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PREFACE

In order to present the first edition of his book (whgleurrently out of print) to the
public, Vessiot had no need for anyone else. That fitsiba sufficed to establish the
reputation of the book, and the second one, by reastine ainprovements that had been
introduced, served only to further insure it.

Despite the fact that here one is dealing with a &rpresentation to the public
(which are presentations that are notoriously useles), not feel compelled to decline
the friendly offer that my fellow scholar and frienchddy made that | might write some
lines at the head of his book. At the same time,tastament to my profound respect for
the knowledge and expository talent of the author, | sawpportunity to highlight the
special character that the geometric work has takemnolatter years and felt the
necessity of disseminating a book such as this one, wipehs the doors to progress for
those diligent students (who are, unfortunately, too rarfe)se tastes lean towards
geometry.

In the first part of the last century, which one bannd approximately with the year
1870, geometry made inestimable conquests along the mostedpegths and on the most
varied terrains. That heroic period saw the birthhefrost essential notions, and it also
saw them develop and lead to great problems whose splutioch demanded analysis,
demanded a profound movement in that sister sciencauttaltfied daily. It suffices to
cite the great names of Monge, Dupin, Gauss, Serret¢ @ssian Bonnet, and Bour for
one to evoke the large inroads that were opened up ithéoey of surfaces and in the
theory of curvilinear coordinates. Those of Ponce#latd Chasles recall the first
renderings of the great laws of correspondence and trartions that would find a
magnificent inflorescence in the work of Sophus Lie stime later. Towards the end of
the same period, one found the coronation of the iptenof duality in the duality of the
geometry of points with the geometry of planes. Pluelstablished the geometry of the
line and systematically introduced the notions of congreesind complex into that
science, in which one must nonetheless recognize dhgtbefore him, Malus, Dupin,
and Transon had produced some interesting consideraimhgmportant results in the
context of optics. In the same era, Chasles showedtihe kinematics of solid bodies
put the principle of duality to work, and concurrently witlidRer, he grasped what the
latter called a “linear complex.”

Therefore, during that illustrious period, materials tbé greatest value were
accumulated in the most diverse order. Those greas,idehich were born apart from
each other, and whose creators were often ignorfasach other, seemed destined to
follow their path in isolation and to constitute just many specialized categories for
future geometers.

It belonged to the last part of the Nineteenth Centoirigelie those delusions and to
bring about the marvelous fusion of all those elements.

The great authors of that fusion, using different methedse Sophus Lie and
Darboux. It would be unfair to forget Ribaucour, who dbaoted considerably in his
own right to the realization of that very fertilgerpenetration of the various branches of
geometry and introduced the kinematical method into gegni®t means of some
unforgettable examples.
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Today, one cannot deal with surfaces without introducimgjugate systems, nor
address conjugate systems without introducing some congraéhoes, either the ones
that cut out the conjugate net on the surface or the tihat are composed of the tangents
to one of the lines of the net. On the other hand,ugat¢ nets are dependent upon
equations that were envisioned by Laplace in a differeamt @nd he found that the
transformations that one knows from those equationespond to the transition from
one of the focal surfaces of the congruence to the oter

The spherical representation of a surface, which séeins a clever tool that is due
to Gauss for extending the notion of curvature to susfdeanalogy with curves, is
found to enter into the ideas of Chasles on dualityldzat one to define a surface by its
tangent planes. As Darboux has shown, it will suffeentroduce the distance from a
fixed point to the tangent plane, along with the directiosines of the normal that Gauss
considered in order to define the spherical representatite surface.

The hard problem of the deformation of surfaces rermainexample that eternally
bumps into unforeseen and fruitful links. If, as Boureobelieved for a time, one has
succeeded in integrating the partial differential equati@t the problem depends upon
analytically, then, without a doubt, it would have logich of its interest in the eyes of a
number of mathematicians that were too inclined to amieeonly the analytical aspects
of those questions. That did not prevent either Ribauoolarboux from putting their
cyclic systems into play, nor did it prevent Darboux andeatire clique of geometers
from discovering the singular circumstances that apemythe deformation of quadrics.

Here, we shall not multiply the analogous examplieg abound in transcendental
geometry. The few that we shall give will sufficestwow us that in our present era, the
immortal work of the old geometers of the last centuryst no longer appear to us as
isolated monuments, but rather, as the superb archesunigue and grandiose edifice
whose parts are all unified, and in which it is no longemmissible for the geometer to
remain confined in one corner. The questions today rkediwith each other in such a
way that research that pursues a problem that is taendrparticular terrain can boast
that it preserves the same horizon, because it ofigrelna that the clear solution and the
full blossoming of the problem must take place on aitethat is very different from the
one that one started out from.

It is always inexpert to pretend that a question thatstidying is isolated, and that
is why one is advised to approach it head on with analysiguestion of structure will
be found to be posed at each instant that does notid®inath the calculations of the
project architect and the gravel and lime that his workédesup. In any question of
geometric structure, nothing can replace a deep knowledtdes @feometric topic itself,
the application of dogged reflection, and finally, the rdpneous exercise of one’s
intuition. It is not that often that the resulttained will be clothed in a simple form that
calculation would recover with no effort later. Howewvhat is really difficult is to first
ponder it.

The proper and independent existence of the geometripeoietvhas always given
rise to some divergent opinions, and it would be undoubtedipgitee to foretell the
conclusion. TheEloges Académiqueky Joseph Bertrand have evoked some of the
illustrious episodes in the past. One of the mor&istyiones is the iciness by which
Cauchy received the appearance of Poncelet’s celebriteié des propriétés
projectives des figures his own time. Later on, resistance to it was fested by the
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small degree of favor that was accorded to the disas/ef Chasles that are immortal
today. It took the papers on the attraction of elligsowhich are remarkable, moreover,
to clear up certain prejudices.

In support of the general thesis, it would not be oylade to quote some lines about
Poncelet by Joseph Bertrand fr&ioge

“Descartes (said Bertrand) believed that by some unifgnocess of
calculation, one could abolish the right to contiivggeometry. Believing that he
had prepared and predicted everything, while leaving the pleasunaking any
progress to his successors, he had usurped all of the aneldylory in advance at
more than one point. | hope, he said, that our nephelvéhank us for not just
the things that | have explained, but also the ondsl th@ve omitted voluntarily
in order to leave the pleasure of inventing them toemephews.”

“The ones (Joseph Bertrand continued) who, from treeth fin impressive
wizardry, believed that the original age of discovetesl concluded with the
study of curves, naturally looked for a more fruitful wdetheir efforts and a
greater degree of progress that was ever made in thatfbetdgtory in the other
branches of science, with no difficulty, and thus tia opportunity and the cue
that it was time to stop its advance.”

“Descartes had forgotten that, according to the veryrhate expression of a
contemporary geometer, geometry is an art, as wellsasenceMathesis ars et
scientia dicendaand that it is sometimes possible for a sciencead nhe end of
its efforts and the term in which it progressed with Endeve formula, while art
is inexhaustible and infinite, always young, and alwastddevrith new ideas.”

Please allow us to introduce another viewpoint heme.our time, the intense
development of analytic theories and the great plaatethiey occupy in the programs
that realize the result that it is, above all, by rigs and abstract logical gymnastics
that we exercise the intelligence of our young mindsw,Nbe experience of testing,
which is old already, says quite eloquently how incomepl@hd inoperative that
development will be if it does not find a counterweighttihe practice of more
concrete realities in geometry or mechanics. It shdw@d be greatly desired that the
tastes and cult of geometry should be favored in our edocatare than they are
today.

By its nature, Vessiot's book contributes, at the hsglevel, to the dissemination
of those beneficent studies in which the French migntad manifested so
harmoniously in the form of elegance and grandeur. Viesgw is also an informed
analyst, has given his exposition a form that is imakelecin its precision, and which
carefully facilitates the handling of quantitative noscand the general formulas in
which they intervene.

In his book, he has encompassed everything that is tedsénone is to
understand, or even read fruitfully, the original workhef inventors. The friends of
geometry can only rejoice at the assistance thatbbok gives to their favorite
science and must express the best wishes for the gatitin of its success.

G. Koenigs






PREFACE TO THE FIRST EDITION

These lectures were taught by the science faculty @d.yn 1905-1906, in response
to the special program of mathematical analysis of ghecess of nomination to
Associate. They were written up at the demand of onyestts and were edited by one of
them.

Perhaps it might be useful to the students that areodssof being initiated into
higher geometry, and it might give them a good preparationthe study of the books of
Darboux and the original papers.

| have assumed that only the simplest principleb@theory of contact are known. |
have reviewed the essential points of the theory efvskurves and the theory of
surfaces, while emphasizing the essential role of teedf formulas, and Gauss’s two
guadratic differential forms.

The principal objective of my lectures was the studygystems of lines and their
application to the theory of surfaces. It was nattoatombine that with the study of
systems of spheres, which | have continued up to the aHrgctive elementary
properties of Ribaucour’s cyclic systems. | have indistpon the correspondence
between lines and spheres. | have clarified it by ube of the notions of contact
elements and multiplicities, which is likewise usefukhe theory of ray congruences. |
have shown how it translates into Lie’s celebratetac transformation.

| have sought to develop the various subjects along tl# nadural and the most
analytical path. | wished to show my students how nubtiab research and the deep
discussion of questions, even the simplest ones, #dsawethe attentive study and
interpretation of the results of calculation, candiéo the most varied and the most
interesting consequences.

Lyon, 1 June 1906
E. VESSIOT






FOREWORD

The first edition of these lectures, as it was tenit was rapidly exhausted, so |
accepted the offer to reprint them that Hermann madeeto

The printing errors were corrected by Anzemberger, in wietliat reprinting. | have
reviewed and improved the editing, and | have made somertamp@dditions. Grévy
has kindly assisted me in the revision of the textthadccorrection of the proofs. | would
like to acknowledge my gratitude to him here. | would #ilsoto address my thanks to
Hermann for the care that they afforded to the printing.

| shall forego giving bibliographic citations. This is atroductory book, and the
readers that are desirous of pursuing geometric reseasthahays refer to Darboux’s
admirable books, in which they will find the necessargushoentation.

30 September 1919.
E. VESSIOT
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FIRST CHAPTER

REVIEW OF THE ESSENTIAL POINTS IN THE THEORY
OF SKEW CURVES AND DEVELOPABLE SURFACES

|. — SKEW CURVES
Frenet-Serret trihedron

1. — Let C) be a skew curve whose coordinates we assume to besssgras
functions of a parametér

x =1 (1), y=g9(. z=h (D).

We consider théangentto such a curve, which hak / dt, dy / dt, dz/ dt for its
direction parameters, and theculating planewhich contains the tangeﬁ%,% %tzj
d’x d’y o
dt> ' dt* ' dt®
degree determinants that are deduced from thexmatri

. Z .. .
and the acceleratloE. j and whose coefficients are, in turn, the second-

dx dy  d
dt dt dt
d’x d’y d’z
dt? dt?  dt®

Remark. — If one changes the parameters by settimg ¢ (u) then the new

d’x d’y d?z) . . _
— — —— | will always be in the osculating plane.
d " du? ddj Y 9p

Consider the tangeiMT at a pointM of the curve, the normal that is situated in the
osculating plane — gorincipal normal MN— and the norma¥B that is perpendicular to
the osculating plane — dinormal. Those three lines will form a tri-rectangulahé&dron
that we call theSerretor Frenet trihedron. One of its faces — namely, the one that is
determined by the tangent and the principal norna the osculating plane. The one
that is determined by the principal normal andiimermal is thenormal plane Finally,
the one that is determined by the tangent anditiernal is called theectifying plane.

Take an origin of an arbitrary arc on the curvd an increasing sense along the arc,
which is likewise arbitrary. The differential dfd arc-lengtls is given by the formula:

ds’ = dxé +dy? +d7Z,

acceleratio

SO:
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2 2 2
d_S: £ (%j +(ﬂlj +(£Zj (e==1),
dt dt dt dt
2 2 2
HREEGE
ds ds d
dx/ ds dy/ds dz/ dswill then be the direction cosines of the directafrthe tangent

that corresponds to the sense of increasing arc-lendtls, |6, y be those direction
cosines:

and:

dx d dz
A= y _

1 a=—, - =_=.
@) ds ds ds

We take an arbitrary positive direction along the ppatinormal with direction
cosinesa’, ', y and a positive direction along the binormal whose doeatosines are
a”, B”, y’, such that the trihedron that is composed of those ttirections will have the
same disposition as the coordinate trihedron. Hence:

a B vy
a g y|=1
a" gy

and each element of that determinant will be equal woifficient in the development of
the determinant.

Serret-Frenet formulas

2. — Some important relations exist between those directiosines and their
differentials. Indeed, upon taking the derivatives of sudles of the relation:

d+p+yi=1
Bty

with respect te, one will infer that:

a'd_a: 0.
ds

However, from the relations (1), one will have:

da_d'x  dB_d'y  dB_d’z

ds ds’ ds d&¢' ds d&’

and the preceding can be written:
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d?x
zdsz 0.

The direction that has the direction coefficients:

d’x d’y d?*z or da dg dy
ds’ ds ' dg ds’ ds’ ds

is perpendicular to the tangent then. On the otadrdhit is in the osculating plane, since
it is the acceleration that corresponds to the paemse It is therefore the principal
normal, and consequently there will exist a nunt®such that:

2) da _a dB_B  dy_y

ds R’ ds R’ ds R

Upon multiplying these equations by, [ ), respectively, and adding
corresponding sides, one will deduce that:

1 da
3 —= > a—
3) R Z ds

Upon now multiplying them byr”, 8% y”, respectively, and adding corresponding
sides, one will get:
Za" -

D aa"=0.

Hence, upon taking derivatives with respecs.to

Za—+Za”—— 0,

On the other hand:

and as a result:

Moreover:

SO:

and the preceding two relations show that the direction
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da" dﬁ" dV’

ds ' ds ' ds

is perpendicular to the tangent and the binormal. dinise again the principal normal,
and there exists a numbEsuch that:

da"

da’ '8 A/ _y
ds ds T ds T

-a
Ta

(4)

Upon multiplying those equations by, B, ), respectively, and adding
corresponding sides, one will get:

1 da”
5 —=>»a—.
2 T Z ds

One likewise infers from the relation:

that:
da’ ,da 1
aqa——=- qa — =— — ,
Z ds Z ds R
and finally one infers from the relation:

dYa?=1

that:
,da’
S
ds
One then has three equationsgg—, %, ﬂ:
ds ds ds
Zad_a:—l, Za'd_a: , a'"d_a:—l,
ds R ds ds T
whose solution will give:
(6) d_a':—g—i" d_ﬁ':—é—ﬁ ﬂ:—z—z
ds R T’ ds R T' ds R T

The three groups of relations (2), (4), (6) constithieSerret formulasor Frenet
formulas.
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Curvature and torsion

3. Interpretation ofR. — Consider the poirttwhose coordinates are S, . Formulas
(2) express a property of the curve that is the locubade points. That curve is traced
upon a sphere of radius 1 that one callsstteerical indicatrixof the curve €), and the
formulas (2) show thathe tangent to the spherical indicatrix at t is parallel to the
principal normal to the curvéC) at M. Let obe the arc-length of that indicatrix, when
measured from an arbitrary origin in an arbitrary sense:

da , dags , dy
—=é&qa’ —— =g —=gy.
do do P do v

Hence, upon taking formulas (2) into account:

do

1
R ds’

Now consider the points t”that correspond to the poirts M’ resp. do/ dsis, up

, . . arctt’ , e
to sign, the limit of the ratleL, whenM’tends toM. The arctt’is an infinitely

arcMM
small equivalent to the arc-length of the great citclewhich has the same measure as
the angletOt” between the two infinitely-close tangents or #mgle of contingency.
. - _arctot
‘d_a is then the limit of the ratle%, which is called theurvatureof the curve at
ds arcMM'
the pointM; R is radius of curvatureat the pointV.
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Interpretation of T— In order to interpret, one must likewise consider the locus of
the pointb whose coordinates awe”, 57, ), or thesecond spherical indicatrix.From
formulas (2), (4), one must remark thhe tangents at t, b to the two indicatrices are
parallel to the principal normal at M.If 7 is the arc-length of that second spherical
indicatrix then one will find, as before, that:

and | 1 /T | will be the limit of the ratio of the angle bewvethe osculating planes Mt
M’to the arc-lengttMM“whenM’tends taM ; it is thetorsionat M, andT is theradius
of torsion.

The two indicatrices are both polars to the sphere.

Discussion. Center of curvature

4. — The direction cosines that we introduced depend upondhréeary hypotheses,
namely, the sense of increasing arc-length, how theiym®siense is chosen along the
principal normal, and the disposition of the coordintiieedron. If we change that
hypothesis and led;, &, & denote numbers that are equattd thens will be replaced
by § s a, B, ywill becomesg a, § G, § v, a’, B, ywil becomeg a’, § B, § v, and
finally, from the relations:

a'=aBy-B), BEa(a-ay), y=e(aB-pa),

a”, B” y’will be replaced withe, & & 0", &1 & & L7, & & & y”. Formulas (2) will then
give:
gda _ ga
&, ds R

i.e., R will change into&; R, and its sign will depend upon only the choice of positive
direction along the principal normal.

Hence, the poin€ along the principal normal such thsiiC = R (R being defined
algebraically as before) is a geometric elementighattached to the given curve. That
point C is called thecenter of curvature at M

Now look atT. Formulas (4) then give:

£EE.da" _ g

g ds T
or:
da" o'
Eg—— = —, ...,
ds T
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Hence,T will change intog; T, and the sign of will depend upon the disposition of
the coordinate trihedron uniquely. There is no reason tnedafcenter of torsion then.

Sign of torsion. Form of the curve

5. — In order to interpret the sign &f we shall study the rotation of a plane that
passes through the tang®ht and a poinM“along the curve that is infinitely close lth
Refer the curve to the Serret trihnedron, so the tangédX, the principal normal i©Y,
and the binormal I©Z We will then haver=1,=0,y=0;0'=0,'=1,y=0;0"=
0, 57=0, y =1. We shall seek the developments of the coordiraita point of the
curve that is infinitely-close tM in increasing powers dafs (viz., the arc-length of the
curve when measured from the pdhy.

We have:
_dsdx dé d x d5 ¥ x
X ===""4 + = ¥
1ds 2 dg 6 di
Y=,
Z =

Now, from the Frenet formulas:

2(: a=1,
ds

2 ]
H: d_a: l: O,

d ds R

1
d®x  d’a da’' .d(Rj 1(_Z_a_"j—i’dR:—l
R de R’

= = 1 +q =
d$ d¥ R ds ds RU R T
and similarly for the other coordinates. One wi#n find that:

1

X= ds ———_d§ 4
6R
1 1 dR
7 Y = —d§¢ -——d3
0 2R 6R ds
Z: —i
6RT

These are the developments of the coordinategpofrd M “that is infinitely close to
M.
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The plane that we consider passes through the tangEme. initial sense of its
rotation wherds varies upon starting with zero is given by the sigd 61, which is the
angular coefficient of its trace in the plane of W& Now:

Z__Gs
o= sl

That angular coefficient will be positive wh@n< O for increasings, i.e., when the
point displaces in the positive direction along the tahg&he plane will then turn in the
positive sense. Moreover, if one supposes, for exant@eR > 0 then the poin will
be above th&Y-plane, and ifTf < 0 then the ar&MM’ of the curve will be in front of the
XZ-plane; on the contrary, whd@n> 0, that point will be behind that plane.

Formulas (7) permit us to represent the projectionseottinve onto the three faces of
the Serret trihedron in the neighborhood of the pdht In order to draw those
projections, we shall suppose that 0 andT < 0.

y1 Rectifying
plane

m]_/

X1

X2

rnZ /A e N PN
Y2

Normal plane Osculating plane
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A consideration of formulas (7), when taken two atinae, will show that the
projection onto the rectifying plan&Z) will have a point of inflection at the pointy,
where the inflectional tangent will @X. The projection onto the osculating plane will
have an ordinary poinn whose tangent i©®X. Finally, the projection onto the normal
plane Y2 will have a point of regression @b whose tangent of regression will G¢.

Motion of the Serret-Frenet trihedron

6. — Remark— Consider a poir® that is invariably linked with the Serret trihedron,
and letX, Y, Z be its coordinates, which are constant with respeittatiotrihedron; let,
n, {be the coordinates of that point with respect to desysof fixed axes. Upon
remarking that:
f=x+taX+a'Y+a" Z

n=y+BX+BY+S'Z
{=24yX+YY+)' Z

when the summit of the Serret trihedron describegitven curve, the projections of the
velocity of the poinP onto the fixed axes will be:

dé _dx  do dr o dr
dt dt dt dt dt
d_nzﬂ.i.x%.{.Yﬂ.{.zﬁ,
dt dt dt dt dt
%:d_z+xﬂ/+Y1+zi,
dt dt dt dt dt

or rather:

£2{0+X£—Y(Z+a—"j+ Zi}d_s,
dt R R T T| dt
dn _

at =...

df _
E_

The projections of the velocity onto the moving axe$tivén be:
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V —a_ % K:(l ds
dt dt dt dt’

WL g_( M
dt dt dt R dt
" df "d,7 Y dS

V., =g —+ :—___

z dt n V dt  Tdt

ds / dt is the velocity of the summit of the trihedron. Wk consider only the
rotational velocity then we will know that ip, q, r are the components of the
instantaneous rotation along the moving axes then:

Vy=qZ —rY, Vy =X — pZ Vz=pY -gX

and upon identifying those expressions with the preceding, areewill then find that:

which shows that:

The instantaneous rotation at each instant is in the rectifying plane, aadeif
supposes that+ s then it will have the torsion and curvature for its components along
the tangent and binormal, resp.

If one supposes that the Serret trihedron has beesptrdad to the origin then it will
turn around its summit, so the instantaneous axis ofioatavill be in the rectifying

plane, and the motion of the trihedron will be obtainedd#yng a certain cone on that
plane.

Calculation of R

7.— Recall formula (3):
1 ,da
—=Ya=
R ds
From the relation:
dx
a=—,
ds
one infers that:

da _ ds & x- dxd ¢
ds ds’

Now set:

A=dyd?z-dzdy, B=dzd>—dxdz C=dxd% —dy dx,
and
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+ A2+ B*+C*=

A, B, C are the coefficients of the osculating plane. Assallt, the sign oD can be
chosen arbitrarily, so the direction cosines of tm@bnal will be:

A B
aII:_, II:_, I:
D o D 4

c
D )
and the direction cosines of the principal normal e

Bdz- Cdy_ d’x(dx'+ dZ)- dX dyd y dz%).

a/: //_ /:
w=hy Dds Dds
_ d’xds - dxdsd _ dsd® x-— dxd
Dds D ’
and similarly:
,_dsd’y- dyd ¢
ﬁ - D 1
_dsdf z- dzd4 ¢
V_ D 1

SO:

_‘Z da Bdz- Cdy dsd x dxd
Dds dg ’

which can be written:

1_
— d?x(Bdz Cdy- dk Bdz C
"= Y d*x(Bdz- Cdy §§j ¢ g
The second sum is zero, and:
dx dy dz
1.1 Sd4rxBdz- cay=—— dzx Py #7=-2
R Dd¢ Ddg B C ds®’

so finally:

D (dyd® z- dzd
‘_‘ (¢ +dy’ + dZ)*?
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Calculation of T

8.— Similarly:

1 ,da"  « Bdz- Cdy DJdA AdL
_ = a'__
Z D [dis D’ ds

which can be written:

1
= SZZdA(de—Cdy— §Z A Bdz CQ

The second sum is zero, and:

?1 :Dz—ldszsz(de_ Cdy= Dzld 7~ dzd ¥ dst x o),
or:
o1y Z dx dyddz dZg.
T D?
The second sum is zero, and:
dx dy dz
?1 —Zdzx(dydgz— dzd ),——é d’x d?y o4,
d®x d®x o

in which:

=Y (dyd’z- dzd ¥.

Remark— In order for the torsion of a curve to be conddyazero, it is necessary and
sufficient that one must constantly have:

dx dy dz
d’x d’y &z =0,
d®x d*x &

which demands that y, z must be coupled by a linear relation with constarfficients;
i.e., the curve must be planar. Hence:

The curves with torsion that is constantly zerd el plane curves.

Osculating sphere

9. — We look for the spheres that have second-omiaiact with the curve considered
atM. From the theory of contact, the centey Yo, Zo) and the radiu®, of such a sphere
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are determined by the following equations, which we develomésns of the Serret-
Frenet formulas:
> (x=%)’-R=0,

(-9 -R1=0, or  Tal(x-x)=0,

? 2 o 19 iy vy
E[Z(x—x)) R]=0, or 1+E2a(x %)= 0.

If we take the Serret-Frenet trinedron to be therdinate trinedron, as we did above,
then those equations will reduce to:

2% -R=0, X =0, Yo=R;,
and ifZ, remains arbitrary then the general equation ofidsred spheres will be:
X?+Y?+Z%-RY-22,Z=0.

That is a sheaf of spheres that includes the aoglplaneZ = 0. One then verifies
the property of contact with the osculating plane.

From the theory of contact for curves, the cirttlat is common to all of those
spheres is, moreover, the one that has second-caoig¢act with the curve; i.e., the
osculating circle. Its equations are:

Z=0, X2+Y24+7%2_2RY=0,

so it will be in the osculating plane, its centelt be the center of curvatui@ (X =0,Y =
R), and it will pass through. The locus of centers of the spheres consideréakei axis
of the osculating circle.

Among all of those spheres, there is one of thHaah has third-order contact with the
curve. One obtains it by introducing the new cbaodi

d® 2_@21= 0
E[Z(X—%) R1=0;

1 dR

- e (x= %)—EF{ERZH(X— >s)+—1TZa"( X >6)} 0.

With the particular axes that are being employetitae values foxo, yo that were found
before, that will reduce to:

TR
ds



14 Chapter | — Skew curves and developable surfaces

The center of that sphere, which is teculating spherewill then be defined by the
formulas:
Xo=0, Yo=+R, Zo:—Td—R,
ds
and its radius will be given by the formula:

R§=R2+T2(d—Rj2.

ds

ll. - DEVELOPABLE SURFACES
General properties

10. — A skew curve is the locus o' points. Correlatively, we consider a
developable surfacevhich is the envelope of' planes. Theharacteristicof one of
those planes corresponds to the tangent to the curvpaatasince it is the intersection
of two infinitely-close planes.

Let:

1) uX+vY+wZ+h=0

be the general equation of the planes considered, inaswehy thatu, v, w, h denote
given functions of a parameter
From the theory of envelopes, the characteristice bi@ general equations:

(2)

uX +vY+ wZ+ k=0,
Xdu+ Ydu+ Zdw dEO.

From the theory of envelopes, the developable surfaaieis the envelope of the
planes (1) is the locus of the lines (2), which will equently be rectilinear generators.
Moreover, again from the theory of envelopes, eacth@fplanes (1) will be tangent to
the surface along the generator (2) that corresponds sathe value af

Consider the curved) then, which is the locus of points, {/, z) that are defined by
the equations:

ux+ vy+ wzt h=0,
(3) xdu+ ydw wdz dk O,
xd’u+ yd¢w wd # d KO.

Any of its pointsM will be on the line (2) and correspond to the sameevalt, and
consequently, it will be in the corresponding plane (1). sé&k the tangent t&€) at M.
In order to do that, differentiate equations (3). If wiéetentiate each of the first two
then upon taking into account the following one we wiltlfthat:
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u Ldx+ vidy+ wldz= 0,
(4) { 4

duldx+ dvildy dwldz 0,

which expresses the idea that the direction of thgetainis the same as that of the line
(2). Hence, the tangents t©)(are the generators of the developable.

We again seek the osculating planeG@p &t M. It must pass through the tangent and
be parallel to the directionl fx, d %y, d 2). Now, if we differentiate the first of equations
(4) then upon taking the second one into account, weindllthat:

u>+vMAy+w?z=0,

which shows that the plane (1) satisfies the precechmglitions. Hence, the osculating
plane to C) will be the plane that envelopes the developable.

(C) is called theedge of regressioaf the developable.

Hence:

Any developable is the envelope of the osculating planes to its edggaesdsion and
is generated by the tangents to its edge of regression.

Remarks— We have implicitly made various hypotheses. Firslipthat equations
(3) definex, y, z i.e., that their determinant is not identically zerd it were then one
would have:

u \Y; w
du dv dw|=0
d’u d’v o

for anyt, which would express the idea thaty, w are coupled by a homogeneous linear
relation with constant coefficients; i.e., that fflanes (1) are parallel to a fixed line. In
that case, the lines (2) would be parallel to that s@ineetion, and the surface would be
acylinder. In that case, the singular case would occur in whictfaéhe planes (1) pass
through a fixed line, which would then be their envelope.

If we discard that case then we will have assumedthtiese is a locus of pointd.
That supposes th# is not fixed. If that were true then since equationsa(8)verified
by the coordinates of that fixed point, the planes (lylvpass through that fixed point,
as well as the lines (2). The envelope would beree.

We again discard that case. We assume, moreoverthindines (2) generate a
surface. Now, that will break down only if they coatej which is the singular case that
was examined already.

Finally, we remark that the curv€)(is unavoidably skew, since it is plane, and its
plane is its unique osculating plane. Our argumentsnatlicease to apply, so all of the
planes (1) will coincide. There will not oe' planes (1) then.
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Converses

11. — Conversely, the osculating planes at all points of a skew curverwill@ a
developable- Indeed, if we recall the notations of § 1 then tleulasing plane at a point
X, Y, zof a curve will have the equation:

da"(X-%=0.

Its characteristic is represented by the preceding ieqsatnd:

Zdi(x— X) - Za"—_o

Now:

Za” =Y aa" =0, da
The equations of the characteristic will then be:
dYa'(X-¥=0, Da(X-x=0.

If one takes the Serret-Frenet trihedron to be dwrdinate trihedron then they will
reduce to:
Z=0, Y=0.

Hence, the characteristic of the osculating plane at a point of a clues is the tangent
to that curve,and the envelope of that plane will indeed be a developablace. The
edge of regression is defined by the equations:

> a'(X-x=0,
> a'(X=x=0,

da' , dX _
ZE(X N->.a dS-0.

Consider the third equation; we remark that:

,dx .
Ead—s— E aa =0
and

ga __&a
ds R

That equation will then become:

a
=
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a a"
—+— [(X=X =0,
NS
or furthermore, upon taking the first equation into account
D a(X-x)=0.
We then obtain three linear homogeneous equations #x Y — y Z — zwhose
determinant is 1; hence:
X =x=0, Y —y=0, Z—-2=0;
i.e., the edge of regression is the curve itself.
Remark— The name “edge of regression” comes from the Fettthesection of the
developable by the normal plane to the edge of regression at M widntraspoint of
regression at the point MIndeed, refer the curve to the Serret trihedron lateas to

the pointM: From the formulas that were established in § 5, tleedinates of a point on
the curve that is close to the potwill be:

1

x= ds > ds +..
6R
1 1 dR
- Llge LRy
y 2R 6R ds
zZ= —ids” ..
6RT

The coordinates of a point on the tangent to the powtz are:

x:X+A2(: (ds_ 12 d§+"'j+A(l__1 d§+"'jl
ds 6R 2R

Y=y+/ dy_ (idsz—id—Rd§+~-j+)l(—l ds——1£z dzs+j
2R 6R ds R 2R ds

Z=z+A d_Z: (—ids’j +...j+)|(__1 dg +j .
ds 6RT 2RT
Take the intersection of that tangent with the redmptaneX = 0, which will give:

_ ds+---
1+---

=—ds+ ...,

and the curve of intersection will have the equetio



18 Chapter | — Skew curves and developable surfaces

Y=- 12 d+ .., 2=~ d+ ..
2R 3RT

One sees that it has a point of regression at the lglpiand the tangent of regression will
be the principal normal.

Z

Rectifying surface. Polar surface
12. —Remarks— We seek the developable surfaces that are enveloped facts of
the Serret trihedron on a skew curv@).( We just saw thathe osculating plane

envelopes the developable surface that ad{@i$or its edge of regression.
Now consider the rectifying plane:

da'(X-3=0,

whose characteristic is represented by the preceding eqweatil the equation:
1 1
=Y a(X=-X+=> a'(X-X=0.
RZ (X=X TZ (X=X

If one takes the Serret equations then those equatibieeome:

Y=0, Lx+lz=o,
R™ T

whose characteristic will contain the pot=0,X=-1/T, Z=1 /R, which is the
extremity of the vector that represents the instadas rotation of the trihedroh.is the

instantaneous axis of rotation of the Serret trihedrdts locus is called theectifying
surface. It contains the curve).

Finally, consider the normal plane:

da(X-3=0,

and the other equation of the characteristic is:

da dx _
ZE(X X) ZGFS—O,
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or:

%Za’ (X=x)-1=0.

That characteristic is called tpelar line, and its locus is called tipolar surface.
Once more, take the Serret axes, so the equations pbtar line will become:

X =0, Y=R

The polar line is thethe axis of the osculating circle.
The point of contact of the polar line with the ed@eegression of the polar surface
is given by the three equations:

da(X-%=0,
Y a'(X-¥%-R=0,
dx dR

da’
S (XY -

ds

Upon taking the first one into account, the last orleb&come:
—Za”(x x)+— =0.

Upon taking the Serret axes, one will then get:

X=0, Y=R, Z——Td—R
ds

Those are the coordinates of the center of the oswilspthere (see 8§ 9).
Therefore:

The point where the polar line touches its envelope is the centbe afsculating
sphere of the curv€C). The curve(C) is the orthogonal trajectory of the osculating
planes at the locus of the centers of its osculating spheres.




CHAPTER I

SURFACES

The d<* of the surface and angles

1. —Curves traced on a surface. Arc-lengths and angldset (§ be a surface, and
suppose that the coordinates of a running point are expressatha®rfs of two
parameters, V.

(9 x=f(uv), y=gVv), z=h(uv).

u, v are thecurvilinear coordinate®f a point of the surfaces). One defines a curvE)
on the surface by establishing a relation betweewy or — what amounts to the same
thing — by expressing, v as functions of the same parameter

(©) u=g (), vV=¢(.
The tangent to that curve will have the direction patans:

1) dx:%du+%dv, dy:ﬂdu+ﬂ/dv, dz:%du+a—zdv.
ou ov ou ov ou ov

The tangent will then be determined by the differentalsiv.
The element of arc-length has the expression:

2) ds’ =d¥¢ +dy? +dZ = E duf + 2F du dv+ G dv = @ (du, dv)
upon setting:
2

0x 0X 0X ox )
E=Y| = F=Y)—"22, c=Y|=1.
Z(auj ou ov Z(avj

Consider two curves that pass through the same pow ¢n the surface. Letu, dv
be the differentials that correspond to one of themal, letdu, dv be the differentials that

correspond to the other, 88 Js are the corresponding differentials of arc-lengthsv If
is the angle between the two curves then we know that

> dxdx
cosV==—,
dslds
Now
deﬂixz Z(%dw% dvj(%cfwﬁ(&\a =E du dut+ F (dudv+dvau) +G dvov.
ou ov Ju ov

That is the polar form of the quadratic fofn(du, dv), and:
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o ob(du, Ay , < P(du dy
(3) cosV == d [dlu 0 [dv
2 Jo(du,dyP@udy

In order for the two curves to be orthogonal, meésessary and sufficient that dés
Oor:
(4) E du dv+ F (du v + dv ) + G dvv = 0.

In particular, we seek the condition for tt@ordinate curves g const. and/ = const.
to form anorthogonal net. We would then havelv = 0, du = 0, and the preceding
condition would reduce to the identity:

Fduodv=0,

or sincedu, ov are not constantly zeré, = 0. In that case, the square of the arc-length
element would take the characteristic form:

d$ =E df + G dV.
Remark— If one defines the surface by an equation of the form:
z=f(xy)

then upon denoting the partial derivativez @ith respect tx, y by p, g, resp., as usual,
one will have:

ds’ =dxé +dy? + (p dx+ g dy)? = (1 +p°) o€ + 2pqg dx dy+ (1 +cf) dy?;

E=1+p% F=pq G =1+

Deformation and conformal representation

2. — Mappable surfaces. Conformal representationsConsider two surface$)(
(S):
S x=1f(u,Vv), y=g(u V), z=h(u,v),
(S_]_) X= fo (Ul, V]_), Y=0o (Ul, V]_), Z= ho (Ul, V]_).

One can establish a point-to-point correspondencedeagiwhose two surfaces, and in an
infinitude of ways. It suffices to set:

w=¢(U,Vv), i=¢(u,Vv).

The functions are arbitrarg, ¢, but always under the condition that the preceding
equations must be soluble forv. The equations of the surfacg&)(will then have the
form:
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(S) x=fi(u,Vv), y=0: (u,v), z=hs(u,v).

That amounts to saying that the homologous points quneisto the same systems of
values for the parameters.
Now let the elements of arc-length on those two sadde:

(1) d$ =E df + 2F dullv+G dV,
(2) ds? = E; di? + 2F; du (v + Gy dV2.

Suppose that these elements of arc-length are ideBtie&;, F=F, G=G; . Ifu,v
are expressed as functions of one parametéhen the arc-lengths of the two
corresponding curves on the two surfaces that are ceadpby the corresponding points
will both be expressed by:

[*JEdF +2Fdudw Cdf,
to

in whichto, t; are the values dfthat corresponds to the extremities. Conversetywo
arbitrary homologous arcs of two arbitrary homolagi@urves that are traced on the two
surfaces have the same length then the arc-letgtieats (1) and (2) will be identical
when one replaces andv in them with arbitrary functions daf and in turn, will be
identical inu, v, du, dv. One then says that the two surfacesnaappableto each other,
or that they can be deduced from each othetdbgrmation.

Under that correspondence, the funct@rwill be the same for both surfaces, so
formula (3) from § 1 will show that the angles greserved. However, the converse is
not true. The expression for cdss homogeneous and of degree zerh, ik, G. For the
angles between the two arbitrary homologous cuteebe equal, it is necessary and
sufficient that one must have:

and that ratio must be independentaofdyv, au, Jv. In that case, one says that there is a
conformal representatioaf the two surfaces on each other.
The problem of conformal representation
If one is given two surfaces then it will alwaysgmessible to establish a conformal
representation between thenifhat amounts to saying that one can exptesy; as
functions ofu, v, in such a way that:

E dif + 2F du dv+ G dV¥ = y (u, V) (E1 dS° + 2F; du dv+ G dVA).

Decompose the twds’ into first-degree factors. Note tHa6G — F is the sum of the
squares of the determinants that are deduced fiermatrix:
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ox dy 0z
du du au
x dy 0z
ov ov o0v

EG - Fis positive for any real surface. Set:

EG-F=H?

d¢=E (du+ F+iH dvj(dwF —H d%.
E E

SO:

Each of the factors on the right-hand side admitist@grating factor, so:

dquF+|H

dv=M (u,v) da (u, v),

F —iH

du+ dv=N (u, v) dB(u, v).

The functionsa, S are independent. IndeedHf# 0 thenda anddg cannot both be
zero, so we assume that condition is fulfilled. Vea then taker, S to be curvilinear
coordinates on the first surface, and we will have [chap. Ill, 8 4]:

ds’ =P (u, v) da MB=0 (a, B) da S.
Likewise, for the second surface:
d812 =P (Ul, Vl) day IZU,Bl =0, (0’1, ,31) do |:d,31 ,

in which a1, S, are two independent functions of e v; .
We will then have to satisfy the identity:

O (a, /) daif=Q (a, B ©1 (o, fr) day [HS

in whichQ, a1, £ are unknown functions af, £.
Hence, forda = 0, one must hawem MG = 0. If we takedar = 0 thenay will be a
function ofa, and similarlys, will be a function of3:

a(u,v) =g (a(uV),  fi(unvi) =¢ (B V).

Upon takings = 0, £ will be a function ofa, and similarlya;, will be a function of
B
B (U, vi) = ¢ (a (U, V), a1 (g, Vi) = ¢ (B (U, v)).
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One then sees that one can always establish a cohferpnasentation, because in
the two cases, for any functiogsand ¢, ©; (a1, /) darn A will indeed be proportional
to © (a, P da OdS, and we will have the general solution to the problemmremver,
since the functiong andy are arbitrary.

Condition for two surfaces to be mappable

Two given surfaces cannot be mapped to each other, in gerdrabther words, if
one is given two surfaces then it is generally imposgiblestablish a correspondence
between them such tha# = ds?. Indeed, if one repeats the preceding calculationithen
will be necessary to satisfy the relation:

O(a,Hdalp =0, (n, /) da HS .

As before, one must take, for example:

a=¢@), L=y,

and the relation to be verified will become:

O©(a.f=01(¢(a), ¢(B) ¢’ (a), ¥ (D).

It is easy to see that if the functioBs©, are given then it will be impossible, in general,
to find functionsg, ¢ that satisfy that relation. Indeed, consider theiqddr case in
which the second surface is the plare0. In that casds® = dxX + dy? = dar (0, , and
one must have:

©(a.p=¢"(a) v .

When the functior® is arbitrary, it will not be the product of a functioh a with a
function of 5.
In order for that to be true, it is necessary anfieiit that one must have:

log © (a, ) = log ¢’ (a) + log ¢* (H)
or

0°logo(a,p) _ 0
0a @

One might just as well show that a surface is inogeneral, mappable to a plane and
find a necessary and sufficient condition for a surfamcée mappable to a plane. We
shall return to that later on (Chap. IV, 8§ 3).
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Conjugate directions and the form ) 1d?x

3. — Circumscribed developables. Conjugate direction€orrelative to the curves
that are traced on a surface, which are locbbpoints on the surface, we consider the
circumscribed developables, which are envelopes’oplanes tangent to the surface.
Define the tangent plane to a point of the surfacd.l,lm, n be the direction coefficients
of the normal, and suppose that the coordinates arengedaa. For any curve on the
surface:

| dx+ mdy+n dz=0.

In particular, for the coordinate curves const.y = const., we will have:

and those relations will show thiatm, n are proportional to the functional determinants

A, B, C:
) Az ®0z_020y DD 5_D@N _Dxy)
ouov dudu D(u,v) D(u,v) D(u,v)

Moreover, we have that:
A?+B?+C*=H?

Hence, the direction cosines of the normal will be:

A B C
2 A = 1 =— 1 V=— 1
(2) w H=4 w

in which the positive direction thus-defined wikgend upon the sign that is adopted for
H.

Consider a circumscribed developable. We deflimd by expressingl, v as a
function of one parametér

u=¢ (), v =)

The point (1, v) will then describe a curveC] on the surface, and the planes tangent to
the surface at the various points Gj (ill envelop the developable in question. XIfY,
Z are the running coordinates then the tangent fdlartbe surface at the point, {, 2
will be:
IOX-X)+mOY-y+ndZ-2 =0.

Thecharacteristicis defined by the preceding equation and the émjuat
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di X -x) +dmOY —y +dn0Z -3 = 0,

which is obtained by differentiating the preceding onthwespect td and remarking
that:
| dx+ mdy+n dz=0.

Let us see what the direction of that characteristicLet &, dy, dz be its direction
coefficients. It is tangent to the surface, so areahooseu, dv in such a manner that:

u ov

5y :ﬂéu-{-a_yé\/,
ou ov

52:%5[]-{-6_25\/,
ou ov

and upon replacin — x Y — y Z — zwith the proportional quantitie®, dy, oz, we will
get:
dl x+dmdy +dn[Hz= 0.

Now:
di :ﬂdu+ﬂ dy,
ou ov
dm:a_m du+a_rn dv
u ov
dnzﬁ du+@ dv
ou ov

so the preceding relation can be written:

Z(ﬂdwﬂ dvj(%cfw%&\a =0.
ou ov Ju ov

Arrange this with respect to tlel, dv, du, dv. Note that:

ox _
Zﬁfa

Hence, upon differentiating with respectutandv, we will get:

2 2
6x+ GI%_O Iax+za|ax

2+ =" =, = =0
ou? dudu ouov ovou

Similarly, the relation:
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1% 0

ov
will give:
2x ol ox
|l—+>» ——— =0
ov? Zavav
and:

0°X ol ox _
> +y ——= =0,
Juov Juov

in such a way that the desired relation can be wrégen
3 Zlidu@wzja—zx(du@w d\m0+z |62_>< did =0
ou’ uov oV '

That is the relation that exists between the directimefficients of the characteristic and
the tangent to the contact curve. It will obviously l&t gs clear in oblique coordinates,
whenl, m, n are then the coefficients of the equation of thgeéanplane. Set:

2x 0°X 2x
4 E'=Y1—, F=Y , G'=YI1—=,
“) ou? Z ouov ov?
and
(5) W (du, dv) = E’du? + 2F"du dv+ G’dV = 0.

With those notations, the relation that was found eawiitten:

E'ludu+ 2F'duov+dvdu) + G'[vdv=0,
or:

(6) oW (duldy) Su+t oW ( dLDdVa_V: 0.

odu ddv

That relation, whose left-hand side is the polar fofmthe formW, is symmetric with
respect tod, 0. There is reciprocity then between the direction of the tangetiteo
contact curve of the developable and the direction of the charactevistite tangent
plane to that developablel'hose two directions are callednjugate directions.

In particular, we seek the condition for the curues const.,v = const. to form a
conjugate neti.e., for their tangents to have conjugate directiahgach point of the
surface. One would then haste = 0, du = 0, so the condition is that one must have the
identityF’= 0.

Remark 1- From the relation:

dx= %du+% dv,
ou ov

one will infer that:
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2
X g2+ X oy O X 2 9% gy e X
du ov o dudv av

d =

On the other hand:

ZI——O ZI——O

One concludes from this that:

D ld?*x= Zl—du +22I

du dv+ )’ I— dv;

W (du dv) = D 1d?x.

Remark 2— In particular, if one takds= A, m = B, n = C then the form¥ will be
identical toz Ad?x, and its coefficients can be written in the forndeferminants:

0°x 8’y 0°z 0°x 9’y 0’z
ou? ou®> ou? oudv oudv ouw v
2 2
E':z a_)z(:% Q 6_2’ F’:ZAaX: % ﬂ 6_2 ,
du u OJu Jdu ouov du ou Ju
x oy 0z x oy oz
ov odv o0v ov ov ov
9°x 0%y 0°z
oV ov: oV

9°Xx ox o9y 0z
c=YaA =2 & 220
) ov* ou du adu

ox o0y 0z

ov o0v o0V

Fundamental formulas that relate to a curve traced on a surfaz

4. — Fundamental elements of a curve on a surfacélNe consider the Serret
trihedron at a point on the curve and a trihedron thabisposed of the tangent to the
curve, the normaliN to the surface, and the tang®fil’ to the surface that is normal to
the curve. We choose the positive direction in sufashion that the trihnedrav COTN'N
thus-constituted will have the same disposition astieedinate trihedron, in such a way
that ifl, m, n are the direction cosines of the normal to theasa,fandn, 3., y4 are those
of the tangent to the normal surface to the curve omenwill have:
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A uv) [N [B(a”B" V)

T(a By
P(a), B,y M
N’(aw B 1)
a B vy
al ﬁl yl :1'
A u v

The two trihedra considered have a common axis and the daection, which is
that of the tangent. In order to define one of themrimdeof the other, it will suffice to

29

give the angle between one of the edges of one trihelndrone of the edges of the
other. We give the angi®= (MP, MN) through which one must turn the principal semi-

normalMP on order to make it coincide with the semi-noridd to the surface, and the

positive sense of rotation is defined by the positive doadiiT of the axis of rotation.

We seek the relations that exist between the directisines of the edges of those
trihedra. When one passes from one to the otheralityseone performs a coordinate

transformation around the origin in the normal plan€onsider the unity point at a

distanceM alongMN; its coordinates arg, 4, v. When referred to the systdPMB, it
will have coordinates co@and sing, so:

A=a'cosf+a" sing ,

(1) U= cosf+ " sird
V=) cosd+y sing.

Similarly, the unity point at a distance &N whose coordinates arm@, £, 1 when

referred to the systeMB will have coordinates co(se—gj: sinfand sin(e—gj =

— C0sd, so:
a,=a'sind-a" cod ,
(D)[sic] B, =[B'sind- 3" cod
y,=ysind-y" cod .

Therefore, once more, upon performing the inveoggdinate transformation:
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a' =Acosf+a, sing
B = pcosd+ g sing .
Yy =vcosf+y, sing,
a" =Asind-a, cod ,
B' = usind- B, cod .
Yy =vsin@-y, cod .

(2)

Differentiate formula (1) with respect spwe will get:

ﬂ— (-a’sin@+ a”cos&)—9+ cos@d—a+ smedi
ds ds ds ds

and its analogues;

da, _ = (a’cos@+ a”sin 6)—9+ sm@d—a— cos@di
ds ds ds ds

and its analogues. Hence, upon taking the Frenet formnlhgelations (1), (2) into
account:

dA 1 dé cosfd
(3) — =0 = |—a——
ds T ds R
and its analogues; similarly:
@ da, _)l(l_%j_ sing
ds T ds R

and its analogues. Finally:

5) d_a: a _ )ICOS€+a1 sing

and its analogues.

The fundamental formulag3), (4), (5) permit one to calculated, R, T; i.e., to
determine the osculating plane, curvature, andidingion of the curve considered.

Calculation of %

The formulas (5) first give us:

cosé? 1.4 da dsc? x- dxd ¢ > Ad’x_ > Ad*x
Z—— ‘a2 a@ 4 g

Hence, from the preceding calculation, and upotinggtas we did at the end of that
paragraph:
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. 9°Xx L 9°X , 9°X
E —ZAW, F _zAauav’ G —ZAW
we will get:
cosd _ 1 E'[W +2F [dudw Gd¥
"R H ds? !
or finally:
(6) cosd _ i[‘v(du,dv)

R H o(dudy

Calculation of S'—;H

Formulas (5) again give:

sind da d dx dsd? x- dxd ¢ D a,d’x
R Yds 2 Yds ds 2.4 ds? ds®
Note that:

a B vy dx dy dz

zaleX 1 2 2 2 1 2 2 2
= d°x d dz=—|d°x d d z

¢ e y 0 y
A 7 Vv A 7 Vv

In order to calculate the last determinant, multipby:

ox oy oz
du Jdu Odu
2 2 2
ox oy a_Z:A)|+B,u+CV:M:H.
ov o0v 0v H
A u v

The product is:
0Xx oXx 0Xx oXx
Zaud za_v dx > A dx Zau dx za— dx 0
Zaud zavd Z)ldx Zaud z d Z)Id
% a_x ) 0 0 1
Z)Iau ZAGV ZA

31
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32
0x oX
_ 26 dx za—dx
Zaud zavd
Now:

Z%m z % ?dvj E du+ F dv,

> X i Z ax +%dvj F du+ G dy

and
2
ax d*x -Z EEaX d? +—axd2v+guz di+2-0X gugw X oﬁ/j

Y, ouw v 0V
=Ed*+Fd x+1aEdu +6—Ed dw(a—F —16—Gj dd
2 0u ov ov 20u

2 2
% °X ‘Z [Eax d2u+ X v X g+ 297X 4y dvg—\% d%/j

ov ou oul v
=Fd*+Gd x+(a—F la—Ejd +a—Gd dv+—1a—G av.
ou 209v Ju 20V
The preceding product will then be written:
E d*u+ Fd2v+£a—E de+— dudv OF _10G dv Edu Fd
B 20u ov ov 2du
Fdur v OF-2%) 45496 4uaw29C % Faw cd
ou 20v Ju 20V

The determinant is the sum of two determinantsfitet of which is:

2 2
) EdZU+ Fd2V Edu Fd =H 2 (du % —dv ™),
Fd°u+Gd’v Fduw Gd

and finally:
(7) — =
. Ea—Edu2+a—Edud\f{a—':—ia—Gj d¢ Edu Fd

H d< H*(dud*v=dvd g OF 10E aG 6v 1aauG
( jdz +SZdudw o2 df P Gd

au_26v Ju
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Calculation of 1_d9
T ds
Finally, formula (4) gives us:
dx dy dz
1.9 _ggdl_ 1l oll[,))u cjl// _id)l d,Z v
T ds ‘ds ds ds® '
A u v Y7

In order to calculate the determinant, we again multiplyy the same determinaht
The product will be:

0x 0x
Za d¢ D —sdx A EqusEdy Fdur Gdv O
> YA YA = >Xar YXu o,
ax ax , 0 0 1
Z)Iau Z:)Iav ZA

Moreover, one will infer that:

A%
ou
Upon differentiating:
9°x 1
d)l——— A —d + dv|=——(E’du+F’dv) ;
2 2 [ oudv j H( K

similarly:
SdAa%=- L Eraurcray.
ov H
The product is then:
_1|Edu+ Fdv Fdu+ Gdv
H|{E'du+ Fdv Fdu Gd

and

(8) 1—%: L‘

E'du+ Fdv Edw Fd
T ds H3dS

F'du+G dv Fdu+ Gdy

33

The three formulas (6), (7), (8) permit one cadtelthe three fundamental elements

ORT.
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Kinematic interpretation

The auxiliary elements:

ds ds T’

d R '

dA_dé 1 da _ cosf da _ sin@
24 2/ S 24 ds R
offer themselves up as the components of the instantametation of the trihedroll [
TN’ N aroundMT, MN’; MN, resp., when the poil¥ describes the curveC) with the
velocity + 1.

Along with that trihedron, consider the tri-rectangutdnetdron that was introduced
by Darboux:

Let MO be a direction of the tangent plane that is choséependently of any curve
(C) at each pointM (u, v) of the surface according to a rule that is arbitrdnyt
continuous, and VO’ be the direction of the tangent plane that, along Mithand the
normalMN, defines a tri-rectangular trihnedréh 0O’ N that has the same disposition as
the coordinate trihedron. That is the trihedron thaskadl consider.

Since the direction cosinels, o, W of MO and 4;, £ ,v, of MO’ are functions of

(u, v), the projection of the instantaneous rotation of thaedron alongIN whenM
describes the curv€] with the velocity + 1 will have the form:

, dA, _ rdu+rdv
ZAO - ]
ds ds

in whichr andr; are functions of, v.

Now, if one letsgy denote the angleMO, MT) whose magnitude and sign are
evaluated in the oriented tangent plane throdjd then the instantaneous relative
motion of the trihedromM OTN” N with respect tdv JOO’ N will be a rotation that is
represented by a vector whose algebraic valaggd ds and is carried alonlyIN. That
vector is the geometric difference of the ones tbptasent instantaneous rotations of the
two trinedra. Upon projecting that equipollence advitd, one will then have:

dg, _ sind _rdu+rdv

ds R ds
which one can write:
(9) S'—;‘fds— dgo = du +ry dv.

The geometric elemeﬁtsiRe ds— d¢0j Is a linear form in du, dv then.

It will be simple to calculate that linear form aip specifying the choice of the
auxiliary direction from the origiMO (cf., Chap. 1V, § 5).




CHAPTER IlI

STUDY OF THE FUNDAMENTAL ELEMENTS OF
CURVES ON A SURFACE

Normal curvature

1. — Recall the first fundamental formula:

coseziE’du2+2F'dudv+ Gd¥
R H Edi+2Fdudw Gd¥’

in which the second differentiats® u, d 2 v do not occur. co#/ R depends upon only
the ratiodv/ du; i.e., the direction of the tangent. Hence, €dR is the same for all
curves on the surface that are tangent to the same ldunsider the center of curvature
C along the principle norm&IP then. If one takes the poikt to be the pole, the normal
MN to the surface to be the polar axis, and the rotatidibto MN’to be the positive
sense of the polar angles thBn & will be the polar coordinates of the poi@t The
equation:

cosd
——— =const.
R

will represent a circle. Hencthe locus of the point C is a circlehich one can also see
as follows:

N

N” G M

Consider the polar plane. It is in the plane thatoisnal to the curve, and therefore it
will meet the normaMN to the surface at a poiktsuch that:

R =MK cosé@,
SO:
MK = i .
cosd

MK is constant, so:
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The polar lines to all of the curves on a surface will pass through the pamt M of
that surface, and the tangents to the same line at that point will méet same point K
on the normal to the surface at M. The locus of centers of curvatwak those curves
will be the circle of diameter MKMeusnier’s circle)

In particular, suppose th&= 0. The principal normal will coincide with the nain
to the surface, and the osculating plane will passutirahe normal, so it will be normal
to the surface. Cut the surface with that plane sdll be the center of curvature kst
of the section, and I&, be the radius of curvature. We will have:

cosd _

cosf_ 1
R R’

which will lead us to give the name wbrmal curvatureto the geometric element cés
R. We will then conclude that:

R =R, cos@
Hence, we will have:

Meusnier's theorem: The center of curvature at M of a curve that iscéa on a
surface is the projection of the center of curvatof the normal section that is tangent to
the curve at M onto the osculating plane of thatetwat M.

The theorem breaks down when:
W (du, dv) = E’dW? + 2F"du dv+ G’dV = 0.

Hence, cos¥/ R = 0, soR will be infinite, in general. The formula will beme
completely indeterminate when ca® = 0. The principal normal will then be
perpendicular to the normal to the surface, soos®milating plane to the curve will be
tangent to the surface. The two tangents thatespand to that exceptional case are
called thetwo asymptotic directionsf the asymptotic tangentthat correspond to the
point M that is being considered.

The theorem will likewise break down when:

@ (du, dv) =E duf + 2F du dv+ G dv = 0.
cos @/ R will then be infinite, sR will be zero, in general (cf., 8§ 4).The directiohthe
tangent is such that:
dx +dy* +dZ = 0,
so it will be one of the two isotropic lines thatss through in the tangent plandvat
Remark. — Sincedu, dv are, in fact, homogeneous coordinates for theesponding

directiondx, dy, dz of the tangent plane, one will verify that thehogonality condition
for the two tangentfpp. 20, eq. (4)] expresses the idea that theyarmonic conjugates
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with respect to the isotropic directions of the tangd#ahe. Similarly, theondition for
the two tangents to be conjugafiep. 26, eq. (6)] expresses the idea that they are
harmonic conjugates with respect to the asymptotic lines.

Variations of the normal curvature

2. — Meusnier’s theorem shows us that in order to studyuheture of the various
curves on a surface that pass through a point of thatcsuit is sufficient to consider the
normal sections that pass through the various tangentket surface of the point
considered.

We saw above that:

1 _ 1 Edi+2Fdudw Gd¥
R HEdZ+2Fdudw Gdo’

In the tangent plane M, trace out the tangenidU, MV to the coordinate curves=
const. andu = const., resp., that pass through and consider the trihedron that is
composed oMU, MV, and the normalN to the surface. If one chooses the senses of
increasingu and increasing alongMU andMV, resp. to be the positive directions then
the direction cosines of its axes will be:

MU: %:%E’I: ida_xzj’,
ds duds E ou

- 1
Gg_u_'u’ JE du

-

oo kv 1ox L Y
MV. s Tauds ﬁ% A f% fgg‘
MN: A , M , v

Consider an arbitrary tangeMT then that is defined by the valudsg, dv of the
differentials of the coordinatesv. The direction cosines are:

o _dxn, dxdy g diy, 1 dy,

ds du ds ov ds

dy aydu aydv _d , _d "
B e déf’

ds ou ds av ds

d_dzu 000y g dy, 5 o

ds du ds ov ds

Those formulas show that the director segmen#®fis the geometric sum of two
segments whose algebraic values are:
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which are measured alondU and MV, resp. In other wordd?, Q are the direction
parameters d¥AT in the coordinate systeMV.
Upon introducing those direction parameters, the foritihaagivesR, will become:

1 du du_dv, (d 211 2F' G
—=—|F +2F —0—+G| = | | = =| EPP+—=— PQ+—
R, H{ (dsj ds ds G( dﬁ:l H{ J EG Q+ oAt

If one considers the point that is obtained by sneiag out a segment that is equal to
+,/| R, |alongMT, starting atM, then the locus of that point, whose coordinatethe

MUV system are:
U=+PJIR I, V=+Q{IR I,
will have the equation:
E' 2F G

—UZ+———UV +=V2=H,
G

E J EG

It is a conic whose center is situated in the ¢éamglane, and one calls that conic the
indicatrix of the surface at the poifdl. Once the conic has been traced, one will
immediately find that the square of the measurin@fradius vector will be the radius of
curvature of an arbitrary normal section, and ofiepainlessly conclude the variation of
the radius of curvature whéT varies.

1! 12
The nature of the indicatrix depends upon the eigg%, or, sincek, G are

positive, the sign oE’G'—F’2:

1. E’'G’=F’?> 0. The indicatrix is an ellipse, so all of ttzlii of curvature have
the same sign, and one says that the surfamenigexat the pointM. It is completely on
one side of the tangent plane\ain the neighborhood of the poilt.

2. E'’G’=F’?< 0. The indicatrix is a hyperbola. The surfacesses its tangent
plane at the poirtl. It is saidto have opposite curvatures the poiniv.

3. E’G’—F’?=0. The indicatrix has parabolic type, and siind®s a center, it will
reduce to a system of two parallel lines. The tpilinis then called @arabolic point.

Consider the particular case in whichR,/ is the same, no matter what section one
considers. For that to be true, it is necessay sufficient that 1 /R, should be
independent odiu/ dv, hence:
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Now, the anglewthatMU makes witiMV is given by the formula:

COSw=2 A'A"= L.

JEG

The preceding conditions are then written:

and express the idea that the indicatrix is aeinvhich should be obviouspriori.
The pointM is then arumbilic.

Remark. — In the case where the equation of the surface is

z=f(xy),

when we take the usual notations, the elementooeagth will be expressed by:

ds’ = (1 +p?) X + 2pq CHx Dy + (1 +F) dy’,
SO.
E=1+p% F=py, G=1+q,
and

H=EG-F>=1+p’+¢.

Now, the coefficients of the tangent plane togtdace are:

A=-p, B=-q, C=1,

and:
> Ad?x=-Y dA M x=dpHx+dqHy.

But:

dp=rdx+sdy dg=s dx+tdy,
So:

E’=r, F'=s, G’'=t,
and:

E'G'—F?=nt-¢<.

Principal sections

3. — We seek the directions of the axes of the itdica They are conjugate
directions with respect to the asymptotic direciohthe indicatrix that are defined by:

W (du, dv) =0,
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and with respect to the isotropic directions of the tahg&ane that are defined by:
® (du, dv) = 0.
They are then defined by the condition:

o¥/odu_ o¥/odv _¥(du,dy _H

o0/adu  od/ddv  d(du,dy) R =5

sincedu, dv are homogeneous coordinates for the directibhi®f the tangent plane.

They are theprincipal directions. The corresponding radii of curvature are called
principal radii of curvature.

The equation that defines the principal directisithen:

Eltu+ Fdv  Fldw Gldy
E'[Mu+ Fdv FOdw GOdv

The left-hand sideDD(((;D—’q(;)/) iSs a simultaneous covariant for the forgms\W.
u!

The equation of the principal radii of curvatuseobtained by eliminatindu, dv from
the equations:

o _5 00 oW _g0®
ddu  adu’ ddv  adv’
which gives:
E-SE F-SH _,
‘F’—SF G—Sj o
or:

SENG-F)-SENG'+GIE-FF)+E'G'-F'?=0,
with:

s=2
R

Euler's formula. — Now suppose that the coordinate curves are tange the
principal directions; those directions are rectdmgu Hence, the coordinate curves
constitute an orthogonal net. Moreover, the indicas referred to its axes, so:

F'=0, H=,EG,

and
P2 E

—+Q2—Gl :
EJ EG Gy EG

If we suppose thaP = 1, Q = 0 then we will have one of the principal radfi o
curvatureR; :

1.
R,
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1__E
R EJEG

and forP = 0,Q = 1, we will have the other principal radius of curvatigse

1__ G
R, GJEG’
and the formula will become:
2 2
1_pP.@
RR R R

However, since the coordinates are rectangular Hegeisithe angleNIU, MT) between
the tangenMT and the principal directioklU thenP = cosg, Q = sing, and we will get
Euler’s formula:

1_ cos?¢+ Sirt ¢
R, R R

Consider the tangeMIT’, which is perpendicular tMT. One must then replage
with ¢ + 77/ 2, and we will get:

1 sin2¢+co§¢

R R R
so:

1 1 _1 1

=+

R R R R

Therefore,the arithmetic mean of the curvatures of two arbitrary rectangular abrm
sections is equal to the arithmetic mean of the curvatures of theigalincormal

. 101 1.
sections. That constant quantltg[E +Ej is called thanean curvaturef the surface

at the point considered.

Minimal lines

4. — There are three remarkable pairs of directions inahgent plane at each point
of a surface: The isotropic lines of the tangent plaunéch are defined b (du, dv) = 0,
the asymptotic directions of the indicatrix, which dedined byW (du, dv) = 0, and the
principal directions, which are harmonically conjugatéhwespect to the preceding two
D(®,W) _ 0

pairs and are defined du v



42 Chapter 11l — Study of the fundamental elements of cunvessurface

Consider the isotropic directions, and look for theterise of curves on the surface
that are tangent to an isotropic direction at eachhefr tpoints. That amounts to
integrating the differential equation:

® (du, dv) = 0.

One will then obtain theninimal curvesof the surface. The preceding equation will
decompose into two first-order equations of first-degmnesy / du. Hencethere are two
families of minimal curves on a surface, and one and only one curvelofaaty will
pass through each point of the surface, in genefdose curves are imaginaries. Along

each of them, one has:
ds’ =dx¥ +dy? +dZ = 0.

That is why one also calls thelimes of null length. If one takes the lines to be
coordinates lines then the equatfr(du, dv) = 0 will be verified fordu = 0 anddv = 0,
and one will have:

E=0,G=0

identically, and the element of arc length will redtecéhe characteristic form:
ds’ = 2F du (v,

Remark. — The calculation that is necessary if one is tectiifely refer the surface
to its minimal lines was indicated incidentally in Chalp(pp. 22). In general, two
distinct families of curves on the surface are definetiMayequations:

@ (u, v) = const., ¢ (u, V) = const.,

in which ¢ and ¢ are independent functions, so it will suffice to tékese curves to be
coordinate curves, and make the change of paramgtersn the equationsSj of the
surface (pp. 20) that is defined by the formulas:

w=¢U,Vv), i=¢(uVv).

Isotropic developables. — Equations of minimal curveB general, the two systems
of minimal lines are distinct. In order for them wircide, it is necessary and sufficient
that one must have:

EG-F=H?=0

identically. In that caseéd? + B> + C* = 0, and the fundamental formulas will no longer
apply. In order to study the nature of such a surface,d&midie tangent plane:

AX-X%+B(Y-y+C(Zz-2=0.
That plane will then be tangent to an isotropic cohés then ansotropic plane. All

tangent planes to the surface will be isotropic th&éve seek the general equation of the
isotropic planes. Let:
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ax+by+cz+d=0
be the equation of such a plare.b, c are coupled by the condition:

aZ+b>+c?=0,

or
(a+ib) (@a—ib =-c2
Set:
. . 1
a+ib =tc, a—lb:—fc,
or:

a+ib-tc=0, ta — ibt+c=0.
We infer from these two homogeneous relatiors, in, c that:

a _ b _cC
1-t%  i(l+t?) -2t

Hence, we have the general equation of the isatopnes:
(1) (1) x+i(1+)y—2z+2w=0.

An isotropic plane depends upon two parameter® slinface considered is the envelope
of its isotropic planes. If those planes depenoinupvo parameters then it will reduce to
the imaginary circle at infinity. Therefore, sugpahatw is a function of, for example.
The tangent plane depends upon only one paranseténe surface will be developable,
namely, ansotropic developable.

We seek its edge of regression. Differentiateaiqn (1) twice with respect tb
Upon denoting derivatives with respect toy primes, we will have:

(2) —tx+ity—z+w =0,
(3) -X+iy+w' =0.

Equations (1), (2), (3) will then define the eddeegression. (3) gives:
X—1ly=w'.
(2) is written:
Z=—t(X—I0y) +W =w —tw",
and (1) becomes:
X+iy=t? (X —iy) + 2z— W=t 2 W' + 2 (W — tw') — 2w.

Hence, the equations of the edge of regressiorwiill

(4) X—iy=w", d(x+iy)=-t?w"?dt dz=-tw" dt
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Hence:
d(x—iy) O (x +iy) =— 2 w"?d? = - dZ
or:
d(x—iy) O (x +iy) +dZ =0,
SO

dx +dy? +dZ = 0.

The curve that was found will then be a minimal curdée edge of regression of an
isotropic developable is a minimal curve.
Conversely, consider a minimal curve. The coordingtgsz of one of its points are

such that:
dx +dy? +dZ = 0.
Differentiate that and get:

dx M *x +dy M %y +dzH ?z=0.
However, the Lagrange identity will then give us:
YAé Y (d)? - dxmM*x =Y (dy ™%z — dAH %)* = 0;

i.e., if A, B, C denote the coefficients of the osculating plane:

AZ+B?+C?=0.
The osculating plane at a point of a minimal curve is isotropic. Anymalngurve can
be considered to be the edge of regression of an isotropic developable.

It then results that the edge of regression is thé geeral minimal curve, and that

the coordinates of a point on an arbitrary minimal cluake given by formulas (4), in
whichw is an arbitrary function df andw, w" are its first and second derivatives, resp.

Remark. — Those formulas can serve for the study of the naihourves, since the
classical theory of curvature and torsion does not applyhose curves. On that
occasion, observe that theane curves that are situated in isotropic plamel likewise
be singular curves from that same viewpoint.

Asymptotic lines

5. — If we now seek the curves on a surface that are tatgem asymptote of the
indicatrix at each of their points then we will bd t® integrate the equation:

() W (du, dv) =0,
and we will obtain th@asymptotic lines.As before, we see thttere are two families of

asymptotic lines, and one and only one asymptote of each family wilthpasgh any
point of the surface, in general.
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From the remarks in § 3 of Chap. Il (pp. 28), the precedifigrential equation is
written:
> Ad*=0.
Moreover:
> Adx=0;

however,A, B, C are the coefficients of the tangent plane to tdase. Equation (1)
then expresses the idea that the tangent plane containdirectiord 2x, d %y, d %z in
addition to the directiodx, dy, dz i.e., that it coincides with the osculating planetaf
curve. ThereforeThe asymptotic lines are defined by the condition that the osculating
plane at each of their points should be tangent to the surfaee.particular,any
rectilinear generator of a surface is an asymptotic libecause since the osculating
plane at a point of a line is indeterminate, it can desitered to coincide with the
tangent plane at that point of the surfaddnerefore, if a surface is ruled then one of the
systems of asymptotic lines will be composed of rectilinear generat

If we take the asymptotic lines to be coordinate curvesweewill have:

E'=G'=0,

and the form¥ will reduce to the characteristic form:
W (du, dv) = 2F"du [Hv.
The asymptotic lines are real at the points where thiacaihas opposite curvatures,
which will be imaginary at the points where it is conv&hey are distinct, in general, as
well as distinct from the minimal linedVe shall examine the exceptional cases:
1. The asymptotic lines coincide.Take the equation of the surface in the form:

z=f(x ).

The condition for the two families of asymptotic linrescoincide, namely:
E'G'-F?=0,

will then reduce to:

n—-<=0
here. All of the points of the surface must be parabollhat expresses the idea that the
total differentials:

dp=rdx+sdy dg=sdx+tdy

are two linear forms inx anddy that are not independent; i.e., that the functpasdq

of x andy are functions of each other. (For examplés a function ofp). On the other
hand, the tangent plane at a point has the equation:

pPX-X%+q(Y-y-(£-3=0,
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or.
pX+qY—-Z=px+qy—z
However:
d (px+qy—2) =x Hp+y [Hq,

and we see that dp = 0, since that condition is already implied dry= 0, then we will
have, at the same timeé,(px + qy—2) = 0. Hencepx+ qy—zis a functiorp, as well as
g, and the tangent plane will then depend upon just one ptggrand the surface will be
developable. The converse is immediate, because ifjtrienpX + qY—Z = px+ qy—

z depends only upon one paramefghendp anddqg will be proportional todg, and the
two linear formgdp =r [x + s [y, dq = s Cdx + r [y will not be independent. One will
then have:

r

s t

=n-<=0.

Hence,the surfaces with double asymptotic lines are the developable sjréaue
the double asymptotic lines are the rectilinear generators. Hoe tsotropic
developables, the double asymptotic lines coincide with the double mimesalwhich
are the isotropic rectilinear generators.

Remark. — For the developable surfaces, since the edge of regreka® its
osculating plane tangent to the surface, it must bsidered to be an asymptotic line.
Indeed, it is a singular integral of the differentigliation of the asymptotic lines.

2. A family of asymptotic lines coincides with a family of minihmas. — Omit the
case of isotropic developables, which was just examinede e minimal lines to be
coordinates curves. We will then hawe= 0,G = 0, and if we suppose that the family
= const. constitutes a family of asymptotes tther O must be a solution & (du, dv) =
0, soE’'=0; i.e.:

* dy oz
du du odu
e 0 0|
ov odv o0v
9°x 0%y 9%z
ou®> oJu* au’

There will then exist the same homogeneous, lineaiagetabetween the elements of the
rows of that determinant, namely:
9°x _ ., 0x . 0X

—=M_—=+N—,
au ou ov

2
oy _ Q+NQ

ou? du oV
2

a_f =M a_z+ Na_z

ou Jdu ov
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Multiply them by gx gy 9z , and add them. The coefficientMfis E = 0, and that of
u
N isF, so the left-hand side will bég—E 0. HenceNF = 0, and sincé& # 0 (since the
u
minimal lines are distinct\ = O, in such a way:
9°x 9’y 0°z
ou”> — ou” _ du® _
ooy oz
ou ou ou

The curvew = const. will then be lines, and since they are minimak, they will be
isotropic lines. Conversely, if the curves= const. are lines then there will exist a
functionM of u, v such that:

2 2 2
_a)z(zM%, _aZ:Mﬂ, _aizM%,
ou ou ou ou ou ou
hence:
62
A———-M A——-— 0,
2 ou? a2 ou

in such a way that the curves= const., which are minimal lines, will be asymptotic
lines. Hencethe surfaces that have a family of asymptotesdbigicide with a family of
minimal lines are the ruled surfaces with isotrogenerators, and those generators will
be the asymptotes that coincide with the minimalesu

3. Both systems of asymptotes are minimal curvéhe quadratic formé® andW¥
are proportional then, and:

E_F_G
E F G

The indicatrix at an arbitrary point is a circle, alb of the points of the surface are
umbilics. Upon once more taking the minimal lines to be coordirateres, the
preceding conditions will reduce "= G’ = 0. Upon repeating the calculations as
before, one will see that the surface admits twotesys of isotropic rectilinear
generators, and conversely.is a sphere.

Minimal surfaces

6. — The latter case leads us to study the surfaces fohwecindicatrix is always a
circle. We now examine the case in whittat indicatrix is always an equilateral
hyperbola. That amounts to looking for the surfaces for whichasgmptotic lines are
orthogonal. For that to be true, it is necessarysarfiicient that:
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EG'+ GE'- 2FF'=0,
or

i+_1: 0.

R R

The mean curvature is zero, so the radii of cumeatbf each point are opposite. The
surface is called minimal surface.

Take the minimal lines to be coordinates. Onéthwin haveE = 0,G = 0, and:
ds’ = 2F [Hu [hv.
The preceding conditions then givé= 0, and:

W (dy, dv) =E’ dif + G’ dV2.
However,:
x dy oz
ou Ju Ju
= X O 920
ov ov ov
9°x 0%y 0%z
Juov oOudv 0wV

There then exists the same homogeneous, linediorelhip between the line elements,
namely:

2
0°X _p X 0Xx N%
Juov Ju oV

2
0y _ May Nay
ouov Ju oV

2
0°z _ v 92 0z Na_z.
ouov Ju ov

gx gy gz resp., and add them. The left-hand side WI||:—lbe——
u odu

0, the coefficient oM will be E = 0, and that ol will be F. HenceNF = 0, and smcE

Multiply these by

# 0,N = 0. Similarly, upon multiplying them bg5 6y az , resp., and adding them,
one will find thatM = O; thus:
2 2 2
0°X =0, 0y =0, 0°z _
ouov ouov ouov

which will give:
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x=f(u) +¢ V), y=gW+¢(y, z=h)+xM.

The surfaces that are represented by equations of that doe calledsurfaces of
translation. They can be generated in two different ways by translatiogne of
invariable form so that each point describes another curkeleed, consider the four
points Mg (Up, Vo), M1 (U, Vo), M2 (Uo, V), M (u, v) on the surface. From the preceding
formulas, those points will be the vertices of aaflalogram. If one varies, while
fixing vo then the pointM; will describe a curvel() on the surface. Similarly, if one
variesv, while leavingu, fixed then the poinM; will describe another curvé ) on the
surface. The pointl, will belong to both curves. One can then considersthiéace as
being generated by the curveé)(when it is has been animated with a translational
motion under which the poii¥ly describes the curveé”(), or by the curvel(), when it
has been animated with a translational motion in whehpointM, describes the curve
().

The six functiond, g, h, ¢, ¢, x are not arbitrary for the minimal surfaces. It must
then satisfy the relations:

E:f/2+g/2+h/2:o’ G:¢,2+¢/,2+X,2:0
It will then result that the curve:

x=f (u), y=g ), z=h ()

is a minimal curve, and if we refer to the general aqona of a minimal curve then,
is an arbitrary function a andF’, F”, F"" are its successive derivatives, we will see that
we can write:

f(u)—ig)=F"(u),

f(u)+ig(u)=-2F (U) + 2u F’(u) = U*F”(u),

h(u) =F"(u) —u F”(u).
Likewise, if the curve:

X =@ (V), y=¢ (), z=x(v)

is a minimal curve then, iG is an arbitrary function o, and G, G", G" are its
successive derivatives, one will have:

pV) =i gV)=G" (v),
V) +i gV)=-2G (V) + 2 G’ (V) =V G" (V),
h(v) =G’ (v) —v G’ (v),

so the coordinates of a point on the most general mirsanéace will be:

X+iy=—2F (u) + 2uF"(u) —P*F”(U) —2G (V) + 2v G’ (V) -V G" (V),
X—iy =F”(u) + G" (v),
z=F" (U -uF"(uW+G" (v)-vG (V).
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Remark. — In the case in which the equation of the surfacebleas put into the
form:

z=f(xy),

when the partial differential equation for minimal soda has been integrated, from the
formulas on page 40, that will give:

(1+p) O+ (1 +q) O — 2pgs= 0.

Lines of curvature

7. — Thelines of curvatureare the lines that are tangent to the principal doeatr
the axes of the indicatrix at each of their pointBhey will then be integrals of the
equation:

0P Daw _ 09 Daw _
a(du) o(dy a(dy o(dy
so the principal directions will be conjugate amthogonal; i.e., they will be harmonic
conjugates with respect to the isotropic directiand the asymptotic directions. If those
two pairs constitute four distinct directions thdrme principal directions will also be
distinct from each other and the preceding onesvillithen result that there are no other
singular cases for the lines of curvature tharothes that have been encountered already
for the minimal lines and asymptotic lines.

1. Non-developable ruled surfaces with isotropic gatas (except for the sphere).
A family of minimal lines is composed of asymptdiiwes. If we take the minimal lines
to be the coordinate lines then we will have:

® = 2F Mu ™.

If we suppose the lines = const. coincide with the asymptotes tlikn= 0 must
annul¥; hence:
W =E’duf + 2F THuCv.

The differential equation of the lines of curvatus then:

FOvVF'du-FMHu(E'u+F'dv) =0
or
E’F M/ = 0.

The lines of curvature are double, which are tlegragpic rectilinear generators that
already define minimal lines and asymptotes.

2. The sphere. ®, W are proportional, so the differential equationverified
identically. All of the lines on the sphere are lines of curvatu
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3. Non-isotropic developablesTake the rectilinear generators to be the cuwes
const., which are double asymptotic lines, and get:

® =E M + 2F Mu v+ G MV,
W = E’[HL

The differential equation of the lines of curvature whikn be:
(F Mu+ Gy E'Mu=0.

The lines of curvature are the rectilinear generators, which areadireasymptotic
lines, and their orthogonal trajectories.

4. |sotropic developable surfacesf we take the curveg = const. to be the double
minimal lines that coincide with the double asymptotic lithesh we will have:

®=EMF, V=E'HL

The equation for the lines of curvature is verified idezdy. All lines on isotropic
developables are lines of curvature.

5. The plane=— For a plane, the minimal curves are lines, and iaryinh the plane is
an asymptotic line, as well as a line of curvature.

Remark. — In order for the coordinate curves to be lines of cureatitris first
necessary that they should be orthogonaF so0. The differential equation of the lines
of curvature will then reduce to:

EF’d/ + (EG’— GE’) du dv— GF’dV = 0.

Hence, upon omitting the singular cases, the fact tiimatlines of curvature are
coordinate curves is characterized by the identiie,F = 0.

In Chap. II, 8 3, it was shown that only the idenEty= O expresses the idea that the
tangents to the coordinate curves have conjugate direciogach point of the surface,
which one can express by saying that those curves faonjagate net.

From that, one can characterize the lines of curvdiyreaying that they form an
orthogonal conjugate net.

Geodesic curvature

8. — Let us now examine the second fundamental formula:
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. Ea_Edu2+§dudv+(a—F—Ea—G) d¢ Ed¢ Fd
sinG _ 1 ) ) 2 du ov ov 2du
R ngg|H (@udv-dvdg- OF 10E G 10G
(_—_— d2+ 2 dudw =22 4% Fdw Gd
ou 2o0v adu 20V
N
K
P
C 6
N’ G M

Gis the angleNIN, MP) between the principal normal and the normal to théase
(8 1). LetC be the center of curvature. Consider the polar linertiests the tangent
plane alongMN’at G.

MC = MG cos(é’—gj =MG sin@.

MG is what one calls theadius of geodesic curvaturg,R One will then have:
R=Rysiné.

The pointG is the center of geodesic curvature. The projection of the center of
geodesic curvature onto the principal normal is the center of curvatihe inverse of
the radius of geodesic curvature is calledgbedesic curvaturelts expression depends
upon onlyE, F, G, and their derivativesThe geodesic curvature is preserved when one
deforms the surface.

We seek whether there exist curves on the surfhose radius of geodesic curvature
is constantly infinite; such curves are caltpgebdesic lines.sin / R is constantly zero
then, and if those curves are not linesRge not constantly infinite, then s= 0. The
osculating plane is normal to the surface at each point of the curve, andsegvény
line that is traced on the surface is, moreovekjously a geodesic line, and can be
considered to satisfy the preceding condition.

The geodesic lines are defined by a differengalation of the form:

V' =® (U, v, V).
It results from the study of equations of thatidhat:

There is, in general, one and only one geodesic line that passes thralghodat of
the surface and is tangent to a given direction in the tangent plane gidim&t There is,
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in general, one and only one of them that joins two give points in a enffyesmall
domain.
Take the coordinate lines to the minimal lines. Hence:

E=G=0 and H?=-F?Z

The differential equation of the geodesic lines becomes:

a—Fd\/2 F dv
~F? (du A —dvda) - | & =0
a—qu2 F du
ou
or.
dumzv—dvdzu+a[”o\?quEu\F—mngduzdv:o.

One sees that it is verified fau = 0, dv = 0. Hence, theninimal lines are geodesic
lines.

Remark. — If the osculating plane coincides with the tangeab@lthen the center of
curvature will coincide with the center of geodesic ctura In particular, if one
considers a plane thahere will be no other curvature in the plane besides geodesic
curvature which one can easily verify by calculation.

CI

Direct definition of geodesic curvatureConsider a curveQ) on a surface and a
family of curves K) that are orthogonal t&€C]. Measure out a constant arc lenigtN on
each curveK), starting from the point where it meets the cui®g (For each value of
that constant, we will get a curv€’() that is the locus of the poiit. Take the curves
(©), (C"), ... to be coordinates curves< const.), where the curv€)isv = 0, and take
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the curvesK) to be the coordinate curves £ const.). We can take the coordinat®
be the arc lengtMN. Now consider the square of arc length:

ds’ = E dif + 2F [u v+ G [V
The curvey = 0 is orthogonal to all the curvds)( so for anyu, one will have:
F(u, 0)=0.

Sincev represents the arc leng#N, one will haveds’ = dv? for du = 0, hence = 1, and
then:
ds’ = E v’ + 2F [u v + dv2.

We suppose that represents the arc length of the cur@g (Forv = 0, one will then
haveds = du, hence:
E(0) =1,
and on that curveQ):
H?=EOG-F*=1,

so, for exampleHH = 1. One then has:

_ 1OE i E du
sing__ 1]2au __10E
R ds (a_F_ga_Ejduz E du 2 ov
ou 20v

for that curve.
For the curve@”), we will have:

ds? = E 7,
if we denote the arc length of that curveshyhence:

ds = /Eduy, 3—§= E,
u

and if we take the logarithmic derivative with respeact tben:

8log %
9 du _ alog\/E 1 0E
ov ov 2E dv

If one makess tend to zero then”) will tend to C), E will tend to 1, and in the
limit:
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If one uses the lettes to denote the arc length of); instead ofu, then one can
conclude that:

dlog 9
i: sing - o9 ds
R, R ov

v=0

which gives a definition for the geodesic curvatinat is not borrowed from any element
that is external to the surfaces ands denote the homologous arc lengths Gh énd
(C), andv is the constant arc lengitN that is found betweer€j and C”) on the curves
(K). That definition makes the invariance of the dg=sic curvature under the
deformationof surfaces more intuitive.

Remark. — The consideration that concluded the precedingpter lead one to
introduce the geometric element:

sind _dg, _ rdu+rdv

R ds Jo(dudy’

at the same time as the geodesic curvature, whighthe normal curvature, depends
upon only the rati@u / dv; i.e., the direction of the tangent. Howevertthdl have a
precise sense to it only if one has specializedtizece of direction$10 that are tangent

to the origin. It is the geodesic torsion of aveuthat is tangent to the proposed one and
makes a constant angle with the directions at tiganothat correspond to its various
points.

Properties of geodesic lines
9. — In particular, suppose that all of the curvk3 &re geodesic. With the same

conventions as beforelu = 0 must be a solution to the differential equataf the
geodesic lines, which will give the identity:

Hence F is a function of only, and sincé= = 0 forv = 0, F will be identically zero, and:

d< = E d + dV?,
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so all of the curvesQ) will cut the geodesicK() orthogonally. Hence:

If we consider a curvé€C), draw the geodesic through each point (@) that is
orthogonal to it, and measure out a constant arc along each of those geodesidsethen t
locus of the extremities of those arcs will be a cy@/9 that is normal to the geodesics.

We will then get theparallel curveson an arbitrary surface.

Conversely, if we consider a family of geodesics and their orthogaajakttories
then those trajectories will determine equal arc lengths along the gesdesi

Always under the same hypotheses, since the curwesonst. and/ = const. are
orthogonalF = 0. Since the = const. are geodesics, it is necessary that:

219G 42 o Lo

2 =-2GSZdv =0.
——dv G u

2 ov

G # 0, since otherwise the curves const. would be minimal curves, her¢a/ ou
=0 andG = ¢ (v). Then calculate the arc length of a cug that is found between the
curvev = vy and the curve =v; :

ds’ =G dV = ¢ (V) dV/,
s= jvvoi/¢(v) [Ev.

sis independent af, so the arc length will indeed be the same ogeadesics.
If one once more takesto be the arc length along the curves const. then:

ds = E d + dV?,

and:

and that form will be characteristic of the coordinatystem employed, which is
composed of a family of geodesics and their orthafjtvajectories.

Take two pointsA, B on the surface then. There will then exist oné anly one
geodesic line in the domain of those two pointd thdl join them. Consider it as
belonging to a family of neighboring geodesics tthatnot intersect in the domain, and
take those geodesics and their orthogonal trajestéo be coordinate curves. Let there
be an arbitrary line of the surface that goes ffota B, and define it by the equation:

u="f(v).

If A has the coordinatas, vo, and ifuy, v; are those oB then the arc lengtAB of the
line is:
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[“VEdE+dF =[ *JE(f(v), ) FE()+10,

That integral will obviously be minimal ff (v) = 0; i.e., if the lineAB that joins them is a
geodesic. Hence:

In a sufficiently small domain that surrounds two points of a surface, thaege
will be the shortest path between those two points.
Geodesic torsion

10. - Finally, we study the third fundamental formula:

1 d¢_ 1 |E'du+Fdv Fdu Gd
T ds H?ds?| Edu+ Fdv Fdu+ Gdy’

If @is constant, and in particular, if it is constgrgéro, then the preceding formula will
give the torsion; in particular, it will then gitbe torsion of a geodesic. The preceding
expression will depend upon ordyi / dv; i.e., the direction of the tangent. Consider a
curve C) on the surface then and a pdifit There exists a geodesic that is tangen€jo (

at the point\, and?l—% will be the torsion of that geodesic. That is W_%ry—dd—i IS
s

called thegeodesic torsion.One then sees thtlite geodesic torsion at a point of a curve
is the torsion of the geodesic that is tangent to the given curve gidimat Set:

Ty is theradius of geodesic torsionAs opposed to the radius of geodesic curvattre, i
will change under the deformation of surfaces.

The preceding formula shows that the geodesiaotoiis zero if the directiodu, dv
is a principal direction.The geodesic torsion is zero for any curve thaargent to a
line of curvature. It will then result thathe lines of curvature have a geodesic torsion
that is constantly zero (Lancret’s theorem).

1 /Ty is the quotient of the two trinomials of secondy@e indu, dv, so one can
study its variation. Take the lines of curvatwde the coordinate curves, in such a way
that (8 7)F=F’'=0, and:

1 1
T H%¢

g

(E'G—-GE)dudv= (E—Ej
E G

dudy
ds d<

If we return to the notation that was employed & ®r the study of the normal curvature
then the direction parameters of the tangent irahgent plane will be:
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du dv
P=JE—, Q=/G—,
ds Q ds
and then:

1_ E_G

—|=—-—|P
el
The principal radii of curvature are:

1 E
El

1. 1 6
R EG G

1.
R, JEG

it

and one will then geDssian Bonnet's formujavhich is analogous to Euler’s formula:

Hence:

%: (%—éj sin ¢ [Tosg.

Joachimsthal's theorems

11. - Consider a curvelj that is the intersection of two surfaces. Thema plane
to (C) at one of its pointd contains the principal normdIP to the curve and the
normalsMN, MN; to the two surfaces. L&tbe the angle between the normdiN, MN;,
and letg, &’be the angles that they make witi.

V=g -6
However:
1.do_1 1 do_1
T ds T,° T ds T,°

av_1 1
ds Tg Té

Suppose tha) is a line of curvature of the two surfaces th&n.Tq and1/T  will then
be zero, salV/ds= 0, anaV will be constant. Hence, one has:
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Joachimsthals’ theorems:

If two surfaces cut along a line of curvature then their angle wiltdrestant along
that ling

and the same formula will show immediately that,vevsely:

If two surfaces cut at a constant angle, and if the intersectioting ®f curvature for
one of the surfaces then it will also be a line of curvature foother one.

On a plane or a sphere, all of the lines will be liokesurvature. Hence:

If a line of curvature of a surface is planar or spherical then the ptarsphere that
contains it will cut the surface at a constant angle, and converseypldne or sphere
cuts a surface at a constant angle then the intersection will be aflicervature of the
surface.

Finally, if a circle is a line of curvature of a sudaihen there will be a sphere that
passes through that circle that is tangent to the sudtione point of the circle, and as a
result, at all points of the circle. Therefore:

Hence:

Any circular line of curvature is the contact curve of a sphere ithatscribed or
circumscribed on the surface.

Similarly:

Any rectilinear line of curvature is the contact curve of a tangearieoto the surface
at all points of that line.




CHAPTER IV

THE SIX INVARIANTS — TOTAL CURVATURE

The six invariantsE, F, G, E’ F’ G’

1. — The only things that intervene in the study of the cuthast are traced on a
surface § are the coefficients of the two fundamental quadfatins:

@ (du, dv) =ds =E dif + 2F dudv+G dV,
W (du, dv) =X Ad > =E’d + 2F"du dv+ G’ dV,

and the differentials ofi, v, which are considered to be functions of one independent
variablet that corresponds to each particular curve that ongidens.

If one displaces the surfac®) (n space without deforming it and does not change the
surface coordinates, v that one employs then those quadratic forms will rentiae
same in such a way thtteir six coefficients B, G, E’, F’, G” will be six differential
invariants for the group of motions in space.

For the formds = @ (du, dv), that will result from the fact that it represenhe
square of the differential of an arc that will remtie same under the stated conditions.

FurthermoreH = / EG- F? is an invariant, and the formula:

W (du, dv) =H @ (du, dv) -%,

in which all of the factors on the right-hand side iakariants, shows tha¥ is again an
invariant.

Moreover, there is no difficulty associated with ifyeng the invariance of the
coefficients by a direct calculation that is basedrughe formulas that define them:

ox Y 0X 0X ox )’
1 —_— :E, _ = F, - :G,
@ Z(auj ou dv Z(avj

0°X 0°X 2x
2 A—=E/ B =F C—=G/
@) z ou? Z ouov ov?

in which A, B, C are the three functional determinants:

A=Py:d o DY _DXy)
D(u,v) D(u,Vv) D(u,v)

Finally, recall that:

H=+]A?+B?+C?= +\|EG- F? .
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The form of the surface defined by the six invariants

2.— Now suppose th#t, F, G, E’, F’, G’ have been calculated as functionsi,of for
a particular surfacey:

(3) x=f(uv), y=gVv), z=h(uv),

and consider equations (1), (2) to be a system of pditfi@fential equations, in whick
y, z are unknown functionsy, v are independent variables, aBdF, G, E’, F’, G’ are
given functions. By virtue of the invariance that wetjestablished, that differential
system will admit not just the functions (3) that idef(S as integrals, but also all
functions:

X=x+af+a'g+a"h
(4) y=ytpf+Bg+ph

z=z+yf+yg+yh

which define the surfaces that are obtained by displd@nha all possible ways when
one gives all possible constant valueggon, zo, and all constant values tp g, y; o', 5,
y, a', B y’that are compatible with the six well-known orthodaypaonditions.

We then obtain integrals that depend upon six arbitrangtaats. We show that the
system (1), (2) has no other ones. We express thedylyg thathe form of the surface
is defined entirely by the six invariantslEE G, E’, F’, G".

In the theory of partial differential equations, asf®ws thatn any system whose
general integral depends upon only arbitrary constants, all of the partialateres of a
certain order can be expressed as functions of the independent and depanidbies/
and their lower-order derivativesWe shall first verify that the same thing is true tioe
system (1), (2).

Differentiate equations (1). We obtain the formuteg were used before:

2 2 2
M Px_10E Ox X 10E S0xd'x 106
ou oU* 20u duoudv 20V oJuo% 2du

(5) 2 2 2
axgi;x_aF_laE axga x 106G aﬁ x 106G

v O du 20V dvouwyv 290U Avo Yy 20V

We also predict that upon associating those equatiatis equations (2), one will
effectively obtain expressions for all of the second-odizivatives as functions of v,
OXx ox 90y o0y 0z 0z

ou’ v ou’ ov’ au’ v’
In order to facilitate that calculation, we introduhe direction cosines of the normal:

A B C
6 A==, =—, v=—,
(6) w H=4 w
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We then replace the forl A d*x with the form:

7) z/l-d&:%z/l-d2x:L-du2+zv|-dudv+N-d\F,
in which:
(8) L:E, M:i, N:E

H H H

Equations (2) will then be replaced with the equations:

2 2
IX _m, PRSIV}
ou ov ov

X
9) AW: L, > A

We then set:

2
a—f: L,%+L"6—X+L"'A’
ou ou ov

2
a—g: Llﬂ_i_L"a_y_i_LI"ﬂ,
ou ou ov

2
a—i: LI%+L"6_Z+L"IV,
ou ou ov

in which,L’ L” L” are coefficients to be determined; we deduce from hhis t

2 2 2
XOX _EL+FLY XOX _prrgLy, YALX oL
ou du ov du ou

The third of these conditions shows thd&t=L, and the first two are two linear equations
that will provideL “andL “when one takes formulas (5) into account.

Upon doing the same thing with the other derivatives, willeget the following
results:

2
IX_ X 9% i,
ou ou ov

2
OX M X m P*imm,
ouov Ju ov

2
XN PN X N,
ov ou ov

(10)

with the auxiliary equations:
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EL' + FL":la—E, FL' +GL" :a—F——lﬁ,
2 0u Ju 20v
(11) EM’+ Fm" = 19E FM’+GM" =296,
2 0v 20u
en'+ Fmr=9F _196 ey o =198,
ov 20u 20v

from which, one can deduce the values of the coefficiefts”, M, M”, N, N”. One
notes that they depend upon only the coefficiénts, G of the linear elemends’ = ®
(du, dv) and the first derivatives of those coefficients.

Finally, the same equations (10) will persist for theeotcoordinatey, z. One will
only need to keep the same coefficients and replacettieex with the lettery or z at the
same time as one changemto i orv, resp.

We conclude from this that if one knows the valuesxof, z and their first
derivatives for a system of valueswpfv then one can calculate the values of their second
derivatives, and by new differentiations, those otladir higher-order derivatives. As a
result, the Taylor series developments of an arlyitsatution cannot contain any other
arbitrary contributions than the initial values of:

which are linked by equations (1), moreover, and the integhdbe determined entirely
when those initial values are given.

Hence, in order to prove that equations (4) give thergémtegral, it will suffice to
show that the functions, y, z that are defined by equations (4) can satisfy the stated
initial conditions. Now, if we introduce the direati@osinest’, i, v’; A", u”, v” of the
tangentdMU, MV, resp., to the two stated coordinate curves that passginan arbitrary
point M of the surface then we will know that:

%:/]' E, %:IL{'\/E, iZ:V'ﬁ,

ou Ju
0x ay 0z
—=A"yG, —==uJyG, —=v"yG,
ov ov ,u\/7 ov \/7

and the conditions (1) will reduce to:
>A%=1, YA"*=1, YA A"=cosw

in which wis the angldjl\W :

The initial conditions then signify that one arbitagives the position of the poii
that corresponds to the initial valuesuwi, and the directions of the tangeiM$J, MV,
with the single reservation that those directionstrifugn the same angle between them
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that they make with the corresponding point 9f (There is, in fact, a position fo)(
that satisfies those conditions, and our result isddarbe established definitively.

Remark.— The preceding argument will break down when the coorlinatves are
minimal lines (becausk = G = 0 then). However, it suffices to remark tha®ifand¥
are known for a coordinate systemv then one can define their expressions in another
coordinate system, v by performing the corresponding change of variables tiirect
Our theorem will then be true for any system of surfamardinates as long as it is true
for one of them.

The integrability conditions

3. — The coefficients in formulas (10) satisfy certamnditions that are called
integrability conditions which one will obtain from the theory of partialffdrential
2 2
equations, by writing down that each of the third-order déxigs 62x : 0°x has
ou’av’ ouov’

the same value that one obtains by differentiatingasribe other of formulas (10).
In order to obtain those conditions, it is convenienbhdave some formulas that give
the derivatives of the direction cosingsy, v of the normal. Those cosines are defined

by the equations:
0X 0Xx 2
A—=0, A—=0, A =1,
245,50 2A50=0. >

which will give, by differentiation:

MO X 00 0x_
uodu Z/' =L avau 2. auav
91 Ox _ 9] 0x _
12 2 =M Ao
(12) uov Z auav ’ avov z ’
Z/l——o Z)I——O

While following the same method as in the preceding papdgif one sets:

0A 1) 0X

— =P =+ P —=+ P/, —=0Q— — ,
ou oJu ov 6v Qau Qav R
ou oy 0y oy _ 0y 0y

—— =P =+P' =+ Py, + +

ou oJu ov H ov Qau Q o
ov 0z 0z av 0z

— =P —=+P =+ P, — = —+ —+
ou Ju ov ov =d d ov N4
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then one will find that:

0X 0/ 0X 04
— L =EP'+FP”, ——L =FP’+GP”, )I——P 0,
Z6u odu Z6v Ju Z
Z%@_EQ +FQ”, Z%Q_FQ +GQ”, Z)I——Q 0.
Hence:
N _px, p,gx
(13) 6u gi \Y
__Q_ Q"_

ov oJu oV’

in which the coefficient®’, P”, Q’, Q”are defined by the equations:

EP+ FP' =- FP+ GP=-M
(14) { -

EQ+FQ=-M, FQ+GQ=-N

For 4, v, it will suffice to changex intoy andz, respectively.

We can carry out the calculations by assuming thatsurface is referred to its
minimal lines. The preceding calculations then simgpdibnsiderably. If we apply the
formulas that we have found directly, upon taking iatcount the fact th& andG are
zero, then we will get:

L,,:0’ LI:alogF, MIIZO’ MIZO’ NII: aIOgF, NI:0
ou ov
for formulas (11), and:
L M M N
P”: -——, P,:__, " —_ — f—_
F F Q F Q F

for formulas (14); i.e.:

ou? ou au
2
(15) IX _mm
Juov

9°x _ G'OQFB@,X N e o
ov? ov ’ '
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ﬂz——(M 0X Laxj’

(16) ou F Ju ov
Do 2N
ou F Ju ov

Differentiate the first of equations (15) with respeatipon taking equations (15) and
(16) into account:

Ju F ov

3 2
9°x 90°logF _NL)ox _LMox, (MalogF+aLj)l.
Ju dv

ou? av udv 9\

Likewise, differentiate the second of equations (15h wespect tau:

oX - il GLALP Y
ou? v

9°x M_ﬁ LM ox oM
F ou F ov ou

Upon equating them, we will get:

(17)

0°logF _LN-M?)0dx (MalogF LoL_ a—Mj)I—O
ouov F au du 0dv 0du '

This is a condition of the form:

S%+ Sa—x +S1=0,

ou ov

and upon repeating the same calculation yfaand z, one will obtain the analogous
conditions:

s g gu=o,

au ov
S%+ Sa—z +Sv=0.
ou ov

One then concludes that one necessariy8waS'=S”"=0; i.e.:

alogF oL oM _

0’logF _LN-M*_
ouov F ’ ou 6v u

(18)

and those conditions will imply the condition (17).
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x
Upon similarly equating the two valuesg%, one will get some conditions that
u
are deduced from (18) by changing the roles of the variablesthat will modify only

the second of those conditions.
The desired integrability conditions are then:

dlogF _oM oL

M - _l

ou Ju ov

_ N2

(19) dlogF _ LN-M |
ouov F

M aIOgF :GM_G_N

ov ov ou’

and from the theory of differential equations, theylwake the only integrability
conditions for the system considered.
Total curvature

The second of the preceding formulas:

2 M2
(20) 0°logF _ LN-M |
ouov F

which is due to Gauss, leads to an important consequémdeed, recall the equation for
the radii of principle curvature, which is:

H2(LN-M? +2SFHM-S?F?=0

here, with:
s=1
R
It is written:
2
IN—M2+orm .- - 0,
R R
so:
1 _ LN-M?
RR F2
i.e., from formula (20):
1 __ 10°logF

21) —RZZ F odudv
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The product of the radii of principal curvature depends upon only the lineareglt; it is
then preserved under the deformation of surfag@se gives the name tdtal curvature

toi

RR

Remark— From the precedingurfaces with zero total curvatuaee characterized by
the conditionLN — M2 = 0 orEG — F? = 0, which expresses the idea that the surface

2
considered is the envelopewf planes (page 47); namely, by the condit%gll(?—lzz 0,
uov

which expresses the idea that since the linearesieinds’ = 2F du dy the surface can

be mapped to a plane (page 26). One then conclid¢she surfaces that can be
mapped to a plane are the developable surfa¢g€$., Chap. V, § 4.)

Spherical representatior- Just as one can make a curve correspond tphesisal
indicatrix, one can imagine a correspondence bet\aeearbitrary surface and the sphere
of radius 1, in which the homologue of a poimt\) of the surface will be the poind, (4,

V). An area on the surface will correspond to aaam the sphere. The consideration of
the limit with respect to those areas when theyobex infinitely small in all of their
dimensions leads us tada@ect definition of the total curvature.

The area on the surface has the expression:

A:J’J'«/A2+Bz+czdu dv= HH du dv

In order to get the homologous area on the splose must first calculate the linear
elementdA? + du? + dv2. From formulas (16):

aA = ﬂdu+ﬂ dv = —%(M 2(+ L%j—E(NiX+ M a_>j

ou ov F ou ov F Jdu ov
= —E[L%dw M dx+ N% d%;
F| ou oJu

hence:
ZdAZ:é[MZ-2qudv+2LMF-du2+2\/INF-dv2+Z_NF-du o,

SO

2
g+ 25N M dwﬂFN q4v.

2LM
d1?2=2
> F

The function that is analogoushfor the sphere is then:

\/4LM2N_(LN+ M?)2 _ LN-M?_ LN-M?2
F? F2 iF H
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and the spherical area will have the expression:

A :HLNTMZdu dy

and upon noting that:

d4=H: dudy
it can be written:
_ N2
A= [[FREM g dA = [[—2da,
H RR
SO:
dA' = iA.
RR

The ratio of the homologous areas on the sphetetha surface will have the total
curvature for its limit when those areas becomamitgly small in all of their dimensions.

Orthogonal, isothermal coordinates

4. — In order to avoid the use of imaginaries in pheceding considerations, we shall
introduce a new curvilinear coordinate system. c&ithe surface is assumed to be real,
we first choose the minimal coordinates in suchashibn thatu, v are conjugate
imaginaries. We then set:

u=u+iv, v=u-iv,

in whichu', v' are real quantities. We then infer that:

du=du +idv, dv=du —idv,
SO.
du dv=du? + dv?

The linear element will then take the form:
ds’ = 2F - du dv= 2F (du? +dv?).

The coordinates’, V' are orthogonal; one gives them the namertifogonal, isothermal
coordinates. One can say th#élhose coordinates divide the surface into a netfofitely-
small squares.Indeed, consider the coordinate cunesl + h, u' + 2h, ... andv', Vv +h,
V' + 2h, ... If one takes one of the curvilinear quadrilale thus-obtained then its angles
will be right angles. Its edges a((,@ du and./ 2F - dV;i.e.,/ 2F - h, up to higher-
order infinitesimals. Those arcs are equal.

With this particular coordinate system, upon demgpthe values of the functions that
are analogous t8, F, G,Hby E, F, G, H, we wil have:
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70
E=27, G=2F, F=0, H?’=EG-F=4F°, H=2F
hence:
ds’ = H (du? + dv?).
However, for an arbitrary functioh, we have:
W _0% 0> 0P _ i(f’;"_f’_@j.
ouU odu ov o ou ov)’
hence:
9°® _ 62¢+ °d 0’0 9°® :_62¢+2 0’0 0%
ou?  ou® Qudv oV oV  ou® dudv oV
and:
9°®d 62613_4 9°®d

+ = .
ou? oav? ouov
Hence, as a consequence:

9% logH +62I0gH
vz

4 0’logF _ 9°logH _
ouov ouov ou’?

Upon suppressing the primes and the overbars, ilget the following formulas in
orthogonal, isothermal coordinates:

ds’ = H (dU + dv),

1 __ 1 [62I09H+62I09Hj

RR  2H( oau? o' )
We again set:

> A d?x =L dif + 2M du dv+ N dV%.

The equation of the principal radii of curvaturél we:

H H?2
(LN —MZ)—E(L +N) tg 0,

and one will have:
1 _ LN-M?

RR  H?

Calculate the spherical representation. As in 2

1 ox ’u’:ig’l, V,:i Z,
H du

I —

S JHau’ H ou
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1 ox 1 ﬂ 1 z
A": _, II: , VII: .
\/ﬁav a \/ﬁ ov H ov
From the relation:
Y A=1,
we infer that:
Z)l——o
On the other hand:
2x a)lga_ 0A
L= /1— =- H A=
ou? Z:6u oJu rﬁz ou
hence:
Z)' 04 _ L
ou JH
Similarly:
M= /1 = gl—— )I"
Z 6u6v du ov \/7ETZ
SO
Z)l,,a)l M
au JH
One then gets three equationsgrjllq, g_,u g_v If one multiplies them by, A, A7 resp.,
u odu oadu
and adds them then one will géx (
A__ L M dx
ou H ou H dJu
and similarly: a—'u:—L y M Py
ou H ou H du
v__ L pz Moz
ou H ou H dJu
One will get:
ﬂ__i( o N%j
ou H u ou
RN )
ou H 6u ou

(") Translator: We have temporarily replaced (italionith v, since the fonts that we are using make
(italic v) identical to (Greek nu).
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M—+N—
ou ou

v H

by an analogous calculation.
Hence, the functions on the sphere that are ana®otpE, F, G, H will be:

2 2 2 2
E= Z(ﬂj :iz (L%+M%j = L +M ,
ou H ou ov H

PS5 (KLY PRIV UGS
ou ou H ou ou oJu ou H

ov _ 1( 0z 6zj

1 ( ox asz_ M?+N?

ou H? ou ou H

hence:

H2=€.G-F2= (|—2+|\/|2)(|\/|2+N2)—M2(L2+N2):(LN—MZJ2

H? H
and the area on the sphere will have the expression
LN - M?
A = || ———— du v
=

One recovers the same expression as before, awdibbikewise arrive at the direct
definition of total curvature.

Remark.— A' has a sign in the preceding expression, whicthas of LN — M 2,

because&u dv is considered to be positive.
The interpretation of that sign results from tthentity:

A u v A u v

04 0u ov| _LN-M?|dox 0y 0z
du du ou|  HZ |au au aul
0A du ov oXx 0y 0z
v v v v v v

which indicates whether the two trihedra that aetnéd by the common direction to the
normal to the surface and the normal to the spheckthe positive directions to the
curves v = const. andu = const. (when considered on the surface and phers,
respectively), have the same disposition.
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One then concludes that A" > 0 then the moving point, y, z will describe the
contour that bounds the area on the surface in the deese, and the point x, v will
describe the contour that bounds the homologous areaeasptiere, also in the direct
sense. IfA' < 0 then the conclusions will be the opposite ones.

Relations between total curvature and geodesic curvature

5. — The total curvature is an element that remains imadiader the deformation of
surfaces. We shall seek to find what relations exiswden it and the other elements
that are invariant under deformation. Consider the geodasvature. Its expression in
orthogonal, isothermal coordinates will be:

U T 35 Gy duan S0 ai
R Hag |7 @udvmdvdg- _10H oH 10H !
R P+ dudw =22 49 Hd
2 av Ju 2 0v
or.
% %{H (dudPv- dvd += (‘Z—E dv ‘Z—H d}( dFur dy}
however:

ds’ =H (d + dv),
and the preceding formula can be written:

2 [
ds_ dud®v-dvd u, 10log Hdv__lalog H

— du,
R, du? + dv 2 odu 2 0v

or rather:

du.

ds _ ( dvj 1dlogH dv__la logH
du

— = d| arctan—
R, ou 2 0v

Now, imagine the semi-tangenk8U, MV in the tangent plane to the coordinate
curves in the sense of increasimgy, respectively. Consider the tangent to an amyitra
curveMT to the surface, and leMU, MT) = ¢:

hence:
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SO:
dv

@ = arctan—,
du

and the preceding formula will become:

E: OI¢+16I09H dv__la logH

R, 2 ou 2 ov

du.

Now take a closed contour on the surfégeafid integrate along it in the direct sense:

IE: Id¢+%J-6logH dv_%'[(ﬂogH du.
R, ou ov
RecallGreen’s theoremwhich will allow us to transform that result. Tpeint (u, v)
describes a closed contour in tiieplane, also in the direct sense. Suppose that it is
composed of two tangents that are parallel touth&is; letA, B be their contact points.
We will then have two arcAMB andANB, and if we denote the contour Bythen we

will have:
ﬂdv :I ﬂdv+'[ ﬂd\/
Cau AMB au BNAau
for any functionf (u, v).

v B(b)
@M (U
A(@)
@) u

Suppose that a parallel @u that is found between the two tangents considered cuts

the contour at two pointd (uz) andN (uy).
Finally, leta, b be the values ai that correspond to the two poirAs B. We will

have:
ﬂdv = Ib(ﬂj dv—jb(ﬂj dv = Ib (ﬂj —(ﬂj dv.
cau alou ), alou) af\ou), \odu),

However:
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(afj (afj _rw0°f
— | - |= > du
ou/), \odu), “w du

9°f

and then:

w 0% f du= '[

of
Lﬁd

in which the double integral is taken over the entira #nat is bounded by the contour.
That formula will persist for an arbitrary simplentour.
Similarly:

Lgd
& fap- ][ L duave Jog-[] 24

and one gets the®rmula of Ossian Bonnet:

A= ([ = o]

Remark— The anglep is the angle thavlU makes with the tangeMT to the curve.
Suppose that at each point of the surface, one has detérmaidirectionMO whose
direction cosines are well-defined functionsup¥ as in Chap. Il, 8 4 (page 35). Lgt=
(MO, MU) and @ = (MO, MT). One will then have:

Hence:

Po=yY+ 9,
deo = dy + dg.

Integrate along an arbitrary closed contour:

SO:

jd¢0: jdw+jd¢.
Now, ¢ is a function ofl, v, so along any closed contour one will have:

jdz/l(u, V)= 0;
hence:

[de,=[dg,

and one can replace the anglevith the anglep, that was defined before.
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One then sees the geometric eleﬂ{edlgf—dqbojthat was introduced in Chap. Il, pp.

34 appear in the study of total curvature. (Cf., Chapppll,55)

Geodesic triangles
We call the figure that is formed by three geodesic langeodesic triangle.Along

each of its edges:

IE: sdeS:Q
R, R

and the formula of O. Bonnet shows us that:
Ay = j dg;

Ay = .[ABd¢+.[Bcd¢+.[CAd¢'

The orthogonal, isothermal coordinates provide a camdbrepresentation of the
surface on thei-plane. Hence, consider the representatdibbniof the triangleABC on
that plane. Draw tangents to the edges at the extesmitd, c in the direct sense; |8,
To, Ts, T, T, , T, be those tangents. If the = sign indicates the egpsathat are true up

to a multiple of 2rthen we will have:
[ de=(T\T), [ d¢=(T T, [_d¢=(T;T.

Hence, if we call the angles of the geodesic triangke c then we will get the following
value for A;:

(T T + (T, Ta) + (T, , T) == [(T, T,) + (T, T, ) + (T3, T;)]
+ [(Ty, T2) + (T2, T3) + (T, To)]

=27 [(m-d + (7-D + (T-Q] =a+b+c—7
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and thereforé&auss’s formula:
atb+c—-m=A;,

in which we have used the = sign because the two sidesdereto when the three
summits of the triangl&BCtend to the same point.

In particular, if the surface is a sphere of radruhen one will get the formula that
gives the area of a spherical triangle:

A=RA =R*(a+b+c-7.

B (t + At)

New definition of the geodesic curvature

Consider an arAB. Draw the geodesics that are tangent to that cureaatiB, and

which intersect aC’ with an angle that we call thgeodesic contingency angleilong
the contour of that triangle:

Jdp =-¢

and the formula of O. Bonnet gives us:

Suppose thah corresponds to the parameteandB, tot + At, and thatAt tends to O;
let As be the ardB. We will have:

£ 1
e adhe g asl 4

1 .
Let (—j be the mean value of the geodesic curvature oarth&B, so;

dpds_| 1
psTeR R )

and as a result:
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1 (1) _ 1 ,
wlw)wl

If Astends to O the{iJ will have the geodesic curvature at the péirds its limit.

m

| say that the right-hand side has the limit O; itl wuffice to show that”dA’ IS

infinitely small of at least second order. Consider tepresentatioabc of the triangle
ABCon theuv-plane.

jjdA' = jjw(u,v)du dv=[¢ (U, V)]m jjdu dv.

From Green’s theorenﬂdu dvis equal to the curvilinear integr@/ du, up to sign. Let
Vo, V1 be the expressions faras functions ofi in the arcdbc andbk The part of the
integral jvdu that is given by those arcsj§ (v, —V,) du. Now, since the curvesb and

bc are tangent d, v, —v; is infinitely small of at least second order wilspect tar —u
anda fortiori with respect tol —ug). The integralju (v, —=Vv;) du, which is equal to the

product of (' —up) with the mean value at —v;, will then be of at least third order with
respect tof —up), and as a result with respectA® The same argument applies to the

other arcsac andak, so one sees théj d.A; has order at least three, and the property is
established.

v CQVZ b
AE
a
O Ww u u ™M

The geodesic curvature can then be defined tdhdectrvature in plane geometry:
i.e., the limit of the ratio of the (geodesic) continggangle to the arc of the curvéhen
the latter tends to zero.

Surfaces of constant total curvature
6. — We have seen that the surfaces of constanttaeocurvature are the plane and

the developable surfaces (8 3). Now consider théases of constant non-zero total
curvature. Among them, one finds the spheres,aasphere of radiuR will have a total



8 6. — Surface with constant total curvature. 79

curvature of 1 /R2. We shall seek the linear element of the surfaceson$tant total

curvaturei =k in the form:

ds’ = 2F du- dv.
Now:

1 __109%logF

RR F odudv '

so the problem will amount to the integration ot tpartial differential equation
(Liouville’s equation:

0%logF
(1) —g:

ouov

-k F

The solution that is provided by the spheres diusR for k = 1 / R? permits one to
predict what the general integral will be.

Indeed, refer the sphere of radiRghat has the origin for its center to its minimal
lines; i.e., its rectilinear generators. One imrmataly deduces the parametric equations
of the sphere from the equations of those genexator

x+iy=u(R -3, x—iy:E(R+z),
u

Xx+iy=v(R -3, x—iy:E(R+z),
v

namely:

. 2Ruv . 2R u-—-v
2 X+iy= , X—ly=—, zZ=R——;
@) y u+v y u+v u+v
hence, for:

ds’ =d (x +iy) - d (x - iy) + dZ,

one will infer the value:
2

(3) ds =- 4Rdudv

u+v)?

The most general change of curvilinear coordingtas preserves the minimal lines
as coordinate lines is:
u=V(u), v=V(v),

in which U, V are arbitrary functions of their arguments. Upoaking that change in
formula (3) and putting the letteusv back in place ofi;, vi, one will get the expression:

21 1'\ /!
2o _4RUV

) d (U +V)?

dudv
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for theds’ of any sphere of radil® when it is referred to its minimal lines.

Equation (1) is then verified by:
'V’
()

T RKUAVY

and sincelJ andV are two arbitrary functions, one predicts thas thill be the general
integral of (1).
We prove that by integrating (1) directly. Set:

(6) -kF=w,
which will reduce equation (1) to the equation:

0% logw
(7) —g:
ouov

Upon introducing an auxiliary unknows this will be equivalent to the system:

09 _ ow _
(8) E_W! E _¢\N;

hence, one concludes that:
2
¢% = a_\N, or a¢ = a(ZW)
ou ov ou ov

in such a way that upon denoting a new auxiliarignamvn by ¢, equation (7) will be
equivalent to the system:

) :%ﬁ p2=9% 900_,,_19¢
u \ ou 2 ou

It results from these equations when one integridie last one that:
p=5¢+Vo,
in whichV; is a function of only, and in turn:

a_[//: 1 2
ov (Gy+V)

That equation is a Ricatti equation (cf., Chap8\10), soy will have the form:

_UV|+V,
U+v '
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in which U, which is a function of only, plays the role of integration constant with
respect tos, andV, Vi, V; are functions of only.
The first of equations (9) then gives:

W:L?’2 (V3:V1V_V2)_
2U +V)
If one substitutes that value in equation (7) tbaa will find immediately tha¥/s =

4V’, while U andV remain arbitrary. One has, in fact, formula (5ttae general integral
of (1) then.

Hence:The d$ of any surface of constant total curvatul%elg: k will be:

ZJ 'V'

- Wdu dv

(10) ds =

when referred to its minimal lines, and can be tiito the typical form:

(1) 4 = — 2du d\g
k(u+v)
by a convenient choice of coordinates.

It then results from this that order for two surfaces of constant total curvatto be
mappable to each other, it is necessary and saffidihat they have the same curvature.
The question of the reality of the correspondeiheg tealizes the map from one surface
to the other one is contained in that statementeawer.

Pseudo-sphere- The spheres of radil® serve as examples of surfaces of positive
constant total curvatute= 1 /R?. We seek a surface of revolution of negative tms
curvaturek = — 1 /R%. LetOzbe the axis of revolution, &1 be a point on the principal
meridian that is situated in the plar®x let x, z be its coordinates, and I8t= (Ox, MT)
be the angle between the positive semi-tanghtand Ox, when measured positively
from Oxto Oz Since the positive semi-normdN is defined by ©Ox, MN) = 8+ 77/ 2,
the center of curvatur@; of the principal meridian, which is one of thenmipal sections
of the surface, will be given by the formula:

MCl = E = dx ,
dé cosfdé
which is true in magnitude and sign.
The second principal section is tangent to thalfgrto the pointM, so Meusnier’s
theorem shows that its center of curvatGgas at the intersection @z and the normal
to the meridian, and one will have:

MCp = ——
sin@
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in magnitude and sign.
The equation of the probleMC; - MC, = Ry R, = - R? is then written:

x dx=— R sin 8cos 8da.
We confine ourselves to the solution:
(12) x=—-Rcosé.
If one denotes the point where the tangent n@etsy Sthen one will have:

X
cosd

MS=-

in magnitude and sign. Equation (12) then expresses théhat¢he desired meridian is
the curve of equal tangents, toactrix. One succeeds in determining it by integrating:

sin’ @
cosd

dz=tan@d - dx=R

ag = R(i—cosej dg.
cosd

One can suppress the constant of integration, ®mandition that one must choose the
origin O conveniently on the axis of revolution, and on# geat:

(13) x=-Rcosé z=R {Iog tan(%?%j - sirﬂ}

for the equations of the desired meridian (i.ee,tthactrix).
The surface of revolution that it generates by itugnaround its base Oz is called a
pseudo-sphere.

Remark.— The importance of the surfaces of constant mtalature amounts to the
fact that, like the plane, they can be mappedemtelves in an infinitude of ways. Such
a surface can then slide over itself by waydfcontinuous motions, under which the
surface can deform, but in such a manner that emgfaa curve is traced on the surface
will keep the same length. It will then result fiathis that thegeometriesof those
surfaces — which are calledn-Euclidian geometries are analogous to plane geometry,
but from the preceding (geodesic lines play the odllines in the plane), the sum of the
angles of a triangle will be greater or less theaccording to whether the total curvature
is positive or negative (spherical or pseudo-sghtgeometry, resp.), respectively.




CHAPTER V

RULED SURFACES

Developable surfaces

1. - In order to define the variation of the line that gemsratruled surface, we give
the trajectory of a poin¥ on that line and the direction of that line for eadsition of
the pointM. The coordinates of a point on the surface are thpressed as functions of
two parameters, one of which defines the position opthiet M along its trajectoryK),
while the other one defines the position of the pBinbnsidered along the lin®). Let:

x =1(v), y=9(v), z=h(v)
be the expressions for the coordinates of a point onuive K. Letlg(V), my(Vv), no(Vv) be

the direction coefficients of the generat®),(and letu be the ratio of the vectdP to
the vector whose components ke, N . The coordinates &f are:

(1) x=f(V) +u-lo(v), y=g(v)+u-m(v), z=h(v)+u-no(v).

(K)

Let us look for the condition for the surface thadedined by the preceding equations
to be developable. If we exclude the cases of the cyliaddr the cone then the
necessary and sufficient condition will be that gle@erators must be tangent to the same
skew curve. One must then be able to find a p@ioh the generatoD) such that its
trajectory is constantly tangent tD)( the coordinates, y, z of such a point must be such
that:

%_ﬂ_d_zzdp;
b my
hence:
(2) dx=1lpdp, dy=mpdp, dz=nydp.

However equations (1) give:

dx=df+udb+lpduy dy=dg+udnmy+nmpdu, dz=dh+udmn+nydu,
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and equations (2) will be written:

df +udh +lp (du-qo) =0,
dg+u dm +mp (du—gp) =0,
dh+udm +ny (du—qp) =0,
or, upon setting:
(3) do=du -,

(4) df+udh+lodo=0, dg+tudm+nmydo=0, dh+udm+nydo=0.

doandu must satisfy these three linear equations. Hencelefgeminant of these
equations must be zero:

daf dl, |1,
5) dg dm m|=0.
dh dn n

If the three determinants that are deduced from thexmatri

dl, dm, dn H
IO mO nO

are not all zero then there will exist valuesuanddo that satisfy equations (4), and the
condition (5) will be sufficient. If those three detenants are identically zero then one
will have:

and the integration of those equations shows lifaty, ny are proportional to fixed
guantities; the surface will then be a cylinder. If wecdrd that case then the condition
(5) will be necessary and sufficient.

Remark 1~ In order for the poinP to effectively describe a curve, it is necessary
thatdx, dy, dz and in turrdp, must not be identically zero. dp is identically zero then
all of the generators will pass through a fixed point, &edsurface will be a cone. The
condition (5) will then be applied to the case ofthee.

Remark 2— One often employs the equations of the generatbeiform:
x=Mz+P, y=Nz+Q,
in whichM, N, P, Q are functions of an arbitrary parameter. This israqudar case of
the general representation (1) in which one s@fs= 0 andny(v) = 1; one will then have

Z=u, and:
(6) X=f(V) +z-1o(v), y=9g(V)+z- myV).
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The direction coefficients atg, my, 1. The curvekK) is then the section by the plane
0. In this case, the condition (5) takes the simpienf

(7) =

df di,
dg dm

dM dP
=0, ie., ‘ ‘

dN dQ

Properties of developables

Let us return to the general case. Supposdghaw, no are the direction cosines of
the generator; hence:
lo? + mo? + ng” = 1,
Sso:
lo dlp + Mg dmy + ng dng = 0.

Multiply equations (4) byllp, dmy, dno, respectively, and add them, which will give:

> didf

STdE

Suppose, in addition, that the generatid) (s normal to the curveK]. Indeed, it is
possible to find orthogonal trajectories to the genesaia a ruled surface. It will suffice
thatx, y, z are such that:

Z l,dx= 0,

3 lodf +ud lydly+ > 12du = 0.
Mi12=1,  Slydl, =0

here, that condition will reduce to:
Z l[,df +du=0,

or

Since one has:

and the determination of the orthogonal trajectory lve accomplished by means of one
guadrature.
Therefore, if we suppose th&t)(is normal to the generator then we will have:

3 1,df = 0.

If we multiply equations (4) bl, mo, ng , respectively, and add them then we will get
do= 0, sodp =du, and equations (2) will become:

dx=1lp du, dy=mpdu, dz=ngdu



86 Chapter V — Ruled surfaces

However, sincéy, my, N are the direction cosines of the tangent to the efigegression
(R), u will represent the arc length of that curve, as meaksur the positive sense that is
chosen on the generator by starting with an arbitragymor, and sinceu also represents
the segmenP, one will see that:

d-MP=d- (arclP);
hence:
MP = arclP + const.

One can always choose the origiaf the arc in such a fashion that the constant is.zer
One will then haveMP = arclP. The curveK) is a development of the curv@)( The
orthogonal trajectories of the generators on a developable surface are esvaltithe
edge of regression.

Formulas (4) then give:

(&) df +u db =0, dg+u dm =0, dh+udn=0.

G B (aﬂ,ﬂ”, y//)

X T@p5y
M

N(a’,B,Vy)

Developments of skew curves

2. — Suppose that one is given the cuk® @nd one seeks to draw a normal to that
curve at each of its points in such a fashion as taimlat developable surface. We take
that variable to be the arc lengtlof the curve K). Consider the Serret trinedron at the
point M of the curve. LeMG be the desired normal; it is in the normal plane to the
curve. In order to define it, it will then suffice tgve the angleNIN, MG) = x. The
point at a unit distance alomgG has coordinates 0, cgssin y with respect to the Serret
trihedron. Hence, i, my, ny are the direction cosines BIG then:

l, =a'cosy+a” siny ,
m, = B cosy + (" siny
n, =y cosy+y siny.

Now, sincev is the arc length on the curv€)(

df = a dy, dg=Ldy, dh = ydv.
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If one takes the Frenet formulas into account themdidas (4) will give:

adv+u {(—a’sin)ﬁa” cosy )d)(—(%ﬂLaTj CO$(UJ|V+% Sin’EUV} =0,

or

u 1L dy | L . dy 1
all-—cosy |[+a'u|———=|siny+a"u —=-—| coy =0,
1 oosy || 1= sing ey -3 cos

and two analogous equationsg@ng’, 57, andy; v, y”. We will then have three equations
that are linear and homogeneous in the coefficients’, a”, B, 5, B" v, v, V" The
determinant of those equations is 1, so the unksoave all zero, and sineeis not
constantly zero:

ucosy _ . [dy 1}_ [d)( 1}_
1- =0, siy|—-—=|=0, cogy|—-—=|=0.
R X[dv T ¥ \%

If one replaces with the arc lengtls then the last two will give:

dy 1
1 A==
@) ds T
and the first one will give:
) u=
cosy

There is then an infinity of solutiong:is determined by a quadrature.

B
GI

C

N
Formula (2) shows us that:
R=ucosy.
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Hence, the projection of the poiRtwhere the normallG touches its envelope on the
principal normal is the center of curvatu€e The contact point of the normal with its
envelope is on the polar line. The developments of a curve are on dhsyrdhce.

Consider two solutiong, x’ of equation (1), so their difference is a constahhe
two normalsMG, MG’ cut at a constant angle. Therefondien a normal to a curve
describes a developable surface, if one rotates it in each of itdopssthrough a
constant angle around the tangent then the line that one obtains will again describe a
developable.

The osculating plane to a developable is the tangemie pla the corresponding
developable: It is the plarf@MT. That plane is normal to the plaB&C, which is the
tangent plane to the polar surfacélence, the developments are the geodesics of the
polar surface.

Consider the principal norm#&lv to the development &. It is in the osculating
plane GMT and perpendicular to the tangeviP, and therefore parallel tMT. The
principal normals to the developments of a curve are parallel to the tagetite curve.
The plane normal to the curve is the rectifying plane to all afatelopables.

Upon starting from a curvé&] and remarking that the given cur¥g) (s the involute,
one can state the preceding properties in such a faakido obtain properties of the
involutes of a curve.

Lines of curvature

3. — Consider a line of curvaturK) on a surface ) and the circumscribed
developable to§) along K). The direction of a generatMG of that developable is
conjugate to the tangemMIT to the line of curvature, and consequently, it will be
perpendicular taMT; i.e., normal to ). That generatoMG will then be constantly
tangent to a development of the line of curvature, amdee thathe normals to a line of
curvature that are tangent to a surface will generate a developablee converse is
established by an analogous argument.

G’
P

(K)

If we rotateMG through a right angle around the tangent then we wilagme MG’
that will be normal to the surface, since it is perpandr to the two tangents to the
surfaceMT, MG. Thereforethe normals to the surface at all points of a line of curvature
will generate a developable and conversely.
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Consider the poinP’where the lindlG’ touches its envelope. It is the point where
the polar line to the line of curvature meets the nortoathe surface. Now, from
Meusnier’'s theorem, the polar lines to all curves orstiréace that are tangentMtwill
meet the normal aM at the same point, which is the center of the curvatdirthe
corresponding normal sectior? will then be the center of curvature of the principal
sectionG'MT, so it will be one of the principal centers of curvatof the surface at the
point M.

Therefore, recall formulas (4) of § 1 for the normag ’, which we write:
dx+udi=0, dy+udu=0, dz+udv=0.

Replacef, g, h in them with the coordinates y, z of the pointM andl, my, ng with the
direction cosinegq, y, v of the normal to the surface:is the radius of principal curvature
R. We then obtain thesrmulas of Olinde Rodrigues:

dx+Rdl=0, dy+Rdu=0, dz+Rdv=0

for a displacement along a line of curvature.

Joachimsthal’'s theoremare easily deduced from the preceding. Suppose that the
intersection K) of the two surfacesy, (S) is a line of curvature for each of them. Let
MG’, MG, be the normals to the two surfaces at a peirdf (K). They generate two
developables, and thus envelop two developmentK)ofafd in turn the angle between
them will be constantConverselyif the intersectionK) of (S, () is a line of curvature
of (S), and if the angle between the two surfaces is consiang K) then the normal

MG, to (S) will generate a developable, and sifd&’ makes a constant angle with
MG, it will also generate a developable, B9 ill be a line of curvature or§|.

Differential equation of the lines of curvature When the condition (5) for a line to
generate a developable surface is applied to the ndi@alit will be written:

dx di A

dy dy wu|=0
dz v v
here, or:
0x 0x 0A 0A

— [fu+—0dv —Oduw+—10Odv A
ou ov Ju ov

| =0.
Vv

Multiply this by the determinant:
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ox O0Xx
au  ov
dy oy
u  ov
0z 0z
u  ov

which is not zero.
We will get:
Edu+ Fdv - Ldu- Mdv O

Fdu+Gdv —Mdu- Ndv 0|=0,
0 0 1

and we will then recover trafferential equation for the lines of curvature:

Edu+ Fdv Ldu My _
Fdu+Gdv Mdw Ndy

Remark.— If the equation of the surface is taken in the farmf (x, y) then the
equations of the normal will be:

X=x+p)-pZ Y=(y+0)d-qZ
and the same method, when applied to them, and appealirgdortdition (7) [8 1]:

dM dP|
dN dQ|l

will easily give the differential equation:

dx+ pdz d
dy+qgdz d

Development of a developable surface onto a plane
4. —Any developable surface can be mapped to a plane.

Incidentally, that theorem and its converse weraiobd in Chap. IV, § 3.

We shall establish it directly and study the actualettpment of a developable
surface onto a plane.

Indeed, one must observe that we have not discussectdhy of the pairs of
homologous points in the correspondences that wegdsosad in Chap. 11 (8 2).
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First consider the case of the cylinder whose equatost
x=f(v)+u-lp, y=g (V) +u- m, z=h(\V)+u-ny,
in whichly, mg, no are constants. We deduce from them that:
dx=f"(v)dv+lo - duy, dy=g’(v) dv+my- du, dz=h"(v) dv+ng - du,

SO:

ds = > f?(v)dv+2) |, f'(\dudw ) £Od4.
We suppose that the directrix:

x=f(v), y=g(v), z=h(v)

is a cross section, in such a way thak, f"= 0. Suppose thdg , my, ny are direction
cosines, s@ o> = 1. Finally, sinces is the arc length along the cross sectlr;? = 1.
Hence:

(1) ds’ = du? + dV4,

which is the linear element of a plane in rectangulardioates. A cylinder can be
mapped to a planend (1) gives the well-known law of that development.
Now, look at the case of the cone:

X=U-lg(v), y=u-mp(Vv), z=u"- ny(v),

whereu is the length along the generator when one starts ifosummit. Suppose that
lo , My, No are direction cosines of the generator, arnsl the arc length of the spherical
curveu = 1 that is the intersection of the cone with thieesp of radius one. Hence:

dx=u ly(v)dv+ lo(v) du, dy=u m,(V) dv+ mg(v) du, dz=u n;j(V)dv+ ng(Vv) du,

and

(2) ds® = U dV? + dif.

This is the linear element of a plane in polar cootéma Acone can be mapped to a
plane. (2) gives the well-known law of the development.
Finally, we pass to the general case.

x =f(v) +u - lg(V), y=g (V) +u- my(v), z=h (V) +u- ny(Vv).

We suppose that the curxe=f (v), y =g (v), z=h (v) is the edge of regression, where

is the arc length along that cun¥e, my, ny are the direction cosines of the tangent at a
point, andu is the distance when reckoned along that tangent wiaeting from the
point of contact. Hence:
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lo=f'=a, me=g’=B mnm=h'=y

and:
, _da _a' ,_dB_pB ,_dy_y
|l =—=— == =_’=7_
° dv R =W R "W R
Hence:
_ a _ B _ 4
dx—adv+uEdv+adu, dy—,de+uEdv+,[>’du, dz—ydv+uEdv+ydu,

and:

ds’ = [d (u +V)]* + ;—Zdvz.

That element will remain the sameRfkeeps the same expression as a function of
Hence, the linear element is the same for all developahlefaces whose edges of
regression are curves whose radius of curvaturethasame expression as a function of
the arc length:

R=® (v).

We can determine a planar curve whose radius of curvata@ngressed as a function of
the arc length by means of the preceding equation. Weheksoordinates in the plane

of that curve to be the arc lengtlof the curve and the distance when reckoned along the
tangent by starting from the contact point. The deadite will then be mappable onto
that plane. When the developable is given, one can deteiiteiedge of regression by
algebraic operations and then determine the arc lengly #hat edge of regression by a
quadrature. Its radius of curvature will then determined bggaation of the form:

R=® (9.

One must construct a planar curve that satisfies dbatlition. If 8 is the angle
between the tangent afik then one knows that:

R:E;
dé
hence:
ds
—=b (9,
y S
SO
_ ds
P(s)

and therefore:
dx = cosédds dy=sin@ds
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X, y are determined by means of three quadratures. The cuaveoitle obtains is
homologous to the edge of regression in the development.

Converse
Conversely, any surface that can be mapped to a plane is a developadbe surf

Let the surface be:
x=f(uv), y=g(uVv), z=h(uV),

which we assume to be mappable to a plane. Upon chotsngoordinatesl, v
suitably, we will have:

d€ =E dif + 2F du dv+ G dV? = dif + dV,

o xEge 3

If we differentiate these relations with respectite in succession then we will get:

SO:

2 2 2
aXQGL Za_>2<B@<+ Q(axzo’ %ax:,
au ou? ou ov Jdu oudv ov duodv

2 2
%axzo’ ZGXGOLX axé?ix axgi;x
ou oudv oudv ov au oV av o0V

We then infer that:

TXIX_ oy XIX_

av ou? ou oV

Now, consider the equations:

2 2 2
0°X +Y6 y+za z _
ouov Judov O0wyv

From the relations that were written down previouslgt tsystem will admit the two
solutions:

62

X:%, Y =
Ju “ou’

QJ|QJ
C <
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0x oy Z:%
ov’

These solutions are not proportional to each othere Sitleerwise the curvas= const.
andv = const. would always be tangent. Hence, the thresrdmants that are deduced
from the matrix:

9°x 9’y 0%z
ou>  ou* o’
9°x 0%y 0%z
Judv dudv 0w v

will be zero. Now, they are the functional determisasf the three quantities / du, oy

/ du, 0z / du, taken two at a time, and thus those three quangitee$unctions of just one
of them; i.e., of just one variable Similarly,dx / dv, dy / dv, dz/ dv are functions of just
one variabled. Moreover, the relation:

ax o
ou ov

shows thatg, for example, can be expressed as a functidn of
The six partial derivatives are then functions of $hene variable. The same thing

will then be true for the derivativgs= D(y, Z): D(x.y) , Q== D(z : D(x.y) of
D(u,v) D(u,v) D(u,v) D(u,v)
when considered to be functionsxandy. The surface is then developable [Chap. I,

pp. 46].

Z

Remark |.— The geodesics are preserved under the develapriNenv, the geodesics
in the plane are linesThe geodesic lines on the developable surfacelee lines that
correspond to the lines in that plane under theettgyment of that surface onto a plane.

In particular, consider the rectifying surfaceaturve that is the envelope of the
rectifying plane. That curve is a geodesic ofréstifying surface, since its osculating
plane is perpendicular to the tangent plane. thén developed along a line when one
performs the development of the rectifying surfac#o a plane. Hence, the name
“rectifying plane.”

Remark Il.— It results from this that the search for geatkesn a developable surface
reduces to its development, and consequently togoadratures.

Remark lll.— The determination of the lines of curvature,chihare involutes of the
edge of regression, reduces to one quadrature.
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Geodesic lines on a developable surface

5. — We have reduced the search for geodesic lines on a pabkdoplane to the
development of that surface onto a plane. One cdnfemathem directly. Let the edge
of regression be:

1) x=1(s), y=g(), z=h(s),

in which s denotes the arc length. df £, yare the direction cosines of the tangent, and
is a length that is measured along that tangent whestarts from the point of contact
then the surface will be represented by the equations:

x=f+ua, y=g+uf, z=h+uy

Upon denoting the first and second derivatives @fith respect tes by u' andu”,
resp., one will deduce from this that:

dx _ a’ . dy dz _
—=ag+u— +au, —==.., —=..,
ds R ds ds

or
%za(l +u’)+a’£, ﬂ: d—Z:
ds R ds ds

and

2

ax_ a(u”—%jﬂr’[—&(ﬂ 2u - qu—a”—u,
ds’ R R R RT

along with their analogues.
Upon remarking that the normal to the surfaceothing but the binormal to the edge
of regression, the equation for the geodesic kmdde:

d’x o’y oz

d dé d$

2( Q EZ =0
ds ds ds

a gy

or:

_uya , RY ., u
au-— [+—|l+2u-u—|-a"— -
R R R RT

a(1+u’)+a’ﬂ e | =0.
R

n

a




96 Chapter V — Ruled surfaces

The left-hand side is the product of two determinants, thedequation can be

written:
u"—i2 1 1+2u’—uB S
R R R RT
a B vy J
a [y |x1+u R 0 =0
a B Vilg 0 1
or
u u 1 R
—|u"-——= |-=(1+U)|1+2d-u— |=0;
O e R ER YR
ie.:
() u-u”—&ﬂ—u%}—uEJ—ii+ud3—1:O
R R R

That is the differential equation that determines
Let us seek to understand the nature of the geinéegral. If we develop the surface
onto a plane then the curve (1) will be represehted curve:

X=F(), Y=G(@

whose radius of curvature will again Be The homologous point to the point §) on
the surface will be:
X=F+uF, Y=G+uG.

The lines in the plane are defined by the geresgaation:

A(F+UuF)+B(G+uG)+C=0,
SO
_ _AF+BG+C

~ AF'+BG

Upon remarking that the denominator is the deneatif the numerator, we will then be
led to set:

u=-—
w

and to predict that the equation wwill be linear and homogeneous of third order.
Effectively:
N ww'

u=-1 2

and
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. ww! +ﬂ_2WV\72
w2 ow w3
(2) will then become:
WV\i” V\/ 2wv(/2 W\/(/ 2 wWw) R w ww
- g2 o W2 W o T
V\/ w W R w
ig“g Ra¥ 1=0
R> W R W
If we set:
w =8
then we will obtain:
R 1
3 '+ —+=6=0,
®) R R

which is a linear equation of second ordefinWe can make the second term disappear

by a change of variable:

o=46(9),
SO
,_dé _ d«9_ ,
"~ ds do ¢
and
d?e d%6 de
e”: — 7 = 12+_ ".
ds dazmj damj

Equation (3) will then become:

d’6 _ .,
do

do

Choose the functiog in such a fashion that:

RI
I/ + _ /: O,
= ¢
or
¢9__R
¢ R
It suffices to take:
,_ 1 do
¢ R ds
SO:
ds=R do

We will then get the equation:

d9( ., R 1
2 +_(¢ +_R¢j+Ee—

0.
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dé

prp +6=0,

whose general integral is:

d=Acoso+Bsin a:z—w;

S
hence:
w=A]coso-ds+B|coso- ds+ C,
and finally:
Ajcosams+ Ef[ sino Ods+ C
u=- _
Acoso + B sino
with
_rds
=

One can dispense with the explicit introduction of déine lengths, because it will
only enter into these formulas by way of its diffdéf@in Hence, the geodesic lines on a
developable surface are obtained by at most three quadratdnesconfirms, moreover,
that the two methods will lead to the same calcuhatio

Skew ruled surfaces. Orthogonal trajectories of generators
6.— Let a ruled surface be:
x=f(v)+u-lg(v), y=gMWVW+u-mp(v), z=h(MV+u-my().
Since the generators are geodesics, it will then rélsatthe orthogonal trajectories of
the generators will determine equal segments along those generd@shave already

seen how one obtains those orthogonal trajectoties: must determine as a function
of v in such a fashion that:
> l,dx=0.

To simplify, we suppose th&t, my, ny are direction cosines; then:

Zlozzl, Zlodlo=0,
and the differential equation will become:

> 1, f +du=0;

u== [ 1,mf .

hence:
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The determination of the orthogonal trajectories of the generators of a sulddce
comes down to one quadrature.

M (.2

M1 (X1, Y1, Z1)

Remark.— One can attach that fact to the formula thatgyive variation of a line
segment. Take a positive direction on the Mg, . Letr be the absolute value of the
distanceMM; . Letx, Y, z, andxy, yi1, z1 be the coordinates of the two extremities, which
describe two given curves. The distadié; is given by the formula:

2= —x)° + 1—y)’ + @—2?
SO
rdr=(xx—X) (dx—dxX) + (. —y) (dy. —dy) + (z—2) (dz —d2),

dr:(xir_xdxl+ ylr_ yd}ﬁ—%r_ Zd;j—( i;_ X dx 5:_ Yay iz_ Zd}.

or

Let a, G, y, a1, (i, i be the direction cosines of the tangents to the suat®, M, ,
directed in the sense of increasing arc length. ALgt, v be the direction cosines of the
positive direction of the lin&M; . The preceding formula can then be written:

dr=Un+ub+vph)ds—-Aa+upf+vyds
and if one introduces the anglésé betweenMM; and the two tangents then one will
get the important formula:

dr = cosé ds, — cosé@ds

Suppose that the lifdM; is tangent to the first curve and normal to the secmad

and the formula will reduce to:

We then recover the properties of involutes and devedopsn
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Suppose that we have the normal line to the two CLﬁ\Feﬁl—zT, 6 = il—zT, sodr =0,

r = const., and we will recover the properties of ththagonal trajectories of the
generators.

Director cone. Central point. Line of striction

7.— One calls the surface of the cone:
X=U-lg(V), y=u-m(v), Z=U-my (V)

thedirector cone.
If that cone reduces to a plane then that planebsiltalled thelirector plane and
the generators will all be parallel to that plane.
The tangent plane at any point of the surface will hdnee determinants that are
deduced from the matrix:
(1)

I0 mO nO
df +ud|, dg+udrg di udp

for their coefficients. The tangent plane to theector cone along the generator that
corresponds to the one that passes through the pointdecewi will have the
determinants that are deduced from the matrix:

for their coefficients. Those planes will be paghif u is infinite. One will then have the
tangent plane to the point at infinity on the generafdhe surface, which one calls the
asymptote planeThe asymptote planes are parallel to the tangent planes to the director
cone along the corresponding generators.

All of the asymptote planes to a surface with a director planebwifarallel to the
director plane.

In order for the two tangent planes to the surfacé tne director cone to be
rectangular, it is necessary that the sum of the ptedafcthe preceding determinants
should be zero, which will give:

iz Yigdf +udigl, o
Sidl, Sdi Mf +ud diZ|

which is an equation of first degreeun There will then exist a point on any generator,
in general, where the tangent plane is perpendictdahe tangent plane to the director
cone, i.e., to the asymptote plane. That is timrakpoint, and the tangent to that point
is called thecentral plane.

I0 rnO nO
dl, dm, dn
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The locus of central points is called thee of striction.

We suppose, to simplify, tha}l,?> = 1, which eliminates the case of the ruled surface
with isotropic generators. Hencg,lp dlp = 0, and the equation m which gives the
general point reduces to:

uX dlg? + X lodf = 0;

the central point always exists then, unless:
Y dlp* = 0.

In that case, the spherical curve that is at the béshe director cone will be a minimal
curve of the sphere; i.e., an isotropic generator. ©he will then be a tangent plane to
the asymptote cone of the sphere, which is an isotropie, o it will be an isotropic
plane. The surfaces considered railed surfaces with isotropic director planegll of
them are imaginary, except for the paraboloid of revaiut

Remark— The tangent plane will be indeterminate when alhefdeterminants in the
matrix (1) are zero. There will then exist a fadfasuch that:

df+udh+Klp=0, dy+tudm+Km=0, dh+udnp+Kn=0,

which demands that:

daf dl, I,
dg dm m[=0.
dh dn n

That condition, which expresses the idea that the gtorerconsidered meets the
infinitely-close generator, can be true for the exoeyati generators. If it is an identity
then the surface will be developable. In order to findoiiat where the tangent plane is
indeterminate in this case, multiply the conditiondby dmy, dny, resp., and add; we will
get:

uXdiZ+ Y dl - df = 0.

This equation determines the contact point of the gesreaad the edge of regression on
page 97. The indeterminacy in the tangent plane at that ga@lains why the preceding
formula, which gives the line of striction for an @rary ruled surface, gives the edge of
regression for a developable surface. Indeed, it is nhepmint of the generator of a
developable surface where the tangent plane does notdeowith the asymptote plane,
and where one can, due to the indeterminacy of the taptere, consider the plane that
is perpendicular to the asymptote plane to be tangehetsurface.



102 Chapter V — Ruled surfaces

Variation of the tangent plane along a generator

8. — We propose to seek the angle between the tangeesptaa ruled surface at two
points along the same generator. To that effecfjratetreat the following problem: One
is given a lineA whose direction cosines afe S, y; and the direction coefficients of the
two linesD (p, g, r) andD’ (p, q, r ") that meet it. Calculate the anyldbetween the two
planeDA andD’A.

Dr (pr’ qr, rr)

a Il, ﬂ Il, yll

Consider a direct auxiliary tri-rectangular trinedrong of whose axes 5. Let
By, a”, B y”be the direction cosines of the other axes, and letw, andu’, v, w be
the direction coefficients dd andD’ in that system. One will then have:

vw — wv

tanV = -
w + ww

On the other hand:

u=ap+pq+yr, v=ap+pq+yr, w=a’p+p7q+yr,
U=ap +pq+yr, v=a'p+pd+yr, w=a’p+p7q+y'r,
SO
. . D p P
v = | APTBATYT ap+ﬁd+Vf‘: a B V‘ 4 d
aprfaryt aprpdy| | oyl Do
a By
=P q T
pq r
Furthermore:
uud +w +ww =pp +qq +rr’,
SO

W+ww =Ypp-Xap-Xap.
Hence:
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a By a By
p q r dYatlp q
pPq r P q

dopp - apd ap ) dYa*D pp-dapDap’

In that form, one can then introduce the directioeffacients], m, n of the direction

!

tanV =

sinceY. o* = 1.

A.
I m n
JIrP+mP+n’lp q r
(1) tanv = P 9 T

21D pp' = byl

Apply that formula to the angle between the tangeamegs at two pointsl, M’ along
the same generator. We take the directbn®’ to be the directions tangent to the
curvesn = const.:

p =df+udb, q =dg+udm, r =dh+udn,
p' =df+u dl, g =dg+u dm, r'=dh+u dn;

the determinant of the formula (1) becomes:

|, df+udl, df+ddl]| |1, d, df

m, dg+udrmg dg udp=|m, dm dg (u-u)
n, dh+udp dh U dp n, dn, dh

and
df dg dh
(U -uy P+mi+n’ d, dm dp
— IO mO nO
anv= 31 3 ly(df +udly)
S ly(df +u'dl) > (df +udp)(df+ u d)
We set:
df dg dh
D=|d, dm, dn|,
IO mO nO

and in order to simplify the result, we talke my, no to be the direction cosines of the
generator; hencg; 1> = 1,3 lodlp = 0. We suppose, moreover, that the corve (v), y
=y (v), z=h (v) is an orthogonal trajectory of the generatorsg df = 0. Finally, we
determineu by the relation:
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uY diZ+ di, [ = 0,

which amounts to taking the central point to be onésgiaints.
The denominator then becomes:

1 0
0 Ydf2+ud dydf+u[W} df+Y dj dff|’

which reduces to:

S df2+uY di, df = 29" EZ%;(;O(ZZ%W)Z ,

tanV = (W-WDDy dy’ -
> df* 0> di = (> di, if

df20> di2 - (> di, if )’
K:Z DZDDZoEl? )

and remarking that' — u= CM, one will then obtain th€hasles formula:

and then:

Upon setting:

(2) tanVv = C—M
K

which has the following well-known consequences, whichalordown for singular
generators:

1. When M describes the generator from one end to the other, the tangen{R)lane
at M will always turn around the generator in the same sense, and #hedtation that
it experiences will b&8(°. The tangent planes at two different points wiltliféerent.

2. The distribution of points M and the sheaf of plaies are in homographic
correspondence.

3. Since three pairs define a homogragimg ruled surfaces that have a common
generator and are tangent to that generator at three points will be tangent to that
generator at all other points.,e., they will agree all along that generator.

We seek to simplify the expression #r In order to do that, we remark that:

ddf? o Ddy e, Yt | [ >df? > dj G, 0
D*=| > diyff > dif Dl | =| > dl,mf >diZ 0
D@t Dy, YIZ 0 0 1
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=3 dIZ> df 2= (3 di, )2,

D

DodiZ

In the general case, one will likewise find that:

_ DD I
@ "= 12D dig-Oldl)?

K is the distribution parameter;it is rational. Formula (2) shows that M is
displaced in an arbitrary direction along the genertden the tangent plane will turn in
the positive sense of rotation with respect to thatctior if K is positive and in the
negative sense K is negative.

The sign ofK then corresponds to a geometric property of the surfacem (3) or
(4), the distribution parameter is zero for a develogaslirface.

If one abstracts from the sign then formula (3) vekhibit the fact thatthe
distribution parameters is the quotient of the s$bst distance from the generator
considered to the infinitely-close generator wikie tangle between the two generators,

since that distance i® : /> dI? and that angle is/ > dlZ, up to higher-order
infinitesimals.

SO
3) K =

Remark— LetM, M’be two points along the same generator where thertapizames
are rectangular. The anglsV’are such that:

tanV - tanV’'=-1,
so, by virtue of (2):
CM . CM’=-K>

The points on a generator where the tangent plamesectangular define an involution
whose central point is C.

Example 1-Surface generated by the binormals to a skew curve.

Let the curve be:
x=f(s), y=g(9), z=h(s).

With the usual notations, we will have:
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df =ads dg=f ds dEy ds
b=a"  m=8 =y

£ ds dg]:Z d
T T

al
dl, =?ds dm =

The central point is defined hy= 0 here, sdhe curve is the line of striction of the
surface that is generated by its binormalhe distribution parameter is:

ads pfds yds

] ’ 2
= ids ﬁ ds Z d T_ =T.
T T dg
a" ﬁ" VI

The distribution parameter is equal to the radiuk torsion of the curve at the
corresponding point.The curve is a line of striction that is an orthogjdrajectory to the
generators and a geodesic.

Example 2- Surface generated by the principal normals to areur

Here, one has:

df = ads dg=/pds dh=yds
|o:0", rrb:,gl, nb:%

a a" ﬁ ﬁ" y V’j
dlo=| —-—1d dmp=| ——=-—|d dnp =| —=—--—|ds.
O(RTJS %(RTJS no(RT

The central poin€ is defined by the equation:

a a" 1
a| —+ il
_Z (R Tj R . _RT" _
u == = ——— =MC.
a a) 1,1 R+T
Zigty) R'T
The distribution parameter is:
a B y
___RT la,a BB v, V|_ _RT
RR+T°|R T R T R T| R+T?

a B y
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We now seek the tangent plane to the center of tuev®. The Chasles formula
gives:

— 2 3
tanV = Cco = MO-MC = i R——TT 5 :i gizR 5 :_R.
K K K R°+T K R+T T

For the pointM, which is on the curve, one will likewise obtain:
tanV = & = T :
K R

SO:
tanV - tanV =-1.

The tangent planes at M and O are rectangulahich is a particular case of a
proposition that will verify later on (8§ 12).
Canonical form of the linear element
9. — We now seek the linear element of a ruled sarfd@at is defined by the
equations:
x=f(v)+ulp(v), y=g\V)+tum(v), z=h(v)+unmn(V).

Upon denoting derivatives with respectvtby primes, we infer from those equations
that:

dx=(f"+uly) dv+loduy, dy=(@’+unf)dv+lpdy, dz= (h'+un,) dv+myduy,

and
d€ =E d + 2F du dv+ G dV,
with

E=D12, F=u) g+ 1", G=u) 2+2ud I fr+> f'2,

Suppose thds, my, ny are direction cosines, so:
Zlozzl, ZIOI{):O,
E=1, F=>1,f", G=u) 2+2ud I fr+> f'2,

These results are obtained directly by makingctienge of parameter:

\/EDT:UL

SO

SO
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du, = |/ E du+ Md\;.

2/E
Upon suppressing the indices, we will indeed obtain an ssijore of the form:
ds’ = du” + 2F du dv+ G dV.
Suppose, moreover, that the curve:
x=f(v), y=9 ), z=h(v)

is an orthogonal trajectory of the generators, so:

Dl f'=0, F=0,
and the linear element reduces to:

d€ =di? + G d\.

One should expect that this would be its form, sincedoedinate curves are orthogonal.
One will also arrive at that expression by setting:

du+Fdv=du,
SO
up=u+/JFady,
which demands a quadrature.
The variableu is defined up to a constant, so it is a length thatisied by each
generator when one starts with the same orthogoaglctory. In order to specify the
variablev, consider the direction of the generator:

X =lo (V), y =mp (V), Z=ng (V).

These equations are the ones for the trace of thetalireone on the sphere of radius 1.
We takev to be the arc length along that curve, so:

dli=1
G=u*+2u) I f'+) 2.

Df'=Go, > =Gy,

G=U+20 G +G.

and
Set:

in such a way that:

The quantitiesGy, G; thus-introduced are linked with the central point and the
distribution parameter in a simple way. Indeed, carsitde involution of the pointsl,
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M’ where the tangent planes are rectangular. Its ¢gmdnat is the central point of the
generator, and upon denoting the distribution parametkr by

CM - CM’=-K>2

The coefficients of the tangent plane at a poiof the generator will be the determinants
that are deduced from the matrix:

Similarly, the coefficients of the tangent plane la pointu” will be deduced from the
matrix:

I0 mO nO
f'+uly, g'+unf h+un

IO mO nO
fr'+u'll g'+unm K+ udnh|

We express the idea that these tangent planes arageleta The sum of the products of
the preceding determinants, and in turn, the product ahtteces, must be zero, which
gives:

1 0
0 G+(@Uu+Uu)G+uu

The involution relation is then:

ud + (U+U) Gy +Gy =0,
or
(u+Gp) (Ut Gy = GOZ—Gl.

Since the central point is the homologue of a pointfatity, it is given by:
u+Gy=0.

Hence -Gy is theu of the central point. We denote it by:

P:_GO:_ZI(’)f'-
On the other hand:
G2- Gy = —K?,
SO
G =Gy +K* =P +K?=>" ",
Hence:
G=U-P+P*+K?*=(U-P?+K>
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In summaryjf v is the arc length of the trace of the director cone on pier® of radius
1, and u is the length that is carried by the generator when one starisah orthogonal
trajectory then the linear element will be given by the formula:

(1) ds’ =du? + [(u — P? + K dV,

in which P is the value of u for the central point, and K is thigilligion parameter.

Remark— That can serve to calculate the distribution paraméhdeed:

2

f" g h[° |G G, 0
I m, nm|=[G, 1 0|=Gi-G2=K>
[, my n 0O 0 1
SO
f'" g n
2) K=1[1I, m, nl, P=->1f", PP+KP=) f2.
I0 rnO 0

Converselylet a surface have a linear element of the form:
ds’ =du? + [(u — P? + K3 dV2.

We look for ruled surfaces that might be mappable tosindhce. The elements of such
a ruled surface will be determined by the relations:

Nig=1, Sl f'=0, Yi=1, SIf'=-P, Y {2=K2+P

From the expression (2) fét, the last of these relations can be further written
2 fmyr—nmy=-K

We can initially give the director cone arbitrarity such a fashion that the two
equationsZIo2 =1, ZI(’)Z: 1 are satisfied. It will then remain for us to satidfree

linear equations if’, g', h" whose determinant is non-zeré’, g', h" will be determined
perfectly, butf, g, h will be determined up to an additive constant, which amotmts
adding constant quantities xpy, z i.e., to subjecting the surface to a translatidhere
is then an infinitude of ruled surfaces that camisgpped to a given ruled surface in such
a manner that the generators will correspond to egators since one can take the
director cone arbitrarily. We remark that it is Kothat figures in the linear element, but
K2 in such a way that, in particulahere exist two ruled surfaces that have the same
director cone and distribution parameters that agual, but opposite in sign, and can be
mapped to each other.

In order to findf, g, h explicitly, solve the system of linear equations:
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Dl f'=0, DYlpf'==-P, >mr-nm f=-K
lo, Mo, o ; 1y, M, g are direction cosines of two rectangular directioee. Introduce

a new direction with cosinds, my, np that defines a direct tri-rectangular trihedron with
the preceding ones:

=mr-nm,  m=nl-ln,  n=lm-ml.

The system becomes:

Sief'=0, Slf'=-pr, I, f'=-K

hence:
f'==Ply=K(m, r,— n, m,
3) g =-Pm-Kn[-hLr,
h'=-Prj— K( my—m ).

One deducef g, h by quadratures.

The form WY and asymptotic lines

10.— We can take the second fundamental form (page 29) to be

dx &y E2 a2t dudy -
Wdud)=SAdx=| X W 921 _|
ou du du el
ox o0y 0z 0

o v ov

soW will have an expression of the form:
W (du, dv) = 2F’du dv+ G' dV,

in whichF’is a function of,, andG' is a trinomial of degree two in We naturally find
that the asymptotic lines are the curdes= 0 orv = const., which are the generators.
The other asymptotic lines are determined by tfferéntial equation:

du G

dv ~ 2F"
which has the form:
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(1) @:R&+25u+T,
dv

in whichR, S T are functions o¥. It is aRiccati equation.Let us recall the properties of
that equation.
Properties of the Ricatti equation

1. Suppose that one knows an integrabtithat equation. Set:

(2) u:u1+£,
w

SO
d
du=du __\A\,Izv'
Equation (1) becomes:

du 1 dw 2 U 1 é
—-———=RU +2R=+ R5+25H#2 &+
dv W dv 4 W W b W

However, sincey; is an integral of (1):

dy 2
—A=Ru?+25uy+T,
dv 4 4

in such a way that the equation will become:

—d—WZZ(RLh+S)W+R,
dv
which will have the form:
(3) dw =Qw-R.
dv

This is a linear equatiowhose integration will involve two quadratures.

2. Suppose that one knows two integralsua of the equation. Set:

1
b=uU+—,

SO
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wp will be an integral of equation (3). We then set:

(4) w=wp + 6,
o)
dw=dw, +dé.
(3) will become:
M, 99 _qu+Qo-R
dv dv

or, sincewp is an integral of (1):

®) —=Q¢

which is a linear equation with no right-hand side theggrates immediatelyy just one
quadrature:

do
F—Qd\/,
SO
log |61 =[Qav,
and
16] = e/,

3. Suppose that one knows three integralsig us of equation (1). One then knows
two integrals of equation (3). Let:
1

u3_ul.

Wi =

w; is an integral of (3), and in turn, one will kn@n integralé of (5):

8 =y —Wp = 1 _ 1 _ u, —Uu, .
U=ty L— U (Us_u1)(u2_uﬂ)
Set:
=6y,
SO
do= G dw+ - d& .

(5) becomes:
eod_w+¢/£: Q wa),
dv dv

or, since& is an integral of (5):

SO
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Y is a constanC, and the general integral of (5) is:
(6) 6=C&.
The equation is integrated completely by means of algebraic operatibng seek the

expression for the general integtabs a function of the particular integrals up, us
then, by virtue of (2), (4), (6), we will have:

U:U1+£:U1+;:ul+ 1 ,
w 1 p 1 iC u, —u
u, =4, u, =y, (us_ul)(l&_q)
o)
1 1 e bt WLmut(u-
U=t U=t (L W(- W Umu)(h-w)
o)
Clp—ug =W W _ - W(L-w
u-u u-u
and
C:U—%:%—%,
u-u U=y
or
(7 U, ug, Uy, u3) =C.

Hence, the anharmonic ratio of the four arbitrantagrals of a Ricatti equation is
constant. Upon remarking that in the present case, thasgrals are precisely theof
the points of intersection of an arbitrary generatith the asymptotes, one will see that
four asymptotic lines of a ruled surface will cutet generators with a constant
anharmonic ratio.

Remark—~ When equation (7) is solved faythat will give:

_VC+\,
V,C+V,’

(8)

in whichV, Vo, Vi, V; are functions o¥. The general solution is then a fraction of degre
one in the arbitrary constant. Conversely, anyction of the form (8) will satisfy a
Ricatti equation, because if one eliminates thestamC by means of a differentiation
then one will recover a differential equation of form (1).
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Application to the asymptotes of particular ruled surfaces

If the ruled surface has a rectilinear directrix thaat directrix will be an asymptote,
and one knows a particular integral of the Ricatti dqogtl). The determination of the
asymptotic lines is accomplished by means of two quadratiiest is the case fouled
surfaces with a director plan@ne directrix at infinity).

If the surface admits two rectilinear directions thémwse two lines will be
asymptotes, and one will know two particular integraleaqiation (1). That is the case
for conoidal surfaces with a director plane.From the preceding, more than one
quadrature will be necessary in order to determine the @syimlines. However, in
reality, one can obtain them without a quadrature.

Indeed, consider a ruled surface that admits twolirear directrices. One can
perform a homographic transformation in such a fashionahea of the directrices goes
to infinity, and the surface will be transformed intcoaa@id with a director plane.

Let:
o2
X

be the equation of such a conoid. It is equivalent t@tusations:
X=U, y=uy, z= ¢(v).

The coefficients, m, n of the tangent plane must satisfy the relations:

ou Ju du ov ov  ov
or
l+mv=0, mu+n¢g(v)=0,
which are equations that will be satisfied if one takes:
n=-u, m=¢'(v), [ ==vg(v).

The differential equation of the asymptotic lines:

W(dydy)=X1d>x=-Ydldx=0
will then be:

[(V)dv+vg'(v)d] du—¢" (V) dv- (vdu+tudy +du- ¢'(v) -dv=0

here, or:
ug'(v) - dv¥ - 2 ¢'(v) du dv= 0.

We find the solutiowv = const., which gives us the generators, and whatewihin is:
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" (V) dv: 2du
g'(v) u
SO
In|¢V)|=In-In|C]|,
or

W=Cg(v).
We will then get the asymptotic lines of a conoid with no quadrature.

Remark.— If there are three rectilinear directrices them shrface will be a second-
degree surface, and it will be doubly ruled. The two systef asymptotic lines will be
the two systems of rectilinear generators, and onese#l thafour generators of the
same system of a quadric will meet the generators of the otltemsyath a constant
anharmonic ratio.

Calculating the form W

We now seek the general expression for the férnin order to do that, we introduce
the canonical variablag v, which permitted us to arrive at the form that has ype of
the linear element. Consider the Serret trihedroth@fcurve X) that is the trace of the
director cone on the sphere of radius 1 that hasiteicat the summit of that cone. The
generatorlg, m, ng) is in the normal plane to that curve: L&be the angle that it makes
with the principal normal; with the usual notations, wikk have:

l, =a'cosg+a” sing ,

m, = B cosd+ 3" sind

n, =y cosd+ )" sing;
hence, we will get:

a=Il,=6(-asinf+da" cosf) — —+—j cos@+—sin g,
R T T
and some analogous ones. Thus:

-1, =2
R T
Therefore:
mn-nm=ny- gB=a'sind —a" co
Ny =1 Ny = B'sind- 3" coB
lomy —myl;=y'sin@ — )" cof

and by using formulas (3) of 8§ 9, page 113, we will get:
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f'+uly=(u-P)l;- K(mr,- nmM)=(u+ BPa- K'sind+ K" codd
g+unj=--,
h+u rf) =...

Then, upon taking derivatives with respecvito

! !

f"+uly3=—P a+ —B%—K'a'sin 6-K % cosd

+ K g+i sin6?+K’a”cos€—Kisin6?+Kicosa
R T T T

or:
Ksingd

f"+u |g:(

g"+uni=---,
h+urf=---

P’j +q (%D - K’sinej +a"[K' cod

The formula of § 10 then gives:

2a [du dv{a(KSFLnH— Pj+a’(u;RP— Ksin9j+a" K 0039} dv

WY =|a'cosfd+a" sind
(u-P)a - Ka'sind+ Ka" cos?

That determinant is the product of the determinainthe nine cosines with the
determinant:

2du dv{KS'”e— Pj a9 (%’— Ksinej 4% KcogOd¥
0 coy sirg
u-P -Ksiné@ K cos9

One then obtains:

Ksing sin@d

Pj d\%}(w 9[(& P—R— } dh,

W =K {Zdu dv+(

or finally:
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W = K du dv— {(u— P K'+ KP—L?f[(u— P?+ KZ}} v,

The only new element that intervenes is the gaodesvature (sirf) / R of the curve
(2) on the sphere; that element will suffice to detiee ). Indeed, suppose that one is
given:

sing _

—=¢ (V).
= ¢ (V)
We saw above that:
ﬁ = — l’ 1: e'
R
We deduce the following formulas from it:
dv

(1) tand=- ¢ (v), R =-cosé T:@,

which give the radius of curvature and the radiussion of the curveX) as functions
of its arc lengtlv. One knows that the form of a skew curve is tihefmed entirely.

Remark— Formulas (1) permit us to find the condition &curve to be traced on a
sphere of radius 1. Indeed, one infers that:

so, upon replacing with the letterw, which denotes the arc length &):(

(2) R2+T2(d—Rj:l.

ds

That gives the condition (which is obvioaspriori) for the radius of the osculating
sphere to be equal to 1.
Converselysuppose that this condition is realized. We e@in s

R=-cosé Td—R: sing,
ds

from which we infer that:

A comparison of these equations with formulas (i &) of 8 2 shows that one of the
developments of the curve is (upon settingd, u = — 1 in the formulas of § 2):
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x=f-a’cos@-a"'sinf y=g-p'cosfd-L"sinf z=h-py'cosf-y’siné.
We then infer that:

!

dx_ 44 (ﬂ.}.ﬁj cosd- T sing+ (a'sing-a" COS9)Q];: 0,
R T T !

ds

and similarly,dy =dz= 0, in such a way that this development reduces tora, pahich
we can assume to be the coordinate origin.
Since the normal to the curve constantly passes thriggbrigin, one will have the
identity:
f-df+g-dg+h-dg=0,
moreover. Hence:
f2+g? + h®= const.

The curve is then indeed a spherical curve, and thesradithe sphere on which it is
traced is equal to unity, since it is the radius of theutating sphere.

Differential equation of the lines of curvature

11.- The differential equation of the lines of curvatisrgChap. Ill, 8 7]:

a(d?) a(d2)

o(du) a(dy | _
oW oW ’
a(du)  a(dv)
or.
du [(u-P?+ K dv
K dv Kdu—{(u— P K+ KP—S'—;H[( w PP+ K]} d =0
l.e..

Kdo —{(u-P K’+KP’ —¢ (V) [(u—P?+K?} du dv—K [(u—P*+K? dv* = 0.

That is the differential equation for the lines afvature, in whichg (v) represents
the geodesic curvature of the curig. (

Center of geodesic curvature

12.— Consider an orthogonal trajectory of the generatdos exampleu = 0:
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x=f(v), y=g(v), z=h(v).

We seek to find its center of geodesic curvature. It ipthet where the polar line meets
the tangent plane. Now, since the generator is ndom& orthogonal trajectory, it is the
intersection of the normal plane and the tangentepl@ine center of geodesic curvature
is then at the intersection of the polar line with the generailidie normal plane has the
equation:

2 (x=Hf'=0.

The characteristic is defined by the preceding equation, and by
>x-Hf"-xf?=0.

In order to determine the center of geodesic curvatunell suffice to determine the
u for the point of intersection of the preceding linéhwthe generator:

x=f () +ulp(v), y=gM+um (), z=h(V)+unmn(V).
The first equation reduces to an identity, while the sg@@me will give:

uXlof’-Xf?=0,
However:
2 lof” =0,
SO
2l +210f” =0,

and the equation that gives thef the desired point will become:

ux Il +xf?=0,
or [eq. (2), 8 9]:
—uP+PP+K*=0,
which can be written:
Pu-P=K

If C is the central pointiv is the point considered on the orthogonal trajectang
Mis the center of geodesic curvature then the precedumgtien will give:

CM - CM’=-K>2

Hence, the tangent planeshtandM " are rectangular (cf., pp. 105). Therefdates
center of geodesic curvature at a point M of an orthogonal trajectory @fetherators of
a ruled surface is the point of the generator where the tangent plgeggendicular to
the tangent plane at M.
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Application.— If we now consider (see figures on pages 30, 36, 53) a cliytbat is
traced on an arbitrary surfacg then the normal®N“to (C) that are tangent t&)( will
generate a ruled surfack); Since the surface$§)( (&) are tangent all alondC}, the
curve C) will have the same center of geodesic curvatarat M on (S and on E).
Therefore,G is the homologue oM under the involution of the rectangular tangent
planes that relates to the generdtiit’ of (%;). The center of geodesic curvature G is the
point of MN where the normal plane {€) is tangent tqZ).

Likewise, since the center of normal curvatfrées on the polar line ofQ), it is the
center of geodesic curvature it on the ruled surface>f) that is generated by the
normalsMN that are drawn fromQ) to the various points ofJ). It is then homologous
to M under the involution of the rectangular tangent planatridates to the generator
MN of (Z,): The center of normal curvature K is the point of MN where the nqrlané
to (C) is tangent tqZ,).

For the same reason, the center of curva@ingill possess the same property in
relation to the ruled surface that is generated by tmeipeal normals of €) [cf., page
108].

Remark.— The results of this paragraph will become obvious & nates that any
normal to a curveQ) at a pointM of that curve will touch the polar surface at the point
where it meets the polar line that corresponds!tdn such a way that any ruled surface
that is generated by the normals @) (ill be circumscribed by the polar surface; i.e.,
tangent to each normal plane, such that the contaut with any of those normal planes
will be on the corresponding polar line.




CHAPTER VI

CONGRUENCES OF LINES

Focal points and focal planes

1. — One calls a set of lines that depend upon two paranetEnsgruenceor ray
system All lines that meet two fixed lines constitute a camgice. Similarly, the lines
that pass through a fixed point and the normals to a susatt also constitute
congruences. If one considers a one-parameter faftyrees on a surface then the set
of all their tangents will again constitute a congruence.

The fundamental properties of congruences that are defipehe normals to the
same surface (which play an essential role in georaéttics) are due to Monge. The
principal notions of the general theory of congruenceg weroduced by Hamilton.

An arbitrary line D) of a given congruence will be represented by the eqation

(1) x=f(v,w)+tu-a(v,w), y=f(vw+u-b(v,w), z=f(v,w)+u-c(v,w).

The equations:
(2) x=f(v,w), y=g(v,w), z=h(v,w)

define what we call thsupportof the congruence, to simplify the languaga, b, c
define the directions of thines of the congruencer rays of the congruencehat pass
through each point of the support. That support will be aaseyfin general, and the
congruence will be composed of lines with given diregihrat pass through all points of
a surface. It can happen tliag, h depend upon only one parameter, so the support will
be a curve, and an infinitude of lines will pass througlh gaent of the curve, which will
define a cone. Finallyf, g, h can reduce to constants, and the congruence will be
composed of all lines that pass through the fixed poinse/ltoordinates afeg, h.

Suppose that one establishes a relation betweadw; that amounts to choosing'
lines of the congruence, which will constituteraed surface of the congruence.
Equations (1) will then become the equations of a ruleidsewr Consider all of the ruled
surfaces of the congruence that pass through abipef(the congruence. Two of those
surfaces will agree at two points of the lim®.( We shall show that those two points are
independent of the ruled surfaces that one considersothér words,there exist two
points F, F on each lingD) of the congruence that correspond to two plafi®s (P")
that pass through the line D, and are such that all of the ruled surfackee cbhgruence
that pass through the line D will have the plagies (P”) for their tangent planes at F,
F’, respectively. Those point$-, F are calledoci or focal pointsof the line D), while
the planesK), (P’) are thefocal planeghat are associated with F”. In order to prove
the proposition, we seek the tangent plane to any mdirthe generator (1). The
parameters, m, n of that tangent plane satisfy the equations:
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(3) la+mb+nc=0,
3) | (df+udg +m(dg+udb +n(dh+udg=0.
We shall show that one can choasen such a fashion that the tangent plane is

independent of the differentiadly, dw, and in turn, independent of the relation that exists
betweerv andw; i.e., independent of the ruled surface. Develop thenskequation in

(3):
0= I(ﬂ+ %j m(a—g+uﬂ)j ah acj dv
ov o0v ov 0V av ov,
(af 6aj (69 6bj oh acj
+l| —+u— [+m —=+u— —+ u— | |[dw.
ow ow ow 0w ow 0w

In order for the tangent plane to be independentwfdw, it is necessary and
sufficient that one must have both:

of Ja dg abj dh acj_
| —+u— |+m| — + u— — + u— |=0,
ov ov ov ov ov ov

of oda dg db dh 60}_
[ —+u— |+m —=+u— [+ N —+ u— [=0.
ow 6W ow 0w ow 0w

Relations (4) and relation (3) must be satisfied fonafi-zero values df m, n, so their
determinant must be zero:

(4)

a b C

(5) 6f uaa 6_g+ ﬂ) ah uac _o.
6v ov o0v 0V av ov
ﬂ+ aa ag 6b ah ac

ow 6W aw aw aw aw

That is the equation that gives thef the focal points. It has degree two, so there
will be two focal points. The coefficients of thectl plane that corresponds to each of
them will have the values 6fm, n that satisfy equations (3) and (4).

Remark.— Equation (5) cannot be an identity unfor anyv and w, because the
constant term will be annulled only if the ray of tlmngruence is tangent to the support.
One can then suppose that the support has been chosen amrsacimer that this term is
not zero for the ray in question, as long as it issnagular.

As for equations (3) and (4) inm, n, the relations between the focal planes and the
locus of foci that we shall study will show that tineeterminate case can present itself
for singular rays, as well.
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In order for that to be true, it is necessary that riinors of the left-hand side of
equation (5) must be zero, and consequently,umatist be a double root; i.e., the foci of
the ray must coincide. However, the latter conditsonot sufficient.

The two indeterminate cases will be excluded from coreider in what follows.
The properties of the lines of the congruence that wairobtill apply to only non-
singular rays, in general.

The congruences that are composed of either the lireeplane or the lines that pass
through a point are the only ones for which all linessangular, from one of the two
preceding viewpoints. They have been implicitly exclufilech the foregoing.

Focal surfaces. Focal curves

The locus of the foci is obtained with no difficultyt will suffice to inferu from (5)
and substitute its value into (1). Equation (5) has degveeso it will give two values
for u, in such a way that the locus is composed of two distomponents in the
neighborhood of the lineD). Consider one of those components. It can be acyrf
which one calls théocal surface or a curve, which one calls tliecal curve or it can
even reduce to a point, and the congruence will therobgased of all the lines that
pass through the point. If one discards that casedherwill see that the locus of the
foci will be composed of two surfaces, a curve and a&eyrfar two curves.

1. Suppose that the locus of the foci is a surfdge (Take that surface to be the
support of the congruence. Equation (5) has theuegdd, so:

a b c
ot ag oh|_,
ov o0v ov
of odg oh
w ow ow

This expresses the idea that the liD¢ 6 in the tangent plane to the surfadg &t
the pointM (u = 0), which is one of the foci, nameliz. Hence, the lines of the
congruence are tangent to the focal surface at the corresponding fabiesseek the
focal plane that correspondsFo Its coefficientd, m, n are determined by the equations:

la +mb +nc =0,

of dg oh _
| —+m—=+n— =0,
ov ov ov

of dg oh
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From the condition that was written down before sthequations will reduce to two, and
they express the idea thidwe focal plane that corresponds to the focus F is the tangent
plane to the surfacé®d) at F. All of the skew ruled surfaces of the congruence are
circumscribed by the focal surfacd he case of developable surfaces will be discussed
later on [§ 2]. The preceding argument will break dowh i6 a point of the edge of
regression.

2. It results from the foregoing thdtthe locus of foci F, Fconsists of two focal
surfaces(®), (@) then the lines of the congruence will be tangent to the two focal
surfaces, the foci F, fwill be the contact points, and the focal planes will be the tangent
planes to the focal surfaces at the corresponding foci. The locus afcthelf coincide
with the envelope of the focal planes.

Converselyjf one is give two arbitrary surface®), (®') then their common tangents
will depend upon two parameters. IndeedHdte a point of@). Consider the tangent
plane to @) atF. It cuts (') along a certain curve. If we draw tangents to thave
throughF then those lines, which will be tangent to the two sadab), ('), will be
determined when the poiftis determined. They depend upon just as many parameters
as the poinf, and therefore, two parameters. They constitute graence whose ruled
surfaces will be circumscribed by the surface} (®'), which are the focal surfaces.

If the surfacesd®), (®') constitute two sheets of the same surf&gwhich will be
true, in general) then the congruence will be composeitheofdouble tangents to the
surface §).

3. Suppose that one portion of the locus of the foaigarve @), which we take to
be the support of the congruenck.g, h depend upon only one parameter then fer
example. of / dw, dg / ow, dh / ow are zero, and = O is a root of equation (5)If the
lines of a congruence meet a fixed curve then the points of that allrize ¥oci for the
lines of the congruence that pass throughWe seek the corresponding focal plane. Its
coefficients will be determined by the equations:

la +mb + nc =0,

Iﬂ+ma—g+ n@: .

ov ov ov

Therefore, the focal plane passes through the (iBeand is tangent to the focal curve.

All of the skew ruled surfaces of the congruenass phrough the focal curve, and at a
point M of that curve, they will be tangent to taaegent plane to that curve that passes
through the lingD). The case of developable surfaces will be stlohies 2.

4. Suppose that one has a focal surfaeand a focal curveg). The congruence
is composed of the lines that még) and are tangent t¢P). One immediately gets the
foci and the focal planes from the foregoir@onversely, the lines that meet a cufgg
and are tangent to a surfa¢®) constitute a congruence that adm(i) and (®) for its
locus of foci.
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5. Suppose that one has two focal cury@s (@'). The congruence is composed of
the lines that medty), (¢'), and its skew ruled surfaces contain the two focal curves.
Conversely, the lines that meet two given curves constitute a cangrtigat admits
those two curves for its focal curveH. (), (¢') constitute two components of the same
curve €) then the congruence will be composed of lines that (egett two points; i.e.,
the chords ofd).

Singular cases

Let us see which cases are the ones in which theaeiacdincide on all lines of a
congruence.

From the definition itself of the foci and the fogddnes, the latter will also coincide,
and conversely, since the focal planes are tangemheosame ruled surface at the
corresponding foci, as one will see in § 2, one carefbee suppose that the ruled surface
is not developable.

1. First of all, examine the case of two coincidextf surfaces. To that effect, first
consider a focal surfac&j of an arbitrary congruence. A linB) of the congruence is
tangent to each poirfe of that surface. If one associates those focaltpointh the
corresponding lines then there will exist a family ofu@s on the surface that are tangent
to the corresponding line of the congruence at alheir tpoints. In order to show that,
take the focal surfacep) to be the support of the congruence: The IDgi¢ tangent to
that support, so P andQ are functions ofi, w then its direction coefficients will be:

a= Pﬂ+Qg_f, b= Pa_g+Q%

c= P%+Qﬁ
ov

w ov S ow’ ov  ow’

Let a curve on the surfaceb) be defined by expressing w as functions of one
parameter. The direction coefficients of the tangeet

dx= ﬂEiv+iEdw, dy= a—gmv+%[dw, dz= @mv+%mw,
vV ow ov ow ov ow

and in order for that tangent to be the liD3, (it is necessary and sufficient that:

dv_ dw

P Q

In order to determine one of the parametens as a function of the other one, one
must then integrate a first-order differential equatiomhe family of curves thus-
determined will depend upon one parameter: Let us take & tineb familyw = const.
The direction coefficients of the rays of the congaeewill be:
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and the general equations of those rays will be written:

(6) x:f(v,w)+uﬂ, y:g(v,w)+ua—g, z:h(v,w)+u%.
ov ov ov

The equation of the focal points (5) will become:

ar % oh

ov ov ov

2 2 2

ﬂ-{-uﬂ a_g+ ﬂ ﬂ]-{-uﬂ] =0,
ov OV ov 0V ov 0
of 9°f ag d’g 0h 0%h
—+u —+u— —+u
ow oOvow Oow OwWw 0w 0V W

and upon subtracting the first row from the second oméll become a factor.
Having said that, suppose that the focal points coinciolerise. In order for that to

be true, it is necessary and sufficient that the detemt should once more vanish for
= 0, which will give:

of dg oh
EYRR Y
9°f 0°g 0°h _ 0
oV 0V OV '
of og oh
ow  ow ow

or E’= 0. That expresses the idea that the equation oftmeotic lines of the surface
(P), which is:

E’dV’ + 2F’dv- dw+ G’dw =0,

must be satisfied fodw = 0; i.e., that the curves = const. must be asymptotic lines of
the surface®). HenceThe congruences with double focal surfaces are composed of the
tangents to the asymptotic lines of an arbitrary, non-developable surface.

The hypothesis of a developable double focal surface islfoube excluded by our
conclusion, since the asymptotic lines are generatorthesotangents will no longer
depend upon one parameter.

We shall return to that hypothesis in 8§ 3, and we shaltis# it is inadmissible.

2. Now consider the case of two coincident focal cairvdake the double focal

curve @) to be the support; g, h are functions of only. If we then express the idea that
equation (5) admita = O for a double root then we will get the condition:
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a b c
o 3g oh|_g
ov o0v ov
da db oc
w ow ow

The lines D) of the congruence that pass through a peiot the curve §) will generate
a cone. The coefficients of the tangent plane todbia¢ will be the determinants that are
deduced from the matrix:

a b c

da b dcj

ow 0w Ow
and the preceding condition expresses the idea th&arbent~T to the focal curve is on
the tangent plane to the cone. That must be truenfpiganerator of the cone that one
considers, so all of the tangent planes to the col@ads throughT, and the cone will
reduce to a planeA congruence with a double focal curve is generégdhe lines that
radiate around each point F of a cur¢@) in a plane that passes through the tangent to

(@), and conversely.The envelope of the focal planes no longer coincidésthe locus
of focal points here.

Developables of the congruence

2. — Let us see if one can associate the lines of a genge in such a fashion as to
obtain a developable surface. To that effect, recaletiuations of the lindj:

(1) x=f(v,w)+u-a(v,w), y=g(v,w)+u-b(v,w), z=h(v,w) +u-c(v,w).

The condition for that line to generate a developabl@asais [Chap. V, 8 1, eq. (5)]:

a b ¢
da db dc|l =0,
df dg dh
or
a b C
) 9 4+ 92 g 90 4w 2P g 2€ 4w 9C g =o.
ov ow ov ow ov ow
ﬂdv+i dw a_g dw@ dw ﬁ d\fﬂ] dw
ow ow ow ow ow ow
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That is the differential equation that expresses tha itlat the line of the congruence
generates a developable surface. It has the form:

A dV + 2B dv- dw+ C dw = 0.

It gives two values fodv/ dw, so there will be two families @ developables that are
generated by the rays of the congruence, which onedealdopables of the congruence.
Two developables of the congruence pass through each line of the congruence.

Let us seek the contact points of that line withetige of regression. The valuewf
that provides the coordinates (1) of one of those pomist verify the equations [Chap.
V, 81, eq. (4)]:

df +uldat+ alldo =0,

dg+ uldb+ Hlgp =0,

dh+ uldct dlgp =0,
or

ﬂ+u% dv+ ﬂ+u% dws+ GDCDZO,
ov o0v ow 0w

(a—g+u% dv+(@+uﬂ) dw+ Hlgp =0,
ov  ov ow Jw

%+ua—c dv+ %+uﬂ: dwt+ dlgb=0.
ov ov ow 0w

If we eliminatedv, dw, dp from these equations then their determinant visé gheu of
the contact point of the line with the edge of emgion, equation (5) [§8 1], which gives
the focal points. Thereforéhe points where one lin®) of the congruence touches the
edges of regression of two developables of theraenge that pass through that line will
be foci of the linéD).

These results can be obtained without calculatiowleed, let ) be one of the two
developables that pass throudd).( At least one of the foci is not on the edge of
regression; leF be that focus. The tangent planeA &t that point is the focal planB)(
that is associated with. At the focus=’, the second focal plan®), which is different
from (P), must be tangent toA). That demands tha’” must be on the edge of
regression, since)] is developable, so the tangent plane will beptlame P) all along
the generator, except at the point whé@ié tangent to the edge of regression, for which
the tangent plane will be indeterminate.

One also sees th#he tangent plane alon{D) to one of the developables of the
congruence that pass through) is the focal plane that is associated with the fothat
is not on the edge of regression of that develapabl

If the developable is a cone or a cylinder thea owst interpret the preceding results
by considering the summit of the surface (whichiigated at a finite or infinite point) to
constitute the edge of regression.

One can say, in a general manner, gaah ray(D) is met by two infinitely close rays.
The points of intersection are the foci, their @arpass throug(D), and the focal planes
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pass through each of the two infinitely-close rays, and the focal planes thahished by
one of those rays is associated with the focus that is provided by thewthe

Developables and the focal surface

Suppose that the locus of focal points consists of facauP). It results from the
foregoing that any developable of the congruence is asil@rmscribed by that surface
or it has its edge of regression on it. Let us exatmatsituation more closely.

P

A line (D) of the congruence passes through each gowoit the surfaced®) that is
tangent to @) atF and admitd= for its focus. We showed incidentally on page 127 that
there exists a family of curve#&) on the surfacedf) that are tangent to the lineB)(
The developable that has one of the curvsfér its edge of regression will be a
developable of the congruence. We then obtain one ofathdies of developables.
Consider the curveC] that define a conjugate net of®)( along with @A), and the
developable that is the envelope of the tangent plan@®) tall along one of those curves
(C). The generator of that developable at a pbirdf (C) is the characteristic of the
tangent plane, so it is the tangent that is conjugatieettangent toQ), and thus, the line
(D). We then get the second family of developables bhndake envelope of the tangent
planes to ®) at all points of each of the curve3) ¢hat are conjugate to the curveég.(

One can recover those results analytically by takire equations of the congruence
in the form (6), [8 1], which will exhibit the curves)( They are then the curves=
const.

Equation (2), which defines the developables, will themimec

of
ov

0% f

0°f
+

ov?
of

ov

[dv dw -

ovow
of

— [dv+— dw

ow

Subtract the elements of the third row from thoseheffirst one, multiplied bylv, the
equation will take the form:

(E’dv+F’dw) dw= 0.

We first find thatdw= 0 (viz., the curve#), and the relation:
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E’dv+F’dw=0

defines precisely the curveS)(that are conjugate to the curwes const.

Developables and the focal curve
Now let us examine the case of a focal cuge \hich we take to be the support:
x =f(v), y=g(V), Z=h(v).

of / ow, ag/ dw, oh/ dw are zero then, and equation (2) will become:

a

%dv.{.%dw e | =0
ov ow

ﬂ dv
ov

dv is a factor. One of the families of developablesomposed of the lines = const.;
i.e., all of the lines of the congruence that pass thrtlglsame poirfe of (¢). They are

cones.

Examination of various possible cases

Let us examine the various possible cases that telate® nature of the locus of the
foci.

1. Suppose that one has two focal surface} (P'). Any line O) of the
congruence is tangent teb), (') at two pointsF, F’, resp., that are foci ofD.
Consider one of the developables that have one of uhees @) for their edge of
regression. All of its generators are tangent @),(so that developable will be
circumscribed by®') along a curve’) that we call theontact curve.The focal plane
that corresponds t6 is the tangent plane to the surfadg @&tF. The second focal plane
is the tangent plane t®() atF’, and since the developable is circumscribeddyy, ¢hat
tangent plane will be the tangent plane to the develepatblhe poinE”; i.e., along the
generator). It is the osculating plane to the edge of regres@ip at the poinf.
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There is obviously reciprocity betweer®)( (®'). The other sequence of
developables will have the envelopes of the lin@sqn the surfacedg’) for their edges
of regression. LetA) be those edges of regression. Those developabléseavil
circumscribed by @) along curves of contactCjJ. We have thus determined two
conjugate nets ofid) and (P') that correspondin such a manner that the curvey (
correspond to the curve€); and the curve]) correspond to the curved’]. One of
the families of corresponding curves is composed ofettges of regression, and the
other is composed of the contact curves.

The second focuB’is the contact point of the lin®] with its envelope whef is
displaced along the curv€)[cf., Chap. VIII, § 3].

2. Suppose that one has a focal surfageafnd a focal curveg(’). One sequence of
developables is comprised of the cones that have tn@imgs on ¢’). The curvesQ)
on (@) are the contact curves of the cones that areiroscribed by @) and have the
various points of¢”) for their summits. The focal planes are: Theutsng plane to
(A) at the pointF and the tangent plane t®) at the pointF; i.e., the tangent plane to
(¢") that passes throudh and the tangent plane to the cone of the congeuetitt its

summit atF"alongD. The curvesQ), (A) define a conjugate net ofp).

3. Finally, suppose thatg), (¢')are two focal curves. The two families of

developables are the cones that pass through dhe ofirves and have their summits on
the other one.

Singular cases
Now let us look at the case of coincident foci.

1. There is a non-developalgleuble focal surface.ln this case, the congruence is
composed of the tangents to one family of asymptofethat surface [§8 1, page 129].
There is no longer a family of developables thaththose asymptotes for their edges of
regression. Indeed, take that surface to be ghyeostiand take those asymptotes to be the
curvesw = const. As we have seen (page 132), the diffeMegguation that determines
the developables is:

(E’dv+F’dw) dw= 0.
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The equation of the asymptotic lines is:
E’dV + 2F’dv- dw+ G’dw = 0.

It must be verified fordw = 0, soE’ = 0, and the equation that determines the
developables will becon®@w? = 0, which proves the stated result.

2. There is @ouble focal curvé€@). The lines of the congruence are in the tangent
planes to the various points op)(then. Those will plane then constitute a famify o
developables. One immediately perceives two other pktidevelopables, namely, the
envelope of the preceding tangent planes and the develdgpableas the curvepf for
its edge of regression. It is easy to see that tlierecaother ones.

Indeed, let the curvep] be:
x=f(v), y=9(v), z=h(v).
The direction coefficients of the tangent are thevdévesf’ g/, h”. Give the direction

coefficients of a particular line of the congruemggVv), by (v), o (V) at each point. An
arbitrary line of the congruence will have the directtmefficients:

a=f"W+wa((v), b=g’'(v)+why(v), c=h"(V) +wg (V).
The differential equation of the developables is then:
f'+wa,
(f"+waq) dv+ gOdw --- ---| =0;
f'dv

dv is a factor. Upon subtracting the third line, divideddiyfrom the first,w will be a
factor, and the equation will reduce to:

2
WdV2 f"+Wa(') e | =0.

f!

We finddv = 0, which corresponds to the tangent planes,0, which corresponds to
the developable whose edge of regressiom)isaind finally:

&% b G & b 6
3) i g HW|+wld B ¢&|=0,
f' g H f g H



134 Chapter VI — Congruences of lines

which remains to be interpreted.
Now, the tangent plane considered at a point of theedgwvill have the equation:

x—f y-g z-h
f' g ) =0.
2 b, G

We seek its envelope: The characteristic is the sattion of that plane with the
plane:
x—f y-g z-h xf yvqg =z
f" g" h" + f! gl H = 0.
&% b G & b G

The line D):
x=f+ulf'+wa V)], y= .., z=...

is in the first plane for allv.
We express the idea that it is in the second planerder to determiney, it will give
the equation:

f'+Wa0 f’+W§B
f" cee |+ ! =0,

which is nothing but equation (1).
That will indeed define the envelope of the planes tloatamn the lines of the
congruence then.

Case of developable focal surfaces

3.— We have found a curve as a particular case of this ficfoci. Upon examining
the question from theorrelative viewpointof the duality principle we will be led to
examinethe case in which the envelope of the focal planes is a developable surface
namely, (0). Let (@) be the other sheet of the focal surface. The télse congruence
are tangents tod), (®'). Now, a tangent to the developabte) (must be in one of the
tangent planes that envelop that developable. The lindseafongruence are then the
tangents to®’) that are in the tangent planes @@),(which are the tangent to the sections
of (®') by the planes that envelo@). In that case, the edges of regressiin ¢n the
surface @') are plane curves, so the corresponding developablebeshe planes of
those curves. The foci of a lin®) are: The contact point witi) and the point of
intersection with the characteristic of the tangeanelto the developablé). The other
family of developables will have its edges of regressianthe surfaced) and will
correspond to the curve€ () that are conjugate to the curvés)(
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Conversely, if the edges of regression of the developables thatuatedion one of
the sheets of the focal surface are planar curves then the corresponoahgpaénes will
be planes, and their envelope will be the second sheet of the focaksurfac

In order to have a congruence of that type, one can ttakedevelopable @)
arbitrarily, and an arbitrary family of curves on thavelepable. The tangents to those
curves will generate congruences of the type considessdube one of the families of
developables is obviously composed of the tangent plang® tdevelopabledf). The
contact curves on the developable will be the generattiish can be considered to be
conjugate to the entire family of curves.

The case in which the congruence posseadesal curve and a developable focal
surface which it correlative to itself, will be studied in58

Suppose that the two sheets of the focal surface are develop#bsesfices to start
with a developabledf), and to cut them with a family of planes that depepdn one
parameter. The sections will be the curvay @nd the planes of those sections will
envelop the other focal developable. One can say incse that one has two one-
parameter families of planes, so the lines of thegamnce will be the intersections of
each plane of one family with each plane of therothe

One can verify thathe hypothesis of a developable double focal surface must be
rejected. Indeed, if one is given a developable surface:

(1) x=f() +wf(), y=gW+wg(y), z=h()+wh'(v)

then any line @) of a congruence that admits that surface for a feuadkce will be
tangent to that surface, and it will have directionfii@ents of the form:

(2) a=f'(v+8t"(v), b=g’'(v)+8g"(v), c=h’(v)+&h" (v),
in which @is a certain function of andw. One will then recognize that if one takes the

focal surface (1) to be the support of the congruencethigeaquation of the focal points
[§ 1, eq. (5)] can be written:

f [ f " f m 1 0 ae O
gr gn gﬂ' X 1 W+ ut+ ua_ LH - 0
hr hn H" a e \
1 u— 0
ow

The first factor is non-zero, since the edge of regjom is not planar. The second

one reduces to:
ué (u% - ej =0.
ow

Now, & is not zero, since otherwise only the lin& (vould be generators of the
developable. It would then be impossible for the focahisab coincide.
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The two singular casesin which the focal surfaces are double, correspond to
themselves from the correlative viewpoint. For theeaafsa double focal surface, that
will result from the remark that the asymptotes of damer correspond to themselves,
because an asymptote is such that the osculating plane af its points is tangent to the
surface, and from the correlative viewpoint, a poinbié curve will transform into the
osculating plane of an edge of regression, and conversely

In the case where the locus of foci is a double fooale, each point of which is
associated with a unique focal plane that is tangethietourves, a duality transformation
will make «o* focal planes correspond ¢ foci, and each of them will be associated with
a unique focus that is situated on the envelope of thoaégdtames. Once again, one will
indeed have a unique curve for the locus of foci then thstoh focal planes that are
tangent to that curve.

Introduction of contact elements. — Rectilinear foci. — Koemgjs congruences.

4. — There isanother special case that is correlative to itsefwhich one will be led
quite naturally when one will introduces the fundamentations of thegeometry of
contact elementSophus Lie) into the theory of congruences. [Cf., CK&ap§ 1]

One calls the system that is composed of a pdiaind a plane that passes through
that point acontact element. Surfaces, curves, and points can be considered to be
multiplicities each of which is composed &f contact elements. At each point of a
surface, there is one and only one tangent plane, whiesgf contact elements. There
areo’ points on a curve and’ tangent planes at each point, which will again gife
contact elements. For the developables, we kadvplanes ando® points, which will
give «? contact elements. Similarly, a line is composeeotontact elements that are
obtained by associating tle& points of the line with theo’ planes that pass through the
line in all possible manners. The contact elementsptdige will be theo? elements that
it defines with its various points. The contact elets@rfi a point will be theo? elements
that it defines with the various planes that containTihe contact of two surfaces, or a
surface and a line, the intersection of two lines,her fact that a point belongs to a
surface or a line, all of those geometric relations #pgpear to be diverse can then be
interpreted in a single manner: The two multiplicittessidered have a common contact
element.

In the theory of congruences, the foci and the assamtifocal planes of a ray
constitute thefocal contact elemendf that ray, which are common to all of the ruled
surfaces of the congruence that pass through that rag.fo€thal surfaces, focal curves,
and developable surfaces doeal multiplicities that are generated by the focal contact
elementsand each of them has a contact element in comntbreach ray.

A focal multiplicity is the locus ofo® focal elements, but there are more thenin
the case of a double focal curve: They then constitstapeor strip of elementshat has
that curve for itsupport[cf., Chap. VII, § 4].

We have considered all possible cases that relat@etospecial nature of focal
multiplicities, except for the one in which one o thocal multiplicities is a line.

We discard the cases in which a focal multiplicityaisplane or a point: The
congruence will then reduce to lines in a plane or tlagsissue from a point.
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The line can be considered to be a locussbpoints or the envelope of* planes.
Hence, it is at the same time a curve and a develapalllehen results that for a
congruence with a line for one focal surface, one effémilies of developables of the
congruence will be composed of cones that have theimits on the line, and the other
one will be composed of planes that pass through the lihe particular, if the
congruence has a liné)(and a surfacedf) for its focal multiplicities then the families of
developables will be, on the one hand, the cones tleaticcumscribed byd) at the
various points of ), which will give the contact curve€), and on the other hand, the
planes that pass througld),( which will cut @) along the edges of regressiof).(
Moreover, the curvesAj), (C) will define a system of conjugate curves (pp. 128). One
will then get:

The Koenigs theorem:

The contact curves of the cones that are circumscribed by a surithcthevvarious
points of a lingd) and the sections of that surface with the planes that pass th(dugh
constitute a conjugate net.

Remark.— If the focal multiplicities are two lines)(and @’ ) then the congruence
will be composed of the lines that meet those two linkswill be alinear congruence
whose lines ) and ©") will be itsdirectrices.

In the case of double focal lingJ) — i.e., a rectilinear double focal line — each point
A of the line will correspond to a plan®)(that passes through that line, and the
congruence will be composed of the linBg that are situated in the plan€y @&nd pass
through the point# of (J). If the correspondence between the pofnd the planes
(P) is homographic then one will obtainspecial linear congruencevith a double
directrix (see Chap. X).

Application: Joachimsthal’s surfaces.

We now seek the surfaces whose lines of curvature of one syst@amplanes that
pass through a fixed lin@).

Let (@) be a surface that meets that demand. Imagine tigertemto the lines of
curvature considered. Those tangebts donstitute a congruence, and since the lines of
curvature are in planes that pass througihtbose lines®) will meet the line §); (P) is
one of the sheets of the focal surface: The developabde®n the one hand, the planes
of the lines of curvature, and on the other, the conmasare circumscribed byj that
have their summits at the various pointsd@f (Therefore, from the Koenigs theorem, the
contact curves constitute a system that is conjugattheofirst system of lines of
curvature, and in turn, will define the second systermesliof curvature. If we consider
the second system then the circumscribed cone willhmustirface @) along an angle
that is constantly zero. From the Koenigs theorté,contact curve, which is a line of
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curvature of @), will also be a line of curvature of the circumscdlmne then. It will
then be an orthogonal trajectory of the generatas;the intersection of the cone with a
sphere that has its center at the summit. The sexysteim of the lines of curvature will
then be composed of the spherical curves, and the comdisgospheres will cut the
circumscribed cones orthogonally, and in turn, the surf@gealong lines of curvature.
The surfacg€®) will then be an orthogonal trajectory of one family of spheres that have
their centers or{d).

That property is characteristic of the surfadg.( Indeed, suppose that a family of
spheres that have their centers dhgnd a surfaced) is orthogonal to each of those
spheres all along the curve of intersection. The iettie is a line of curvature of the
sphere, and since the angle betwekhgnd the sphere is constantly a right angle, it will
be a line of curvature offf). If one joins the centek of the sphere to a poii of the
line of curvature then that line will be normal to théese and therefore tangent to the
surface @), in such a way that the line of curvature will be twntact curve of the
circumscribed cone tah) that has the poira for its summit. One of the families of the
lines of curvature is composed of the contact curveseottimes that circumscrib®)
that have their summits od)( so, from the Koenigs theorem, the other family | in
fact, composed of plane sections that®f that are made by the planes that pass through
(9.

We are then led to look for the surfaces that cutvargfamily of spheres at a right
angle, and have their centers @ @ll along the curves of intersection. L&) (be one
such surface, and lek) be one of the spheres of the family. The plars gasses
through @ and a pointM of the intersection ofd) and &) is also orthogonal toX].
Hence, the section o) with that plane is orthogonal t&)(at M, and consequently, to
the great circle ofY) that is situated in that plane.

Hence, the section o) by an arbitrary plane that passes throughwhich, from
the foregoing, is one of the planar lines of curvaturgdf will be an orthogonal
trajectory to the family of great circles that ardedmined by that plane in the given
spheres. If one considers another plane that passesgithd then the line of curvature
that is situated in that plane will be an orthogorgktitory to the family of great circles
that is obtained similarly. Upon folding the secondnplaver the first one, the two
families of great circles will be superimposed, and ornlé vave another orthogonal
trajectory of the same family of great circles.

One then considers a family of circles in a plane that passes thi@ghat have
their centers on(J), determines their orthogonal trajectories, and makes each of those
orthogonal trajectories turn aroundd through an angle that corresponds to it and
varies in a continuous manner when one passes from one trajectoryindintitely-close
trajectory. If the family of circles and the law of rotation arbosen convenientlihen
the locus of curves thus-obtained will be the sur{gge

No matter what that law of rotation is, moreoverd ao matter what the family of
circles is, one will always obtain a surface thattaghe requirements above: Indeed,
that surface will be generated by the curves that ortiadlyocut the family of spheres
that have the circles considered for their great ara@®d consequently the surface will
cut all of the spheres at a right angle all alongcthees of intersection.



8 4. — Contact elements. Rectilinear foci. Koenigsyooences 139

We shall then look for the orthogonal trajectoridsaofamily of circles that are
situated in a plane and have their centers on adneMore generally, we shall look for
the orthogonal trajectories to an arbitrary family of circles in a plambich we define
by giving the coordinatesa(b) of their centerd and their radiR as functions of one
parameteu. Consider an orthogonal trajectory that meets dileeocircles at a poiril.
The coordinates of the point will then be, as functions of the paramater

(1) x=a+ R cosg, y=b+Rsing,

in which ¢ is a conveniently-chosen function of Everything comes down to
determining that function ofi in such a manner that the curve that is represented by
equations (1) will be normal to all of the circles. eTiormallM to the circle will have
cos @, sin ¢ for its direction parameters. It must be tangent ¢octirve, which gives the
condition:

d d
2) ENAEL
cosp sing
le.:
da+cosp [R- Rsipl@ da sipldR Rogldl 0
cosy sing
or
sing - da—cosg - db—R dg = 0,
or rather:
dg _a . b’ ,_da , db
3 ——=—sing — —cos a=—,b=—1.
3) du R ¢ R ¢ ( du duj
If we set:
tanfz w
2
then:
2dw
dg = :
¢ 1+w
and the differential equation will become:
1 2dw 2w 1-w a b
— =2A -2B 2A=—,2B=+—
dul+w 1+w 1+wW ( R Rj
or:
dw
— =B W + 2A w-B.
du

That is a Ricatti equation. The anharmonic rafifour integralsw will be constant.
In order to interpret that result, imagine onelwd tircles of the family. LeW be the
point where it is cut by one of the orthogonal écépries: tang / 2 is the angular
coefficient of the lineAM (cf., the figure). If one considers four orthogbtrajectories



140 Chapter VI — Congruences of lines

that cut the circle at the poinkd, M, M”, M then the four corresponding valuesvof
will be the angular coefficients of the four linggM, AM’, AM”, AM”, and the
anharmonic ratio of the four integraiswill be the anharmonic ratio of the sheaf M,

M’ M” M™); i.e., the anharmonic ratidi, M, M”, M) of the four points on the circle.
It will then result thafour orthogonal trajectories of one family of circles cut all of the
circles of the family with the same anharmonic ratio.

M

912 9

M V44

In the special case in which the circles have ttemmters on a lined, the pointavi’,

M ” of intersection of the circle withd will correspond to two orthogonal trajectories.
One will then know two integrals of the Riccati eqoatiand the determination of the
orthogonal trajectories will come down to one quadratuneorder to define the family,
instead of givinga, b, R as functions of one parameter, one can give an attag
trajectory (7). One will then know three integrals of the Riceafuation, and the general
integral will be obtained by writing down that its anharngonmaitio with the three known
integrals is constant.

(u) ()

(8)

(T
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Suppose thatd is the axisOx, and give [) by its tangentT). One of them is
defined by the equations:

X =a+ pcosu, y = psinu,

in which a is a given function ofi. In order to determine the of the contact poiniv
with ('), according to the principles of the theory of envelppeswill suffice to
differentiate the latter equations while considenngndy to be constants, which will
give:

da—psinu du+ cosu do=0, pcosu du+ sinu do=0,
Sso:
da .
= —sinu=R
p du

That formula gives the radil® = IM ” of the circles of a family whose centers have
the coordinateg = a, y = 0. From the foregoing, an arbitrary orthogongeti@ry will
then be represented by:

(4) x:a+%sinu-cos¢, y:%sinu-sinﬁ
du du

in which the anglep is linked withu by the constancy of the anharmonic ratib, M’
M” M7, which is expressed by the formula:

4

5) tanE =m- tan% (m=const.).

Now return to the Joachimsthal surfaces.
If one turns the curve (4) through an anglroundOx, and if one sets:

a=f(u), %:f(u)

then one will get the following equations for an arbitrarthogonal trajectory of the
family of spheres that has the circles considerethfair great circles:

x= f(u)+ f'(usinucosp
(6) y = f'(u)sinucosp cow ,
z= f'(u)sin using sinv,

in which ¢ is always linked withu by formula (5). From the mode of generation that is
obtained, those formulas will represent any of thdagonal surfaces to the spheres
considered, on the condition that one must congidtr be a functioom = g (v), which
can be chosen arbitrarily. One will then suppose tmapsand cosg are replaced in
equations (6) with their expressions as functions of:
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= tand
(7) tang =g(v) - tan >

and upon considering andv to be arbitrary parameters, they will represent thetmo
general Joachimsthal surface.

Determining the developables of a congruence

5. — We have seen that the determination of the developalbles congruence
depends upon integrating a first-order differential equationdedree two. That
integration can be simplified in some cases.

One will obtain the developables without any quadratiuteel congruence admits
two focal curves, or correlatively, two focal developabldn the former case, one will
obtain cones, and in the latter case, tangent plasesye saw before.

If the congruence admits a focal curve, or correddyiva focal developable, then one
will immediately have one of the families of developaldé the congruence. In order to
have the other one, one comes down to integratingstaciider differential equation of
degree one.

That equation has some special properties in a cass tt@trelative to itself, which
is the case in which the congruence admits a focal curve and a focal developable.
(a) be the edge of regression of the focal developable (Consider an arbitrary
generator €) of that developable. The lines of the congruence rheebtal curve ¢’)
and are in the tangent planes ®@).( Suppose that one has a tangent plan&jahat
meets ') at F. All of the lines of that plane that pass throudghare lines of the
congruence. Consider the developables of the congruengeatdsathrough one of those
lines O©). One will first have the planes that envelop the bgable and admit the
generator ) for their contact curve. The foci of the li@)(areF“on (@) andF on (C).
The second developable has a cukedf (®) for its edge of regression whose tangent
must meet ¢’). The problem then amountsfinding the curves of a developalfle)
whose tangents must meet a cUyie).

(@) (®) (9)
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We shall look for the developables of the congruenoecdy, which we define by
starting from the curve@(’) and associating each of its points with a certaamglin
which one will find all of the lines of the congruencattipass through that point; the
developable®) will the envelope of that plane.

Let the curve ¢’) be:

x=f(v), y=9(v), z=h(v).
In order to define a plane that passes through one pbiitss, it will suffice to give two
directionsa; (v), b1 (v), ¢1 (V) andaz (V), bz (V), ¢z (V). That plane will contain all lines of
the congruence, so the direction coefficients of aod $ine will be:

a=a +wa, b=b+wh, c=c+wo.

The differential equation of a developable:

a b c
df dg dh =0
da db dc
will become:
atwa
dv | f'(v) e =0

(a,+wd,) dw g dw ---

here, when one denotes the derivatives with respacbyoprimes. We findlv = 0,v =
const, which gives us the planes of the lines of thgreemce. The other solution will
be obtained by integrating the equation:

dw f'(V) cer |+ dv ]| e[ =0,

which is an equation with the form:

Wby rQw+R
dv

in which P, Q, R are functions of only. That is a Riccati equation.

We shall point out some cases in which one can haséyar integrals of that
equation. If the curved(’) is planar, and if one cut®) with that plane then the section
will be a curve whose tangents meet, so it will be &eci@h). One knows a particular
integral, so the problem will be solved by means of two quachs In particular, if@¢”)
is the imaginary circle at infinity then one must detiee curves ond) whose tangents
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meet the imaginary circle at infinity, and those wié the minimal curves. The
determination of the minimal curves of a developable comes down to twaueadr

Correlatively, if @) is a cone then consider the cone with the same gutmah has
(¢”) for its base; it is a developable of the second famiDne knows a particular
integral, and the problem will be solved by two quadratures.

If (®) is a cone andg) is a planar curve then one will know two particutdaegrals
and come down to only one quadrature.

Suppose, moreover, that the planes that envelop théodalbée () are normal to the
curve @’). We will have thenormal congruencéo the curve ¢’), and the search for
developables will lead to the search for tevelopmentsf (¢’). The normal plane to
(¢”) at one of its point&’ is perpendicular to the tangeft T. If one considers the
isotropic cone J) with summitF’then the normal plane will be the polar plane to the
tangent with respect to that isotropic cone. Among trenals, there will then be two of
them that are contact generators of the tangent pldua¢ are drawn through the tangent
to the isotropic cone. LeG] be one of them, which one obtains algebraicallpnsitier
the ruled surfaceR) that it generates whef’ describes the curvep(). The asymptotic
plane, which is the tangent plane at infinity @),(is the tangent plane to the isotropic
cone () along G). The ruled surface contains the curgé ), and the tangent plane at
the pointF’is the plane that is defined b§) andF’T, which is again the tangent plane
to the isotropic cone alon@). The tangent plane ®is then the same at two points of
(G), and in turn, is the same alor@)( That line will then generate a developable surface.
Hence, the isotropic lines of the normal planes to a skew curve generate two
developables and envelop two developables of the skew cWegehave two particular
integrals then, and the determination of the developmeilitbe accomplished by just
one quadrature.

Effectively, upon supposing thats the arc lengtk of (¢’) and thaty, bs, c1; ay, by,

c; are the direction cosinas, £, y of the principal normal and thogg’, B, y” of the
binormal, resp., the preceding equation will become:

a' ﬁ' V a'+Wa"
dw| a :8 1% +ds| a e =0
a gyl |_a_a,.a
R T T

when one denotes the direction cosines of the tatyamt S, y; i.e.:

—-dw+ d?s(l +wA) = 0,
which will give the solution:

W= tanj.d?s.



§ 5. — Determining the developables of a congruence 145

Sincew is nothing but the tangent of the angidetween a normal and the principal
normal here, the concordance with formula (1) of Chapi& 2 will be obvious.

One verifies that the differential equationaradmits the two solutions = +i, which
correspond to the isotropic developables.

If one remarks, moreover, that the focal surfacehefcongruence of normals is the
polar surface tod’) — i.e., that the contact points of the normalhwhe developments
are on the polar line — then one will recover all & éssential results that were obtained
in Chapter V on the subject of the developments of skewes.

Infinitesimal metric properties of congruences

6. — We shall study an arbitrary congruence in the neighlalriod one of its lines;
i.e., analyze the properties that result from sinméltaus consideration of that line and
some infinitely-close lines that also belong to thengraence. That amounts to
considering the various ruled surfaces of the congru@recethe ones that are generated
by the lines of the congruence) for which the line in quesiia generator and studying
the tangent planes to those ruled surfaces at theugapoints of that generator. The
notion of the foci and the focal planes is the stgrpoint of that study.

Let (D) be the line considered. Take it to be #exis and place the origin of the
coordinates at the midpoint between the two foci. Kintdke thexzandyz planes to be
the bisecting planes of the focal planes. If thegcoence is real then the foci, as well as
the focal planes, can be real or conjugate imaginanesjch a way that the midpoint of
the foci and the bisecting planes of the focal planésalways be real.

Recall the notations of § 1, but with the followinge of givens: The support of
the congruence will pass throughand will be normal t®zthere. The coordinate lines
w = 0,v =0 will be the ones that cross@t The variables andw will be the arc lengths
of those curves, which will adm@x andOy for their tangents, moreover. On the other
hand,a, b, c will be the direction cosines foDJ.

That being the case, one will have:

ﬂ:a_g:(;:]_, i:a_g:%:%:a:bzo
ov  ow ow o0v ov ow

forv=w=0, and as a result:
(1) df = dyv, dy =dw, dh=0.

Moreover, one will have:

a2+b2+02:1, a%+bﬂ)+c@:0, a%+b%+cﬁzo
ov ov ov ow oJdw oJw

for anyv, w, and in turn, fov =w= 0. dc/dv anddc / dw are zero, and one will have:

(2) du=a dv+a'dw, db=b dv+b”"dw dc=0,
upon setting:
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oda

da oa _ ob
ov

, a" = _ bl

ob _ ob
ow'’ ov’

b" (forv=w=0).

3 a’=

Since we have confined ourselves to first-order infimtak properties, the arbitrary
ruled surfaceR) that we shall consider, which passes throi@hand whose generators
belong to the congruence, will enter in only by the diioecof the tangenDT to its trace
on the planxOy. We set:

(Ox, OT) = ¢,
in such a way that an infinitely-small displacemeninglits trace will be:
dx = cos¢ - ds dx=sing - ds dz=0.

Hence, if one considers formulas (1) then one will the¢ the generator oRj that is
infinitely-close to D) that one has to introduce is obtained by giving irdlgi#small
increments tow andw.

(4) dv=cos¢ - ds dw=sing - ds.

The tangent plane tdr) at the pointM of (D) that hasz = u for its parameter value
will be defined by the anglé = (Ox, OP) that it makes with the plar#Ox whereOP is
the trace of that plane on the plat@y; its equation will be:

(5) xsin@-ycos@d=0.

In order to calculate the ang& it will suffice to write down that this plane must
contain the tangent to the curue= constant that passes through which is a tangent
whose direction coefficients are:

dx=df +u da dy=dg+udh dz=0.
Upon taking formulas (1), (2), and (4) into account, oilktinen get:
[cosg + (@ cosg +a’ sing) u] sin@—[sing + (b' cosg +b" sing) u] cosd =0

or

() tand= b'u+ @1+ b u) tang

(1+a'u)+a'ulang

Upon observing that the left-hand side does npedé upon ta®, one will get the
equation of the parameter values offibha:

7) (1+a u) (1 +b" U -b' a" - u*=0.

Since the origin is at the midpoint of the focie tum of the squares will be zero:
a’+b" =0.
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Moreover, the values of tafithat correspond to the two roaisand —u (i.e., the ones
that give thdocal plane¥ will be:

and since they must be equal and opposite in &igm the choice of coordinate planes,
a’will be zero. One will then have:

(8) a’=b"=0.

We set:

(9) a”:l, b':l.
p q

The equation of the foci (7) will then reduce to:

(10) u = pa,

and the focal planes will be defined at the same thy:

, tarf 6= 2.

(11) tang= = =
g g

clo

Equation (6), which gives the law of simultaneoasiation for the associated geometric
elementgy, u, andg, will finally become thdundamental formula:

(12) tang= P+ atang

q p+utang

The correspondence between any two of the thremeslis tang, u, tan @ is
homographic, since the third one is assumed toobsetant. In particular, one sees that
when R) varies, the tangent plane ) (at a given poinM of (D) will turn in the same
sense as the tangent plane at the midgiot in the opposite sense according to whether
pq (pg — u?) is positive or negative, resp. Therefore, if fei are imaginary (i.epq <
0) then the two rotations will always be in the sasense. If the foci are real (i.pq >
0) then they will be in the same sense whkis between the foci, and in the contrary
sense wheM is not between the foci.

Recall once more that equation (12) can be written

tand - tanp p —u+ gtanéd
13 u=pg- or (13) tang=-— ,
(13) Pa p— gtand tanp (13) ¢ g p-utanéd

which exhibits a law of reciprocity betweé&and ¢, up to the sign ad.
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Limit points and principal planes

We again look for the central point of the generé@rof (R). If we suppose that
is infinite then formula (12) will give:

tan 6= P
gtang
for the asymptotic plane; we will have:
(14) tand = - @

for thecentral plane and that value, when substituted in (13), wi¥egi

g _pra g
p°+q-tan“¢ 2

(15) u=-pq(p+a)

for the central point. The parameter value ofdéetral point will always be finite then,
and its extreme values, which correspond to:

: tan¢:i—p,
q

6=+
will be:

p+q
16 u=+ .
(16) >

One calls those extreme positions of the cenwaltpimit points. They are always
real, as well as the corresponding central plawbégh one callgrincipal planesof the
ray. They are rectangular and have the same bigeplanes as the focal planes
(Hamilton).

If the foci are real then one-half their separatthstance, which is the geometric
mean of |p | and|q|, will be less than that of the limit points, whiehthe arithmetic
mean. The foci will then be between the limit psjrand the pairs of points will have the
same center, which is called tbenter of the ray.

If one denotes the distance between the foci Badimit points by & and 2, resp.,
then formulas (10) and (17) will give the geometnierpretation of the quantitigsand
q:

(17) d*=pg ~ 20=|p+q|

From formulas (11), the angletbetween the focal planes is given, at the same, tim
by the formulas:

(17) tana=3 = P tarf @=L,
q d q
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Remark.— In the following chapter, we will see thidr any congruence that is
composed of one surface, the foci are the centers of principal cueyatnd the focal
planes are the planes of the principal sections of the surfabe. focal planes will then
be rectangular, and will coincide, moreover, with phnicipal planes of the ray that we
just defined. Furthermore, from formula (11), the orthmdity of the focal planes is
expressed by the condition:

oo

g9 -
q

aloc

nd-q
-q
Upon considering (17), we will then have:

Hence:

Hence the limit points of each ray in a normal congruemat coincide with its foci, and
the focal planes will coincide with the principadiapes of the ray. The same situation
will prevail for an arbitrary congruence for the rayattiatisfy the conditiop = q; i.e.,
the ones whose focal planes are rectangular.

Study of the deviation

Now consider two arbitrary poindM andM " of the line D), and look for the relation
that exists between the relative parameter value u= p of those two points and the
deviationthat the tangent plane tB)(experiences when one passes from one to the other;
i.e., the angle&?’— 8= ¢. We denote the parameter valueMbfby u'" and the angle that
the tangent plane &’ makes with the planeOxby &', in such a way that, from ()3we
can write:

tan g = P + gtand _ _pg—u+ gtand .
g p-utand g p-utand
We then conclude that:

(U -=u (p-qgtanftand’) + (uU —pg) (tan@’ —tanb =0
or
o (p cos@cosd’ - qsinBsin &+ u sin ) + (U> —pa) sin =0,

which can be further written:

(18) p[%coa/w%l cos+ B ¥u siw}: (U —pQ) sin .

If one is given the deviatiog and variesR) (i.e., 8 while leaving the poinM fixed
(i.e.,u) then one will see that has a maximum and minimum that are given by:
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p[pzqcosglw 94y smﬂ} (Pg— U )siny
(19)

0, [pTcosw Pra.y smﬂ} (bg— U )siny
resp.

One infers from this that:

%cosz/ﬁ using=3(pq - d) [i+—1j sin ¢,

1 2
SO

p; = 1(pg - ) (——ij siny,
pl 2

which will permit one write formula (18) in the form:

E(—1+—1j+ l[ 1 1} cos + 26)-—
2\p P, P P>

so one will conclude thkummer formula:

1 co§(w+€j sirf(w+€j
(20) 2= 22 Jy 12 )

P P>

IS

In the particular case where the deviatips assumed to be equald 2, it will reduce

to:
cos (6’+ﬂj sirf(€+ﬂj
1_ a), 4

p P, P

which one can write more elegantly by introducihg &ngled + 7/ 4 = & that the
tangent plane d# makes with one of the principal planes of the ray:

1_cosé, N sirf 6,
2} P,

(21)

This Hamilton formulahas the same form as the Euler formula (pageh#)relates
to the variation of the normal curvature and wadlvb analogous consequences. Euler’s
formula is, in fact, a special case of Hamilton’sxdeed, suppose that the congruence
considered is the congruence of normals to a srf§cand thatM is a point of that
surface. Let@) be the trace of the ruled surfa¢y on the surfaceS. The angled will
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be precisely the angle between the tangen€j@a(M and one of the principal planes of
the ray — i.e., from the remark that was made inptezeding paragraph, one of the
principal directions of the surface. On the otherdhdahe surfaceR) is nothing but the
surface k) that was considered in the remark that concluded Ch¥ptiersuch a way
that the pointM’ for which the tangent plane t&)(is perpendicular to the tangent plane
to (R) atM — i.e., is normal toG) — is the centeK of the normal curvature tcCj.
Formula (21) then expresses, in the special case in queasigonormal curvature 14 of
the curve C) of (S as a function of the principal curvatures & /and 1 /o, of (S and
the angle® between €) and one of the principal directions of the surface.

Distribution parameter— Suppose that in the general formula for the deviation (18)
M is the central point oY) on R) — i.e., thau is given by (15). We then obtain:

(22) pg-4¢=pg-(+q)’sirf &cos 8= (p cos d—qsirt 6 (qcog G—p sirt 6,

and formula (18) will become:

p[-p;qcoﬂ/l+_p; g cog/ COSQ} = cog 0—q sir? 8 co< H—psinz 9 siny:

i.e., after dividing by the factop(co$ 9—qsir? ):
(23) 0=(@cos 9—psirf § - tany.

We then get the Chasles formula (page 105), aadlidtribution parameter foD]
for each surfaceR) will be given by the equation:

(24) K =qcos 8—psirf 6= % cos 29—%

as a function of the angle between the central plane and the pla@& At the same
time, the central point is given by formula (15):

(15) u:¥-sin26.

One sees thag and —p are the extreme values of the distribution paraméthey
correspond to two cases in which the central piginhe center of the ray. The central
planes will then be the coordinate planes — ihe hisector planes of the focal planes and
the principal planes.

The distribution parameter is annulled when thatre¢ plane becomes perpendicular
to the one the focal planes. The central poinnthends towards the focus that
corresponds to the other focal plane.
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Properties of pencils of rays

7.—Density at a point— Imagine a ruled surfac&)(of the congruence that contains a
ray D) in its interior. The section of that ruled surfdethe perpendicular plane tB)(
at an arbitrary point of that line is a closed cur@ that containdM in its interior.
Consider all of its points to be situated at an inflgitemall distance fronM: The set of
all rays of the congruence that are contained in tegian of &) will then be called an
infinitely-thin pencil of rayghat has the rayD) for its axis The sections, such as)(
will be calledcross-sections of the pencil.

The fundamental property of these pencils results fthen interpretation of the
productu; u, of the roots of equation (5) of 8 1, which determine thedbthe ray D).
That product is:

a b C a b C
=L po|0f 99 on| . _foa db dc|
n ov o0v o0v ov o0v o0v

of 3 oh %a db dc

ow ow ow ow ow ow

If dv, dwdenote positive infinitesimals then we will writeai:
1) U Uz =

The numerator in that formula is developed in thenfor

(2) Pdvdw=a- D(g,h) -dvdw+b-M dvdw+cM dv dw
D(v,w) D(v,w) D(v,w)
Now:
D(g,h) D(h, f) D(f.9)
(3) D(v. W) dv dw D(v.W) dv dw DV, W) dv dw

are the three components of a vector that is notortdle surface:
(4) x=f(vyw), y=g(v,w), z=h(v,w)

at the point ¢, w) of that surface, and whose length measures & @ement of the
surface at that point. Hence, if one supposesahatc are the direction cosines of the
ray that has its foot at that point then the quar{®), which is the projection of the
vector (3) onto the directioa, b, c, is the projection of that area element onto thag
perpendicular to the ray that is drawn throughpgbmt considered. Moreover, since the
vector (3) and the positive directions:
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(6f 0g 6hj (6f og 6hj

v ov ov)’ ow ow ow

of the coordinate curves at the point considered defolieeat trihedron, that projection
will be positive if the directiom, b, ¢ and the preceding positive directions also define a
direct trihedron.

If we suppose that the support (4) is normal to theanag,that its foot is the poii
of the ray D) that was considered before then that projection efatea element will
reduce to the area element itself; i.e., up to higherrardmitesimals, the area of the
cross-sectiond) of the pencil, with the same sign convention.

Apply the same considerations to the denominator ofidta (1). The support (4) is
replaced by a sphere of radius (1), which is also notonéD) at the pointy, w). That
denominator1 dv dw(with an entirely similar sign convention) will theneasure the
elementary spherical area that is homologoustt§j j.e., the elementary solid angle that
is filled with the directions of the rays that congi the pencil, which are supposed to
issue from the same point: That is what one cartlalmeasure of the solid angle of the
pencil.

Furthermore, one sees that the ratio (1) will be pesibr negative according to
whether the homologous points of the contours of thesesectiond) and the spherical
area that they correspond to describe those two cantetin respect to the positive
direction of the axis of the pencil in the same or opposense when one makes a
moving ray describe the ruled surfag {hat bounds the pencil.

Thereforethe product of the algebraic measures of the distances from a point M of
an arbitrary ray of one congruence to the two foci of that ray is equtleauotient of
the area of the cross-section that one makes at M in an infinitelypémcil that has that
ray for its axis with the measure of the solid angle of that pesmeod that quotient will
have the sign that was just specified (Kummer). Thatuivalent to saying that it is the
limit to which the analogous ratio that relates to acpemith a finite cross-section will
tend to when that cross-section tends to zero iofats dimensions without the pencil
ceasing to contain the ray in question in its interi®ne takes the inverse of that limit,
which will not depend upon the manner by which the pencil redocis axis, to be the
measure of thdensity of the infinitely-thin penat the point\.

Hence:

The measure of the density of a pencil of the infinitely-thin cemge at an arbitrary
point of its axis will be the inverse of the product of the algeldisiiances of that point
to the foci of that axis.

That theorem will reduce to Gauss'’s theorem on tted totrvature (cf., page 70) for
the normal congruence to a surfaBg (That results from the following remarks: If one
takesM to be the foot of a normal o®)(then the algebraic distance frovinto the foci of
that normal, which are the centers of principal curvatdtbée surface (8 5), will become
the principal radii of curvature o§f atM. Moreover, one can then considg) o be the
support of the congruence, and since that surface is noontiaé ray considered] at
M, its elementary area 8 will be equal to the cross-section of an infinitely-tpincil
with axis ©). Finally, the correspondence that is established bettieesupporty) and
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a sphere of radius 1 by the directions of the raysdssgiherical representation &) (
here. The solid angle of a pencil will then be thenentary area of the sphere that is
homologous to the elementary area of the surfgcm (ts spherical representation.

Study of the cross-sectionlf one imagines two cross-sections of the sameitafy-
thin pencil with axis D) then the ratio of their areasand o’ will be equal to the inverse
ratio of the densities at the poidt, M’ of (D) where those sections are made. Hence, if

I

ry, r2; 1, r, are the distances from andMto the two foci, respectively, then one will
have:

(5)

o _nr,
o o,

for the ratio of the area. That ratio will tendzexo if M stays fixed andW’ tends to a
focus. The pencil will then flatten into its twocfpin such a manner that the areas of the
corresponding cross-sections will be infinitesimalsigher order than the other cross-
sections.

Meanwhile, we can specify it by means of the formawbg 6. Suppose that the
pencil is given by the cross-section that is madeeatehterof the ray. From the choice
of the coordinate axes, it is the section that isertadthexy-plane. Upon neglecting the
infinitesimals of order higher than one, the coordisaita point of the contour of that
section will be:

(6) X =dy, y =dw, z=0.

The coordinates of an arbitrary point of the ray ofdbegruence that passes through that
point are:

x=f(v+dv,w+dw) +u-a(v+dv,w+dw), y= ..., z= ...,

or, upon neglecting the higher-order infinitesimals ahahg formulas (1), (2), (8), (9) of
§ 6 into account:

(7) x:dv+ud—gv, y:u%/ +dw, Z=U.

If one considersu to be constant then formulas (6) and (7) will exprdss
correspondence that is established by the rays of tlgguenmce between the points of the
planez = 0 and those of the plaze= u. If we keep the letters, y for the former and
denote the latter by, Y then that correspondence will be defined by the formulas

8) X=x+y, vy=Yy+y
p g

This is a linear correspondence that will become samguhen the determinant of the
coefficients ofx andy is zero; i.e., for:
u?—pg=0.
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That condition expresses the idea [eq. (10), § 6] tlesé#ationz = u is drawn through
one if the focF; it can be realized only if the foci are real.
In the case where it is realized, one will have idafiy:

for anyx andy, or [eq. (11), 8 6], ii¥ denotes the angle between the focal pl&)dhat
is associated with the focesand the planeOxthen:

Y=Xtané.

Therefore, no matter what form the central crasgisn (i.e., the plane that passes
through the center of the ray) héise pencil is cut by the plane of the cross-sedina
passes through one focus along a rectilinear segrtent is situated in the focal plane
that is associated with that focusf one neglects the infinitesimals of order higtiean
the diameter of the central cross-section then xbermal surface of the pencil will have
the appearance of a ruled surface that has two reatiladisectrices that pass through the
foci of the axis of the pencil, are perpendicularthhat axis, and are situated in the
associated focal planes to those foci, respectively.

For example, suppose that the central cross-sestawmircle of radius. The section
by the plane of the parameter vaiire u will be the ellipse:

2 2 2 2
(9) [x—ﬂvj +(Y—E xj = r{l—“—j ,
p q Pq
which effectively reduces to a double line &r= pq in the case where the foci are real.

The anglew between one axis of that ellipse and the ple@gwill be given by the
formula:

(10) tan 20= 2P9
g-p u

In the case = (i.e., in the case of normal congruences, if #itatation is true for all the
rays, and more generally, whenever the focal plamegectangular), the axes will then
always be in the focal planes, and will then caleaivith the principal planes of the ray.

If one discards that case then if one projectsémtion onto the plare= 0 then one
will see that when the parameter valuef the second plane varies frotmo to + oo, the
right angle that is defined by the two axes of $ketion will always turn in the same
sense. The total rotation will be/ 2, and when the parametetends to zero, those axes
will tend to be located in the principal planestbé ray. The two ellipses that are
provided by two planes that are equidistant froen¢anter of the ray will be symmetric
to each other with respect @ andOy upon projection, moreover.

In the case of real foci, if one regards the fdewu17) of 8§ 6 then one can put
formula (10) into the form:
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tan 25«):9 - tan Zg
u

into which the half-distance between the foci and the anglezBetween the focal planes
enter.
The lengthd of the axes of the ellipse (9) are given by the equation

(11) I“{Zw{iﬁéﬂr%z{l—u—j r*=0,
P~ q Pq

and the law of their variation will result from thgudy of the hyperbola that is
represented by the equation that one will deducgelyng:

|2 2 2 _

=r°-y, u”=pQg- X

One will then see that ifi varies from 0 to 4o then one of these axes will constantly
increase, while the other one will first decregssss through a minimum, and then also
increase constantly: The two axes will become it&ialong with the parametar
If the foci are realgg > 0) then the minimum of the second axis will leeoz and in
conformity to what we have seen, that will be tmdeen the plane of the section goes
through a focus. The first axis, which is themated in the corresponding focal plane,
will have the length:
4R

sin2o

2 =

One can then say that the pencil is smeared atsmgdtilinear directrices over a length
that is, in general, greater than twice its cerdraimeter and equal to twice that diameter
in the case where the focal planes are rectangular.

Remark.— The case in which the foci coincide on the rapsidered is treated by
letting the originO be arbitrary on that ray. One supposes onlytti@planezOxis the
double focal plane. Hence,hfis the parameter value of the double focus andther
hypotheses about the choice of axes that were nm@ 6 are maintained then the
correspondence between the plare 0 and the plane of the parameter valugill be
expressed by the formulas:

u u u
X=[1-2|x+—y, v=[1-2|y,
( hj Kk’ ( hjy

in which we have set:

=~
11
QJ=||—\

here.
Indeed, upon writing down that the roots of equat{7) are equal tt, and that
formula (6) gives the value 0 for=h, one will get:
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a=b=-:, b =0.

)

One sees that if one is given the section (6) of theilpamutrarily in the planez = 0,
which an arbitrary cross-sectional plane here, thersékaion by the plane= h, which
passes through the focus, is only rectilinear: It willrttbe in the focal plane, and its
length will be proportional to the dimension of thetiec(6) that is perpendicular to that
focal plane.

The hypothesi®” = 0, which was discarded implicitly, corresponds to ¢hse in
which the focal plane is indeterminate. The crossaecf the pencil by a plane that
passes through the focus will then reduce to a point.




CHAPTER VII

NORMAL CONGRUENCES

Characteristic property of normal congruences

1. — Consider a surface, so the coordinates of one of itéspwill depend upon two
parameters. The set of all normals to that surfattedepend upon two parameters and
will constitute a congruence. In order to obtain theettgables of that congruence, it
will suffice to consider the two families of curvatuliees on the surface, since the
normals to a surface at all points of a curvaturedewrerate a developable surface. The
tangent plane to that developable passes through the Indjnand the tangent to the
corresponding line of curvature. It is one of the fqidahes of the linelf). Therefore,
thefocal planes are the planes of the principal sections of the surfacefodddeplanes
of a normal congruence are rectangulalt then results that an arbitrary congruence is
not generally composed of the normals to a surface.

D
T

M
0

TI

)
(A)

+F

(A")
g

Consider the two lines of curvaturg),(() ) that pass through a poiM of the
surface. The developable of) (corresponds to an edge of regressid) (Whose
osculating plane is the focal plane, so the contaictt F of (A) and the lineD will be one
of the focal points. The edge of regressidhi§ the envelope of the lin®) when the
point M displaces along the curvg.( The pointF is then one of the centers of principal
curvature of the surface at the pdiuht The associated focal plane is the second plane of
the principal sectioRMT’. One will likewise get a second edge of regressfon (ipon
considering the curveA).



§ 1 — Characteristic property of normal congruences 159

One will easily see that these properties of theecsrof principal curvature and the
planes of the principal sections will persist regardle$sthe nature of the focal
multiplicities of the congruence considered.

Converselylet a congruence be composed of the limgs (

x=f(v,w) +u-af(v,w), y=g(Mw +u-b(v,w), z=h(v,w) +u-c(v,w).

We seek the conditions under which one can chogeareM on each line®) whose
locus is a surface that is constantly normal@). ( In order for that to be true, it is
necessary and sufficient that one can determias a function o¥, w in such a fashion
that:
xadx=0
or:
Y a(df +uda+ady=0.

Suppose thaa, b, c are the direction cosines dd). u will then represent the distance
from the pointP where the line meets the support to the peinand one will have:

Yai=1, > ada=0.
The preceding condition will, in turn, become:

du+>ada=0
or
(1) —-du=2 ada.

That equation expresses the idea fhat da is an exact total differentidilow:

> ada= Zag—fdv+2ag—fdw

so the condition will be:
0 of 0 of

R a_ = -
ow ov ov ow

or
%adf _ 02 df
ow ov ov ow

or finally:

@ (6ad37 6aB3Lj
ow ov 0V 0w

We have found a unique condition. Now, we have previowind that a necessary
condition is the orthogonality of the focal plana&’e will then be led to compare the two
conditions. The direction coefficients B, C of a focal plane verify the relations:

(3) Aa+Bb+Cc=0,
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A(ﬂ+ %j (@+ uﬂ)j + C ah+ u@ =0,

ov ov ov ov ov 0V

A(i+ %j+ B(ag u%j+ ﬂ]+ u% =0.
ow ow ow 0w ow 0w

Eliminatingu between the last two equations, we will obtain:

of da
> A > Ay

(4) =0.

of da
> Aw > A

The direction coefficients of the normals to thedbplanes are defined by (3) and (4). If
we considerA, B, C to be current coordinates then (3) will represent aepthat passes
through the origin, and (3) will be a cone that hasahgin for its summit, and the
generators of the intersection will be preciselydbsired normals. We express the idea
that those two lines are rectangular. The plane (3)repdicular to the linea( b, c¢),
which is on the cone (4), because from the conditioaé = 1 andY. a da= 0, one will

deduce that:
Za—— 0, Z —=0.

Hence, the two normals will be perpendicular to the @@, b, c). If they are rectangular
then the cone (4) will admit an inscribed tri-rectangatdnedron, which will give the

condition:
y(Xede o)
ov ow 0w 0V

That is precisely the condition (2). Hentee necessary and sufficient condition for the
congruence to be a normal congruence is that tloalfplanes of each ray must be
rectangular.

Suppose that condition (2) is satisfied. In order toinf@anormal surface to all lines
of the congruence, it will suffice to calculateas a function o¥, w, which one does with
equation (1). By hypothesis, it has the form:

du=do (v, w),
o)
(5) u=a® (v, w) + const.

There is then an infinitude of surfaces that meeteheirement. If two points andM’

of (D) describe two of those surface and &), respectively, which correspond to two
functionsu = PM andu’ = PM’, resp., and which are given by formula (5), then the
distanceMM’ = u’ - u will be a constant quantity. The surfac&, (S’) are called
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parallel surfaces and a family of parallel surfaces will admit the same centers of
principal curvature and the same focal multiplicities for each norm@hose focal
multiplicities constitute theevelopmendf any of those surfaces.

D, (A
F
©)
V) T’
M 2
()
T

Relations between a surface and its development

2. — Consider one sheet of the development of a surBcd-{rst, suppose that it is a
surface §). Consider a linel) of the congruence of normals t§.( That line is tangent
at F to the edge of regressiof)(that belongs todf). The focal planes that are associated
with (D) are the osculating plane td)(and the tangent plane t®) In order for the
congruence to be a normal congruence, it is necessdrgudiicient that the osculating
plane to A) must be normal tod), and therefore thalA] must be a geodesic ab]. The
congruence of normals to a surfa¢® is composed of the tangents to a family of
geodesics of its developmém), and conversely, the tangents to a familybfjeodesics
of an arbitrary surfac€®) constitute a normal congruence.

Let M be the point where the lindD) cuts the surfaceS. When the line @)
envelops the edge of regressi®), (the pointM will describe a line of curvaturg)(of
(9. Each pointM of (S corresponds to a poifit of (®), so there is a point-by-point
correspondence between the two surfaces. The fariipes of curvature ) of (S
corresponds to a family of geodesics ®j.(

Now, look at the contact curve€)(with (®). Consider the tangefdto (C). It is
the characteristic of the tangent planed) (hen the poinM describes)). Now, that
tangent plane toX) is the second focal plane, so it is the plane perpaladito the plane
FMT that passes throudtM, and thus the normal plane tg {o the pointM. HenceF&
is the characteristic to the normal plane @ o it is the polar line to). SinceF&is in
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the plane normal toy), it will meet the tangent to the second principal isectit will
pass through the center of geodesic curvaturg) @i (S).

u

(9)

v g

Canal surfaces

Suppose that one of the sheets of the development redueesurve §). The line
(D) meets §) at one of the focal points. One of the developables that passes through
(D) is a cone with summit. One of the lines of curvaturg) (of (S that passes through
M is situated on that cone with its summitcat Now, ()) is constantly normal t®, so it
will be an orthogonal trajectory to the generatdrthe cone; i.e., the intersection of that
cone with a sphere of centér At each pointM of that sphere, it is normal to the line
(D). It will then be tangent to the surfac® &ll along the curve)j. Each poinF of (@)
corresponds to a sphere that has that point for itecand is tangent t&) all along the
corresponding line of curvature. Henaesurface(S) that has a curve for one sheet of its
development is the envelope of a family of spheres that depend upon one grar&lvieet
call such a surface@nal surface.Meanwhile, one sometime reserves that name for the
envelopes o' equal spheres. The converse of the preceding propoisiticure, as we
will see later on.

The curve p) is then the intersection of a sphere with an itdigiclose sphere; it is a
circle. The coné- is one of revolution whose axis is the limiting positof the line of
centers, so it will be the tangeft to (¢). Consider the tangeMT to ()). MT, which is
tangent to a point of the circle, is orthogonaFto Fu is then in the second plane of the
principal section. The congruences considered are then composed of the generators of
the o’ cones of revolution whose axes are tangents to the curve that isctie df
summits of those cones. Conversely, any congruence, thus-consigugedhormal
congruence because the focal planes will be the tangent plane the meridian planes
of those cones and will consequently be rectangular.

Dupin cyclide

Let us see if the two sheets of the developmentedunce to two curvespf and @’).
The developables of the congruence are the cones thather summits on one of the
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curves and pass through the other one. All of the c@Resf revolution must pass
through the curved”). That curve ¢’) is such that an infinitude of cones of revolution
will pass through that curve, and similarly faf)( Hence, @), (¢’) can only be skew
biquadratics or their elements of decomposition. Haweneither of those curves can
be a skew biquadratic, since otherwise four cones of adgrel degree would pass
through one of them.

F

Ve u

Now, let us see if one of them can be a twisted cublee cones of degree two that
pass through a twisted cubig’() have their summits org]. The two curvesd) and
(¢") will then coincide. We then examine whether thema exist twisted cubics such
that the cones of second degree that contain thenbwitiones of revolution. Such a
cone will have the tangeru for its axis. Now, it contains that tangent, sowill
decompose. Therefore, neithé) (or (¢’) can be twisted cubics.

Suppose then thap() is a cubic. The locus of summits of the conkesegolution
that pass through that conic is, as one knowshanabnic, which is the focal surface of
the first one. There is reciprocity between thoseics, and the cones of revolution have
the tangents to the focal surfaces for their axédsereforethe lines that meet both of two
focal conics constitute a normal congruencé&he normal surfaces to those lines are
calledDupin cyclides. Their two systems of lines of curvature acéesi

Special cases- Suppose, in particular, tha’() is a circle. The locus of the summits
of the cones of revolution that pass through)(is the axis ¢) of that circle, and we see
thatall of the lines that are supported by a cir€ig’) and its axig¢) are normal to a
family of surfaces. Those surfaces aterii of revolution around the axigp), and the
locus of the center of the meridian circle is thele (¢).

Suppose thatd(’ ) is a line: The surface is the envelope of a fami spheres that
have their centers on that line. It is a surfacewolution around¢g’). The first sheet of
the development is the lingg (), while the second one generated by the rotaifae
development of the principal meridian. In order itoto be a curve, it is necessary that
the development must be a point, and thus thatriedian must be a circle, and we
come back to the case of the torus.

Singular case
Finally, let us see whether the two sheets ofdeelopment can coincide. If that

were true then the two families of lines of curvatof the surfaceS] would coincide:
That is the case fouled surfaces with isotropic generatorgor those surfaces, the two
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sheets of the development will reduce to just one cus/gyeawill see in the following
paragraph.

Study of the enveloping surfaces of spheres

3. — While discussing the nature of the development of aceyfwe were led to
consider surfaces that were the envelopes of spheres.stlitly of those surfaces will
now lead us to the converses of those preceding properties.

Consider a surface) that is the envelope o' spheres¥). Each sphere cuts the
sphere infinitely close to a circle, and the normal¢oat all points of the circle will
pass through the center of the sphere. The locus akttters of the spheres is a curve
that is met by all of the normals t§)( so it will be one of the sheets of the development
On the other hand, the sphere (S) is tangent to tif@csufs) all along the characteristic
circle, so that circle will be a line of curvature oéthurface §, from Joachimsthal’s
theorem. The surfaces that are envelopes of spheres have a family of cilio@arof
curvature. Conversely, any surface that has a family of circulas lafecurvature is an
envelope of spheresindeed, consider a circular line of curvatukg. ( Any sphere that
passes througtK] cuts the surface§[ at a constant angle, from Joachimsthal’'s theorem.
Now, there exists a sphere that passes throkylarid is tangent to§ at one of the
points of that circle. That sphere will then be &mgo § at all points of the circleK(),
and any circular line of curvature will be a contact euof a sphere with the surface.
The surface is the development of the spheres thus-deserm

Let (&, b, c) be the center, and lete the radius of one of the' spheres considered;
a, b, ¢, r are functions of the same parameter.

The sphere has the equation:

x-39°+y-bH*+@z-9°-r*=0.
The characteristic is defined by that equation and the equati
(x—gda+(y—-bdb+(z—-9dc+rdr=0.

One indeed verifies that it is a circle whose plangeipendicular to the directiata, db,
dc of the tangent to the locus of centers of spheres.

We just considered surfaces with one family of linesuovature that is composed of
circles. Let us see if the two families of lines afn@ature can be circular. The
corresponding surface can be considered to be the enwdlegespheres in two different
ways. The two sheets of the development will be curvEke surfaces will then be a
Dupin cyclide and that will provide us with a new viewpoint for thedst of that cyclide.

Correspondence between lines and spheres
Lines and spheres are geometric elements that dependfaypoparameters. That

fact permits one to predict that there will be a corredpace between the study of
systems of lines and that of systems of spherest cbneespondence finds its analytical
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expression in a transformation that is due to Sophughatewe will present later on.
However, we shall see that it manifests itself inous questions before that. Therefore,
in the geometry of spheres, one can consider envelope$ sgheres to correspond to
ruled surfaces, which are loci®f lines. The Dupin cyclides then correspond to doubly-
ruled surfaces, and thus to ruled surfaces of degree\eoshall see the development of
that analogy in what follows.

Let &) be a sphere of the first family, and I&t)(be a sphere of the second family,
such that X) touches § along a circleK) and &') touches § along a circleK’). The
surface § is generated by the circl&) or by the circleK”), so it will result that those
two circles will have at least one common pdifit Let O, O’ be the centers of the
spheresY), (Z'), resp., scOM andOM’ will be normals to the sphereX)( ('), and in
turn, normals tdM at the surface. They will then coincide, @oM, O’ will be on the
same line. The sphereE)( (') are tangent aM. A sphere of one of the families is
tangent to any sphere of the other fami{fMore precisely: Two generators of different
systems of a quadric will meet.)

Consider three fixed spherey((Z1), (Z2) of one of the families. They are tangent to
all of the spheres of the other family, and in tuhe surface will be the envelope of
spheres that are tangent to three fixed spher@s.quadric is the locus of all lines that
meet three fixed lines.) The three sphebgs 1), (¥2) will cut at two points that can be
considered to be spheres of radius zero that arertatmé€), (1), (22). Hence, there
will be two spheres of radius zero in each familyspheres that is enveloped by the
cyclide. The spheres of the other family must bgéeanhto those two spheres of radius
zero that pass through their centers. Those two ganat on the locus of centers of the
spheres, and therefore on the focal coniegnce, if we consider the two focal conics
then the spheres of one of the families will have their centeonerof the conics and
pass through two fixed points of the other one that are symmetric @ggiect to the
plane of the first one.With that manner of generation, it will then bee&s find the
equation of the cyclide.

Equation of the Dupin cyclide

1. First suppose that one of the conics is an ellipgeg¥ample, while the other one
is a hyperbola. Take th@x, Oy axes to be the axes of the ellipse, whose equatids i
plane is:

X2 2
(E) ¥+§—1:0.

The focal hyperbola is in the plape= 0. It has the equation in that plane:

2 2

X Z
7 2 2T
a-b" b

(H) 1=0.
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A point wof the ellipse ) has the coordinates:
Xx=acos¢g, y=bsing, z=0.

Let the fixed point&\ andA’on the hyperbolaH) be defined by the formulas:

2
X, Yo=0, Zozzbz[azxsz_j.

The equation of a spherE)(that haswfor its center and passes through the pdints
andA’ will be:

(x — acos@)? + (y — bsin g)? + Z = (xo — acos@)? + b? sirf ¢ + b? [%_1j :

or
2

%o
X+ Yy +7Z —2axcosg — Dysin g = x? +b° 52—z —b” - 2ax cosy,

which is written:

2 2
2a(x—>©)cos¢+ZJysin¢:x2+y2+22+b2—aC—2>%,

upon setting:
=a’—b
according to habit.
The equation of the spher®) (will then have the form:

Acosg +Bsing =C,

and the equation of the envelope, which expresses thehde#he preceding equation
has a double root will be, in turn:
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A’ +B*=C2.

Therefore, the cyclide will have the equation:

2
4a* (x — %)° + 4’y = [x2+y2+ Z+ bz—azx‘fj .

C2

2. Now suppose that one of the conics is a parabola. oftter one is also a
parabola. Tak®©x andOy to be the axis and the tangent at the summit ofodribose
parabolas, resp. The equations of those two conicéevill

(P) 2=
(P") y=

7% (P)

y
The centelC of the sphere on the parab&ldas the coordinates:
X = 2pA?, y = 2pA, z=0.
The fixed pointA andA’on the parabola(") are defined by the formulas:
X,  Yo=0, z; = (o—P)° - X7
The equation of the sphere is:

(X =2pX)"+ (v =208)" +Z = (0 ~204)" + "N + (0 =) = %
or
X +Y +Z —(0—p)° — Ay -4 (x—x) 1" =0,

and the equation of the envelope — i.e., the cyclide — is:

[C+Y+Z — (0—p)] (X—%) +p Y =0.
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The surface, which has order four, in general, is dniet here.
Isotropic canal surfaces

Among the ruled surfaces, we have considered the devedopaiihces, for which
each generator meets the infinitely-close generafbhe corresponding case for the
envelopes of the spheres will be the one in wikath sphere is tangent to the infinitely-
close sphere.In order for that to be true, it is necessary anéicsent that the “radical
plane” of the two spheres must be tangent to both ai.the

Let:

(1) k-9*+y-B*+@z-9°-r’=0
be a sphere.
Theradical planeof that sphere and the infinitely-close sphere is:

(2) x—3gda+t+(y—-bdb+(@Zz—-q9dc+rdr=0.

In order for it to be tangent to the sphere (1), iteésassary and sufficient that the square
of its distance to the cente, p, ) must be equal tf, so:

redr? )
da+dof+dé '
or
(3) da + db? + d? = dr?.
(D)

(©

That condition expresses the idea that the radissequal (up to sign) to the arc
lengths of the curve C) that is the locus of centers of the spheres, wheasured from
an arbitrary origin. Since enters into equation (1) only by its square, one can abtept
solutionr =s.

We seek the contact point of the sphere with thaitefy-close sphere. It is the foot
of the perpendicular that is based at the centereotahgent plane (2). Its coordinates
will then satisfy the equations:

X8 _a_s® _a_ g y=b-sg z=c-sy
da ds
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in which a, £, yare direction cosines of the tangent. One thenmbtae point, which
describes an involutiort § of the curve C).

The intersection of a sphere with the infinitelgse sphere is nothing but the
intersection of that sphere with one of the tangéargs to the infinitely-close one: It is a
pair of isotropic lines that cut at the point The envelope is composed of two ruled
surfaces with isotropic generatora/Ve call it anisotropic canal surface.Converselya
ruled surface with isotropic generators is one sheet of the envel@tamily of spheres,
each of which is tangent to the infinitely-close sphetadeed, consider an isotropic
generator D) of one such surfaceS( An infinitude of spheres pass through that
isotropic generatorY). Those spheres contain the liri®) @nd the imaginary circle at
infinity, which gives seven conditions; they depend upam awbitrary parameters. If we
impose the condition upon such a sphere that it mustrigent to the surface considered
(9 at two points at a finite distance from the lir@) (then it will be determined
completely. However, it is tangent to the surfaBe gt the point at infinity onL),
moreover. Therefore, that sphebg vill coincide with ) all along the generatobj.
The surface § will be a component of the envelope of those spheidereover, the
sphere ¥) has a generatoD] in common with the infinitely-close sphere, sawitl be
tangent to that generator at two points: One of theuill be at a finite distance.

The two systems of line of curvature on such a surf&cevill coincide with the
isotropic generators [Chap. lll, 8 7, pp. 51]. The twoeshef the development will
coincide with the curveQ), since the normals tdS)( at the various points of the same
isotropic generatorlY) must pass through the centeof the corresponding spherE)(
Here, the curvel{() plays a role that is analogous to the edge of regressi a
developable surface. Indeed, for a developable, thereoistact element (viz., a point of
the edge of regression and the osculating plane atpthiat) that is common to a
generator and the infinitely-close generator. Herds ithe contact element that is
composed of the poirtand the tangent plane to the sphere at that point, whithei
normal plane tdé«y that is common to the sphe® @nd the infinitely-close sphere.

The pointl is anumbilic of the surfaceS), because from what was just said, the locus
(M) of the pointl is normal tolw and will have the locuC) of the centersv of the
spheres X) for its development. Hencey which is the center of double principal
curvature at any point oD, is again the center of normal curvaturelofdtl, since it is
on the normal to the surface and the polar surfac€)of Moreover, all of the normal
curves are equal &tandl is indeed an umbilic.

For the envelope of spheres),(the line () is a double line, so it is a locus of
umbilics for each of the two surfaced§ that comprise it, and which are tangent to any
point of that line. We call it thembilical lineof the isotropic canal surface.

Curvature bands and asymptotic bands

4. — Consider a surfac&y) and an asymptotic line. The tangents to that linaeh e
of its points will generate a developable surface, andahéact element that is common
to the generator and the infinitely-close generator, wb@nsists of a point of the line
and the osculating plane, which is tangentS, {s a contact element d&.
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(P)

(r)

(©

Similarly, consider a line of curvatur&€)(of a surface %): The normals to that
surface at the various point®f (IN) will generate a developable surface. L&} be the
edge of regression, and Btbe the contact point with the norm@lf will then be equal
to the arc length alon@§. Hence, if we consider the spheres with cer@eandOl then
each of those spheres will touch the infinitely-cleplere, and the contact elemdnt [
(P)] that is common to those two spheres will be a airgiement of the surfac&y.

We call any sphere that has its center at a prinapater of curvature and the
corresponding radius of principal curvature for its radigsraature spheref (). We
see that:

The spheres of curvature () that correspond to the same line of curvat(irg
envelop an isotropic canal surface that lfgfor an umbilical line.

Conversely, if an isotropic canal surfa¢g) is circumscribed by the surfad&)
along its umbilical line then the latter will be a line of curvatdioe (S), because the
normals that are common t&) and §) at the various pointisof (I") envelop the locus of
centersO of the spheres3() that have 9 for their envelope. Moreovethe sphereg)
that envelope the surfa¢g) will be the curvature spheres (&) that correspond to the
line of curvature(l’), because the centé of each of them is the contact point of the
normallO with the locus those centers.

Things can be phrased in a more concise manner whesubsgtutes the notion of
band or bandeauof contact elements for the notion of curve. By migbn, a band is
composed ofo® contact elements that belong to the same multipl[@hap. VI, § 3].
The locus of points of those contact elements is wecuand the planes of those contact
elements will be tangent to the curve at the corredipgrpoints. A band that belongs to
a surfaces composed of the points of a curve that is tracedhesairface and the planes
tangent to the surface at those points that thatahrewpssociated with. In other words, it
is composed of the contact elements that are comonttre tcurve and the surface.

One calls the locus of contact elements to a devblemarface that are common to
each generator and to the infinitely-close generatdraital of regressiomand one calls
the locus of contact elements that are common to @bihe spheres that are inscribed on
the surface and the infinitely-close sphereuhbilical band.



§ 4. — Curvature bands and asymptotic bands 171

Similarly, we call the locus of contact elementsaosurface that belong to an
asymptotic line or a line of curvature of that surfaceasymptotic banar acurvature
band respectively, and we can state the preceding results:

An asymptotic band of a surface is the band of regression of a developdates A
curvature band of a surface is the umbilical band of an isotropic canal surface.
Conversely: Any band of regression of a developable that belongs to a qi&jasean
asymptotic band dfS). Any umbilical band of an isotropic canal surface that belongs to
a surface(S) is a curvature band fofS).

In particular, one then sees that from the standmdithe correspondence between
lines and spheres, the asymptotic lines correspond todeedf curvature.

St /Tﬁp)

(K) v

Remarks— There ardwo linear element$o consider on each contact elemévi |
(P)] of a band, since a linear element is composed of a poid a line that passes
through that point. They ar&he tangent linear elemetitat is composed of the poikt
of the element and the tangef fo the curve that serves as theportof the band,
which is a curve that one can simply call theve of the bandand thecharacteristic
linear elementhat is composed of the poikt and the characteristi&) of the planeR);
i.e., the rectilinear generator of the developableithahveloped by the planeg)( or the
developable of the bandThose two linear elements are correlative from thadpoint
of duality; a band is correlative to a band.

In an asymptotic band, the tangent linear elements and charactg3tiand (K)
coincide for any contact element of the band, and conversely. In a cengtod, they
are rectangular, and converselyThe terms of the asymptotic band and the curvature
band then have meaning in their right, without having to ssgpleat there is a surface
(S) to which the band considered will belong.

If the band of regression is given then the corresipgndevelopable will be the
developable of the band. If the curvature band is given its curve ) will be a line of
curvature of the developable of the band, and the isotcapial surface whose umbilical
band coincides with that curvature band will be the enveddpibe spheres of curvature
of the developable that is constructed from the varioustpoifM of the support of the
band. The terms: “umbilical band” and “curvature band” are equivalent then.
Similarly, the terms “asymptotic band” and “band of regression” \aio be equivalent.

We further remark that if one is given a curvature lhed the curvature sphere that
corresponds to a contact elemelt, [P)] of the band will be defined by the conditions
that it must admitj, (P)] for one of its contact elements, and that it mheste its center
on the polar line of the curvg)(that is the locus of poirl. (See § 2 and § 3.) That
second condition expresses the idea that the sphersebarsd-order contact with)(
Similarly, each planeR) in an asymptotic band osculatgs. ( That is therefore a new
analogy between the curvature bands and the asymptotic. bands
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Lines of curvature of the envelopes of spheres

5. — We already know one of the families of lines ofvatare, which is composed of
the characteristics of the spheres. Let us deteriéeegcond family.

B(a” B V)

C
© N(a’, B, y)

Let (C) be the locus of centers of the spheBgsconsidered. Express the coordinates
X, Yy, z of one of its points as functions of the arc lengdh One of the spheres with
centerwwill meet the infinitely-close sphere along a cir(fg whose plane is normal to
the tangentl. Introduce the Serret trihedron that is constructesch the pointwof the
curve C) and define the coordinates of a pdihiof the surface — i.e., of the circl&)(—

with respect to that trihnedron. Létdenote the anglé/a)T/I' ; that angle is the same for all
points of the circleK). ProjectM atP onto the normal plane, and lgtbe the angledN,
aP) betweenaP and aN, when measured positively froalN to «B. The coordinates of
M with respect to the Serret trihedron are, if one testhe radius of the spheid py o

(1) E=pcosl n=psinfdcosy, {=psindsing.
Those coordinates, with respect to an arbitrary syefeares, are:
(2) X=x+aé+an+a”, Y=y+bé+tbn+b”, Z=z+cé+cn+c’

Write down that K) is the characteristic circle of the sphexg. (That circle has the
equations:

T(X-¥-£=0,
Za(X—>92+p%:O.
ds

Upon supposing that the coordinate trinedron coincidesthélSerret trihedron, the
second equation will become:
% = O

+
Epds ;
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le.:
pcosé+p ?j’o 0,
SO
3) coso=- 9P
ds

The angled is thus defined as a function gf and the enveloping surface of the
spheres X) is represented by equations (2) by means of the paranwtans ¢,
moreover.

We seek the lines of curvature. They are the orthdgaactories of the circled<{
that are defined bg = const. The tangent to any curve that passes thidugiil have
the direction coefficients:

n

dX = ads+5 ds- /7( +”—jds+(— det adE+ a’dn + a”dd,

dy=..., dz= ...

Upon once more taking the Serret trihedron to bectierdinate trihedron, those
direction coefficients will become:

n ¢.< j n
1-—= |ds+d¢, ds+d - =ds+dd.
( Rj d (R D S
The condition that defines the orthogonal trajgesof the circlesK) will then be:

Ké Zjds+ dr7}sm¢+[ 1 dst at’}cosﬁ 0.

Upon replacing, 7, { with their values (1), that will become:

%9 ds—psin 8- dg = 0,

sing ds+ ,os_ll_nH

or:
4) %:£+COtHESIrI¢.
ds T R

This is an equation of the ford® / ds=A sin ¢ + B.

If one takes the unknown function to be f@ah2 thenone will come down to a Ricatti
equation.

The angleg is the angle between the radilé and a ray through the origin that is
determined for each circl&). One then concludes, by an argument that idasina@ the
one in Chap. VI, § 4, pp. 140, thaur non-circular lines of curvature of an envelopie
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spheres cut the characteristic circles at four points whose anharmatiocis constant.
That gives a new analogy with the asymptotic linesroded surface.

One will get the usual simplifications if one knowseoor more integrals of the
equationa priori. Hence, if one considers an envelope of sphexgsh@t have their
centers in a plane then all of the characteristdesrwill be orthogonal to the section of
the surface by that plane, which will then be a lineun¥ature. The determination of the
lines of curvature will then come down to two quadratundbat case.

Remarkl. — The search foorthogonal trajectories tao' circles that generate an
arbitrary circled surface also leads to a Ricatti aguagas we shall see. L®i, Yo, 20 be
the coordinates of the centeof any of the circles considered, and getbe its radius.
Let a, B, ybe the direction cosines of its axis which will not be tangent to a fixed
curve C) here, in general. Finally, let’, g, v, a”, B”, y”be the direction cosines of two
directionsIT”, IT “that are chosen in such a manner that the trinddfdniT” is a direct
tri-rectangular trinedron. If one lets denotes the angléT(’, IM) between T’ and any
radiusIM of the circle, when measured positively frair to IT” then the direction
cosines of that radiud will be:

(5) Qo=a’cosg+a”’sing, [=p'cosg+p"sing, =)y cosg+y’sing,

and the equations of the circled surface can be written:
(6) X=X+ o, Y=Yot /[, Z=Z0+tm )6,

in whichxo, Yo, 20; a, B, y; a’, B, y; a”, B y” are functions of the same parameter
The trihedron - TT’T ”displaces wheh varies, and it will be convenient to interpret that
displacement from the kinematical viewpoint while cdasingt to be a measure of time.

Let us seek the components of an infinitesimal degpt@entdX, dY, dZ of the surface
relative to the axedl, IT’, IT” Introduce the components of the velocity of theeen
along the same axes into the calculations, along tlwdke of the instantaneous rotation
of the trihedron, which we denote by the notations:

dx, , dx . dX
= a—-, V, = a —, = a —,
o dt b= dt =2 dt

(7) —Za"d_a' :ZO'd;‘" r:Za'%
P= a’ dt ' dt’

The summatiorl. extends to the letters £ ), X, ¥, z We get the formulas:

U =) adX=[y+p,(csing - rcosp )dt,
(8) V=Y a'dX=(y-p, ping) dt- cosp Odp, - o, sip @ ,
W =Y"a" dX=(w+ 0, posp ) dt- sing Ogp, + o, cog @b

which will be easy to deduce directly from the theof relative motion.
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If one expresses the idea that the displacement (®ymal to the displacement along
the generating circle, which has the components €In ¢, cos¢ along the same axes,
then one will get the condition that defines the ddsmghogonal trajectories:

(9) ,a)(jj—f—vosin¢+wocos¢+,a)p:0.

One effortlessly verifies that equation (3) that i@snd in Chap. VI, § 3 for the
trajectories of a family of circles in a plane isgecial case of this one.

Upon taking tanp / 2 to be the unknown, as before, one will reduce ému#9) to
the form of a Ricatti equation, and as before, one @amclude from this that, in
particular, the orthogonal trajectorie®f a family of circles establish a homographic
correspondence between the points of any two of those circles.

Remark 2.— From the calculation that was made above in ordariive at the
parametric equations of an envelope of spheres, oneudmscthat in order for the'
circles to be the characteristic circlesdfspheres, it is necessary and sufficient that:

1. Their axes must generate a developable surface.

2. If one then defines each of those circles by thersaction of a sphere whose
center is the contact poinrb of the axis of the circle and the curv@) (that the axis
envelops and a semi-cone of revolution that has iterstiat the same poinbthen the
arc lengths of (C), the radiuso of that sphere, and the andlé¢hat the positive direction
of the tangent to@) makes with the generators of the semi-cone will be ledupy
formula (3); i.e., by the condition:

(20) dpo+ cos@- ds=0,

which one will recover, moreover, upon applying the gdrferenula on the variation of
a line segment [Chap. V, § 6] tdV.

However, we can replace those conditions with lz@obne. Indeed, we point out
that the characteristic circle of a variable sphere:

(11) SX-x?-F =0, T (X-x)dx—pdo=0

will meet the infinitely-close circle at two pointisat are defined by those equations (11)
and the equation that is obtained by differentiating 3beond one. We also seek to
express the idea that any variable circle that is reptedeby equations (6) will
effectively meet its infinitely-close circle at twoipts.

The points at which that circle meets the infinitelyse circle (if there are any) are
defined by the equatiordX =dY =dZ = 0; i.e., by the equivalent equatidds=V =W =
0. If one eliminates the auxiliary unknowy then one will get the two equations:

(12) rcos¢—qsin¢—ﬁ=0, vocos¢+wosin¢+%=0.

0
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One easily deduces the condition that expressesi¢aethat these equations have a
common solution in tag / 2 from this:

d ’ d ’
] (0w =@

That is the condition for each circle to meet thénitdly-close circle at a point — i.e., for
the ! circles considered to have an enveloping curve.

In order for there to be two common points, it isassary and sufficient that
equations (12) should be identical. That will first gilwe tondition:

qw+rw=0.

Upon taking formulas (7) into account, that conditioft be written:

a B vy
ad a"d
S| 2D 2T ey Gy dy=m- 0B = o dy, g .
Zada > a"da
da dB dy

They then express the idea that the axis of the @eterates a developable, which is the
first of the conditions that were stated above ler ¢ircle generators of a canal surface.

If that condition is assumed to be satisfied thenwilere-introduce the notations at
the beginning of the paragraph, and the coordingtgsz of the contact pointv of the
axis of the circle with its envelop€). Upon setting:

(13) h=wl = pcos@,
we will then have, in succession:

Xo=X+ha, yo=y+hB z=z+hy
dx = a (ds+dh) + h da, dyo = ..., dz = ...,
Up dt =ds+ dh, Vo = hr, Wo = - hq,

in such a way that equations (12) will become:

ds+ dh_ 0, rcosg —qgsing - 96

r cosg —qsing —
#-qsing P, dt hdt

The identity condition of those equations then reduces to

h (ds+dh) + ;oydo =0,
and upon observing that:
W +py =0, hdh+pmdm=pdpo,
it can be written as:
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h ds+ pdpo=0.

All that remains is to repladewith its value (13) in order to recover the condit{@f),
which succeeds in characterizing the characteristitesirfor theeo! spheres, from what
we have seen.

We then conclude thathe necessary and sufficient condition fet circles to
generate a canal surface, or more precisely, for them to be the ¢thaséc circles of
o' spheres, is that each of them must meet the infinitely-cila$e at two points.

Case in which one sheet of the development is a developable

6. — We just considered the case in which one of the sloé¢he development of a
surface is a curve. Correlatively, we now considercdse in which one of the sheets of
the development is a developable surface. The tangaméplo that developable will
then constitute one of the families of developablethefcongruence. Such a plaf® (
will cut the surface along a curve that is normal taathe lines of the congruences that
are situated in that plane and which will be a line of atume. At any point of that line,
the normal to the surface is in the plaR® (Therefore, the plan€) will cut the surface
(S orthogonally all along the line of curvature.

Conversely, from Joachimsthal's theorem, if a surfages a family of planes
orthogonally then its sections by those planes wilirkes of curvature, and those planes,
which constitute one of the families of developableshef¢ongruence of normals, will
envelop a developable that is one of the sheets of tledoglenent of the surface.

M
—7
— U
y \ (K)
p

Consider the second line of curvature that passes theopgimtM of the surface. Its
tangentMU is perpendicular to the tangeltT to the first line of curvature and the
normal MN to the surface. Those two lines are in the pldPe $0 MU will be
perpendicular to the planeP); The lines of curvature of the second family are
orthogonal trajectories to the planéB).

Consider one of those orthogonal trajectorles (The planesR) are normal to the
curve K). One of the sheets of the developments, namedyoitle that is a developable,
will then be the envelope of the normal planes opthiar surface to the curv&). All of
the non-planar lines of curvatufd) will then have the same polar surface, which is the
envelope of the planes of the planar lines of curvature. The edggretsmn of that
surface will then be the locus of the centers of the osculating esplerthe various
curves(K) [Chap. I, § 12]. The curveK] is a line of curvature, so the normals to the
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surface at all points oK( will define a developable, and in turn, envelop a devetygm
of the curve K), which is a geodesic of its polar surface. Therefibee starts from the
planes P), in order to get the curveK), one will be reduced to the search for geodesics
of a developable surface, which will reduce to quadraturessimce the desired surface
can be considered to be generated by the cu)esiie will see that one will obtain that
surface by quadratures.

Start with the plane$?§ and look for their orthogonal trajectories directi@onsider
the edge of regressio®) of the envelope of the planeB)(and introduce the Serret
trihedron at each point of that curve, namely,«§ érn¢). The plane R) will be the
osculating planéar, and we would like to look for a poiM (¢, 7) in that plane whose
locus is normal toK). The coordinates &fl are:

X=x+aé+an Y=y+pE+ B, Z=z+y+yn.

The direction of the tangent at the locus of the pdhtwill have the direction
coefficients:

(1) dX:ads+E%ds—n(%+%jds+adx+a’dn, dy=..., dzZ=..,

which are expressions of the form:
dX=Aa+Ba’'+Ca” dY=Ag+Bp +CpA", dZ=Ay+By' +Cy”".

We write down that this direction is normal to thand ary — i.e., parallel to the
binormala”, g7, y”. That will give usA=B =0, or:

3

7
ds—=--ds+dé=0, =ds+dn=0,
R d R 4
or:
(2) E:Q—l, d_nz—i.
ds R ds R

&, n are then given by two first-order differential equatiofisthen results that one and
only one orthogonal trajectory will pass through eacimtpof the planeK). A point-to-
point correspondence will then exist between the varplases P) such that the
corresponding points are along the same orthogonattoay. Consider two pointd, N

in a plane P), and let D) be the lineMN. When the planeP) varies, the lined) will
generate a ruled surface on which the loci of the pdihtand N will be orthogonal
trajectories of the generators. Now, the orthogorgkdtories will intersect equal
segments on the generators of the segments. Itheitl result that if one considers two
positions P), (P") and the corresponding positiokBN, M’ N’ thenMN = M“N’. The
correspondence between any two of the pléRethat are determined by the orthogonal
trajectories of that family of planes will transforany curve of one of the planes into an
equal curve. In particular, the plane#$) contain planar lines of curvature, alb of the
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planar lines of curvature of the surfa¢® will be equal. It will then be generated by the
motion of a planar curve of invariable formn order to arrive at its definition, it will
suffice to know the motion of its planB)(

In order to do that, recall equations (2):

@ 4 0,y W<
ds R ds R

and integrate them. First, consider the equations wtitheoight-hand side:

dé dn
R—=-n=0, —+£&=0.
ds 4 ds ¢

Introduce the arc lengtirof the spherical indicatrix o) and set:

ds
3 do=—.
(3) R
The equations will then become:
dé dn
—-n=0, —L+¢=0,
do d do ¢

which is a system of linear equations with no rightehame and constant coefficients,
and whose general integral is:

4) &=Acoso+Bsing, n=-Asincg+Bcosoc.
We then pass on to the system with a right-hand side:

ac_ dg _ _
®) do 1-R, do ¢

ConsiderA, B to be functions ofg, according to the method of the variation of
constants, and seek to satisfy the system (5). Ibadbme:

£:0+%COSU+ﬁSiHUZO—R, di:—f—%sing+ﬁcosa-:_,7;
do do do do do do
le.:
%COSU‘FﬁSin o=-R, f—%sin U+ﬁc050’: 0.
Hence:
%:_RCOSU, ﬁ:—RsinU,
do do
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or upon reintroducing from formula (3):

dA B .
——=-cos0, —=-sing,
S ds

and

A=-[coso-ds B=-/sino-ds

Set:

(6) Xo =] coso- ds Yo=]sino- ds
SO

A=-Xo, B=-Yo.
We then have a particular integral:
&E=—Xp COST—Yp SIN G, &E=Xp Sino—Yp COSG,;
and ifx; , y» denote two arbitrary constants then the general integitdie:
(7) &= (X1 —Xp) cOSo+ (y1—Yo) Sing, n=- (X1 —Xg) SN+ (Y1 —Yo) COSO.

These are the formulas that define the orthogonal trajectories of the jRRneBhey
suppose that one has performed the three quadra{8)esd (6).

X2

(R)

Let us interpret these results geometrically:
When the preceding formulas are solvedxigrys, they will have:

(8) Xg =% +&coso—nsing, yi=Yo+ Sino+ ncoso.

Take two fixed axe®; x;, O1 y1 in the planeR) and construct the curv®) that is the
locus of the pointxy, Yo) with respect to those axes. The curi i the curve of the
plane P) that has the same radius of curvature as the edggEssion4). For each
value ofs, the point Xo, Yo) will occupy a positiorcoon the curveR), ando will be the
angle between the tangent ®) @t wwith O; x;. Consider a system of axeg, where
the axisaX is the tangent toR) that corresponds to the sense in whigis displaced.o
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is the angle betweew¢ andO; x;. &, 77, which are functions of, are the coordinates of
a pointM that is fixed with respect to the systen©O; yi, when taken with respect to the
axeséar], andxy, y1 are the coordinates of that same point with respettet@xes O;

y1. In order to get the orthogonal trajectory, itusfisient to carry the plane? in space
on the osculating plane to the curyg,(while the lines in the plane, which are caltaf
and ar}, coincide with the tangent¥ and the principatuy normal to A), respectively.
During that motion, the curveR)Y and @A) will coincide at all of their points in
succession. The radii of curvature are the same gniteale and sign, so the centers of
curvature will coincide. 16 varies then the curveR) will roll on the curve f), and any
point M that is invariably coupled with the curv®)(will describe the orthogonal
trajectory. The motion of the plane P will then be obtained by making the planar curve
(R) roll on the curve(A) in such a fashion that the plane P will coincide with the
osculating plane to the cur{@) at each instant.One can say thahe plane P rolls on
the developable that it envelg@s we shall explain.

N Ny

w(9) () w(9) (M)
(A) (R

Consider the edge of regressidy) &nd a tangenié. In order to develop that curve
onto a plane, one must [Chap. V, § 4] construct the planare whose radius of
curvature at each point has the same expression a&t@ofuof arc length as that of the
curve Q); it is precisely the curveRj. The position of a poirll on the developable is
defined by the ars, which fixes the position of the poiabon (A), and by the segment
«N =n. The pointN; that corresponds thl in the development is determined by the
same values o, u. The generators of the developable are developed alongrdents
to the curve R). Consider a curvd | on the developable and the corresponding curve
(T1) in the plane. The homologous arcs on those two swareequal, in such a way that
any curve that is traced on the plane will roll on twresponding curve of the
developable. One can imagine that one has rolled amdelide planar leaf onto the
developable. The motion of the plam® (ill then consist of unrolling that leaf in such a
fashion that it remains constantly tensed. An arlyitpaint of the leaf will describe an
orthogonal trajectory of the tangent planes to theld@able. In some way, we will then
obtain theinvolute surface of a developably the generalization of the process that
gives the involute of a planar curve.

Finally, we shall examine the motion of the plaRg ffom the kinematic viewpoint.
From (1) and (2), we have:

dx _ a" ﬂ _ ﬁ" % _ K
ds T 4 ds T 4 ds T 4

and in turn, the projections of the velocity of the pdhbnto the axe€,{, which are
invariably coupled with the plan®), are:
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= d_x: = 'ﬂ: = "%:—1
VE—ZadS 0, Vnp=>a s 0, V(=>a & T/7.

The instantaneous motion of the plaRg i€ a rotation around¥, which is tangent to
(A), such that the instantaneous rotation is 91 The osculating planéP) rolls on the
curve(A) while turning around the tangent with an angular velocity that is equalld
T.

The surface § that is generated by the preceding motion isiking surfaceor
Monge surface.

Consider a curveQ) in the plane ) that is invariably coupled with the system of
axesaXdn and its developmenKj. During the motion of the plan®); the curve C) will
generate a milling surfac&)(with the developable on which the plai® folls for one of
the sheets of its development, and since the normd()t which are normal toS), are
tangent to K), the second sheet of the development Sfwill be generated by the
developmentK) of the profile C). It will also be a milling surface then. Henoage of
the sheets of the development of a milling surface will be aagal#é, while the other
one will be a milling surface.

Special cases

Let us examine the special case in which the developablésttia envelope of the
planes P) is a cylinder or a cone.

1. Ifthe planegP) envelop a cylindethen the tangents to the orthogonal trajectory
will be parallel to the planes of the cross-sectiorthecorthogonal trajectories will be the
involutes of the cross-sections; they will be planaed. The two systems of lines of
curvature of the surface will then be planar curves. The plBheolls on the cylinder in
such a fashion that its intersection with the plane of a cross-sectibmoivion that
cross-section. One can further generate the surface by consideringlyp damparallel
curves (that are the involutes of the cross-section of the cylimgley) in a plane and
displacing each of those curves with a motion that is a translation perpendioutbe
plane.

2. Suppose thathe plane(P) envelopes a conwith summitA, and consider an
orthogonal trajectory that meets the plaRgdtM. The tangent a¥l is perpendicular to
AM, whose orthogonal trajectory is a curve that isemaon the sphere with centar
Then cut the cone with a sphere of cetend radius€, let (C) be the intersection, and
consider the circleS) in the planeP with its center aA and a radius oR. The plane P
rolls on the cone in such a fashion that the ci{&grolls on the curvgC).

Other hypotheses- Let us now seek to determine whether the two sheetiseof
development of a surface can be developables. The swilhteen be a milling surface
in two ways; the two systems of lines of curvature @emar curves. The orthogonal
trajectories of the plane®), which envelop one of the sheets of the developmeuntt m
be planar, since they constitute one of the systeriises of curvature. Let”f) be the
plane of one of them. The pland® @re all normal to a curve that is situated )y
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they will then all be perpendicular t8Y. Hence, if the plane$) are not parallel then
the planesR") will all be parallel; the planes} will envelope a cylinder, and the planes
(PY) will be perpendicular to the generators of that cylinds well as the normals to the
surface. The profile that is situated in a plaRegnd generates the milling surface will
be a parallel to the generators of the cylinder. Théases thus-obtained will be
cylinders then; the second sheet of the developmentwilh line that is pushed out to
infinity.

If the planesR) are parallel then one will arrive at the same aasioh, because the
planes P') envelope a cylinder.

The case that was assumed will then be impossible.

Suppose that one of the sheets of the developmerdasedopable, while the other
one is a curve. The surface is a milling surface thataptains by the motion of a profile
that is situated in the plan®)(that envelops the developable. The second sheetof th
development will be generated by the development of thidgptmder this motion. In
order for that to be a curve, it is necessary thatdégwvelopment of the profile must be a
point, and therefore that the profile must be a cirdimagine the sphere that has that
profile for its great circle then; it is inscribed on thaface. The surface is an envelope
of spheres of constant radiuft.is a canal surface with constant circular secti

Conversely, any envelope of a family of equal spheres satisfiepreéiceding
condition. Let a sphere have its centermab, ¢ and a constant radius of

> (x—a?-r’=0.
The characteristic has:
Y (x-gda=0

for the second equation. It is then a great circlehef sphere. The normals to the
enveloping surface are in the plane of the circle. Anbeosheets of the development
will be the envelope of the planes of that circlewéf consider the locus of the centers of
the sphere then the plane of its great circle wiltbestantly be normalThe surface is
generated by a circle of constant radius whose center describeseg enywhose plane
remains constantly normal to that curve.

Finally, as a singular case, we again have the oméich one of the sheets of the
development is a line. The surface will then be one of revolution arbanline.



