) into factors that are powers of prime polynomials:

PO = At ... oD, D) = ()™
then the spac® will decompose uniquely into subspaces:
R =R +R,+ ... +Rs

(i.e., a direct sum, in the sense of group theory), it will be annihilated byp(A):
d(A) Re = 0. Any spacé&ik will decompose further into “cyclic” subspacgs, each of

which will be spanned by a vectoy and its transformév, . Each will be associated
with an annihilating polynomial of lowest degreg(t) = 7 (t)*. The minimal
polynomialsg, will be theelementary divisorsf the matrixtl —A. Their product will be
the characteristic polynomig{t).

Any matrix A can be brought into a normal form that depends upon deyemtary
divisors by a transformatioRAT™; in this expressiorT, as well asA, will be a matrix

with coefficients inK. On the basis of that normal form (or on the dasithe reasoning
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that leads up to it), one can exhibit the linear tramsédions that commute with a given
linear transformatior (3).

An important special case of the theory of elemgrdarisors then emerges when all
elementary divisors become linear by the adjunctidhe characteristic roots to the field

K. In that case, the normal form Afwill be a diagonal matrix in whose diagonal one

will find the characteristic roots. This case shows nairticular, whe" = | andh is
relatively prime to the characteristic &. If several matrices with linear elementary

divisors commute with each other then one can bring thetm diagonal form
simultaneously.

Special case:For the fields of complex or algebraic humbers, any periodic linear
transformation, and similarly, any finite Abelian group of linear transforomst can be
transformed into diagonal forrgwith roots of unity in the diagonal).

A generalization of linear transformations that hasrbexamined only slightly up to
now, but which nevertheless plays a role in very mdaggs in mathematics, is defined
by the semi-linear transformationswhich one obtains when one combines linear

transformations with automorphisms of the ground fidd If S is such an
automorphism then the formula:

(2) § = Zaik'?(ks

will define a semi-linear transformation. In parteylif K is the field of complex

numbers ancs is the transition to complex conjugates then one sp#ak of aranti-
linear transformation If A and B are semi-linear transformations that belong to the
automorphisms$S andT, resp., and are given by the matrideandB, resp., moreover,
then the producAB will belong to the automorphis®T and the matriAB°, whereB®
arises fromB by subjecting all elements of the matBxto the automorphisns. In
particular, the product of two anti-linear transformasiawill be a linear transformation
with the matrixAB.

A classification of the semi-linear transformationsr even just the anti-linear ones,
in particular— by the theory of elementary divisors still does se¢m to exist. It is only
for those anti-linear transformations whose squaretiaresformationl that one knows
normal forms into which they can all be transforr(®d

Thedual space to a vector spaEg consists of all linear functions of a vector (@ it

components) whose values belong to the same Keldif v = Zuva is an arbitrary
vector then:

() A long series of papers by various authors treatedHhise, starting with G. FROBENIUS: J. reine
angew. Math84 (1878), 1-63. For the literature, see C. C. MacDUFFHieory of MatricesErgebn. d.
Math. 2, H. 5 (1933), 93. For extensions of that, let us merttienpapers of O. SCHREIER and B. L.
VAN DER WAERDEN: Abh. Math. Inst. Hambur§ (1928), 308-310 and K. SHODA: Math. 29
(1929), 696-712.

() E.JACOBSTHAL: S.-B. Berl. math. Ge33 (1934), 15-34.
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will be an arbitrary linear function of A vector in the dual space will then giventby
componentst!, ..., A". A non-singular linear transformation of the giverttoe space
into itself will necessarily induce a linear transforimatof the dual space whose matrix
is the transposed inverse of the matrix of the givanstformation.

A non-singular linear transformation of the vectorcgpB, into its dual space is
called aduality. It will be given by the formula:

(3) A=Y 5%,

Such a transformation of the spdgeinto its dual space is necessarily coupled with a
transformation of the dual space into the origigalvhose matrix is again the transposed
inverse of the matrixd") of the given duality. We will refer to these twosasiated
transformations together ame duality. One can now multiply dualities and linear
transformations, which must likewise be taken togethen tie linear transformations
that they induce on the dual space, with each other alyitr The composition of two
dualities — e.g. — will yield a linear transformatiorggfinto itself.

If one composes the dualities with the automorphiSro$ the ground fieldK then
one will obtain dualities in the extended sense:

(4) A=Y oS

The non-singular, semi-linear transformations and the téksalin the extended sense
collectively define a group.

8 2. Thegeneral and special linear group.

The non-singular, linear transformations of the vespiaceE(K) into itself define a
group: viz., thegeneral linear group G(n, K) (°). As always in what follows, if we
assume that the fieltl is commutative then the transformations with deteami one
will define a subgroup: viz., thepecial linear group o, K). Forn > 1, SL(n, K) will
be the commutator group GiL(n, K), although in the one caserm£ 2, one assumes that

K = GF(2) (). The grousL(n, K) will be generated by the transformations:

(°) The notation is borrowed from the American schoél L. E. DICKSON:Linear Groups Leipzig,
1901); nonetheless, some notations will be simplified @hdrs converted systematically. Thus, we shall
write GL, instead ofGLH (= general linear homogeneous) &id instead oSLH

(®) Here and in what followsGF(q) will always denote the Galois field wiilp elements. Cf., B. L.
VAN DER WAERDEN,Moderne Algebra,I§ 31.
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L) G =E A
Br,s,A- ,
¢, =¢, forv#r.

In order to generatéL(n, K), one must add the transformations:

§=A& (A#£0),
é, =€, forvzl.

L. E. DICKSON () has presented the defining relations of the gr&igs, K).
The center of5L(m, K) consists of the transformatiord$, wherel is the identity.
The center o8L(n, K) consists of the transformationt, whereA is ann™ root of unity.

We will thoroughly discuss the factor groupSifn, K) by its center in § 3.

The classification of linear transformations by thelementary divisors that was
discussed in § 1 simultaneously provides the partitioninth@felements of the group

GL(n, K) into conjugacy classes.

If K is a finite fieldGF(q), q = p" thenGL(n, K) andSL(n, K) will be finite groups of

order:
@-1d-9..@ -9 @=p",

@-g-9..@ -9
resp.

These groups will also be denoted®iy(n, p™) [SL(n, p™), resp.]. The groupL(2, p)
is the “group of binary congruences” with prime number moduollus

L. E. DICKSON §) has determined the subgroupsSafn, p™). C. JORDAN ?) and
G. BUCHT (9 treated the maximal solvable subgroups of the g@um, p). We will
learn about some other important subgroups in 88 4-6. [eocdke of the field of
complex numbers, see also 88§ 7 and 8.

One obtains extensions of the gro@lL(n, K) by adding the semi-linear

or

transformations (dualities, resp.) (cf., 8 1).

(') L. E. DICKSON: Bull. Amer. math. Soc. (28 (1907), 386-389 — Quart; J. Ma®8 (1907), 141-

145,
8

b

) L. E. DICKSON: Amer. J. Matt83 (1911), 175-192.
)
)

L.
C. JORDAN: J. de Math. (B (1917), 263-374.
G. BUCHT: Ark. Mat. Astron. Fysl1 (1917), no. 26.
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8 3. The projectivegroup.

As is known, the totality of all rays or one-dimemal subspaces that go through the
origin of the vector spade,(K) is called theprojective space £1(K). The non-singular

linear transformations oE, into itself induceprojective transformation®f P,_1(K).

Thus, the linear transformatiolsand AA, whereA is a number, will always yield the
same projective transformation.

The totality of all projective transformations Bf-1(K) is called then-ary projective
group PGLI(n, K) (*}). It is isomorphic to the factor group 6L(n, K) by the subgroup

of Al (i.e., the center). Likewise, the factor groupsafn, K) by its center is called the

special projective group P, K) (*3).

In the case of a finite fiel&F(q) with g = p™ elementsPSL(n, K) = PSL(n, g) is a

finite group of order:
@ -1@" -1 (@ -d")
d(q-1)

whered means the number of" roots of unity inK: viz.,d = (n, g — 1). Since the
projective space contains?q—_l1 points in this casePGL(n, ) and PSL(n, q) are

permutation groups of degre%;ll. In the casen = 2, one deals with permutation
q_

2 —
groups of degregq + 1 and order(qu)q, in particular. Folg = 2, PSL2, q) is the

symmetric groupss, for g = 3, 4, it is the alternating gro® (s, resp.). PSL(2, q) is
not a simple group in either cage 2, 3. However, one now has the theorem:
If K is a field of characteristi¢ 2 or a complete fiel¢*?3 and n> 1then the group

PSL(n, K) will be a simple group, except for the lowest caB82, 2) and PSI2, 3)
that were just mentioned.

() PGL= projective general linear.

(*3 PSL= projective special linear. The American schooltewrLF = linear fractional. We have
preferred to make the transition from a linear grouphto factor group by the substitutiods that it
contains systematically recognizable everywhere bijxrg a P.

(**3  For this concept, see E. STEINITZ: J. reine angeathM37 (1910), 181 and 218 or VAN DER
WAERDEN (), § 25 and § 33.
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For the proof, see L. E. DICKSONinear Groups(Leipzig, 1901), § 104-1053.
For K = GF(p'), one will arrive at an important infinite system fidite, simple

groups on the grounds of this theorem. The smallest of #te the well-known simple
groupsPSL(2, 4)0PSL(2, 5) andPSL(2, 7) OPSL(3, 2) of orders 60 and 168, resp.
E. H. MOORE and A. WIMAN have enumerated the subgraipgke groupPSL(2,

a9 (). H. H. MITCHELL (**) determined the finite subgroups BSL(2, K) for an

arbitrary ground fieldK by a surprisingly simple method. He thus naturally anoee
obtained the results of MOORE and WIMAN as speciaksass well as a known
theorem of KLEIN (cf., 8§ 8) folK = field of complex numbers. In the same paper,

MITCHELL determined the finite subgroups of the grdefL(3, K) for all fields of

characteristi 2. R. W. HARTLEY {°) determined subgroups 8613, 2"). For the
subgroups oPSL(4, K), see H. H. MITCHELL {"), as well as the literature that is given

in that paper. For the case of the field of complexipers, see also § 8.

One can infer the validity of the assertion that¢ tiroupPSL2, q) contains no
subgroup of index smaller thant+ 1 from the list of subgroups &SL(2, g), which was
first stated without proof by GALOIS, so it can also hetrepresented as a permutation
group of less thaqg + 1 objects, except in the cases 2, 3, 5, 7, 9, 11, for which there
will be subgroups of index 2, 3, 5, 7, 6, 11, resp. The asedciapresentations as
permutation groups of ontyelements are 1-isomorphic, except in the cgse, 3. For
g =5 andg = 9, one will be dealing with the representations ofgifmpPSL(2, ) as an
alternating group of 5 (6, resp.) objects:

(1) PSL(2, 5)0PSL2, 4) =s,
(2) PSL(2, 9)0%%Ae ,

and forq = 7, the representation of the known simple group of rodd8 as the
permutation group of 7 points in a projective plane:

3) PSL(2, 7)OPSL(3, 2) .

(*® In order to make the proof valid for the case ofidi fields, as well, one must replaz:lé+ rz2 with

7 -1 on pp. 97 of the DICKSON book that was cited above., [CE. DICKSON: Trans. Amer. Math.

Soc. 2 (1901), 368.]

(Y E. H. MOORE: Chicago decennial publ(1904), 141-190. — A. WIMAN: Handl. Svenska Vet.-
Akad. 25 (1899), 1-47. The special cage p (prime number), which is important for the theory afdule
substitutions, was already resolved before by GIERSTERhMANN.18 (1881), 319-325.

(** H. H. MITCHELL, Trans. Amer. Math. So&2 (1911), 208-211.

(*) R. W. HARTLEY: Ann. of Math27 (1925), 140-158.

(*) H. H. MITCHELL: Trans. Amer. Math. Sot4 (1913), 123-142.
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L. E. DICKSON ¢? and W. H. BUSSEY'}) have presented systems of defining
relations for the groupBSL(n, g). In the special case of the modular gr&§i(2, p),
wherep is an odd prime number, the BUSSEY relations read gitfip!

SP=T?=(SN’=1,
(STIT?=1 for  or=2 (modp).

The projective transformations are not, as one oftesmds, the only transformations
of the projective space into itself that transforaings to points, lines to lines, planes to
planes, etc. They are probably the only ones thatlealNe the double ratio of four
points invariant, in addition. However, along withrthethere are transformations that

subject the double ratio to an automorphism of the fe(@3. One gets them when one

applies a semi-linear transformation (8 1, formula 2Zh&coordinateg. We would like
to call the transformations of projective space thidaioed collineations The
correlationsstand beside them, which take points to hyperplanédswaich are induced
by dualities, in the extended sense (8 1, formula 4).ursty, in fields like the real
numbers, in which no automorphism exists besides the ideatity collineation is a
projective transformation.

The collineations and correlations collectively definegmup. According to
SCHREIER and V. D. WAERDEN?%), that group will likewise be the group of

automorphisms of the special projective gré&lg§i(n, K). That is: Any automorphism of

the groupPSL(n, K) will have the form:
X - CXC,

whereC is a collineation or a correlation. The same ingasion yielded that the various
PSL(n, K) exhibited no other isomorphisms between themselves higaartes that were

written down in (1) and (3), and furthermore that only wiéowing ones of the groups
PSLwere isomorphic to alternating groups :

PSI(2, 3) 02, PSL(2, 9) 0%,
PSI(2, 5)0PSL(2, 4)0%As, PSL(4, 2)0%s .

In particular, the two simple grousSL(2, 4) andPSL(3, 4) of order;[8! are not
isomorphic to each othe?.

(*®) L. E. DICKSON: Linear Groups Leipzig, 1901. § 278 — Proc. London math. $5c(1903), 292-
305, 306-319, and 443-454.

(*%) W. H. BUSSEY: Proc. London Math. Soc. @[1915), 296-315.

(*% On this, cf. also H. FRASCH: Math. Ant08 (1933), 249-252. Other relations were given by J. A.
TODD: J. London Math. Sod.(1932), 195-200.

(*°) Cf., F. LEVI: Geometrische Konfiguratione929, § 7.

(*) Abh. Math. Sem. Hambui§)(1928), 303-322.

(3 Cf., also J. M. SCHOTTENFELS: Bull. Amer. Math. S(2) 8 (1902), 25-26.
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8 4. The complex group.

The group of all linear substitutions of the variablgs..., X, with coefficients inkK

that are performed on two cogredient (i.e., they tmansfthe same) sequences of
variablesé, 7 and leave an alternating form:

1) ¢ = i(gzi—ﬁz —$al5-0)

invariant is called theomplex group @m, K) (*°). It is also called the ABELialinear

group, after ABEL, who was the first to examine it, bwé would like to avoid that
terminology, since the group is in no way Abelidrhe restriction to the special form (1)

is not an essential restriction, since any alténgabilinear formg¢ :Za’ik & n, with a

determinant g | # 0 can be put into the form (1).
Obviously, form = 1, one will have:

C(2,K) =SL(2, K).
Form# 1, C(2m, K) will be generated by the transformations:

Mi: & =&, & =— &, andthe remaining, = &,

Nyt Sy = Gaiia + Az and the remaining, = &,

and the remaining, = 4.

_ { S =65 A,
Nij,» : .
521'—1 _5zj+1+/]§(2’

All transformations o2(2m, K) then have determinant 1. Moreover, that willdad

from the fact that the form (1) possesses a r@ativariant that takes on the factbr
under linear transformations with determin@ni**), but remains absolutely invariant
when the form itself is absolutely invariant.

If K is a finite fieldGF(q) then the order of(2m, K) = C(2m, g) will be equal to:

(qu_ 1)q2m—1(2m—2_ 1)q2m—3 (q2 _ 1)q

(*® In the American literature, the groug and PC are denoted bySA (special Abelian) andh
(Abelian).

(*Y) If one setsp =X & & / thenl = Tg,.6, -5

ii2%igi

_sign(ji,-i ) will be the invariant that was

n-1

claimed.
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In the casey = p, the groupC(2m, p) takes the form of the GALOIS group of the
equation of the-splitting of the periodic, hyperelliptic function&,

The center ofC(2m, K) consists of the transformatioisand —1. If K has

characteristic 2 then= -1, i.e., the center will consist of only The factor group by the
center will be denoted BC(2m, K) (*3).

If K is a field of characteristiez 2 or a complete field then R@m, K) will be a

simple group, except in the two case{PQ)and PG2, 3)that were mentioned already
in 8 3,along with a new exceptional case of(BC2) [12As .

For the proof, see L. E. DICKSON,inear Groups 8 110 — 116 or J.-A. DE
SEGUIER, J. Math. pures appl. (Z)(1916), 281-366. The smallest new simple group
that is contained in the infinite system of gro®gX2m, q) is the groudC(4, 3) of order
25930, which appears in the problem of the 27 lines on the sutfece as the GALOIS
group, and is thus the subject of an extensive voluritecdture t°).

L. E. DICKSON ¢') has exhibited the classes of conjugate elements igrtheps
C(4, q) andC(6, g). For the subgroups of the groupsindPC, see L. AUTONNE %),

H. H. MITCHELL (*®), and C. JORDAN?), as well as the literature cited therein. J.-A.
DE SEGUIER ) has examined the elements of order 2 that we discussékisi
paragraph, as well as the finite groups in the followingso

The theory of invariants and representations of the ptmmgroup has been
investigated by H. WEYL®f), above all.

8 5. Theunitary group.

Let K be a field of degree 2 over a sub-figlde.g.,K = GF(p®™), P = GF(p°), or also
K is the field of complex numbers aifidis that of the real numbers.]a will always
mean the quantity that is conjugateatoelative toP. [In the cas&F(p®), one can sef

= a" .] The group of all linear transformations of the spa¢&) that leave the form:

(*® See C. JORDANTTraité des Substitution®aris, 1870, pp. 171-168 [sic] and 354-369.
(*®) See MILLER, BLICHFELDT, and DICKSONEinite Groups New York, 1916, ch. XIX, as well as
the literature that is cited therein.
(*) L. E. DICKSON, Trans. Amer. Math. Sdz(1901), 103-138 — Amer. J. Matk6 (1904), 243-318.
L. AUTONNE: J. Math. pures appl. (3)(1901), 351-394.
H. H. MITCHELL: Trans. Amer. Math. So&5 (1914), 379-396.
C. JORDAN: J. de Math. (B (1917), 263-374.
J.-A. DE SEGUIER: Ann. Ecole norm. (8) (1933), 217-243; (31 (1934), 79-147.
Math. Z.23 (1925), 271-309 an?¥4 (1925), 328-395; Nachr. Ges. Wiss. Gottingen (1926), 235-243;
Acta math48 (1926), 255-278; Math. 25 (1932), 300-320.
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® = §?1§(1+§?2§(2+"'+§?n§(n

invariant is called theinitary or hyper-orthogonalgroupU(n, P, K). The subgroup of
transformations of determinant one Wi{n, P, K) is called thespecial unitary group
SUn, P, K). The factor group oBU by the subgroup of substitutiods (A" = 1, A1 =
1) will again be denoted BBSUm, P, K) (*3).

In the case where the sub-fidikdis determined uniquely b¥ [as in the case of a

Galois fieldK = GF(p®), P = GF(p%)], one can omit the symb## in the parentheses and
write:
U(n, K), SUn, K), PSUnN, K),

or in the cas& = GF(p®):

U, p®),  SUn p®, PSUn, p”.

In the latter case, one can also write:

D= EPHEN T EP
for the form®.
The condition for a linear transformatiénto belong to the matriR in the groupJ
is:
(1) AA" =1, or A'=A? or AA=I,

whereA' is the transposed conjugatefo When written out, that will be:
Zajiﬁki = & or Zajiaki = -

If the determinant of + A is non-zero and the characteristic of the field & then
one can define a matrix usidg

(2) C=(-A(1+A7
and conversely expressin terms ofC:
(3) A=(1+C)(-C).

From (1) and (2), it will then easily follow that:

(3 In the American literature, the gro®$Uis denoted byHO (hyper-orthogonal).
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(4) c=-Ch

conversely, (1) will follow from (3) and (4). We thusve a one-to-one relationship
between the unitary matrices and the “skew-Hermitian” matriceS, in which only

thoseA for which || + A| =0, as well as thogefor which || + C | = 0, have been left out
(*%). According to LOEWY ), the exceptional case can be avoided when one writes:

A={(1+0O)7(1-0), 7 =1,
instead of (3).

In the case of the field of complex numbers, any unitaggrix A will be unitarily-
equivalent to a diagonal matri® = UAU™. The diagonal elements will be the
characteristic roots & and will have absolute value one. In fact, the equincalevill be
valid inside of the special unitary groud)(

The order of the grouBSUn, p®) is ¢):

%(Q" —EN T @ - D" g™ L @ - g [a=p%d=Mq+1)]

If the field K contains a numbep with the property thatgp = - 1, as well as a

number s with the property thatog = 1, o # & [both assumptions are fulfilled
automatically in the casé = GF(p®™)] then one can transform the SUié, + ¢, &, by the

substitution:
s=om+n,
52 :,0(5771 + ,72)
into
§, 6, +¢&,¢, = (0-0)nna,—n,m).

Under these assumptions, the unitary groiipm, P, K) will then be isomorphic to the

hyper-Abelian group 2m, P, K), which leaves the form:

W= (g(lg?z—fzzl) .. +(§(2m—1§?2m_§(2m<?2n°rl)

(%) A. LOEWY: C. R. Acad. Sci., Parik23 (1896), 171.

() A. LOEWY: Nova Acta. Abh. Kaiserl. Leop.-Carol. Ata7l (1898), 379-446. Math. Anrs0
(1898), 557-576.

(%) O. TOEPLITZ: Math. Z.2 (1918), 187-197.

(") L. E. DICKSON:Linear Groups §§ 146, 148.
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invariant. Under this isomorphism, the subgr&lg2m, P, K) will correspond to the
special hyper-Abelian group®] SH2m, P, K) and the factor groupSUwill correspond
to the projective, hyper-Abelian gro@sH?2m, P, K).

The simplicity of the groups P&2in, IP, K) for n > 1 was proved by L. E. DICKSON

(9 for arbitrary fields of characteristie 2, as well as for finite fields of arbitrary
characteristic; the latter proof is achieved by reveriagk toPSU2m, p*). The group
PSU2m, p®) is, in fact, always simple for n 2 (), except for the case of P&) %),
where one is dealing with a solvable group of ord2r However, the lattar = 2 case

that was left unconsidered is trivial if one goes owethe isomorphic groupSH?2, P,

K), since the invariance of:

W=(§4,-64)

under a substitution with determinant one means&hak will be transformed precisely
as &, &, are, or that the transformatiomy) will be identical with the conjugate one

(@,), so it will belong to the fiel®. ThereforeSH?Z2, P, K) = SL(2, P) andPSH2, P,

K) = PSL(2, P).

At this point, one might refer to the isomorphism loé groupPSU4, 2) with the
simple groupPC(4, 3) of order 25920 that was mentioned already in § 4 thatfeund
by DICKSON (%

8 6. Theorthogonal groups.

Now, letK be a field with characteristi€ 2. The group of linear transformations of

En(K) that leave a non-singular quadratic form:

Q=2>aé &

invariant might be called thextended orthogonal grouplts transformations are known
to have determinants of £ 1. The ones with determirarit define therestricted

orthogonal group @n, K, Q).

(*® DenotedHA by DICKSON. The group is called hyper-Abelian, becatismitains the complex
group — or ABELian linear group — as a subgroup.

(% L. E. DICKSON: Proc. London Math. Sc#4 (1901), 185-205.

(*% L. E. DICKSON:Linear Groups § 145-151. — J.-A DE SEGUIER: J. Math. pures appl2 (2916),
281-366.

(*) L. E. DICKSON:Linear Groups § 270-277.
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If Q is the unit formz.;ﬁ2 , in particular, then we will have thigst orthogonal group

n
O1(n, K). The transformations @i(n, K) define a rational(zj —dimensional, algebraic

manifold with the parametric representation:
A=(1+C)*(-C); c=-C'

[cf., equation (3), 8§ 5], which will, however, actuallypresent only elements of the
manifold for which || + A|# 0. R. LIPSCHITZ %) gave a parametric representation
with no exceptions. When he defined the expressions:

X =1+& 02+ ... +& i,
Y :fl'l+g(;i12+...+f;1iln,
A :AO+ ZAabiab+ZAabcdi abcd+ e
/\l :AO_ ZAabiab+ZAabcdi abed  *tt

with the help of the 2* basis elements iap, iabed, ... @ b, C, ... =1, 2, ...m;a<b<c
< ...) of a well-defined hypercomplex system, and in whighdh' coefficientsAo, Aap,

n
Aabes ... depended up062j+ 1 of them rationally, he arrived at the representatib

any orthogonal transformatiof — Y by the formula:

AX=YA\;.
TheA then defined a group.
According to KRONECKER “f), in the cases of the fields of real or complex

numbers, the group:(n, K) is generated by the substitutions:

51':051_&(]',
§ =86+, @+ =1).

¢, = ¢, for the remaining one

From the diagonal transformation of the unitary magithat was mentioned in the
previous paragraph, it follows easily that a real ortimadjonatrixA can be brought into a
normalBAB™ by transforming with just such a matrix that consista sequence of two-

c-s
rowed boxe{ j with ¢ + & = 1, and possibly the numbers + 1, along the diagonal.

S C

(*3 R. LIPSCHITZ:Untersuchungen iiber die Summen von Quadrdenn, 1884.
(*) L. KRONECKER: S.-B. preuf. Akad. Wiss. (1890), 1063-1080.
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We now return to arbitrary field& with characteristiZ 2 and arbitrary quadratic
formsQ. Any such fornQQ can be transformed into the form:

@) 2.a,¢/

in K. If K is algebraically closed then all can be chosen to be equal to oneK I§ the

field of real numbers then one will choosealkE = 1. The number of negatives among
them is called thsignature— orindex of inertia— of the formQ, and is invariant under

linear transformations. I is a Galois field5F(q) then one can choose all= 1, except
for the last one, which will then be equal to the dmagrantD of the formQ. In that
case, the grouP(n, K, Q) can also be denoted &(n, K) or Op(n, g). One will be

dealing with thdirst or thesecondorthogonal grou®i(n, K) or Oy(n, g), resp. according
to whetheiD is or is not a square, resp. An arbitrary non-squmatieel fieldGF(q) can be
employed as the index For oddn, there is no difference betwe®a(n, K) andO,(n, q),

since a form with a discriminant can then be converted into one with a quadratic
discriminant by multiplying by.
For oddn, the orders of the grou®@(n, q) are ¢:

@ -19" @ -1)9"" ... (@*- g,

and for evem, they are:

@ -n"%@?-19"° ... (-1,
a1
e=(-1)2, n=1 forOin,q, n=-1 TforOyn,g).
The generators of the gro@y(n, g) are given by DICKSONL{near Groups 8 173).
The group0(2, K, Q) are Abelian, so they are not interesting. From oowwe then

assume than > 2. C. JORDAN ) studied the maximal solvable subgroups of the
groupsO(2, p, Q). H. B. HEYWOOD {®) has exhibited the Abelian subgroups of the
complex orthogonal groups.

If one forms the factor group of the groOn, K, Q) by the transformatiodl (A = +
1, while for oddn, one has onlyl = 1) then one will obtain a projective groB@(n, K,

Q) that leaves a projective hypersurfa@e= 0 invariant. For oddh, PO(n, K, Q) is

®
(*)

. DICKSON:Linear Groups § 172.
ORDAN: J. de Math. (B(1917), 263-374.
B. HEYWOOD: Messenger of Math. (23 (1913), 14-21.

L.E
Cc.J
H.
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isomorphic toO(n, K, Q) in one step. For evam= 2m, the transformations d?0O(2m,

K, Q) are distinguished from the transformations that atkogonal in the extended

sense by the fact that they will not permute the tavoilies of linear spacd®,-; that are
found in the hypersurfac® = 0 in the spac®.m1 (possibly by extending the ground

field). If K is the field of real numbers, and(f has the index of inertia O or 1 then one
will call PO(n, K, Q) anon-Euclidian(elliptic or hyperbolic) group of motions.
In the case of a finite fiell, as DE SEGUIER and JORDAN first showed, the

group Op(n, K) possesses a subgroup;(nK) of index two whose generators

DICKSON (*¥) has previously obtained. The transformations of tresmroups are
characterized by the fact that they transform thetp@f the hypersurfad® = 1 in the

spaceEy(K) to each other by an even permutation.

The case oh = 4 plays a special role in the structure of the grdePé, K, Q),

because in that case the group will be essentially atdm@duct of two simple non-
Abelian groups (see § 7). By contrast, ifior 4, the groupsL O, (n ) that have index 1

or 2 inPOp(n, q) will all be simple {%. The same thing is also true for= 3, with the
exception ofPO(3, 3) O PSL2, 3) OA4 (cf., 8 7). The situation has still not been

clarified completely for arbitrary ground field§. If one assumes that the foghhas
one of the following three forms:

Q:é2+§(2§(3+---+§(n—l§(n (nodd),
Q=& &+&E &G+ . +éha (n even),
Q=9 &)+ & &+ ..+ én (n odd)

then there will once more be a subgrde@ (n, K, Q) with an Abelian factor group
whose index cannot be given in general, and which wiimple fom # 4, according to
DICKSON (9. For the case in whicK is the field of real numbers, it will follow from
the theory of continuous groups that the partP@in, K, Q) that is continuously
connected to the identity will be simple fo# 4 CY).

(*) J.-A. DE SEGUIER: C. R. Acad. Sci., Patis7 (1913), 430-432. — C. JORDAN: J. Math. pures
appl. (7)2 (1916), 233-280.

(*®) L. E. DICKSON: Linear Groups § 181.

(*°) L. E. DICKSON: Linear Groups § 191-192. Cf., also J.-A. DE SEGUIER: J. Math. pures §pp
2 (1916), 281-365.

(*% L. E. DICKSON: Trans. Amer. Math. So2.(1901), 363-394. — Proc. London Math. S84.
(1902), 185-205.

(*) E. CARTAN: Ann. Ecole norm31 (1914), 263-355. — B. L. VAN DER WAERDEN: Math. 26
(1933), 780-786.
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The behavior for fields of characteristic 2 is somatdhfferent from the cases that
were already considered, for which the charactengis# 2. Thus, lefK be a complete

field of characteristic 2. Any quadratic form mvariables with coefficients i that

cannot be written as a form in less thawariables can then be brought into one of the
two normal forms ¥):

Q=&+&E&G+ ...+ &2 &1+ &7 (n odd),
Q=& &+ ...+ s bt P(éna, &) (n even),

where¢ is a quadratic form if,-1 andé, . If ¢ is decomposable in the field (viz., the

first casg@ then one can assume that &-1 & , while in the other (viz.secondl case,
one can arrive at:

p=&1 &+ A&, +EY) withAz0

by a simple transformation. The first case is sdinate to the second one b= 0. For
evenn, one can then set:

Q = 51 52 + ... +§(n—3 §(n—2 + §(n—l §(n + /](gznZ_l +§(n2)
in any case.
Those transformations that leave the fa@mnvariant again define therthogonal

group Qn, K, Q). For oddn andQ in the normal form above, one can simply wi@,

K). For evem, one writeO,(n, K). Any transformation o©(n, K, Q) will also leave
the polar form of):

P=(Em—-&m)+ ...+ (a2 1= én-1 Mn2) (n odd),
P=(m—&m)+ ...+ (1 th— én 1h1) (n even)

invariant £°). If & belongs to the “ray’& = & = ...= &-1 = 0 then whem is odd the
polar formP will be identically zero irm. Therefore, our transformations must also leave
that ray invariant — i.e., they must transfoém ..., &-1 only amongst themselves, and

indeed by a transformation of the complex gr@(p — 1,K). Thus, for odd, the group
O(n, K, Q) can be mapped homomorphically onto the complex g&fap- 1,K). If one

investigates which transformations ©fn, K, Q) are mapped to the identity under this
map then one will find that one is dealing with a 1-isqgh@m:

O(2m + 1,K) 0C(2m, K).

(*? See, perhaps, L. E. DICKSONinear Groups § 199.
% & - & nyis the same a& 77, + & ., since the characteristic is 2.
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For evem = 2m, the orthogonal grou@(n, K, Q) = Os(n, K) will be a proper subgroup

of the complex grou(2m, K); it will then also be referred to ashgpo-Abelian group

(first or seconchypo-Abelian group, according to whethes 0 orA £ 0, resp.).
The hypersurface) = 0 in the projective spacB,n1 contains two (“real” or
conjugate) families of linear spaceg-; that will be transformed into themselves or each

other under the group(2m, K, Q). The subgroup that transforms them individually into
themselves is called theestricted orthogonal or JORDAN hypo-Abelian— group
Ji2m, K) (). ForK = GF(q), g = 2r, we again write],(2m, q), instead ofl,(2m, K).
The orders of these groups are:

@ -9 @™ V- V(" V- 1) " (P - D

wheres=1forA=0ands=-1forA#0.
According to L. E. DICKSON®P), for 2m > 4 and all complete field¥, the groups

Ji(2m, g) areall simple In the exceptional case ain2= 4, J;(2m, ) is a direct product
(cf., 8 7). For th = 2, as is easy to see, the group is isomorphic to thigphoative

group of the fieldK, and thus Abelian.
In the case of field of complex numbers, the grd@®Hn, K), PC(n, K), andPOy(n,

K) define three infinite sequences of simple, continuous groApsording to CARTAN

*®), in addition to these, there are only five typesimipge, analytic, continuous groups,
the simplest of which is a linear group of degree 7 whémments depend analytically
upon 14 complex parameters. L. E. DICKSON found an analogue for this group for

arbitrary ground field& and provided a general proof of simplicity.

8 7. Theisomorphismsof the orthogonal groupsin dimensions 3, 4, 5, and 6.

In the cases = 3, 4, 5, 6, the orthogonal group®(n, K, Q) are isomorphic to

certain linear groups of lower degrees. Here, one iEndewaith entirely singular, non-
generic phenomena that have no analogues for arbdiragnsion numbers.

(**) DICKSON writesFH(2m, q) andSH?2m, q) for K = GF(q) andA = 0 (A = g, resp.) (viz., the first

and second hypo-Abelian groups, resp.).
(*® L. E. DICKSON: Linear Groups § 209. Indeed, DICKSON considered only finite fields

however, his proof is still valid for all complete fiel of characteristic 2 with no changes.

(*® E. CARTAN: Thése. Paris, 1894"{2d., Paris, 1933). Cf., also B. L. VAN DER WAERDEN:
Math. Z.37 (1933), 446-462.

(") L. E. DICKSON, Trans. Amer. Math. Sa2(1901), 383-391.



20 I. Linear groups in arbitrary fields.

For the case of the field of complex numbers, a3 asfor some real cases, these
isomorphisms were probably first given by F. KLEIN)( The real, three-dimensional
case — viz., the isomorphism of the group of ordinary sphatations with a group of
fractional linear transformations of one complex Malda— is known, in general. One
real, four-dimensional case was already known to GQAIRS®), while another one was
likewise known at the time of KLEIN)) that played a great role in relativistic quantum
mechanics%). The real, five and six-dimensional cases wereddehy CARTAN £?),
STUDY (3), and SCHOUTEN®(). L. E. DICKSON {°) gave an exhaustive discussion
of the isomorphisms for the case of Galois fields. Wik derive them here with a
unified method for arbitrary fields.

I. The casea =4 andn = 6.

n=4. We first assume that the fo@ncan be brought into the form:
(1) Q=&-8&

by a transformation K. The quadratic surfac® = 0 in projective spac®s then
possesses the parametric representation:

(2) &= A1, & = Ao L, &= A1 L, &a=Ax1h .

The geometric meaning of the parametérand /&« is immediately obviousA; =
const. andu = const. are the two families of lines on the sw@faand the ratiod; : A,
and (4 : [ are projective parameters along the point-sequenceghibdines of one
family cut out from a line of the other family. kllows immediately from this that: For
a projective transformation of the surfa@e= 0 into itself that does not permute the two
families, the two parameter ratiok : A2 and (4 : 1o (which are independent of each
other) will be transformed projectively:

(3) A = ZaijAj , o= ZkaAI -

(*® F. KLEIN: Math. Ann.5 (1872), 256-277;23 (1884), 539-57843 (1893), 63-100 (Erlanger
Programm of 1871).

(*°) E. GOURSAT: Ann. Ecole norm. (8)(1889), 9-102. Cf., also F. KLEIN: Math. An&7 (1890),
546-554, as well as E. STUDY: Amer. J. MatB.(1906), 116.

(* See, perhaps, R. FRICKE and F. KLEIN/orlesungen iber automorphe Funktionen |
Braunschweig, 1897.

(*) See, perhaps, B. L. VAN DER WAERDENDie gruppentheoretische Methode in der
QuantenmechanjiBerlin, 1932, § 20.

(*» E. CARTAN: Ann. Ecole nornB1 (1914), 353-355.

(*3 E. STUDY: Math. Z.18 (1923), 55-86 and 201-2221 (1924), 45-71 und 174-194. — J. reine
angew. Math157 (1927), 33-59.

(*) J. A. SCHOUTEN and J. HAANTJES: “Konforme Feldtheoh,” appeared in 1935 in the Ann.
Scuola norm. super., Pisa.

(*® L. E. DICKSON:Linear Groups Leipzig, 1902, § 178-208.
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If, conversely, two projective transformations of theapaeter ratiosd; : A, and
I b are given that can be represented by formulas (3) therthe basis of the
transformation (3), the products &, and therefore the coordinates of the associated
points of the surface, will be transformed linearly:

@ A=Y Tan 4.

One can extend this transformation of the surface & dhtire space by linearly
transforming the coordinate$ of arbitrary points precisely like the coordinates of the
points of the surface according to (4). One writesftlnenulas for that transformation
most conveniently when one denotes §neith double indices:

&= Ay, & = o, &= Ao, & = w1

One then has to transform the coordinatgsn precisely the same way as the products
e using (4) %)
(5) a, = Zzaﬂ b @,

This transformation will transform the surface inteelf, and indeed, in such a way that
the parameter valuek ,  of its points will be transformed as in (3). Withtthi is
proved:

The group of projective transformations of the spagéhBt take the two families of
lines in the surface Qinto themselves individually is isomorphic to the direct product

PGL(2, K) x PGL(2, K) of the projective groups of the parameter ratibs. A, and
M e

The transformations (5) will indeed transform the s@fa; = O into itself, but they
do not need to leave the form:

Q1= W1 W2 — W2 W,

absolutely invariant. A simple calculation teaches as tifis form will be multiplied by
the productafof the determinants of the matricdsandB under the transformation (5).

Now, in order for the transformation (5) to belongtihe groupO(n, K, Q), so the

associated projective transformation will belong R&(n, K, Q,), it must leaveQ
absolutely invariant; one must haag = 1. Thus:

The group P4, K, Q,) is isomorphic to the group of pairs of binary, projective
transformations whose determinants yield the product one.

(*®) Since one is dealing with a projective transfornmtiine must actually prefix an arbitrary factor
to the right-hand side, but one can absorb it into theixB.
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One will obtain a subgroup (with an Abelian factor growpgen one restricts oneself
to pairs of binary transformations with determinants etjuahe. The subgroup &0(4,

K, Q) thus defined will be denoted BAO (4, K, Q), while the corresponding linear group

will be denoted by)'(4, K, Q). Moreover, one has the isomorphism:

(6) PO (4, K, Q) OPGL(2, K) x PGL(2, K).

Remark. If one takes two semi-linear transformations:
A= Zhj/]js ; M= chl/]ls

with the same§, instead of (3), then one will also obtain a semi-lirteansformation of
the surfaceQ; = 0 into itself, instead of (5). If one takes a linear semi-linear
transformation that takes thieto they” and thew to theA’, in place of (3), then one will
obtain a linear or semi-linear transformation of théhat switches the two families of
lines.

n=6. We again assume that the fa@@nasan be brought into the form:

(7) Q=&b&+&E&G+ESEL.

We now introduce the new relations:

(8) Tho=¢1, TBa=6&, THz=6¢a Tha=6&, TB3=4s; Th = — 7k,

with whichQ; goes to:
9 QL =782 78B4+ 783 T4 + TH4 7B3 .

Now, the conditionQ; = 0 is necessary and sufficient fag to be the PLUCKERIan
coordinates of a line in the spa@g. That is, the parameter representation:

(10) T =% Yk— X i

will represent the entire hypersurfa@e= 0. If one holds thg in (10) constant, and thus
considers all lines through a fixed poxin Ps, then the poin{ with coordinateszi will
run through a plane that lies within the hypersurface 0 completely. In this way, any
point of the spac®; will correspond to a plane in the hypersurface. If axppand a
plane P, are incident then the planes in the hypersurfacedtaespond to them will
intersect in a line, and conversely.

A collineation of the spacks that transforms the hypersurfa@e = 0 into itself and
transforms the two families of planes into themselveBvidually will therefore also
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induce a transformation of the points and planes inpghee; that preserves incidence,
and thus, a collineatiofi'}:

(11) X =b*%°.

Likewise, a collineation of the spaég that transforms the hypersurface into itself
and switches the families of planes will induce a fiamsation inP; that takes points to
planes, and conversely, and preserves incidence; cerredation:

(12) U =d* %,

Conversely, if a collineation (11) or a correlation (12piven then it will induce a
semi-linear transformation of the line coordinates:

(13) = 7y,
or .
(14) A=ddry,

resp., where' 7 are the contragredient line coordinates, which are edupd the
cogredient onegz, by the formulas:

15 '#t=m,, 'A=m, 'm'=m, 'm'=m, 'A=m, '1=m,
With that, we have proved:

The group of collineations of the space that leave the hypersurface; G 0O
invariant is isomorphic to the group of collineations and correlations of theespac
Therefore, the collineations ot Mill correspond to those collineations of that do not
permute the two families of planes in the hypersurface, and in parti¢chliprojective
transformationg’S = ) will correspond to projective transformations. The group of the
automorphic collineations of the hypersurface € 0 that do not permute the two

families of planes will then be isomorphic to the projective group(BGED).

We now restrict ourselves to the projective transfiirons, so we assume ti&t I,
and prefix an arbitrary factgrto (13) on the right:

(16) T, :phqu ]TJ|S

Under the linear transformation (16), the form (9) Wwél multiplied by the factqe’s,
where § is the determinant of the matrB& In order for this linear transformation to

(") We now introduce upper and lower indices, and to abbeewsaecify that indices that appear both
above and below will be summed over.
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belong to the groupO(6, K, Qi), and thus, for the corresponding projective

transformation to belong #®0(6, K, Q.), one must havg?3= 1, so:

(17) B=p""
must be a square. Therefore:

The group P@, K, Q,) is isomorphic to the group of all quaternary projective
transformations whose determinants are squares.

One subgroup of the latter group (namely, its commutatibgreup) is the special
projective groupPSL(4, K). Under the isomorphism, it will correspond to a subgroup

PO (6, K, Qp), namely, the commutator groupP®(6, K, Q;). One will then have:

(18) PO(6, K, Q.) OPSL(4, K).

II. Before we go on to the remaining casesief 3 andn = 5, we shall discuss the
extension of the results up to now to those fo@rkat cannot be brought into the forms
() [(7), resp.]. We thus begin with the most instrietase oh = 6.

From now on, the ground field might be denotedPbyin the event thaP does not
have characteristic 2) can, in any case, be brought into the form:

(19) Q:a1§(12+a2§(22+"'+a6§(523;

however, if® does have characteristic 2 then, from § 6, we wiliimssthat:

(20) Q=& &+ &G+ E&E&GTAE+E)

is the normal form. In the case (19), after adjoinlmgthree square roots:

a. a a,
W= [——2, Wo= [——%, wy= [——%,
al 0'3 0'5
one can write:

Q= (fL+Wi &) (S1-— W &) + a3 (& +We &) (85— We &)
+ay (& +Ws &) (&5 —Ws o).

In the case (20), one likewise adjoins the ratand & of the equation:

6+A(1+6) =0,
and obtains:
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Q=L&E+EL+HA(S5— 6 és) (&5— B &s).

One thus always obtain a separable extension f€ldn which the formQ can be

brought into the normal forms (7) or (9), for which treiables that enter into this
normal form will be linear functions of the origin&lwith coefficients inkK:

(21) M= 8¢,

It is therefore remarkable that one will achiewguadraticextension oK to the field
P in the case of Galois fields, as well as in theeoaf the field of real numbers.

All of the isomorphisms that were proved above wilkte in the extension fiell;
in particular,PO(6, K, Q) OPO(6, K, Q1) is isomorphic to a subgroup BGL(4, K). If
we now once more go froPO(6, K, Q) to the subgroupO(6, P, Q) then we will have
to examine which subgroup Bf5L(4, K) will correspond to it under the isomorphism.

A projective transformatiof with coefficients inK belongs to the ground field if
and only if it commutes with all automorphisr8f the GALOIS group® of K/P, or
more precisely, with all collineation&®:

(22) & =&° (Sin &).

This commutability is preserved under the isomorphic iiansfrom the group of
correlations and collineations &; . The correlations (22), which always leave the
hypersurfac& = 0 invariant, might correspond to a collineation or aetationCs of the
spaceP; . It then follows that:

Under the isomorphism, the group BQP, Q) will correspond to the subgroup of

those transformations in PG4, K) whose determinants are squares and which commute
with all correlations (correlations € resp.) that belong to the substitutions S of the
GALOIS group of K/P.

(*® In order to prove this, one remarks that one mustysie able to choose a matrix element of the
projective transformatioil that equals one. T then commutes with the collineation (22) then all matri

elements must admit the substituti@sind therefore belong B sinceK is separable ovep.
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These conditions will mean different things depending upemature of th€s . If
Csis a correlation (12) then one can also charactdreeollineations that commute with
it as the ones that leave the form:

(23) dik x )&S
invariant, up to a factor.
Let P be- e.g.— the field of real numbers and let:

(24) Q=& +&+E T+ +ES+ES
The substitution (21), which bring¥into the form (9), then reads like:

Tho =141 &, Th3=E&3 41 &, Tha=4¢5+1 &,
TBa=é1—1 &, Thr=E&— 1 &, B3=4¢5—1 &6

Now, the collineation (22) takesi, to 7z, 753 to 77,0, 74 t0 77,5, and conversely,

where S is the transition to the complex conjugate. Under isoenorphism, it will
correspond to the correlation:

from which, one can define the HERMITIAN form:

(25) PRTEEDI S &
If a real projective transformation leaves this foimaariant, up to a factor, then that

factor must be positive, since the form (25) is positleénite. Therefore, one can also
choose the factor to be equal to one. We then havedh@rphism:

(26) POy(6, P) OPU(4, K).

The same argument will always be true with small fncations when the forn@
has one of the following two forms:

(27) Q2= @(&1, &) + P(&3, &) + PS5, o),
(28) Qs=¢(¢1, ) + & éa+ 8546,

where ¢ is a quadratic form that is indecomposablePin In the first case (27), the
associated form (23) has the form (25), while in the stcase (28), it has the form:

(29) XX =X XE XX XX,

One will thus always obtainunitary group forQ,, and ahyper-Abeliargroup forQs . If
one goes to those subgropSU (PSH resp.) whose elements leave the form (25) [(29),
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resp.] absolutely invariant and have the determinanttiogr® under the isomorphism it
will also correspond to a subgroB® with Abelian factor groups:

(30) PO(6,P, Q) OPSU4, K),
(31) PO(6, P, Qs) DPSH4, K).

If K is a GALOIS field then, from § 5, the groupSU andPSH on the right-hand

side will be isomorphic to each other. The for@wsandQ, (or alsoQ; andQs) with
discriminants — 1 and v will also already exhaust all types of quadratic formeraa
Galois field GF(g). The same will also be true for complete fieldsclaracteristic 2,

whereQ; andQ. belong to the groupd andJ, , resp. IfP is the field of real numbers

then the form€), andQs; will have the indices of inertia 1 and 0, resp., whilefthen Q;
will have the index 3. A form of index of inertia 1 cantbeated by the same method:
One obtains the group of projective transformations tt@mthmute with an anti-
collineation of the form:

I I

X =X, Xlzz_is’ X =+ X, X;,:_)_(l-

From STUDY £%), one can represent these transformations very glgdanquaternion
matrices.
The casen = 4 is completely analogous. Here, as well, by theodhiction of new
variables:
Mk = dikv v
one brings the forr® into the form:

Q=wiwpr— w2 w1,

then looks for a semi-linear transformati@g of the A and i that corresponds to the
collineation:

& =&

and finally defines the group of pairs of projective transftions of the parameter ratios
A1 A2 andya 16 that commute wilCs .
In addition to (1), two forms of the for@ come into consideration:

(32) Q=& &+ 9(&, &a),
(33) Qz = @(é1, &) + (&3, &a).

For the field of real number&:, Q., Qs will be typical forms with indices of inertia
2,1, and 0O, resp. For the Galois fi@&(q), Q; andQ, will already exhaust the possible
cases (discriminants square or not, resp.).

In the case of the foriQ,, Cs will be the transformation:
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{ A=, { K=A8,
Ay = /sti 74 :/]28-
In order for a pair of binary, projective transformatignsB to commute withCs, one

must have:
B=pA°

for their matrices, whilé remains arbitrary. Instead of the direct prode@Gi(2, K) x
PGL(2, K) in the isomorphism that was mentioned at the beginmiitigis paragraph, one
will obtain only the one grougPGL(2, K). The subgroupPO(4, P, Q) will be

isomorphic to the group of those transformation®@L(2, K) whose determinantg

have the property that:
aad®=p?=square irK.

This condition is fulfilled automatically in the casktbe Galois field or the field of real
numbers. Thus, one will have the isomorphism:

(34) PO(4, P, Q;) OPGL(2, K)

in these two cases.

In the real case, the group on the left-hand side engaBly the Lorentz group of the
special theory of relativity.

In the cas&)s;, Cs will be the transformation:

{ A =22 { = 1

A, = _/]18’ My = _/st-

The condition that the paiA( B) should commute with this transformation will now
yield two separate conditions fArandB. The condition foA is that @.°, — A;°) should
transform likeA,, A2, up to a factor, or that the form:

(35) A1 /]28 + A, /]18
should remain invariant, up to a factor; the conditionH reads correspondingly. We

are thus dealing with twextended unitary groupsUnder the transition to the restricted
unitary group, one will obtain a subgroup with an Abeliastdagroup:

(36) PO(4,P, Q) OPSU2, P, K) x PSU2, P, K).

One can also write the unitary transformation in thise in the form:
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(e ]l el o S (s
-y+ido a-ip 00 0-i -10 I 0
=al +[1+ K+ ad,

and then effortlessly obtain the well-known two-folepresentation of the real four-
dimensional rotations in the form:
X’= AXE,

whereX =& | + &I+ &K+ & L is a variable quaternion addandB' are guaternions
of norm one 9.

[ll. We now come to the casaes= 3 andn = 5. They will be treated simply due to
the fact that the groug3(3, K, Q) andO(5, K, Q) can be considered to be subgroups of

O34, K, Q) [O(6, K, Q), resp.]. Since, from § 6, the case of characterBtis not
interesting for odah, we can assume that the fo@rhas the form:

Q=a, &’ +a,&; +&7, Q=a,é’+a,é +a,él+a 7 +E L resp,

in the cases = 1 andn = 5. One now extend3 to a quaternary (senary, resp.) fogm
by adding a term &, (=&, resp.). When one necessarily extends the grourntiFied

a field K by the adjunction of/ _a; and /—ﬂ , one can bring the for® into the
al a3

form:
Q =-Wi o+ Wo @1, [Q =7k Ba+ THs Thp + Tha 763, 1€SP.]

in K, where one can choose:

W2 =&+ & 1= &~ &,
or

W= és + &, w3=4¢5— e,
resp. Now,O(3, K, Q) is the subgroup 00O(4, K, Q) that leavesé, invariant, and

therefore also & = w>» — a1 . Likewise,O(5, K, Q) is the subgroup dd(6, K, Q) that

leaves Zs = 74 — 783 invariant. If one seeks the corresponding projectiveigs that
these subgroups are isomorphic to, the subgroupOM, K, Q) [PO(6, K, Q), resp.]

and the corresponding subgroupsR&BL(2, K) x PGL(2, K) [PGL(4, K), resp.] by

(% A. CAYLEY: J. reine angew. Matt%0 (1885), 312-313. Cf., also F. KLEIN: Math. Ar87, (1890),
546-554, as well as J. BOUMAN: Niew Arch. Wiskde {Z)(1932), 240-266.
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means of the aforementioned isomorphism, then oneuttiithately find, in the case =
3, the group of those pairs of projective transformatiof; : A, andza : (& that leave
the form:

(38) A1t — A2 i

invariant, up to a factor, and in the case 5, likewise that quaternary projective group
that leave the form:

(39) K1 ya—Xa Y1) + (0 Y2 —X2 ¥3),
up to a factor.

The invariance of the form (38) says that: /4 will be transformed in precisely the
same way ad; : A2: one will then have the isomorphism:

(40) 0(3, K, Q) OPGL(2, K).

One can also infer this directly from the parametmresentation of the conic section
Q = 0. The projective transformations of the conidisednto itself will, in fact, induce
fractional linear parameter transformations, and conkerse

The condition for the invariance of (39), up to a facttefines an extension of the
complex group. If one restricts oneself to those faanwations that leave the form (39)
absolutely invariant then one will obtain a normal subgravith an Abelian factor group:

(41) 0'(5,K, Q) OPC(4, K).

The reversion of the super-fieklto a sub-fieldP? can, when necessary, be performed

by the process that was explained in llfior 4 andn = 6. In the case of the Galois field,
the transition is not necessary, just as in the adsthe real “group of hyperbolic
motions”:

Q==& +&7+E&7
In the case of the field of real numbers and the form:
Q=& +&+&S,
one will obtain the well-known isomorphism (cf., theginning of this paragraph):

(42) 04(3,K) OPSU2, P, K).
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8 8. Linear groupsin complex number fields. Reducible and irreducible,
primitive, imprimitive, and monomial groups.

The groups of linear substitutions with complex numlmeffcients, which will be
calledlinear groupsin what follows, are somewhat easier to survey whaa restricts
oneself toclosedgroups — i.e., to groups that include all of their accatrar elements —
as long as they are not singular. From a theoreth Wf NEUMANN (%), any closed
linear group® behaves as follows contains am-parameter continuous (LIE) subgroup

$, which is a normal subgroup @f, and the factor classes Hfare isolated from each

other — i.e., none of them contain accumulation etgsnef the union of the other ones.
This theorem is a special case of a theorem on cleglegiroups of LIE groups that E.
CARTAN ("% has proved very simply. The two extreme caseslémed, linear groups
are thus: Theontinuousgroups, where) = & and thediscrete(or discontinuousones,

where $) consists of only the unity elemeht A group is then callediscretewhen the

unity element (and thus, also any other group elementtian accumulation element of
other group element$%.

The structure of continuous groups will be examined in tle theory, to which
another booklet in this series will be directed. \Wiestcontent ourselves here with the
proof that anr-parameter continuous linear group will be determinedr binearly-
independent matrices, ..., A, — viz., the matrices of the “infinitesimal generatorsih
such a way that theone-parameter subgroups that are defined by the ma#icgs= 1,

2, ..., 1), wheret runs through all real numbers, collectively generatertparameter
group. Any group element in the neighborhood of one caefresented “canonically”
by:

QAT HA

Therefore,e* will be defined by the exponential series. The marite ..., A, must
fulfill the relations:

AA-AAN=YGA,

where the real constants depend upon only the “structure” group — i.e., they will be

the same for two groups that are “continuously isomorphtbé small {).” Especially
important are theemi-simplecontinuous groups; i.e., the ones that contain no selyvabl
continuous, normal subgroup. E. CARTAR)(has enumerated these groups completely,
and their representations by linear transformationsiaceall known, in principle,{).

(% J. V. NEUMANN, Math. Z.30 (1929), 3-42.

(") E. CARTAN: Mém. Sci. mathi2 (1930), in particular, § 27.

("3 It only makes sense to speak of a discrete group whepokogy is defined on the group (which is
indeed the case for linear groups). There is no mgatoncalling an abstract group discrete or
discontinuous.

(™) E. CARTAN: Thése. Paris 1894"(2d., Paris, 1933) — Ann. Ecole nordi.(1914), 263-355. Cf.,
also VAN DER WAERDEN: Math. 737 (1933), 446-462 and W. LANDHERR, Bull. Soc. Math. Semin.
Hamburg. Univ1l1 (1934), 41-64.

(") E. CARTAN: Bull. Soc. Math. Franc#l (1913), 53-96- J. Math. pures appl. (@0 (1914), 149-
186. — H. WEYL: Math. 7223 (1925), 271-30924 (1925), 328-395.
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A discrete linear group with restricted matrix elemeistsobviously finite; in
particular, a discrete group of unitary transformatiensherefore always finite. The
following converse of this theorem is true:

Any finite linear group can leave a positive-defiflEERMITIAN form Y. > ai & &
invariant. In order to prove this, like R. L. MOORE’), one needs only to subject the
form2 & & to all transformations of the group and define the sum. s@hee method of
proof is valid when one, like HURWITZ'Y), replaces the summation with a suitable
integration, and also for compact, continuous grodpsdeed for arbitrary compact
groups, according to HAAR'(®. More generally, one hal: the matrix elements of a
linear group & are uniformly restricted them will possess an invariant positive

HERMITIAN form. H. AUERBACH (') gave a direct proof of this. One can, however,
also derive the theorem from the theorem above ersttucture of the closed groups

when one defines the (compact) closed hulofwhich possesses a continuous normal
subgroup$ with mutually isolated cosets, hence, only finitely mariythem, due to

compactness. MOORE'’s proof above can be duplicated by ititegoaver the subgroup
$ and summing over the cosets.

Since one can easily transform any positive-defiRrilEERMITIAN form into the
form:
PN
i=1

by introducing new coordinates (the proof is completelMammas to the one that is
known for quadratic forms), from the discussion of &njor more generally restricted)
linear groups, one can always restrict oneself to grotipsitary transformations. For
finite groups, one can replace the HERMITE form witk ttorresponding quadratic
form, and thus assume that the transformations afritwgp are orthogonal.

A linear group is callededucible(or in a terminology that has justifiably fallen @it
use: intransitive) when it leaves a proper subsjgacef the vector spack, (0 <m<n)
invariant. MASCHKE'sTheoremfollows immediately from the existence of an invariant
HERMITIAN form (*®): If a finite (or, more generally, a restricted) linear group is
reducible then the vector space &n be decomposed into two invariant subspages E
Em + Enam (). Enm is, in fact, the space that is “totally perpendicular’Ey, for the
metric that is determined by the HERMITIAN form.

We shall return to the general properties of reducibieiraaducible linear groups (in
arbitrary fields) in § 11 — 15. According to E. CARTAR)( an irreduciblecontinuous
linear group is either semi-simple or the product of a s@mple normal subgroup with
an Abelian continuous group that consists of multiplef the identity. Since one

R. L. MOORE: Math. Ann50 (1898), 213-214. There is further literature in this paper.
A. HURWITZ: Nachr. Ges. Wiss. Gottingd897, 71-90, Cf., also WEYL"{).
A. HAAR: Ann. of Math. I, pp. 34 (1933), 147-169.
(") H. AUERBACH: C. R. Acad. Sci., Pari®5 (1932), 1367.
H. MASCHKE, Math. Ann52 (1899), 363-368.
+ means the direct sum (in the sense of additive gyoups
E. CARTAN: Ann. Ecol. norm26 (1909), 147-148 — Bull. Soc. Math. Frantie(1913), 53-96.
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knows the semi-simple linear groups, in principle (see @hdke irreducible continuous
groups will also be known, in principle.

A linear group is calledmprimitive when there is a decomposition of the spBge
into subspacek, + Ex + ... + E that are only permuted with each other by the group;
otherwise, it will be callegrimitive. If the group® is irreducible, but imprimitive, then

h=k=... =I. Inparticular, ih=k = ... =| = 1 then the group will be calledonomial
An imprimitive group® possesses a reducible normal subgrgufhat leaves the

spaces , Ex, ..., E individually invariant. & / § is isomorphic to a permutation group.
If & is monomial thers) will be Abelian. Conversely, if a linear grodppossesses any
Abelian normal subgroup that does not consist ofjushen® will be imprimitive. The
proof is implied easily from the fact that one can braigof the transformations oh

into diagonal form simultaneously. It then followsiinear group is imprimitive when it
includes a finite, Abelian, normal subgroup that does not contain the cetterf.
BLICHFELDT (%) and K. SHODA ) have presented further theorems on imprimitive
groups and their normal subgroup.

It follows easily from the criterion for imprimitity that was formulated that a linear
group of prime-power order is always monomfa);(likewise, any two-level (i.e., meta-
Abelian) linear group®), and in particular, any linear group of quadratic order, is
monomial ). The method of proof is always the same: The tridiaélian case is
omitted. In the non-Abelian case, there exists aeliab normal subgroup that does not
contain the center. Imprimitivity follows from thaand thus, the existence of an
invariant decompositiok, = E, + Ex + ... If one then restricts oneself to the subgroup
that leaves, invariant then it will again be imprimitive i, on the same basis; one can
then further decomposk,, and correspondinglyky, ..., until one has obtained an
invariant decomposition into one-dimensional subspaces.

According to C. JORDAN®f), any finite linear groug possesses an Abelian normal

subgroup$) whose index does not exceed a limit that depends upon onlyrhe order
of & is then equal to the ordkrof $, multiplied by the restricted numbier In particular,
if & is primitive then, from the theorem abowve,will consist of only multiples of the
identity, so the order of the projective group that coueds to® will be restricted

(namely, it will be equal to).

L. BIEBERBACH ") has given a simple proof of the aforementioned thea&m
JORDAN with explicit assumed limits that was simglifiby G. FROBENIUS®}) and
sharpened by A. SPEISER®)( The cited proofs all rest upon the fact that two

() H. F. BLICHFELDT: Trans. Amer. Math. So¢.(1903), 387-3975 (1904), 310-325.
(®? K. SHODA: J. Fac. Sci. Univ. Toky®(1931), 180-209.
(% See footnote®)). Cf., also MILLER-BLICHFELDT-DICKSON:Theory and application of finite
groups New York, 1916.
(% K. TAKETA: Proc. Imp. Acad. Tokyé (1930), 31-33.
(®) W. BURNSIDE: Messenger Math. (3% (1906), 46-50.
(®®) C. JORDAN: J. reine angew. Ma®¥ (1878), 89-213.
(") L. BIEBERBACH: S.-B. preuss. Akad. Wiss. (1911), 231-240.
(®® G. FROBENIUS: S.-B. preuss. Akad. Wiss (1911), 241-248.
(% A. SPEISERTheorie der Gruppen von endlicher Ordnu@% ed., Berlin, 1927, § 68.
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substitutions in a finite linear group that are sufficientlose to the identity will
necessarily commute. FROBENIU&)(gave the sharpest definition of “sufficiently
close”: It suffices that the characteristic rootshe one substitution do not occupy all of
one-sixth of the unit circle, and those of the othdyssitution do no occupy all of one-
half of it.

H. F. BLICHFELDT %) has presented sharper limits for the order of a primiti
unimodular, linear group and the prime-powers that come dbotbem. His method
rests upon the arithmetic discussion of an algebraictiequaat couples the traces of the
transformation&, = T, Z T%, ..., = T", and= T' (r > n — 1) with each other and with the
characteristic roots df, if > andT are arbitrary elements of the group. This method also
produces another proof of JORDAN'’s theorem above.

The theorems of MASCHKE and JORDAN were adapted taiiefigroups of
periodic linear substitutions (i.e., linear substitutiofidinite order) by I. SCHUR%).
On these groups, cf., furthermore W. BURNSIDE: Prociddan Mat. Soc. (23 (1905),
435-440. For another generalization of the finite lineaugsp see A. LOEWY: Math.
Ann. 64 (1907), 264-272.

|. SCHUR %) has proved, by arithmetic methods, that the orderfisfite group of
given degree is restricted, as long as one is givenhwiad of the circle that the traces of
the group elements belong to.

8 9. Finite, linear groups of given degree.

For the presentation of the finite, linear groups wégidegree (i.e., given dimension
number) over the field of complex numbers, one rdstrioneself to linear
transformations with determinant 1 (or possibly + 1), tfer sake of convenience. We
will tacitly make this restriction in what follows. Moreover, following 8§ 8, the
transformations will all be assumed to be unitary @gtnal, resp., for real groups).

A projective group®’ belongs to any linear grou: namely, the factor group

with respect to the subgroup of transformatiothsin &. The presentation of linear

groups of a given degree mostly precedes the presentatitwe @ssociated projective
groups. For each such projective graip there is a greatest associated linear g®up
that consists of all linear transformations with deieant 1, whose associated projective
transformations lie i®’. This group is mapped t&' in ann-to-one homomorphic, since
each projective transformation correspondsntinear ones with determinant 1. All
linear groups that correspond to the same projective gédugre included in this one

group®.

. preuss. Akad. Wiss. (1911), 373-378.

() S--
H. F. BLICHFELDT: Trans. Amer. Math. S04.(1903), 387-3975 (1904), 310-32512 (1911), 39-

mw

(* 1. SCHUR, S.-B. preuss. Akad. Wiss. (1911), 619-627.
) 1. SCHUR: S.-B. preuss. Akad. Wiss (1905), 77-91.
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F. Klein (% has determined the finiteinary projective groups by converting the
binary projective groups into ternary real rotation groupsnegns of the isomorphism

0O(3; P) OPU(2, K) that was discussed in 8 7. He then found the weallkntypes:

cyclic groups, dihedral groups, tetrahedral groups, octahedighgrawosahedral groups.
H. H. MITCHELL (*® gave a very simple direct derivation of these typeBhe
previously-remarked binary, linear groups of double order belondndse projective
groups. Only the cyclic and dihedral groups also belongngaii groups of the same
order. There are no other finite, binary, linear groups detierminant 1.

The finite, ternary, projective groups were presentedmpletely by C. JORDAN
(*®) and H. VALENTINER {7), and completely by H. F. BLICHFELDTY [cf., also H.
H. MITCHELL (*?)]. Since the imprimitive groups are either reducible onomial, and
thus relatively easy to find, it will suffice to gitlee primitive groups. They are:

1. The projective, ternary icosahedral gro@g, which corresponds to the real,
orthogonal, icosahedral group.

2. The group that JORDAN called the “HESSIAN groupsis wWhich takes the
inflection point configuration of a plane curve of ortiaee to itself ).

3. A normal divisoiGr; of Gz16 (*9).

4. A normal divisoiGss of Go16 (*9).

5. A groupGaesthat is isomorphic t®SL(2, 7) and was discovered by KLEIRY.

6. A group that was discovered by VALENTINER) @nd then WIMAN 1% that is
isomorphic to the alternating subgroipof Gsgp .

These projective groups correspond naturally to linear grouttsee-fold order that
are the 3-homomorphic images of them. Only the groGps and Ggo have 1-
isomorphic linear groups.

E. Goursat ' has determined the finite, real (orthogonal), quaternamjective
group. On the basis of the isomorphism:

PO(4, P) OPU(2, K) x PU(2, K)

that was discussed in 8§ 7, the determination of the fired, quaternary groups comes
down to the determination of all groups of pairs of binargjtany substitutions.
GOURSAT has also given all extensions of the groups foairmdthogonal substitutions

9
9
9
9

F. KLEIN: Math. Ann.9 (1876), 183-208.

H. H. MITCHELL: Trans. Amer. Math. So&2 (1911), 208-211.

C. JORDAN: J. reine angew. Maw¥ (1878), 89-215.

H. VALENTINER: Skr. Widensk.-Selsk. Kopenhagen §q)1889), 64-235.

(*® H. F. BLICHFELDT: Trans. Amer. Math. S06.(1904), 321-325 — Math. An63 (1907), 552-
572.

(*® For a more precise discussion of these groups, wetoefiee encyclopedia article of A. WIMAN:
“Endliche Gruppen linearer Substitutionen,” Enc. matlisSMB, 3f. Cf., also K. ROSSLER:as. pést.
Mat. a Fys60 (1931), 166-172.

(*°9 F. KLEIN: Math. Ann.14 (1879), 438.

(**) A. WIMAN: Math. Ann.47 (1896), 531-556.

(%) E. GOURSAT: Ann. Ecole norm. (8)(1889), 9-102. Cf., also G. BAGNERA: Rend. Circ. mat.
Palermal5 (1901), 161-309.
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of determinant — 1. W. THRELFALL and H. SEIFERY have determined the
orthogonal groups that belong to the orthogonal proegroups with determinant 1 that
were found by GOURSAT. Among these groups, one naturalbyfeds groups of deck
motions of the regular polytopes R that were exhibited by various authot$)(since
GOURSAT up to recently.

H. F. BLICHFELDT ¢ has presented the complex, quaternary, primitive groups by
his arithmetic methods that were already mentioned 8 85. BAGNERA and H. H.
MITCHELL (*°) repeated the determination by geometric methods. Séthe anore
remarkable of these groups are three simple groups ofsot88; 2520, and 25,9289,

a group of order 16,720 that was discovered by KLENthat has normal subgroups of
order 1600360 and 16, as well as two groups that are isomorphigst(;, resp.) and

their subgroups'?) that are isomorphic s, Ss, andAs . W. BURNSIDE t°% and H.

H. MITCHELL (**% have given a series of remarkable linear groups in tiane four
variables. For the groups of the regular polytopes (sixesl and hyperoctahedra)niry
4 dimensions, see’() and {.

One can determine the solvable linear groups of prime dégte@ing BURNSIDE
(*'3. One finds further theorems on the structure ofdigroups of prime degree in K.
SHODA ().

8 10. Infinite, discrete groups of fractional linear transformations;
in particular, discrete groups of motions.

For the older literature on this topic, we refer, oand for all, to the encyclopedia
article of FRICKE on automorphic functiors.
A group® of one-to-one, continuous transformations in a speggibnD is called

properly discontinuousvhen each poinP of a domainD possesses a neighborhodd
that has only finitely many points in common with thege neighborhoodsU (Scomes

(*° W. THRELFALL and H. SEIFERT: Math. Anri04 (1931), 1-70.

(*°%) Of the recent ones, let us mention only: D. E. LITWEOD: Proc. London Math. So&2
(1930), 10-20. — J. A. TODD: Proc. Cambridge Philos. $6¢1931), 212-231.

(*°* H. F. BLICHFELDT: Trans. Amer. Math. So® (1905), 230-236. — Math. AnB0 (1905), 204-
231.

(**® G. BAGNERA: Rend. Circ. mat. Palerm® (19105), 1-56. — H. H. MITCHELL: Trans. Amer.
Math. Socl14 (1913), 123-142.

(*°) Cf., A. WITTING: Diss. Géttingen, 1887. See also tecyclopedia article IB, 3f, of A.
WIMAN, no. 23.

(%% See H. MASCHKE: Math. Anrb1 (1899), 253-298, as well A. WIMAN: Math. AnB2 (1899),
243-270.

(*°)  W. BURNSIDE: Proc. London Math. Soc. (&) (1911), 284-308.

(**9 H. H. MITCHELL: Trans. Amer. Math. Soa6 (1914), 1-12.

(**) G. DE B. ROBERTSON: Proc. Cambridge Philos. S26. (1930), 94-98. — D. M. Y.
SOMMERVILLE: Proc. London Math. Soc. (25 (1933), 101-115.

(***3  W. BURNSIDE: Acta math27 (1903), 217-224.

(**) R. FRICKE: Enc. math. Wiss. IIB, 4 (1913).
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from &) (**3. The group is obviously discrete then, so no disagedeip is properly

discontinuous (example given below).

One understands &undamental domairor discontinuity domainof a properly
discontinuous group iD to mean an open subset that is disjoint from the insapsets
that contains a poir@Pin its interior or on its boundary that is equivaleneach poinP
of D. From BAER and LEVI %, a fundamental domain always exists when one
demands, besides the proper discontinuity of the group,fahany two inequivalent
pointsP andQ there must be neighborhood§P) andU(Q) such that the image &f(P)
does not enter intd(Q). For a properly discontinuous group of hyperbolic, Eualidea
elliptic motions, the totality of all points that haaesmaller distance to a fixed polgin
D than the distance from all image pointsPgis anormal, fundamental domatmhat is
bounded by hyperplanes. A properly discontinuous group oftidred linear
transformations of one complex variable possessesdarfioental domain that is bounded
by circles t*9).

P. J. MYRBERG (9 introduced a sharpening of the concept of proper discotytinui
with consideration given to the theory of automorphiccfioms of several variables.
According to MYRBERG, a discrete transformation group dalled normally
discontinuousin D when there is a subsequenc®) (in any infinite sequence of
transformations of the group that converges uniformlyny @osed sub-domain &.
The limit transformation to which the sequence convedgpes not belong to the group,

and is not one-to-one, since otherwiBg S_, would converge to, which is impossible

in a discrete group. In the case of a projective groug,limit transformations are
singular, linear transformations:

& =D an & with lak | =0,

which take all points of the spad¢®-_1, with the exception of the points of a linear
subspacd\ﬁn_p (whose equations reﬁ aw é& = 0), to the points of a linear spadg-1,
wherep is the rank of the matrixaf). The spacedl,; andM _ , are called théirst and

(**3 This definition, which | discovered in the bodk’] of FUBINI, is somewhat sharper than the one
that was given originally by POINCARE™), which only demands that the poiRtshould not be the
accumulation poinP of its image pointSP. Example: The projective transformations:

100 001
A=lp10/ ad B=|p10
002 100

generate a group that is properly discontinuoutiénneighborhood of the point (1, 1, 0) in the senfs
POINCARE, but not in the sense of FUBINI.

(**% R.BAER and F. LEVI: Math. Z34 (1931), 110-130.

(** H. POINCARE: Acta math3 (1183), 49-92. R. L. FORD gave a very simple pinchis book
Automorphic FunctiondNew York. 1929.

9 P. J. MYRBERG: Acta mathi6 (1925), 215-336. Cf., also Math. An@8 (1924), 61-97 and
Math. Z.21 (1924), 224-253.
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second limit elementf the sequenceS(), respectively. If the inverse sequen(®")

again converges then its first limit element will be teimed in M while its second

n-p?
limit element will be subsumed By, .
A discrete group of projective transformations is ndiym@iscontinuous irD when

the second limit elemeriﬁn_p of the convergent sequenc®)(contains no point ob

outside the group. Thdomain of normal discontinuityf a discrete, projective group is
then the totality of all points that belong to kb, , (and, as a result, also to hty,).

The concept of normal discontinuity will coincidetlwthat of proper discontinuity
for n = 2, and thus for the case of fractional linear subgtingtof one real or complex
variable. In the general case, proper discontinuity/fallow from the normal kind, but
not the converseThe domain D of normal discontinuity is a subset of the domain of
proper discontinuity. Proof: A pointP of D has a neighborhood, whose closed hull
still belongs toD. If infinitely many images$uU still had points in common with then
one could select a convergent sequeikffom theS SinceU lies separate from the

second limit elemenl\ﬁn_p of this sequence, the image s88 will gravitate towards

My-1; thus, not alS5,U can have points in common with

One proves in a completely analogous way that the BAERI condition that was
cited above for the existence of a fundamental domatheiu normal discontinuous
groups is always fulfilled.

According to MYRBERG 1), a discrete projective group, among others, is normally
discontinuous in a domalb whenD remains invariant under the group and has no points
in common with a system af hypersurfaces that do not go through a point. Ther latte
condition is then the case, in particular, when the iamardomainD lies entirely are
finite points.

The real, discrete, projective groups that leave ianamn indefinite, quadratic form
whose index of inertia is 1 or 2 possess a domain of natis@ntinuity in reaP,; . In
particular,a discrete group of hyperbolic motions is normally discontinuous inrttie e
interior of any quadratic fundamental surfa¢eé’). Likewise, the complex, discrete,
projective groups that leave a HERMITIAN form:

H= §?1§(1+§?2§(2+"'+§?n—1§(n—1_§?n5n

invariant in the domaii < 0 (and also in the domakh > 0 forn = 2) will be normally
discontinuous. One calls these gro&pshsianfor n = 2 and fotyper-Fuchsiarfor n >
2. One finds further examples of normally discontinugnasips— in particular, the ones
that leave no domaid invariant- in MYRBERG ('9). | add thathe discrete groups of
real, Euclidian motions:

(aw) orthogonal

{ &= aé + 1,
$o = $o»

(**)  G. FUBINI: Introduzione alla teoria dei gruppi discontinui e delle funzioni automdtite, 1908.
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are all normally discontinuous in the domain of finite poi(ds # 0). In fact, a
convergent sequence of such motions will always convienga non-singular motion,

unless somey increases to infinity, in which case, after multiplying &yy " that
converges to zero strongly, a limit transformation:

{ § = B4
$ =0
will come about whose limit elemenrit4,;and M _, both lie at infinity.
A real, linear transformation of;, ..., & induces a linear transformation of the
coefficients z;, ..., zy of a quadratic form in the. Likewise, a complex, linear

transformation o€, ..., & induces a real, linear transformation of the real arafinary
parts of the coefficients of a HERMITIAN form, whiete again denote bz, ..., zv.
Therefore, those pairs of linear transformations thir by only a factord will again
induce similar pairs of transformations af ..., zy ; one can then say that the real
(complex, resp.) projective transformations of a sgaceinto a spacdy-1 induce real
projective transformations in both cases. TheresaladomairD in Py-; whose points
belong to the definite forms. This sub-domain is alwagsinected, and will be
transformed into itself by all of the transformati@mmsidered. One now hddnder the
association above, a discrete group of real (complex, resp.) projaciinsformations
corresponds to a discrete group of real, projective transformationsyaf Rhich is
normally discontinuous in the domain(B9.

In particular, fom = 2, the fractional linear transformations of onenptex variable
=& &
1) { & =aé + B¢, 7= ad +p

or =
& = V&, + &, w+0

correspond to real transformations of the sp@gevhose coordinates are the real and
imaginary parts ok, 2, z3, z, of the coefficients of the HERMITIAN form:

21§?1§(1+(22+ iZQg?152+( - izgg?z‘q(ﬂ_ 246?5( :
The definite forms are characterized by:
Q=zZ+z-zzu<0,

our transformations then leave the interior of thdas@Q = O invariant, and are then
hyperbolic motions. Each discrete group of-substitutions(1) corresponds to a
normally discontinuous group of three-dimensional, hyperbolic motions.

The connection between the hyperbolic motions and4habstitutions (1) becomes
most intuitive when one thinks of the surfa@eas being taken to a sphere — viz., {he
sphere — which one can then project stereographicallytbat¢plane. The hyperbolic
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motions generate conformal mappings of #fisphere into itself, which will yield
fractional lineard-substitutions under stereographic projection.

According to whether the discrete group of hyperbolatioms in question leaves
invariant a point inside th&-sphere, a point outside of it, or no such point, one ca
distinguish:

1. Platonic groups which are the finite groups of rotation or binary, pctje,
unitary groups that were enumerated already in § 9.

2. Doubly-periodic groupswhich leave a point of thésphere invariant, for which
one chooses the poigit= o for the sake of convenience, with whichplanar, Euclidian
groups ofmotionsin the {-plane will arise.

3. Great circle groupswhich leave a circle on thésphere invariant, which one
takes to the reaf-axis by stereographic projection for the sake of convesiewith
which, agroup of real{-substitutiong1) will arise.

4. Non-rotation groupswhich leave no point of space invariant.

One finds all of the discrete groups of planar, Eudiidmotions (along with a
bibliography) in A. SPEISER™.

Those great circle groups that transform the uggealf plane into itself are called
Fuchsian groupgcf., suprgd. Since these groups leave a plané-gpace invariant, one
can also consider them to be groups of planar, hyperbolions. As such, they have a
normal, polygonal, fundamental domain that correspondsfitmdamental domain in the
upper {-half plane that is bounded by a circle. One can re&dtofjenerators and
defining relations from the boundary relationships of theldmental domain. We refer
to the book of KLEIN-FRICKE'(*9) for the further discussion and classification of éhes
groups.

An important example of a great circle group is definetheynodulus groupwhich

cd
It will be generated by the two substitutions:

11 -
S= and T:O 1.
01 10

Its defining relations read:

. . ab) . . . . .
consist of aIIZ—substltutlon{ j with entire rational coefficients and determinant.one

T?=(T9%=1.

Among its subgroups, theongruence subgroupsf level m are noteworthy, whose
matrices are constrained by congruences mortuldhe principal congruence group of

c
RADEMACHER (*® and H. FRASCH '} have given systems of generators for the

ab
level m consists of the substitutior{s dj witha=d=1,b=c=0 (modm). H.

('® A. SPEISERTheorie der Gruppen von endlicher Ordnu@¥ ed., Berlin, 1927, § 28 and § 29.

(' R. FRICKE and F. KLEIN:Vorlesungen (ber die Theorider automorphen Funktionen |
Braunschweig, 1897.

(** H. RADEMACHER: Abh. math. Semin. Hamburg. Un#/(1929), 134-148.
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principal congruence group and other congruence groups of prirek |&he factor
group of the modulus group with respect to the principal congeugroup of levep is
the modular grouSL(2, p), whose structure and subgroups were discussed alre&dy i
3.

G. PICK and R. FRICKE!Y gave examples of subgroups of the modulus group that
are not congruence subgroups. G. Bt (has determined all groups of fractional
linear {-substitutions that isomorphic to the modulus group.

The groups that were classified by 1, 2, 3 above aedradidy properly discontinuous
on the {~sphere, but not the ones in 4. Those non-rotation grthgisfirst become
properly discontinuous inside tlgesphere are called (from the form of their fundamienta
domains)polyhedral groups An example of this is defined by the PICARjoup of
those substitutions (1) with determinant one, for whiclf, y; o are whole numbers of
the forma + bi. Following BIANCHI (3, one can generalize the Ansatz by taking,

y, dto be whole numbers in an imaginary-quadratic numbker &éJ/-r). On the basis

of the isomorphism (34), 8 7, one can also obtain the sgnmep as the groups of
guaternary, whole-number, projective transformatior$ weterminant one that leave a
quadratic fornQ, = & & + & +ré&; invariant. One obtains great circle groups when one
restricts oneself to those substitutions (1) that leavéndefinite, binary, HERMITIAN
form invariant. One obtains even more general arithadgtidefined groups by
considering the ternary, whole-number, projective faansations with coefficients in a
given field that leave a ternary, quadratic form invar{ah.

Discrete groups of Cremona transformations fall outdidescope of this discussion.
We thus mention thayper-Abelian groupsnly quite briefly, which are discrete groups
of real fractional linear substitutions mcomplex variables:

e aI/ZV+ﬁV

(2) ¢ V0, +3,

DVZO'V@—,BVVV>O, V:]., 2,...,n.

From MYERBERG 19, these groups are all normally discontinuous in theaiom

1({) (&) ... 1(4n) £ 0.

Examples of this are defined by thegher modulus groupthat were discussed by
VON BLUMENTHAL (**3, for which, the coefficients of the substitutionsatttare
conjugate to (2) run through entire, algebraic numbersdonjugate real number fields
of degreen, while the determinant®, define a system of conjugate units.

From POLYA and NIGGLI 1%, there are 17 affine-distinct discrete groups of
planar, Euclidian motions and transfers that leavepoot and no line invariant.
NIGGLI (***3 then arrived at five groups that leave a line invariant.

(** H. FRASCH: Math. Ann108 (1933), 229-252.

(**3 G. PICK: Math. Ann28 (1886), 119-124. — R. FRICKEbidem 99-118.

(** G. POL: Nieuw Arch. Wiskdel7 (1932), 55-61.

(**%  G. POLYA: Z. Kristallogr60 (1924), 278-282. — P. NIGGLibidem 282 to 298.
(***3  P. NIGGLI: Z. Kristallogr.63 (1926), 255-272. See also¥.
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A. SCHOENFLIES ¥, as well as VON FEDOROW?) have presented the three-
dimensional discrete groups of Euclidian motions andsfeas that leave no point and no
line or plane invariant. As both authors found in agre¢math each other, there are
230space groupshat divide into 3Zrystal classe¢'?’). That means the following: Two
space groups® of the kind considered contain three linearly-independent

transformations. The subgroup of all translations ¢ofthen generates a three-

dimensional latticd” when it is applied to a fixed starting poi@t If one subdivides
each motion or transfer & into a translation and a rotation or reversal with ftked

point O then the rotational components define a grup itself (which is homomorphic
to &), which shall be called the “point group,” and which leavedldtticel” invariant. If
one chooses the lattice vectors to be coordinatergettiensy will become dinite group

of unimodular, integer, linear, vector transformations that leave a defiuadratic form
invariant. Two such point groups will be counted in the satasswhen they can be
transformed into each other by a linear transformationIn that sense, there are 32
classes't®. However, one can also grasp the concept of class precisely when one
demands that also be unimodular and integéf¥.

C. HERMANN, L. WEBER, as well as E. ALEXANDER and KERMMAN (**9
have determined the discrete groups of three-dimensiastadms and transfers that leave
a plane invariant, and likewise C. HERMANN and E. ALEXBER (*') have
determined the ones that leave a line fixed. On the fouertiional groups that leave an
Rs invariant, see H. HEESCH?!, as well as J. J. BURCKHARD )

L. BIEBERBACH (*3 has examined the discrete, Euclidian groups of motioms in
dimensions. The main result is:

1. A discrete group of motions is eitldcomposable i.e., it leaves a proper linear
subspacdr, of R, invariant — or it containg linearly-independent translations. (In the
first case, the fundamental domain obviously extends toitifbut in the second case, it
is obviously finite). In the indecomposable case, thatimtal components of the
motions of the group define finite rotation groups of rets&d order.

2. There are (up to affine transformations) only figitehany different discrete
groups of motions with linearly-independent translations.

(** A. SCHOENFLIESKTristallsysteme und Kristallstruktyt.eipzig, 1891.

(** E. VON FEDOROW: Z. Kristallogr20 (1892), 25-75.

(**") Cf., on this, also, P. NIGGLGeometrische Kristallographie des Diskontinuytreipzig, 1919. —
C. HERMANN: Z. Kristallogr.69 (1928), 266-249. — H. HEESCH: Z. Kristallog® (1929), 177-201. —
E. SCHIBOLD: Neue Herleitung und Nomenklatur der 230 kristallographischen Raumgruppgzig,
1929. — R. W. G. WYCKOFFThe analytic expression of the results of the theory of space groups
Washington, 1930.

(**® See also G. FROBENIUS: S.-B. preuss. Akad. Wik&171), 681-691.

(9 J.J. BURCKHARDT: Comment. math. heb/(1933), 159-184.

(**% C. HERMANN: Z. Kristallogr.69 (1928), 250-270. — L. WEBER: Z. Kristallogf0 (1929), 309-
327. — E. ALEXANDER and K. HERMMANNibidem 328-345 and 460.

(**) C. HERMANN: Z. Kristallogr.69 (1928), 250-270. — E. ALEXANDER: Z. Kristallogi70
(1929), 367-382.

(**'3 H. HEESCH: Z. Kristallogr73 (1930), 325-346.

(**3 L. BIEBERBACH: Nachr. Ges. Wiss. Géttingen (1910), 75-8#ath. Ann.70 (1910), 297-336;
72 (1912), 400-412.



§ 10. Infinite, discrete groups, discrete groups of metio 43

G. FROBENIUS 1*3 has proved 1 quite simply and adapted it to groups of complex
affine transformations whose homogeneous componente alefinite HERMITIAN
form invariant. One also finds a simpler proof of 2 in PEISER 4. J. J.
BURCKHARDT (**) has shown how one can develop the BEIBERBACH-FRORBES
method far enough that it makes the complete determmaffidghe groups of motions
possible. As an application, he determined all hexagandl rhombohedral four-
dimensional groups that leave a one-dimensional spaagant.

COXETER {*% has determined the discrete groups of motionsRefwhose
fundamental domains are simplexes. In connection thih he also enumerated and
examined the discrete groups of motions that are geukebatreflections'¢”).

(**) G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1911), 654-665.
(13% A. SPEISERTheorie der Gruppen von endlicher Ordnugy ed., Berlin, 1927, § 70.
(**3 J. J. BURCKHARDT: Comment. math. hel@. (1934), 159-184. See also F. SEITZ: Z.
Kristallogr. 88 (1934), 433-459.
(**% H.S. M. COXETER: J. London Math. Sd&(1931), 132-136. — Proc. London Math. Soc. I1B4.
(1932), 126-189.

(**) H.S. M. COXETER: Ann. of Math. 11.85 (1934), 588-621.
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Whereas in Part | all linear groups were considered @ laegiven degregthe
problem of representation theory reads: Discover iadlai groupsof given structure
hence, all of the linear groups that are isomorphic tov@nggroup or, more generally,
homomorphic to it. This theory was created by G. FROBEN(**®, and then more
recently founded and developed further by W. BURNSIBE) @nd 1. SCHUR 9.
Here, we give the essence of the construction of #erytby E. NOETHER'(Y, which
was based upon its organic connection with the theory epresentations of
hypercomplex systems.

8 11. Representationsand representation modules.

One understandsrapresentatior®® of a groupg (by linear transformations) to mean
a homomorphic map of the group into a syst&nof linear transformations of a vector
spacent:
a- A, b - B, ab - AB.

The same thing is true whenis only asemi-group- i.e., when all producta (b are
defined ing and the associativity law is satisfied, but the exetenf the inverses is not

required.
If the semi-groupy is given as a@ing, in particular, then the additive isomorphism:

(**® G. FROBENIUS: “Uber Gruppencharaktere,” S.-B. preuss.dARAiss. (1896), 985-1021. —
“Uber die Primfaktoren der Gruppendeterminantbidem (1896), 1343-1382; (1903), 401-409. — “Uber
die Darstellung der endlichen Gruppen durch lineare Sutistien,” ibidem (1897), 904-1015; (1899),
482-500. — “Uber die Komposition der Charaktere einer Grupjiegem (1899), 330-339. — G.
FROBENIUS and I. SCHUR: “Uber die Aquivalenz der Gruppenaliae Substitutionen,ibidem (1906),
209-217. — On the genesis of representation theory, &b tla¢ exchange of letters between DEDEKIND
and FROBENIUS in DEDEKIND’s Werkeh

(** W. BURNSIDE: “On the continuous group that is definedamy group of finite order,” Proc.
London Soc29 (1898), 207-224 and 546-565. — “On the composition of group characgfikidem34
(1901), 41-48. — “On the representation of a group of finiteroadean irreducible group of linear
substitutions and the direct establishment of thaticels between group-characteristictyidem (2) 1
(1903), 117-123. Fheory of Groups2™ edition, Cambridge, 1911.

9 1. SCHUR: “Neue Begriindung der Theorie der Gruppenchaemkte.-B. preuss. Akad. Wiss.
(1905), 406-432. — “Arithmetische Untersuchungen Utber endlichppdn linearer Substitutionentiidem
(1906), 164-184. — “Uber die Darstellung der endlichen Gruppen detmochene lineare Substitutionen,”
J. reine angew. Math27 (1904), 20-50132 (1907), 85-137.

(**) E. NOETHER: “Hyperkomplexe Grossen und Darstellungsiegdviath. Z.30 (1929), 641-692.

— Cf,, also TH. MOLIEN: Math. Ann4l (1892), 83-156. — M. HERZBERGER: “Uber Systeme
hyperkomplexer Griéssen,” Diss. Berlin, 1923, as well aditat papers of FROBENIUS (footnote 1).
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a+b - A+B
will also be demanded of a representationg i§ ahypercomplex systeover a fieldP,

more especially, then we will demand, in addition, thaust be included in the center

of the representation field, and that one must have:

al - AA for all A in P.

Thedegreeof a representation is the dimension of the spficeA representation is

calledfaithful when it is 1-isomorphic.
It is now preferable to define a prodaat for everya in g and every in 9t by way

of:
(1) au=Au,

whereA is the representative transformatioraof
One then has the rules:
a(u+v) =au+ay,
a(uA) =(au 1,
(ab) u=a(bu) for groups and semi-groups,
and: @+b)u=au+bu for ringsg,

@l)u=a(ud) =(@u A for hypercomplex systengs

The symbolA of the representative transformation will be made dlymers with this
notation, (which is, in fact, an advantage when seva@alesentations are considered
simultaneously), and the entire problem of represemati@ory comes down to the
examination of a module (i.e., an additive grotp)that is endowed with two kinds of
operators: The elements Bf which will be written to the right, and those gfwhich

will be written to the left. This double module — viz.¢ tepresentation module will
determine the representation uniquely by means of (1).
One can also make the vector sp@ganto a double module by giving an arbitrary

systemS of linear transformations @t into itself, for which, one assumes tlgtis an
operator domain ot, or — what amounts to the same thing — when one considérs
be own representation. Indeed, the products meaningful for an arbitrar in & and
u in 91, and fulfills all of the rules of calculation above

If we apply the basic concepts of the theory of graliffs to the double modul@t
then that will yield the following concepts.

(**) See, perhaps, B. L. VAN DER WAERDENtoderne Algebra,lchap. 2 and 6, or the booklet by
VAN DER WAERDEN and LEVI that will appear soon in thigies.
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1. Allowable subgroupsare those linear subspaces @f that admit the
transformations ofg — i.e., they will be transformed into themselves bgsth
transformations. One calls thenvariant subspacesf 9t in this case (undey). If 9t is
such a subspacey( ..., i) is a basis oft, and (i, ..., u, v, ..., Vim) iS a basis fofn
then the matrix oA will take the following form:

(PO
@ a=(o ol

when it is referred to these bases.
The sub-matrixR gives how the subspac® is transformed byA; likewise, P

determines the transformation of the factor moéiilé 1.

If the moduled)t is simple — i.e., no sub-module exists that admite@drators — then
one will call the systen®, or the representatiadl, or also the spacht, irreducible by
contrast, if an invariant subspace exists, so the foanationsA of & can all be
represented simultaneously by matrices e, and9t will be calledreducible

2. If9M is adirect sumof two allowable subgroup®; = (vy, ..., Vim) anddt, = (W,
..., W) then one will say that the modul® decomposemto 9t; and91t, . One will then

haveQ = 0 in the matrices (2), and one will say that theteay of these matrices or the
representatio® decomposemto the systems of matric®sandR, and analogously for a

direct sum of more than two summands.

3. If one defines aomposition seriesf invariant subspaces fan:
M=Me M, 0 ... MM, = (0),

in such a way that,.; is a maximal invariant subspacedi,, and thereforét, / 9t ,+1

is simple (i.e., irreducible), then one can put theaspntative matriA for the systen®
into the form:

A, 0 0
AZl Azz =0
© e
Al Az’ '%

for a suitable choice of basis, where the “diagonakel” A,, represent the
transformations that are induced in the factor moddigs, / 9t,. Since these factor



§ 11. Representations and representation modules. a7

modules are simple, the matrix systefy,J will be irreducible. One calls them the
irreducible diagonal componentd the matrix systen®, and one says that the systé&m

has beemeducedto the form (3).

4. If the moduledt is completely reducible- i.e., the direct sum of simple (or
irreducible) invariant subspaces — then one will find esreverywhere in the matrix (3)
outside of the main diagonal, and one will also cal sistemS (or the representation

©) completely reducible The systen® decomposes into its irreducible components.

5. Just like the concept of composition series, one csm adlapt the LOEWY
composition serie**}). The last group in that series will be the sumhaf minimal
allowable sub-modules (viz., the REMAK base). Oneist the remaining groups in
succession by applying the same process to the factor grobpshase, and likewise the
other composition factors, are completely reduciblae @us obtains a matrix form that
is similar to the one that was given in 3, but for whioé diagonal compone#t,, is not
reducible: They are theuccessive greatest complete reducible components of the
representatior(**%. We will make no further use of these concepts.

6. An operator homomorphism that maps a mo@iileto another modul®i, (with
the same operator domaigandK) is obviously nothing but a linear transformatibiof

M1 into M, with the property thafTav = aTv (for anya and anyv in M), or — what
amounts to the same thing:

(4) TAL=A,T forallaing,

whereA; andA; are the transformations %&%; and91, , resp., that are induced ay
In particular, if0t; and9t, are 1-isomorphic and is a 1-isomorphism then one can

also write:
A, =TAT?E

instead of (4). The representatians. A; anda - A; are callecequivalentin this case.
In particular, if9t = My, A1 = A2 = A then (2) will becomelA = AT, so: The
operator automorphisms of the representation moé@iilare the linear transformations
that commute with all transformations of the representation.
Once the basic concepts of group theory have been ddapteepresentation

modules, we can also adapt the important theorems éate rto groups and their
homomorphisms:

(**)  W. KRULL: S.-B. Heidelberg. Akad. Wiss. (1926), ser. 1.
(**) A. LOEWY: Trans. Amer. Math. Sod.(1903), 171-177.
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1. The JORDAN-HOLDER theorem says, in our case,ttf@tliagonal components
A,y (and especially the irreducible components of a conipleteducible representation)
that enter into a composition series Bf are independent of the arbitrariness in the
complete reduction, up to its sequence, and are determined ynigué&d equivalence.
Likewise, the completely reducible components that appea LOEWY composition
series are determined uniquely up to equivalence.

2. The REMAK-SCHMIDT, or KRULL-SCHMIDT, Theorem ) on the
uniqueness of the directly-indecomposable summands of a itlupperators asserts,
in our case, the uniqueness (up to equivalence and sequénte) indecomposable
components in a decomposition of a system of lineastoamations (*").

3. A moduledt is completely reducible if and only if it admits a depmsition)t =
91 + 9N into allowable sub-modulel. 9t and)t’ are then also themselves completely
reducible, and the same will be true for the factor me@al/ 91, sinceft / 91 =91, and
thus for any module that is homomorphid®ib

4. If 9, andM, are two irreducible modules, afi#t; is mapped homomorphically
to M, then the image set will either be the zero moduléherentire moduléi,. A
homomorphism of a simple modul#; is, however, always a l-isomorphism when it is
not the zero homomorphism. If one translates this théolanguage of representation
theory then that will say that when—- A; anda - A; are irreducible representations
that are mediated IYt; andt, then: Any linear transformatiom of 9, into M, that

has the property:
(4) TA=A, T forallaing

will either be the zero map or it will be non-singular; in thedattase, the two given
irreducible representations a A; anda — A, are equivalenfthe SCHUR lemma'{")].

In the same way, one proves the more general assenthich likewise goes back to
I. SCHUR: If there is a transformatidnthat is not zero and has the property (4) then the
representation® - A; anda - A, will have some common irreducible diagonal
components whose total degree will be equal to the ratileahatrixT.

5. The linear transformations that commute with a sepr&ation® — or in fact, a

system of linear transformations define a ring: viz., theutomorphism ringof the
representation module. H. FITTING*) has developed the theory of automorphism
rings of arbitrary Abelian groups with operators. Forc¢hse of a&completely reducible
modulet, the first main result of this theory read®) If one combines the equivalent,

(**9 R. REMAK: J. reine angew. Matf39 (1911), 293. — W. KRULL: Math. 223 (1925), 161-186.
— O. SCHMIDT:ibidem29 (1929), 34-44.

(**9 Cf., also, R. BRAUER and |. SCHUR: S.-B. preuskad Wiss. (1930), 209-226.

(**) 1. SCHUR: S.-B. preuss. Akad. Wiss. (1905), 406-432.

(**® H. FITTING: Math. Ann.107 (1932), 514-542.

(**9) This also presented in B. L. VAN DER WAERDEMbderne Algebra |1§ 117.
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irreducible components in the decompositiiin=m; + mp + ... into a sunMi; such that
M =My + M, + ... then the automorphism ring will become a direct siimngs R,
Ry, ... that one can regard as automorphism ring®igfNi,, ... (Any element ofR;
transforms<Mt; into itself and annuli,, M3, ...) If one decomposeIN; into r
equivalent components; + m, + ... + m, thenR; will be isomorphic to a full matrix
ring of degreer over a skew field\;, namely, the automorphism field af;, and
analogously fof)t; . If one chooses a basis for the representatiotufedt; that is
adapted to the decompositigh; = m; + ... +m, , for which the bases of the individual
(equivalent)m; are chosen in such a way that they are transformedahe by all
transformations of the representation then the matrsuch a transformation éft; will
look like:

A0 O
0A
o

and the matrix of transformation in the automorphisng fR; that commutes with this
will look like:

® ]

where theT are matrices that commute with all matrices ofitrezlucible representation
©, that is mediated by, and range through the automorphism figldndependently of

each other. By writing the matrices (5) that refethe individual9)t; one after each
other, one will obtain the matrix of the most genérahsformation ofA.

6. In particular, the automorphism ring of an irreduciledule is a skew field.
Thus:The linear transformations that commute with all transformations of aducible
system define a skew figdd . That also follows immediately from the SCHURl@a.

If —as we would like to assume from nevihe ground field is commutative then the
skew fieldA; will contain the transformationdl in its center, in particular. As a matrix

ring, A1 can contain only finitely many elements that are lilyeiadependent ovek, so
it will be a skew field of finite rank oveKl. Any element of\; satisfies an irreducible

algebraic equation with coefficientslifl. In particular, ifK is algebraically closed then
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one must havA; =Kl, i.e.:the operator automorphisms of an irreducible representation

module with an algebraically closed coefficient fiédddare scalar multiplesil of the

identity 1 (**"). The same thing is true for arbitrary ground fields wiienrepresentation
is absolutely irreducible — i.e., it remains irreducible unde arbitrary algebraic

extension of the ground fiels.

7. H. FITTING {9 stated a further theorem: If the representation moflilés

completely reducible then there will be a one-to-onerespondence between the
invariant subspace® of 9t and the right-ideals of the automorphism ringf, in which,

in particular, every decomposition % into irreducible subspaces will correspond to a
decomposition ofl into minimal right-ideals (and conversely). For gegit, one will
havet = ¢ 9, and for a givem, v will consist of those homomorphisms that n8jp
into M.

812. Representationsof hypercomplex systems. Semi-groups
of linear transformations.

A hypercomplex systemoran algebra— of rankh overK is a ring that is also dmn

dimensional vector space relative to the commutdisie K. Thus, a hypercomplex
system is given by a basig/ ..., U,), and a multiplication table:

Uj Uc= D U ¥ -

Any hypercomplex systen® possesses an immediately-associated representation,
namely, theregular representationwhich one obtains when one regards the sysem

itself as the representation module (wéihas the left operator domain aldas the right

one). The representative matrix of a quantE/uj.{j in the regular representation is
obvioustZyjk'.{j (I is the row indexk is the column index). The invariant subspaces
of the representation module are tét ideals which contain all multiplesCha (r in &)

andaA (A in K), along with every elemerat The irreducible subspaces are tmaimal
left ideals We will also call two operator-isomorphic left idedlhat mediate equivalent
representationsquivalent.

If the systen® has a unity — which we will always assume in what Wedie- then the

regular representation will always be faithful.
The types of hypercomplex systems that will be nmaportant for us are:
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1. Thedivision algebrag(i.e., fields), in which any non-zero element posseases
inverse, and therefore unrestricted division will be possibl

2. Thesimple systemsr full matrix rings of degreen over a division algebra,
which consist of all matrices with elements\in

3. The semi-simple systemgor systems without radical which decompose

completely into minimal left ideals. Any semi-sim@gstem is the direct sum of full
matrix ringsS; + &, + ... + S, which are mutually annihilating®):

1) 6=Y6,=>>cYA,; A,isadivision algebra.

v ik

If n, is the degree of the matrix ring, then S, will decompose intan, equivalent
minimal left ideals, while the left ideals of diffete@’s will be inequivalent. If, is the
rank of/AA, then, from (1), the rank @ will be equal to:

h=>n’r,.
A decomposition of a semi-simple systé@mnto left ideals:
R=l+hL+..+[
is also associated with a decomposition of the unity iscitmpotents:

l=etet+..+e,
e€=q; ee=0 fori # k.

An arbitrary hypercomplex syste@ possessesradical — i.e., a maximal, nilpotent,
left idealc:
¢®=0.

¢ is a two-sided ideal i, and the residue class rigg/ ¢ is semi-simple’t?).

The theory of representations of hypercomplex systeithsiow be governed by the
following theorems:

Lemma. Any representation of a semi-group with unity aeposes into two
components (one of which can be missing): In orteeh, the unity will be represented

(**% The theorems presented go back to J. H. MACLAGAN-WEBBHERN: Proc. London Math.
Soc.6 (1907), 77-118. For simple proofs, see B. L. VAN DER WAERDR&oderne Algebra |l chap.
16, or H. FITTING: Math. Ann107 (1932), 514-542. Cf., also the booklet on algebra by M. DUERIN
this series4 Heft 1).
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by the identity matrix, while the other one will consist of nothingzbrges (i.e., the zero
representation).

Proof. From the lemma, one can restrict oneselii¢ocase in which the unity &f
induces the identity transformation in the represenmtatiodule®t. Now, let:

S=hH+hL+.. +I,
M= (U, -, Um) = D GU = D [,
ik

where the sum that is suggesteddyloes not need to be direct. Each of the modules
Uk is an operator-homomorphic imagelofinder the association— X W, So it is either
the zero module or it is operator-homomorphid; toand therefore minimal. Therefore,

each of them either has only zero in common with gt of the foregoing, or it is
contained entirely within it. If one now drops thosensnandd; ux in the sum that are

already contained in the sum of the foregoing therstim will be direct.

If one actually presents the left idéak ¢ YA, +cYA + ... + ¢ A, in terms of
the irreducible representati@n, then that will imply the followingadditional theorems
and corollaries(**)):

The representatio®, of the elementa = > > ¢,"a " of & [cf, (1)] will be

v jk
obtained when one defines the matix= (o) and replaces every element" of the
division algebra\, with its representative matrix in the regular représgon of A, . In

the case\, = K, the A, already define the representati®n, in their own right. The

irreducible representatio®, then represents the sub-rigy, [cf., (1)] faithfully, and
represents the rings, (##Vv) by zero. It is of degrem, r,, so it appears in the regular
representatiom, times, and because it represegts faithfully, it will contain n’r,

linearly-independent matrices. The figld is inversely isomorphic to the field of the
matrices that commute with the representatign

Second representation theorem. The radicalc will be represented by zero for an

irreducible — and therefore also for a completely-reducibterepresentation of an
arbitrary hypercomplex syster®; i.e., the representation can be regarded as the

representation of a semi-simple system.

Proof. Let)t be an irreducible representation module. Now, if eIt # O then
one would havedt =9, so:

(**) One finds that the arguments are detailed completelyaralready-citedioderne Algebra |1 §
121 and § 118.
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which is not true.

Corollaries. A completely reducible representatiah containsZn,,2 r, linearly-

independent matrices, where the summation is extended theer irreducible
representation®, of & / ¢ that enter into® as components at least once. The

representatio® then representS / ¢ faithfully if and only if all®, enter into it at least

once.
It follows from both representation theorems thatfaihful representation of a
hypercomplex systen® is completely reducible if and only if the systé&nis semi-

simple. It follows further from this thalA semi-groupg of linear transformations is

completely reducible if and only if the hypercomplex system thatstomdi all linear
combinations of transformationiAﬂ/]y of g (viz., the “linear hull” of g) is semi-

simple.

One obtains a homomorphic imagefrom an arbitrary reducible semi-grogpof
linear transformations when one replaces all maiexnents in the matrices gfoutside

of the irreducible diagonal boxes with zeroes. Whentbea necessarily goes to the
linear hulls, one can then assume tfas a hypercomplex system. gdfis completely

reducible thery will obviously be mapped tg' 1-isomorphically; by contrast, i is not
completely reducible theg will have a radical, which goes to zero under the mag,to
from the second representation theorem. It followsnfthis that:The semi-group is

not completely reducible if and only if the non-zero linear combinatiotieeahatrices of
g consist of only ones that have nothing but zeroes in all of their irdeldudiagonal

boxes. These linear combinations will define the radical of the limalhof g.
The number of linearly-independent matrices in the seaugy is therefore equal to

the sum of the numbers of linearly-independent matridegsoessentially different
irreducible components in the completely reducible caseldbger than it in the other

case 1°9).
A representatio®, is calledabsolutely irreduciblevhen it remains irreducible under

an extension of the ground fieldl to an algebraically closed field. From the first

representation theorem (when applied to the ground €¥ldthe number of linearly-
independent matrices in this case is equal to the squé#ne dégree of the representation
(BURNSIDE's theorem). It then follows from this tha

(ryn)®=r,n? or r,=1.

(**3 G. FROBENIUS and I. SCHUR: S.-B. preuss. Akad. W(i%806), 209-217.
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The same thing also follows from the fact that, fr@nil, 6, the matrices that
commute with the representation are scalar multipleghef identity matrix. The
argument can be easily inverted, and one finds that:

A representatior®, is absolutely irreducible if and only if either the number of its
linearly-independent matrices is equal to the square of its degrée/\p= P, or if all of

the matrices that commute with the representation are scalampthesldl of the identity
matrix I.

One understands general elemenbf a hypercomplex system to mean a linear
combination of the basis elements with undeterminedficaefts. The arbitrariness in
the choice of basis is expressed by the fact that laitraay linear substitution of the
indeterminates is permissible. Tégstem matrbof a representation is the representative
matrix of the general element. For the calculatbthe system matrix, we assume that
the coefficient domain is algebraically closed, and tha system is semi-simple (the
other cases can be brought back to this case quite easitiyve employ the basisk("))

that is given by (1). The general element is thpic,” Ejliv), where & ) are

undetermined. IfA, is the determinant fjk(") | then the system determinant of an
arbitrary representation that contains the irreducilpeesent® , — say s, times will be

equal to:

) a=T]Ar.

In particular, in the case of aegular system determinan{viz., the regular
representation), one will hawg =n, . TheA, are obviously different, irreducible forms
in the indeterminateg 4, and that will still be true after a linear substiatiof the
indeterminates.

For FROBENIUS 139, the factor decomposition (2) of the system deterntina
defined the starting point for the theory of represemtatio

The theorem of RABINOWITSCH'{) follows from the theorems of this and the
previous paragraphs:

If S is the semi-simple system with unity (or the linear hull afraptetely reducible
semi-group with unity) of linear transformations of a vector spgiceto itself, ands is

(**¥ This theorem was made known to me some years agerbgal communication. Cf., also the
somewhat more specialized theorems on commuting subefrgjmple system of R. BRAUER: J. reine
angew. Math166 (1932), 245; K. SHODA: Math. Anri07 (1932), 252-258, and E. NOETHER: Math. Z.

37 (1933), 514-541. BRAUER and SHODA assumed that the centemafs complete, while BRAUER
and NOETHER assumed th@&twas simple. These assumptions are unnecessary, s@cai reduce the
semi-simple case to the simple case (which wasetlieay NOETHER) by a decomposition &f into
simple systemss = 2. &, which involve the decompositiof® = 2 9, and< =2 T, (9,= S, M; T,

= automorphism ring dbt,), in which thet, are again simple systems, from § 1.
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the system of the linear transformations that commute with all tanations ofS then,
conversely,& will be the system of linear transformations that commute with all
transformations of.

8 13. Representations of finite groups.

The general theorems that were proved in the foregomgemi-groups of linear
substitutions are naturally true for the representatfograups, in particular. For finite
groups, one has the following theorem of MASCHKE:

Any representation of a finite groupin a field P whose characteristic does not
divide the order h of the group is completely reducible.

We already mentioned in 8 8 how one can carry ouptbef in the case of the field
of complex numbers by constructing an invariant, posithERMITIAN form. For
arbitrary fields, one employs a proof of I. SCHUR tresids (when briefly summarized):
On the basis of the lemmas of § 12, one can firstnasstinat the group identity is
represented by the identity matrix, and therefore, rilerse group elemenssaands™* are
also represented by inverse matrices. Now, if:

A(S):(P(s) Oj
Q(s R3$

are the matrices of a reducible representation themvdingefine the matrix:

s=1Y RS

sing

| O)(P@®) O ) (P() O IO
S I QYH RD 0 RS 1)
so the matrix systei(s) will be equivalent to a decomposable system.
The problem of representing finite groups canrbemediately converted, moreover,

into the problem of representing hypercomplex systkat was resolved already when
one defines thgroup ring R (or Ry) of the groupg; i.e., the hypercomplex system

whose basis elements are the elemsnts., s, of g. Any representation:

One will then have:

s - A9

of g can obviously be extended to a representation:



56 Il. Representations of rings and groups.

2 XS - 2 AAS)

of ;R. Conversely, any representation 8fis also a representation @f sinceg is
naturally contained iMR. One naturally chooses the ground field of the hypercaxmpl
system to be the field in whighshould be represented.

In particular, the regular representation ®8f — under which,R is its own
representation module produces a representation of dedned g that one likewise call
theregular representation.The matrix elements @f(s) are:

ap={ Ll
0 otherwise,
in this case.
Since, from MASCHKE's theorem, any representatiory & completely reducible,
the regular representation will also be completejucible; i.e.,’/% will decompose

completely into irreducible left ideal$t is semi-simplewhere one always assumes that

the characteristic oK does not dividéh. It then follows from the first representation
theorem (8 12) that:

All irreducible representation of are already contained in the regular one and will
be generated by the left idealsff If the irreducible representatio® , is contained in
the regular one- perhaps n times — then its degree will he,n The rank ofR is:

or

resp., in the case of absolutely irreducible repraations (y = 1).

One obtains another similar relation in the absolutetgducible case from
enumerating the rank of the centef{cf., below, 8 15). This rank is, on the one hand,

equal to the numbes of inequivalent representations, and on the other, equtie
number of classes of conjugate group elemeittiserefore, the number of inequivalent
absolutely irreducible representations is equalthe number of classes of conjugate
group elements.



§ 13. Representations of finite groups. 57

If one extends the ground field in such a way that all representations decompose
into absolutely irreducible ones then the group fhgvill become a direct sum of full

matrix rings& overK with matrix unitscy(”, and one will have an expression:

(1) s=> > a,"(s)g"

v o,

for each group elemert From § 12, thex(*(s) will be precisely the matrix elements of
the representative matrx(s) of sin the representatids, .

For theAbelian groupsthe absolutely irreducible representations amdegfee 2; i.e.,
the matrices have only one element, which, wheardsgl as a function of the group
elementa, is called acharacter y(a). The characters of an Abelian group are then
functionsy(a) of the group elemeratthat have the property:

Xx@b) = x(&) Oy(b).

Since a finite Abelian group is a direct produttyclic groupse; ¢, ... €, with the

generatorgy, ..., ¢, and the orderk, ..., |, its character can be exhibited effortlessly:
One associates eachwith an arbitrary™ root of unity¢, and sets:

X(EPe o 67) = AL

The product of two characters is again a charadibe characters of a finite, Abelian
group define an Abelian groupthat is isomorphic to the given group. Any suhgrg

of the given groupy will be in one-to-one correspondence with a subgrd of the
character group, which is characterized by:

x@ =1 forainp, yin 4.

Therefore& /4 [Oh andg / h T4, becaus& / 4l is the character group Bf andil is that
ofg/h.

In a precisely corresponding way, one can alsoachearize every normal subgrogp
of a finite groupg by the fact that the elementskowill correspond to the identity matrix
for some completely-determined representatiog, @ — what amounts to the same thing

in the case of field of characteristic zerothe fact that the traces of the representative
matrices of the elements pfare equal to the degree of the representatiothéotrace of

the identity matrix). Certain applications of ttieory of representations rest upon this
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method, for which one is concerned with inferring thestexice of normal subgroups
from the properties of the group charactéf)(

If s -~ A(s) ands — B(s) are two absolutely irreducible representation of #efin
groupg andC is an entirely arbitrary matrix then:

P=> At CB")

ting
will be a matrix with the property:
A(s) P =P B(9).

It follows from the SCHUR lemma th&= 0 when the representatiofé) andB(s)
are inequivalent; however, if they are equal tRen Al, from 8§ 11.6. If one writes the
matrix equation®® = 0 PP = Al, resp.) and observes that the matrix element o
completely arbitrary then it will follow that:

L 0 whenA §) is not equiv. t8 g
2, DA )-{ 0,5, for A9~ B3,

Since the left-hand side admits the permutatik){j) for a; = 5; , a can only be
equal toawq; . Therefore, we can also write our relation as:

w forv =p,i=I,j =k,
0 otherwise.

(2) 2. a;"Oa, ()= {

If one setg =k and sums ovek then ifh is the order of the group anglis the degree
of the representation then that will yield:

hOl=n w

If h is not divisible by the characteristic of the di¢hen it can also not bg, and we
will obtain:

SR}

n

When one multiplies (2) byn”(s) and sums over, what will follow is the general
relation:

3) > @y (sh) @ () = {

wa,” foru=v,j=Kk,
0 otherwise.

%% See, perhaps, A. SPEISERheorie der Gruppen von endlicher Ordnurdf ed., Berlin, 1927,
o p p
chap. 13.
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The relation (2) can then be employed to solve (ift. If one multiplies (1)% n,

ai”(s ) and sums ovesthen one will get:

(4) al? =23 a0 (s?s

814. Restricted representations of arbitrary groups.

According to J. VON NEUMANN ¢, the theory of representations of finite groups
that was developed in 8 13 can be adapted toatestriepresentations of arbitrary groups
& in the field of complex numbers; i.e., represaatet for which matrix elementd(x)
of the representative matri(x) of the group elemenk are uniformly restricted
complex-valued functions of

In place of the group ring that was employed 3§ one generally finds théng of
almost-periodic functions o#. A complex-valued functiof(x) that is defined for ak

in & is calledalmost-periodiga. p.) on® when one can select a uniformly-convergent

subsequence from any sequence of functigms<b,) (*>9).
A mean valueof an a. p. functiori(x) will be defined as a constaAt that (when
regarded as a constant function®@ncan be uniformly approximated by functions of the

form:
cif(arxby) +cof(az x, by) + ... +c¢,f(an x by),

with ¢; + ... + ¢, = 1. One proves that there is one and only onennvalue that is a
function of f(x) (**7. We denote it byMf, or M,f(X), when the variablex should be
interpreted in relation to the one whose mean vaslieing defined.

The matrix elementdy(x) of a restricted representation are a. p. funstofx, so the
di(ay xby) are linear combinations of the finitely-many ftinos d;(x) with restricted
coefficients:

dik(av va) = zzdij (av) d"| (X) 91 ( p) .

]

With the help of the definition of mean value thvaas described above, one proves
precisely, as in 8 8, that every restricted repred®n of & leaves a positive
HERMITIAN form invariant, and is thus equivalent #ounitary one. From this, or the
direct proof of SCHUR (8 13), it then follows fueththat every reducible, restricted
representation is completely reducible.

Ultimately, as is 8§ 13, one proves the relations:

(**» J. VON NEUMANN: Trans. Amer. Math. So86 (1934), 445-492.
(**9 According to BOCHNER: Math. Anr@6 (1927), 119-147, this definition is equivalent to BOHR'’s
original definition in the case whei® is the additive group of real numbers &g is a continuous

function. On that, see BOHR: Ergeb. Math. I, 5 (1932).
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Mydij (Xy_l) qd( » :%5]'k Q( )L
M, d; (xy™)d,(y =0, for® inequivalent t®'

(1)

in which d;(x) means the matrix element of an irreducible resregtion® of degreen,
and d,, means that of another irreducible representafion
Theproductf x g of two a. p. functions will be defined by:

fx g(x) = My(f(x y™) g(¥)) = My(F(y) 9y ™ %).
It defines an analogy with the product of two eletee%ﬂz f(y)y and%ﬂz 9(2) z of
the group ring$R, in § 13, which will, in fact, be defined by:

[%ﬁz f(y)yj(%ﬁz o2 zj - %Z{%Z f(y)g(z)} x

_1g)1 -1
—EZX‘,{EZy‘,f(y)g(y &} X

The product is associative and distributive ovelirary additionf(x) + g(x), so the a. p.
functions define a ring under this multiplicatiomdsaddition that we will denote By, .

With the help of the product sign, one can alsbenf) as:

d,xd (9 =-8,4 O3
d; xd; (X =0.

(2)

These relations state that the functions:
(3) Gj(x) =n dj(x)

fulfill the equations exactly that are characteristf the matrix units of a full matrix ring
over the fieldK (cf., 8 12). Therefore, any irreducible repreadoh® , belongs to a full
matrix ring &, in R, , whereby the same matrix ring belongs to equiva®enand
therefore, from (2), two differer®, will mutually annihilate each other.
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The representatior® can also be generated by representation modules th&tecan

chosen to be right ideals 3, . To that end, we define the multiplication of a fuoti
f(X) times a group elemeatby way of {*%):

() a f(x) =f(x a.
One then has the rules:
a(f +g) =af +ag,
a(fxg) =fxag,
albf) =(@b)f.

The ringR, is thus a®-module. If a sub-modula = (g1, ..., g) Of finite rank admits

multiplication by the group elements then it will media representation — di(y) by
means of:

(5) y BdY) = 90) = 29, (X d ().
Such a modulen is simultaneously also a right ideabiy, , due to the fact that:

g X F(9) = My a(xy™) f(y) =My 22 69 diy™) f(y) = 22 69 DB,

B =My (di(y™) f(y))-

with:

If one decomposes into irreducible representation modutes , for whichm, gets
the representatio® ,, say, thenm, will be contained in the ring,, and it will follow
from (5) forx = 1, on account of (3), that:

g,@)

n

gdy) =2 (1) duly) = >

G (Y)-

Conversely, a minimal right ideal of the rigg — e.g., the ideal, = (C11, Ci2, ..., C1n)
— will mediate the representatian, precisely, as one easily confirms.

The irreducible representations 8%, will then be mediated by the minimal right

ideals of the ringS, , corresponding to § 14, precisely.

The ring&, itself is also as-module, and thus, a right, but likewise also § ideal
in R, .

(*") In order to maintain the analogy with formulas (4)80l3, we actually must writg;(x) = n
dij(x'l), instead of (3) and f(x) = f(a™ x), instead of (4). The formulas will then become simpleen one
does things as above.
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The capstone of the theory is defined by the proof@ttmpleteness of the systems
of functionsdi orck . Consequently, from here on, that will be understood.

If one defines thecalar produciof two functiond, g in R, by:

(f, @) =My f(y) a(y) =g' xf(1) =f x g'(2), whereg'(x) = g(x™),

and thenorm or length by:

N(f) = (f, ) =M [ T()F

thenfR, will become a generalized HILBERT spac¢®)( into which one can introduce a

topology on the basis of the definition of the drste byN(f — g. A system of functions
fi, f2, ... iIs now calleccompletewhen the linear combinationsfi + J5 fo + ... + ) f; are
everywhere dense iR, —i.e., any a. p. functiohcomes arbitrarily close:

N(pfr+ppfat+ ... +tpyfi-f)<e

for anye> 0 with suitabley .
In order to prove the completeness of ti€x), J. v. NEUMANN, following the
example of PETER and WEYL), considered the “integral equation”:

fxfixy=yy

Here, we shall give an altered proof that follows @TKE (°% by employing the
theory of integral equations as little as possible, windaching a more algebraic
conclusion.

The functionsi(” generate the full matrix ring,, whose unity element is:

e=2a" .

From the unitarity of the representati®n it easily follows thae, " =e,.
Any a. p. functiorf can now be decomposed into a componed jrand one that it

orthogonal to it:
f=fxe +({f-fxe).

One easily convinces oneself that the scalar product bk e, with an elemeng x e, of
Sy is, in fact, zero'®Y):

(f-fxe,,gxe)=(F-fxe)xe xg'(1)

(**® F. RELLICH: Math. Ann110 (1934), 342-356.

(**9 F.PETER and H. WEYL: Math. An®7 (1927), 737-755.
(**9 G. KOTHE: Math. Ann103 (1930), 545-572.

(**)  The rule of computatiorg(x h)" =h' x g" is employed in this.
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=fxe,xg'(1)-fxe,xe, xg'(1)=0.

The component dfin &, can also be written in the forep x f. Namely, since, x f and
f x e, both belong ta&5,, and sinces, is the unity element o6, , one will have:

fxe =g xfxe =g, xf.
The components dfin different&, are mutually orthogonal. We define the sum:
fy=fxe+fxe+.. +fxe,.
f —f, is then orthogonal th, , so:

N(f)=N(f,)+N(f- 1)
(6) { ZN(fﬂ): N(fxe)+ N fx g)+---+ N fx 9).

It follows from (6) that at most a restricted numioérnorms can satisfi(f x e))

zN—f. When one sets= 1, 2, 3, ..., in succession it will follow that tegwith f x e, #
n
0 —i.e., the ones witN(f x e,) > 0 — can be put into a denumerable sequence. We call it
€1, &, €, ... It now follows from (6) that the series:
(7) N(f xe) + N(f x &) + ...

converges with a sum N f (BESSEL'’s inequality). The completeness of the sysé
functionscy” will be proved when we can show tHah N(f, — f) = 0.

It likewise follows from the convergence of theiseN(f x ;) + N(f x &) + ... that
the sequence df fulfills the CAUCHY convergence condition:

N(f,—f) =N(f xenr+ ... +fxe) <e for V> u>n(é).
We now prove éemma:

If the sequences of a. p. functiopsahd g both fulfill the CAUCHY convergence
condition then K(x) =f, x g,(X) will converge uniformly to an a. p. functiofxh

Proof. Let the upper bound Nff,) andN(g,) beM. One will then have:

[T x9ux) = fux guX) | < | v =) x 9uX) | + [fux (@ — )X |
<Nf,-f) INg, +Mf,IN(Qv— Q) <2M &
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for v> u>n(g). The sequence bif(x) thus converges uniformly to a limit functitix).
However, a uniform limit of a. p. functions is again anp. function, which follows
immediately from the definition of a. p. functions.

We apply the lemma to the sequence of functipnsf and the “adjoint” sequence

fT -7 sowe set:
h,=(f,—f)x (] —f7).

One then hasy = h, (**), so one likewise hak' = h for the limit functionh(x).
Furthermoreh is also orthogonal to ab, with /< v

e,xh,=¢e,x (f,—f) x (ff -fN) =0,

and the same thing is true for &} that do not appear in the sequergee, ...
Thereforeh is also orthogonal to atb,;:

(8) e,xh=0.

Finally, h,(1) =N(f, — 1), soh(1) = lim N(f, — f). If N(f, — ) did not tend to zero thex{x)
would also be an a. p. function that is non-zero andgahal to all&, . We will show

that this is impossible.
To that end, we consider the eigenvalue problem:

(9) hx ¢=Ay.

With the methods of E. SCHMIDT's theory of integral atjons, one can prove, as
WEYL and PETER 9, as well as v. NEUMANN*?), did more rigorously, that there
is at least one non-zero eigenvalue and an associggdection. The same thing also
follows from the general theory of completely contms linear operators in a general
HILBERT space ¥%. As is shown in the same theory, the eigenfunstiprthat are
associated with the eigenvaluédefine a modulem of finite rank that admits

multiplication by the elementsof &; it then follows fromh x ¢ = A ¢ that:

hxyy=y(hxy)=yA ¢=A0yy.

From our theorems, the modute contains an irreducible sub-modute, that is
contained in a ring>, . That is, an element, appears among the eigenfunctiahsuch

that:
(10) hxy,=Ag,; A20, ¢,InG,.

The unity elemeng, of G, annuls the left-hand side of (10), due to (8), but it co¢s
annul the right-hand side. That is impossible. Theeel(f, — f) tends to zero.
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Using completeness, v. NEUMANN™{) has proved that a. p. functions can be
uniformly approximated by linear combinations of tdg(x) with a method of N.
WIENER.

All of the theorems and proofs above remain true venbahen one restricts oneself
to a topological group (**3 with continuous a. p. functiongnd a continuous
representation.

There are topological groups for which all restricted esentations, and thus also all
a. p. functions, are continuou$3, namely, the semi-simple, continuous groups, whose
representation theory has been developed by CARTAN &Bdl\W %Y. There are even
groups that possess no restricted representations besedetentity representation and

on which the only a. p. are therefore the constamtee real projective groupSL(n, P)

belongs to them. However, there are also groups orhvallicontinuous functions are a.
p. Clearly, that is the case for compact, topoldgjcaups. The completeness theorem is
even true for all continuous function for these groupse réfer to v. NEUMANN ¥

for a thorough investigation of these different posisied.

The absolutely irreducible restricted representatidrsbelian groups$ are given by
one-rowed matrices, and thus by complex numbers of modaokisthese are again called
charactersx(a). Following PALEY and WIENER or ALEXANDER (*°*3, one
obtains them when one totally orders the generato¢s and determines the value of a

charactery for each generat@in such a way that it follows from:
h_ h
a'= |_| a,’,
where thea, run through thea in the total ordering, that:

x@" = x@)".

Another method, which was given by A. HAARY for denumerable Abelian groups
and was extended to separable, compact-in-the;sAtadlian, topological groups by v.
NEUMANN (**9, generally does not yield all characters, buy@family of characters
#(a, 1) that are BAIRE functions of a real parametehat are also continuous functions
of a in the topological case that have the propertylthmg(a,, A) = 1 implies that linra,
=1 for allA. If & is denumerable then thé€a, A), as functions ofl, define a complete

orthogonal system relative to a monotone regulatinggtion (Ger:Belegunsfunktion

(167).

(**)  For this concept, see F. LEJA: Fundam. Matt1927), 37-44. — R. BAER: J. reine angew. Math.
160 (1929), 208-226. — D. VAN DANTZIG: “Studien over topologis@igebra,” Diss. Groningen 1931.

(**3 B. L. VAN DER WAERDEN: Math. Z36 (1933), 780-786.

(**%) See footnotes 73 and 74 in |, § 8. See also footnote 159.

(**» N. WIENER and R. E. A. C. PALEY: Proc. Nat. Acadi.&J). S. A19 (1933), 253-257.

(***3 J. F. ALEXANDER: Ann. of Math., Il. s35 (1934), 389-395.

(**9 A. HAAR: Math. Z.33 (1931), 129-159.

(**") L. PONTRJAGIN: Ann. of Math., II. $35 (1935), 361-388.
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Thecontinuous charactersf anAbelian, topological groumgain define an Abelian,
topological groug” when products and limits in are defined by:

{ W (@) =y (a)Dx(a),

lim x, = x, whenlimy, @) for alla

If & is discrete and denumerable tHewill clearly be compact; on the other handif
is compact theft will discrete and denumerabl&j. If & is compact in the small and
separable theh will also be so'¢"3. In all of these cases, the growpsandl define a

group pair, in the sense of L. PONTRJAGIN?(); i.e., aproduct y [a = x(a) is defined
for everya in  and y in I that is a real number with absolute value one that depend

continuously upory anda individually and possesses the distributive properties:

xa Oyb = y [hb; Yalya=yya

In addition, the group pair rthogonal;i.e., if ya = 1 for somey and alla then it will
follow that y = 1, and ifya = for somea and ally then it will follow thata = 1.
According to PONTRJAGIN'fY), in the case wher® is discrete and denumerable

and thus compact — any subgra@gpof & will be in one-to-one correspondence with a
closed subgroug of I', such that® will consist of they with ya = 1 for alla in §, and
conversely$ will consist of thea with ya = 1 for alla in ®. One has, moreovelf. &
andl define an orthogonal group pair anddf is denumerable anfl is compact thef

will be the character group a® and & will be the group of continuous characterslof

It follows from this that:If T is the character group ob then® will be the group of

continuous characters éf, and conversely.
E. R. VAN KAMPEN ("3 has adapted these theorems to pairs of compact-in-the-
small, separable, Abelian groups.

8§ 15. Traces and characters.

1. Definition and general properties.

If a representatio® of a semigroupy is given then we will consider the trace of the
representative matri& of an elemené to be a function od and denote it b$,(a) or by
S@). In particular, ifg is a group therS(b™*a b) = Sa). The trace then depends upon
only the class of the group element

(**"3 E. R. VAN KAMPEN: Proc. Nat. Acad. Sci. U. S. 20 (1934), 434-436. A further paper by the
same author in which the theory of characters willdbeeloped systematically will appear in Ann. of
Math. 36 (1935).
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The trace of a matrix of a reducible system is tha efithe traces of the irreducible
components. Thus, if the irreducible representatidnenter into a representation of a

semigroupk, times as diagonal components then:

(1) So(@) =2k S, (.

If g is a hypercomplex system then the traces of the elsnud the radical will
always be zero, since they will be represented by garoal irreducible representations.
The trace in the regular representation is calledegelar trace.

The trace of an elemesbf a finite group in the regular representation is Zers #

1 and equal to the ordérof the group fors = 1, as one infers immediately from the
formula for the matrix elements of the regular repneéstion (8 13).
In fields with characteristic zero, one has thetam:

Two completely reducible representatiaDs®’ of a semigroup are equivalent only
if their traces coincidé™).

Without the assumption of characteristic zero, titedctheorem is not true, in
general, but it is true for two irreducible representatio The traces of the absolutely
irreducible representations of a semigroup are caledacters and will be denoted by
x(@ or y[a). Since one can absolutely reduce any representatiogoimg to an
algebraically closed fieldany trace will be a sum of charactef$%. The trace of an
individual group element is likewise the sum of charactdéra cyclic group, so in the
case of a finite group, it will be a sum of roots oftwuni

2. The KRONECKER product representation.

If two representations of a semigrogiby linear transformations of the vector spaces
(uy, ..., uy) and {4, ..., Va) are given then one can regard the basis veciars; as
indeterminates and define the On productsy; v; ; these will likewise be linearly
transformed by the group If A = (ax) andB = (b;) are the representative matrices of a
group elemens in the two given representations thgn = ax G (i, ] are row and, | are
column indices) is the matrix by which thev; will be transformed; one calls it the
KRONECKER product matrix Ax B. The product transformations again define a
representation of: viz., theproduct representatian The trace of the product matrix is
equal to the product of the traces of the matriicasdB.

If one denotes the irreducible representations of agseap by®i, ©,, ..., and one
assumes that the product representafign< ©, includes the irreducible componet,

- say- c,, times then one can write:

(**® One also refers to an arbitrary integer linear liomtion of characters and in particular, the
trace of an arbitrary representation — @agaposite character.
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D,%xDu=>.¢9,.
1%

For the characterg, of the representatior8,, it follows from this that:

() X9 xds) = D¢, x,(9).

3. The system discriminant and complementary bases.

A sufficient condition for the semi-simplicity @& hypercomplex system is the non-
vanishing of the regular trace determinant +egular discriminant:

3) D =[Su.w) |

that is defined by any two basas,(..., u,) and {, ..., vy) of the system, or — what
amounts to the same thing — the existence aimplementary basisw, ..., Ww,) to any
basis (4, ..., Uy), which has the property:

Suy W) = (=0or 1).

The fact that one always hBs= O for a system with a radical will become cleduen
one chooses; in the radical, since af{u; w,) = 0 then.

In the case of the group ring of a group whoseeotdis not divisible by the
characteristic, one will always hav@ # 0, so the elementgs™ will define a

complementary basis to the basis of the group elesne

h for t=s?,
0 fortzs™,

(4) sy = {

The semi-simplicity of the group ring will followdm this once more.
If one expresses the trace in (4) in terms otti@acters then one will obtain:

hQ for t=s™,
Ny Y/st) =
2. Xls? { 0 fortzs™,

or, when one introduces the matriceﬁ(()) of the absolutely irreducible representations:

(5) >3 n, a9 ag™() =

v jk

hQ for (t=s"),
0 for (tzs™).

The basis that is complementary to the bagi¥) is (n,*ck!")), as one easily verifies.
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4. Therelations between the characters.

When one setis =, k =1 and sums ovgrandl, it will follow from equation (3), § 13

that:
©) 3 1, (s Xﬂ(rl):{ X, (s) for v =,

0 forvZ pu.
In particular, fors = 1, one will obtain therthogonality relations of the character:

hil (v = ),

(7) Z)(V(t))(ﬂ(t_)={ 0 W)

The orthogonality relations can thus be employedngke the decomposition of a
given representatior® into absolutely irreducible ones possible by merace

calculations. Namely, if:

(8) =09, SO Sy(9=D.cx(9,

then it will follow from (7) that:

> X (sHS(3 =hc, O

One determines the numbegsfrom this (in the case of characteristic zero).

>'S,(9 $(8) =h0) ¢’0,
so:
A representatior® in a field of characteristic zero is absolutelyaducible if and
only if one has:

>'S,(9$(8) =hL

for its trace

The trace relation (8) often finds applicationstiie theory of invariants when one
must determine the number of linearly-independesctars that remain invariant under a
representatio® of a groupg. Namely, this number is obviously equal to theficient

c: of the identity representatid; in the decomposition (8).

We now assume that the ground field is a numieddl.fiThe charactepg as sums of
roots of unity, are algebraic numbers then, andedd(s %) is complex conjugate t(s).
It now follows from (6) (with¢ = v) in a known way thaty as the root of the secular
equation:
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| X(st™) - & w| =0,

is likewise a whole algebraic number; it then follotvat: The degree of an absolutely
reducible representation is a divisor of the order of the group

8. Thecenter of the group ring.

The center of a semi-simple hypercomplex sys@mver an algebraically closed
field consists of the elementsthat commute with all elements &, so they will be

represented by a multiple of the identity matrix in anysadidely irreducible
representation. The formula:

r= zzajk(V)(r)Cjk(V) ,

v jk

which is true for any elementof G, will then reduce to:

(9) z=2.a,2.6"=2a@1,

forr=z
Thel, = chk‘”) are idempotent elements of the center, namelyutity elements
k

of the full matrix rings&, into which & decomposes. The,(2) are the irreducible
representations (of degree 1) of the center. QisWo the relation:

(10) XD =n, af2)
exists between the charactgiéz) = >, and theay(2).
k

In the case of the group ring= Z)Iss belongs to the center if and onlyt#t™ = z

for any group elemerit and that comes down to saying that all of thenelgtstst™ that
are conjugate to amhave the same coefficiends. If one then setk; equal to the sum
of all differentelementsst™ of the class o6 then theks will generate the center, and
relation (9) will become:

_ XK _<h
11 k=Y ayk) 1, = Y25 =53 v (91,
(11) afks) 1y= " o ZV:nVX(S)

in whichhs is the number of elements in the class. of
The solution of this formula fdr, is obtained from (4), 8§ 13, when one detk in it
and sums ovek:

(12) oW ACREERSWACHTS
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In the last summatioh', s runs through a system of representatives for all daske
the group. A comparison of (11) with (12) yields that thetrives f.(s)) and
[%)(V(s‘l)j, in which the row (column, resp.) indexruns through a system of
representatives of all classes, are inverse to ednghr. The orthogonality relations (11)
say the same thing. One can also express thisebiptmula:

0 fort#zs?,

(13) ZV})(V(S)XV(t) ={ hih for t=s*

The producks k of two generators of the center is again an el¢mmkthe center, and
thus, a (integer) linear combination of the germs; :

kski= > gy k..

The fact that the functions,(2) define a representation of the center is exptebge
the formula:
afks) akks) =Y g4a,(k),
which is converted into:

(14) hs hx(9) xu®) = n, > o hx, (1

(i.e., summation over a system of representatiékeoclasses) after multiplying tny?,
due to (10).

G. FROBENIUS %) first defined the characta(s) by formula (14). A. HAAR{®)
gave another basis for the theory of characters ithandependent of the theory of
representations, and which is also valid for cer@inite groups.

Most of the formulas in this paragraph were detiealy under the assumption that
the orderh of the group was not divisible by the characterist the field, and thus that
the group ring was semi-simple. However, thatastrue for formulas (2), (6), (7), (8),
(10), (14), which have general validity.

8 16. The decomposition of irreducible representations
by extension of the ground field.

The question of how an irreducible semigroup ofedir transformations can
decompose under an extension of the ground ffetd a commutative field reverts

immediately to the question of the behavior ofrapde hypercomplex syste@ under an
extension of the ground field. Namely,&f is the linear hull of the given semigrodp

16 FROBENIUS: S.-B. preuss. Akad. Wiss. (1896), 985-1021.

9 G.
("9 A. HAAR: Acta Litt. Sci. Szege8 (1932), 172-186.
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then& will be a simple hypercomplex system o¥grand the given representation®f
by linear transformations will be mediated by a lefaideof S. Under an extension &f
to K, & will go to a hypercomplex syste@,, andl will go to a left ideal; of &; one

then simply treats the problem of how this left ideal &, will decompose into

irreducible left ideals. Since this question was disaugkeroughly in the book on
algebra (volume 1V, book 1) in these “Ergebnisse,” hérill suffice to summarize
briefly the most important results without prodf{. Let & be a full matrix ring of

degreen over a division algebrd, let Z be the center of\, and let® be the given
representation ab as an irreducible semigroup of linear substitutions.

1. If Z or K or both of them are separable ovethen the syster&, will be semi-

simple, so any representation &fin K will be completely reducible. In particular: Any

irreducible or completely reducible representation will remain coteplereducible
under a separable extension of the ground field.

In the sequel, we will assume tlats separable ovék.

2. The ideall, decomposes into just as many irreducible left ideals as theNjing
only of n times greater rank. The ridg decomposes into just as many simple systems

(two-sided ideals of the ring) as its center.

Any of these simple systems can be further decompagedonly equivalentleft
ideals; however, the left ideals of different systear® inequivalent. For the
representatio®, this says that it decomposes into just as many ineqoivedenponents

as Z, ; each of these components can then be further decethpo® equivalent
irreducible representations.

3. If K is Galoisian, in particular, then the different simple subsystens.péind
therefore also the inequivalent components of the representatiosill be conjugate

relative tolP; i.e., they will go to each other under the automorphisnis. of

(*") The theorems of these paragraphs (to the extentriatrelate directly to the semigrogy) go

back to I. SCHUR: S.-B. preuss. Akad. Wiss. (1906), 64-I8hs. Amer. Math. Sod0 (1909), 159-175;
their hypercomplex basis and refinement goes back to ETHER; Math. Z.37 (1933), 514-541. For
the historical development, see H. TABER: C. R. Ac&®aris142 (1906), 948-951; L. E. DICKSON:
Trans. Amer. Math. Sod. (1903), 434-436.
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If one is interested in the absolutely irreducible espntation®’ into which ©
decomposes under a sufficient further (e.g., algebrgicédlsed) extension dP, then

from 3, it will suffice to consider one of these reg@etation®’; the remaining ones will
certainly be conjugate to it and will appea&irequally often.

A field K in which an absolutely irreducible representat@nof © splits is called a

splitting field. A field in which® decomposes completely into absolutely irreducible

representations is calledde@composition field The numbem that gives how often the
absolutely irreducible representation appears irb is called thesSsCHUR indexf D’ or

9 relative to the fieldP.

4. Any splitting fieldK envelops a fiel&; that is equivalent t&. A componen®;
of the given representatial that is irreducible inZ; splits off from® in Z; , which

further splits into m equivalent componegtsin K.

In the event that the indem is not divisible by the characteristic of the field, fiedd
Z; will be generated by the characters of the absolutedglucible representatioB’.

One can also obtain the representatibwhen one identifieZ with Z; and regard$& as
a hypercomplex system ovErand! as a representation module relativ&toRegarding

Z =Z; to be the ground field, instead Bf simplifies the investigation insofar &s will

then become aormal simple system — i.e., one whose center is the grbelkd The
concepts of decomposition field and splitting field coiecieklative to these ground
fields:

5. The division algebra\ has rank mrelative to Z. The degree of any splitting
field K overZ is divisible by m. The splitting fields of smallest degree Hageee m and

are isomorphic to the maximal, commutative sub-field.oAny splitting field of degree
mg is isomorphic to a maximal, commutative sub-field of the fullixnatg of degree g
overA, and any such maximal, commutative sub-fieldof a splitting field.

In conclusion, we mention a theorem that is easy aoepfor completely reducible
representations:

If two representations of a semigrodpby linear transformations in a fielt are

equivalent in an extension fiekithen they will also be equivalent in the ground fiild
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Proof ¢'3: First of all, assume that the ground fi€ldas infinitely many elements,

or at least, more than the degree of the represemtatold imply. The equivalence of
two representatiors - A; anda —» A; would be equivalent to the solubility of a system
of linear equation3d A, = A;T and an inequality T | # O for the elements of the matiTx

If such a system were soluble in the fi@®dthen it would also be already soluble in the
ground fieldP, assuming thaP contains more elements than the degree of the inequality

would imply.
Secondly, assum@ has finitely many elements. If two representatian¥i are

equivalent then they will also be equivalent in a fingtegension fieldz of P with

sufficiently many elements. Mt =u; P+ ... +upnPand9t=v; P + ... +v, P are the

representation modules of the semigra@uphen their extension modul88s =u; = + ...
+UnZ andMs =v1 2 + ... +vy Z will be operator isomorphic as( ¥)-modules, and

therefore all the more so a®,(P)-modules. Now, if &, ..., gy) is aP-basis ofZ then

Mts can also be written in the form:
(1) Ms =Maoi+ ...+ Mg .

The individual summanftg is operator isomorphic 9t by means of the associatian
- ug . If one thinks oD)t and9ts as being written in the form of direct sums of dikect

indecomposable summands, according to the REMAK-SCHMIBdorem (§ 11.4),
then, on the basis of ()]t will contain each summand precisglyimes as often &¥t.

Now, if Ms and Ntz contain directly indecomposable summands just as dfiiem the
same thing will also be true foR and9t.

8 17. Factor systems.

Let ® be an absolutely irreducible representation of a norsmaple hypercomplex
systemS in a finite, separable extension fidid= P() of the ground field®. © might

go to ®, by means of the field isomorphismg, which take? = & to its conjugate
guantitiesd, . Since the representatioBs, are all equivalent, there will be non-singular

matricesP s in the fieldP(J,, Jp) that transforn®ginto D :

(1) Do =PasDg Pa_p}

(*'3 The proof goes back to E. NOETHER and was partiabgented by M. DEURING: Math. Ann.
107 (1932), 144.
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One can obviously choose tRgs in such a way that any isomorphismR{t,, 95

that takesd,, Jzto a conjugate paif,, Js also take®,zt0 Pys. To that end, one needs
only to choose a pairk,, Jp) arbitrarily from any class of conjugate pairs in order to
determine &,z and derive the remaining,s from P,z by the isomorphisms in question.
One can thus choo$gi = 1.

The matrixP s Pg, transforms® , into ©, ; one then has:

Pas Pgy = Capy Pay,

wherecggs, is a non-zero number B(7, I3, 7). These numbers define tifactor

systenof the representatio® of & in the fieldK overP. The following conditions are
characteristic of such a factor systef)(

1. cnn=1,

2. CaﬂyCayJ = Caﬁdcﬂycfy
3. S @ =cCapy, WhenSis an isomorphism that takés, 9z, 9,10 Jo, 5, I .

If one replacesP sz with Kaz Pos , where the numberk,s must fulfill the same
conjugacy conditions as tlig, then thec will go to an “associated factor system”:

k -k
c — _aB By

afBy - k Caﬂy "
ay

If one regards associated factor systems as not b#fagedt then the factor systecgg,
will be determined uniquely by the hypercomplex syst&rand the fieldK(%). For a
given cgp, that fulfills the conditions 1, 2, 3, one obtains @drgomplex syster® with
just this factor system when one constructs all megraf the form:

Cily) (k rows, A columns),
where thel; run through all numbers iP(F,, Jp that fulfill the same conjugacy

conditions as thk,; do above. The totality of these matrices is absglutedducible and
linearly closed; it then faithfully represents a sienplypercomplex syster®. This

representation is equivalent to a representation thratiemal inP() and has the factor

systemcag, (19
The fundamental theorem in the theory of factotesys reads:

(*"® See R. BRAUER: Math. 728 (1928), 677-698.
("% R. BRAUER: Math. Z30 (1929), 90.
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G is a full matrix ring over the ground fiel® if and only if the factor system is
associated with the identity system,& 1 (7).

If one brings into play the easily-proved facts tlmat productS x ¥ of two normal,

simple, hypercomplex systems belongs to the product ofatiter systems,sz, Odgg, |
and the inverse isomorphism syst&frbelongs to the inverse factor systezgljy then it

will follow that & x &' has the factor system one, so it will be a full nrating overP

(*'®. 1f one now divides the algeb@ into classes, when one counts all full matrix rings
over the same division algebfain one class, then these classes will define a group under
the multiplicationS x ¥: viz., the BRAUERalgebra class groupin which the class df

plays the role of the identity element and the clafs&'’ plays the role of the inverse

element to the class &. The algebra classes with fixed decomposition fieldefine a

subgroup of the algebra group that is homomorphic to its grofgctmir systems, and in
fact is 1-isomorphic to it on the basis of the maieotlem above. It follows from this

that any algebra class with a given cent® and decomposition field will be

determined uniquely by its factor systems, G in particular, a division algebra with a
givenP andK will then be determined uniquely by its factor system.

Naturally, an extension fieltl' of K is also a decomposition field & with K; the
associated factor system is determined from th& of a closely-related way: one will
havec,, = cqp , When the isomorphism&,, s, Iy of K' yield the isomorphismB, ,
s, T, when they are applied .

If one chooseX' to be a Galois field2 over P, in particular, and employs the

elementsS T, U, ... of the Galois group as indices, instead of the nusnbbes’, ), then
one can also construct a hypercomplex sysgethat belongs to the given factor system

in the following way:& envelop2, and each automorphisgof K belongs to a basis
elementus of & relative toQ, such that one will have:

6 =>Qus= > uQ.
S S

For eachwin Q, one will have:
wUs =Us(S o),

("9 A. SPEISER: Math. Z5 (1919), 1-6; cf., also I. SCHUR: Math. B.(1919), 7-10 and R.
BRAUER: S.-B. preuss. Akad. Wiss. (1926), 410-416.
("9 A direct proof of this theorem is given by E. NOETHHRath. Z.37 (1933), 532.
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— -1
Us Ut = UsT CST, s1

G is called thdolded product of the fiel@ with its GALOIS group.

For more on the theory of factor systems and traetbproduct, we refer to the cited
literature, in particular, to the book on algebra byIMIERING in this collection (Band
IV, Heft 1).

§18. Integrality properties. Modular representations.
W. BURNSIDE has proved {):

A semigroup of linear substitutions whose matrix elements are rationddarsmwith
reduced denominators is equivalent to an integer subgroup.

The proof of this, which is presented by SPEISER),(yields the following
generalization of this theorem:

If the matrix elements of the semigragare numbers in a finite algebraic number
field with reduced denominators thgnwill be equivalent to a semigroup with integer
algebraic matrix elements in a suitable extension field.

In particular, the theorems that were mentionedafoepresentation of a finite group
(more generally, for a representation of an “ordermigd hypercomplex system, as well)
will be true in an algebraic number field.

Two integer representatiod¥s), B(s) of a semigroup are calladteger equivalent
when they can be taken to each other by transformatiaths avunimodular, integer
matrix, or — what amounts to the same thing — when thigiger representation modules
are operator isomorphic. Rational equivalence is neggdsa not sufficient, for integer
equivalence. According to C. JORDAN, however, the integpresentations of a
semigroup that are rationally equivalent to a given ratigrirreducible representation
dltgg)ompose into onliinitely manyclasses of mutually integer equivalent representations
).

If one extends the given representation to a senpisininypercomplex syster@®
then one can choose the representation module forditallrrepresentations that are
equivalent to it to be a minimal left idelabf G. The integer linear combinations of the

matrices of the given representation define an “orderingh &, and the integer
representations will be mediated by smmodule that is contained ih When one

(') W. BURNSIDE: Proc. London Math. Soc. (2)1909), 8-13.
(‘") A. SPEISERTheorie der Gruppen von endlicher Ordnug' ed., Berlin, 1927, § 65.
("9 C. JORDAN: J. Ecole polytechd8 (1880), 111-150. — Another proof is in L. BIEBERBACH:
Nachr. Akad. Wiss. Gottingen (1912), 207-216. — L. BIEBERBAQId & SCHUR: S.-B. preuss. Akad.
_ p
Wiss. (1928), 523-527.
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multiplies theseo-modules with suitable natural numbers, one can cortliern into
ideals of the ring. JORDAN'’s theorem then means the same thing as emotie that
says that there are only finitely many classes of miytisdmorphic ideals i that are
contained in the givehof &. This finitude of the ideal classes can also be prowtd

the classical ideal-theoretic method8)(

One understands the termodular representationof a group to mean the
representations in a field of characterigtior especially a Galois fieBF(pf). We shall
now examine the relations that exist between modualdman-modular representations.

Let ®1, ..., ©, be a complete system of inequivalent absolutely irnbtkic

representations of a finite groypthat may be assumed to be integer algebraic for a

suitable algebraic number field. If one now reduces these representations modulo a

prime idealp of K then one will obtain just as many modular representatofg in
GF(p"). If the characteristic p of GF does not go into the order h of the grioem the
representation®, will also remain irreducible and inequivalent modulo p, and they will
exhaust all absolutely irreducible representationg of fields of characteristic p.

Proof. From § 13, formula (4), only integer algebraic bers, divided by the ordér
of the group, will appear as coefficients in the expogssfor the matrix units;'” of the
group ring as linear combinations of the group elementsThus, the formulas will
remain meaningful modulp. The rules of calculatioa”cq ) = ¢; ), etc., as well as

the formulas = > a, ()", will likewise remain true. However, these formulas
also define the decomposition of the group ring into fodtrix rings relative to the
ground fieldGF(p'); therefore, the various absolutely irreducible repreg®ns ofg by
matrices mo@ will also be given irGF.

The representations of finite grougsn fields whose characteriste goes into the

orderh of the group were investigated by DICKSORY In the extreme case=p°, the
identity representation is the only irreducible represt@m; any representation can then
be brought into the formt%):

-0
a, 1--0
a, - 1

DICKSON deduced from this:

If g contains a Sylow groufp of order [§ then any irreducible representation pfn a
field of characteristic p will be contained in that representation thahduced by the

(*®*9) C. G. LATIMER: Bull. Amer. Math. Soci0 (1934), 433-435.

(**) L. E. DICKSON: Trans. Amer. Math. Sc&(1907), 389-398.

(**3)  Another proof of this was given by E. SPEISHReorie der Gruppen von endlicher Ordnyuay
ed., 8§ 69.
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identity representation of the Sylow grogp(cf., 8 19). The regular representation

contains this induced representation precisélyimes as a diagonal component, but it is
not, however, completely reducible.

L. E. DICKSON (%3 has calculated the characters of the modular reqtasms for
some examples of finite groups with the help of form@, 8 15. The example 9§ [

SL(4, 2) shows that there are modular representation ddnamot arise from integer
algebraic representations by residue classes mgdst(s has no integer representation

of degree 2.

R. BRAUER communicated to me the fact that the nuraberequivalent absolutely
reducible, modular representations of characterstis equal to the number of those
classes of conjugate elements in which the order of theeeleis relatively prime tp. |
hope that he will publish this result soon.

Finally, let us mention a theorem of MINKOWSKI het&):

If one reduces a faithful, rational representation of a finite group modual@dd
prime number then a faithful, modular representation will arise.

If the order of the group is odd then the same thingalgth be true modulo 2.

819. Relationsbetween the representations of a group and those of its subgroups.
Imprimitive representations.

Let g be a finite group and ldét be a subgroup agf. Any representation agf also
yields a representation gfthen; in particular, any absolutely irreducible represemta
®, of g yields a representation §f— which will be denoted b ,(h) — and a result, it
can be decomposed into irreducible representations @f an algebraically closed

ground fieldP):

Any irreducible representatian of h will be mediated by a left ide&) of the group
ring R, of h. However, this can be regarded as a subring of the gnagifiy ; [, then
generates a left ideal, = B[, that mediates a representati@(v,) of g. This
representatio(0,) is called thgimprimitive) representation gf that is induced by the
representatiorv, of h. One sees immediately the fact that one is,at féealing with an
imprimitive system of linear transformations, in thesseaf 8 8, when one decompoges

(**3) L. E. DICKSON: Bull. Amer. Math. Soc. (4B (1907), 477-488.
(**%  H. MINKOWSKI: J. reine angew. Mati00 (1887), 449-458101 (1887), 196-202 — Ges. Abh. I,
203-211 and 212-218.
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into cosetss, b, and thus also decomposes the sgacmto subspaces, [, that will be
permuted amongst themselves by the elenxeots.

One also easily sees thaty imprimitive representation of a group can be
composed of such representations that are induced by subgrougamely, if9t = m;
+ my + ... +ms IS @ giveng-invariant decomposition of an imprimitive representation
space then we will understafdio mean the subgroup gfthat leavesn; invariant. If
we assume that, is irreducible undefy and will be transformed intm, (=1, ..., r) by
the coset, h, and we choose a# 0 fromm; arbitrarily then we will gefR, u =m; and
R,u=mg + ... +m; =Ny . If one now decompos&y, into left idealsR, =2 [, then at
least ond, u# 0 and thereforé, u=m; andR [ u =R m =M;. The associatior -
Xy (for xin 2R,) will then mediate an operator isomorphisngofwith 9t; . However, if
my is irreducible forh then one can decompose — and therefore, als@t; — into

irreducible components of the required kind.

Some special imprimitive representations are giverhbynonomialrepresentations,
whose matrices have only one non-zero element in eaghand column. From the
above, the monomial representations will be induced byeseptations of the first

degree of subgroups. (In particular, the representations g@fwill be induced as
transitive permutation groups of the identity represesmati the respective subgrogp
Now, a representation of the first degree of a gripupalways a faithful representation
of a cyclic factor groug / n. If this factor group has ordérand ifZn is a generating
residue class df / n that is represented by &ff root of unity ¢, and finally, ifZ, is the
sum of the elements af in the group ring ofy then the left ideal, that mediates the
representation of first degreetptvill be generated by:

CEDNEWALY .S NE WAl b MESINE VAN VAR W

One indeed sees, with no further analysis, 8t J {andHZ = 4 for anyH inn. The
left ideal £, that is generated Wy will have the basis:

819, 99, ..., 57,

wheres, ..., § are the representatives of the residue classgsirofy. The monomial

representation be written down, with no further admauttie basis').
K. SHODA (*% has investigated the condition under which a monomial
representation is irreducible and the conditions unddriclw two monomial

(*®% Cf., on this, say, A. SPEISERheorie der Gruppen von endl. Ordnyrf’ ed., § 46. One will
also find a series of applications of the monomiptesentations to finite groups there.
(**® K. SHODA: Proc. Phys.-Math. Soc. Jap. 18)(1933), 249-257.
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representations will be equivalent. A monomial repreedem that is defined bly, n, Z,

{is reducible (in a suitable extension field) if and ahtyere is an elemer@ that is not
contained iy that has the following properties:

hnGnGl=nnGnGY
L =y (modf),

where3 means the exponent of the first poweoZ G * that liesinf n Gh G ] 0Gn
G, and indeed iZ’n G n G . Two irreducible polynomials that are definedtayns,
Z;, &1 andby, ng, Zo, ¢ are equivalent if and only if there is an elem@nn g with the
properties:

hinGmGr=nn Gn G

=47,

where8 means the exponent of the first powefo¥; G that lies in f> n G h1 G 05

n; G, and indeed irZ,)n, Gny G

The monomial representation can often be employetthanproof of theorems on
finite groups 9.

The decomposition of an imprimitive representat®d{@,) into absolutely irreducible
components will be ruled by the following theorem of FREDBUS (#7):

The number & that gives how often an irreducible representationof b is
contained in the representatid®, of g will also simultaneously give how often the
irreducible representatio® , of g is contained in the imprimitive representatioro,).

J. LEVITZKI (**® has extended this theorem to the semi-simple sytbriri semi-
simple hypercomplex systems and has presented somemtimérer relations for this
case.

E. ARTIN (*% has proved that any rational representation tracefiofta group is a
rational-number linear combination of traces of repried@ms that are induced from the
identity representations of the cyclic subgroups.

A KULAKOFF (**%) proved: Ifh is a normal subgroup of then the identity

representation of will either not appear in the decompositionsab,) at all or®(v))
will be a multiple of the identity representation.

(**) W. BURNSIDE: Theory of Groups of Finite Orde2™ ed., Cambridge, 1911, 327. — W. K.
TURKIN: Math. Z.38 (1934), 301-305.

(**) G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1898), 501-515.

(*®® J. LEVITZKI: Math. Z.33 (1931), 663-665.

(**9) E. ARTIN: J. reine angew. Mathi64 (1931), 1-11.

() A. KULAKOFF: Rec. math. Soc. math. Mosc86 (1928), 129-134.
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|. SCHUR {*Y and R. BRAUER 3 have investigated the relations between the
SCHUR index of the representations of a semigrgpapd the representations of its sub-

semigroups). The main result reads:

If © is an absolutely irreducible representation of a semigrgup a field of finite
degree ovel?, and if the representatio®, when applied to a sub-semigrogpcontains

an absolutely irreducible representatiorand its conjugate representations r times in all
then the index m @ will be a divisor of rir, where mis the index of d. In particular, if

0 is rational inP then n¥ r will be, as well.

For finite groups, this theorem follows immediatelyorfr the theorem of
FROBENIUS above and the properties of the SCHUR indeRkat were defined. One
obtains useful special cases when onedebe the identity representation pf(**3 or

when one choosésto be a cyclic group. In the latter case, one obtamsheorem:

TheSCHURiIndex of a representatioB of g relative to a fieldP that contains the™

root of unity is a divisor of all numbers that give how often the differerit toots of
unity ¢, appear as characteristic roots of the representative matrix abapgelement s
of order I.

In particular, if the greatest common divisor ofddlithese numbers,, for different
group elements is equal to one then one will hayye= 1 for a suitable circle field as
ground field; i.e., the representation®s, will be representable in this circle field}.
Naturally, it suffices to base the field on it root of unity, wheré is the order of the
group.

One suspects that all absolutely irreducible represensadf a group of orddn are
realizable in the field o™ roots of unity t*%. That conjecture was proved for solvable
groups by I. SCHUR using the methods of this paragraph (H. HASSE has shown
(*°) that in any event the field &f" roots of unity is attained (for a sufficiently lardk

In connection with that, we mention yet another teeoof A. SPEISER'{"), which
says that:

Any absolutely irreducible representation of a finite group of odd ordér aviteal
character is already realizable in the field of characters.

(**) 1. SCHUR: S.-B. preuss. Akad. Wiss. (1906), 164-184.

(**) R. BRAUER: Math. 231 (1929), 733-747, § 3.

(**¥ Cf., G. FROBENIUS: S.-B. preuss. Akad. Wiss. (19G38.

(**% Cf., W. BURNSIDE: Proc. London Math. Soc. @[1905), 239-252.

(**® 1. SCHUR: S.-B. preuss. Akad. Wiss. (1906), 164-184.

(** R. BRAUER, H. HASSE, and E. NOETHER: J. reine angdath. 167 (1931), 399-404.
(**") A. SPEISER: Math. 75 (1919), 1-6.
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8 20. Representations of special groups.

We already gave the representations of Abelian grouds 18. One finds the
representations of the simplest non-Abelian grotps.g., the tetrahedral group, the
quaternion group, the icosahedral gr@p- in the book of SPEISER®), and those of

the octahedral grou@, in VAN DER WAERDEN (9.

W. BURNSIDE ¢%) gave the general form of the faithful representatimingroups
with nothing but cyclic Sylow groups (thus, the groups of sgtraeeorder, especially).
These representations are all monomial. More gegefedim § 8, the representations of
a two-level, meta-Abelian group are all monomial and iddeecording to K. SHODA
(®*Y, the faithful, irreducible representations of suchaugrwill be induced by the linear
representations of those maximal Abelian subgroups tivelap the commutator group.

The representations of the groups of oqglesire also all monomial (cf., § 8), and are
therefore easy to find in any concrete case.

For the groups with complex structure, the calculatdrthe characters mostly
precedes the actual presentation of the representatidnsorder to calculate the
characters, one chiefly resorts to two methods: Tathod of increases and the method
of composition. With the method of increases, oagtstfrom known characters of any
subgroup and calculates the traces of the induced représestaftthe super-group from
them. Occasionally, one also conversely goes down &csuper-group to a subgroup.
With the method of composition, one calculates thedrof a product representation by
multiplying two known characters. In order to decompbgecbmposite characters that
are obtained by these methods into simple ones, onalagpehe orthogonality relations
of the characters (8 15). G. FROBENIUS has calcul#tedcharacters of theinary
tetrahedral, octahedral, and icosahedral grou@®), as well as those of thmodular
groups PS[2, p) (*°%, and likewise I. SCHUR*{?, and simultaneously H. E. JORDAN
(*®), calculated the characters of the gro8p&, p™) andGL(2, p™), and furthermore, 1.
SCHUR %) calculated those of a 2-isomorphic covering groupShf2, p™). H.
ROHRBACH €%) has determined the characters of the binary congruenag gnodp?
(which consists of the two-rowed matrices npdavith determinant 1). If one defines the
factor group of this congruence group with the matrideshen one will obtain the
modular group mod % whose characters were determined recently by H. W.
PRAETORIUS ).

If a representation of a group as a permutations group oéelegs given then one
can always also regard it as a representation by lin@asformations. Since the sum of
all permuting quantities is an invariant, the identity reprneation splits once. The

[N
©

A. SPEISERTheorie der Gruppen von endlicher Ordnu@y ed., § 59.

B. L. VAN DER WAERDEN:Moderne Algebra 11§ 125.

W. BURNSIDE: Messenger of Math. (3% (1906), 46-50.

K. SHODA: Proc. Phys.-Math. Soc. Jap. 15)(1933), 249-257.

G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1899), 330-339.

G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1896), 1013-1021.

I. SCHUR: J. reine angew. Matt32 (1907), 85-137.

H. E. JORDAN: Amer. J. Matt29 (1907), 387-405.

H. ROHRBACH: “Die Charaktere der bindren Kongrugmppen mog?,” Diss., Berlin, 1932.
H. W. PRAETORIUS: Abh. math. Semin. Hamburg. USiy1933), 365-394.
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remaining representation of degree- 1 is irreducible if and only if the permutation
group is doubly transitive. This theorem is the firstiseries of similar theorems by
FROBENIUS %% on multiply transitive groups. FROBENIUZ has calculated the
characters of the two 5-fold transitive permutations graafpdegree 12 and 24 (with
orders 12[M1M0 [© 08 and 24123 (122 [121 120 [M48, resp.) that were discovered by
MATHIEU.

The irreducible representations of the modular gr&@fl(2, p) are of great
importance for the theory of module functions, and hdnezefore been examined, in
part, many times. The representatioP8Las a permutation group pf+ 1 points of the

projective line first yields an irreducible represemtatof degreep (cf., the previous
+£ L
section). Two complex conjugate representations of degrzee, wheree =(-1) 2,

have been known since F. KLEIRPY). Furthermore, there aFg%_A' representations

of degreep + 1 that E. HECKE?#?) presented anept:i_z representations of degrpe

— 1 that B. SCHOENBERG() has presented. According to H. W. PRAETORIZY (
there is a representation of degpée + 1) of the modular group mad that is analogous
to the representation of degnee 1.

The representations of tisgmmetric and alternating grougsmve been investigated
most thoroughly. In the case of the symmetric group,FROBENIUS 9 first
calculated the characters with the method of increates he started with the identity

representation of certain subgroups, to which we will return later on. Building upon
the investigations of A. YOUNG*Y), G. FROBENIUS 1*) could give the minimal left
ideals of the group ring that generates irreducible reprsemd directly. In what
follows, we will give only the result and refer to B.VAN DER WAERDEN: Moderne
Algebra 11(1931), § 127 for the proof.

We might understandtableau T, =T, , . to mean an arrangement of the numbers

1, 2, ...,n into h rows  arbitrary< n), for which a, numbers are in the’ row and
which fulfill the conditions:

(1)

aza,2---2a, 20,
a,ta,+---+a,=n

If an = 0 thenay, can be dropped from the index sequeage..., a, ; we can therefore
always assume that, > 0. Thecolumnsof the tableau consist of the first, second, etc.,
numbers in all rows.

(*®® G. FROBENIUS: S.-B. preuss. Akad. Wiss (1904), 558-571.

(**) F. KLEIN: Math. Ann.15 (1879), 275-278. — W. BURNSIDE: Proc. Cambridge Philos. Sbc.
(1929), 779-787.

(**9 E. HECKE: Abh. math. Semin. Hamburg. Uré\(1928), 256-257.

(**) B. SCHOENBERG: Abh. math. Semin. Hamburg. U8iy1932), 1-14.

(**) G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1900), 516-534.
(**¥ A. YOUNG: Proc. London Math. So83 (1900), 97-14634 (1902), 361-397.
(**) G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1903), 328-358.
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P, denotes the sum that is defined in the groupaingall of the permutations which
only switch the numbers inside of the rows of the tablaad, likewiseN, denotes the
alternating sum of all of the permutations that onlytcwthe numbers inside the
columns, where odd permutations will be given the minus. si/e arbitrarily select a
tableauT, from any solution 41, ..., a) of (1), which we denote briefly by; those
solutions will be lexicographically ordered. The left ideBll, that is generated by,

will then contain a minimal left ided}, which certainly appears in nd\g with 5 < a.
This left ideall, will be generated by, N, . P, N, is idempotent, up to a numerical

factor £9):
(P2 No)? = APy No).

Thus, an irreducible representati@n, that is mediated by, will belong to any
integer solutiona of the system of equations (1). One also obtainsrratucible
representations in this way, since the number of sokiodiil) obviously agrees with the
number of classes of conjugate group elements. The sathlgfand their transforms

[ s * will be the entire group ring.

One can also switch the roles Nf and P, in the foregoing: The left idealP,
contains a minimal left ided[, that does not appear in thBsz with 5> a, and which
will be generated b, P, . [ is equivalent td, (i.e., operator isomorphic).

a

The representations are all rational. If the tabls@sists of only one row (column,
resp.) then the representati®n will be the identity representation (the representabib
degree one for which the even permutations are represeyte and the odd ones by,
resp.). The tableau will belong to reflectedtableau (switching the rows with the
columns); one will obtain the “associated” represémtathat goes with it by multiplying
the representative matrices of the odd permutations by — 1.

A. YOUNG (*9 has carried out the calculations even further, wieactually gave
the idempotentg that belong to the decompositionofnto minimal left ideals, as well
as the “matrix unitsty(”, which are expressed in terms of the group elemmeinom §
13, equation (4), these formulas also yield the irreductyeesentation in an explicit
form that coincides with a matrix representation thas given by I. SCHURY).

In order to calculate the characters of the reptasen ©,, FROBENIUS {9

proceeded as follows: One first calculates the trefceh® representatiof3, that is
mediated by the ideaP,, which contain® ,once as a component. Sirfegis the sum
of the elements of those groups that leave the rows of the tabledginvariant P, will

be the imprimitive representation that is induced by thetigerepresentation o, , and

(** The numerical factod, is easily seen to ba;1 , wheren, is the degree of the representatiop.

(**9 A. YOUNG: J. London Math. So® (1928), 14-19. — Proc. London Math. Soc. 28)(1928),
255-292;31 (1930), 253-27234 (1932), 196-230.

(*) 1. SCHUR: S.-B. preuss. Akad. Wiss. (1908), 664-678.

(**® G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1900), 516-534.
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thus, a representation by permutations, whose tracesaayeto calculate. The result is
that the trace of a permutatistthat decomposes into cycles of lengghsy, ... is equal
to the coefficients ofi*xg>--- X" in the product(x/* + >t +--- ¥1) (X2 + X2 +--- 7).
The characters can now be obtained from these tbgckisear combinations, and indeed,
as FROBENIUS proved by a clever calculation on the shasi the orthogonality
relations,x(s) is equal to the coefficient of*x:--- ¥* in the polynomial:

) A OO+ 0+ 1) (2 + X2+ %7) L.
with
AN=T1x=%); Br=av+t (-

u<v

In particular, one finds the following formulas filve degre@, = x,(1):

h
na: znglaz...(ai_l)aiﬂmah ’

" 158,

i=
ng=—
:31!:82!"' he u<v

|. SCHUR €9, H. WEYL (**9, and A. YOUNG t*) gave other derivations of the
FROBENIUS generating function (2). The derivatimisSCHUR and WEYL employ
the connection with the representations of thealirgroups (cf., § 22), while A. YOUNG
derived the following remarkable relation in th@gp ring:

3 ™, = []a-2.)s,.

na r<s

In it, I, means the idempotent central elements (cf., §6)5tbat belong to the
representatio®,, S, means the sum of aifferent R, that arise by permutation of the
numbers in a scheni,, and furthermoreQ,s means an operation on the indiegs ...,
an that consists of increasing the indgxby 1 and reducings by 1. If the conditions (1)

are violated after performing a product of operaiQ,s then the term in question in (1)
must be set to zero. On the basis of formula @8&), formula (3):

|
%Ia = X.(sh)s

a

permits the calculation of the charactgsts).

.-b. preuss. ad. WISS. s - iy s - - 1R, , PP. .
29 s.-B Akad. Wiss. (1908), 664-678; (1927), 58-75 — Bisdin, 1901, pp. 31

(**® H. WEYL: Math. Z.23 (1925), 271-309 -Gruppentheorie und Quantenmechan®® ed.,
Leipzig, 1931, chap. 5.

(*®™  A. YOUNG: Proc. London Math. So84 (1932), 195-230.
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LITTLEWOOD and RICHARDSON %% gave other ways of calculating the
characters. Intheir paper, one also finds a tabléarbcters for thé&, for alln< 9.

Representations of th&, of lowest degree.In addition to the two trivial linear

representations, there is only one unfaithful represent&f degree 2) fon = 4. All of
the remaining representations have degree at least 1. There are only two
representations of degree precisely 1 forn # 6: One of them is deduced immediately
from the representation of tl&, as a permutation group of degreend the other one is

thus associated with it. For= 6, the two representations of degree 5 that emeoge f
the two aforementioned ones by means of the known auptmsors combine.

The representations of tladternating groupcan be derived, for the most part, from
those of the symmetric group™). Namely, it follows easily from the orthogonglit

relations for the characters that the irreducible grations of the symmetric groG
also represent the alternating grallp irreducibly, except for the ones whose tableau

goes to itself under reflection: Those ones decompusetwo inequivalent, irreducible
representations that differ from each other by theevalf an irrational square root. G.
FROBENIUS %) has calculated their characters. The lowest degfe® faithful
representation is also— 1 now, except for the casemf 5, for which a representation
of degree 3 exists.

A. YOUNG (** has also investigated the group ring of the hyper-octahgurap —
i.e., the group of linear transformations of thedimensional generalization of the
octahedron¥) in the same way as for the symmetric group. He againdf explicit
formulas for the matrix elements and characters efirtieducible representations. As in
the case of the symmetric group, they are rational ntsnbehe same thing is true for a
subgroup of index 2 that A. YOUNG has likewise examined.

The hyper-octahedral group is a special case of a gemgeoops of orders! g
whose representation were examined by W. SPECHI (In § 21, we shall return to a
series of groups of order:n2(n!, resp.) that I. SCHUR considered, which likewise
possess th&, (X, resp.) as factor groups.

n

8 21. Representationsof groups by projective transfor mations.

A homomorphicrepresentation of a group by projective transformations or
briefly, aprojective representationf $H — will be obtained when the elemegrtd, ... of
$ are associated with non-singular matriées, ... (or linear transformations, B, ...)
in such a way that the produab corresponds to the matrigy, AB. The non-zero

(**3 D. E. LITTLEWOOD and A. R. RICHARDSON: Philos. Tr&t Roy. Soc. London (A233
(1934), 99-141.

(** G. FROBENIUS: S.-B. preuss. Akad. Wiss. (1901), 303-315.

(*** A. YOUNG: Proc. London Math. Soc. (3] (1930), 273-288.

(**® One deals with the group of monomial substitutions whoatrices contain only the elements
and 0.

(**® W. SPECHT: “Eine Verallgemeinerung der symmetriscBeuppe,” Diss., Berlin, 1932.
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numbersg,p, define thefactor systenof the representation. Two representatians A

anda - A’ are calledassociatedvhen one always has= o, A' (& # 0); that therefore
means that one is indeed dealing with different matribes, the same projective
transformation. One likewise calls the associatetbfesystems, and &, , associated;

the condition for that obviously reads:

The factor system must satisfy the relations:

(1) Eabc &b = &b &be -

If all &, = 1 then one will be dealing with a representation endtdinary sense, or as we
will now say, afull representation

In his ground-breaking pape?{), I. SCHUR showed how one can get back to the
problem of finding all projective representationsfioite groups from the previously-
solved problem of finding all full representations when ooestructs a covering group
& for $H whose full representations mediate all projectiy@esentations ofy precisely.
One then ha$ & /2, and the normal subgro@pis contained in the center & One
arrives at this result in the following way, where \wéer to the aforementioned paper by
SCHUR for the precise details of the proof.

Any system of numbers,, that fulfills the relations (1) is the factor systeof a
representation, and one indeed obtains such a representdin one chooses the group
ring for the vector space and defines the transformaiidhat is associated with the
group elemena by ¢

Ab= gpab.

Any irreducible representation that belongs to the skati®r system is equivalent to a
component of this representation.
Let h denote the order of the given grosp There is then an associated factor

system to any factor system whose factorstdreoots of unity. There are then only
finitely many essentially different factor systems.

The product of two factor systems is again a factor systéhe classes of associated
factor systems thus define an Abelian grddp of finite order m that one calls the

multiplier of §.

If & is a group whose center contains a subgfbguch that® / 2 0§ then any
absolutely irreducible full representation &f will mediate an irreducible projective
representation ofy. Namely, since the central elements will be nexrdlgsrepresented

(**") 1. SCHUR: “Uber die Darstellung der endlichen Gruppenrcldu gebrochene lineare
Substitutionen,” J. f. M127 (1904), 20-50.
(**® Cf., M. TAZAWA: Sci. Rep. T6éhuku Univ., ser.23 (1934), 76-88.
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under the representation by multipisof the identity matrix, the representative matrices
of the elements of a residue clasglokill always differ by only a numerical factdr

Such a groupb is called acovering of$) extended by the Abelian groép One
easily provesAll projective representations ¢§ can be obtained in the manner above
from full representations of the coveringspextended by Abelian groups.

A sufficiently extendedovering offy is a group® with the behavior above such that
any irreducible projective representationspis mediated by a full representation ®f
It is necessary and sufficient for this that thersgetion o with the commutator group
of & have the same order 8.

A sufficiently extended covering group of smallest ordecalied arepresentation
groupof . & is a representation group wh#ns contained in the commutator group of

® and has the same order@is One will then hav@t O2. With that, a criterion for a

representation group is found that is also practicalpfglyaas long as one knows the
orderm of M.

We will now construct a representation grasipf ordermhas follows 29: If s, ...,
s, are the generators &f andf, (s,)) =1 (A = 1, ...,q) are the defining relations then we
will first define an infinite group®’ with the generating elemen€,, ..., Q, by the
relations that state that the expressions:

f2 (Qw =

should commute with alD, . Thesel, then generate an Abelian grof in the center
of &' that can be represented as a direct product of a groujs tkamorphic td)t and
an infinite group precisely generator€y, ...,Z,. If one adds the relatios =1, ...,Z,
= 1 to the relations that were defined above tBéwill go to a representation grou,
and®®B’ will go to the groug, which is isomorphic ton.

There can be several non-isomorphic representatioumpgydut their group$l, as
well as their commutator groups, will all be mutually isomorphic. In a papéf that

was cited already, |I. SCHUR gave restrictions onrnhmber of essentially different
representation groups.

A group$ is calledclosedwhen it is its own representation group; in that casg,
projective representation will be associated withlerépresentation. If follows from the
construction that was given above that a group is closeshwne can reduce the group
B’ that was constructed there to the identity group byatubtion of precisely further

relationsll J; = 1. More generally, one ha#f one can reduce the grodp’' to a group
of order i by the addition of precisely n relations thersm.

(**¥ 1. SCHUR: J. reine angew. MattB2 (1907), 85-137.
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With the help of this theorem, one proves, with ndhter analysis, that all cyclic
groups, as well as a series of prime power grou@sd among them, one finds the
guaternion group- are closed. One has further: If all Sylow group$) @fre closed then

the same thing will be true fa§. In particular, all groups of square-free order are then

closed.
If £ is covering ofy extended byl whose commutator group contaisthen the

orderm of the multiplier of$y will be a divisor of the product of the orders2fand the
multiplier of £. In particular, if€ is closed the® will be a representation group of

In the last-mentioned papéfy, I. SCHUR gave the representation groups, as well as
the characters, for a series of special groups thatidedl the groupS$L(2, p™) and
PGL(2, p™). The multiplier groups of the finite, Abelian groups amferred ipid., pp.
113) from a general theorem that allows one to expresmthtiplier of a direct product
in terms of the multipliers of the direct factorsR. FRUCHT ¢3% determined the
representation groups and the projective representatiotisediinite, Abelian groups
completely.

| SCHUR €% determined the representation groups for the symmetrnigpg, and

the alternating group3,, with the following result:

The groupU; andS3 are closed. Fam > 3, the groupsS, have two representation
groups¥, and ¥, of order 2[h! that are two-to-one homomorphic &,. Forn=4,n=
5 andn > 7, 2, has a representation grodp, of order n! that is two-to-one
homomaorphic t&(,, namely, the commutator group ®f . The representation grou¢s
and ¢; of 2 and®(;, by contrast, have ordersCk! (3 07!, resp.) and are six-to-one
homomaorphic t&ls (27, resp.).

In order to find the projective representation@f and2l, , one must find the full
representations of the groufis, %Bn, ¢ , & . |. SCHUR solved this problem by

calculating the characters, in principle. The resuibe following: If one ignores the full
representations o6, (A, resp.) then the representation ©f of lowest order is a

representation of degreé, 2vhere one sets = [nTl} This was also given explicitly

[loc. cit. (3%, section VIl. The remaining irreducible represgion of <, will

correspond to the decompositions of the nunmdato only distinct summands:
N=wv+W+..+Vn; (n>wm>..>vn>0),

and their degrees will be:
n-m _
= 2[7} n! |_L Vo ~Vp
vy,
' VIV tep bk Vv, Vg

(**% R. FRUCHT: J. reine angew. Matt66 (1931), 16-29.
(**) 1. SCHUR: J. reine angew. MattB9 (1911), 155-250.
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In the event that the schemata that belong to two deesitonsn = v, + 1, + ... + V,go
to each other under reflection (i.e., switching the r@amd columns), the associated
irreducible representations @f, will differ only by the signs of their matrices; thare

then associated with each other (i.e., projectivglyvalent).

If n — mis odd then the representations ®f will also yield irreducible
representations of the subgro®s. If n — mis even then the representationpfwill
split into two representations of equal degrees. Thgreks of the projective
representations ab, (n < 7) that are mediated by, are given in the following table.
The ones that spli%(, into two representations are underlined. The fulles@ntations
stand before the separating line:

n=4: 1,2, 3, 2,4

n=5: 1,45,86, 4,4,6

n=6: 1,5,5,9, 1016, 4, 4,16, 20
n=7: 1,6, 14, 14, 1520, 21, 35, 8, 20, 20,28, 36.

The groups¢s and ¢; possess 31 (40, resp.) essentially different urcdade

representations, and among them are 9 (12, resprs @f complex-conjugate
representations that do not appear already ingpeesentations ois (%7, resp.). The

degrees of the latter are:

6: 3,3,6,9, 15, 6, 6,12, 12
7: 6,15, 15, 21, 21, 24, 246, 6, 24, 24, 36.

The representations that are already mediated kree-to-one homomorphic
covering oflgare in front of the line.

The two projective representations of degree tlfethe grouplls produce both of
the ternary Valentiner groups (cf., 8 9). The rgving groups that were mentioned in 8§
9, which are isomorphic s, Gs, As, Gs, andl;, are naturally represented in our table;
in addition, one infers that there can be no oth&ternary projective grougs, or &,
(**3. 1. SCHUR gave the three projective represemnatof degree six dll; explicitly.

The characters of the other ones can be achievedroposition and reduction.
K. ASANO (***3 has examined the representations of a finitetoyreal projective
transformations.

(**) Cf., H. MASCHKE: Math. Ann51 (1899), 253-294.
(***3 K. ASANO: Proc. Imp. Acad. Jap.(1933), 574-576.
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8§ 22. Therational representations of the general linear group.

The theory of representations of the full linear gr&I{K), whereK is a field of

characteristic zero, can be achieved completely by wHmgpraic methods, as long as
one restricts oneself to the representations for lwthe elements of the representative
matricesT(A) areentire rational function®f the matrix elements of a transformatin

in GL(K) (**3.

When one considers the center of the grdBp(K), which consists of the

transformationsil, more closely, one easily proves that any entiiemat representation
will decompose completely into ones for which thenwats of the representative
matrices ardhomogeneous functiofsay, of degreen) of the matrix elementa,, of A:

1) di = ZC.k,K1.<.Km,al-<-amamlawz"' &0

We will call the numbem therank of the representation.

A particular representation is thensor representatio,, of rankm, which one can
define as the product representati®n x T; x ... x T; , where T; is the vector
representationunder which, the transformatigawill be represented by its own matrix
A. If uy, ..., u, are the basis vectors of thedimensional vector space, and likewige

.., Vp are those of a second (cogrediently transformed) vesgace, etc., then the

productsu, v, ...w, will be the basis tensors of thensor space of rank m which the
tensor representation takes place; tensors will teeaxpressions of the form:

tzzt/l/jv U/] V/j...Wv,

which will be determined by™ arbitrary tensor components, , u; . The matrices of
the tensor representation will obviously be:

(2) Aoty — P Bep, " 8

As H. WEYL % showed quite simply, the linear hull of the set ditrices (2)
consists of alsymmetric transformations i.e., those transformations of the tensor space
into itself whose matrix elements remain invariant urgley permutatiorQ that acts
upon the sequence aof and simultaneously on the sequencedof The system of
symmetric transformations will be callé€dl

Everything that follows will rest upon the almost setplanatory theorem:

(**¥ For the theorems and methods of this paragraph, $&HUR: “Uber eine Klasse von Matrices,
die sich einer gegebenen Matrix zuordnen lassen,” Bsslin, 1901. — H. WEYL: Math. 723 (1925),
271-300. — I. SCHUR: S.-B. preuss. Akad. Wiss. (1927), 58-75. WHYL: Gruppentheorie und
Quantenmechanji?" ed., Leipzig, 1931, chap. V.

(***) H. WEYL: Ann. of Math. (2)30 (1929), 499-516.
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Any representatiorfl) of rank m of GIK) can be extended in a unique way to a
representation of the hypercomplex systé&y therefore, equivalent (reducible,

decomposable, resp.) representations of GLwill again yield representations @ of
the same kind.

The desired representation®fwill obviously be given by:

(3) dik = ZClkal”'Kmv/]l”'/]makl”'Kmv/]l'“/]m.

We will now characterize the syste#hin yet another way, and then prove that it is
semi-simple.

The tensot might go toQt under the permutatio@ that acts upon the locations of
the tensor indiced,, ..., An . The transformations that are induced in that wayhey
permutationg) define a system of linear transformations of the tensor sp@e The

definition of & can be also turned intdhe systen® consists of the transformations of
M into itself that commute with all transformations of the sysiemNow, Q will be a
representation of the symmetric gro@pm (and thus completely reducible) in the event

that the characteristic of the fielkl does not go into the order of the group, and thus

especially in the case of characteristic zero. Fgohd, it will follow immediately from
this that the systei® is a direct sum of full matrix rings, and is thus ssmiple.

From 8§ 12, it follows further from the semi-simplicty S that any representation of
G is completely reducible and that the irreducible reptesens are already contained
in the regular representation. No®, is given from the outset as a system of linear

transformations, and thus in a faithful representation;irediducible representations
appear in this representation at least once (otherwiseuld not be faithful). It then
follows that: Any entire rational representation of the general linear group is conyplete
reducible, and the irreducible representations of rank m are already cautan the
tensor representatiol, as components.

From the theorem of RABINOWITSCH (8 12), in order to dae to invert the
commutation relation between and&, we must add all linear combinationssio We

achieve this when we extend the representaliaf the groupS, to a representatioit’

of the group ringR of the groups, (cf., 8 13). Ifr = > Ag Qis an element dR then in
order to find the transformation in tensor space that edibyt, we must set:

(4) r:ZAQQt;

the transformations thus obtained define the lineardRubf £.
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From § 12,9% is also the system of transformations that commuith il
transformations o&. From § 11, the subspaces of the tensor spadtkat are invariant
S are in one-to-one correspondence with the rightlsdeaof the ring/’, where the
concepts of equivalent, reducible, and decomposable caery dfx” were generated by
the idempotene: v =e 9, then one would hav® = ¢, i.e.: An invariant subspace
of the tensor spad®t consists of all tensors of the fornt,avhere e is an idempotent of
the ringM” of the operations (4), and where t runs through all tensors, as such.

In this way, a decomposition 8 into minimal right ideals yields a decomposition
of 91 into subspaces that are irreducible ur@er

In the case ofi = m, ;™ will be a faithful representation &t; there will then be a

tensort with only one non-zero componémt . that, along with its permuted tens@s
will define a system of linearly-independent tensors, Wwidéca system that is affected
with the regular (faithful) representation 9 precisely. In this case, one can simply

replace®” with the group ringk in all of the theorems above.
By contrast, in the case nf< m, one will haveRr [9R / R, wherefR; is a two-sided
ideal of R that is characterized B9 = 0. If one set® = R1 + R, thenR™ will be a

faithful image offR;. Any invariant subspac® of 9t can thus be obtained uniquely in

the form:
M=t N =edN,

wherer = e R = efR, is a right ideal that is containedky . The minimal left ideals of
R are contained in eith&Rk; or R, ; only the latter will give rise to irreducible spaéés
t M, while the former will always yield 9t = 0.

From § 20, the generators of the minimal right idead 9’ have the forne, = A, P,

Nz, wheree, is an idempotentr = (a1, ..., an) refers to a tableali,, . One now easily
sees that foh > n the operatolN,, and therefore alse,, will annihilate any tensot.
One then obtains a decompositiord@finto a sufficient system of irreducible subspaces

N =e, M =P, N, 9t when one restricts oneself to those tableayth@it contain at most

n rows. If one adds possible zeroes to #ehen one can assume thet n. Any index
combinationm, ..., an that satisfies the conditions (1), 8 20 then correspdndan

irreducible representation of rankof the groupGL(K). We shall call i§.

I. SCHUR determined the charactey of §, which is also called theharacteristicin
this case, by algebraic methods, while H. WEYL determihdyy transcendental ones
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(**3. If wy, ..., W, are the characteristic roots of the magj>and one sets (as in § 28)
=a, +n—nthen®4A) will be a quotient oh-rowed determinant$¥)(**9):

5) Po(A) = [ "]

The following relations exist between the charac®sA) of GL(K) and x,(Q) of

Gn:
(6) Sl’l%’z“. = Z/Ya(Q)q)a(A)
1 -
(7) Da(A) =HZXL,(Q s,s,
In them, the permutatio® is again a product of cycles of lengtias ), ..., ands,

meansS(A") =w,” + w” + ... + w,”. One proves (6) when one calculates the tratieeof
transformationQ OTw(A) in the full tensor spac®t in two ways: First, by starting with
the basiau, v,...w, (cf., the beginning of this paragraph), and thgrdeécomposingn

into irreducible subspaces relative to the two caimg systems) and& according to

the schema of § 11. (7) follows from (6) on thaibaf the orthogonality relations for
the characters. According to I. SCHUR, one canleyn(¥) for the proof of (5), as well
as for a new derivation of the generating functadrthe characters of the symmetric
groupGn, (cf., § 20).

H. WEYL (**9 carried out investigations into the representetiof the complex and
rotation groups that were similar to the ones wete presented here.

(*3 An equivalent rational expression was given by I. SCHSRB. preuss. Akad. Wiss. (1927), 71,
formulas (37) and (39).
(**% H. WEYL: Nachr. Ges. Wiss. Géttingen (1926), 235-243 — MatB5 (1932), 300-320.



