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PREFACE 
 
 In order to present the first edition of his book (which is currently out of print) to the 
public, Vessiot had no need for anyone else.  That first edition sufficed to establish the 
reputation of the book, and the second one, by reason of the improvements that had been 
introduced, served only to further insure it. 
 Despite the fact that here one is dealing with a formal presentation to the public 
(which are presentations that are notoriously useless), I did not feel compelled to decline 
the friendly offer that my fellow scholar and friend kindly made that I might write some 
lines at the head of his book.  At the same time, as a testament to my profound respect for 
the knowledge and expository talent of the author, I saw an opportunity to highlight the 
special character that the geometric work has taken on in latter years and felt the 
necessity of disseminating a book such as this one, which opens the doors to progress for 
those diligent students (who are, unfortunately, too rare) whose tastes lean towards 
geometry. 
 In the first part of the last century, which one can bound approximately with the year 
1870, geometry made inestimable conquests along the most diverse paths and on the most 
varied terrains.  That heroic period saw the birth of the most essential notions, and it also 
saw them develop and lead to great problems whose solution, which demanded analysis, 
demanded a profound movement in that sister science that amplified daily.  It suffices to 
cite the great names of Monge, Dupin, Gauss, Serret, Lamé, Ossian Bonnet, and Bour for 
one to evoke the large inroads that were opened up in the theory of surfaces and in the 
theory of curvilinear coordinates.  Those of Poncellet and Chasles recall the first 
renderings of the great laws of correspondence and transformations that would find a 
magnificent inflorescence in the work of Sophus Lie some time later.  Towards the end of 
the same period, one found the coronation of the principle of duality in the duality of the 
geometry of points with the geometry of planes.  Plücker established the geometry of the 
line and systematically introduced the notions of congruence and complex into that 
science, in which one must nonetheless recognize that long before him, Malus, Dupin, 
and Transon had produced some interesting considerations and important results in the 
context of optics.  In the same era, Chasles showed how the kinematics of solid bodies 
put the principle of duality to work, and concurrently with Plücker, he grasped what the 
latter called a “linear complex.” 
 Therefore, during that illustrious period, materials of the greatest value were 
accumulated in the most diverse order.  Those great ideas, which were born apart from 
each other, and whose creators were often ignorant of each other, seemed destined to 
follow their path in isolation and to constitute just as many specialized categories for 
future geometers. 
 It belonged to the last part of the Nineteenth Century to belie those delusions and to 
bring about the marvelous fusion of all those elements. 
 The great authors of that fusion, using different methods, were Sophus Lie and 
Darboux.  It would be unfair to forget Ribaucour, who contributed considerably in his 
own right to the realization of that very fertile interpenetration of the various branches of 
geometry and introduced the kinematical method into geometry by means of some 
unforgettable examples. 
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 Today, one cannot deal with surfaces without introducing conjugate systems, nor 
address conjugate systems without introducing some congruence of lines, either the ones 
that cut out the conjugate net on the surface or the ones that are composed of the tangents 
to one of the lines of the net.  On the other hand, conjugate nets are dependent upon 
equations that were envisioned by Laplace in a different era, and he found that the 
transformations that one knows from those equations correspond to the transition from 
one of the focal surfaces of the congruence to the other one. 
 The spherical representation of a surface, which seems to be a clever tool that is due 
to Gauss for extending the notion of curvature to surfaces by analogy with curves, is 
found to enter into the ideas of Chasles on duality that lead one to define a surface by its 
tangent planes.  As Darboux has shown, it will suffice to introduce the distance from a 
fixed point to the tangent plane, along with the direction cosines of the normal that Gauss 
considered in order to define the spherical representation of the surface. 
 The hard problem of the deformation of surfaces remains an example that eternally 
bumps into unforeseen and fruitful links.  If, as Bour once believed for a time, one has 
succeeded in integrating the partial differential equation that the problem depends upon 
analytically, then, without a doubt, it would have lost much of its interest in the eyes of a 
number of mathematicians that were too inclined to appreciate only the analytical aspects 
of those questions.  That did not prevent either Ribaucour or Darboux from putting their 
cyclic systems into play, nor did it prevent Darboux and an entire clique of geometers 
from discovering the singular circumstances that accompany the deformation of quadrics. 
 Here, we shall not multiply the analogous examples that abound in transcendental 
geometry.  The few that we shall give will suffice to show us that in our present era, the 
immortal work of the old geometers of the last century must no longer appear to us as 
isolated monuments, but rather, as the superb arches of a unique and grandiose edifice 
whose parts are all unified, and in which it is no longer permissible for the geometer to 
remain confined in one corner.  The questions today are linked with each other in such a 
way that research that pursues a problem that is taken from a particular terrain can boast 
that it preserves the same horizon, because it often happens that the clear solution and the 
full blossoming of the problem must take place on a terrain that is very different from the 
one that one started out from. 
 It is always inexpert to pretend that a question that one is studying is isolated, and that 
is why one is advised to approach it head on with analysis.  A question of structure will 
be found to be posed at each instant that does not coincide with the calculations of the 
project architect and the gravel and lime that his workers pile up.  In any question of 
geometric structure, nothing can replace a deep knowledge of the geometric topic itself, 
the application of dogged reflection, and finally, the spontaneous exercise of one’s 
intuition.  It is not that often that the result obtained will be clothed in a simple form that 
calculation would recover with no effort later.  However, what is really difficult is to first 
ponder it. 
 The proper and independent existence of the geometric viewpoint has always given 
rise to some divergent opinions, and it would be undoubtedly premature to foretell the 
conclusion.  The Eloges Académiques by Joseph Bertrand have evoked some of the 
illustrious episodes in the past.  One of the more striking ones is the iciness by which 
Cauchy received the appearance of Poncelet’s celebrated Traité des propriétés 
projectives des figures in his own time.  Later on, resistance to it was manifested by the 
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small degree of favor that was accorded to the discoveries of Chasles that are immortal 
today.  It took the papers on the attraction of ellipsoids, which are remarkable, moreover, 
to clear up certain prejudices. 
 In support of the general thesis, it would not be out of place to quote some lines about 
Poncelet by Joseph Bertrand from Eloge: 
 

“Descartes (said Bertrand) believed that by some uniform process of 
calculation, one could abolish the right to contrive in geometry.  Believing that he 
had prepared and predicted everything, while leaving the pleasure of making any 
progress to his successors, he had usurped all of the credit and glory in advance at 
more than one point.  I hope, he said, that our nephews will thank us for not just 
the things that I have explained, but also the ones that I have omitted voluntarily 
in order to leave the pleasure of inventing them to those nephews.” 

“The ones (Joseph Bertrand continued) who, from their faith in impressive 
wizardry, believed that the original age of discoveries had concluded with the 
study of curves, naturally looked for a more fruitful use of their efforts and a 
greater degree of progress that was ever made in that beautiful theory in the other 
branches of science, with no difficulty, and thus had the opportunity and the cue 
that it was time to stop its advance.” 

“Descartes had forgotten that, according to the very fortunate expression of a 
contemporary geometer, geometry is an art, as well as a science: Mathesis ars et 
scientia dicenda, and that it is sometimes possible for a science to mark the end of 
its efforts and the term in which it progressed with a definitive formula, while art 
is inexhaustible and infinite, always young, and always fertile with new ideas.” 

 
 Please allow us to introduce another viewpoint here.  In our time, the intense 
development of analytic theories and the great place that they occupy in the programs 
that realize the result that it is, above all, by rigorous and abstract logical gymnastics 
that we exercise the intelligence of our young minds.  Now, the experience of testing, 
which is old already, says quite eloquently how incomplete and inoperative that 
development will be if it does not find a counterweight in the practice of more 
concrete realities in geometry or mechanics.  It should then be greatly desired that the 
tastes and cult of geometry should be favored in our education more than they are 
today. 
 By its nature, Vessiot’s book contributes, at the highest level, to the dissemination 
of those beneficent studies in which the French mentality is manifested so 
harmoniously in the form of elegance and grandeur.  Vessiot, who is also an informed 
analyst, has given his exposition a form that is impeccable in its precision, and which 
carefully facilitates the handling of quantitative notions and the general formulas in 
which they intervene. 
 In his book, he has encompassed everything that is essential if one is to 
understand, or even read fruitfully, the original work of the inventors.  The friends of 
geometry can only rejoice at the assistance that this book gives to their favorite 
science and must express the best wishes for the continuation of its success.  
 
 G. Koenigs 





PREFACE TO THE FIRST EDITION  
____ 

 
 

 These lectures were taught by the science faculty at Lyons in 1905-1906, in response 
to the special program of mathematical analysis of the process of nomination to 
Associate.  They were written up at the demand of my students and were edited by one of 
them. 
 Perhaps it might be useful to the students that are desirous of being initiated into 
higher geometry, and it might give them a good preparation into the study of the books of 
Darboux and the original papers. 
 I have assumed that only the simplest principles of the theory of contact are known.  I 
have reviewed the essential points of the theory of skew curves and the theory of 
surfaces, while emphasizing the essential role of the Frenet formulas, and Gauss’s two 
quadratic differential forms. 
 The principal objective of my lectures was the study of systems of lines and their 
application to the theory of surfaces.  It was natural to combine that with the study of 
systems of spheres, which I have continued up to the very attractive elementary 
properties of Ribaucour’s cyclic systems.  I have insisted upon the correspondence 
between lines and spheres.  I have clarified it by the use of the notions of contact 
elements and multiplicities, which is likewise useful in the theory of ray congruences.  I 
have shown how it translates into Lie’s celebrated contact transformation. 
 I have sought to develop the various subjects along the most natural and the most 
analytical path.  I wished to show my students how methodical research and the deep 
discussion of questions, even the simplest ones, as well as the attentive study and 
interpretation of the results of calculation, can lead to the most varied and the most 
interesting consequences. 
 
  Lyon, 1 June 1906 
  E. VESSIOT. 
 

__________ 





FOREWORD 
___ 

  
 The first edition of these lectures, as it was written, was rapidly exhausted, so I 
accepted the offer to reprint them that Hermann made to me. 
 The printing errors were corrected by Anzemberger, in view of that reprinting.  I have 
reviewed and improved the editing, and I have made some important additions.  Grévy 
has kindly assisted me in the revision of the text and the correction of the proofs.  I would 
like to acknowledge my gratitude to him here.  I would also like to address my thanks to 
Hermann for the care that they afforded to the printing. 
 I shall forego giving bibliographic citations.  This is an introductory book, and the 
readers that are desirous of pursuing geometric research must always refer to Darboux’s 
admirable books, in which they will find the necessary documentation. 
 
 30 September 1919. 
  E. VESSIOT 
 

___________ 
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FIRST CHAPTER 
 

REVIEW OF THE ESSENTIAL POINTS IN THE THEORY 
OF SKEW CURVES AND DEVELOPABLE SURFACES 

 
I. – SKEW CURVES 

 
Frenet-Serret trihedron 

 
 1. – Let (C) be a skew curve whose coordinates we assume to be expressed as 
functions of a parameter t: 
 

x = f (t), y = g (t), z = h (t). 
 
 We consider the tangent to such a curve, which has dx / dt, dy / dt, dz / dt for its 

direction parameters, and the osculating plane, which contains the tangent , ,
dx dy dz

dt dt dt
 
 
 

 

and the acceleration 
2 2 2

2 2 2, ,
d x d y d z

dt dt dt

 
 
 

, and whose coefficients are, in turn, the second-

degree determinants that are deduced from the matrix: 
 

  
dx

dt
 

dy

dt
 

dz

dt
 

 

 
2

2

d x

dt
 

2

2

d y

dt
 

2

2

d z

dt
. 

 
 Remark. – If one changes the parameters by setting t = ϕ (u) then the new 

acceleration 
2 2 2

2 2 2, ,
d x d y d z

du du du

 
 
 

 will always be in the osculating plane. 

 Consider the tangent MT at a point M of the curve, the normal that is situated in the 
osculating plane – or principal normal MN – and the normal MB that is perpendicular to 
the osculating plane – or binormal.  Those three lines will form a tri-rectangular trihedron 
that we call the Serret or Frenet trihedron.  One of its faces – namely, the one that is 
determined by the tangent and the principal normal – is the osculating plane.  The one 
that is determined by the principal normal and the binormal is the normal plane.  Finally, 
the one that is determined by the tangent and the binormal is called the rectifying plane. 
 Take an origin of an arbitrary arc on the curve and an increasing sense along the arc, 
which is likewise arbitrary.  The differential of the arc-length s is given by the formula: 
 

ds2 = dx2 + dy2 + dz2, 
so: 
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ds

dt
= 

2 2 2
dx dy dz

dt dt dt
ε      + +     

     
 (ε = ± 1), 

and: 
2 2 2

dx dy dz

ds ds ds
     + +     
     

= 1. 

 
dx / ds, dy / ds, dz / ds will then be the direction cosines of the direction of the tangent 
that corresponds to the sense of increasing arc-length; let α, β, γ be those direction 
cosines: 

(1)    α =
dx

ds
, β =

dy

ds
, γ =

dz

ds
. 

 
 We take an arbitrary positive direction along the principal normal with direction 
cosines α′, β′, γ′ and a positive direction along the binormal whose direction cosines are 
α″, β″, γ″, such that the trihedron that is composed of those three directions will have the 
same disposition as the coordinate trihedron.  Hence: 
  

α β γ
α β γ
α β γ

′ ′ ′
′′ ′′ ′′

 = 1, 

 
and each element of that determinant will be equal to its coefficient in the development of 
the determinant. 
 
 

Serret-Frenet formulas 
 

 2. – Some important relations exist between those direction cosines and their 
differentials.  Indeed, upon taking the derivatives of both sides of the relation: 
 

α2 + β 2 + γ 2 = 1 
 
with respect to s, one will infer that: 

d

ds

αα∑ = 0. 

 
However, from the relations (1), one will have: 
 

d

ds

α
=

2

2

d x

ds
, 

d

ds

β
=

2

2

d y

ds
, 

d

ds

β
=

2

2

d z

ds
, 

 
and the preceding can be written: 
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2

2

d x

ds
α∑ = 0. 

 
 The direction that has the direction coefficients: 
 

2

2

d x

ds
, 

2

2

d y

ds
, 

2

2

d z

ds
 or 

d

ds

α
, 

d

ds

β
, 

d

ds

γ
 

 
is perpendicular to the tangent then.  On the other hand, it is in the osculating plane, since 
it is the acceleration that corresponds to the parameter s.  It is therefore the principal 
normal, and consequently there will exist a number R such that: 
 

(2)     
d

ds

α
 =

R

α ′
,  

d

ds

β
=

R

β ′
,  

d

ds

γ
=

R

γ ′
. 

 
 Upon multiplying these equations by α′, β′, γ′, respectively, and adding 
corresponding sides, one will deduce that: 
 

(3)      
1

R
= 

d

ds

αα ′∑ . 

 
 Upon now multiplying them by α″, β″, γ″, respectively, and adding corresponding 
sides, one will get: 

d

ds

αα ′′∑ = 0. 

 On the other hand: 
αα ′′∑ = 0. 

 
Hence, upon taking derivatives with respect to s: 
 

d d

ds ds

α αα α′′ ′′+∑ ∑ = 0, 

and as a result: 
d

ds

αα ′′
∑ = 0. 

 Moreover: 
2α ′′∑ = 1, 

so: 
d

ds

αα ′′′′∑ = 0, 

 
and the preceding two relations show that the direction: 
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d

ds

α ′′
, 

d

ds

β ′′
, 

d

ds

γ ′′
 

 
is perpendicular to the tangent and the binormal.  It is once again the principal normal, 
and there exists a number T such that: 
 

(4)    
d

ds

α ′′
= 

T

α ′
,  

d

ds

β ′′
= 

T

β ′
,  

d

ds

γ ′′
= 

T

γ ′
. 

 
 Upon multiplying those equations by α′, β′, γ′, respectively, and adding 
corresponding sides, one will get: 

(5)      
1

T
= 

d

ds

αα ′′′∑ . 

 
 One likewise infers from the relation: 
 

α α′∑ = 0 

that: 
d

ds

αα ′
∑ = − 

d

ds

αα ′∑  = − 
1

R
, 

 
and finally one infers from the relation: 
 

2α ′∑ = 1 

that: 
d

ds

αα ′′∑ = 0. 

 

One then has three equations in 
d

ds

α ′
, 

d

ds

β ′
, 

d

ds

γ ′
: 

 
d

ds

αα ′
∑ = − 1

R
, 

d

ds

αα ′′∑ = 0,  
d

ds

αα ′′′∑ = − 1

T
, 

 
whose solution will give: 
 

(6)   
d

ds

α ′
= −

R T

α α ′′
− , 

d

ds

β ′
= −

R T

β β ′′
− , 

d

ds

γ ′
= −

R T

γ γ ′′
− . 

 
 The three groups of relations (2), (4), (6) constitute the Serret formulas or Frenet 
formulas.
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Curvature and torsion 
 

 3. Interpretation of R. – Consider the point t whose coordinates are α, β, γ.  Formulas 
(2) express a property of the curve that is the locus of those points.  That curve is traced 
upon a sphere of radius 1 that one calls the spherical indicatrix of the curve (C), and the 
formulas (2) show that the tangent to the spherical indicatrix at t is parallel to the 
principal normal to the curve (C) at M.  Let σ be the arc-length of that indicatrix, when 
measured from an arbitrary origin in an arbitrary sense: 
 

d

d

α
σ

= εα′, d

d

β
σ

= εβ′, d

d

γ
σ

= εγ′. 

 
Hence, upon taking formulas (2) into account: 
 

1

R
= 

d

ds

σε . 

 

O 

b 
t 

t′ 

 
 Now consider the points t, t′ that correspond to the points M, M′, resp.  dσ / ds is, up 

to sign, the limit of the ratio 
arc

arc 

tt

MM

′
′
 when M′ tends to M.  The arc tt′ is an infinitely 

small equivalent to the arc-length of the great circle tt′, which has the same measure as 
the angle tOt′ between the two infinitely-close tangents or the angle of contingency. 

d

ds

σ
 is then the limit of the ratio 

�

�

arc

arc 

tOt

MM

′
′
, which is called the curvature of the curve at 

the point M; R is radius of curvature at the point M. 
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 Interpretation of T. – In order to interpret T, one must likewise consider the locus of 
the point b whose coordinates are α″, β″, γ″, or the second spherical indicatrix.  From 
formulas (2), (4), one must remark that the tangents at t, b to the two indicatrices are 
parallel to the principal normal at M.  If τ is the arc-length of that second spherical 
indicatrix then one will find, as before, that: 
 

1

T
= 

d

ds

τε ′   (ε′ = ± 1), 

 
and | 1 / T | will be the limit of the ratio of the angle between the osculating planes at M, 
M′ to the arc-length MM′ when M′ tends to M ; it is the torsion at M, and T is the radius 
of torsion. 
 The two indicatrices are both polars to the sphere. 

 
 

 Discussion.  Center of curvature 
 

 4. – The direction cosines that we introduced depend upon three arbitrary hypotheses, 
namely, the sense of increasing arc-length, how the positive sense is chosen along the 
principal normal, and the disposition of the coordinate trihedron.  If we change that 
hypothesis and let ε1, ε2, ε3 denote numbers that are equal to ± 1 then s will be replaced 
by εi s.  α, β, γ will become εi α, εi β, εi γ, α′, β′, γ′ will become εi α′, εi β′, εi γ′, and 
finally, from the relations: 
 

α″ = ε3 (βγ′ – γβ′ ), β″ = ε3 (γα′ – αγ′ ), γ″ = ε3 (αβ′ – βα′ ), 
 
α″, β″, γ″ will be replaced with ε1 ε2 ε3 α″, ε1 ε2 ε3 β″, ε1 ε2 ε3 γ″.  Formulas (2) will then 
give: 

1

2

d

ds

ε α
ε

= 2

R

ε α ′
, …; 

 
i.e., R will change into ε2 R, and its sign will depend upon only the choice of positive 
direction along the principal normal. 
 Hence, the point C along the principal normal such that MC = R (R being defined 
algebraically as before) is a geometric element that is attached to the given curve.  That 
point C is called the center of curvature at M. 
 Now look at T.  Formulas (4) then give: 
 

1 2 3

1

d

ds

ε ε ε α
ε

′′
= 2

T

ε α ′
, …, 

or: 

3

d

ds

αε ′′
= 

T

α ′
, …, 
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 Hence, T will change into ε3 T, and the sign of T will depend upon the disposition of 
the coordinate trihedron uniquely.  There is no reason to define a center of torsion then. 

 
 

 Sign of torsion.  Form of the curve 
 

 5. – In order to interpret the sign of T, we shall study the rotation of a plane that 
passes through the tangent MT and a point M′ along the curve that is infinitely close to M.  
Refer the curve to the Serret trihedron, so the tangent is OX, the principal normal is OY, 
and the binormal is OZ.  We will then have α = 1, β = 0, γ = 0; α′ = 0, β′ = 1, γ′ = 0; α″ = 
0, β″ = 0, γ″ = 1.  We shall seek the developments of the coordinates of a point of the 
curve that is infinitely-close to M in increasing powers of ds (viz., the arc-length of the 
curve when measured from the point M). 
 We have: 

2 2 3 3

2 3
,

1 2 6
,

ds dx ds d x ds d x
X

ds ds ds
Y

Z


= + + +

 =
 =



⋯

⋯

⋯

 

 
 Now, from the Frenet formulas: 

dx

ds
= α = 1, 

 
2

2

d x

ds
= 

d

ds

α
= 

R

α ′
= 0, 

 

3

3

d x

ds
= 

2

2

d

ds

α
= 

1
1

d
d R

R ds ds

α α

 
 ′  ′+ = 2

1 dR

R R T R ds

α α α′′ ′ − − − 
 

= −
2

1

R
, 

 
and similarly for the other coordinates.  One will then find that: 
 

(7)    

3
2

2 3
2

3

1

6
1 1

2 6
1

6

X ds ds
R

dR
Y ds ds

R R ds

Z ds
RT

 = − +

 = − +

 = − +


⋯

⋯

⋯

 

 
 These are the developments of the coordinates of a point M′ that is infinitely close to 
M. 
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 The plane that we consider passes through the tangent.  The initial sense of its 
rotation when ds varies upon starting with zero is given by the sign of Z / Y, which is the 
angular coefficient of its trace in the plane of the YZ.  Now: 
 

Z

Y
= − 

3

ds

T
[1 + ds (…)]. 

 
 That angular coefficient will be positive when T < 0 for increasing s; i.e., when the 
point displaces in the positive direction along the tangent.  The plane will then turn in the 
positive sense.  Moreover, if one supposes, for example, that R > 0 then the point M will 
be above the XY-plane, and if T < 0 then the arc MM′ of the curve will be in front of the 
XZ-plane; on the contrary, when T > 0, that point will be behind that plane. 

 

x 

y 

M 

M′ 

z 

m′ 

 
 Formulas (7) permit us to represent the projections of the curve onto the three faces of 
the Serret trihedron in the neighborhood of the point M.  In order to draw those 
projections, we shall suppose that R > 0 and T < 0. 

 

x 

y 

Osculating plane Normal plane 

m2 

y2 

m′ 

m 

2m′  

x1 
m1 

y1 

1m′  

Rectifying 
plane 

x2 
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 A consideration of formulas (7), when taken two at a time, will show that the 
projection onto the rectifying plane (XZ) will have a point of inflection at the point m1, 
where the inflectional tangent will be OX.  The projection onto the osculating plane will 
have an ordinary point m whose tangent is OX. Finally, the projection onto the normal 
plane (YZ) will have a point of regression at m2 whose tangent of regression will be OY. 

 
 

 Motion of the Serret-Frenet trihedron 
 

 6. – Remark. – Consider a point P that is invariably linked with the Serret trihedron, 
and let X, Y, Z be its coordinates, which are constant with respect to that trihedron; let ξ, 
η, ζ be the coordinates of that point with respect to a system of fixed axes.  Upon 
remarking that: 

,

,

,

x X Y Z

y X Y Z

z X Y Z

ξ α α α
η β β β
ζ γ γ γ

′ ′′= + + +
 ′ ′′= + + +
 ′ ′′= + + +

 

 
when the summit of the Serret trihedron describes the given curve, the projections of the 
velocity of the point P onto the fixed axes will be: 
 

,

,

,

d dx d d d
X Y Z

dt dt dt dt dt
d dy d d d

X Y Z
dt dt dt dt dt
d dz d d d

X Y Z
dt dt dt dt dt

ξ α α α

η β β β

ζ γ γ γ

′ ′′ = + + +
 ′ ′′ = + + +


′ ′′ = + + +


 

or rather: 

,
d ds

X Y Z
dt R R T T dt

d

dt
d

dt

ξ α α α αα

η

ζ

 ′ ′′ ′  = + − + +   
  


=


 =


⋯

⋯

 

 
 The projections of the velocity onto the moving axes will then be: 
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1 ,

,

.

X

Y

Z

d d d Y ds
V

dt dt dt R dt

d d d X Y ds
V

dt dt dt R R dt

d d d Y ds
V

dt dt dt T dt

ξ η ζα β γ

ξ η ζα β γ

ξ η ζα β γ

 = + + = −  
  

 ′ ′ ′= + + = +  
  


′′ ′′ ′′= + + = − 



 

 
 ds / dt is the velocity of the summit of the trihedron.  If we consider only the 
rotational velocity then we will know that if p, q, r are the components of the 
instantaneous rotation along the moving axes then: 
 

VX = qZ – rY,  VY = rX – pZ,  VZ = pY – qX, 
 
and upon identifying those expressions with the preceding ones, we will then find that: 
 

p = − 
1 ds

T dt
, q = 0, r =

1 ds

R dt
, 

which shows that: 
 
 The instantaneous rotation at each instant is in the rectifying plane, and if one 
supposes that t = s then it will have the torsion and curvature for its components along 
the tangent and binormal, resp. 
 
 If one supposes that the Serret trihedron has been transported to the origin then it will 
turn around its summit, so the instantaneous axis of rotation will be in the rectifying 
plane, and the motion of the trihedron will be obtained by rolling a certain cone on that 
plane. 

 
 

 Calculation of R 
 

 7. – Recall formula (3): 
1

R
= 

d

ds

αα ′∑ . 

 From the relation: 

α = 
dx

ds
, 

one infers that: 
d

ds

α
= 

2 2

3

ds d x dx d s

ds

−
. 

 Now set: 
 

A = dy d 2z – dz d 2y, B = dz d 2x – dx d 2z, C = dx d 2y – dy d 2x, 
and 
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2 2 2A B C± + + = D. 

 
 A, B, C are the coefficients of the osculating plane.  As a result, the sign of D can be 
chosen arbitrarily, so the direction cosines of the binormal will be: 
 

α″ = 
A

D
, β″ = 

B

D
, γ″ = 

C

D
, 

 
and the direction cosines of the principal normal will be: 
 

α′ = γβ″ – βγ″ = 
B dz C dy

D ds

−
= 

2 2 2 2 2( ) ( )d x dx dz dx dy d y dz d z

D ds

+ − +
 

= 
2 2 2d x ds dx ds d s

D ds

−
 = 

2 2ds d x dx d s

D

−
, 

and similarly: 

 β′ = 
2 2ds d y dy d s

D

−
, 

 γ′ = 
2 2ds d z dz d s

D

−
, 

so: 
1

R
= 

d

ds

αα ′∑ = 
2 2

2

B dz C dy ds d x dx d s

D ds ds

− −
∑ , 

 
which can be written: 
 

1

R
= 

2
2

2 2

1
( ) ( )

d s
d x B dz C dy dx B dz C dy

D ds D ds
− − −∑ ∑ . 

 
The second sum is zero, and: 

1

R
= 2

2

1
( )d x B dz C dy

D ds
−∑  = 2 2 2

2

1
dx dy dz

d x d y d z
D ds

A B C

 = 
2

D

ds
, 

so finally: 

1

R
 = 

2 2 2

2 2 2 3/2

( )

( )

dy d z dz d y

dx dy dz

−
+ +

∑
. 
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Calculation of T 
 

 8. –  Similarly: 
1

T
 = 

d

ds

αα ′′′∑ = 
2

B dz C dy D dA AdD

D ds D ds

− ⋅ −
⋅∑ , 

which can be written: 
 

1

T
 = 

2 2 2 2

1
( ) ( )

dD
dA B dz C dy A B dz C dy

D ds D ds
− − −∑ ∑ . 

 
The second sum is zero, and: 
 

1

T
 = 

2 2

1
( )dA B dz C dy

D ds
−∑ = 3 3 2 2

2

1
( )( )dy d z dz d y ds d x dx d s

D ds
− −∑ , 

or: 
1

T
 = 

2
2 3 3 3 3

2 2

1
( ) ( )

d s
d x dy d z dz d y dx dy d z dz d y

D D ds
− − −∑ ∑ . 

 
The second sum is zero, and: 

1

T
 = 2 3 3

2

1
( )d x dy d z dz d y

D
−∑  = − 2 2 2

2
3 3 3

1
dx dy dz

d x d y d z
D

d x d x d x

, 

in which: 
D2 = 2 2 2( )dy d z dz d y−∑ . 

 
 Remark. – In order for the torsion of a curve to be constantly zero, it is necessary and 
sufficient that one must constantly have: 
 

2 2 2

3 3 3

dx dy dz

d x d y d z

d x d x d x

 = 0, 

 
which demands that x, y, z must be coupled by a linear relation with constant coefficients; 
i.e., the curve must be planar.  Hence: 
 
 The curves with torsion that is constantly zero will be plane curves. 

 
 

Osculating sphere 

 9. – We look for the spheres that have second-order contact with the curve considered 
at M.  From the theory of contact, the center (x0, y0, z0) and the radius R0 of such a sphere 
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are determined by the following equations, which we develop by means of the Serret-
Frenet formulas: 
 2 2

0 0( )x x R− −∑ = 0, 

 2 2
0 0[ ( ) ]

d
x x R

ds
− −∑ = 0, or 0( )x xα −∑ = 0, 

  

 
2

2 2
0 02

[ ( ) ]
d

x x R
ds

− −∑ = 0, or 1+ 0

1
( )x x

R
α ′ −∑ = 0. 

 
 If we take the Serret-Frenet trihedron to be the coordinate trihedron, as we did above, 
then those equations will reduce to: 
 

2 2
0 0x R−∑ = 0,  x0 = 0,  y0 = 2

0R , 

 
and if Z0 remains arbitrary then the general equation of the desired spheres will be: 
 

X 2 + Y 2 + Z 2 – 2RY − 2Z0 Z = 0. 
 
 That is a sheaf of spheres that includes the osculating plane Z = 0.  One then verifies 
the property of contact with the osculating plane. 
 From the theory of contact for curves, the circle that is common to all of those 
spheres is, moreover, the one that has second-order contact with the curve; i.e., the 
osculating circle.  Its equations are: 
 

Z = 0,  X 2 + Y 2 + Z 2 – 2RY = 0, 
 
so it will be in the osculating plane, its center will be the center of curvature C (X = 0, Y = 
R), and it will pass through M.  The locus of centers of the spheres considered is the axis 
of the osculating circle. 
 Among all of those spheres, there is one of them that has third-order contact with the 
curve.  One obtains it by introducing the new condition: 
 

3
2 2

0 03
[ ( ) ]

d
x x R

ds
− −∑ = 0; 

i.e.: 

− 0 0 02

1 1 1 1
( ) ( ) ( )

dR
x x x x x x

R ds R R T
α α α ′ ′′− − − + −  

∑ ∑ ∑ = 0. 

 
With the particular axes that are being employed and the values for x0, y0 that were found 
before, that will reduce to: 

z0 = − T 
dR

ds
. 
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The center of that sphere, which is the osculating sphere, will then be defined by the 
formulas: 

X0 = 0,  Y0 = + R, Z0 = − T 
dR

ds
, 

and its radius will be given by the formula: 
 

2
0R = R2 + 

2
2 dR

T
ds

 
 
 

. 

 
 

II. – DEVELOPABLE SURFACES  
 

General properties 
 

 10. – A skew curve is the locus of ∞1 points.  Correlatively, we consider a 
developable surface, which is the envelope of ∞1 planes.  The characteristic of one of 
those planes corresponds to the tangent to the curve at a point, since it is the intersection 
of two infinitely-close planes. 
 Let: 
(1)  u X + v Y + w Z + h = 0 
 
be the general equation of the planes considered, in such a way that u, v, w, h denote 
given functions of a parameter t. 
 From the theory of envelopes, the characteristics have the general equations: 
 

(2)     
0,

0.

uX vY wZ h

Xdu Ydu Zdw dh

+ + + =
 + + + =

 

 
 From the theory of envelopes, the developable surface that is the envelope of the 
planes (1) is the locus of the lines (2), which will consequently be rectilinear generators.  
Moreover, again from the theory of envelopes, each of the planes (1) will be tangent to 
the surface along the generator (2) that corresponds to the same value of t. 
 Consider the curve (C) then, which is the locus of points (x, y, z) that are defined by 
the equations: 

(3)     
2 2 2 2

0,

0,

0.

ux vy wz h

x du y dv wdz dh

x d u y d v wd z d h

+ + + =
 + + + =
 + + + =

 

 
 Any of its points M will be on the line (2) and correspond to the same value of t, and 
consequently, it will be in the corresponding plane (1).  We seek the tangent to (C) at M.  
In order to do that, differentiate equations (3).  If we differentiate each of the first two 
then upon taking into account the following one we will find that: 
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(4)     
0,

0,

u dx v dy w dz

du dx dv dy dw dz

⋅ + ⋅ + ⋅ =
 ⋅ + ⋅ + ⋅ =

 

 
which expresses the idea that the direction of the tangent is the same as that of the line 
(2).  Hence, the tangents to (C) are the generators of the developable. 
 We again seek the osculating plane to (C) at M.  It must pass through the tangent and 
be parallel to the direction (d 2x, d 2y, d 2z).  Now, if we differentiate the first of equations 
(4) then upon taking the second one into account, we will find that: 
 

u ⋅⋅⋅⋅ d 2x + v ⋅⋅⋅⋅ d 2y + w ⋅⋅⋅⋅ d 2z = 0, 
 
which shows that the plane (1) satisfies the preceding conditions.  Hence, the osculating 
plane to (C) will be the plane that envelopes the developable. 
 (C) is called the edge of regression of the developable. 
 Hence: 
 
 Any developable is the envelope of the osculating planes to its edge of regression and 
is generated by the tangents to its edge of regression. 
 
 Remarks. – We have implicitly made various hypotheses.  First of all, that equations 
(3) define x, y, z; i.e., that their determinant is not identically zero.  If it were then one 
would have: 

2 2 2

u v w

du dv dw

d u d v d w

= 0 

 
for any t, which would express the idea that u, v, w are coupled by a homogeneous linear 
relation with constant coefficients; i.e., that the planes (1) are parallel to a fixed line.  In 
that case, the lines (2) would be parallel to that same direction, and the surface would be 
a cylinder.  In that case, the singular case would occur in which all of the planes (1) pass 
through a fixed line, which would then be their envelope. 
 If we discard that case then we will have assumed that there is a locus of points M.  
That supposes that M is not fixed.  If that were true then since equations (3) are verified 
by the coordinates of that fixed point, the planes (1) would pass through that fixed point, 
as well as the lines (2).  The envelope would be a cone. 
 We again discard that case.  We assume, moreover, that the lines (2) generate a 
surface.  Now, that will break down only if they coincide, which is the singular case that 
was examined already. 
 Finally, we remark that the curve (C) is unavoidably skew, since it is plane, and its 
plane is its unique osculating plane.  Our arguments will not cease to apply, so all of the 
planes (1) will coincide.  There will not be ∞1 planes (1) then. 
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Converses 
 

 11. – Conversely, the osculating planes at all points of a skew curve will envelop a 
developable. – Indeed, if we recall the notations of § 1 then the osculating plane at a point 
x, y, z of a curve will have the equation: 
 

α ′′∑ (X – x) = 0. 

 
 Its characteristic is represented by the preceding equations, and: 
 

( )
d dx

X x
ds ds

α α′′ ′′− −∑ ∑ = 0. 

Now: 
dx

ds
α ′′∑ = αα ′′∑  = 0, 

d

ds

α ′′
= 

T

α ′
. 

 
The equations of the characteristic will then be: 
 

( )X xα ′′ −∑ = 0, ( )X xα ′ −∑ = 0. 

 
 If one takes the Serret-Frenet trihedron to be the coordinate trihedron then they will 
reduce to: 

Z = 0, Y = 0. 
 
Hence, the characteristic of the osculating plane at a point of a skew curve is the tangent 
to that curve, and the envelope of that plane will indeed be a developable surface.  The 
edge of regression is defined by the equations: 
 

( ) 0,

( ) 0,

( ) 0.

X x

X x

d dx
X x

ds ds

α
α

α α


 ′′ − =
 ′ − =
 ′ ′ − − =


∑
∑

∑ ∑

 

 
 Consider the third equation; we remark that: 
 

dx

ds
α ′∑ = αα ′∑  = 0 

and 
d

ds

α ′
= −

R T

α α ′′
− . 

 That equation will then become: 
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R T

α α ′′ + 
 

∑ (X – x) = 0, 

 
or furthermore, upon taking the first equation into account: 
 

α∑ (X – x) = 0. 

 
We then obtain three linear homogeneous equations in X – x, Y – y, Z – z whose 
determinant is 1; hence: 

X – x = 0, Y – y = 0, Z – z = 0; 
 
i.e., the edge of regression is the curve itself. 
 
 Remark. – The name “edge of regression” comes from the fact that the section of the 
developable by the normal plane to the edge of regression at M will present a point of 
regression at the point M.  Indeed, refer the curve to the Serret trihedron that relates to 
the point M: From the formulas that were established in § 5, the coordinates of a point on 
the curve that is close to the point M will be: 
 

3
2

2 3
2

3

1

6
1 1

2 6
1

6

x ds ds
R

dR
y ds ds

R R ds

z ds
RT

 = − +

 = − +

 = − +


⋯

⋯

⋯

 

 
The coordinates of a point on the tangent to the point x, y, z are: 
 

 X = x + λ dx

ds
= 3 2

2 2

1 1
1

6 2
ds ds ds

R R
λ   − + + − +   

   
⋯ ⋯ , 

 

 Y = y + λ dy

ds
= 2 3 2

2 2

1 1 1 1

2 6 2

dR dR
ds ds ds ds

R R ds R R ds
λ   − + + − +   

   
⋯ ⋯ , 

 

 Z = z + λ dz

ds
= 3 21 1

6 2
ds ds

RT RT
λ   − + + − +   

   
⋯ ⋯ . 

 
Take the intersection of that tangent with the normal plane X = 0, which will give: 
 

λ = − 
1

ds+
+
⋯

⋯
 = − ds + …, 

 
and the curve of intersection will have the equations: 
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Y = −  
2

1

2R
ds2 + …, Z = 

1

3RT
ds3 + … 

 
One sees that it has a point of regression at the point M, and the tangent of regression will 
be the principal normal. 

 

Y M 

Z 

 
 

Rectifying surface.  Polar surface 
 
 12. – Remarks. – We seek the developable surfaces that are enveloped by the faces of 
the Serret trihedron on a skew curve (C).  We just saw that the osculating plane 
envelopes the developable surface that admits (C) for its edge of regression. 
 Now consider the rectifying plane: 
 

α ′∑ (X – x) = 0, 

 
whose characteristic is represented by the preceding equation and the equation: 
 

1 1
( ) ( )X x X x

R T
α α ′′− + −∑ ∑ = 0. 

 
 If one takes the Serret equations then those equations will become: 
 

Y = 0,  
1 1

X Z
R T

+ = 0, 

 
whose characteristic will contain the point Y = 0, X = − 1 / T, Z = 1 / R, which is the 
extremity of the vector that represents the instantaneous rotation of the trihedron. It is the 
instantaneous axis of rotation of the Serret trihedron.  Its locus is called the rectifying 
surface.  It contains the curve (C). 
 Finally, consider the normal plane: 
 

α∑ (X – x) = 0, 

 
and the other equation of the characteristic is: 
 

( )
d dx

X x
ds ds

α α− −∑ ∑ = 0, 
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or: 
1

R
α ′∑ (X – x) − 1 = 0. 

 
 That characteristic is called the polar line, and its locus is called the polar surface. 
 Once more, take the Serret axes, so the equations of the polar line will become: 
 

X = 0,  Y = R. 
 

 The polar line is then the axis of the osculating circle. 
 The point of contact of the polar line with the edge of regression of the polar surface 
is given by the three equations: 

α∑ (X – x) = 0, 

α ′∑ (X – x) – R = 0, 

 

( )
d dx dR

X x
ds ds ds

α α′ ′− − −∑ ∑  = 0. 

 
Upon taking the first one into account, the last one will become: 
 

1
( )

dR
X x

T ds
α ′′ − +∑  = 0. 

 
 Upon taking the Serret axes, one will then get: 
 

X = 0, Y = R, Z = − 
dR

T
ds

. 

 
 Those are the coordinates of the center of the osculating sphere (see § 9). 
 Therefore: 
 
 The point where the polar line touches its envelope is the center of the osculating 
sphere of the curve (C).  The curve (C) is the orthogonal trajectory of the osculating 
planes at the locus of the centers of its osculating spheres. 
 
 

____________ 



 

CHAPTER II 
 

SURFACES 
 

The ds2 of the surface and angles 
 

 1. – Curves traced on a surface.  Arc-lengths and angles. – Let (S) be a surface, and 
suppose that the coordinates of a running point are expressed as functions of two 
parameters u, v: 
(S)    x = f (u, v), y = g (u, v), z = h (u, v). 
 
u, v are the curvilinear coordinates of a point of the surface (S).  One defines a curve (C) 
on the surface by establishing a relation between u, v, or – what amounts to the same 
thing – by expressing u, v as functions of the same parameter t: 
 
(C)     u = ϕ (t), v = ψ (t). 
 
 The tangent to that curve will have the direction parameters: 
 

(1)   dx = 
x x

du dv
u v

∂ ∂+
∂ ∂

, dy = 
y y

du dv
u v

∂ ∂+
∂ ∂

, dz = 
z z

du dv
u v

∂ ∂+
∂ ∂

. 

 
The tangent will then be determined by the differentials du, dv. 
 The element of arc-length has the expression: 
 
(2)   ds2 = dx2 + dy2 + dz2 = E du2 + 2F du dv + G dv2 = Φ (du, dv) 
upon setting: 

E = 
2

x

u

∂ 
 ∂ 

∑ ,  F = 
x x

u v

∂ ∂
∂ ∂∑ ,  G = 

2
x

v

∂ 
 ∂ 

∑ . 

 
 Consider two curves that pass through the same point (u, v) on the surface.  Let du, dv 
be the differentials that correspond to one of them, and let δu, δv be the differentials that 
correspond to the other, so ds, δs are the corresponding differentials of arc-lengths.  If V 
is the angle between the two curves then we know that: 
 

cos V = 
dx x

ds s

δ
δ
⋅

⋅
∑ . 

Now: 
 

dx xδ⋅∑ = 
x x x x

du dv u v
u v u v

δ δ∂ ∂ ∂ ∂  + +  ∂ ∂ ∂ ∂  
∑ = E du du + F (du δv + dv δu) + G dv δv. 

 
That is the polar form of the quadratic form Φ (du, dv), and: 
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(3)    cos V = 

( , ) ( , )
1

2 ( , ) ( , )

du dv du dv
u v

du dv
du dv u v

δ δ

δ δ

∂Φ ∂Φ+
∂ ⋅ ∂ ⋅
Φ Φ

. 

 
 In order for the two curves to be orthogonal, it is necessary and sufficient that cos V = 
0 or: 
(4)    E du dv + F (du ⋅⋅⋅⋅ δv + dv ⋅⋅⋅⋅ δu) + G dv ⋅⋅⋅⋅ δv = 0. 
 
 In particular, we seek the condition for the coordinate curves u = const. and v = const. 
to form an orthogonal net.  We would then have dv = 0, δu = 0, and the preceding 
condition would reduce to the identity: 

F du δv = 0, 
 
or since du, δv are not constantly zero, F = 0.  In that case, the square of the arc-length 
element would take the characteristic form: 
 

ds2 = E du2 + G dv2. 
 
 Remark. – If one defines the surface by an equation of the form: 
 

z = f (x, y) 
 
then upon denoting the partial derivatives of z with respect to x, y by p, q, resp., as usual, 
one will have: 
 

ds2 = dx2 + dy2 + (p dx + q dy)2 = (1 + p2) dx2 + 2pq dx dy + (1 + q2) dy2; 
i.e.: 

E = 1 + p2, F = pq,  G = 1 + q2. 
 
 

Deformation and conformal representation 
 

 2. – Mappable surfaces.  Conformal representations. – Consider two surfaces (S), 
(S1): 
(S)  x = f (u, v), y = g (u, v), z = h (u, v), 
(S1) x = f0 (u1, v1), y = g0 (u1, v1), z = h0 (u1, v1). 
 
One can establish a point-to-point correspondence between those two surfaces, and in an 
infinitude of ways.  It suffices to set: 
 

u1 = ϕ (u, v), v1 = ψ (u, v). 
 

The functions are arbitrary ϕ, ψ, but always under the condition that the preceding 
equations must be soluble for u, v.  The equations of the surface (S1) will then have the 
form: 
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(S1) x = f1 (u, v), y = g1 (u, v), z = h1 (u, v). 
 
That amounts to saying that the homologous points correspond to the same systems of 
values for the parameters. 
 Now let the elements of arc-length on those two surfaces be: 
 
(1)  ds2  = E  du2 + 2F  du ⋅⋅⋅⋅ dv + G  dv2, 
(2)  ds1

2 = E1 du2 + 2F1 du ⋅⋅⋅⋅ dv + G1 dv2. 
 
 Suppose that these elements of arc-length are identical E ≡ E1, F ≡ F1, G ≡ G1 .  If u, v 
are expressed as functions of one parameter t then the arc-lengths of the two 
corresponding curves on the two surfaces that are comprised by the corresponding points 
will both be expressed by: 

1

0

2 22
t

t
E du Fdu dv C dv+ +∫ , 

 
in which t0, t1 are the values of t that corresponds to the extremities.  Conversely, if two 
arbitrary homologous arcs of two arbitrary homologous curves that are traced on the two 
surfaces have the same length then the arc-length elements (1) and (2) will be identical 
when one replaces u and v in them with arbitrary functions of t, and in turn, will be 
identical in u, v, du, dv.  One then says that the two surfaces are mappable to each other, 
or that they can be deduced from each other by deformation. 
 Under that correspondence, the function Φ will be the same for both surfaces, so 
formula (3) from § 1 will show that the angles are preserved.  However, the converse is 
not true.  The expression for cos V is homogeneous and of degree zero in E, F, G.  For the 
angles between the two arbitrary homologous curves to be equal, it is necessary and 
sufficient that one must have: 

1

E

E
=

1

F

F
=

1

G

G
= χ(u, v), 

 
and that ratio must be independent of du, dv, δu, δv.  In that case, one says that there is a 
conformal representation of the two surfaces on each other. 
 
 

The problem of conformal representation 
 

 If one is given two surfaces then it will always be possible to establish a conformal 
representation between them.  That amounts to saying that one can express u1, v1 as 
functions of u, v, in such a way that: 
 

E du2 + 2F du dv + G dv2 ≡ χ (u, v) (E1 ds2 + 2 F1 du dv + G1 dv2). 
 
 Decompose the two ds2 into first-degree factors.  Note that EG – F2 is the sum of the 
squares of the determinants that are deduced from the matrix: 
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x y z

u u u
x y z

v v v

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 . 

 
 EG – F2 is positive for any real surface.  Set: 
 

EG – F2 = H2, 
so: 

ds2 = E 
F iH F iH

du dv du dv
E E

+ −  + +  
  

. 

 
Each of the factors on the right-hand side admits an integrating factor, so: 
 

du +
F iH

E

+
dv ≡ M (u, v) dα (u, v), 

du +
F iH

E

−
dv ≡ N (u, v) dβ (u, v). 

 
 The functions α, β are independent.  Indeed, if H ≠ 0 then dα and dβ cannot both be 
zero, so we assume that condition is fulfilled.  We can then take α, β to be curvilinear 
coordinates on the first surface, and we will have [cf., Chap. III, § 4]: 
 

ds2 = P (u, v) dα ⋅⋅⋅⋅ dβ = Θ (α, β) dα ⋅⋅⋅⋅ dβ . 
 
 Likewise, for the second surface: 
 

ds1
2 = P1 (u1, v1) dα1 ⋅⋅⋅⋅ dβ1 = Θ1 (α1, β1) dα1 ⋅⋅⋅⋅ dβ1 , 

 
in which α1, β1 are two independent functions of the u1, v1 . 
 We will then have to satisfy the identity: 
 

Θ (α, β) dα ⋅⋅⋅⋅ dβ ≡ Ω (α, β) Θ1 (α1, β1) dα1 ⋅⋅⋅⋅ dβ1 , 
 
in which Ω, α1, β1 are unknown functions of α, β. 
 Hence, for dα = 0, one must have dα1 ⋅⋅⋅⋅ dβ1 = 0.  If we take dα1 = 0 then α1 will be a 
function of α, and similarly β1 will be a function of β : 
 

α1 (u1, v1) = ϕ (α (u, v)), β1 (u1, v1) = ψ (β (u, v)). 
 
 Upon taking β1 = 0, β1 will be a function of α, and similarly α1 will be a function of 
β : 

β1 (u1, v1) = ϕ (α (u, v)), α1 (u1, v1) = ψ (β (u, v)). 
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 One then sees that one can always establish a conformal representation, because in 
the two cases, for any functions ϕ and ψ, Θ1 (α1, β1) dα1 ⋅⋅⋅⋅ dβ1 will indeed be proportional 
to Θ (α, β) dα ⋅⋅⋅⋅ dβ , and we will have the general solution to the problem, moreover, 
since the functions ϕ and ψ are arbitrary. 
 
 

Condition for two surfaces to be mappable 
 

 Two given surfaces cannot be mapped to each other, in general. – In other words, if 
one is given two surfaces then it is generally impossible to establish a correspondence 
between them such that ds2 = ds1

2.  Indeed, if one repeats the preceding calculation then it 
will be necessary to satisfy the relation: 
 

Θ (α, β) dα ⋅⋅⋅⋅ dβ  ≡ Θ1 (α1, β1) dα1 ⋅⋅⋅⋅ dβ1 . 
 
As before, one must take, for example: 
 

α1 = ϕ (α),  β1 = ψ (β), 
 

and the relation to be verified will become: 
 

Θ (α, β) ≡ Θ1 (ϕ (α), ψ (β)) ϕ′ (α), ψ′ (β). 
 

It is easy to see that if the functions Θ, Θ1 are given then it will be impossible, in general, 
to find functions ϕ, ψ that satisfy that relation.  Indeed, consider the particular case in 
which the second surface is the plane z = 0.  In that case ds1

2 = dx2 + dy2 = dα1 ⋅⋅⋅⋅ dβ1 , and 
one must have: 

Θ (α, β) = ϕ′ (α) ψ′ (β) . 
 
When the function Θ is arbitrary, it will not be the product of a function of α with a 
function of β. 
 In order for that to be true, it is necessary and sufficient that one must have: 
 

log Θ (α, β) = log ϕ′ (α) + log ϕ′ (β) 
or 

2 log ( , )α β
α β

∂ Θ
∂ ⋅∂

= 0. 

 
 One might just as well show that a surface is not, in general, mappable to a plane and 
find a necessary and sufficient condition for a surface to be mappable to a plane.  We 
shall return to that later on (Chap. IV, § 3). 
 
 
 
 



25 Chapter II - Surfaces 

Conjugate directions and the form 2l d x∑  

 
 3. – Circumscribed developables.  Conjugate directions. – Correlative to the curves 
that are traced on a surface, which are loci of ∞1 points on the surface, we consider the 
circumscribed developables, which are envelopes of ∞1 planes tangent to the surface.  
Define the tangent plane to a point of the surface.  Let l, m, n be the direction coefficients 
of the normal, and suppose that the coordinates are rectangular.  For any curve on the 
surface: 

l dx + m dy + n dz = 0. 
 

In particular, for the coordinate curves u = const., v = const., we will have: 
 

 
x y z

l m n
u u u

∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

 

 
x y z

l m n
v v v

∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

 
and those relations will show that l, m, n are proportional to the functional determinants 
A, B, C: 

(1)  A = 
y z z y

u v u u

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 = 
( , )

( , )

D y z

D u v
, B = 

( , )

( , )

D z x

D u v
, C = 

( , )

( , )

D x y

D u v
. 

 
Moreover, we have that: 

A2 + B2 + C2 = H2. 
 
Hence, the direction cosines of the normal will be: 
 

(2)   λ = 
A

H
, µ = 

B

H
, ν = 

C

H
, 

 
in which the positive direction thus-defined will depend upon the sign that is adopted for 
H. 
 Consider a circumscribed developable.  We define that by expressing u, v as a 
function of one parameter t: 

u = ϕ (t), v = ψ (t). 
 

The point (u, v) will then describe a curve (C) on the surface, and the planes tangent to 
the surface at the various points of (C) will envelop the developable in question.  If X, Y, 
Z are the running coordinates then the tangent plane to the surface at the point (x, y, z) 
will be: 

l ⋅⋅⋅⋅ (X − x) + m ⋅⋅⋅⋅ (Y – y) + n ⋅⋅⋅⋅ (Z – z) = 0. 
 
The characteristic is defined by the preceding equation and the equation: 
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dl ⋅⋅⋅⋅ (X − x) + dm ⋅⋅⋅⋅ (Y – y) + dn ⋅⋅⋅⋅ (Z – z) = 0, 
 
which is obtained by differentiating the preceding one with respect to t and remarking 
that: 

l dx + m dy + n dz = 0. 
 

 Let us see what the direction of that characteristic is.  Let δx, δy, δz be its direction 
coefficients.  It is tangent to the surface, so one can choose δu, δv in such a manner that: 
 

,

,

,

x x
x u v

u v
y y

y u v
u v
z z

z u v
u v

δ δ δ

δ δ δ

δ δ δ

∂ ∂ = + ∂ ∂


∂ ∂ = + ∂ ∂
∂ ∂ = + ∂ ∂

 

 
and upon replacing X – x, Y – y, Z – z with the proportional quantities δx, δy, δz, we will 
get: 

dl ⋅⋅⋅⋅ dx + dm ⋅⋅⋅⋅ dy + dn ⋅⋅⋅⋅ dz = 0. 
Now: 

,

,

,

l l
dl du dv

u v
m m

dm du dv
u v
n n

dn du dv
u v

∂ ∂ = + ∂ ∂


∂ ∂ = + ∂ ∂
∂ ∂ = + ∂ ∂

 

 
so the preceding relation can be written: 
 

l l x x
du dv u v

u v u v
δ δ∂ ∂ ∂ ∂  + +  ∂ ∂ ∂ ∂  

∑ = 0. 

 
Arrange this with respect to the du, dv, δu, δv.  Note that: 
 

x
l

u

∂
∂∑ = 0. 

 
Hence, upon differentiating with respect to u and v, we will get: 
 

2

2

x l x
l

u u u

∂ ∂ ∂+
∂ ∂ ∂∑ ∑  = 0, 

2x l x
l

u v v u

∂ ∂ ∂+
∂ ∂ ∂ ∂∑ ∑  = 0. 

 
Similarly, the relation: 
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x
l

v

∂
∂∑ = 0 

will give: 
2

2

x l x
l

v v v

∂ ∂ ∂+
∂ ∂ ∂∑ ∑  = 0 

and: 
2x l x

l
u v u v

∂ ∂ ∂+
∂ ∂ ∂ ∂∑ ∑  = 0, 

 
in such a way that the desired relation can be written as: 
 

(3)   
2 2 2

2 2( )
x x x

l du u l du v dv u l dv v
u u v v

δ δ δ δ∂ ∂ ∂⋅ + ⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂∑ ∑ ∑ = 0. 

 
That is the relation that exists between the direction coefficients of the characteristic and 
the tangent to the contact curve.  It will obviously be just as clear in oblique coordinates, 
when l, m, n are then the coefficients of the equation of the tangent plane.  Set: 
 

(4)  E′ = 
2

2

x
l

u

∂
∂∑ ,  F′ = 

2x
l

u v

∂
∂ ∂∑ , G′ = 

2

2

x
l

v

∂
∂∑ , 

and 
(5)   Ψ (du, dv) = E′ du2 + 2F′ du dv + G′ dv2 = 0. 
 
With those notations, the relation that was found can be written: 
 

E′ ⋅⋅⋅⋅ du δu + 2F′ ⋅⋅⋅⋅ (du δv + dv δu) + G′ ⋅⋅⋅⋅ dv δv = 0, 
or: 

(6)    
( ) ( )du dv du dv

u v
du dv

δ δ∂Ψ ⋅ ∂Ψ ⋅+
∂ ∂

= 0. 

 
That relation, whose left-hand side is the polar form of the form Ψ, is symmetric with 
respect to d, δ . There is reciprocity then between the direction of the tangent to the 
contact curve of the developable and the direction of the characteristic of the tangent 
plane to that developable.  Those two directions are called conjugate directions. 
  In particular, we seek the condition for the curves u = const., v = const. to form a 
conjugate net; i.e., for their tangents to have conjugate directions at each point of the 
surface.  One would then have dv = 0, du = 0, so the condition is that one must have the 
identity F′ = 0. 
 
 Remark 1. – From the relation: 

dx = 
x x

du dv
u v

∂ ∂+
∂ ∂

, 

one will infer that: 
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d 2x = 
2 2 2

2 2 2 2
2 22

x x x x x
d u d v du du dv dv

u v u u v v

∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂ ∂

. 

 
 On the other hand: 

x
l

u

∂
∂∑ = 0, 

x
l

v

∂
∂∑ = 0. 

 
 One concludes from this that: 
 

2l d x∑ = 
2 2 2

2 2
2 22
x x x

l du l du dv l dv
u u v v

∂ ∂ ∂+ +
∂ ∂ ∂ ∂∑ ∑ ∑ ; 

i.e.: 
Ψ (du, dv) ≡ 2l d x∑ . 

 
 Remark 2. – In particular, if one takes l = A, m = B, n = C then the form Ψ will be 
identical to 2Ad x∑ , and its coefficients can be written in the form of determinants: 

 

E′  = 
2

2

x
A

u

∂
∂∑  = 

2 2 2

2 2 2

x y z

u u u
x y z

u u u
x y z

v v v

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

,  F′  = 
2x

A
u v

∂
∂ ∂∑  = 

2 2 2x y z

u v u v u v

x y z

u u u
x y z

v v v

∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

, 

G′  = 
2

2

x
A

v

∂
∂∑  = 

2 2 2

2 2 2

x y z

v v v
x y z

u u u
x y z

v v v

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

. 

 
 

Fundamental formulas that relate to a curve traced on a surface 
 

 4. – Fundamental elements of a curve on a surface. – We consider the Serret 
trihedron at a point on the curve and a trihedron that is composed of the tangent to the 
curve, the normal MN to the surface, and the tangent MN′ to the surface that is normal to 
the curve.  We choose the positive direction in such a fashion that the trihedron M ⋅⋅⋅⋅ TN′N 
thus-constituted will have the same disposition as the coordinate trihedron, in such a way 
that if l, m, n are the direction cosines of the normal to the surface, and α1, β1, γ1 are those 
of the tangent to the normal surface to the curve then one will have: 
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 N B (α″, β″, γ″) 

θ 

M 

(λ, µ, ν) 

T (α, β, γ) 

N′ (α1, β1, γ1) 

P (α′, β′, γ′) 

 
 

1 1 1

α β γ
α β γ
λ µ ν

 = 1. 

 
 The two trihedra considered have a common axis and the same direction, which is 
that of the tangent.  In order to define one of them in terms of the other, it will suffice to 
give the angle between one of the edges of one trihedron and one of the edges of the 
other.  We give the angle θ = (MP, MN) through which one must turn the principal semi-
normal MP on order to make it coincide with the semi-normal MN to the surface, and the 
positive sense of rotation is defined by the positive direction MT of the axis of rotation. 
 We seek the relations that exist between the direction cosines of the edges of those 
trihedra.  When one passes from one to the other, in reality, one performs a coordinate 
transformation around the origin in the normal plane.  Consider the unity point at a 
distance M along MN; its coordinates are λ, µ, ν.   When referred to the system PMB, it 
will have coordinates cos θ and sin θ, so: 
 

(1)     

cos sin ,

cos sin ,

cos sin .

λ α θ α θ
µ β θ β θ
ν γ θ γ θ

′ ′′= +
 ′ ′′= +
 ′ ′′= +

 

 
Similarly, the unity point at a distance on MN whose coordinates are α1, β1, γ1 when 

referred to the system PMB will have coordinates cos 
2

πθ − 
 

= sin θ and sin 
2

πθ − 
 

 = 

− cos θ, so: 

(1)[sic]    
1

1

1

sin cos ,

sin cos ,

sin cos .

α α θ α θ
β β θ β θ
γ γ θ γ θ

′ ′′= −
 ′ ′′= −
 ′ ′′= −

 

 
Therefore, once more, upon performing the inverse coordinate transformation: 
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(2)     

1

1

1

1

1

1

cos sin ,

cos sin ,

cos sin ,

sin cos ,

sin cos ,

sin cos .

α λ θ α θ
β µ θ β θ
γ ν θ γ θ

α λ θ α θ
β µ θ β θ
γ ν θ γ θ

′ = +
 ′ = +

′ = +
 ′′ = −
 ′′ = −
 ′′ = −

 

 
Differentiate formula (1) with respect to s; we will get: 
 

 
d

ds

λ
= (− α′ sin θ + α″ cos θ)

d

ds

θ
+ cos θ 

d

ds

α ′
+ sin θ 

d

ds

α ′′
 

 
and its analogues; 
 

 1d

ds

α
= (α′ cos θ + α″ sin θ)

d

ds

θ
+ sin θ 

d

ds

α ′
− cos θ 

d

ds

α ′′
 

 
and its analogues.  Hence, upon taking the Frenet formulas and relations (1), (2) into 
account: 

(3)   
d

ds

λ
= 1

1 cosd

T ds R

θ θα α − − 
 

 

and its analogues; similarly: 

(4)   1d

ds

α
= − 1 sind

T ds R

θ θλ α − − 
 

 

and its analogues.  Finally: 

(5)   
d

ds

α
= 

R

α ′
= 1

cos sin

R R

θ θλ α+  

and its analogues. 
 
 The fundamental formulas (3), (4), (5) permit one to calculate θ, R, T; i.e., to 
determine the osculating plane, curvature, and the torsion of the curve considered. 
 

Calculation of  
cos

R

θ
 

 
 The formulas (5) first give us: 
 

cos

R

θ
= 

d

ds

αλ∑ = 
d d

ds ds

αλ∑ = 
2 2

2

ds d x dxd s

ds
λ −

∑ = 
2

2

d x

ds

λ∑ = 
2

2

Ad x

H ds
∑ . 

 
Hence, from the preceding calculation, and upon setting, as we did at the end of that 
paragraph: 
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E′ = 
2

2

x
A

u

∂
∂∑ , F′ = 

2x
A

u v

∂
∂ ∂∑ , G′ = 

2

2

x
A

v

∂
∂∑ , 

we will get: 
cos

R

θ
= 

2 2

2

1 2E du F du dv G dv

H ds

′ ′ ′⋅ + ⋅ +
, 

or finally: 

(6)   
cos

R

θ
= 

1 ( , )

( , )

du dv

H du dv

Ψ⋅
Φ

. 

 
 

Calculation of  
sin

R

θ
 

 
 Formulas (5) again give: 
 

sin

R

θ
= 1

d

ds

αα∑ = 1

d dx

ds ds
α∑ = 

2 2

1 2

ds d x dx d s

ds
α −

∑ = 
2

1

2

d x

ds

α∑ . 

Note that: 

2
1

2

d x

ds

α∑ = 2 2 2
2

1
d x d y d z

ds

α β γ

λ µ ν
 = 2 2 2

2

1
dx dy dz

d x d y d z
ds

λ µ ν
. 

 
In order to calculate the last determinant, multiply it by: 
 

x y z

u u u
x y z

v v v
λ µ ν

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

= A λ + B µ + C ν = 
2 2 2A B C

H

+ +
 = H. 

The product is: 
 

2 2 2

2

x x
dx dx dx

u v
x x

d x d x d x
u v

x x

u v

λ

λ

λ λ λ

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂ ∂
∂ ∂

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 = 2 2 2

0

0 0 1

x x
dx dx

u v
x x

d x d x d x
u v

λ

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∑ ∑

∑ ∑ ∑  
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= 
2 2

x x
dx dx

u v
x x

d x d x
u v

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∑ ∑

∑ ∑
. 

Now: 

 
x

dx
u

∂ ⋅
∂∑  = 

x x x
du dv

u u v

∂ ∂ ∂ ⋅ + ∂ ∂ ∂ 
∑  = E du + F dv, 

 

 
x

dx
v

∂ ⋅
∂∑  = 

x x x
du dv

v u v

∂ ∂ ∂ ⋅ + ∂ ∂ ∂ 
∑  = F du + G dv, 

and 

2x
d x

u

∂
∂∑  = 

2 2 2
2 2 2 2

2 22
x x x x x x

d u d v du du dv dv
u u v u u v v

 ∂ ∂ ∂ ∂ ∂ ∂⋅ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∑  

= E d 2x + F d 2 x + 2 21 1

2 2

E E F G
du du dv dv

u v v u

∂ ∂ ∂ ∂ + + − ∂ ∂ ∂ ∂ 
, 

 

2x
d x

v

∂
∂∑  = 

2 2 2
2 2 2 2

2 22
x x x x x x

d u d v du du dv dv
v u v u u v v

 ∂ ∂ ∂ ∂ ∂ ∂⋅ + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
∑  

= F d 2x + G d 2 x + 2 21 1

2 2

F E G G
du du dv dv

u v u v

∂ ∂ ∂ ∂ − + + ∂ ∂ ∂ ∂ 
. 

 
 The preceding product will then be written: 
 

− 

2 2 2 2

2 2 2 2

1 1

2 2

1 1

2 2

E E F G
E d u F d v du du dv dv E du F dv

u v v u

F E G G
F d u G d v du du dv dv F du G dv

u v u v

∂ ∂ ∂ ∂ + + + + − + ∂ ∂ ∂ ∂ 

∂ ∂ ∂ ∂ + + − + + + ∂ ∂ ∂ ∂ 

. 

 
 The determinant is the sum of two determinants, the first of which is: 
 

− 
2 2

2 2

E d u F d v E du F dv

F d u G d v F du G dv

+ +
+ +

 = H 2 (du ⋅⋅⋅⋅ d 2v – dv ⋅⋅⋅⋅ d 2u), 

and finally: 

(7)  
sin

R

θ
=  

2 2

2 2 2
2

2 2

1 1

2 21
( )

1 1

2 2

E E F G
du du dv dv E du F dv

u v v u
H du d v dv d u

H ds F E G G
du du dv dv F du G dv

u v u v

 ∂ ∂ ∂ ∂ + + − +  ∂ ∂ ∂ ∂  − −
 ∂ ∂ ∂ ∂ − + + +  ∂ ∂ ∂ ∂  

. 
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Calculation of  
1 d

T ds

θ−  

 
 Finally, formula (4) gives us: 
 

1 d

T ds

θ−  = 1

d

ds

λα∑ = 
1

d d d
ds

α β γ
λ µ ν

λ µ ν
 = 

2

1
dx dy dz

d d d
ds

λ µ ν
λ µ ν

. 

 
In order to calculate the determinant, we again multiply it by the same determinant H.  
The product will be: 
 

2

x x
dx dx dx

u v
x x

d d d
u v

x x

u v

λ

λ λ λ λ

λ λ λ

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∂ ∂
∂ ∂

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 = 

0

0

0 0 1

E du F dv F du G dv

x x
d d

u v
λ λ

+ +
∂ ∂
∂ ∂∑ ∑ . 

 
Moreover, one will infer that: 

x

u
λ ∂

∂∑ = 0. 

Upon differentiating: 
 

x
d

u
λ ∂

∂∑ = −
2 2

2

x x
du dv

u u v
λ  ∂ ∂+ ∂ ∂ ∂ 

∑  = − 1

H
(E′ du + F′ dv) ; 

similarly: 
x

d
v

λ ∂
∂∑ = − 1

H
(F′ du + G′ dv) . 

The product is then: 

− 1 E du F dv F du G dv

E du F dv F du G dvH

+ +
′ ′ ′ ′+ +

 

and 

(8)    
1 d

T ds

θ− = 
2 2

1 E du F dv E du F dv

F du G dv F du G dvH ds

′ ′+ +
′ ′+ +

. 

 
 The three formulas (6), (7), (8) permit one calculate the three fundamental elements 
θ, R, T. 
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 Kinematic interpretation  
 

 The auxiliary elements: 
 

− 1

d

ds

λα∑ = 
1d

ds T

θ − , − 
d

ds

αλ∑ = 
cos

R

θ
,  1

d

ds

αα∑ = 
sin

R

θ
 

 
offer themselves up as the components of the instantaneous rotation of the trihedron M ⋅⋅⋅⋅ 
TN′ N around MT, MN′, MN, resp., when the point M describes the curve (C) with the 
velocity + 1. 
 Along with that trihedron, consider the tri-rectangular trihedron that was introduced 
by Darboux: 
 Let MO be a direction of the tangent plane that is chosen independently of any curve 
(C) at each point M (u, v) of the surface according to a rule that is arbitrary, but 
continuous, and let MO′ be the direction of the tangent plane that, along with MO and the 
normal MN, defines a tri-rectangular trihedron M ⋅⋅⋅⋅ OO′ N that has the same disposition as 
the coordinate trihedron.  That is the trihedron that we shall consider. 
 Since the direction cosines λ0, µ0, ν0 of MO and 0λ′ , 0µ ′ , 0ν ′  of MO′ are functions of 

(u, v), the projection of the instantaneous rotation of that trihedron along MN when M 
describes the curve (C) with the velocity + 1 will have the form: 
 

0
0

d

ds

λλ′∑ = 1r du r dv

ds

+
, 

 
in which r and r1 are functions of u, v. 
 Now, if one lets ϕ0 denote the angle (MO, MT) whose magnitude and sign are 
evaluated in the oriented tangent plane through MN then the instantaneous relative 
motion of the trihedron M ⋅⋅⋅⋅ TN′ N with respect to M ⋅⋅⋅⋅ OO′ N will be a rotation that is 
represented by a vector whose algebraic value is dϕ0 / ds and is carried along MN.  That 
vector is the geometric difference of the ones that represent instantaneous rotations of the 
two trihedra.  Upon projecting that equipollence onto MN, one will then have: 
 

  0d

ds

ϕ
= 1sin r du rdv

R ds

θ +− , 

which one can write: 

(9)   
sin

ds
R

θ − dϕ0 = r du + r1 dv. 

 

 The geometric element 0

sin
ds d

R

θ ϕ − 
 

 is a linear form in du, dv then. 

 
 It will be simple to calculate that linear form upon specifying the choice of the 
auxiliary direction from the origin MO (cf., Chap. IV, § 5). 

___________ 



 

CHAPTER III 
 

STUDY OF THE FUNDAMENTAL ELEMENTS OF 
CURVES ON A SURFACE 

 
Normal curvature 

 
 1. – Recall the first fundamental formula: 
 

cos

R

θ
= 

2 2

2 2

1 2

2

E du F du dv G dv

H E du F du dv G dv

′ ′ ′+ +
+ +

, 

 
in which the second differentials d 2 u, d 2 v do not occur.  cos θ / R depends upon only 
the ratio dv / du; i.e., the direction of the tangent.  Hence, cos θ / R is the same for all 
curves on the surface that are tangent to the same line.  Consider the center of curvature 
C along the principle normal MP then.  If one takes the point M to be the pole, the normal 
MN to the surface to be the polar axis, and the rotation of MN to MN′ to be the positive 
sense of the polar angles then R, θ will be the polar coordinates of the point C.  The 
equation: 

cos

R

θ
= const. 

 
will represent a circle.  Hence, the locus of the point C is a circle, which one can also see 
as follows: 

 N 

K 

M G N′ 

C 

P 

θ 

 
 
Consider the polar plane.  It is in the plane that is normal to the curve, and therefore it 
will meet the normal MN to the surface at a point K such that: 
 

R = MK cos θ, 
so: 

MK = 
cos

R

θ
. 

 
MK is constant, so: 
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 The polar lines to all of the curves on a surface will pass through the same point M of 
that surface, and the tangents to the same line at that point will meet at the same point K 
on the normal to the surface at M.  The locus of centers of curvature of all those curves 
will be the circle of diameter MK (Meusnier’s circle). 
 
 In particular, suppose that θ = 0.  The principal normal will coincide with the normal 
to the surface, and the osculating plane will pass through the normal, so it will be normal 
to the surface.  Cut the surface with that plane, so K will be the center of curvature at M 
of the section, and let Rn be the radius of curvature.  We will have: 
 

cos

R

θ
= 

1

nR
, 

 
which will lead us to give the name of normal curvature to the geometric element cos θ / 
R.  We will then conclude that: 

R = Rn cos θ. 
 Hence, we will have: 
 
 Meusnier’s theorem: The center of curvature at M of a curve that is traced on a 
surface is the projection of the center of curvature of the normal section that is tangent to 
the curve at M onto the osculating plane of that curve at M. 
 
 The theorem breaks down when: 
 

Ψ (du, dv) = E′ du2 + 2F′ du dv + G′ dv2 = 0. 
 
 Hence, cos θ / R = 0, so R will be infinite, in general.  The formula will become 
completely indeterminate when cos θ = 0.  The principal normal will then be 
perpendicular to the normal to the surface, so the osculating plane to the curve will be 
tangent to the surface.  The two tangents that correspond to that exceptional case are 
called the two asymptotic directions of the asymptotic tangents that correspond to the 
point M that is being considered. 
 The theorem will likewise break down when: 
 

Φ (du, dv) = E du2 + 2F du dv + G dv2 = 0. 
 
cos θ / R will then be infinite, so R will be zero, in general (cf., § 4).The direction of the 
tangent is such that: 

dx2 + dy2 + dz2 = 0, 
 
so it will be one of the two isotropic lines that pass through in the tangent plane at M. 
 
 Remark. – Since du, dv are, in fact, homogeneous coordinates for the corresponding 
direction dx, dy, dz of the tangent plane, one will verify that the orthogonality condition 
for the two tangents [pp. 20, eq. (4)] expresses the idea that they are harmonic conjugates 
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with respect to the isotropic directions of the tangent plane.  Similarly, the condition for 
the two tangents to be conjugate [pp. 26, eq. (6)] expresses the idea that they are 
harmonic conjugates with respect to the asymptotic lines. 
 
 

Variations of the normal curvature 
 

 2. – Meusnier’s theorem shows us that in order to study the curvature of the various 
curves on a surface that pass through a point of that surface, it is sufficient to consider the 
normal sections that pass through the various tangents to the surface of the point 
considered. 
 We saw above that: 

1

nR
= 

2 2

2 2

1 2

2

E du F du dv G dv

H E du F du dv G dv

′ ′ ′+ +
+ +

. 

 
 In the tangent plane at M, trace out the tangents MU, MV to the coordinate curves v = 
const. and u = const., resp., that pass through M, and consider the trihedron that is 
composed of MU, MV, and the normal MN to the surface.  If one chooses the senses of 
increasing u and increasing v along MU and MV, resp. to be the positive directions then 
the direction cosines of its axes will be: 
 

MU: 
dx

ds
=

x du

u ds

∂
∂

= 
1 x

uE

∂⋅
∂

= λ′,  
1 y

uE

∂⋅
∂

= µ′,  1 z

uE

∂⋅
∂

= ν′, 

 

MV: 
dx

ds
=

x dv

u ds

∂
∂

= 
1 x

vG

∂⋅
∂

= λ′,  
1 y

vG

∂⋅
∂

= µ′,  1 z

vG

∂⋅
∂

= ν′, 

 
MN: λ          ,  µ  , v  . 
 
 Consider an arbitrary tangent MT then that is defined by the values du, dv of the 
differentials of the coordinates u, v.  The direction cosines are: 
 

,

,

.

dx x du x dv du dv
E G

ds u ds v ds ds ds
dy y du y dv du dv

E G
ds u ds v ds ds ds
dz z du z dv du dv

E G
ds u ds v ds ds ds

λ λ

µ µ

ν ν

∂ ∂ ′ ′′= ⋅ + ⋅ = ⋅ + ⋅ ∂ ∂


∂ ∂ ′ ′′= ⋅ + ⋅ = ⋅ + ⋅ ∂ ∂
∂ ∂ ′ ′′= ⋅ + ⋅ = ⋅ + ⋅ ∂ ∂

 

 
 Those formulas show that the director segment of MT is the geometric sum of two 
segments whose algebraic values are: 
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P = 
du

E
ds

, Q = 
dv

G
ds

, 

 
which are measured along MU and MV, resp.  In other words, P, Q are the direction 
parameters of MT in the coordinate system UMV. 
 Upon introducing those direction parameters, the formula that gives Rn will become: 
 

1

nR
= 

2 2
1

2
du du dv dv

E F G
H ds ds ds ds

    ′ ′ ′+ ⋅ +    
     

 = 2 21 2F G
E P PQ Q

H GEG

 ′ ′′ + + 
  

. 

 
 If one considers the point that is obtained by measuring out a segment that is equal to 

| |nR± along MT, starting at M, then the locus of that point, whose coordinates in the 

MUV system are: 

U = | |nP R± , V = | |nQ R± , 

will have the equation: 
2 22E F G

U UV V
E GEG

′ ′ ′
+ + = H. 

 
 It is a conic whose center is situated in the tangent plane, and one calls that conic the 
indicatrix of the surface at the point M.  Once the conic has been traced, one will 
immediately find that the square of the measure of the radius vector will be the radius of 
curvature of an arbitrary normal section, and one will painlessly conclude the variation of 
the radius of curvature when MT varies. 

 The nature of the indicatrix depends upon the sign of 
2E G F

E G

′ ′ ′−
⋅

, or, since E, G are 

positive, the sign of E′ G′ – F′ 2 : 
 
 1. E′ G′ – F′ 2 > 0.  The indicatrix is an ellipse, so all of the radii of curvature have 
the same sign, and one says that the surface is convex at the point M.  It is completely on 
one side of the tangent plane at M in the neighborhood of the point M. 
 
 2. E′ G′ – F′ 2 < 0.  The indicatrix is a hyperbola.  The surface crosses its tangent 
plane at the point M.  It is said to have opposite curvatures at the point M. 
 
 3. E′ G′ – F′ 2 = 0.  The indicatrix has parabolic type, and since it has a center, it will 
reduce to a system of two parallel lines.  The point M is then called a parabolic point. 
 
 Consider the particular case in which 1 / Rn   is the same, no matter what section one 
considers.  For that to be true, it is necessary and sufficient that 1 / Rn should be 
independent of du / dv; hence: 

E

E

′
= 

F

F

′
 = 

G

G

′
. 
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Now, the angle ω that MU makes with MV is given by the formula: 
 

cos ω = ∑ λ′ λ″ = 
F

EG
. 

 The preceding conditions are then written: 
 

E

E

′
= 

/

cos

F EG

ω
 = 

G

G

′
, 

 
and express the idea that the indicatrix is a circle, which should be obvious a priori. 
 The point M is then an umbilic. 
 
 Remark. – In the case where the equation of the surface is: 
 

z = f (x, y), 
 
when we take the usual notations, the element of arc length will be expressed by: 
 

ds2 = (1 + p2) ⋅⋅⋅⋅ dx2 + 2pq ⋅⋅⋅⋅ dx ⋅⋅⋅⋅ dy + (1 + q2) dy2, 
so: 

E = 1 + p2, F = p ⋅⋅⋅⋅ q, G = 1 + q2, 
and 

H = 2E G F⋅ − = 2 21 p q+ + . 
 
 Now, the coefficients of the tangent plane to the surface are: 
 

A = − p, B = − q, C = 1, 
and: 

∑ Λ d 2 x = − ∑ dΛ ⋅⋅⋅⋅ d x = dp ⋅⋅⋅⋅ dx + dq ⋅⋅⋅⋅ dy. 
But: 

dp = r dx + s dy, dq = s dx + t dy, 
so: 

E′ = r,  F′ = s,  G′ = t, 
and: 

E′ G′ – F′ 2 = rt – s2. 
 
 

Principal sections 
 
 3. – We seek the directions of the axes of the indicatrix.  They are conjugate 
directions with respect to the asymptotic directions of the indicatrix that are defined by: 
 

Ψ (du, dv) = 0, 
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and with respect to the isotropic directions of the tangent plane that are defined by: 
 

Φ (du, dv) = 0. 
 

 They are then defined by the condition: 
 

/

/

du

du

∂Ψ ∂
∂Φ ∂

= 
/

/

dv

dv

∂Ψ ∂
∂Φ ∂

 =
( , )

( , )

du dv

du dv

Ψ
Φ

= 
H

R
 = S, 

 
since du, dv are homogeneous coordinates for the directions MT of the tangent plane. 
 They are the principal directions.  The corresponding radii of curvature are called 
principal radii of curvature. 
 The equation that defines the principal directions is then: 
 

E du F dv F du G dv

E du F dv F du G dv

⋅ + ⋅ ⋅ + ⋅
′ ′ ′ ′⋅ + ⋅ ⋅ + ⋅

 = 0. 

 

The left-hand side 
( , )

( , )

D

D du dv

Φ Ψ
 is a simultaneous covariant for the forms Φ, Ψ. 

 The equation of the principal radii of curvature is obtained by eliminating du, dv from 
the equations: 

du

∂Ψ
∂

= S 
du

∂Φ
∂

,  
dv

∂Ψ
∂

= S 
dv

∂Φ
∂

, 

which gives: 
E SE F SF

F SF G SG

′ ′− −
′ ′− −

 = 0, 

or: 
S2 (E ⋅⋅⋅⋅ G – F2) – S (E ⋅⋅⋅⋅ G′ + G ⋅⋅⋅⋅ E′ – 2FF′ ) + E′ G′ – F′ 2 = 0, 

with: 

S = 
H

R
. 

 
 Euler’s formula.  – Now suppose that the coordinate curves are tangent to the 
principal directions; those directions are rectangular.  Hence, the coordinate curves 
constitute an orthogonal net.  Moreover, the indicatrix is referred to its axes, so: 
 

F′ = 0,  H = EG , 
and 

1

nR
= 2 2E G

P Q
E EG G EG

′ ′
+ . 

 
 If we suppose that P = 1, Q = 0 then we will have one of the principal radii of 
curvature R1 : 



§ 3.  Principal sections. 41 

1

1

R
= 

E

E EG

′
, 

 
and for P = 0, Q = 1, we will have the other principal radius of curvature R2 : 
 

2

1

R
= 

G

G EG

′
, 

and the formula will become: 
1

nR
= 

2 2

1 2

P Q

R R
+ . 

 
However, since the coordinates are rectangular here, if ϕ is the angle (MU, MT) between 
the tangent MT and the principal direction MU then P = cos ϕ, Q = sin ϕ, and we will get 
Euler’s formula: 

1

nR
= 

2 2

1 2

cos sin

R R

ϕ ϕ+ . 

 
 Consider the tangent MT′, which is perpendicular to MT.  One must then replace ϕ 
with ϕ + π / 2, and we will get: 

1

nR′
= 

2 2

1 2

sin sco

R R

ϕ ϕ+ , 

so: 
1 1

n nR R
+

′
= 

1 2

1 1

R R
+ . 

 
Therefore, the arithmetic mean of the curvatures of two arbitrary rectangular normal 
sections is equal to the arithmetic mean of the curvatures of the principal normal 

sections.  That constant quantity 
1 2

1 1 1

2 R R

 
+ 

 
 is called the mean curvature of the surface 

at the point considered. 
 
 

Minimal lines 
 

 4. – There are three remarkable pairs of directions in the tangent plane at each point 
of a surface: The isotropic lines of the tangent plane, which are defined by Φ (du, dv) = 0, 
the asymptotic directions of the indicatrix, which are defined by Ψ (du, dv) = 0, and the 
principal directions, which are harmonically conjugate with respect to the preceding two 

pairs and are defined by 
( , )

( , )

D

D du dv

Φ Ψ
= 0. 



42 Chapter III – Study of the fundamental elements of curves on a surface 

 Consider the isotropic directions, and look for the existence of curves on the surface 
that are tangent to an isotropic direction at each of their points.  That amounts to 
integrating the differential equation: 

Φ (du, dv) = 0. 
 
One will then obtain the minimal curves of the surface.  The preceding equation will 
decompose into two first-order equations of first-degree in dv / du.  Hence, there are two 
families of minimal curves on a surface, and one and only one curve of each family will 
pass through each point of the surface, in general.  Those curves are imaginaries.  Along 
each of them, one has: 

ds2 = dx2 + dy2 + dz2 = 0. 
 

That is why one also calls them lines of null length.  If one takes the lines to be 
coordinates lines then the equation Φ (du, dv) = 0 will be verified for du = 0 and dv = 0, 
and one will have: 

E = 0, G = 0 
 
identically, and the element of arc length will reduce to the characteristic form: 
 

ds2 = 2F du ⋅ dv. 
 
 Remark. – The calculation that is necessary if one is to effectively refer the surface 
to its minimal lines was indicated incidentally in Chap. II (pp. 22).  In general, two 
distinct families of curves on the surface are defined by two equations: 
 

ϕ (u, v) = const., ψ (u, v) = const., 
 

in which ϕ and ψ are independent functions, so it will suffice to take those curves to be 
coordinate curves, and make the change of parameters u, v in the equations (S) of the 
surface (pp. 20) that is defined by the formulas: 
 

u1 = ϕ (u, v), v1 = ψ (u, v). 
 

 Isotropic developables. – Equations of minimal curves. – In general, the two systems 
of minimal lines are distinct.  In order for them to coincide, it is necessary and sufficient 
that one must have: 

EG – F2 = H2 = 0 
 
identically.  In that case, A2 + B2 + C2 = 0, and the fundamental formulas will no longer 
apply.  In order to study the nature of such a surface, consider the tangent plane: 
 

A (X – x) + B (Y – y) + C (Z – z) = 0. 
 
That plane will then be tangent to an isotropic cone; it is then an isotropic plane.  All 
tangent planes to the surface will be isotropic then.  We seek the general equation of the 
isotropic planes.  Let: 
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ax + by + cz + d = 0 
 

be the equation of such a plane.  a, b, c are coupled by the condition: 
 

a2 + b2 + c2 = 0, 
or 

(a + ib) (a – ib) = − c2. 
Set: 

a + ib = tc, a – ib = − 
1

t
c, 

or: 
a + ib – tc = 0,  ta – ibt + c = 0. 

 
We infer from these two homogeneous relations in a, b, c that: 
 

21

a

t−
= 2(1 )

b

i t+
=  

2

c

t−
. 

 
Hence, we have the general equation of the isotropic planes: 
 
(1)    (1 – t2) x + i (1 + t2) y – 2tz + 2w = 0. 
 
An isotropic plane depends upon two parameters.  The surface considered is the envelope 
of its isotropic planes.  If those planes depend upon two parameters then it will reduce to 
the imaginary circle at infinity.  Therefore, suppose that w is a function of t, for example.  
The tangent plane depends upon only one parameter, so the surface will be developable, 
namely, an isotropic developable. 
 We seek its edge of regression.  Differentiate equation (1) twice with respect to t.  
Upon denoting derivatives with respect to t by primes, we will have: 
 
(2)     − tx + ity – z + w′ = 0, 
(3)     − x + iy + w″ = 0. 
 
Equations (1), (2), (3) will then define the edge of regression.  (3) gives: 
 

x – iy = w″. 
(2) is written: 

z = − t (x – iy) + w′ = w′ − tw″, 
and (1) becomes: 
 

x + iy = t2 (x – iy) + 2tz – 2w = t 2 w″ + 2t (w′ – tw″) – 2w. 
 
Hence, the equations of the edge of regression will be: 
 
(4)   x – iy = w″′,      d (x + iy) = − t2 w″′2 dt,      dz = − tw″′ dt. 
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Hence: 
d (x – iy) ⋅⋅⋅⋅ d (x + iy) = − t2 w″′2 dt2 = − dz2 

or: 
d (x – iy) ⋅⋅⋅⋅ d (x + iy) + dz2 = 0, 

so 
dx2 + dy2 + dz2 = 0. 

 
The curve that was found will then be a minimal curve.  The edge of regression of an 
isotropic developable is a minimal curve. 
 Conversely, consider a minimal curve.  The coordinates x, y, z of one of its points are 
such that: 

dx2 + dy2 + dz2 = 0. 
Differentiate that and get: 

dx ⋅⋅⋅⋅ d 2x + dy ⋅⋅⋅⋅ d 2y + dz ⋅⋅⋅⋅ d 2z = 0. 
 
However, the Lagrange identity will then give us: 
 

∑ dx2 ∑ (d 2x)2 − ∑ dx ⋅⋅⋅⋅ d 2x = ∑ (dy ⋅⋅⋅⋅ d 2z – dz ⋅⋅⋅⋅ d 2y)2 = 0; 
 
i.e., if A, B, C denote the coefficients of the osculating plane: 
 

A2 + B2 + C2 = 0. 
 

The osculating plane at a point of a minimal curve is isotropic.  Any minimal curve can 
be considered to be the edge of regression of an isotropic developable. 
 It then results that the edge of regression is the most general minimal curve, and that 
the coordinates of a point on an arbitrary minimal curve are given by formulas (4), in 
which w is an arbitrary function of t, and w′, w″ are its first and second derivatives, resp. 
 
 Remark. – Those formulas can serve for the study of the minimal curves, since the 
classical theory of curvature and torsion does not apply to those curves.  On that 
occasion, observe that the plane curves that are situated in isotropic planes will likewise 
be singular curves from that same viewpoint. 
 
 

Asymptotic lines 
 

 5. – If we now seek the curves on a surface that are tangent to an asymptote of the 
indicatrix at each of their points then we will be led to integrate the equation: 
 
(1)      Ψ (du, dv) = 0, 
 
and we will obtain the asymptotic lines.  As before, we see that there are two families of 
asymptotic lines, and one and only one asymptote of each family will pass through any 
point of the surface, in general. 
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 From the remarks in § 3 of Chap. II (pp. 28), the preceding differential equation is 
written: 

∑ A d 2x = 0. 
Moreover: 

∑ A dx = 0; 
 
however, A, B, C are the coefficients of the tangent plane to the surface.  Equation (1) 
then expresses the idea that the tangent plane contains the direction d 2x, d 2y, d 2z, in 
addition to the direction dx, dy, dz; i.e., that it coincides with the osculating plane of the 
curve.  Therefore: The asymptotic lines are defined by the condition that the osculating 
plane at each of their points should be tangent to the surface.  In particular, any 
rectilinear generator of a surface is an asymptotic line, because since the osculating 
plane at a point of a line is indeterminate, it can be considered to coincide with the 
tangent plane at that point of the surface.  Therefore, if a surface is ruled then one of the 
systems of asymptotic lines will be composed of rectilinear generators. 
 If we take the asymptotic lines to be coordinate curves then we will have: 
 

E′ = G′ = 0, 
 
and the form Ψ will reduce to the characteristic form: 
 

Ψ (du, dv) = 2 F′ du ⋅⋅⋅⋅ dv. 
 
The asymptotic lines are real at the points where the surface has opposite curvatures, 
which will be imaginary at the points where it is convex.  They are distinct, in general, as 
well as distinct from the minimal lines.  We shall examine the exceptional cases: 
 
 1. The asymptotic lines coincide. – Take the equation of the surface in the form: 
 

z = f (x, y). 
 

The condition for the two families of asymptotic lines to coincide, namely: 
 

E′ G′ – F′ 2 = 0, 
will then reduce to: 

rt – s2 = 0 
 
here.  All of the points of the surface must be parabolic.  That expresses the idea that the 
total differentials: 

dp = r dx + s dy, dq = s dx + t dy 
 
are two linear forms in dx and dy that are not independent; i.e., that the functions p and q 
of x and y are functions of each other. (For example, q is a function of p).  On the other 
hand, the tangent plane at a point has the equation: 
 

p (X – x) + q (Y – y) – (Z – z) = 0, 
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or: 
pX + qY – Z = px + qy – z. 

However: 
d (px + qy – z) = x ⋅⋅⋅⋅ dp + y ⋅⋅⋅⋅ dq, 

 
and we see that if dp = 0, since that condition is already implied by dq = 0, then we will 
have, at the same time, d (px + qy – z) = 0.  Hence, px + qy – z is a function p, as well as 
q, and the tangent plane will then depend upon just one parameter, and the surface will be 
developable.  The converse is immediate, because if the equation pX + qY – Z = px + qy – 
z depends only upon one parameter θ then dp and dq will be proportional to dθ, and the 
two linear forms dp = r ⋅⋅⋅⋅ dx + s ⋅⋅⋅⋅ dy, dq = s ⋅⋅⋅⋅ dx + r ⋅⋅⋅⋅ dy will not be independent.  One will 
then have: 

r s

s t
 = rt – s2 = 0. 

 
 Hence, the surfaces with double asymptotic lines are the developable surfaces, and 
the double asymptotic lines are the rectilinear generators.  For the isotropic 
developables, the double asymptotic lines coincide with the double minimal lines, which 
are the isotropic rectilinear generators. 
 
 Remark. – For the developable surfaces, since the edge of regression has its 
osculating plane tangent to the surface, it must be considered to be an asymptotic line.  
Indeed, it is a singular integral of the differential equation of the asymptotic lines. 
 
 2. A family of asymptotic lines coincides with a family of minimal lines. – Omit the 
case of isotropic developables, which was just examined.  Take the minimal lines to be 
coordinates curves.  We will then have E = 0, G = 0, and if we suppose that the family v 
= const. constitutes a family of asymptotes then dv = 0 must be a solution of Ψ (du, dv) = 
0, so E′ = 0; i.e.: 

E′ = 

2 2 2

2 2 2

x y z

u u u
x x x

v v v

x y z

u u u

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 0. 

 
There will then exist the same homogeneous, linear relations between the elements of the 
rows of that determinant, namely: 

2

2

2

2

2

2

,

,

.

x x x
M N

u u v

y y y
M N

u u v

z z z
M N

u u v

 ∂ ∂ ∂= + ∂ ∂ ∂
∂ ∂ ∂ = + ∂ ∂ ∂

 ∂ ∂ ∂= + ∂ ∂ ∂
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Multiply them by 
x

u

∂
∂

, 
y

u

∂
∂

, 
z

u

∂
∂

, and add them.  The coefficient of M is E = 0, and that of 

N is F, so the left-hand side will be 
1

2

E

u

∂
∂

= 0.  Hence, NF = 0, and since F ≠ 0 (since the 

minimal lines are distinct), N = 0, in such a way: 
 

2

2

x

u
x

u

∂
∂
∂
∂

= 

2

2

y

u
y

u

∂
∂
∂
∂

= 

2

2

z

u
z

u

∂
∂
∂
∂

= M. 

 
 The curves v = const. will then be lines, and since they are minimal lines, they will be 
isotropic lines.  Conversely, if the curves v = const. are lines then there will exist a 
function M of u, v such that: 
 

2

2

x

u

∂
∂

= 
x

M
u

∂
∂

,  
2

2

y

u

∂
∂

= 
y

M
u

∂
∂

,  
2

2

z

u

∂
∂

= 
z

M
u

∂
∂

; 

hence: 

∑ A
2

2

x

u

∂
∂

 = M ⋅⋅⋅⋅ ∑ A
x

u

∂
∂

 =  0, 

 
in such a way that the curves v = const., which are minimal lines, will be asymptotic 
lines.  Hence, the surfaces that have a family of asymptotes that coincide with a family of 
minimal lines are the ruled surfaces with isotropic generators, and those generators will 
be the asymptotes that coincide with the minimal curves. 
 
 3. Both systems of asymptotes are minimal curves. – The quadratic forms Φ and Ψ 
are proportional then, and: 

E

E

′
= 

F

F

′
= 

G

G

′
. 

 
The indicatrix at an arbitrary point is a circle, so all of the points of the surface are 
umbilics.  Upon once more taking the minimal lines to be coordinate curves, the 
preceding conditions will reduce to E′ = G′  = 0.  Upon repeating the calculations as 
before, one will see that the surface admits two systems of isotropic rectilinear 
generators, and conversely.  It is a sphere. 

 
 

Minimal surfaces 
 
 6. – The latter case leads us to study the surfaces for which the indicatrix is always a 
circle.  We now examine the case in which that indicatrix is always an equilateral 
hyperbola.  That amounts to looking for the surfaces for which the asymptotic lines are 
orthogonal.  For that to be true, it is necessary and sufficient that: 
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EG′ + GE′ − 2FF′ = 0, 
or 

1 2

1 1

R R
+ = 0. 

 
The mean curvature is zero, so the radii of curvature of each point are opposite.  The 
surface is called a minimal surface. 
 Take the minimal lines to be coordinates.  One will then have E = 0, G = 0, and: 
 

ds2 = 2F ⋅⋅⋅⋅ du ⋅⋅⋅⋅ dv. 
 

The preceding conditions then give F′ = 0, and: 
 

Ψ (du, dv) = E′  du2 + G′  dv2. 
However,: 

F′ = 

2 2 2

x y z

u u u
x y z

v v v

x y z

u v u v u v

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
There then exists the same homogeneous, linear relationship between the line elements, 
namely: 

2

2

2

,

,

.

x x x
M N

u v u v

y y y
M N

u v u v

z z z
M N

u v u v

 ∂ ∂ ∂= + ∂ ∂ ∂ ∂
 ∂ ∂ ∂ = + ∂ ∂ ∂ ∂
 ∂ ∂ ∂= +

∂ ∂ ∂ ∂

 

 

Multiply these by 
x

u

∂
∂

, 
y

u

∂
∂

, 
z

u

∂
∂

, resp., and add them.  The left-hand side will be 
1

2

E

u

∂
∂

= 

0, the coefficient of M will be E = 0, and that of N will be F.  Hence, NF = 0, and since F 

≠ 0, N = 0.  Similarly, upon multiplying them by 
x

v

∂
∂

, 
y

v

∂
∂

, 
z

v

∂
∂

, resp., and adding them, 

one will find that M = 0; thus: 
 

2x

u v

∂
∂ ∂

= 0, 
2 y

u v

∂
∂ ∂

= 0, 
2z

u v

∂
∂ ∂

= 0, 

which will give: 
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x = f (u) + ϕ (v), y = g (u) + ψ (v), z = h (u) + χ (v). 
 
The surfaces that are represented by equations of that form are called surfaces of 
translation.  They can be generated in two different ways by translating a curve of 
invariable form so that each point describes another curve.  Indeed, consider the four 
points M0 (u0, v0), M1 (u, v0), M2 (u0, v), M (u, v) on the surface.  From the preceding 
formulas, those points will be the vertices of a parallelogram.  If one varies u, while 
fixing v0 then the point M1 will describe a curve (Γ) on the surface.  Similarly, if one 
varies v, while leaving u0 fixed then the point M2 will describe another curve (Γ′) on the 
surface.  The point M0 will belong to both curves.  One can then consider the surface as 
being generated by the curve (Γ), when it is has been animated with a translational 
motion under which the point M0 describes the curve (Γ′), or by the curve (Γ′), when it 
has been animated with a translational motion in which the point M0 describes the curve 
(Γ). 
 The six functions f, g, h, ϕ, ψ, χ are not arbitrary for the minimal surfaces.  It must 
then satisfy the relations: 
 

E = f′ 2 + g′ 2 + h′ 2 = 0, G = ϕ′ 2 + ψ′ 2 + χ′ 2 = 0. 
 
It will then result that the curve: 
 

x = f (u), y = g (u), z = h (u) 
 

is a minimal curve, and if we refer to the general equations of a minimal curve then, if F 
is an arbitrary function of u and F′, F″, F″′ are its successive derivatives, we will see that 
we can write: 
 f (u) – i g (u) = F″ (u),  
 f (u) + i g (u) = − 2F (u) + 2u F′ (u) – u2 F″ (u), 
 h (u) = F′ (u) – u F″ (u).  
Likewise, if the curve: 

x = ϕ (v), y = ψ (v), z = χ (v) 
 
is a minimal curve then, if G is an arbitrary function of v, and G′, G″, G″′ are its 
successive derivatives, one will have: 
 
 ϕ (v) – i ψ (v) = G″ (v),  
 ϕ (v) + i ψ (v) = − 2G (v) + 2v G′ (v) – v2 G″ (v), 
 h (v) = G′ (v) – v G″ (v), 
 
so the coordinates of a point on the most general minimal surface will be: 
 
 x + iy = − 2F (u) + 2u ⋅⋅⋅⋅ F′ (u) – u2 F″ (u) – 2 G (v) + 2v G′ (v) − v2 G″ (v), 
 x – iy = F″ (u) + G″ (v), 
 z = F′  (u) – u F″ (u) + G′  (v) – v G″ (v). 
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 Remark. – In the case in which the equation of the surface has been put into the 
form: 

z = f (x, y), 
 
when the partial differential equation for minimal surfaces has been integrated, from the 
formulas on page 40, that will give: 
 

(1 + p2) ⋅⋅⋅⋅ t + (1 + q2) ⋅⋅⋅⋅ r – 2pqs = 0. 
 
 

Lines of curvature 
 

 7. – The lines of curvature are the lines that are tangent to the principal direction or 
the axes of the indicatrix at each of their points.  They will then be integrals of the 
equation: 

( ) ( ) ( ) ( )du dv dv du

∂Φ ∂Ψ ∂Φ ∂Ψ⋅ − ⋅
∂ ∂ ∂ ∂

= 0, 

 
so the principal directions will be conjugate and orthogonal; i.e., they will be harmonic 
conjugates with respect to the isotropic directions and the asymptotic directions.  If those 
two pairs constitute four distinct directions then the principal directions will also be 
distinct from each other and the preceding ones.  It will then result that there are no other 
singular cases for the lines of curvature than the ones that have been encountered already 
for the minimal lines and asymptotic lines. 
 
 1. Non-developable ruled surfaces with isotropic generators (except for the sphere).  
A family of minimal lines is composed of asymptotic lines.  If we take the minimal lines 
to be the coordinate lines then we will have: 
 

Φ = 2F ⋅⋅⋅⋅ du ⋅⋅⋅⋅ dv. 
 

 If we suppose the lines u = const. coincide with the asymptotes then du = 0 must 
annul Ψ; hence: 

Ψ = E′ du2 + 2F ⋅⋅⋅⋅ du ⋅⋅⋅⋅ dv. 
 

 The differential equation of the lines of curvature is then: 
 

F ⋅⋅⋅⋅ dv ⋅⋅⋅⋅ F′ du − F ⋅⋅⋅⋅ du (E′ ⋅⋅⋅⋅ du + F′ ⋅⋅⋅⋅ dv) = 0 
or 

E′ ⋅⋅⋅⋅ F ⋅⋅⋅⋅ du2 = 0. 
 
 The lines of curvature are double, which are the isotropic rectilinear generators that 
already define minimal lines and asymptotes. 
 
 2. The sphere.  Φ, Ψ are proportional, so the differential equation is verified 
identically.  All of the lines on the sphere are lines of curvature. 
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 3. Non-isotropic developables.  Take the rectilinear generators to be the curves u = 
const., which are double asymptotic lines, and get: 
 

Φ = E ⋅⋅⋅⋅ du2 + 2F ⋅⋅⋅⋅ du ⋅⋅⋅⋅ dv + G ⋅⋅⋅⋅ dv2, 
Ψ = E′ ⋅⋅⋅⋅ du2. 

 
The differential equation of the lines of curvature will then be: 
 

(F ⋅⋅⋅⋅ du + G ⋅⋅⋅⋅ dv) E′ ⋅⋅⋅⋅ du = 0. 
 
 The lines of curvature are the rectilinear generators, which are already asymptotic 
lines, and their orthogonal trajectories. 
 
 4. Isotropic developable surfaces.  If we take the curves v = const. to be the double 
minimal lines that coincide with the double asymptotic lines then we will have: 
 

Φ = E ⋅⋅⋅⋅ du2, Ψ = E′ ⋅⋅⋅⋅ du2. 
 

 The equation for the lines of curvature is verified identically.  All lines on isotropic 
developables are lines of curvature. 
 
 5. The plane. – For a plane, the minimal curves are lines, and any line in the plane is 
an asymptotic line, as well as a line of curvature. 
 
 Remark. – In order for the coordinate curves to be lines of curvature, it is first 
necessary that they should be orthogonal, so F = 0.  The differential equation of the lines 
of curvature will then reduce to: 
 

EF′ du2 + (EG′ – GE′ ) du dv – GF′ dv2 = 0. 
 
 Hence, upon omitting the singular cases, the fact that the lines of curvature are 
coordinate curves is characterized by the identities F = 0, F′ = 0. 
 In Chap. II, § 3, it was shown that only the identity F′ = 0 expresses the idea that the 
tangents to the coordinate curves have conjugate directions at each point of the surface, 
which one can express by saying that those curves form a conjugate net. 
 From that, one can characterize the lines of curvature by saying that they form an 
orthogonal conjugate net. 
 

Geodesic curvature 
 

 8. – Let us now examine the second fundamental formula: 
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sin

R

θ
=

2 2

2 2 2
3

2 2

1 1

2 21
( )

1 1

2 2

E E F G
du du dv dv E du F dv

u v v u
H du d v dvd u

H ds F E G G
du du dv dv F du G dv

u v u v

 ∂ ∂ ∂ ∂ + + − +  ∂ ∂ ∂ ∂  − −
 ∂ ∂ ∂ ∂ − + + +  ∂ ∂ ∂ ∂  

. 

 
 

N′ G M 

θ C 

P 

K 
N 

 
 θ is the angle (MN, MP) between the principal normal and the normal to the surface 
(§ 1).  Let C be the center of curvature.  Consider the polar line that meets the tangent 
plane along MN′ at G. 

MC = MG cos 
2

πθ − 
 

 = MG sin θ. 

 
 MG is what one calls the radius of geodesic curvature Rg .  One will then have: 
 

R = Rg sin θ. 
 

 The point G is the center of geodesic curvature.  The projection of the center of 
geodesic curvature onto the principal normal is the center of curvature.  The inverse of 
the radius of geodesic curvature is called the geodesic curvature.  Its expression depends 
upon only E, F, G, and their derivatives.  The geodesic curvature is preserved when one 
deforms the surface. 
 We seek whether there exist curves on the surface whose radius of geodesic curvature 
is constantly infinite; such curves are called geodesic lines.  sin θ / R is constantly zero 
then, and if those curves are not lines, so R is not constantly infinite, then sin θ = 0.  The 
osculating plane is normal to the surface at each point of the curve, and conversely.  Any 
line that is traced on the surface is, moreover, obviously a geodesic line, and can be 
considered to satisfy the preceding condition. 
 The geodesic lines are defined by a differential equation of the form: 
 

v″ = Φ (u, v, v′). 
 
 It results from the study of equations of that form that: 
 
 There is, in general, one and only one geodesic line that passes through each point of 
the surface and is tangent to a given direction in the tangent plane at that point.  There is, 
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in general, one and only one of them that joins two give points in a sufficiently-small 
domain. 
 Take the coordinate lines to the minimal lines.  Hence: 
 

E = G = 0 and H 2 = − F 2. 
 

 The differential equation of the geodesic lines becomes: 
 

− F2 (du ⋅⋅⋅⋅ d 2v – dv d 2u) − 

2

2

F
dv F dv

v
F

du F du
u

∂
∂
∂
∂

 = 0 

or: 

du ⋅⋅⋅⋅ d 2v – dv d 2u + 
logF

v

∂ ⋅
∂

du ⋅⋅⋅⋅ dv2 – 
logF

u

∂ ⋅
∂

du2 dv = 0. 

 
One sees that it is verified for du = 0, dv = 0.  Hence, the minimal lines are geodesic 
lines. 
 
 Remark. – If the osculating plane coincides with the tangent plane then the center of 
curvature will coincide with the center of geodesic curvature.  In particular, if one 
considers a plane then there will be no other curvature in the plane besides geodesic 
curvature, which one can easily verify by calculation. 

 

C′ 
C 

N 

N′ M K 

K′ 
M′ 

K″ 

 
 Direct definition of geodesic curvature.  Consider a curve (C) on a surface and a 
family of curves (K) that are orthogonal to (C).  Measure out a constant arc length MN on 
each curve (K), starting from the point where it meets the curve (C).  For each value of 
that constant, we will get a curve (C′ ) that is the locus of the point N.  Take the curves 
(C), (C′ ), … to be coordinates curves (v = const.), where the curve (C) is v = 0, and take 
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the curves (K) to be the coordinate curves (u = const.).  We can take the coordinate v to 
be the arc length MN.  Now consider the square of arc length: 
 

ds2 = E du2 + 2F ⋅⋅⋅⋅ du ⋅⋅⋅⋅ dv + G ⋅⋅⋅⋅ dv2. 
 
 The curve v = 0 is orthogonal to all the curves (K), so for any u, one will have: 
 

F (u, 0) = 0. 
 

Since v represents the arc length MN, one will have ds2 = dv2 for du = 0, hence G = 1, and 
then: 

ds2 = E ⋅⋅⋅⋅ du2 + 2F ⋅⋅⋅⋅ du ⋅⋅⋅⋅ dv + dv2. 
 
 We suppose that u represents the arc length of the curve (C).  For v = 0, one will then 
have ds = du, hence: 

E (u, 0) = 1, 
and on that curve (C): 

H 2 = E ⋅⋅⋅⋅ G – F 2 = 1, 
 

so, for example, H = 1.  One then has: 
 

sin

R

θ
= −

2

3
2

1

21
1

2

E
du E du

u
F Eds

du F du
u v

∂
∂

∂ ∂ − ∂ ∂ 

 = − 
1

2

E

v

∂
∂

 

for that curve. 
 For the curve (C′ ), we will have: 
 

ds′2 = E ⋅⋅⋅⋅ du2, 
 

if we denote the arc length of that curve by s′, hence: 
 

ds′ = E du,  
ds

du

′
= E , 

 
and if we take the logarithmic derivative with respect to v then: 
 

log
ds

du
v

′
∂

∂
= 

log E

v

∂
∂

 = 
1

2

E

E v

∂
∂

. 

 
 If one makes v tend to zero then (C′ ) will tend to (C), E will tend to 1, and in the 
limit: 
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log
ds

du
v

′
∂

∂
= 

1

2

E

v

∂
∂

. 

 
 If one uses the letter s to denote the arc length of (C), instead of u, then one can 
conclude that: 

1

gR
= 

sin

R

θ
 = − 

0

log

v

ds

ds
v

=

′ ∂ 
 ∂ 
 

 , 

 
which gives a definition for the geodesic curvature that is not borrowed from any element 
that is external to the surface.  s and s′ denote the homologous arc lengths on (C) and 
(C′), and v is the constant arc length MN that is found between (C) and (C′ ) on the curves 
(K).  That definition makes the invariance of the geodesic curvature under the 
deformation of surfaces more intuitive. 
 
 Remark. – The consideration that concluded the preceding chapter lead one to 
introduce the geometric element: 
 

0sin d

R ds

ϕθ − = 1

( , )

r du r dv

du dv

+
Φ

, 

 
at the same time as the geodesic curvature, which, like the normal curvature, depends 
upon only the ratio du / dv; i.e., the direction of the tangent.  However, that will have a 
precise sense to it only if one has specialized the choice of directions MO that are tangent 
to the origin.  It is the geodesic torsion of a curve that is tangent to the proposed one and 
makes a constant angle with the directions at the origin that correspond to its various 
points. 

 
 

Properties of geodesic lines 
 

 9. – In particular, suppose that all of the curves (K) are geodesic.  With the same 
conventions as before, du = 0 must be a solution to the differential equation of the 
geodesic lines, which will give the identity: 
 

0 1

F
F

v

∂
∂  = 

F

v

∂
∂

= 0. 

 
Hence, F is a function of only u, and since F = 0 for v = 0, F will be identically zero, and: 
 

ds2 = E du2 + dv2, 
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so all of the curves (C) will cut the geodesics (K) orthogonally.  Hence: 
 
 If we consider a curve (C), draw the geodesic through each point of (C) that is 
orthogonal to it, and measure out a constant arc along each of those geodesics then the 
locus of the extremities of those arcs will be a curve (C′ ) that is normal to the geodesics.   
 
We will then get the parallel curves on an arbitrary surface. 
 
 Conversely, if we consider a family of geodesics and their orthogonal trajectories 
then those trajectories will determine equal arc lengths along the geodesics. 
 
 Always under the same hypotheses, since the curves u = const. and v = const. are 
orthogonal, F = 0.  Since the u = const. are geodesics, it is necessary that: 
 

2

2

1
0

2
1

2

G
dv

u
G

dv G
v

∂−
∂

∂
∂

= − 21

2

G
G dv

u

∂
∂

 = 0. 

 
 G ≠ 0, since otherwise the curves u = const. would be minimal curves, hence ∂G / ∂u 
= 0 and G = ϕ (v).  Then calculate the arc length of a curve (K) that is found between the 
curve v = v0 and the curve v = v1 : 
 

ds2 = G dv2 = ϕ (v) dv2, 
and: 

s = 
1

0

( )
v

v
v dvϕ ⋅∫ . 

 
s is independent of u, so the arc length will indeed be the same on all geodesics. 
 If one once more takes v to be the arc length along the curves u = const. then: 
 

ds2 = E du2 + dv2, 
 
and that form will be characteristic of the coordinate system employed, which is 
composed of a family of geodesics and their orthogonal trajectories. 
 Take two points A, B on the surface then.  There will then exist one and only one 
geodesic line in the domain of those two points that will join them.  Consider it as 
belonging to a family of neighboring geodesics that do not intersect in the domain, and 
take those geodesics and their orthogonal trajectories to be coordinate curves.  Let there 
be an arbitrary line of the surface that goes from A to B, and define it by the equation: 
 

u = f (v). 
 

If A has the coordinates u0, v0, and if u1, v1 are those of B then the arc length AB of the 
line is: 
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1

0

2 2v

v
E du dv+∫ =

1

0

2( ( ), ) ( ) 1
v

v
E f v v f v′ +∫ ⋅⋅⋅⋅ dv. 

 
That integral will obviously be minimal if f′ (v) = 0; i.e., if the line AB that joins them is a 
geodesic.  Hence: 
 
 In a sufficiently small domain that surrounds two points of a surface, the geodesic 
will be the shortest path between those two points. 
 

Geodesic torsion 
 

 10. – Finally, we study the third fundamental formula: 
 

1 d

T ds

θ− = 
2 2

1 E du F dv F du G dv

E du Fdv F du G dvH ds

′ ′ ′ ′+ +
+ +

. 

 
If θ is constant, and in particular, if it is constantly zero, then the preceding formula will 
give the torsion; in particular, it will then give the torsion of a geodesic.  The preceding 
expression will depend upon only du / dv; i.e., the direction of the tangent.  Consider a 
curve (C) on the surface then and a point M.  There exists a geodesic that is tangent to (C) 

at the point M, and 
1 d

T ds

θ−  will be the torsion of that geodesic.  That is why 
1 d

T ds

θ−  is 

called the geodesic torsion.  One then sees that the geodesic torsion at a point of a curve 
is the torsion of the geodesic that is tangent to the given curve at that point.  Set: 
 

1

gT
=

1 d

T ds

θ− . 

 
Tg is the radius of geodesic torsion.  As opposed to the radius of geodesic curvature, it 
will change under the deformation of surfaces. 
 The preceding formula shows that the geodesic torsion is zero if the direction du, dv 
is a principal direction.  The geodesic torsion is zero for any curve that is tangent to a 
line of curvature.  It will then result that the lines of curvature have a geodesic torsion 
that is constantly zero (Lancret’s theorem). 
 1 / Tg is the quotient of the two trinomials of second degree in du, dv, so one can 
study its variation.  Take the lines of curvature to be the coordinate curves, in such a way 
that (§ 7) F = F′ = 0, and: 
 

1

gT
= 

2 2

1

H ds
(E′ G – G′ E) du dv = 

E G du dv

E G ds ds

′ ′ − 
 

. 

 
If we return to the notation that was employed in § 2 for the study of the normal curvature 
then the direction parameters of the tangent in the tangent plane will be: 
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P =
du

E
ds

, Q =
dv

G
ds

, 

and then: 
1

gT
= 

1 E G

E GEG

′ ′ − 
 

PQ. 

 
The principal radii of curvature are: 
 

1

1

R
= 

1 E

EEG

′
, 

2

1

R
= 

1 G

GEG

′
. 

Hence: 

1

gT
= 

1 2

1 1

R R

 
− 

 
PQ, 

 
and one will then get Ossian Bonnet’s formula, which is analogous to Euler’s formula: 
 

1

gT
= 

1 2

1 1

R R

 
− 

 
sin ϕ ⋅⋅⋅⋅ cos ϕ. 

 
 

Joachimsthal’s theorems 
 

 11. – Consider a curve (C) that is the intersection of two surfaces.  The normal plane 
to (C) at one of its points M contains the principal normal MP to the curve and the 
normals MN, MN1 to the two surfaces.  Let V be the angle between the normals MN, MN1, 
and let θ, θ′ be the angles that they make with MP. 
 

V = θ′  − θ . 
However: 

1 d

T ds

θ− = 
1

gT
,  

1 d

T ds

θ ′
− =

1

gT′
, 

 
so, upon subtracting these, one will get: 
 

dV

ds
=

1 1

g gT T
−

′
. 

 
Suppose that (C) is a line of curvature of the two surfaces then.  1 / Tg and 1/ gT′  will then 

be zero, so dV / ds = 0, and V will be constant.  Hence, one has: 
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 Joachimsthals’ theorems: 
 
 If two surfaces cut along a line of curvature then their angle will be constant along 
that line,  
 
and the same formula will show immediately that, conversely: 
 
 If two surfaces cut at a constant angle, and if the intersection is a line of curvature for 
one of the surfaces then it will also be a line of curvature for the other one. 
 
On a plane or a sphere, all of the lines will be lines of curvature.  Hence: 
 
 If a line of curvature of a surface is planar or spherical then the plane or sphere that 
contains it will cut the surface at a constant angle, and conversely, if a plane or sphere 
cuts a surface at a constant angle then the intersection will be a line of curvature of the 
surface. 
 
 Finally, if a circle is a line of curvature of a surface then there will be a sphere that 
passes through that circle that is tangent to the surface at one point of the circle, and as a 
result, at all points of the circle.  Therefore: 
Hence: 
 
 Any circular line of curvature is the contact curve of a sphere that is inscribed or 
circumscribed on the surface. 
 
Similarly: 
 
 Any rectilinear line of curvature is the contact curve of a tangent plane to the surface 
at all points of that line. 
 

___________ 
 

 
 

 
 



 

CHAPTER IV 
 

THE SIX INVARIANTS – TOTAL CURVATURE  
 

The six invariants E, F, G; E′, F′, G′ 
 

 1. – The only things that intervene in the study of the curves that are traced on a 
surface (S) are the coefficients of the two fundamental quadratic forms: 
 
 Φ (du, dv) = ds2  = E  du2 + 2F  du dv + G  dv2, 
 Ψ (du, dv) = ∑ A d 2x = E′ du2 + 2F′ du dv + G′ dv2, 
 
and the differentials of u, v, which are considered to be functions of one independent 
variable t that corresponds to each particular curve that one considers. 
 If one displaces the surface (S) in space without deforming it and does not change the 
surface coordinates u, v that one employs then those quadratic forms will remain the 
same in such a way that their six coefficients E, F, G, E′, F′, G′ will be six differential 
invariants for the group of motions in space. 
 For the form ds2 = Φ (du, dv), that will result from the fact that it represents the 
square of the differential of an arc that will remain the same under the stated conditions. 

 Furthermore, H = 2EG F−  is an invariant, and the formula: 

 

Ψ (du, dv) = H Φ (du, dv) ·
cos

R

θ
, 

 
in which all of the factors on the right-hand side are invariants, shows that Ψ is again an 
invariant. 
 Moreover, there is no difficulty associated with verifying the invariance of the 
coefficients by a direct calculation that is based upon the formulas that define them: 
 

(1) 
2

x

u

∂ 
 ∂ 

∑ = E, 
x x

u v

∂ ∂
∂ ∂∑ = F, 

2
x

v

∂ 
 ∂ 

∑ = G, 

 

(2) 
2

2

x
A

u

∂
∂∑ = E′, 

2x
B

u v

∂
∂ ∂∑ = F′, 

2

2

x
C

v

∂
∂∑ = G′, 

 
in which A, B, C are the three functional determinants: 
 

A = 
( , )

( , )

D y z

D u v
, B = 

( , )

( , )

D z x

D u v
, C = 

( , )

( , )

D x y

D u v
. 

Finally, recall that: 

H = 2 2 2A B C± + + = 2EG F± − . 
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The form of the surface defined by the six invariants 
 

 2. – Now suppose that E, F, G, E′, F′, G′  have been calculated as functions of u, v for 
a particular surface (S): 
 
(3)    x = f (u, v), y = g (u, v), z = h (u, v), 
 
and consider equations (1), (2) to be a system of partial differential equations, in which x, 
y, z are unknown functions, u, v are independent variables, and E, F, G, E′, F′, G′ are 
given functions.  By virtue of the invariance that we just established, that differential 
system will admit not just the functions (3) that define (S) as integrals, but also all 
functions: 

(4)     
0

0

0

,

,

,

x x f g h

y y f g h

z z f g h

α α α
β β β
γ γ γ

′ ′′= + + +
 ′ ′= + + +
 ′ ′′= + + +

 

 
which define the surfaces that are obtained by displacing (S) in all possible ways when 
one gives all possible constant values to x0, y0, z0, and all constant values to α, β, γ, α′, β′, 
γ′, α″, β″, γ″ that are compatible with the six well-known orthogonality conditions. 
 We then obtain integrals that depend upon six arbitrary constants.  We show that the 
system (1), (2) has no other ones.  We express that by saying that the form of the surface 
is defined entirely by the six invariants E, F, G, E′, F′, G′. 
 In the theory of partial differential equations, one shows that in any system whose 
general integral depends upon only arbitrary constants, all of the partial derivatives of a 
certain order can be expressed as functions of the independent and dependent variables 
and their lower-order derivatives.  We shall first verify that the same thing is true for the 
system (1), (2). 
 Differentiate equations (1).  We obtain the formulas that were used before: 
 

(5)  

2 2 2

2 2

2 2 2

2 2

1 1 1
, , ,

2 2 2

1 1 1
, , .

2 2 2

x x E x x E x x G

u u u u u v v u v u

x x F E x x G x x G

v u u v v u v u v v v

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⋅ = ⋅ = ⋅ = − ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ⋅ = − ⋅ = ⋅ =
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

∑ ∑ ∑

∑ ∑ ∑
 

 
We also predict that upon associating those equations with equations (2), one will 
effectively obtain expressions for all of the second-order derivatives as functions of u, v, 

x

u

∂
∂

, 
x

v

∂
∂

, 
y

u

∂
∂

, 
y

v

∂
∂

, 
z

u

∂
∂

, 
z

v

∂
∂

. 

 In order to facilitate that calculation, we introduce the direction cosines of the normal: 
 

(6)    λ = 
A

H
, µ = 

B

H
, v = 

C

H
. 
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We then replace the form ∑ A d 2x with the form: 
 

(7)    ∑ λ · d 2x = 
1

H
∑ λ · d 2x = L · du2 + 2M · du dv + N · dv2, 

in which: 

(8)     L = 
E

H

′
, M = 

F

H

′
, N =

G

H

′
. 

 
Equations (2) will then be replaced with the equations: 
 

(9)    
2

2

x

u
λ ∂

∂∑ = L,  
2x

u v
λ ∂

∂ ∂∑ = M, 
2

2

x

v
λ ∂

∂∑ = N. 

We then set: 

 
2

2

x

u

∂
∂

= 
x x

L L L
u v

λ∂ ∂′ ′′ ′′′+ +
∂ ∂

, 

 
2

2

y

u

∂
∂

= 
y y

L L L
u v

µ∂ ∂′ ′′ ′′′+ +
∂ ∂

, 

 
2

2

z

u

∂
∂

= 
z z

L L L
u v

ν∂ ∂′ ′′ ′′′+ +
∂ ∂

, 

 
in which, L′, L″, L″′ are coefficients to be determined; we deduce from this that: 
 

2

2

x x

u u

∂ ∂
∂ ∂∑  = E L′ + F L″, 

2

2

x x

v u

∂ ∂
∂ ∂∑  = F L′ + G L″, 

2

2

x

u
λ ∂

∂∑  = L″′. 

 
The third of these conditions shows that L″′ = L, and the first two are two linear equations 
that will provide L′ and L″ when one takes formulas (5) into account. 
 Upon doing the same thing with the other derivatives, one will get the following 
results: 

(10)    

2

2

2

2

2

,

,

,

x x x
L L L

u u v

x x x
M M M

u v u v

x x x
N N N

v u v

λ

λ

λ

 ∂ ∂ ∂′ ′′= + + ⋅ ∂ ∂ ∂
∂ ∂ ∂ ′ ′′= + + ⋅ ∂ ∂ ∂ ∂

 ∂ ∂ ∂′ ′′= + + ⋅
∂ ∂ ∂

 

with the auxiliary equations: 
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(11)  

1 1
, ,

2 2
1 1

, ,
2 2

1 1
, ,

2 2

E F E
EL FL FL GL

u u v
E G

EM FM FM GM
v u

F G G
EN FM FN GN

v u v

∂ ∂ ∂ ′ ′′ ′ ′′+ = + = − ∂ ∂ ∂


∂ ∂ ′ ′′ ′ ′′+ = + = ∂ ∂
∂ ∂ ∂ ′ ′′ ′ ′′+ = − + = ∂ ∂ ∂

 

 
from which, one can deduce the values of the coefficients L′, L″, M′, M″, N′, N″.  One 
notes that they depend upon only the coefficients E, F, G of the linear element ds2 = Φ 
(du, dv) and the first derivatives of those coefficients. 
 Finally, the same equations (10) will persist for the other coordinates y, z.  One will 
only need to keep the same coefficients and replace the letter x with the letter y or z at the 
same time as one changes λ into µ or v, resp. 
 We conclude from this that if one knows the values of x, y, z, and their first 
derivatives for a system of values of u, v then one can calculate the values of their second 
derivatives, and by new differentiations, those of all their higher-order derivatives.  As a 
result, the Taylor series developments of an arbitrary solution cannot contain any other 
arbitrary contributions than the initial values of: 
 

x, y, z, 
x

u

∂
∂

, 
x

v

∂
∂

, 
y

u

∂
∂

, 
y

v

∂
∂

, 
z

u

∂
∂

, 
z

v

∂
∂

, 

 
which are linked by equations (1), moreover, and the integral will be determined entirely 
when those initial values are given. 
 Hence, in order to prove that equations (4) give the general integral, it will suffice to 
show that the functions x, y, z that are defined by equations (4) can satisfy the stated 
initial conditions.  Now, if we introduce the direction cosines λ′, µ′, v′ ; λ″, µ″, v″ of the 
tangents MU, MV, resp., to the two stated coordinate curves that pass through an arbitrary 
point M of the surface then we will know that: 
 

, , ,

, , ,

x y z
E E E

u u u
x y z

G G G
v v v

λ µ ν

λ µ ν

∂ ∂ ∂ ′ ′ ′= = = ∂ ∂ ∂
 ∂ ∂ ∂ ′′ ′ ′′= = =
 ∂ ∂ ∂

 

 
and the conditions (1) will reduce to: 
 

∑ λ′ 2 = 1, ∑ λ″ 2 = 1, ∑ λ′ λ″ = cos ω, 
 

in which ω is the angle �UMV . 
 The initial conditions then signify that one arbitrarily gives the position of the point M 
that corresponds to the initial values of u, v, and the directions of the tangents MU, MV, 
with the single reservation that those directions must form the same angle between them 



64 Chapter IV – The six invariants.  Total curvature. 

that they make with the corresponding point of (S).  There is, in fact, a position for (S) 
that satisfies those conditions, and our result is found to be established definitively. 
 
 Remark. – The preceding argument will break down when the coordinate curves are 
minimal lines (because E = G = 0 then).  However, it suffices to remark that if Φ and Ψ 
are known for a coordinate system u, v then one can define their expressions in another 
coordinate system u, v by performing the corresponding change of variables directly.  
Our theorem will then be true for any system of surface coordinates as long as it is true 
for one of them. 
 
 

The integrability conditions 
 

 3. – The coefficients in formulas (10) satisfy certain conditions that are called 
integrability conditions, which one will obtain from the theory of partial differential 

equations, by writing down that each of the third-order derivatives 
2

2

x

u v

∂
∂ ∂

, 
2

2

x

u v

∂
∂ ∂

 has 

the same value that one obtains by differentiating one or the other of formulas (10). 
 In order to obtain those conditions, it is convenient to have some formulas that give 
the derivatives of the direction cosines λ, µ, ν of the normal.  Those cosines are defined 
by the equations: 

x

u
λ ∂

∂∑ = 0, 
x

v
λ ∂

∂∑ = 0, 
2λ∑ = 1, 

 
which will give, by differentiation: 
 

(12)  

2 2

2

2 2

2

, ,

, ,

0, 0.

x x x x
L M

u u u v u u v

x x x x
M N

u v u v v v v

u v

λ λλ λ

λ λλ λ

λ λλ λ

 ∂ ∂ ∂ ∂ ∂ ∂= − = − = − = − ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ = − = − = − = − ∂ ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂= = ∂ ∂

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

∑ ∑

 

 
 While following the same method as in the preceding paragraph, if one sets: 
 

, ,

, ,

,

x x x x
P P P Q Q Q

u u v v u v
y y y y

P P P Q Q Q
u u v v u v

z z z z
P P P Q Q Q

u u v v u v

λ λλ λ

µ µµ µ

ν νν ν

∂ ∂ ∂ ∂ ∂ ∂ ′ ′′ ′ ′′= + + = + + ∂ ∂ ∂ ∂ ∂ ∂


∂ ∂ ∂ ∂ ∂ ∂ ′ ′′ ′ ′′= + + = + + ∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂ ′ ′′ ′ ′′= + + = + + ∂ ∂ ∂ ∂ ∂ ∂
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then one will find that: 
 

 
x

u u

λ∂ ∂
∂ ∂∑ = EP′ + FP″, x

v u

λ∂ ∂
∂ ∂∑ = FP′ + GP″, 

u

λλ ∂
∂∑ = P = 0, 

 
x

u v

λ∂ ∂
∂ ∂∑ = EQ′ + FQ″, x

v v

λ∂ ∂
∂ ∂∑ = FQ′ + GQ″, 

v

λλ ∂
∂∑ = Q = 0. 

 
Hence: 

(13)    
,

,

x x
P P

u u v
x x

Q Q
v u v

λ

λ

∂ ∂ ∂ ′ ′′= + ∂ ∂ ∂
 ∂ ∂ ∂ ′ ′′= +
 ∂ ∂ ∂

 

 
in which the coefficients P′, P″, Q′, Q″ are defined by the equations: 
 

(14)   
, ,

, .

EP FP L FP GP M

EQ FQ M FQ GQ N

′ ′′ ′ ′′+ = − + = −
 ′ ′′ ′ ′′+ = − + = −

 

 
 For µ, v, it will suffice to change x into y and z, respectively. 
 We can carry out the calculations by assuming that the surface is referred to its 
minimal lines.  The preceding calculations then simplify considerably.  If we apply the 
formulas that we have found directly, upon taking into account the fact that E and G are 
zero, then we will get: 
 

L″ = 0,    L′ = 
log F

u

∂
∂

,    M″ = 0,    M′ = 0,    N″ = 
log F

v

∂
∂

,    N′ = 0 

 
for formulas (11), and: 
 

P″ = − L

F
, P′ = − 

M

F
, Q″ = − 

M

F
, Q′ = − 

N

F
 

 
for formulas (14); i.e.: 

(15)   

2

2

2

2

2

log
, , ,

, , ,

log
, , ,

x F x
L

u u u

x
M

u v

x F x
N

v v v

λ

λ

λ

 ∂ ∂ ∂= ⋅ + ⋅ ∂ ∂ ∂
∂ = ⋅ ∂ ∂

 ∂ ∂ ∂= ⋅ + ⋅
∂ ∂ ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯
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(16)   

1
, , ,

1
, ,

x x
M L

u F u v

x x
N M

u F u v

λ

λ

 ∂ ∂ ∂ = − +  ∂ ∂ ∂  


∂ ∂ ∂  = − +  ∂ ∂ ∂ 

⋯ ⋯

⋯ ⋯

 

 
 Differentiate the first of equations (15) with respect v, upon taking equations (15) and 
(16) into account: 
 

3

2

x

u v

∂
∂ ∂

= 
2 log logF NL x LM x F L

M
u v F u F v u v

λ ∂ ∂ ∂ ∂ ∂ − − + +   ∂ ∂ ∂ ∂ ∂ ∂  
. 

 
 Likewise, differentiate the second of equations (15) with respect to u: 
 

3

2

x

u v

∂
∂ ∂

= −
2M x LM x M

F u F v u
λ∂ ∂ ∂⋅ − +

∂ ∂ ∂
. 

 
Upon equating them, we will get: 
 

(17)  
2 2log logF LN M x F L M

M
u v F u u v u

λ ∂ − ∂ ∂ ∂ ∂ − + + −   ∂ ∂ ∂ ∂ ∂ ∂  
 = 0. 

 
 This is a condition of the form: 
 

  
x x

S S
u v

∂ ∂′ ′′+
∂ ∂

 + Sλ = 0, 

 
and upon repeating the same calculation for y and z, one will obtain the analogous 
conditions: 

 
y y

S S
u v

∂ ∂′ ′′+
∂ ∂

 + Sµ = 0, 

 
z z

S S
u v

∂ ∂′ ′′+
∂ ∂

 + Sν = 0. 

 
 One then concludes that one necessarily has S = S′ = S″ = 0; i.e.: 
 

(18)   
2 2log F LN M

u v F

∂ −−
∂ ∂

= 0, 
logF L M

M
u v u

∂ ∂ ∂+ −
∂ ∂ ∂

 = 0, 

 
and those conditions will imply the condition (17). 
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 Upon similarly equating the two values of 
3

2

x

u v

∂
∂ ∂

, one will get some conditions that 

are deduced from (18) by changing the roles of the variables u, v; that will modify only 
the second of those conditions. 
 The desired integrability conditions are then: 
 

(19)    
2

log
,

log
,

log
,

F M L
M

u u v

F LN M

u v F

F M N
M

v v u

∂ ∂ ∂ = − ∂ ∂ ∂


∂ − = ∂ ∂
 ∂ ∂ ∂= −

∂ ∂ ∂

 

 
and from the theory of differential equations, they will be the only integrability 
conditions for the system considered. 
 
 

Total curvature 
 

 The second of the preceding formulas: 
 

(20)     
2 logF

u v

∂
∂ ∂

 = 
2LN M

F

−
, 

 
which is due to Gauss, leads to an important consequence.  Indeed, recall the equation for 
the radii of principle curvature, which is: 
 

H 2 (LN – M 2) + 2 SFHM − S 2 F2 = 0 
here, with: 

S = 
H

R
. 

 It is written: 

LN – M 2 + 2FM ·
2

2

1 F

R R
−   = 0, 

so: 

 
1 2

1

R R
= − 

2

2

LN M

F

−
; 

i.e., from formula (20): 

(21)     
1 2

1

R R
= − 

21 logF

F u v

∂
∂ ∂

. 
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The product of the radii of principal curvature depends upon only the linear element; it is 
then preserved under the deformation of surfaces.  One gives the name of total curvature 

to 
1 2

1

R R
. 

 
 Remark. – From the preceding, surfaces with zero total curvature are characterized by 
the condition LN – M 2 = 0 or EG – F 2 = 0, which expresses the idea that the surface 

considered is the envelope of ∞1 planes (page 47); namely, by the condition 
2 logF

u v

∂
∂ ∂

= 0, 

which expresses the idea that since the linear element is ds2 = 2F du dv, the surface can 
be mapped to a plane (page 26).  One then concludes that the surfaces that can be 
mapped to a plane are the developable surfaces.  (Cf., Chap. V, § 4.) 
 
 Spherical representation. – Just as one can make a curve correspond to its spherical 
indicatrix, one can imagine a correspondence between an arbitrary surface and the sphere 
of radius 1, in which the homologue of a point (u, v) of the surface will be the point (λ, µ, 
v).  An area on the surface will correspond to an area on the sphere.  The consideration of 
the limit with respect to those areas when they become infinitely small in all of their 
dimensions leads us to a direct definition of the total curvature. 
 The area on the surface has the expression: 
 

A = 2 2 2A B C+ +∫∫ du dv = H∫∫ du dv. 

 
 In order to get the homologous area on the sphere, one must first calculate the linear 
element dλ2 + dµ 2 + dv2.  From formulas (16): 
 

dλ = du dv
u v

λ λ∂ ∂+
∂ ∂

 = − du x x dv x x
M L N M

F u v F u v

∂ ∂ ∂ ∂   + − +   ∂ ∂ ∂ ∂   
 

= − 1 x x
L du M dx N dv

F u u

∂ ∂ + + ∂ ∂ 
; 

hence: 

∑ dλ 2 = 
2

1

F
[M 2 · 2F du dv + 2 LMF · du2 + 2MNF · dv2 + 2LNF · du dv], 

so 

∑ dλ 2 = 
2

2 22 2
2

LM LN M MN
du du dv dv

F F F

++ + . 

 
 The function that is analogous to H for the sphere is then: 
 

2 2 2

2 2

( )
4

LM N LN M

F F

+− = 
2LN M

iF

−
= 

2LN M

H

−
, 
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and the spherical area will have the expression: 
 

A′ = 
2LN M

H

−
∫∫ du dv, 

and upon noting that: 
dA = H · du dv, 

it can be written: 

A′ = 
2

2

LN M

H

−
∫∫ dA,  dA = 

1 2

1

R R∫∫ dA, 

so: 

dA′ = 
1 2

1

R R
A. 

 
 The ratio of the homologous areas on the sphere and the surface will have the total 
curvature for its limit when those areas become infinitely small in all of their dimensions. 
 
 

Orthogonal, isothermal coordinates 
 
 4. – In order to avoid the use of imaginaries in the preceding considerations, we shall 
introduce a new curvilinear coordinate system.  Since the surface is assumed to be real, 
we first choose the minimal coordinates in such a fashion that u, v are conjugate 
imaginaries.  We then set: 

u = u′ + i v′, v = u′ − i v′, 
 
in which u′, v′ are real quantities.  We then infer that: 
 

du = du′ + i dv′, dv = du′ − i dv′, 
so: 

du dv = du′2 + dv′2. 
 

 The linear element will then take the form: 
 

ds2 = 2F · du dv = 2F (du′2 + dv′2). 
 
The coordinates u′, v′ are orthogonal; one gives them the name of orthogonal, isothermal 
coordinates.  One can say that those coordinates divide the surface into a net of infinitely-
small squares.  Indeed, consider the coordinate curves u′, u′ + h, u′ + 2h, … and v′, v′ + h, 
v′ + 2h, …  If one takes one of the curvilinear quadrilaterals thus-obtained then its angles 

will be right angles.  Its edges are 2F · du′ and 2F · dv′; i.e., 2F · h, up to higher-

order infinitesimals.  Those arcs are equal. 
 With this particular coordinate system, upon denoting the values of the functions that 
are analogous to E, F, G, H by E , F , G , H , we will have: 
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E  = 2F,    G = 2F,    F = 0,    2H = 2EG F− = 4F2,    H = 2F, 
hence: 

ds2 = H (du′2 + dv′2). 
 
 However, for an arbitrary function Φ, we have: 
 

u

∂Φ
′∂
= 

u v

∂Φ ∂Φ+
∂ ∂

, 
v

∂Φ
′∂
= i

u v

∂Φ ∂Φ − ∂ ∂ 
; 

hence: 
2

2u

∂ Φ
′∂

= 
2 2 2

2 22
u u v v

∂ Φ ∂ Φ ∂ Φ+ +
∂ ∂ ∂ ∂

,  
2

2v

∂ Φ
′∂

= −
2 2 2

2 22
u u v v

∂ Φ ∂ Φ ∂ Φ+ −
∂ ∂ ∂ ∂

, 

and: 
2 2

2 2u v

∂ Φ ∂ Φ+
′ ′∂ ∂

= 4 
2

u v

∂ Φ
∂ ∂

. 

 Hence, as a consequence: 
 

4 
2 logF

u v

∂
∂ ∂

= 
2 log H

u v

∂
∂ ∂

= 
2 2

2 2

log logH H

u v

∂ ∂+
′ ′∂ ∂

. 

 
 Upon suppressing the primes and the overbars, we will get the following formulas in 
orthogonal, isothermal coordinates: 

ds2 = H (du2 + dv2), 
 

1 2

1

R R
= − 

2 2

2 2

1 log log

2

H H

H u v

 ∂ ∂+ ∂ ∂ 
. 

 We again set: 
∑ λ d2x = L du2 + 2M du dv + N dv2. 

 
The equation of the principal radii of curvature will be: 
 

(LN – M 2) – 
H

R
(L + N) +

2

2

H

R
= 0, 

and one will have: 

1 2

1

R R
= 

2

2

LN M

H

−
. 

 
 Calculate the spherical representation.  As in § 2, set: 
 

 λ′ = 
1 x

uH

∂
∂

,  µ′ = 
1 y

uH

∂⋅
∂

, ν′ = 
1 z

uH

∂⋅
∂

, 
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 λ″ = 
1 x

vH

∂
∂

,  µ″ = 
1 y

vH

∂⋅
∂

, ν′″= 
1 z

vH

∂⋅
∂

. 

 
 From the relation: 

∑ λ2 = 1, 
we infer that: 

u

λλ ∂
∂∑ = 0. 

 On the other hand: 

L = 
2

2

x

u
λ ∂

∂∑  = − 
x

u u

λ∂ ∂⋅
∂ ∂∑ = − H

u

λλ ∂′⋅
∂∑ ; 

hence: 

u

λλ ∂′
∂∑ = − L

H
. 

Similarly: 

M = 
2x

u v
λ ∂

∂ ∂∑  = − 
x

u v

λ∂ ∂⋅
∂ ∂∑ = − H

u

λλ ∂′′⋅
∂∑ , 

so 

u

λλ ∂′′
∂∑ = − M

H
. 

 

One then gets three equations in 
u

λ∂
∂

, 
u

µ∂
∂

, 
u

ν∂
∂

.  If one multiplies them by λ, λ′, λ″, resp., 

and adds them then one will get (†): 
 

 
u

λ∂
∂

= − L x M x

H u H υ
∂ ∂⋅ − ⋅
∂ ∂

, 

 

and similarly: 
u

µ∂
∂

= − L y M y

H u H υ
∂ ∂⋅ − ⋅
∂ ∂

, 

 

 
u

ν∂
∂

= − L z M z

H u H υ
∂ ∂⋅ − ⋅
∂ ∂

. 

One will get: 

 
λ
υ

∂
∂

= − 1 x x
M N

H u υ
∂ ∂ + ∂ ∂ 

, 

 

 
µ
υ

∂
∂

= − 1 y y
M N

H u υ
∂ ∂ + ∂ ∂ 

, 

                                                
 (†) Translator: We have temporarily replaced (italic v) with υ, since the fonts that we are using make 
(italic v) identical to (Greek nu). 
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ν
υ

∂
∂

= − 1 z z
M N

H u υ
∂ ∂ + ∂ ∂ 

 

by an analogous calculation. 
 Hence, the functions on the sphere that are analogous to E, F, G¸ H will be: 
 

 E = 
2

u

λ∂ 
 ∂ 

∑ = 
2

2

1 x x
L M

H u υ
∂ ∂ + ∂ ∂ 

∑ = 
2 2L M

H

+
, 

 

 F = 
u

λ λ
υ

∂ ∂⋅
∂ ∂∑ = 2

1 x x x x
L M M N

H u uυ υ
∂ ∂ ∂ ∂  + +  ∂ ∂ ∂ ∂  

∑ = 
( )M L N

H

+
, 

 

 G = 
2λ

υ
∂ 

 ∂ 
∑ = 

2

2

1 x x
M N

H u υ
∂ ∂ + ∂ ∂ 

∑ = 
2 2M N

H

+
; 

 
hence: 

H
2 = E · G – F 2 = 

2 2 2 2 2 2 2

2

( )( ) ( )L M M N M L N

H

+ + − +
= 

22LN M

H

 −
 
 

, 

 
and the area on the sphere will have the expression: 
 

A′ = 
2LN M

H

−
∫∫  du dυ. 

 
 One recovers the same expression as before, and one will likewise arrive at the direct 
definition of total curvature. 
 
 Remark. – A′ has a sign in the preceding expression, which is that of LN – M 2, 

because du dυ is considered to be positive. 
 The interpretation of that sign results from the identity: 
 

u u u

λ µ ν
λ µ ν

λ µ ν
υ υ υ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 
2

2

LN M x y z

H u u u
x y z

λ µ ν

υ υ υ

− ∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

, 

 
which indicates whether the two trihedra that are defined by the common direction to the 
normal to the surface and the normal to the sphere and the positive directions to the 
curves υ = const. and u = const. (when considered on the surface and the sphere, 
respectively), have the same disposition. 
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 One then concludes that if A′ > 0 then the moving point x, y, z will describe the 

contour that bounds the area on the surface in the direct sense, and the point λ, µ, v will 
describe the contour that bounds the homologous area on the sphere, also in the direct 
sense.  If A′ < 0 then the conclusions will be the opposite ones. 

 
 

Relations between total curvature and geodesic curvature 
 
 5. – The total curvature is an element that remains invariant under the deformation of 
surfaces.  We shall seek to find what relations exist between it and the other elements  
that are invariant under deformation.  Consider the geodesic curvature.  Its expression in 
orthogonal, isothermal coordinates will be: 
 

1

gR
= 

2

1

H ds

2 2

2 2 2

2 2

1 1

2 2( )
1 1

2 2

H H H
du du dv dv H du

u v vH du d v dv d u
H H H

du du dv dv H dv
v u v

 ∂ ∂ ∂ + − ∂ ∂ ∂ − −
∂ ∂ ∂ − + + ∂ ∂ ∂ 

, 

or: 
1

gR
= 

2

1

ds
2 2 2 2 21
( ) ( )

2

H H
H du d v dv d u dv du du dv

u v

 ∂ ∂  − + − +  ∂ ∂  
; 

however: 
ds2 = H (du2 + dv2), 

 
and the preceding formula can be written: 
 

g

ds

R
= 

2 2

2 2

1 log 1 log

2 2

du d v dv d u H H
dv du

du dv u v

− ∂ ∂+ −
+ ∂ ∂

, 

or rather: 

g

ds

R
= 

1 log 1 log
arctan

2 2

dv H H
d dv du

du u v

∂ ∂ + −  ∂ ∂ 
. 

 
 Now, imagine the semi-tangents MU, MV in the tangent plane to the coordinate 
curves in the sense of increasing u, v, respectively.  Consider the tangent to an arbitrary 
curve MT to the surface, and let (MU, MT) = ϕ: 
 

 cos ϕ = 
du

H
ds

, 

 sin ϕ = 
dv

H
ds

; 

hence: 

tan ϕ = 
dv

du
, 
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so: 

ϕ = arctan 
dv

du
, 

 
and the preceding formula will become: 
 

g

ds

R
= 

1 log 1 log

2 2

H H
d dv du

u v
ϕ ∂ ∂+ −

∂ ∂
. 

 
 Now take a closed contour on the surface (S) and integrate along it in the direct sense: 
 

g

ds

R∫
= 1 1

2 2

log logH H
d dv du

u v
ϕ ∂ ∂+ −

∂ ∂∫ ∫ ∫ . 

 
 Recall Green’s theorem, which will allow us to transform that result.  The point (u, v) 
describes a closed contour in the uv-plane, also in the direct sense.  Suppose that it is 
composed of two tangents that are parallel to the u-axis; let A, B be their contact points.  
We will then have two arcs AMB and ANB, and if we denote the contour by C then we 
will have: 

C

f
dv

u

∂
∂∫

 = 
AMB BNA

f f
dv dv

u u

∂ ∂+
∂ ∂∫ ∫  

for any function f (u, v). 
 

A(a) 

B(b) v 

O u 

N(u1) M(u2) 

 
 
 Suppose that a parallel to Ou that is found between the two tangents considered cuts 
the contour at two points M (u2) and N (u1). 
 Finally, let a, b be the values of u that correspond to the two points A, B.  We will 
have: 

C

f
dv

u

∂
∂∫

 = 
2 1

b b

a a
u u u u

f f
dv dv

u u= =

∂ ∂   −   ∂ ∂   
∫ ∫  = 

2 1

b

a

f f
dv

u u

 ∂ ∂   −    ∂ ∂    
∫ . 

 
 However: 
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2 1

f f

u u

∂ ∂   −   ∂ ∂   
= 

2

1

2

2

u

u

f
du

u

∂
∂∫ , 

and then: 

C

f
dv

u

∂
∂∫

 = 
2

1

2

2

b u

a u

f
dv du

u

∂
∂∫ ∫ = 

2

2

f

u

∂
∂∫∫ du dv, 

 
in which the double integral is taken over the entire area that is bounded by the contour. 
 That formula will persist for an arbitrary simple contour. 
 Similarly: 

C

f
du

v

∂
∂∫

 = −
2

2

f

v

∂
∂∫∫ du dv. 

Hence: 

g

ds

R∫
=  −

1 2

H
d

R R
ϕ −∫ ∫∫ · du dv = 

1 2

d
d

R R
ϕ −∫ ∫∫

A
, 

 
and one gets the formula of Ossian Bonnet: 
 

A′ = 
1 2

d

R R∫∫
A

= 
g

ds
d

R
ϕ −∫ ∫ . 

 
 Remark. – The angle ϕ is the angle that MU makes with the tangent MT to the curve.  
Suppose that at each point of the surface, one has determined a direction MO whose 
direction cosines are well-defined functions of u, v as in Chap. II, § 4 (page 35).  Let ψ = 
(MO, MU) and ϕ0 = (MO, MT).  One will then have: 
 

ϕ0 = ψ + ϕ, 
so: 

dϕ0 = dψ + dϕ. 
 

 Integrate along an arbitrary closed contour: 
 

0dϕ∫ = d dψ ϕ+∫ ∫ . 

 
Now, ψ is a function of u, v, so along any closed contour one will have: 
 

( , )d u vψ∫ = 0; 

hence: 

0dϕ∫ = dϕ∫ , 

 
and one can replace the angle ϕ with the angle ϕ0 that was defined before. 
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 One then sees the geometric element 0
g

ds
d

R
ϕ

 
−  

 
that was introduced in Chap. II, pp. 

34 appear in the study of total curvature.  (Cf., Chap. III, pp. 55) 
 
 

Geodesic triangles 
 

 We call the figure that is formed by three geodesic lines a geodesic triangle.  Along 
each of its edges: 

g

ds

R∫
= 

sin

R

θ
∫ ds = 0, 

 
and the formula of O. Bonnet shows us that: 

 

0′A  = dϕ∫ ; 

i.e.: 

0′A  = 
AB BC CA

d d dϕ ϕ ϕ+ +∫ ∫ ∫ . 

 
 

C 

A 

B 

a 

T1 

T3 

T2 2T ′  

3T′  
1T′  T1 

T2 

T3 

3T′  

2T′  

1T ′  

 
 The orthogonal, isothermal coordinates provide a conformal representation of the 
surface on the uv-plane.  Hence, consider the representation abc of the triangle ABC on 
that plane.  Draw tangents to the edges at the extremities a, b, c in the direct sense; let T1, 
T2, T3, 1T′ , 2T′ , 3T′  be those tangents.  If the = sign indicates the equalities that are true up 

to a multiple of 2π then we will have: 
 

AB
dϕ∫ = ( 1T′ ,T2), 

BC
dϕ∫  = ( 2T′ ,T3), 

CA
dϕ∫  = ( 3T′ ,T1). 

 
Hence, if we call the angles of the geodesic triangle a, b, c then we will get the following 
value for 0

′A : 

( 1T′ ,T2) + ( 2T′ ,T3) + ( 3T′ ,T1) = − [(T1, 1T′ ) + (T2, 2T′ ) + (T3, 3T′ )] 
+ [(T1, T2) + (T2, T3) + (T3, T1)] 

 
≡ 2π – [(π – a) + (π – b) + (π – c)] ≡ a + b + c – π, 
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and therefore Gauss’s formula: 
a + b + c – π = 0′A , 

 
in which we have used the = sign because the two sides tend to zero when the three 
summits of the triangle ABC tend to the same point. 
 In particular, if the surface is a sphere of radius R then one will get the formula that 
gives the area of a spherical triangle: 
 

A = R2
A′ = R2 (a + b + c – π). 

 
 

C ε 

A(t) 

B (t + ∆t) 

 
 

New definition of the geodesic curvature 
 

 Consider an arc AB.  Draw the geodesics that are tangent to that curve at A and B, and 
which intersect at C′ with an angle that we call the geodesic contingency angle.  Along 
the contour of that triangle: 

dϕ∫  = − ε, 

and the formula of O. Bonnet gives us: 
 

− ε −
AB

g

ds

R∫ = d ′∫∫ A . 

 
 Suppose that A corresponds to the parameter t, and B, to t + ∆t, and that ∆t tends to 0; 
let ∆s be the arc AB.  We will have: 
 

− 1
AB

g

ds

s s R

ε −
∆ ∆ ∫ = 0

1
d

s
′

∆ ∫∫ A . 

 

 Let 
1

g m
R

 
  
 

be the mean value of the geodesic curvature on the arc AB, so; 

1
AB

g

ds

s R∆ ∫ = 
1

g m
R

 
  
 

, 

and as a result: 
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− 1 1

g m
s R

 
−   ∆  

= 0

1
d

s
′

∆ ∫∫ A . 

 

 If ∆s tends to 0 then 
1

g m
R

 
  
 

will have the geodesic curvature at the point A as its limit.  

I say that the right-hand side has the limit 0; it will suffice to show that d ′∫∫ A  is 

infinitely small of at least second order.  Consider the representation abc of the triangle 
ABC on the uv-plane. 
 

d ′∫∫ A  = ( , )u vψ∫∫ du dv = [ψ (u, v)]m du dv∫∫ . 

 

From Green’s theorem, du dv∫∫ is equal to the curvilinear integral v du∫ , up to sign.  Let 

v2, v1 be the expressions for v as functions of u in the arcs bc and bk.  The part of the 

integral v du∫  that is given by those arcs is 
0

2 1( )
u

u
v v du

′
−∫ .  Now, since the curves ab and 

bc are tangent at b, v2 – v1 is infinitely small of at least second order with respect to u′ – u 

and a fortiori with respect to (u′ – u0).  The integral 
0

2 1( )
u

u
v v du

′
−∫ , which is equal to the 

product of (u′ – u0) with the mean value of v2 – v1, will then be of at least third order with 
respect to (u′ – u0), and as a result with respect to ∆s.  The same argument applies to the 

other arcs ac and ak, so one sees that 0d ′∫∫ A  has order at least three, and the property is 

established. 
 

b 
c 

a 

M O u0 u u′ 

K 

v2 

v1 

v 

 
 The geodesic curvature can then be defined to be the curvature in plane geometry: 
i.e., the limit of the ratio of the (geodesic) contingency angle to the arc of the curve when 
the latter tends to zero. 
 
 

Surfaces of constant total curvature 
 
 6. – We have seen that the surfaces of constant zero total curvature are the plane and 
the developable surfaces (§ 3).  Now consider the surfaces of constant non-zero total 
curvature.  Among them, one finds the spheres, and a sphere of radius R will have a total 
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curvature of 1 / R2.  We shall seek the linear element of the surfaces of constant total 

curvature 
1 2

1

R R
= k in the form: 

ds2 = 2F du · dv. 
Now: 

1 2

1

R R
= −

21 logF

F u v

∂
∂ ∂

, 

 
so the problem will amount to the integration of the partial differential equation 
(Liouville’s equation): 

(1)      
2 logF

u v

∂
∂ ∂

= − k F. 

 
 The solution that is provided by the spheres of radius R for k = 1 / R2 permits one to 
predict what the general integral will be. 
 Indeed, refer the sphere of radius R that has the origin for its center to its minimal 
lines; i.e., its rectilinear generators.  One immediately deduces the parametric equations 
of the sphere from the equations of those generators: 
 

 x + iy = u (R – z), x − iy = 
1

u
(R + z), 

 

 x + iy = v (R – z), x − iy = 
1

v
(R + z), 

namely: 

(2)   x + iy = 
2Ruv

u v+
, x − iy = 

2R

u v+
,  z =

u v
R

u v

−
+

; 

hence, for: 
ds2 = d (x + iy) · d (x − iy) + dz2, 

one will infer the value: 

(3)      ds2 = − 
2

2

4

( )

R du dv

u v+
. 

 
 The most general change of curvilinear coordinates that preserves the minimal lines 
as coordinate lines is: 

u = V (u1), v = V (v1), 
 
in which U, V are arbitrary functions of their arguments.  Upon making that change in 
formula (3) and putting the letters u, v back in place of u1, v1, one will get the expression: 
 

(4)      ds2 = − 
2

2

4

( )

R U V
du dv

U V

′ ′
+
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for the ds2 of any sphere of radius R when it is referred to its minimal lines. 
 Equation (1) is then verified by: 

(5)      F = − 2

2

( )

U V

k U V

′ ′
+

, 

 
and since U and V are two arbitrary functions, one predicts that this will be the general 
integral of (1). 
 We prove that by integrating (1) directly.  Set: 
 
(6)      − k F = w, 
 
which will reduce equation (1) to the equation: 
 

(7)      
2 logw

u v

∂
∂ ∂

= w. 

 
Upon introducing an auxiliary unknown ϕ, this will be equivalent to the system: 
 

(8)     
u

ϕ∂
∂

= w, 
w

v

∂
∂

 = ϕ w; 

hence, one concludes that: 

u

ϕϕ ∂
∂

 = 
w

v

∂
∂

, or 
2

u

ϕ∂
∂

 = 
(2 )w

v

∂
∂

, 

 
in such a way that upon denoting a new auxiliary unknown by ψ, equation (7) will be 
equivalent to the system: 
 

(9)    2w = 
u

ψ∂
∂

, ϕ 2 = 
v

ψ∂
∂

, 
u

ϕ∂
∂

= w = 
1

2 u

ψ∂⋅
∂

. 

 
 It results from these equations when one integrates the last one that: 
 

ϕ = 1
2 ψ + V0 , 

 
in which V0 is a function of only v, and in turn: 
 

v

ψ∂
∂

= ( )21
02 Vψ + . 

 
 That equation is a Ricatti equation (cf., Chap. V, § 10), so ψ will have the form: 
 

ψ = 1 2U V V

U V

+
+

, 
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in which U, which is a function of only u, plays the role of integration constant with 
respect to v, and V, V1, V2 are functions of only v. 
 The first of equations (9) then gives: 
 

w = 3
22( )

U V

U V

′
+

 (V3 = V1 V – V2). 

 
 If one substitutes that value in equation (7) then one will find immediately that V3 = 
4V′, while U and V remain arbitrary.  One has, in fact, formula (5) as the general integral 
of (1) then. 

 Hence: The ds2 of any surface of constant total curvature 
1 2

1

R R
= k will be: 

 

(10)    ds2 = − 2

2

( )

U V

k U V

′ ′
+

du dv 

 
when referred to its minimal lines, and can be reduced to the typical form: 
 

(1)     ds2 = − 2

2

( )

du dv

k u v+
 

 
by a convenient choice of coordinates. 
 It then results from this that in order for two surfaces of constant total curvature to be 
mappable to each other, it is necessary and sufficient that they have the same curvature.  
The question of the reality of the correspondence that realizes the map from one surface 
to the other one is contained in that statement, moreover. 
 
 Pseudo-sphere. – The spheres of radius R serve as examples of surfaces of positive 
constant total curvature k = 1 / R2.  We seek a surface of revolution of negative constant 
curvature k = − 1 / R2.  Let Oz be the axis of revolution, let M be a point on the principal 
meridian that is situated in the plane zOx, let x, z be its coordinates, and let θ = (Ox, MT) 
be the angle between the positive semi-tangent MT and Ox, when measured positively 
from Ox to Oz.  Since the positive semi-normal MN is defined by (Ox, MN) = θ + π / 2, 
the center of curvature C1 of the principal meridian, which is one of the principal sections 
of the surface, will be given by the formula: 
 

MC1 = 
ds

dθ
 = 

cos

dx

dθ θ
, 

which is true in magnitude and sign. 
 The second principal section is tangent to the parallel to the point M, so Meusnier’s 
theorem shows that its center of curvature C2 is at the intersection of Oz and the normal 
to the meridian, and one will have: 

MC2 = 
sin

x

θ
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in magnitude and sign. 
 The equation of the problem MC1 · MC2 = R1 R2 = − R2 is then written: 
 

x dx = − R2 sin θ cos θ dθ. 
 

 We confine ourselves to the solution: 
 
(12)     x = − R cos θ. 
 
 If one denotes the point where the tangent meets Oz by S then one will have: 
 

MS = −
cos

x

θ
 

 
in magnitude and sign.  Equation (12) then expresses the idea that the desired meridian is 
the curve of equal tangents, or tractrix.  One succeeds in determining it by integrating: 
 

dz = tan θ · dx = 
2sin

cos
R d

θ θ
θ

 = 
1

cos
cos

R dθ θ
θ

 − 
 

. 

 
One can suppress the constant of integration, on the condition that one must choose the 
origin O conveniently on the axis of revolution, and one will get: 
 

(13)  x = − R cos θ,  z = R log tan sin
4 2

π θ θ  + −  
  

 

 
for the equations of the desired meridian (i.e., the tractrix). 
 The surface of revolution that it generates by turning around its base Oz is called a 
pseudo-sphere. 
 
 Remark. – The importance of the surfaces of constant total curvature amounts to the 
fact that, like the plane, they can be mapped to themselves in an infinitude of ways.  Such 
a surface can then slide over itself by way of ∞3 continuous motions, under which the 
surface can deform, but in such a manner that any arc of a curve is traced on the surface 
will keep the same length.  It will then result from this that the geometries of those 
surfaces – which are called non-Euclidian geometries – are analogous to plane geometry, 
but from the preceding (geodesic lines play the role of lines in the plane), the sum of the 
angles of a triangle will be greater or less than π according to whether the total curvature 
is positive or negative (spherical or pseudo-spherical geometry, resp.), respectively. 
 

______________ 
 

 



 

CHAPTER V 
 

RULED SURFACES 
 

Developable surfaces 
 
 

 1. – In order to define the variation of the line that generates a ruled surface, we give 
the trajectory of a point M on that line and the direction of that line for each position of 
the point M.  The coordinates of a point on the surface are then expressed as functions of 
two parameters, one of which defines the position of the point M along its trajectory (K), 
while the other one defines the position of the point P considered along the line (D).  Let: 
 

x = f(v), y = g(v), z = h(v) 
 
be the expressions for the coordinates of a point on the curve K.  Let l0(v), m0(v), n0(v) be 
the direction coefficients of the generator (D), and let u be the ratio of the vector MP to 
the vector whose components are l0, m0, n0 .  The coordinates of P are: 
 
(1)   x = f (v) + u · l0(v), y = g (v) + u · m0(v), z = h (v) + u · n0(v). 
 

 

D 
M 

(K) 

P 

(R) 

I 

 
 

 Let us look for the condition for the surface that is defined by the preceding equations 
to be developable.  If we exclude the cases of the cylinder and the cone then the 
necessary and sufficient condition will be that the generators must be tangent to the same 
skew curve.  One must then be able to find a point P on the generator (D) such that its 
trajectory is constantly tangent to (D); the coordinates x, y, z of such a point must be such 
that: 

0

dx

l
= 

0

dy

m
 = 

0

dz

n
= dρ ; 

hence: 
(2)    dx = l0 dρ, dy = m0 dρ, dz = n0 dρ. 
However equations (1) give: 
 

dx = df + u dl0 + l0 du,       dy = dg + u dm0 + m0 du,      dz = dh + u dn0 + n0 du, 
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and equations (2) will be written: 
 
 df  + u dl0  + l0   (du – dρ) = 0, 
 dg + u dm0 + m0 (du – dρ) = 0, 
 dh + u dn0  + n0  (du – dρ) = 0, 
or, upon setting: 
(3)     dσ = du – dρ, 
 
(4) df + u dl0 + l0 dσ = 0,       dg + u dm0 + m0 dσ = 0,      dh + u dn0 + n0 dσ = 0. 
 
dσ and u must satisfy these three linear equations.  Hence, the determinant of these 
equations must be zero: 

(5)     
0 0

0 0

0 0

df dl l

dg dm m

dh dn n

= 0. 

 
If the three determinants that are deduced from the matrix: 
 

0 0 0

0 0 0

dl dm dn

l m n
 

 
are not all zero then there will exist values of u and dσ that satisfy equations (4), and the 
condition (5) will be sufficient.  If those three determinants are identically zero then one 
will have: 

0

0

dl

l
= 0

0

dm

m
 = 0

0

dn

n
, 

and the integration of those equations shows that l0, m0, n0 are proportional to fixed 
quantities; the surface will then be a cylinder.  If we discard that case then the condition 
(5) will be necessary and sufficient. 
 
 Remark 1. – In order for the point P to effectively describe a curve, it is necessary 
that dx, dy, dz, and in turn dρ, must not be identically zero.  If dρ is identically zero then 
all of the generators will pass through a fixed point, and the surface will be a cone.  The 
condition (5) will then be applied to the case of the cone. 
 
 Remark 2. – One often employs the equations of the generator in the form: 
 

x = Mz + P, y = Nz + Q, 
 
in which M, N, P, Q are functions of an arbitrary parameter.  This is a particular case of 
the general representation (1) in which one sets h(v) = 0 and n0(v) = 1; one will then have 
z = u, and: 
(6)    x = f (v) + z · l0(v), y = g (v) + z · m0(v). 



§ 1. – Developable surfaces 85 

The direction coefficients are l0, m0, 1.  The curve (K) is then the section by the plane z = 
0.  In this case, the condition (5) takes the simple form: 
 

(7)    0

0

df dl

dg dm
 = 0, i.e., 

dM dP

dN dQ
 = 0. 

 
Properties of developables 

 
 Let us return to the general case.  Suppose that l0, m0, n0 are the direction cosines of 
the generator; hence: 

l0
2 + m0

2 + n0
2 = 1, 

so: 
l0 dl0 + m0 dm0 + n0 dn0 = 0. 

 
Multiply equations (4) by dl0, dm0, dn0, respectively, and add them, which will give: 
 

n = − 0

2
0

dl df

dl
∑
∑

. 

 
Suppose, in addition, that the generator (D) is normal to the curve (K).  Indeed, it is 
possible to find orthogonal trajectories to the generators on a ruled surface.  It will suffice 
that x, y, z are such that: 

0l dx∑ = 0, 

or 
2

0 0 0 0l df u l dl l du+ +∑ ∑ ∑  = 0. 

Since one has: 
2

0l∑ = 1, 0 0l dl∑  = 0 

 
here, that condition will reduce to: 

0l df du+∑ = 0, 

 
and the determination of the orthogonal trajectory will be accomplished by means of one 
quadrature. 
 Therefore, if we suppose that (K) is normal to the generator then we will have: 
 

0l df∑ = 0. 

 
 If we multiply equations (4) by l0, m0, n0 , respectively, and add them then we will get 
dσ = 0, so dρ = du, and equations (2) will become: 
 

dx = l0 du, dy = m0 du, dz = n0 du. 
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However, since l0, m0, n0 are the direction cosines of the tangent to the edge of regression 
(R), u will represent the arc length of that curve, as measured in the positive sense that is 
chosen on the generator by starting with an arbitrary origin I, and since u also represents 
the segment MP, one will see that: 
 

d · MP = d · (arc IP); 
hence: 

MP = arc IP + const. 
 
One can always choose the origin I of the arc in such a fashion that the constant is zero.  
One will then have MP = arc IP.  The curve (K) is a development of the curve (R).  The 
orthogonal trajectories of the generators on a developable surface are involutes of the 
edge of regression. 
 Formulas (4) then give: 
 
(4′)   df + u dl0 = 0,  dg + u dm0 = 0, dh + u dn0 = 0. 
 

 
G B (α″, β″, γ″ ) 

T (α, β, γ) 
M 

N (α′, β′, γ′ ) 

χ 

 
 
 

Developments of skew curves 
 

 2. – Suppose that one is given the curve (K), and one seeks to draw a normal to that 
curve at each of its points in such a fashion as to obtain a developable surface.  We take 
that variable to be the arc length s of the curve (K).  Consider the Serret trihedron at the 
point M of the curve.  Let MG be the desired normal; it is in the normal plane to the 
curve.  In order to define it, it will then suffice to give the angle (MN, MG) = χ.  The 
point at a unit distance along MG has coordinates 0, cos χ, sin χ with respect to the Serret 
trihedron.  Hence, if l0, m0, n0 are the direction cosines of MG then: 
 

0

0

0

cos sin ,

cos sin ,

cos sin .

l

m

n

α χ α χ
β χ β χ
γ χ γ χ

′ ′′= +
 ′ ′′= +
 ′ ′′= +

 

 
Now, since v is the arc length on the curve (K): 
 

df = α dv, dg = β dv, dh = γ dv. 



§ 2. – Developments of skew curves 87 

If one takes the Frenet formulas into account then formulas (4′) will give: 
 

α dv + u ( sin cos ) cos sind dv dv
R T T

α α αα χ α χ χ χ χ
′′ ′′  ′ ′′− + − + ⋅ + ⋅  

  
= 0, 

or 
1 1

1 cos sin cos
u d d

u u
R T dv dv T

χ χα χ α χ α χ     ′ ′′− + − + −          
 = 0, 

 
and two analogous equations in β, β′, β″, and γ, γ′, γ″.  We will then have three equations 
that are linear and homogeneous in the coefficients α, α′, α″, β, β′, β″, γ, γ′, γ″.  The 
determinant of those equations is 1, so the unknowns are all zero, and since u is not 
constantly zero: 
 

1 − cosu

R

χ
= 0,      sin χ 1d

dv T

χ −  
= 0,      cos χ 

1d

dv T

χ −  
= 0. 

 
If one replaces v with the arc length s then the last two will give: 
 

(1)      
d

ds

χ
=

1

T
, 

and the first one will give: 

(2)      u = 
cos

R

χ
. 

 
There is then an infinity of solutions: χ is determined by a quadrature. 

 
B 

G′ 

G 

P 

P′ 

C 

N 

M 

v′ 

v 

χ′ T 

 
 Formula (2) shows us that: 

R = u cos χ. 
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Hence, the projection of the point P where the normal MG touches its envelope on the 
principal normal is the center of curvature C.  The contact point of the normal with its 
envelope is on the polar line.  The developments of a curve are on the polar surface. 
 Consider two solutions χ, χ′ of equation (1), so their difference is a constant.  The 
two normals MG, MG′ cut at a constant angle.  Therefore, when a normal to a curve 
describes a developable surface, if one rotates it in each of its positions through a 
constant angle around the tangent then the line that one obtains will again describe a 
developable. 
 The osculating plane to a developable is the tangent plane to the corresponding 
developable: It is the plane GMT.  That plane is normal to the plane BMC, which is the 
tangent plane to the polar surface.  Hence, the developments are the geodesics of the 
polar surface. 
 Consider the principal normal Pv to the development at P.  It is in the osculating 
plane GMT and perpendicular to the tangent MP, and therefore parallel to MT.  The 
principal normals to the developments of a curve are parallel to the tangents to the curve.  
The plane normal to the curve is the rectifying plane to all of its developables. 
 Upon starting from a curve (R) and remarking that the given curve (K) is the involute, 
one can state the preceding properties in such a fashion as to obtain properties of the 
involutes of a curve. 
 
 

Lines of curvature 
 

 3. – Consider a line of curvature (K) on a surface (S) and the circumscribed 
developable to (S) along (K).  The direction of a generator MG of that developable is 
conjugate to the tangent MT to the line of curvature, and consequently, it will be 
perpendicular to MT; i.e., normal to (K).  That generator MG will then be constantly 
tangent to a development of the line of curvature, and we see that the normals to a line of 
curvature that are tangent to a surface will generate a developable.  The converse is 
established by an analogous argument. 

 

G M 

(K) 

T 
G′ 

P′ 

 
 
 If we rotate MG through a right angle around the tangent then we will get a line MG′ 
that will be normal to the surface, since it is perpendicular to the two tangents to the 
surface MT, MG.  Therefore, the normals to the surface at all points of a line of curvature 
will generate a developable and conversely. 
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 Consider the point P′ where the line MG′ touches its envelope.  It is the point where 
the polar line to the line of curvature meets the normal to the surface.  Now, from 
Meusnier’s theorem, the polar lines to all curves on the surface that are tangent at M will 
meet the normal at M at the same point, which is the center of the curvature of the 
corresponding normal section.  P′ will then be the center of curvature of the principal 
section G′MT, so it will be one of the principal centers of curvature of the surface at the 
point M. 
 Therefore, recall formulas (4) of § 1 for the normal MG′, which we write: 
 

dx + u dλ = 0,      dy + u dµ = 0,      dz + u dv = 0. 
 
Replace f, g, h in them with the coordinates x, y, z of the point M and l0, m0, n0 with the 
direction cosines λ, µ, v of the normal to the surface: u is the radius of principal curvature 
R.  We then obtain the formulas of Olinde Rodrigues: 
 

dx + R dλ = 0,      dy + R dµ = 0,      dz + R dv = 0 
 
for a displacement along a line of curvature. 
 Joachimsthal’s theorems are easily deduced from the preceding.  Suppose that the 
intersection (K) of the two surfaces (S), (S1) is a line of curvature for each of them.  Let 
MG′, 1MG′  be the normals to the two surfaces at a point M of (K).  They generate two 

developables, and thus envelop two developments of (K), and in turn the angle between 
them will be constant.  Conversely, if the intersection (K) of (S), (S1) is a line of curvature 
of (S1), and if the angle between the two surfaces is constant along (K) then the normal 

1MG′  to (S1) will generate a developable, and since MG′ makes a constant angle with 

1MG′ , it will also generate a developable, so (K) will be a line of curvature on (S). 

 
 Differential equation of the lines of curvature. – When the condition (5) for a line to 
generate a developable surface is applied to the normal MG′, it will be written: 
 

dx d

dy d

dz d

λ λ
µ µ
ν ν

= 0 

here, or: 
x x

du dv du dv
u v u v

λ λ λ

µ
ν

∂ ∂ ∂ ∂⋅ + ⋅ ⋅ + ⋅
∂ ∂ ∂ ∂

⋯ ⋯

⋯ ⋯

 = 0. 

 
Multiply this by the determinant: 
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x x

u v
y y

u v
z z

u v

λ

µ

ν

∂ ∂
∂ ∂
∂ ∂
∂ ∂
∂ ∂
∂ ∂

, 

which is not zero. 
 We will get: 

0

0

0 0 1

E du F dv L du M dv

F du G dv M du N dv

+ − −
+ − − = 0, 

 
and we will then recover the differential equation for the lines of curvature: 
 

E du F dv L du M dv

F du G dv M du N dv

+ +
+ +

 = 0. 

 
 Remark. – If the equation of the surface is taken in the form z = f (x, y) then the 
equations of the normal will be: 
 

X = (x + pz) – p Z, Y = (y + qz) – q Z, 
 
and the same method, when applied to them, and appealing to the condition (7) [§ 1]: 
 

dM dP

dN dQ
 = 0 

 
will easily give the differential equation: 
 

dx p dz dp

dy q dz dq

+
+

 = 0. 

 
 

Development of a developable surface onto a plane 
 

 4. – Any developable surface can be mapped to a plane. 
 
 Incidentally, that theorem and its converse were obtained in Chap. IV, § 3. 
 We shall establish it directly and study the actual development of a developable 
surface onto a plane. 
 Indeed, one must observe that we have not discussed the reality of the pairs of 
homologous points in the correspondences that were considered in Chap. II (§ 2). 
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  First consider the case of the cylinder whose equations are: 
 

x = f (v) + u · l0,  y = g (v) + u · m0, z = h (v) + u · n0 , 
 
in which l0, m0, n0 are constants.  We deduce from them that: 
 

dx = f′ (v) dv + l0 · du,  dy = g′ (v) dv + m0 · du, dz = h′ (v) dv + n0 · du, 
 
so: 

ds2 = 2 2 2 2
0 0( ) 2 ( )f v dv l f v du dv l du′ ′+ ⋅ + ⋅∑ ∑ ∑ . 

 
We suppose that the directrix: 
 

x = f (v), y = g (v), z = h (v) 
 
is a cross section, in such a way that ∑ l0 f′ = 0.  Suppose that l0 , m0 , n0 are direction 
cosines, so ∑ l0

2 = 1.  Finally, since v is the arc length along the cross section, ∑ f′ 2 = 1.  
Hence: 
(1)      ds2 = du2 + dv2, 
 
which is the linear element of a plane in rectangular coordinates.  A cylinder can be 
mapped to a plane, and (1) gives the well-known law of that development. 
 Now, look at the case of the cone: 
 

x = u · l0(v), y = u · m0(v), z = u · n0(v), 
 

where u is the length along the generator when one starts from its summit.  Suppose that 
l0 , m0 , n0 are direction cosines of the generator, and v is the arc length of the spherical 
curve u = 1 that is the intersection of the cone with the sphere of radius one.  Hence: 
 

dx = u 0( )l v′ dv + l0(v) du, dy = u 0( )m v′ dv + m0(v) du, dz = u 0( )n v′ dv + n0(v) du, 

 
and 
(2)      ds2 = u2 dv2 + du2. 
 
This is the linear element of a plane in polar coordinates.  A cone can be mapped to a 
plane.  (2) gives the well-known law of the development. 
 Finally, we pass to the general case. 
 

 x = f(v) + u · l0(v),  y = g (v) + u · m0(v),  z = h (v) + u · n0(v). 
 
We suppose that the curve x = f (v), y = g (v), z = h (v) is the edge of regression, where v 
is the arc length along that curve, l0 , m0 , n0 are the direction cosines of the tangent at a 
point, and u is the distance when reckoned along that tangent when starting from the 
point of contact.  Hence: 
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l0 = f′ = α,  m0 = g′ = β,  n0 = h′ = γ, 
and: 

0l ′  = 
d

dv

α
= 

R

α ′
, 0m′  = 

d

dv

β
= 

R

β ′
, 0n′  = 

d

dv

γ
= 

R

γ ′
. 

Hence: 
 

dx = α dv + u
R

α ′
dv + α du, dy = β dv + u

R

β ′
dv + β du, dz = γ dv + u

R

γ ′
dv + γ du, 

 
and: 

ds2 = [d (u + v)]2 + 
2

2

u

R
dv2. 

 
 That element will remain the same if R keeps the same expression as a function of v.  
Hence, the linear element is the same for all developable surfaces whose edges of 
regression are curves whose radius of curvature has the same expression as a function of 
the arc length: 

R = Φ (v). 
 
We can determine a planar curve whose radius of curvature is expressed as a function of 
the arc length by means of the preceding equation.  We take the coordinates in the plane 
of that curve to be the arc length s of the curve and the distance when reckoned along the 
tangent by starting from the contact point.  The developable will then be mappable onto 
that plane.  When the developable is given, one can determine its edge of regression by 
algebraic operations and then determine the arc length along that edge of regression by a 
quadrature.  Its radius of curvature will then determined by an equation of the form: 
 

R = Φ (s). 
 

 One must construct a planar curve that satisfies that condition.  If θ is the angle 
between the tangent and Ox then one knows that: 
 

R = 
ds

dθ
; 

hence: 
ds

dθ
= Φ (s), 

so 

θ = 
( )

ds

sΦ∫
, 

and therefore: 
dx = cos θ ds,  dy = sin θ ds. 
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x, y are determined by means of three quadratures.  The curve that one obtains is 
homologous to the edge of regression in the development. 
 

Converse 
 

 Conversely, any surface that can be mapped to a plane is a developable surface. 
 
 Let the surface be: 

x = f (u, v), y = g (u, v), z = h (u, v), 
 
which we assume to be mappable to a plane.  Upon choosing the coordinates u, v 
suitably, we will have: 
 

ds2 = E du2 + 2F du dv + G dv2 = du2 + dv2, 
so: 

2
x

u

∂ 
 ∂ 

∑ = 1,  
x x

u v

∂ ∂⋅
∂ ∂∑ = 0,  

2
x

v

∂ 
 ∂ 

∑ = 1. 

 
If we differentiate these relations with respect to u, v in succession then we will get: 
 

2

2

x x

u u

∂ ∂⋅
∂ ∂∑ = 0, 

2 2

2

x x x x

u v u u v

∂ ∂ ∂ ∂⋅ + ⋅
∂ ∂ ∂ ∂ ∂∑ ∑ = 0, 

2x x

v u v

∂ ∂⋅
∂ ∂ ∂∑ = 0, 

 
2x x

u u v

∂ ∂⋅
∂ ∂ ∂∑ = 0, 

2 2

2

x x x x

u v v u v

∂ ∂ ∂ ∂⋅ + ⋅
∂ ∂ ∂ ∂ ∂∑ ∑ = 0, 

2

2

x x

v v

∂ ∂⋅
∂ ∂∑ = 0. 

 
We then infer that: 

2

2

x x

v u

∂ ∂⋅
∂ ∂∑ = 0, 

2

2

x x

u v

∂ ∂⋅
∂ ∂∑ = 0. 

 
Now, consider the equations: 
 

 
2 2 2

2 2 2

x y z
X Y Z

u u u

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 

 

 
2 2 2x y z

X Y Z
u v u v u v

∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
From the relations that were written down previously, that system will admit the two 
solutions: 

 X = 
x

u

∂
∂

, Y = 
y

u

∂
∂

, Z =
z

u

∂
∂

, 
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 X = 
x

v

∂
∂

, Y = 
y

v

∂
∂

, Z =
z

v

∂
∂

. 

 
These solutions are not proportional to each other, since otherwise the curves u = const. 
and v = const. would always be tangent.  Hence, the three determinants that are deduced 
from the matrix: 

2 2 2

2 2 2

2 2 2

x y z

u u u

x y z

u v u v u v

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂

 

 
will be zero.  Now, they are the functional determinants of the three quantities ∂x / ∂u, ∂y 
/ ∂u, ∂z / ∂u, taken two at a time, and thus those three quantities are functions of just one 
of them; i.e., of just one variable t.  Similarly, ∂x / ∂v, ∂y / ∂v, ∂z / ∂v are functions of just 
one variable θ.  Moreover, the relation: 
 

x x

u v

∂ ∂⋅
∂ ∂∑ = 0 

 
shows that θ, for example, can be expressed as a function of t. 
 The six partial derivatives are then functions of the same variable.  The same thing 

will then be true for the derivatives p = 
( , )

( , )

D y z

D u v
: 

( , )

( , )

D x y

D u v
, q = − ( , )

( , )

D z x

D u v
: 

( , )

( , )

D x y

D u v
 of z, 

when considered to be functions of x and y.  The surface is then developable [Chap. III, 
pp. 46]. 
 
 Remark I. – The geodesics are preserved under the development.  Now, the geodesics 
in the plane are lines.  The geodesic lines on the developable surface are then lines that 
correspond to the lines in that plane under the development of that surface onto a plane. 
 
 In particular, consider the rectifying surface of a curve that is the envelope of the 
rectifying plane.  That curve is a geodesic of its rectifying surface, since its osculating 
plane is perpendicular to the tangent plane.  It is then developed along a line when one 
performs the development of the rectifying surface onto a plane.  Hence, the name 
“rectifying plane.” 
 
 Remark II. – It results from this that the search for geodesics on a developable surface 
reduces to its development, and consequently to four quadratures. 
 
 Remark III. – The determination of the lines of curvature, which are involutes of the 
edge of regression, reduces to one quadrature. 
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Geodesic lines on a developable surface 
 
 5. – We have reduced the search for geodesic lines on a developable plane to the 
development of that surface onto a plane.  One can look for them directly.  Let the edge 
of regression be: 
(1)     x = f (s), y = g (s), z = h (s), 
 
in which s denotes the arc length.  If α, β, γ are the direction cosines of the tangent, and u 
is a length that is measured along that tangent when one starts from the point of contact 
then the surface will be represented by the equations: 
 
 x = f + u α, y = g + u β, z = h + u γ. 
 
 Upon denoting the first and second derivatives of u with respect to s by u′ and u″, 
resp., one will deduce from this that: 
 

 
dx

ds
= α + u

R

α ′
 + α u′,  dy

ds
= …, 

dz

ds
= …, 

or 

 
dx

ds
= α (1 + u′) + α′ u

R
, 

dy

ds
= …, 

dz

ds
= …, 

and 

 
2

2

d x

ds
= 2

1
1 2

u R u
u u u

R R R RT
α α α

′   ′′ ′ ′ ′′− + ⋅ + − −   
   

, 

 
along with their analogues. 
 Upon remarking that the normal to the surface is nothing but the binormal to the edge 
of regression, the equation for the geodesic lines will be: 
 

2 2 2

2 2 2

d x d y d z

ds ds ds
dx dy dz

ds ds ds
α β γ′′ ′′ ′′

= 0 

or: 

2
1 2

(1 )

u R u
u u u

R R R RT

u
u

R

αα α

α α

α

′ ′   ′′ ′ ′′− + + − −   
   

′ ′+ +

′′

⋯ ⋯

⋯ ⋯

⋯ ⋯

 = 0. 
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 The left-hand side is the product of two determinants, and the equation can be 
written: 

2

1
1 2

1 0

0 0 1

u R u
u u u

R R R RT

u
u

R

α β γ
α β γ
α β γ

 ′′ ′− + − − ′ 

′ ′ ′ ′× +
′′ ′′ ′′

= 0 

or 

( )2

1
1 1 2

u u R
u u u u

R R R R

′   ′′ ′ ′− − + + −   
   

= 0; 

i.e.: 

(2)    u · u″ − 2u′2 − u′ 
2

23
R u R

u u
R R R

′ ′ − − + ⋅ 
 

− 1 = 0. 

 
 That is the differential equation that determines u. 
 Let us seek to understand the nature of the general integral.  If we develop the surface 
onto a plane then the curve (1) will be represented by a curve: 
 

X = F (s), Y = G (s) 
 
whose radius of curvature will again be R.  The homologous point to the point (u, s) on 
the surface will be: 

X= F + u F′, Y = G + u G′. 
 

 The lines in the plane are defined by the general equation: 
 

A (F + u F′ ) + B (G + u G′ ) + C = 0, 
so 

u = − AF BG C

AF BG

+ +
′ ′+

. 

 
Upon remarking that the denominator is the derivative of the numerator, we will then be 
led to set: 

u = − w

w′
 

 
and to predict that the equation in w will be linear and homogeneous of third order.  
Effectively: 

u′ = − 1 + 
2

ww

w

′′
′

 

and 
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u″ = 
2

2 3

2ww w ww

w w w

′′′ ′′ ′′
+ −

′ ′ ′
. 

(2) will then become: 
 

− 
22

2 3 2 2

2
2 1 3 1

w ww w ww ww ww

w w w w w w

′′′ ′′ ′′ ′′ ′′     + − − − + − − +     ′ ′ ′ ′ ′ ′    
 − 21

R w ww

R w w

′ ′′ − + ′ ′ 
 

− 
2

2 2

1 w R w

R w R w

′
⋅ − ⋅

′ ′
− 1 = 0. 

 If we set: 
w′ = θ 

then we will obtain: 

(3)      θ″ + 
2

1R

R R
θ θ′ ′ +  = 0, 

 
which is a linear equation of second order in θ.  We can make the second term disappear 
by a change of variable: 

σ = θ (s), 
so 

θ′ = 
d

ds

θ
= 

d

d

θ
σ

 · ϕ′, 

and 

θ″ = 
2

2

d

ds

θ
 = 

2
2

2

d d

d d

θ θϕ ϕ
σ σ

′ ′′⋅ + ⋅ . 

 
 Equation (3) will then become: 
 

2
2

2 2

1d d R

d d R R

θ θϕ ϕ ϕ θ
σ σ

′ ′ ′′ ′⋅ + + + 
 

= 0. 

 
 Choose the function ϕ in such a fashion that: 
 

ϕ″ + 
R

R

′ ϕ′ = 0, 

or 
ϕ
ϕ

′′
′
= − 

R

R

′
. 

 It suffices to take: 

ϕ′ = 
1

R
= 

d

ds

σ
, 

so: 
ds = R dσ. 

 We will then get the equation: 
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2

2

d

d

θ
σ

+ θ = 0, 

whose general integral is: 

θ = A cos σ + B sin σ =
dw

ds
; 

hence: 
w = A ∫ cos σ · ds + B ∫ cos σ · ds + C, 

and finally: 

u = −
cos sin

cos sin

A ds B ds C

A B

σ σ
σ σ

⋅ + ⋅ +

+
∫ ∫ , 

with 

σ = 
ds

R∫
. 

 
 One can dispense with the explicit introduction of the arc length s, because it will 
only enter into these formulas by way of its differential.  Hence, the geodesic lines on a 
developable surface are obtained by at most three quadratures.  One confirms, moreover, 
that the two methods will lead to the same calculations. 
 
 

Skew ruled surfaces.  Orthogonal trajectories of generators 
 

 6. – Let a ruled surface be: 
 

x = f (v) + u · l0 (v),      y = g (v) + u · m0 (v),      z = h (v) + u · m0 (v) . 
 
Since the generators are geodesics, it will then result that the orthogonal trajectories of 
the generators will determine equal segments along those generators.  We have already 
seen how one obtains those orthogonal trajectories: One must determine u as a function 
of v in such a fashion that: 

0l dx∑ = 0. 

 
To simplify, we suppose that l0 , m0, n0 are direction cosines; then: 
 

2
0l∑ = 1, 0 0l dl∑ = 0, 

 
and the differential equation will become: 
 

0l df⋅∑  + du = 0; 

hence: 

u = − 0l df⋅∑∫ . 
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 The determination of the orthogonal trajectories of the generators of a ruled surface 
comes down to one quadrature. 

 

M (x, y, z) 

M1 (x1, y1, z1) 

 
 Remark. – One can attach that fact to the formula that gives the variation of a line 
segment.  Take a positive direction on the line MM1 .  Let r be the absolute value of the 
distance MM1 .  Let x, y, z, and x1, y1, z1 be the coordinates of the two extremities, which 
describe two given curves.  The distance MM1 is given by the formula: 
 

r2 = (x1 – x)2 + (y1 – y)2 + (z1 – z)2, 
so 

r dr = (x1 – x) (dx1 – dx) + (y1 – y) (dy1 – dy) + (z1 – z) (dz1 – dz), 
or 

dr = 1 1 1 1 1 1
1 1 1

x x y y z z x x y y z z
dx dy dz dx dy dz

r r r r r r

− − − − − −   + + − + +   
   

. 

 
Let α, β, γ; α1, β1, γ1 be the direction cosines of the tangents to the curves at M, M1 , 
directed in the sense of increasing arc length.  Let λ, µ, ν be the direction cosines of the 
positive direction of the line MM1 .  The preceding formula can then be written: 
 

dr = (λα1 + µβ1 + νγ1) ds1 – (λ α + µ β + ν γ) ds, 
 
and if one introduces the angles θ, θ1 between MM1 and the two tangents then one will 
get the important formula: 

dr = cos θ1 ds1 – cos θ ds. 
 

 Suppose that the line MM1 is tangent to the first curve and normal to the second one: 
 

θ = 0,  θ1 = ± 
2

π
 , 

and the formula will reduce to: 
dr = − ds. 

 
 We then recover the properties of involutes and developments. 
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 Suppose that we have the normal line to the two curves θ = ±
2

π
, θ1 = ±

2

π
, so dr = 0, 

r = const., and we will recover the properties of the orthogonal trajectories of the 
generators. 
 
 

Director cone.  Central point.  Line of striction 
 

 7. – One calls the surface of the cone: 
 

x = u · l0 (v),  y = u · m0 (v),  z = u · m0 (v) 
 
the director cone. 
 If that cone reduces to a plane then that plane will be called the director plane, and 
the generators will all be parallel to that plane. 
 The tangent plane at any point of the surface will have the determinants that are 
deduced from the matrix: 

(1)     0 0 0

0 0 0

l m n

df u dl dg u dm dh u dn+ + +
 

 
for their coefficients.  The tangent plane to the director cone along the generator that 
corresponds to the one that passes through the point considered will have the 
determinants that are deduced from the matrix: 
 

0 0 0

0 0 0

l m n

dl dm dn
 

 
for their coefficients.  Those planes will be parallel if u is infinite.  One will then have the 
tangent plane to the point at infinity on the generator of the surface, which one calls the 
asymptote plane.  The asymptote planes are parallel to the tangent planes to the director 
cone along the corresponding generators. 
 All of the asymptote planes to a surface with a director plane will be parallel to the 
director plane. 
 In order for the two tangent planes to the surface and the director cone to be 
rectangular, it is necessary that the sum of the products of the preceding determinants 
should be zero, which will give: 
 

2
0 0 0 0

2
0 0 0 0

l l df u l dl

l dl dl df u dl

+
⋅ +

∑ ∑ ∑
∑ ∑ ∑

= 0, 

 
which is an equation of first degree in u.  There will then exist a point on any generator, 
in general, where the tangent plane is perpendicular to the tangent plane to the director 
cone, i.e., to the asymptote plane.  That is the central point, and the tangent to that point 
is called the central plane. 
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 The locus of central points is called the line of striction. 
 We suppose, to simplify, that ∑ l0

2 = 1, which eliminates the case of the ruled surface 
with isotropic generators.  Hence, ∑ l0 dl0 = 0, and the equation in u which gives the 
general point reduces to: 

u ∑ dl0
2 + ∑ l0 df = 0; 

 
the central point always exists then, unless: 
 

∑ dl0
2 = 0. 

 
In that case, the spherical curve that is at the base of the director cone will be a minimal 
curve of the sphere; i.e., an isotropic generator.  The cone will then be a tangent plane to 
the asymptote cone of the sphere, which is an isotropic cone, so it will be an isotropic 
plane.  The surfaces considered are ruled surfaces with isotropic director planes.  All of 
them are imaginary, except for the paraboloid of revolution. 
 
 Remark. – The tangent plane will be indeterminate when all of the determinants in the 
matrix (1) are zero.  There will then exist a factor K such that: 
 

df + u dl0 + K l0 = 0,      dy + u dm0 + K m0 = 0,      dh + u dn0 + K n0 = 0, 
 
which demands that: 

0 0

0 0

0 0

df dl l

dg dm m

dh dn n

= 0. 

 
That condition, which expresses the idea that the generator considered meets the 
infinitely-close generator, can be true for the exceptional generators.  If it is an identity 
then the surface will be developable.  In order to find the point where the tangent plane is 
indeterminate in this case, multiply the condition by dl0, dm0, dn0, resp., and add; we will 
get: 

u ∑ 2
0dl + ∑ dl0 · df = 0. 

 
This equation determines the contact point of the generator and the edge of regression on 
page 97.  The indeterminacy in the tangent plane at that point explains why the preceding 
formula, which gives the line of striction for an arbitrary ruled surface, gives the edge of 
regression for a developable surface.  Indeed, it is the only point of the generator of a 
developable surface where the tangent plane does not coincide with the asymptote plane, 
and where one can, due to the indeterminacy of the tangent plane, consider the plane that 
is perpendicular to the asymptote plane to be tangent to the surface. 
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Variation of the tangent plane along a generator 
 

 8. – We propose to seek the angle between the tangent planes to a ruled surface at two 
points along the same generator.  To that effect, we first treat the following problem: One 
is given a line ∆ whose direction cosines are α, β, γ, and the direction coefficients of the 
two lines D (p, q, r) and D′ (p′, q′, r′ ) that meet it.  Calculate the angle V between the two 
plane D∆ and D′∆. 

 D′ (p′, q′, r′) 

D (p, q, r) 

∆ (α, β, γ) 

α″, β″, γ″ 

α′, β′, γ′ 
 

 Consider a direct auxiliary tri-rectangular trihedron, one of whose axes is ∆.  Let α′, 
β′, γ′, α″, β″, γ″ be the direction cosines of the other axes, and let u, v, w, and u′, v′, w′ be 
the direction coefficients of D and D′ in that system.  One will then have: 
 

tan V = 
vw wv

vv ww

′ ′−
′ ′+

. 

 On the other hand: 
 
 u  = α p  + β q  + γ r, v  = α′ p  + β′ q  + γ′ r, w  = α″ p  + β″ q  + γ″ r, 
 u′ = α p′ + β q′ + γ r′, v′ = α′ p′ + β′ q′ + γ′ r′, w′ = α″ p′ + β″ q′ + γ″ r′, 
so 

vw′ – vw′ = 
p q r p q r

p q r p q r

α β γ α β γ
α β γ α β γ

′ ′ ′ ′ ′ ′ ′ ′ ′+ + + +
′′ ′′ ′′ ′′ ′ ′′ ′ ′′ ′+ + + +

 = 

p p

q q

r r

α β γ
α β γ

′
′ ′ ′

′
′′ ′′ ′′

′
 

= p q r

p q r

α β γ

′ ′ ′
. 

 Furthermore: 
uu′ + vv′ + ww′ = pp′ + qq′ + rr ′, 

so 
vv′ + ww′ = ∑ pp′ − ∑ α p · ∑ α p′. 

 Hence: 
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tan V = 

p q r

p q r

pp p p

α β γ

α α
′ ′ ′

′ ′− ⋅∑ ∑ ∑
 = 

2

2

p q r

p q r

pp p p

α β γ
α

α α α
′ ′ ′

′ ′⋅ − ⋅

∑

∑ ∑ ∑ ∑
, since ∑ α2 = 1. 

 
 In that form, one can then introduce the direction coefficients l, m, n of the direction 
∆. 

(1)     tan V = 

2 2 2

2

l m n

l m n p q r

p q r

l pp lp lp

+ +
′ ′ ′

′ ′⋅ − ⋅∑ ∑ ∑ ∑
. 

 
 Apply that formula to the angle between the tangent planes at two points M, M′ along 
the same generator.  We take the directions D, D′ to be the directions tangent to the 
curves n = const.: 
 
 p  = df + u dl0 , q  = dg + u dm0 , r  = dh + u dn0 , 
 p′ = df + u′ dl0 , q′ = dg + u′ dm0 , r′ = dh + u′ dn0 ; 
 
the determinant of the formula (1) becomes: 
 

0 0 0

0 0 0

0 0 0

l df u dl df u dl

m dg u dm dg u dm

n dh u dn dh u dn

′+ +
′+ +
′+ +

= 
0 0

0 0

0 0

l dl df

m dm dg

n dn dh

 (u – u′) 

and 

tan V = 

2 2 2
0 0 0 0 0 0

0 0 0

2
0 0 0

0 0 0 0

( )

( )

( ) ( )( )

df dg dh

u u l m n dl dm dn

l m n

l l df u dl

l df u dl df u dl df u dl

′ − + +

+
′ ′+ + +

∑ ∑
∑ ∑

. 

 We set: 

D = 0 0 0

0 0 0

df dg dh

dl dm dn

l m n

, 

 
and in order to simplify the result, we take l0, m0, n0 to be the direction cosines of the 
generator; hence, ∑ l0

2 = 1, ∑ l0 dl0 = 0.  We suppose, moreover, that the curve x = f (v), y 
= y (v), z = h (v) is an orthogonal trajectory of the generator, so ∑ l0 df = 0.  Finally, we 
determine u by the relation: 
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2
0 0u dl dl df+ ⋅∑ ∑ = 0, 

 
which amounts to taking the central point to be one of its points. 
 The denominator then becomes: 
 

2 2
0 0 0

1 0

0 [ ]df u dl df u u dl dl df′+ + +∑ ∑ ∑ ∑
, 

which reduces to: 

2
0df u dl df+∑ ∑ = 

( )22 2
0 0

2
0

df dl dl df

dl

⋅ − ⋅∑ ∑ ∑
∑

, 

and then: 

tan V = 
( )

2
0

22 2
0 0

( )u u D dl

df dl dl df

′ − ⋅

⋅ − ⋅
∑

∑ ∑ ∑
. 

 Upon setting: 

K = 
( )22 2

0 0

2
0

df dl dl df

D dl

⋅ − ⋅
⋅

∑ ∑ ∑
∑

 

 
and remarking that u′ – u = CM, one will then obtain the Chasles formula: 
 

(2)      tan V = 
CM

K
, 

 
which has the following well-known consequences, which break down for singular 
generators: 
 
 1. When M describes the generator from one end to the other, the tangent plane (P) 
at M will always turn around the generator in the same sense, and the total rotation that 
it experiences will be 180o.  The tangent planes at two different points will be different. 
 
 2. The distribution of points M and the sheaf of planes (P) are in homographic 
correspondence. 
 
 3. Since three pairs define a homography, two ruled surfaces that have a common 
generator and are tangent to that generator at three points will be tangent to that 
generator at all other points, i.e., they will agree all along that generator. 
 
 We seek to simplify the expression for K.  In order to do that, we remark that: 
 

D2 = 

2
0 0 0
2

0 0 0 0
2

0 0 0 0

df dl df l df

dl df dl l dl

l df l dl l

⋅ ⋅
⋅ ⋅

⋅ ⋅

∑ ∑ ∑
∑ ∑ ∑
∑ ∑ ∑

 = 

2
0 0
2

0 0

0

0

0 0 1

df dl df

dl df dl

⋅
⋅

∑ ∑
∑ ∑  
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= 2 2 2
0 0( )dl df dl df− ⋅∑ ∑ ∑ , 

so 

(3)      K = 
2

0

D

dl∑
. 

 
 In the general case, one will likewise find that: 
 

(4)     K = 
2

0

2 2 2
0 0 0 0( )

D l

l dl l dl

⋅
⋅ −

∑
∑ ∑ ∑

. 

 
 K is the distribution parameter; it is rational.  Formula (2) shows that if M is 
displaced in an arbitrary direction along the generator then the tangent plane will turn in 
the positive sense of rotation with respect to that direction if K is positive and in the 
negative sense if K is negative. 
 The sign of K then corresponds to a geometric property of the surface.  From (3) or 
(4), the distribution parameter is zero for a developable surface. 
 If one abstracts from the sign then formula (3) will exhibit the fact that the 
distribution parameters is the quotient of the shortest distance from the generator 
considered to the infinitely-close generator with the angle between the two generators, 

since that distance is D : 2
0dl∑  and that angle is 2

0dl∑ , up to higher-order 

infinitesimals. 
 
 Remark. – Let M, M′ be two points along the same generator where the tangent planes 
are rectangular.  The angles V, V′ are such that: 
 

tan V · tan V′ = − 1, 
so, by virtue of (2): 

CM · CM′ = − K2. 
 
The points on a generator where the tangent planes are rectangular define an involution 
whose central point is C. 
 
 Example 1. – Surface generated by the binormals to a skew curve. 
 
 Let the curve be: 

x = f (s), y = g (s), z = h (s). 
 
With the usual notations, we will have: 
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0 0 0

0 0 0 .

df ds dg ds dh ds

l m n

dl ds dm ds dn ds
T T T

α β γ
α β γ
α β γ


 = = =
 ′′ ′′ ′′= = =
 ′ ′ ′
 = = =


 

 
 The central point is defined by u = 0 here, so the curve is the line of striction of the 
surface that is generated by its binormals.  The distribution parameter is: 
 

K = 
2

2

ds ds ds

T
ds ds ds

T T T ds

α β γ
α β γ

α β γ

′ ′ ′

′′ ′′ ′′

 = T. 

 
The distribution parameter is equal to the radius of torsion of the curve at the 
corresponding point.  The curve is a line of striction that is an orthogonal trajectory to the 
generators and a geodesic. 
 
 Example 2. – Surface generated by the principal normals to a curve. 
 
 Here, one has: 
 
 df = α ds, dg = β ds, dh = γ ds, 
 
 l0 = α′, m0 = β′, m0 = γ′, 
 

 dl0 = 
R T

α α ′′ − − 
 

ds, dm0 =
R T

β β ′′ − − 
 

ds, dn0 =
R T

γ γ ′′ − − 
 

ds . 

 
The central point C is defined by the equation: 
 

u = 2

R T

R T

α αα

α α

′′ + 
 

′′ + 
 

∑

∑
=

2 2

1

1 1
R

R T
+

= 
2

2 2

RT

R T+
 = MC. 

 
The distribution parameter is: 
 

K = −
2

2 2

RT

R T+ R T R T R T

α β γ
α α β β γ γ

α β γ

′′ ′′ ′′
+ + +

′ ′ ′

 = 
2

2 2

R T

R T+
. 
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 We now seek the tangent plane to the center of curvature O.  The Chasles formula 
gives: 

tan V = 
CO

K
 = 

MO MC

K

−
 = 

2

2 2

1 RT
R

K R T

 
− + 

 = 
3

2 2

1 R

K R T
⋅

+
 = 

R

T
. 

 
For the point M, which is on the curve, one will likewise obtain: 
 

tan V = 
CM

K
 = − T

R
, 

so: 
tan V · tan V = − 1. 

 
 The tangent planes at M and O are rectangular, which is a particular case of a 
proposition that will verify later on (§ 12). 
 
 

Canonical form of the linear element 
 

 9. – We now seek the linear element of a ruled surface that is defined by the 
equations: 

x = f (v) + u l0 (v), y = g (v) + u m0 (v), z = h (v) + u n0 (v). 
 
 Upon denoting derivatives with respect to v by primes, we infer from those equations 
that: 
 

dx = (f′ + 0u l′ ) dv + l0 du, dy = (g′ + 0u m′ ) dv + l0 du, dz = (h′ + 0u n′ ) dv + m0 du, 
 
and 

ds2 = E du2 + 2 F du dv + G dv2, 
with 
 

E = 2
0l∑ , F = 0 0 0u l l l f′ ′+∑ ∑ , G = 2 2 2

0 02u l u l f f′ ′ ′ ′+ +∑ ∑ ∑ . 

 
 Suppose that l0, m0, n0 are direction cosines, so: 
 

2
0l∑ = 1, 0 0l l ′∑ = 0, 

so 
E = 1,  F = 0l f ′∑ ,  G = 2 2 2

0 02u l u l f f′ ′ ′ ′+ +∑ ∑ ∑ . 

 
 These results are obtained directly by making the change of parameter: 
 

E n⋅  = u1 , 

so 
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du1 = 
/

2

dE dv
E du u dv

E
+ . 

 
 Upon suppressing the indices, we will indeed obtain an expression of the form: 
 

ds2 = du2 + 2F du dv + G dv2. 
 

 Suppose, moreover, that the curve: 
 

x = f (v), y = g (v), z = h (v) 
 

is an orthogonal trajectory of the generators, so: 
 

0l f ′∑ = 0, F = 0, 

and the linear element reduces to: 
ds2 = du2 + G dv2. 

 
One should expect that this would be its form, since the coordinate curves are orthogonal.  
One will also arrive at that expression by setting: 
 

du + F dv = du1 , 
so 

u1 = u + ∫ F dv, 
which demands a quadrature. 
 The variable u is defined up to a constant, so it is a length that is carried by each 
generator when one starts with the same orthogonal trajectory.  In order to specify the 
variable v, consider the direction of the generator: 
 

x = l0 (v), y = m0 (v), z = n0 (v). 
 
These equations are the ones for the trace of the director cone on the sphere of radius 1.  
We take v to be the arc length along that curve, so: 
 

2
0l ′∑ = 1 

and 
G = u2 + 2

02u l f f′ ′ ′+∑ ∑ . 

Set: 

0l f′ ′∑ = G0 , 
2f ′∑ = G1 , 

in such a way that: 
G = u2 + 2u G0 + G1 . 

 
 The quantities G0, G1 thus-introduced are linked with the central point and the 
distribution parameter in a simple way.  Indeed, consider the involution of the points M, 
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M′ where the tangent planes are rectangular.  Its central point is the central point of the 
generator, and upon denoting the distribution parameter by K: 
 

CM · CM′ = − K2. 
 
The coefficients of the tangent plane at a point u of the generator will be the determinants 
that are deduced from the matrix: 
 

0 0 0

0 0 0

l m n

f u l g u m h u n′ ′ ′ ′ ′ ′+ + +
. 

 
Similarly, the coefficients of the tangent plane at the point u′ will be deduced from the 
matrix: 

0 0 0

0 0 0

l m n

f u l g u m h u n′ ′ ′ ′ ′ ′ ′ ′ ′+ + +
. 

 
We express the idea that these tangent planes are rectangular.  The sum of the products of 
the preceding determinants, and in turn, the product of the matrices, must be zero, which 
gives: 

1 0

1 0

0 ( )G u u G uu′ ′+ + +
 = 0. 

 
The involution relation is then: 
 

uu′ + (u + u′) G0 + G1 = 0, 
or 

(u + G0) (u + G0) = 2
0G − G1 . 

 
Since the central point is the homologue of a point at infinity, it is given by: 
 

u + G0 = 0. 
 
Hence – G0 is the u of the central point.  We denote it by: 
 

P = – G0 = − 0l f′ ′∑ . 

On the other hand: 
2

0G − G1 = – K2, 

so 
G1 = 2

0G  + K2 = P2 + K2 = 2f ′∑ . 

Hence: 
G = u2 – 2u P + P2 + K2 = (u – P)2 + K2. 
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In summary, if v is the arc length of the trace of the director cone on the sphere of radius 
1, and u is the length that is carried by the generator when one starts from an orthogonal 
trajectory then the linear element will be given by the formula: 
 
(1)     ds2 = du2 + [(u – P)2 + K2] dv2, 
 
in which P is the value of u for the central point, and K is the distribution parameter. 
 
 Remark. – That can serve to calculate the distribution parameter.  Indeed: 
 

2

0 0 0

0 0 0

f g h

l m n

l m n

′ ′ ′
′ ′ ′ = 

1 0

0

0

1 0

0 0 1

G G

G  = G1 − 2
0G  = K2, 

so 

(2)   K = 0 0 0

0 0 0

f g h

l m n

l m n

′ ′ ′
′ ′ ′ ,  P = − 0l f′ ′∑ ,  P2 + K2 = 2f ′∑ . 

 
 Conversely, let a surface have a linear element of the form: 
 

ds2 = du2 + [(u – P)2 + K2] dv2. 
 
We look for ruled surfaces that might be mappable to that surface.  The elements of such 
a ruled surface will be determined by the relations: 
 

2
0l∑ = 1,      0l f ′∑ = 0,      2

0l ′∑ = 1,      0l f′ ′∑ = − P,      2f ′∑ = K2 + P2. 

 
From the expression (2) for K, the last of these relations can be further written: 
 

0 0 0 0( )f m n n m′ ′ ′−∑ = − K. 

 
 We can initially give the director cone arbitrarily in such a fashion that the two 
equations 2

0l∑ = 1, 2
0l ′∑ = 1 are satisfied.  It will then remain for us to satisfy three 

linear equations in f′, g′, h′ whose determinant is non-zero.  f′, g′, h′ will be determined 
perfectly, but f, g, h will be determined up to an additive constant, which amounts to 
adding constant quantities to x, y, z; i.e., to subjecting the surface to a translation.  There 
is then an infinitude of ruled surfaces that can be mapped to a given ruled surface in such 
a manner that the generators will correspond to generators, since one can take the 
director cone arbitrarily.  We remark that it is not K that figures in the linear element, but 
K2, in such a way that, in particular, there exist two ruled surfaces that have the same 
director cone and distribution parameters that are equal, but opposite in sign, and can be 
mapped to each other. 
 In order to find f, g, h explicitly, solve the system of linear equations: 
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0l f ′∑ = 0,      0l f′ ′∑ = − P,      0 0 0 0( )m n n m f′ ′ ′−∑ = − K. 

 
l0, m0, n0 ; 0l ′ , 0m′ , 0n′  are direction cosines of two rectangular directions here.  Introduce 

a new direction with cosines l0, m0, n0 that defines a direct tri-rectangular trihedron with 
the preceding ones: 
 

l2 = 0 0 0 0m n n m′ ′− , m2 = 0 0 0 0n l l n′ ′− , n2 = 0 0 0 0l m m l′ ′− . 

 
The system becomes: 
 

0l f ′∑ = 0,      0l f′ ′∑ = − P,      2l f ′∑ = − K; 

hence: 

(3)     
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

( ),

( ),

( ).

f P l K m n n m

g P m K n l l n

h P n K l m m l

′ ′ ′ ′= − − −
 ′ ′ ′ ′= − − −
 ′ ′ ′ ′= − − −

 

 
One deduces f, g, h by quadratures. 
 
 

The form Ψ and asymptotic lines 
 

 10. – We can take the second fundamental form (page 29) to be: 
 

Ψ (du, dv) = ∑ A d 2x = 

2 2 2d x d y d z

x y z

u u u
x y z

v v v

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 

2
0 0

0

0

( ) 2f u l dv l du dv

l

f u l

′ ′ ′+ +

′ ′+

⋯ ⋯

⋯ ⋯

⋯ ⋯

, 

 
so Ψ will have an expression of the form: 
 

Ψ (du, dv) = 2 F′ du dv + G′ dv2, 
 
in which F′ is a function of v, and G′ is a trinomial of degree two in u.  We naturally find 
that the asymptotic lines are the curves dv = 0 or v = const., which are the generators.  
The other asymptotic lines are determined by the differential equation: 
 

du

dv
 = −

2

G

F

′
′
, 

which has the form: 
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(1)  
du

dv
= R u2 + 2Su + T, 

 
in which R, S, T are functions of v.  It is a Riccati equation.  Let us recall the properties of 
that equation. 
 
 

Properties of the Ricatti equation 
 

 1. Suppose that one knows an integral u1 of that equation.  Set: 
 

(2)      u = u1 + 
1

w
, 

so 

du = du1 − 2

dw

w
. 

 Equation (1) becomes: 
 

1
2

1du dw

dv w dv
− = 2 1

1 12

1 1
2 2 2

u
Ru R R Su S T

w w w
+ + + + + . 

 
However, since u1 is an integral of (1): 
 

1du

dv
= 2

1Ru  + 2S u1 + T, 

 
in such a way that the equation will become: 
 

− dw

dv
= 2 (R u1 + S) w + R, 

which will have the form: 

(3)      
dw

dv
 = Qw − R. 

 
This is a linear equation whose integration will involve two quadratures. 
 
 2. Suppose that one knows two integrals u1, u2 of the equation.  Set: 
 

 u2 = u1 + 
0

1

w
, 

so 

  w0 = 
2 1

1

u u−
. 
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w0 will be an integral of equation (3).  We then set: 
 
(4)      w = w0 + θ, 
so 

dw = dw0 + dθ. 
(3) will become: 

0dw d

dv dv

θ+  = Q w0 + Q θ – R, 

 
or, since w0 is an integral of (1): 

(5)      
d

dv

θ
 = Q θ, 

 
which is a linear equation with no right-hand side that integrates immediately by just one 
quadrature: 

 
dθ
θ

= Q dv, 

so 

 log | θ | = Q dv∫ , 

and 

 | θ | = 
Qdv

e∫ . 
 
 3. Suppose that one knows three integrals u1, u2, u3 of equation (1).  One then knows 
two integrals of equation (3).  Let: 

w1 = 
3 1

1

u u−
. 

 
w1 is an integral of (3), and in turn, one will know an integral θ0 of (5): 
 

θ0 = w1 – w0 = 
3 1 2 1

1 1

u u u u
−

− −
 = 2 3

3 1 2 1( )( )

u u

u u u u

−
− −

. 

Set: 
θ = θ0 ψ, 

so 
dθ = θ0 dψ + ψ · dθ0 . 

(5) becomes: 

0
0

dd

dv dv

θψθ ψ+ ⋅ = Q ψ θ0 , 

or, since θ0 is an integral of (5): 

 0

d

dv

ψθ = 0, 

so 
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d

dv

ψ
= 0. 

 
ψ is a constant C, and the general integral of (5) is: 
 
(6)      θ = C θ0 . 
 
The equation is integrated completely by means of algebraic operations.  If we seek the 
expression for the general integral u as a function of the particular integrals u1, u2, u3 
then, by virtue of (2), (4), (6), we will have: 
 

u = u1 + 
1

w
 = u1 + 

2 1

1
1

u u
θ+

−

 = u1 + 
2 1

2 1 3 1 2 1

1
1

( )( )
u u

C
u u u u u u

−+
− − −

, 

so 

1

1

u u−
 = 2 1

2 1 3 1 2 1

1

( )( )

u u
C

u u u u u u

−+
− − −

= 2 1 2 3

3 1 2 1

( )

( )( )

u u C u u

u u u u

− + −
− −

, 

so 

C (u2 – u3) = 3 1 2 1

1

( )( )u u u u

u u

− −
−

− (u3 – u1) = 3 1 2 1

1

( )( )u u u u

u u

− −
−

, 

and 

C = 2

1

u u

u u

−
−

: 2 3

3 1

u u

u u

−
−

, 

or 
(7)      (u, u1, u2, u3) = C. 
 
 Hence, the anharmonic ratio of the four arbitrary integrals of a Ricatti equation is 
constant.  Upon remarking that in the present case, those integrals are precisely the u of 
the points of intersection of an arbitrary generator with the asymptotes, one will see that 
four asymptotic lines of a ruled surface will cut the generators with a constant 
anharmonic ratio. 
 
 Remark. − When equation (7) is solved for u, that will give: 
 

(8)      u = 0

1 2

VC V

V C V

+
+

, 

 
in which V, V0, V1, V2 are functions of v.  The general solution is then a fraction of degree 
one in the arbitrary constant.  Conversely, any function of the form (8) will satisfy a 
Ricatti equation, because if one eliminates the constant C by means of a differentiation 
then one will recover a differential equation of the form (1). 
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Application to the asymptotes of particular ruled surfaces 
 

 If the ruled surface has a rectilinear directrix then that directrix will be an asymptote, 
and one knows a particular integral of the Ricatti equation (1).  The determination of the 
asymptotic lines is accomplished by means of two quadratures.  That is the case for ruled 
surfaces with a director plane (one directrix at infinity). 
 If the surface admits two rectilinear directions then those two lines will be 
asymptotes, and one will know two particular integrals of equation (1).  That is the case 
for conoidal surfaces with a director plane.  From the preceding, more than one 
quadrature will be necessary in order to determine the asymptotic lines.  However, in 
reality, one can obtain them without a quadrature. 
 Indeed, consider a ruled surface that admits two rectilinear directrices.  One can 
perform a homographic transformation in such a fashion that one of the directrices goes 
to infinity, and the surface will be transformed into a conoid with a director plane. 
 Let: 

z = 
y

x
ϕ  
 
 

 

 
be the equation of such a conoid.  It is equivalent to the equations: 
 

x = u,  y = uv,  z = ϕ(v). 
 
The coefficients l, m, n of the tangent plane must satisfy the relations: 
 

x y z
l m n

u u u

∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 
x y z

l m n
v v v

∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

or 
l + m v = 0, m u + n ϕ′(v) = 0, 

 
which are equations that will be satisfied if one takes: 
 

n = − u, m = ϕ′(v), l = − v ϕ′(v). 
 
The differential equation of the asymptotic lines: 
 

Ψ (du, dv) = ∑ l d 2x = − ∑ dl dx = 0 
will then be: 
 

[ϕ′(v) dv + v ϕ″(v) dv] du – ϕ″ (v) dv · (v du + u dv) + du · ϕ′(v) · dv = 0 
 
here, or: 

u ϕ″(v) · dv2 − 2 ϕ′(v) du dv = 0. 
 
We find the solution v = const., which gives us the generators, and what will remain is: 
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( )

( )

v dv

v

ϕ
ϕ
′′

′
= 

2du

u
, 

so 
ln | ϕ′(v) | = ln u2 – ln | C |, 

or 
u2 = C ϕ′(v) . 

 
We will then get the asymptotic lines of a conoid with no quadrature. 
 
 Remark. – If there are three rectilinear directrices then the surface will be a second-
degree surface, and it will be doubly ruled.  The two systems of asymptotic lines will be 
the two systems of rectilinear generators, and one will see that four generators of the 
same system of a quadric will meet the generators of the other system with a constant 
anharmonic ratio. 
 
 

Calculating the form Ψ 
 

 We now seek the general expression for the form Ψ.  In order to do that, we introduce 
the canonical variables u, v, which permitted us to arrive at the form that has the type of 
the linear element.  Consider the Serret trihedron of the curve (Σ) that is the trace of the 
director cone on the sphere of radius 1 that has its center at the summit of that cone.  The 
generator (l0, m0, n0) is in the normal plane to that curve: Let θ be the angle that it makes 
with the principal normal; with the usual notations, we will have: 
 

0

0

0

cos sin ,

cos sin ,

cos sin ;

l

m

n

α θ α θ
β θ β θ
γ θ γ θ

′ ′′= +
 ′ ′′= +
 ′ ′′= +

 

hence, we will get: 
 

α = 0l ′  = θ′ (− α sin θ + α″ cos θ) – 
R T

α α ′′ + 
 

cos θ +
T

α ′
sin θ, 

 
and some analogous ones.  Thus: 
 

cos

R

θ
= − 1, θ′ = 

1

T
. 

 Therefore: 

0 0 0 0 0 0

0 0 0 0

0 0 0 0

sin cos ,

sin cos ,

sin cos ,

m n n m m n

n l l n

l m m l

γ β α θ α θ
β θ β θ
γ θ γ θ

′ ′ ′ ′′− = − = −
 ′ ′ ′ ′′− = −
 ′ ′ ′ ′′− = −

 

 
and by using formulas (3) of § 9, page 113, we will get: 
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0 0 0 0 0 0

0

0

( ) ( ) ( ) sin cos ,

,

f u l u P l K m n n m u P K K

g u m

h u n

α α θ α θ′ ′ ′ ′ ′ ′ ′′+ = − − − = − − +
 ′ ′+ =
 ′ ′+ =

⋯

⋯

 

 
Then, upon taking derivatives with respect to v: 
 

f″ + 0u l′ = − P′ α + (u – P)
R

α ′
– K′ α′ sin θ – K 

T

α ′
 cos θ 

+ K 
R T

α α ′′ + 
 

 sin θ + K′ α″ cos θ − K 
T

α ′′
sin θ + K 

T

α ′
cos θ, 

or: 

0

0

0

sin
sin cos ,

,

K u P
f u l P K K

R R

g u m

h u n

θ α θ α θ −   ′′ ′′ ′ ′ ′ ′′ ′+ = − + − + ⋅   
    ′′ ′′+ =

 ′′ ′′+ =



⋯

⋯

 

 
 The formula of § 10 then gives: 
 

Ψ = 

2sin
2 sin cos

cos sin

( ) sin cos

K u P
du dv P K K dv

R R

u P K K

θα α α θ α θ

α θ α θ
α α θ α θ

 −    ′ ′ ′ ′′ ′⋅ + − + − + ⋅    
    

′ ′′+
′ ′′− − +

⋯ ⋯

⋯ ⋯

⋯ ⋯

 

 
 That determinant is the product of the determinant of the nine cosines with the 
determinant: 
 

2 2 2sin
2 sin cos

0 cos sin

sin cos

K u P
du dv P dv K dv K dv

R R

u P K K

θ θ θ

θ θ
θ θ

−   ′ ′ ′+ − − ⋅   
   

− −
. 

 
One then obtains: 
 

Ψ = K 2 2sin sin
2 ( ) ( )

K
du dv P dv u P u P K dv

R R

θ θ    ′ ′+ − + − − −        
, 

or finally: 
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Ψ = 2K du dv – 2 2sin
( ) ( )u P K KP u P K

R

θ ′  − + − − +   
 dv2. 

 
 The only new element that intervenes is the geodesic curvature (sin θ) / R of the curve 
(Σ) on the sphere; that element will suffice to determine (Σ).  Indeed, suppose that one is 
given: 

sin

R

θ
= ϕ (v). 

We saw above that: 
cos

R

θ
= − 1, 

1

T
= θ′. 

 
We deduce the following formulas from it: 
 

(1)    tan θ = − ϕ (v), R = − cos θ,  T = 
dv

dθ
, 

 
which give the radius of curvature and the radius of torsion of the curve (Σ) as functions 
of its arc length v.  One knows that the form of a skew curve is then defined entirely. 
 
 Remark. – Formulas (1) permit us to find the condition for a curve to be traced on a 
sphere of radius 1.  Indeed, one infers that: 
 

dR

dv
 = sin θ ·

d

dv

θ
= 

sin

T

θ
, 

 
so, upon replacing s with the letter v, which denotes the arc length on (Σ): 
 

(2)   R2 + T 2 
2

dR

ds
 
 
 

= 1. 

 
That gives the condition (which is obvious a priori) for the radius of the osculating 
sphere to be equal to 1. 
 Conversely, suppose that this condition is realized.  We can set: 
 

R = − cos θ, T 
dR

ds
= sin θ, 

from which we infer that: 

T = 
ds

dθ
. 

 
A comparison of these equations with formulas (1) and (2) of § 2 shows that one of the 
developments of the curve is (upon setting c = θ, u = − 1 in the formulas of § 2): 
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x = f – α′ cos θ – α″ sin θ, y = g – β′ cos θ – β″ sin θ, z = h – γ′ cos θ – γ″ sin θ. 
 

We then infer that: 
 

dx

ds
= α + 

R T

α α ′′ + 
 

 cos θ – 
T

α ′
sin θ + ( ) 1

sin cos
T

α θ α θ′ ′′− ⋅ = 0, 

 
and similarly, dy = dz = 0, in such a way that this development reduces to a point, which 
we can assume to be the coordinate origin. 
 Since the normal to the curve constantly passes through the origin, one will have the 
identity: 

f ·df + g · dg + h · dg = 0, 
moreover.  Hence: 

f 2 + g2 + h2 = const. 
 

 The curve is then indeed a spherical curve, and the radius of the sphere on which it is 
traced is equal to unity, since it is the radius of the osculating sphere. 
 
 

Differential equation of the lines of curvature 
 

 11. – The differential equation of the lines of curvature is [Chap. III, § 7]: 
 

2 2( ) ( )

( ) ( )

( ) ( )

ds ds

du dv

du dv

∂ ∂
∂ ∂
∂Ψ ∂Ψ

∂ ∂

 = 0, 

or: 
2 2

2 2

[( ) ]

sin
( ) ( )

du u P K dv

K dv K du u P K KP u P K dv
R

θ
− +

 ′ ′  − − + − − +   

 = 0; 

i.e.: 
 

K du2 – {(u – P) K′ + KP′  – ϕ (v) [(u – P)2 + K2]} du dv – K [(u – P)2 + K2] dv2 = 0. 
 
 That is the differential equation for the lines of curvature, in which ϕ (v) represents 
the geodesic curvature of the curve (Σ). 
 
 

Center of geodesic curvature 
 

 12. – Consider an orthogonal trajectory of the generators – for example, u = 0: 
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x = f (v), y = g (v), z = h (v). 
 

We seek to find its center of geodesic curvature.  It is the point where the polar line meets 
the tangent plane.  Now, since the generator is normal to its orthogonal trajectory, it is the 
intersection of the normal plane and the tangent plane: The center of geodesic curvature 
is then at the intersection of the polar line with the generator.  The normal plane has the 
equation: 

∑ (x – f) f′ = 0. 
 
The characteristic is defined by the preceding equation, and by: 
 

∑ (x – f) f″ − ∑ f′ 2 = 0. 
 
 In order to determine the center of geodesic curvature, it will suffice to determine the 
u for the point of intersection of the preceding line with the generator: 
 

x = f (v) + u l0 (v), y = g (v) + u m0 (v), z = h (v) + u n0 (v). 
 
 The first equation reduces to an identity, while the second one will give: 
 

u ∑ l0 f″ − ∑ f′ 2 = 0. 
However: 

∑ l0 f′  = 0, 
so 

∑ 0l ′  f′  + ∑ l0 f″  = 0, 

 
and the equation that gives the u of the desired point will become: 
 

u ∑ 0l ′  f′  + ∑ f′ 2 = 0, 

or [eq. (2), § 9]: 
− u P + P2 + K2 = 0, 

which can be written: 
P (u – P) = K2. 

 
 If C is the central point, M is the point considered on the orthogonal trajectory, and 
M′ is the center of geodesic curvature then the preceding equation will give: 
 

CM · CM′ = − K2. 
 
 Hence, the tangent planes at M and M′ are rectangular (cf., pp. 105).  Therefore, the 
center of geodesic curvature at a point M of an orthogonal trajectory of the generators of 
a ruled surface is the point of the generator where the tangent plane is perpendicular to 
the tangent plane at M. 
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 Application. – If we now consider (see figures on pages 30, 36, 53) a curve (C) that is 
traced on an arbitrary surface (S) then the normals MN′ to (C) that are tangent to (S) will 
generate a ruled surface (Σt).  Since the surfaces (S), (Σt) are tangent all along (C), the 
curve (C) will have the same center of geodesic curvature G at M on (S) and on (Σt).  
Therefore, G is the homologue of M under the involution of the rectangular tangent 
planes that relates to the generator MN′ of (Σt).  The center of geodesic curvature G is the 
point of MN′ where the normal plane to (C) is tangent to (Σt). 
 Likewise, since the center of normal curvature K is on the polar line of (C), it is the 
center of geodesic curvature at M on the ruled surface (Σn) that is generated by the 
normals MN that are drawn from (C) to the various points of (C).  It is then homologous 
to M under the involution of the rectangular tangent planes that relates to the generator 
MN of (Σn): The center of normal curvature K is the point of MN where the normal plane 
to (C) is tangent to (Σn). 
 For the same reason, the center of curvature C will possess the same property in 
relation to the ruled surface that is generated by the principal normals of (C) [cf., page 
108]. 
 
 Remark. – The results of this paragraph will become obvious if one notes that any 
normal to a curve (C) at a point M of that curve will touch the polar surface at the point 
where it meets the polar line that corresponds to M, in such a way that any ruled surface 
that is generated by the normals to (C) will be circumscribed by the polar surface; i.e., 
tangent to each normal plane, such that the contact point with any of those normal planes 
will be on the corresponding polar line. 

 
 

___________ 
 

 
 

 
 



 

CHAPTER VI 
 

CONGRUENCES OF LINES 
 
 

Focal points and focal planes 
 
 

 1. – One calls a set of lines that depend upon two parameters a congruence or ray 
system.  All lines that meet two fixed lines constitute a congruence.  Similarly, the lines 
that pass through a fixed point and the normals to a surface will also constitute 
congruences.  If one considers a one-parameter family of curves on a surface then the set 
of all their tangents will again constitute a congruence. 
 The fundamental properties of congruences that are defined by the normals to the 
same surface (which play an essential role in geometrical optics) are due to Monge.  The 
principal notions of the general theory of congruences were introduced by Hamilton. 
 An arbitrary line (D) of a given congruence will be represented by the equations: 
 
(1)  x = f (v, w) + u · a (v, w),     y = f (v, w) + u · b (v, w),     z = f (v, w) + u · c (v, w). 
 
 The equations: 
(2)     x = f (v, w), y = g (v, w), z = h (v, w) 
 
define what we call the support of the congruence, to simplify the language.  a, b, c 
define the directions of the lines of the congruence or rays of the congruence that pass 
through each point of the support.  That support will be a surface, in general, and the 
congruence will be composed of lines with given directions that pass through all points of 
a surface.  It can happen that f, g, h depend upon only one parameter, so the support will 
be a curve, and an infinitude of lines will pass through each point of the curve, which will 
define a cone.  Finally, f, g, h can reduce to constants, and the congruence will be 
composed of all lines that pass through the fixed point whose coordinates are f, g, h. 
 Suppose that one establishes a relation between v and w; that amounts to choosing ∞1 
lines of the congruence, which will constitute a ruled surface of the congruence.  
Equations (1) will then become the equations of a ruled surface.  Consider all of the ruled 
surfaces of the congruence that pass through a line (D) of the congruence.  Two of those 
surfaces will agree at two points of the line (D).  We shall show that those two points are 
independent of the ruled surfaces that one considers.  In other words, there exist two 
points F, F′ on each line (D) of the congruence that correspond to two planes (P), (P′ ) 
that pass through the line D, and are such that all of the ruled surfaces of the congruence 
that pass through the line D will have the planes (P), (P′ ) for their tangent planes at F, 
F′, respectively.  Those points F, F are called foci or focal points of the line (D), while 
the planes (P), (P′ ) are the focal planes that are associated with F, F′.  In order to prove 
the proposition, we seek the tangent plane to any point of the generator (1).  The 
parameters l, m, n of that tangent plane satisfy the equations: 
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(3)  l a + m b + n c = 0, 
 
(3′)  l (df + u da) + m (dg + u db) + n (dh + u dc) = 0. 
 
 We shall show that one can choose u in such a fashion that the tangent plane is 
independent of the differentials dv, dw, and in turn, independent of the relation that exists 
between v and w; i.e., independent of the ruled surface.  Develop the second equation in 
(3): 

 0 = 
f a g b h c

l u m u n u
v v v v v v

 ∂ ∂ ∂ ∂ ∂ ∂      + + + + +      ∂ ∂ ∂ ∂ ∂ ∂      
dv 

 + 
f a g b h c

l u m u n u
w w w w w w

 ∂ ∂ ∂ ∂ ∂ ∂      + + + + +      ∂ ∂ ∂ ∂ ∂ ∂      
dw. 

 
 In order for the tangent plane to be independent of dv, dw, it is necessary and 
sufficient that one must have both: 
 

(4)   

0,

0.

f a g b h c
l u m u n u

v v v v v v

f a g b h c
l u m u n u

w w w w w w

 ∂ ∂ ∂ ∂ ∂ ∂     + + + + + =      ∂ ∂ ∂ ∂ ∂ ∂      


∂ ∂ ∂ ∂ ∂ ∂      + + + + + =      ∂ ∂ ∂ ∂ ∂ ∂     

 

 
Relations (4) and relation (3) must be satisfied for all non-zero values of l, m, n, so their 
determinant must be zero: 
 

(5)  

a b c

f a g b h c
u u u

v v v v v v
f a g b h c

u u u
w w w w w w

∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 

 
 That is the equation that gives the u of the focal points.  It has degree two, so there 
will be two focal points.  The coefficients of the focal plane that corresponds to each of 
them will have the values of l, m, n that satisfy equations (3) and (4). 
 
 Remark. – Equation (5) cannot be an identity in u for any v and w, because the 
constant term will be annulled only if the ray of the congruence is tangent to the support.  
One can then suppose that the support has been chosen in such a manner that this term is 
not zero for the ray in question, as long as it is not singular. 
 
 As for equations (3) and (4) in l, m, n, the relations between the focal planes and the 
locus of foci that we shall study will show that the indeterminate case can present itself 
for singular rays, as well. 
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 In order for that to be true, it is necessary that the minors of the left-hand side of 
equation (5) must be zero, and consequently, that u must be a double root; i.e., the foci of 
the ray must coincide.  However, the latter condition is not sufficient. 
 The two indeterminate cases will be excluded from consideration in what follows.  
The properties of the lines of the congruence that we obtain will apply to only non-
singular rays, in general. 
 The congruences that are composed of either the lines of a plane or the lines that pass 
through a point are the only ones for which all lines are singular, from one of the two 
preceding viewpoints.  They have been implicitly excluded from the foregoing. 
 
 

Focal surfaces.  Focal curves 
 

 The locus of the foci is obtained with no difficulty.  It will suffice to infer u from (5) 
and substitute its value into (1).  Equation (5) has degree two, so it will give two values 
for u, in such a way that the locus is composed of two distinct components in the 
neighborhood of the line (D).  Consider one of those components.  It can be a surface, 
which one calls the focal surface, or a curve, which one calls the focal curve, or it can 
even reduce to a point, and the congruence will then be composed of all the lines that 
pass through the point.  If one discards that case then one will see that the locus of the 
foci will be composed of two surfaces, a curve and a surface, or two curves. 
 
 1. Suppose that the locus of the foci is a surface (Φ).  Take that surface to be the 
support of the congruence.  Equation (5) has the root u = 0, so: 
 

a b c

f g h

v v v
f g h

w w w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

= 0. 

 
 This expresses the idea that the line (D) is in the tangent plane to the surface (Φ) at 
the point M (u = 0), which is one of the foci, namely, F.  Hence, the lines of the 
congruence are tangent to the focal surface at the corresponding focus.  We seek the 
focal plane that corresponds to F.  Its coefficients l, m, n are determined by the equations: 
 

0,

0,

0.

la mb nc

f g h
l m n

v v v
f g h

l m n
w w w


 + + =
 ∂ ∂ ∂ + + = ∂ ∂ ∂

∂ ∂ ∂ + + = ∂ ∂ ∂
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From the condition that was written down before, those equations will reduce to two, and 
they express the idea that the focal plane that corresponds to the focus F is the tangent 
plane to the surface (Φ) at F.  All of the skew ruled surfaces of the congruence are 
circumscribed by the focal surface.  The case of developable surfaces will be discussed 
later on [§ 2].  The preceding argument will break down if F is a point of the edge of 
regression. 
 
 2. It results from the foregoing that if the locus of foci F, F′ consists of two focal 
surfaces (Φ), (Φ′) then the lines of the congruence will be tangent to the two focal 
surfaces, the foci F, F′ will be the contact points, and the focal planes will be the tangent 
planes to the focal surfaces at the corresponding foci.  The locus of the foci will coincide 
with the envelope of the focal planes. 
 
 Conversely, if one is give two arbitrary surfaces (Φ), (Φ′) then their common tangents 
will depend upon two parameters.  Indeed, let F be a point of (Φ).  Consider the tangent 
plane to (Φ) at F.  It cuts (Φ′) along a certain curve.  If we draw tangents to that curve 
through F then those lines, which will be tangent to the two surfaces (Φ), (Φ′), will be 
determined when the point F is determined.  They depend upon just as many parameters 
as the point F, and therefore, two parameters.  They constitute a congruence whose ruled 
surfaces will be circumscribed by the surfaces (Φ), (Φ′), which are the focal surfaces. 
 If the surfaces (Φ), (Φ′) constitute two sheets of the same surface (S) (which will be 
true, in general) then the congruence will be composed of the double tangents to the 
surface (S). 
 
 3. Suppose that one portion of the locus of the foci is a curve (ϕ), which we take to 
be the support of the congruence.  f, g, h depend upon only one parameter then – v, for 
example.  ∂f / ∂w, ∂g / ∂w, ∂h / ∂w are zero, and u = 0 is a root of equation (5).  If the 
lines of a congruence meet a fixed curve then the points of that curve will be foci for the 
lines of the congruence that pass through it.  We seek the corresponding focal plane.  Its 
coefficients will be determined by the equations: 
 

0,

0.

la mb nc

f g h
l m n

v v v

+ + =


∂ ∂ ∂ + + = ∂ ∂ ∂

 

 
Therefore, the focal plane passes through the line (D) and is tangent to the focal curve.  
All of the skew ruled surfaces of the congruences pass through the focal curve, and at a 
point M of that curve, they will be tangent to the tangent plane to that curve that passes 
through the line (D).  The case of developable surfaces will be studied in § 2. 
 
 4. Suppose that one has a focal surface (Φ) and a focal curve (ϕ′).  The congruence 
is composed of the lines that meet (ϕ′) and are tangent to (Φ).  One immediately gets the 
foci and the focal planes from the foregoing.  Conversely, the lines that meet a curve (ϕ′) 
and are tangent to a surface (Φ) constitute a congruence that admits (ϕ′) and (Φ) for its 
locus of foci. 
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 5. Suppose that one has two focal curves (ϕ), (ϕ′).  The congruence is composed of 
the lines that meet (ϕ), (ϕ′), and its skew ruled surfaces contain the two focal curves.  
Conversely, the lines that meet two given curves constitute a congruence that admits 
those two curves for its focal curves.  If (ϕ), (ϕ′) constitute two components of the same 
curve (c) then the congruence will be composed of lines that meet (c) at two points; i.e., 
the chords of (c). 
 
 

Singular cases 
 

 Let us see which cases are the ones in which the two foci coincide on all lines of a 
congruence. 
 From the definition itself of the foci and the focal planes, the latter will also coincide, 
and conversely, since the focal planes are tangent to the same ruled surface at the 
corresponding foci, as one will see in § 2, one can therefore suppose that the ruled surface 
is not developable. 
 
 1. First of all, examine the case of two coincident focal surfaces.  To that effect, first 
consider a focal surface (Φ) of an arbitrary congruence.  A line (D) of the congruence is 
tangent to each point F of that surface.  If one associates those focal points with the 
corresponding lines then there will exist a family of curves on the surface that are tangent 
to the corresponding line of the congruence at all of their points.  In order to show that, 
take the focal surface (Φ) to be the support of the congruence: The line (D) is tangent to 
that support, so if P and Q are functions of u, w then its direction coefficients will be: 
 

a = 
f f

P Q
v w

∂ ∂+
∂ ∂

, b = 
g g

P Q
v w

∂ ∂+
∂ ∂

, c = 
h h

P Q
v w

∂ ∂+
∂ ∂

. 

 
Let a curve on the surface (Φ) be defined by expressing v, w as functions of one 
parameter.  The direction coefficients of the tangent are: 
 

dx = 
f f

dv dw
v w

∂ ∂⋅ + ⋅
∂ ∂

, dy = 
g g

dv dw
v w

∂ ∂⋅ + ⋅
∂ ∂

, dz = 
h h

dv dw
v w

∂ ∂⋅ + ⋅
∂ ∂

, 

 
and in order for that tangent to be the line (D), it is necessary and sufficient that: 
 

dv

P
= 

dw

Q
. 

 
 In order to determine one of the parameters v, w as a function of the other one, one 
must then integrate a first-order differential equation.  The family of curves thus-
determined will depend upon one parameter: Let us take it to be the family w = const.  
The direction coefficients of the rays of the congruence will be: 
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a = 
f

v

∂
∂

, b = 
g

v

∂
∂

, c = 
h

v

∂
∂

, 

 
and the general equations of those rays will be written: 
 

(6)   x = f (v, w) + u 
f

v

∂
∂

, y = g (v, w) + u 
g

v

∂
∂

, z = h (v, w) + u 
h

v

∂
∂

. 

 
The equation of the focal points (5) will become: 
 

2 2 2

2 2 2

2 2 2

f g h

v v v

f f g g h h
u u u

v v v v v v

f f g g h h
u u u

w v w w v w w v w

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= 0, 

 
and upon subtracting the first row from the second one, u will become a factor. 
 Having said that, suppose that the focal points coincide pair-wise.  In order for that to 
be true, it is necessary and sufficient that the determinant should once more vanish for u 
= 0, which will give: 

2 2 2

2 2 2

f g h

v v v

f g h

v v v
f g h

w w w

∂ ∂ ∂
∂ ∂ ∂

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 0, 

 
or E′ = 0.  That expresses the idea that the equation of the asymptotic lines of the surface 
(Φ), which is: 

E′ dv2 + 2 F′ dv · dw + G′ dw2 = 0, 
 

must be satisfied for dw = 0; i.e., that the curves w = const. must be asymptotic lines of 
the surface (Φ).  Hence: The congruences with double focal surfaces are composed of the 
tangents to the asymptotic lines of an arbitrary, non-developable surface. 
 The hypothesis of a developable double focal surface is found to be excluded by our 
conclusion, since the asymptotic lines are generators, so their tangents will no longer 
depend upon one parameter. 
 We shall return to that hypothesis in § 3, and we shall see that it is inadmissible. 
 
 2. Now consider the case of two coincident focal curves.  Take the double focal 
curve (ϕ) to be the support; f, g, h are functions of only v.  If we then express the idea that 
equation (5) admits u = 0 for a double root then we will get the condition: 
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a b c

f g h

v v v
a b c

w w w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

= 0. 

 
The lines (D) of the congruence that pass through a point F of the curve (ϕ) will generate 
a cone.  The coefficients of the tangent plane to that cone will be the determinants that are 
deduced from the matrix: 

a b c

a b c

w w w

∂ ∂ ∂
∂ ∂ ∂

, 

 
and the preceding condition expresses the idea that the tangent FT to the focal curve is on 
the tangent plane to the cone.  That must be true for any generator of the cone that one 
considers, so all of the tangent planes to the cone will pass through FT, and the cone will 
reduce to a plane.  A congruence with a double focal curve is generated by the lines that 
radiate around each point F of a curve (ϕ) in a plane that passes through the tangent to 
(ϕ), and conversely.  The envelope of the focal planes no longer coincides with the locus 
of focal points here. 
 
 

Developables of the congruence 
 

 2. – Let us see if one can associate the lines of a congruence in such a fashion as to 
obtain a developable surface.  To that effect, recall the equations of the line (D): 
 
(1)  x = f (v, w) + u ·a (v, w),     y = g (v, w) + u ·b (v, w),     z = h (v, w) + u ·c (v, w). 
 
The condition for that line to generate a developable surface is [Chap. V, § 1, eq. (5)]: 
 

a b c

da db dc

df dg dh

 = 0, 

or 

(2)    

a b c

a a b b c c
dv dw dv dw dv dw

v w v w v w
f f g g h h

dv dw dv dw dv dw
w w w w w w

∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 
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That is the differential equation that expresses the idea that the line of the congruence 
generates a developable surface.  It has the form: 
 

A dv2 + 2B dv · dw + C dw2 = 0. 
 
It gives two values for dv / dw, so there will be two families of ∞1 developables that are 
generated by the rays of the congruence, which one calls developables of the congruence.  
Two developables of the congruence pass through each line of the congruence. 
 Let us seek the contact points of that line with the edge of regression.  The value of u 
that provides the coordinates (1) of one of those points must verify the equations [Chap. 
V, § 1, eq. (4)]: 

0,

0,

0,

df u da a d

dg u db b d

dh u dc c d

ρ
ρ
ρ

+ ⋅ + ⋅ =
 + ⋅ + ⋅ =
 + ⋅ + ⋅ =

 

or 

0,

0,

0.

f a f a
u dv u dw a d

v v w w

g b g b
u dv u dw b d

v v w w

h c h c
u dv u dw c d

v v w w

ρ

ρ

ρ

 ∂ ∂ ∂ ∂   + + + + ⋅ =    ∂ ∂ ∂ ∂   
 ∂ ∂ ∂ ∂   + + + + ⋅ =    ∂ ∂ ∂ ∂   
 ∂ ∂ ∂ ∂   + + + + ⋅ =    ∂ ∂ ∂ ∂   

 

 
If we eliminate dv, dw, dρ from these equations then their determinant will give the u of 
the contact point of the line with the edge of regression, equation (5) [§ 1], which gives 
the focal points.  Therefore, the points where one line (D) of the congruence touches the 
edges of regression of two developables of the congruence that pass through that line will 
be foci of the line (D). 
 These results can be obtained without calculation.  Indeed, let (∆) be one of the two 
developables that pass through (D).  At least one of the foci is not on the edge of 
regression; let F be that focus.  The tangent plane to (∆) at that point is the focal plane (P) 
that is associated with F.  At the focus F′, the second focal plane (P′ ), which is different 
from (P), must be tangent to (∆).  That demands that F′ must be on the edge of 
regression, since (∆) is developable, so the tangent plane will be the plane (P) all along 
the generator, except at the point where (D) is tangent to the edge of regression, for which 
the tangent plane will be indeterminate. 
 One also sees that the tangent plane along (D) to one of the developables of the 
congruence that pass through (D) is the focal plane that is associated with the focus that 
is not on the edge of regression of that developable. 
 If the developable is a cone or a cylinder then one must interpret the preceding results 
by considering the summit of the surface (which is situated at a finite or infinite point) to 
constitute the edge of regression. 
 One can say, in a general manner, that each ray (D) is met by two infinitely close rays.  
The points of intersection are the foci, their planes pass through (D), and the focal planes 
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pass through each of the two infinitely-close rays, and the focal plane that is furnished by 
one of those rays is associated with the focus that is provided by the other one. 
 
 

Developables and the focal surface 
 

 Suppose that the locus of focal points consists of a surface (Φ).  It results from the 
foregoing that any developable of the congruence is either circumscribed by that surface 
or it has its edge of regression on it.  Let us examine that situation more closely. 

 D 

(C) 

(A) 
F 

 
 A line (D) of the congruence passes through each point F of the surface (Φ) that is 
tangent to (Φ) at F and admits F for its focus.  We showed incidentally on page 127 that 
there exists a family of curves (A) on the surface (Φ) that are tangent to the lines (D).  
The developable that has one of the curves (A) for its edge of regression will be a 
developable of the congruence.  We then obtain one of the families of developables.  
Consider the curves (C) that define a conjugate net on (Φ), along with (A), and the 
developable that is the envelope of the tangent planes to (Φ) all along one of those curves 
(C).  The generator of that developable at a point F of (C) is the characteristic of the 
tangent plane, so it is the tangent that is conjugate to the tangent to (C), and thus, the line 
(D).  We then get the second family of developables by taking the envelope of the tangent 
planes to (Φ) at all points of each of the curves (C) that are conjugate to the curves (A). 
 One can recover those results analytically by taking the equations of the congruence 
in the form (6), [§ 1], which will exhibit the curves (A).  They are then the curves w = 
const. 
 Equation (2), which defines the developables, will then become: 
 

2 2

2

f

v

f f
dv dw

v v w

f f
dv dw

v w

∂
∂

∂ ∂⋅ +
∂ ∂ ∂

∂ ∂⋅ +
∂ ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯

 = 0. 

 
Subtract the elements of the third row from those of the first one, multiplied by dv; the 
equation will take the form: 

(E′ dv + F′ dw) dw = 0. 
 

We first find that dw = 0 (viz., the curves A), and the relation: 
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E′ dv + F′ dw = 0 
 
defines precisely the curves (C) that are conjugate to the curves w = const. 
  
 

Developables and the focal curve 
 

 Now let us examine the case of a focal curve (ϕ), which we take to be the support: 
 

x = f (v), y = g (v), z = h(v). 
 
∂f / ∂w, ∂g / ∂w, ∂h / ∂w are zero then, and equation (2) will become: 
 

a

a a
dv dw

v w
f

dv
v

∂ ∂+
∂ ∂
∂
∂

⋯ ⋯

⋯ ⋯

⋯ ⋯

 = 0; 

 
dv is a factor.  One of the families of developables is composed of the lines v = const.; 
i.e., all of the lines of the congruence that pass through the same point F of (ϕ).  They are 
cones. 
 

Examination of various possible cases 
 

 Let us examine the various possible cases that relate to the nature of the locus of the 
foci. 

 

Φ′ Φ 

D F′ 
(A′ ) 
(C′ ) 

F 

(A) (C) 

 
 1. Suppose that one has two focal surfaces (Φ), (Φ′).  Any line (D) of the 
congruence is tangent to (Φ), (Φ′) at two points F, F′, resp., that are foci of (D).  
Consider one of the developables that have one of the curves (A) for their edge of 
regression.  All of its generators are tangent to (Φ′), so that developable will be 
circumscribed by (Φ′) along a curve (C′ ) that we call the contact curve.  The focal plane 
that corresponds to F is the tangent plane to the surface (Φ) at F.  The second focal plane 
is the tangent plane to (Φ′) at F′, and since the developable is circumscribed by (Φ′), that 
tangent plane will be the tangent plane to the developable at the point F′; i.e., along the 
generator (D).  It is the osculating plane to the edge of regression (A) at the point F. 
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D 
F′ 

ϕ′ 
Φ 

(F) 

(A) 

(C) 

 
 There is obviously reciprocity between (Φ), (Φ′).  The other sequence of 
developables will have the envelopes of the lines (D) on the surface (Φ′) for their edges 
of regression.  Let (A′) be those edges of regression.  Those developables will be 
circumscribed by (Φ) along curves of contact (C).  We have thus determined two 
conjugate nets on (Φ) and (Φ′) that correspond in such a manner that the curves (A) 
correspond to the curves (C), and the curves (C) correspond to the curves (A′).  One of 
the families of corresponding curves is composed of the edges of regression, and the 
other is composed of the contact curves. 
 The second focus F′ is the contact point of the line (D) with its envelope when F is 
displaced along the curve (C) [cf., Chap. VIII, § 3]. 
 
 2. Suppose that one has a focal surface (Φ) and a focal curve (ϕ′ ).  One sequence of 
developables is comprised of the cones that have their summits on (ϕ′ ).  The curves (C) 
on (Φ) are the contact curves of the cones that are circumscribed by (Φ) and have the 
various points of (ϕ′ ) for their summits.  The focal planes are: The osculating plane to 
(A) at the point F and the tangent plane to (Φ) at the point F; i.e., the tangent plane to 
( )ϕ′  that passes through D and the tangent plane to the cone of the congruence with its 

summit at F′ along D.  The curves (C), (A) define a conjugate net on (Φ). 
 
 3. Finally, suppose that (ϕ), ( )ϕ′ are two focal curves.  The two families of 
developables are the cones that pass through one of the curves and have their summits on 
the other one. 
 
 

Singular cases 
 

 Now let us look at the case of coincident foci. 
 
 1. There is a non-developable double focal surface.  In this case, the congruence is 
composed of the tangents to one family of asymptotes of that surface [§ 1, page 129].  
There is no longer a family of developables that have those asymptotes for their edges of 
regression.  Indeed, take that surface to be the support and take those asymptotes to be the 
curves w = const.  As we have seen (page 132), the differential equation that determines 
the developables is: 

(E′ dv + F′ dw) dw = 0. 
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 The equation of the asymptotic lines is: 
 

E′ dv2 + 2F′ dv · dw + G′ dw2 = 0. 
 
It must be verified for dw = 0, so E′ = 0, and the equation that determines the 
developables will become dw2 = 0, which proves the stated result. 
 
 2. There is a double focal curve (ϕ).  The lines of the congruence are in the tangent 
planes to the various points of (ϕ) then.  Those will plane then constitute a family of 
developables.  One immediately perceives two other particular developables, namely, the 
envelope of the preceding tangent planes and the developable that has the curve (ϕ) for 
its edge of regression.  It is easy to see that there are no other ones. 
 
 Indeed, let the curve (ϕ) be: 
 

x = f (v), y = g (v), z = h (v). 
 
The direction coefficients of the tangent are the derivatives f′, g′, h′.  Give the direction 
coefficients of a particular line of the congruence a0 (v), b0 (v), c0 (v) at each point.  An 
arbitrary line of the congruence will have the direction coefficients: 
 

a = f′ (v) + w a0 (v), b = g′ (v) + w b0 (v), c = h′ (v) + w c0 (v). 
 

 The differential equation of the developables is then: 
 

0

0 0( )

f wa

f wa dv a dw

f dv

′ +
′′ ′+ + ⋅

′

⋯ ⋯

⋯ ⋯

⋯ ⋯

 = 0; 

 
dv is a factor.  Upon subtracting the third line, divided by dv, from the first, w will be a 
factor, and the equation will reduce to: 
 

w · dv2 
0

0

a

f wa

f

′′ ′+
′

⋯ ⋯

⋯ ⋯

⋯ ⋯

 = 0. 

 
 We find dv = 0, which corresponds to the tangent planes, w = 0, which corresponds to 
the developable whose edge of regression is (ϕ), and finally: 
 

(3)     
0 0 0 0 0 0

0 0 0

a b c a b c

f g h w a b c

f g h f g h

′′ ′′ ′′ ′ ′ ′+ ⋅
′ ′ ′ ′ ′ ′

 = 0, 
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which remains to be interpreted. 
 Now, the tangent plane considered at a point of the curve (ϕ) will have the equation: 
 

0 0 0

x f y g z h

f g h

a b c

− − −
′ ′ ′  = 0. 

 
 We seek its envelope: The characteristic is the intersection of that plane with the 
plane: 

0 0 0 0 0 0

x f y g z h x f y g z h

f g h f g h

a b c a b c

− − − − − −
′′ ′′ ′′ ′ ′ ′+

′ ′ ′
 = 0. 

 The line (D): 
x = f + u [f′ + w a0 (v)], y = …,  z = … 

 
is in the first plane for all w. 
 We express the idea that it is in the second plane: In order to determine w, it will give 
the equation: 

0 0

0 0

f wa f wa

f f

a a

′ ′+ +
′′ ′+

′

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

 = 0, 

 
which is nothing but equation (1). 
 That will indeed define the envelope of the planes that contain the lines of the 
congruence then. 
 
 

Case of developable focal surfaces 
 

 3. –  We have found a curve as a particular case of the locus of foci.  Upon examining 
the question from the correlative viewpoint of the duality principle, we will be led to 
examine the case in which the envelope of the focal planes is a developable surface, 
namely, (Φ).  Let (Φ′) be the other sheet of the focal surface.  The lines of the congruence 
are tangents to (Φ), (Φ′).  Now, a tangent to the developable (Φ) must be in one of the 
tangent planes that envelop that developable.  The lines of the congruence are then the 
tangents to (Φ′) that are in the tangent planes to (Φ), which are the tangent to the sections 
of (Φ′) by the planes that envelop (Φ).  In that case, the edges of regression (A′) on the 
surface (Φ′) are plane curves, so the corresponding developables will be the planes of 
those curves.  The foci of a line (D) are: The contact point with (Φ′) and the point of 
intersection with the characteristic of the tangent plane to the developable (Φ).  The other 
family of developables will have its edges of regression on the surface (Φ) and will 
correspond to the curves (C′ ) that are conjugate to the curves (A′). 
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 Conversely, if the edges of regression of the developables that are situated on one of 
the sheets of the focal surface are planar curves then the corresponding developables will 
be planes, and their envelope will be the second sheet of the focal surface. 
 
 In order to have a congruence of that type, one can take the developable (Φ) 
arbitrarily, and an arbitrary family of curves on that developable.  The tangents to those 
curves will generate congruences of the type considered, because one of the families of 
developables is obviously composed of the tangent planes to the developable (Φ).  The 
contact curves on the developable will be the generators, which can be considered to be 
conjugate to the entire family of curves. 
 The case in which the congruence possesses a focal curve and a developable focal 
surface, which it correlative to itself, will be studied in § 5. 
 Suppose that the two sheets of the focal surface are developables.  It suffices to start 
with a developable (Φ), and to cut them with a family of planes that depend upon one 
parameter.  The sections will be the curves (A), and the planes of those sections will 
envelop the other focal developable.  One can say in that case that one has two one-
parameter families of planes, so the lines of the congruence will be the intersections of 
each plane of one family with each plane of the other. 
 One can verify that the hypothesis of a developable double focal surface must be 
rejected.  Indeed, if one is given a developable surface: 
 
(1)   x = f (v) + w f′ (v), y = g (v) + w g′ (v), z = h (v) + w h′ (v) 
 
then any line (D) of a congruence that admits that surface for a focal surface will be 
tangent to that surface, and it will have direction coefficients of the form: 
 
(2)   a = f′ (v) + θ f″ (v), b = g′ (v) + θ g″ (v), c = h′ (v) + θ h″ (v), 
 
in which θ is a certain function of v and w.  One will then recognize that if one takes the 
focal surface (1) to be the support of the congruence then the equation of the focal points 
[§ 1, eq. (5)] can be written: 

1 0 0

1

1 0

f f f

g g g w u u u
v

h h h
u

w

θ θ

θ

′ ′′ ′′′
∂′ ′′ ′′′ × + +
∂

′ ′′ ′′′ ∂
∂

 = 0. 

 
 The first factor is non-zero, since the edge of regression is not planar.  The second 
one reduces to: 

u θ u
w

θ θ∂ − ∂ 
= 0. 

 
 Now, θ is not zero, since otherwise only the lines (D) would be generators of the 
developable.  It would then be impossible for the focal points to coincide. 
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 The two singular cases, in which the focal surfaces are double, correspond to 
themselves from the correlative viewpoint.  For the case of a double focal surface, that 
will result from the remark that the asymptotes of a surface correspond to themselves, 
because an asymptote is such that the osculating plane at one of its points is tangent to the 
surface, and from the correlative viewpoint, a point of one curve will transform into the 
osculating plane of an edge of regression, and conversely. 
 In the case where the locus of foci is a double focal curve, each point of which is 
associated with a unique focal plane that is tangent to the curves, a duality transformation 
will make ∞1 focal planes correspond to ∞1 foci, and each of them will be associated with 
a unique focus that is situated on the envelope of those focal planes.  Once again, one will 
indeed have a unique curve for the locus of foci then that has ∞1 focal planes that are 
tangent to that curve. 
 
 

Introduction of contact elements. – Rectilinear foci. – Koenigs congruences. 
 

 4. – There is another special case that is correlative to itself, to which one will be led 
quite naturally when one will introduces the fundamental notions of the geometry of 
contact elements (Sophus Lie) into the theory of congruences. [Cf., Chap. XI, § 1] 
 One calls the system that is composed of a point M and a plane that passes through 
that point a contact element.  Surfaces, curves, and points can be considered to be 
multiplicities, each of which is composed of ∞2 contact elements.  At each point of a 
surface, there is one and only one tangent plane, which gives ∞2 contact elements.  There 
are ∞1 points on a curve and ∞1 tangent planes at each point, which will again give ∞2 
contact elements.  For the developables, we have ∞1 planes and ∞2 points, which will 
give ∞2 contact elements.  Similarly, a line is composed of ∞2 contact elements that are 
obtained by associating the ∞1 points of the line with the ∞1 planes that pass through the 
line in all possible manners.  The contact elements of a plane will be the ∞2 elements that 
it defines with its various points.  The contact elements of a point will be the ∞2 elements 
that it defines with the various planes that contain it.  The contact of two surfaces, or a 
surface and a line, the intersection of two lines, or the fact that a point belongs to a 
surface or a line, all of those geometric relations that appear to be diverse can then be 
interpreted in a single manner: The two multiplicities considered have a common contact 
element. 
 In the theory of congruences, the foci and the associated focal planes of a ray 
constitute the focal contact element of that ray, which are common to all of the ruled 
surfaces of the congruence that pass through that ray.  The focal surfaces, focal curves, 
and developable surfaces are focal multiplicities that are generated by the focal contact 
elements, and each of them has a contact element in common with each ray. 
 A focal multiplicity is the locus of ∞2 focal elements, but there are more than ∞1 in 
the case of a double focal curve: They then constitute a strip or strip of elements that has 
that curve for its support [cf., Chap. VII, § 4]. 
 We have considered all possible cases that relate to the special nature of focal 
multiplicities, except for the one in which one of the focal multiplicities is a line. 
 We discard the cases in which a focal multiplicity is a plane or a point: The 
congruence will then reduce to lines in a plane or rays that issue from a point. 
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 The line can be considered to be a locus of ∞1 points or the envelope of ∞1 planes.  
Hence, it is at the same time a curve and a developable.  It then results that for a 
congruence with a line for one focal surface, one of the families of developables of the 
congruence will be composed of cones that have their summits on the line, and the other 
one will be composed of planes that pass through the line.  In particular, if the 
congruence has a line (δ) and a surface (Φ) for its focal multiplicities then the families of 
developables will be, on the one hand, the cones that are circumscribed by (Φ) at the 
various points of (δ), which will give the contact curves (C), and on the other hand, the 
planes that pass through (δ), which will cut (Φ) along the edges of regression (A).  
Moreover, the curves (A), (C) will define a system of conjugate curves (pp. 128).  One 
will then get: 
 
 The Koenigs theorem: 
 
 The contact curves of the cones that are circumscribed by a surface with the various 
points of a line (δ) and the sections of that surface with the planes that pass through (δ) 
constitute a conjugate net. 
 
 Remark. – If the focal multiplicities are two lines (δ) and (δ′ ) then the congruence 
will be composed of the lines that meet those two lines.  It will be a linear congruence 
whose lines (δ) and (δ′ ) will be its directrices. 
 
 In the case of a double focal line (δ) – i.e., a rectilinear double focal line – each point 
A of the line will correspond to a plane (P) that passes through that line, and the 
congruence will be composed of the lines (D) that are situated in the planes (P) and pass 
through the points A of (δ).  If the correspondence between the points A and the planes 
(P) is homographic then one will obtain a special linear congruence with a double 
directrix (see Chap. X). 
 
 

Application:  Joachimsthal’s surfaces. 
 

 We now seek the surfaces whose lines of curvature of one system are in planes that 
pass through a fixed line (δ). 
 
 Let (Φ) be a surface that meets that demand.  Imagine the tangents to the lines of 
curvature considered.  Those tangents (D) constitute a congruence, and since the lines of 
curvature are in planes that pass through (δ), those lines (D) will meet the line (δ); (Φ) is 
one of the sheets of the focal surface: The developables are, on the one hand, the planes 
of the lines of curvature, and on the other, the cones that are circumscribed by (Φ) that 
have their summits at the various points of (δ).  Therefore, from the Koenigs theorem, the 
contact curves constitute a system that is conjugate to the first system of lines of 
curvature, and in turn, will define the second system of lines of curvature.  If we consider 
the second system then the circumscribed cone will cut the surface (Φ) along an angle 
that is constantly zero.  From the Koenigs theorem, the contact curve, which is a line of 
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curvature of (Φ), will also be a line of curvature of the circumscribed cone then.  It will 
then be an orthogonal trajectory of the generators; i.e., the intersection of the cone with a 
sphere that has its center at the summit.  The second system of the lines of curvature will 
then be composed of the spherical curves, and the corresponding spheres will cut the 
circumscribed cones orthogonally, and in turn, the surface (Φ), along lines of curvature.  
The surface (Φ) will then be an orthogonal trajectory of one family of spheres that have 
their centers on (δ). 
 That property is characteristic of the surface (Φ).  Indeed, suppose that a family of 
spheres that have their centers on (δ) and a surface (Φ) is orthogonal to each of those 
spheres all along the curve of intersection.  The intersection is a line of curvature of the 
sphere, and since the angle between (Φ) and the sphere is constantly a right angle, it will 
be a line of curvature of (Φ).  If one joins the center A of the sphere to a point M of the 
line of curvature then that line will be normal to the sphere and therefore tangent to the 
surface (Φ), in such a way that the line of curvature will be the contact curve of the 
circumscribed cone to (Φ) that has the point A for its summit.  One of the families of the 
lines of curvature is composed of the contact curves of the cones that circumscribe (Φ) 
that have their summits on (δ), so, from the Koenigs theorem, the other family will be, in 
fact, composed of plane sections that of (Φ) that are made by the planes that pass through 
(δ). 
 We are then led to look for the surfaces that cut a given family of spheres at a right 
angle, and have their centers on (δ), all along the curves of intersection.  Let (Φ) be one 
such surface, and let (Σ) be one of the spheres of the family.  The plane that passes 
through (δ) and a point M of the intersection of (Φ) and (Σ) is also orthogonal to (Σ).  
Hence, the section of (Φ) with that plane is orthogonal to (Σ) at M, and consequently, to 
the great circle of (Σ) that is situated in that plane. 
 Hence, the section of (Φ) by an arbitrary plane that passes through (δ) [which, from 
the foregoing, is one of the planar lines of curvature of (Φ)] will be an orthogonal 
trajectory to the family of great circles that are determined by that plane in the given 
spheres.  If one considers another plane that passes through (δ) then the line of curvature 
that is situated in that plane will be an orthogonal trajectory to the family of great circles 
that is obtained similarly.  Upon folding the second plane over the first one, the two 
families of great circles will be superimposed, and one will have another orthogonal 
trajectory of the same family of great circles. 
 One then considers a family of circles in a plane that passes through (δ) that have 
their centers on (δ), determines their orthogonal trajectories, and makes each of those 
orthogonal trajectories turn around (δ) through an angle that corresponds to it and 
varies in a continuous manner when one passes from one trajectory to the infinitely-close 
trajectory.  If the family of circles and the law of rotation are chosen conveniently then 
the locus of curves thus-obtained will be the surface (Φ). 
 No matter what that law of rotation is, moreover, and no matter what the family of 
circles is, one will always obtain a surface that meets the requirements above: Indeed, 
that surface will be generated by the curves that orthogonally cut the family of spheres 
that have the circles considered for their great circles, and consequently the surface will 
cut all of the spheres at a right angle all along the curves of intersection. 
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 We shall then look for the orthogonal trajectories of a family of circles that are 
situated in a plane and have their centers on a line (d).  More generally, we shall look for 
the orthogonal trajectories to an arbitrary family of circles in a plane, which we define 
by giving the coordinates (a, b) of their centers I and their radii R as functions of one 
parameter u.  Consider an orthogonal trajectory that meets one of the circles at a point M.  
The coordinates of the point M will then be, as functions of the parameter u: 
 
(1)     x = a + R cos ϕ, y = b + R sin ϕ, 
 
in which ϕ is a conveniently-chosen function of u.  Everything comes down to 
determining that function of u in such a manner that the curve that is represented by 
equations (1) will be normal to all of the circles.  The normal IM to the circle will have 
cos ϕ, sin ϕ for its direction parameters.  It must be tangent to the curve, which gives the 
condition: 

(2)      
cos sin

dx dy

ϕ ϕ
= 0; 

i.e.: 
cos sin sin cos

cos sin

da dR R d da dR R dϕ ϕ ϕ ϕ ϕ ϕ
ϕ ϕ

+ ⋅ − ⋅ + ⋅ + ⋅
 = 0 

or 
sin ϕ · da – cos ϕ · db – R dϕ = 0, 

or rather: 

(3)    
d

du

ϕ
= 

a

R

′
sin ϕ – 

b

R

′
cos ϕ ,

da db
a b

du du
 ′ ′= = 
 

.  

 If we set: 

tan 
2

ϕ
= w 

then: 

dϕ = 
2

2

1

dw

w+
, 

 
and the differential equation will become: 
 

2

1 2

1

dw

du w+
= 2A 

2

2

1

w

w+
− 2B

2

2

1

1

w

w

−
+

  2 , 2
a b

A B
R R

′ ′ = = + 
 

 

or: 
dw

du
 = B w2 + 2A w – B. 

 
 That is a Ricatti equation.  The anharmonic ratio of four integrals w will be constant.  
In order to interpret that result, imagine one of the circles of the family.  Let M be the 
point where it is cut by one of the orthogonal trajectories: tan ϕ / 2 is the angular 
coefficient of the line AM (cf., the figure).  If one considers four orthogonal trajectories 
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that cut the circle at the points M, M′, M″, M″′ then the four corresponding values of w 
will be the angular coefficients of the four lines AM, AM′, AM″, AM″′, and the 
anharmonic ratio of the four integrals w will be the anharmonic ratio of the sheaf (A, M, 
M′, M″, M″′); i.e., the anharmonic ratio (M, M′, M″, M″′) of the four points on the circle.  
It will then result that four orthogonal trajectories of one family of circles cut all of the 
circles of the family with the same anharmonic ratio. 

 

A 

M 

M′ 

x1 

M″ 

M″′ 

1 

ϕ ϕ / 2 

 
 In the special case in which the circles have their centers on a line (δ), the points M′, 
M″ of intersection of the circle with (δ) will correspond to two orthogonal trajectories.   
One will then know two integrals of the Riccati equation, and the determination of the 
orthogonal trajectories will come down to one quadrature.  In order to define the family, 
instead of giving a, b, R as functions of one parameter, one can give an orthogonal 
trajectory (Γ).  One will then know three integrals of the Riccati equation, and the general 
integral will be obtained by writing down that its anharmonic ratio with the three known 
integrals is constant. 

 y 

(Γ) 

O 

(u) 

M″ 

M″′ 

I 

(ϕ) 

M 

M′ (∆) 

x 

(T) 
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 Suppose that (δ) is the axis Ox, and give (Γ) by its tangent (T).  One of them is 
defined by the equations: 
 

x = a + ρ cos u, y = ρ sin u, 
 
in which a is a given function of u.  In order to determine the ρ of the contact point M 
with (Γ), according to the principles of the theory of envelopes, it will suffice to 
differentiate the latter equations while considering x and y to be constants, which will 
give: 

da – ρ sin u du + cos u dρ = 0, ρ cos u du + sin u dρ = 0, 
so: 

ρ = 
da

du
sin u = R. 

 
 That formula gives the radius R = IM″′ of the circles of a family whose centers have 
the coordinates x = a, y = 0.  From the foregoing, an arbitrary orthogonal trajectory will 
then be represented by: 

(4)    x = a + 
da

du
sin u · cos ϕ, y = 

da

du
sin u · sin ϕ, 

 
in which the angle ϕ is linked with u by the constancy of the anharmonic ratio (M, M′, 
M″, M″′), which is expressed by the formula: 
 

(5)     tan 
2

ϕ
 = m · tan 

2

u
  (m = const.). 

 
 Now return to the Joachimsthal surfaces. 
 If one turns the curve (4) through an angle v around Ox, and if one sets: 
 

a = f (u), 
da

du
= f (u) 

 
then one will get the following equations for an arbitrary orthogonal trajectory of the 
family of spheres that has the circles considered for their great circles: 
 

(6)     

( ) ( )sin cos ,

( )sin cos cos ,

( )sin sin sin ,

x f u f u u

y f u u v

z f u u v

ϕ
ϕ
ϕ

′= +
 ′=
 ′=

 

 
in which ϕ is always linked with u by formula (5).  From the mode of generation that is 
obtained, those formulas will represent any of the orthogonal surfaces to the spheres 
considered, on the condition that one must consider m to be a function m = g (v), which 
can be chosen arbitrarily.  One will then suppose that sin ϕ and cos ϕ are replaced in 
equations (6) with their expressions as functions of: 
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(7)      tan
2

ϕ
 = g (v) · tan 

2

u
, 

 
and upon considering u and v to be arbitrary parameters, they will represent the most 
general Joachimsthal surface. 
 
 

Determining the developables of a congruence 
 

 5. – We have seen that the determination of the developables of a congruence 
depends upon integrating a first-order differential equation of degree two.  That 
integration can be simplified in some cases. 
 One will obtain the developables without any quadrature if the congruence admits 
two focal curves, or correlatively, two focal developables.  In the former case, one will 
obtain cones, and in the latter case, tangent planes, as one saw before. 
 If the congruence admits a focal curve, or correlatively, a focal developable, then one 
will immediately have one of the families of developables of the congruence.  In order to 
have the other one, one comes down to integrating a first-order differential equation of 
degree one. 
 That equation has some special properties in a case that is correlative to itself, which 
is the case in which the congruence admits a focal curve and a focal developable.  Let 
(α) be the edge of regression of the focal developable (Φ).  Consider an arbitrary 
generator (C) of that developable.  The lines of the congruence meet the focal curve (ϕ′ ) 
and are in the tangent planes to (Φ).  Suppose that one has a tangent plane to (Φ) that 
meets (ϕ′ ) at F′.  All of the lines of that plane that pass through F′ are lines of the 
congruence.  Consider the developables of the congruence that pass through one of those 
lines (D).  One will first have the planes that envelop the developable and admit the 
generator (C) for their contact curve.  The foci of the line (D) are F′ on (ϕ′ ) and F on (C).  
The second developable has a curve (A) of (Φ) for its edge of regression whose tangent 
must meet (ϕ′ ).  The problem then amounts to finding the curves of a developable (Φ) 
whose tangents must meet a curve (ϕ′ ). 
 

 
(C) 

F 

(α) 
(A) 

D 
F′ 

(ϕ′) (Φ) 
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 We shall look for the developables of the congruence directly, which we define by 
starting from the curve (ϕ′ ) and associating each of its points with a certain plane in 
which one will find all of the lines of the congruence that pass through that point; the 
developable (Φ) will the envelope of that plane. 
 Let the curve (ϕ′ ) be: 
 

x = f (v), y = g (v), z = h (v). 
 

In order to define a plane that passes through one of its points, it will suffice to give two 
directions a1 (v), b1 (v), c1 (v) and a2 (v), b2 (v), c2 (v).  That plane will contain all lines of 
the congruence, so the direction coefficients of one such line will be: 
 

a = a1 + w a2 ,      b = b1 + w b2 ,      c = c1 + w c2 . 
 
The differential equation of a developable: 
 

a b c

df dg dh

da db dc

 = 0 

will become: 

dv 
1 2

1 2 2

( )

( )

a wa

f v

a wa dv a dw

+
′
′ ′+ +

⋯ ⋯

⋯ ⋯

⋯ ⋯

= 0 

 
here, when one denotes the derivatives with respect to v by primes.  We find dv = 0, v = 
const, which gives us the planes of the lines of the congruence.  The other solution will 
be obtained by integrating the equation: 
 

dw 
1

2

( )

a

f v

a

′
⋯ ⋯

⋯ ⋯

⋯ ⋯

+ dv 
1 2

1 2

a wa

f

a wa

+
′
′ ′+

⋯ ⋯

⋯ ⋯

⋯ ⋯

= 0, 

 
which is an equation with the form: 
 

dw

dv
 = P w2 + Q w + R, 

 
in which P, Q, R are functions of only v.  That is a Riccati equation. 
 We shall point out some cases in which one can have particular integrals of that 
equation.  If the curve (ϕ′ ) is planar, and if one cuts (Φ) with that plane then the section 
will be a curve whose tangents meet, so it will be a curve (A).  One knows a particular 
integral, so the problem will be solved by means of two quadratures.  In particular, if (ϕ′ ) 
is the imaginary circle at infinity then one must determine curves on (Φ) whose tangents 
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meet the imaginary circle at infinity, and those will be the minimal curves.  The 
determination of the minimal curves of a developable comes down to two quadratures. 
 Correlatively, if (Φ) is a cone then consider the cone with the same summit that has 
(ϕ′ ) for its base; it is a developable of the second family.  One knows a particular 
integral, and the problem will be solved by two quadratures. 
 If (Φ) is a cone and (ϕ′ ) is a planar curve then one will know two particular integrals 
and come down to only one quadrature. 
 Suppose, moreover, that the planes that envelop the developable (Φ) are normal to the 
curve (ϕ′ ).  We will have the normal congruence to the curve (ϕ′ ), and the search for 
developables will lead to the search for the developments of (ϕ′ ).  The normal plane to 
(ϕ′ ) at one of its points F′  is perpendicular to the tangent F′ T.  If one considers the 
isotropic cone (J) with summit F′ then the normal plane will be the polar plane to the 
tangent with respect to that isotropic cone.  Among the normals, there will then be two of 
them that are contact generators of the tangent planes that are drawn through the tangent 
to the isotropic cone.  Let (G) be one of them, which one obtains algebraically.  Consider 
the ruled surface (R) that it generates when F′ describes the curve (ϕ′ ).  The asymptotic 
plane, which is the tangent plane at infinity on (G), is the tangent plane to the isotropic 
cone (J) along (G).  The ruled surface contains the curve (ϕ′ ), and the tangent plane at 
the point F′ is the plane that is defined by (G) and F′ T, which is again the tangent plane 
to the isotropic cone along (G).  The tangent plane to R is then the same at two points of 
(G), and in turn, is the same along (G): That line will then generate a developable surface.  
Hence, the isotropic lines of the normal planes to a skew curve generate two 
developables and envelop two developables of the skew curve.  We have two particular 
integrals then, and the determination of the developments will be accomplished by just 
one quadrature. 
 Effectively, upon supposing that v is the arc length s of (ϕ′ ) and that a1, b1, c1; a2, b2, 
c2 are the direction cosines α′, β′, γ′ of the principal normal and those α″, β″, γ″ of the 
binormal, resp., the preceding equation will become: 
 

dw 

α β γ
α β γ
α β γ

′ ′ ′

′′ ′′ ′′
+ ds 

w

w
R T T

α α
α

α α α

′ ′′+

′′
− − +

⋯ ⋯

⋯ ⋯

⋯ ⋯

= 0 

 
when one denotes the direction cosines of the tangent by α, β, γ ; i.e.: 
 

− dw + 
ds

T
(1 + w2) = 0, 

which will give the solution: 

w = tan 
ds

T∫
. 
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 Since w is nothing but the tangent of the angle χ between a normal and the principal 
normal here, the concordance with formula (1) of Chapter V, § 2 will be obvious. 
 One verifies that the differential equation in w admits the two solutions w = ± i, which 
correspond to the isotropic developables. 
 If one remarks, moreover, that the focal surface of the congruence of normals is the 
polar surface to (ϕ′ ) – i.e., that the contact points of the normals with the developments 
are on the polar line – then one will recover all of the essential results that were obtained 
in Chapter V on the subject of the developments of skew curves. 
 
 

Infinitesimal metric properties of congruences 
 

 6. – We shall study an arbitrary congruence in the neighborhood of one of its lines; 
i.e., analyze the properties that result from simultaneous consideration of that line and 
some infinitely-close lines that also belong to the congruence.  That amounts to 
considering the various ruled surfaces of the congruence (i.e., the ones that are generated 
by the lines of the congruence) for which the line in question is a generator and studying 
the tangent planes to those ruled surfaces at the various points of that generator.  The 
notion of the foci and the focal planes is the starting point of that study. 
 Let (D) be the line considered.  Take it to be the z-axis and place the origin of the 
coordinates at the midpoint between the two foci.  Finally, take the xz and yz planes to be 
the bisecting planes of the focal planes.  If the congruence is real then the foci, as well as 
the focal planes, can be real or conjugate imaginaries, in such a way that the midpoint of 
the foci and the bisecting planes of the focal planes will always be real. 
 Recall the notations of § 1, but with the following choice of givens: The support of 
the congruence will pass through O and will be normal to Oz there.  The coordinate lines 
w = 0, v = 0 will be the ones that cross at O.  The variables v and w will be the arc lengths 
of those curves, which will admit Ox and Oy for their tangents, moreover.  On the other 
hand, a, b, c will be the direction cosines for (D). 
 That being the case, one will have: 
 

f

v

∂
∂

= 
g

w

∂
∂

 = c = 1, 
f

w

∂
∂

= 
g

v

∂
∂

= 
h

v

∂
∂

= 
h

w

∂
∂

= a = b = 0 

 
for v = w = 0, and as a result: 
(1)     df = dv, dy = dw, dh = 0. 
 
 Moreover, one will have: 
 

a2 + b2 + c2 = 1, 
a b c

a b c
v v v

∂ ∂ ∂+ +
∂ ∂ ∂

= 0,  
a b c

a b c
w w w

∂ ∂ ∂+ +
∂ ∂ ∂

= 0 

 
for any v, w, and in turn, for v = w = 0.  ∂c / ∂v and ∂c / ∂w are zero, and one will have: 
 
(2)   du = a′ dv + a″ dw, db = b′ dv + b″ dw, dc = 0, 
upon setting: 
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(3)  a′ = 
a

v

∂
∂

, a″ = 
a

w

∂
∂

, b′ = 
b

v

∂
∂

, b″ = 
b

w

∂
∂

 (for v = w = 0). 

 
 Since we have confined ourselves to first-order infinitesimal properties, the arbitrary 
ruled surface (R) that we shall consider, which passes through (D) and whose generators 
belong to the congruence, will enter in only by the direction of the tangent OT to its trace 
on the plane xOy: We set: 

(Ox, OT) = ϕ, 
 
in such a way that an infinitely-small displacement along its trace will be: 
 

dx = cos ϕ · ds, dx = sin ϕ · ds, dz = 0. 
 
Hence, if one considers formulas (1) then one will see that the generator of (R) that is 
infinitely-close to (D) that one has to introduce is obtained by giving infinitely-small 
increments to v and w: 
(4)     dv = cos ϕ · ds, dw = sin ϕ · ds . 
 
 The tangent plane to (R) at the point M of (D) that has z = u for its parameter value 
will be defined by the angle θ = (Ox, OP) that it makes with the plane zOx, where OP is 
the trace of that plane on the plane xOy; its equation will be: 
 
(5)      x sin θ – y cos θ = 0. 
 
 In order to calculate the angle θ, it will suffice to write down that this plane must 
contain the tangent to the curve u = constant that passes through M, which is a tangent 
whose direction coefficients are: 
 

dx = df + u da,  dy = dg + u db, dz = 0. 
 

Upon taking formulas (1), (2), and (4) into account, one will then get: 
 

[cos ϕ + (a′ cos ϕ + a″ sin ϕ) u] sin θ − [sin ϕ + (b′ cos ϕ + b″ sin ϕ) u] cos θ  = 0 
 
or 

(6)     tan θ = 
(1 ) tan

(1 ) tan

b u b u

u a u

ϕ
α ϕ

′ ′′+ +
′ ′′+ + ⋅

. 

 
 Upon observing that the left-hand side does not depend upon tan ϕ, one will get the 
equation of the parameter values of the foci: 
 
(7)     (1 + a′ u) (1 + b″ u) – b′ a″ · u2 = 0. 
 
Since the origin is at the midpoint of the foci, the sum of the squares will be zero: 

a′ + b″ = 0. 
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Moreover, the values of tan θ that correspond to the two roots u and – u (i.e., the ones 
that give the focal planes) will be: 

tan θ = 
1

b u

a u

′±
′±

, 

 
and since they must be equal and opposite in sign, from the choice of coordinate planes, 
a′ will be zero.  One will then have: 
(8)      a′ = b″ = 0. 
We set: 

(9)  a″ = 
1

p
, b′ = 

1

q
. 

 
The equation of the foci (7) will then reduce to: 
 
(10)  u2 = pq, 
 
and the focal planes will be defined at the same time by: 
 

(11)    tan θ = 
u

q
 = 

p

u
, tan2 θ = 

p

q
. 

 
Equation (6), which gives the law of simultaneous variation for the associated geometric 
elements q, u, and ϕ, will finally become the fundamental formula: 
 

(12)     tan θ = 
tan

tan

p u q

q p u

ϕ
ϕ

+⋅
+

. 

 
The correspondence between any two of the three elements tan ϕ, u, tan θ is 
homographic, since the third one is assumed to be constant.  In particular, one sees that 
when (R) varies, the tangent plane to (R) at a given point M of (D) will turn in the same 
sense as the tangent plane at the midpoint O or in the opposite sense according to whether 
pq (pq – u2) is positive or negative, resp.  Therefore, if the foci are imaginary (i.e., pq < 
0) then the two rotations will always be in the same sense.  If the foci are real (i.e., pq > 
0) then they will be in the same sense when M is between the foci, and in the contrary 
sense when M is not between the foci. 
 Recall once more that equation (12) can be written: 
 

(13)  u = pq · 
tan tan

tan tanp q

θ ϕ
θ ϕ

−
−

 or (13′) tan ϕ = 
tan

tan

p u q

q p u

θ
θ

− +⋅
−

, 

 
which exhibits a law of reciprocity between θ and ϕ, up to the sign of u. 
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Limit points and principal planes 
 

 We again look for the central point of the generator (D) of (R).  If we suppose that u 
is infinite then formula (12) will give: 
 

tan θ = 
tan

p

q ϕ
 

 
for the asymptotic plane; we will have: 
 

(14)     tan θ = − 
tanq

p

ϕ
 

 
for the central plane, and that value, when substituted in (13), will give: 
 

(15)   u = − pq (p + q) 2 2 2

tan

tanp q

ϕ
ϕ+

 = 
2

p q+
· sin 2θ 

 
for the central point.  The parameter value of the central point will always be finite then, 
and its extreme values, which correspond to: 
 

θ = ±
4

π
, tan ϕ = ±

p

q
, 

will be: 

(16)     u = ± 
2

p q+
. 

 
 One calls those extreme positions of the central point limit points.  They are always 
real, as well as the corresponding central planes, which one calls principal planes of the 
ray.  They are rectangular and have the same bisecting planes as the focal planes 
(Hamilton). 
 If the foci are real then one-half their separation distance, which is the geometric 
mean of | p | and | |q , will be less than that of the limit points, which is the arithmetic 
mean.  The foci will then be between the limit points, and the pairs of points will have the 
same center, which is called the center of the ray. 
 If one denotes the distance between the foci and the limit points by 2d and 2δ, resp., 
then formulas (10) and (17) will give the geometric interpretation of the quantities p and 
q: 
(17)    d 2 = pq, 2δ = | p + q | 
 
 From formulas (11), the angle 2ϖ between the focal planes is given, at the same time, 
by the formulas: 

(17′)    tan ϖ = 
d

q
= 

p

d
, tan2 ϖ = 

p

q
. 
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 Remark. – In the following chapter, we will see that for any congruence that is 
composed of one surface, the foci are the centers of principal curvature, and the focal 
planes are the planes of the principal sections of the surface.  The focal planes will then 
be rectangular, and will coincide, moreover, with the principal planes of the ray that we 
just defined.  Furthermore, from formula (11), the orthogonality of the focal planes is 
expressed by the condition: 

d d

q q

−⋅  = 
p d

d q
⋅
−

= 1. 

 
Upon considering (17), we will then have: 
 

d2 = p2 = q2 = pq, p = q = ± d, d = δ. 
Hence: 

p = q = ± d, d = δ. 
 
Hence, the limit points of each ray in a normal congruence will coincide with its foci, and 
the focal planes will coincide with the principal planes of the ray.  The same situation 
will prevail for an arbitrary congruence for the rays that satisfy the condition p = q; i.e., 
the ones whose focal planes are rectangular. 
 
 

Study of the deviation 
 

 Now consider two arbitrary points M and M′ of the line (D), and look for the relation 
that exists between the relative parameter value u′ – u = ρ of those two points and the 
deviation that the tangent plane to (R) experiences when one passes from one to the other; 
i.e., the angle θ′ – θ = ψ.  We denote the parameter value of M′ by u′ and the angle that 
the tangent plane at M′ makes with the plane zOx by θ′, in such a way that, from (13′), we 
can write: 

tan ϕ = 
tan

tan

p u q

q p u

θ
θ

′ ′− +⋅
′ ′−

 = 
tan

tan

p u q

q p u

θ
θ

− +⋅
−

. 

We then conclude that: 
 

(u′ – u) (p – q tan θ tan θ′ ) + (uu′ – pq) (tan θ′ – tan θ) = 0 
or 

ρ (p cos θ cos θ′ − q sin θ sin θ′ + u sin ψ) + (u2 – pq) sin ψ = 0, 
 
which can be further written: 
 

(18)  cos cos ( 2 ) sin
2 2

p q p q
uρ ψ ψ θ ψ− + + + +  

= (u2 – pq) sin ψ. 

 
 If one is given the deviation ψ and varies (R) (i.e., θ) while leaving the point M fixed 
(i.e., u) then one will see that ρ has a maximum and minimum that are given by: 
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(19)  

2
1

2
2

cos sin ( )sin ,
2 2

cos sin ( )sin ,
2 2

p q p q
u pq u

p q p q
u pq u

ρ ψ ψ ψ

ρ ψ ψ ψ

 − + + + = −    


− +  − + = −   

 

resp. 
 One infers from this that: 
 

2

p q−
cos ψ + u sin ψ = 1

2 (pq – u2) 
1 2

1 1

ρ ρ
 

+ 
 

 sin ψ, 

so 

2

p q+
= 1

2 (pq – u2) 
1 2

1 1

ρ ρ
 

− 
 

 sin ψ, 

 
which will permit one write formula (18) in the form: 
 

1 2 1 2

1 1 1 1 1 1

2 2ρ ρ ρ ρ
   

+ + −   
   

 cos (ψ + 2θ) = 
1

ρ
, 

 
so one will conclude the Kummer formula: 
 

(20)    
1

ρ
= 

2 2

1 2

cos sin
2 2

ψ ψθ θ

ρ ρ

   + +   
   + . 

 
In the particular case where the deviation ψ is assumed to be equal to π / 2, it will reduce 
to: 

 
1

ρ
= 

2 2

1 2

cos sin
4 4
π πθ θ

ρ ρ

   + +   
   + , 

 
which one can write more elegantly by introducing the angle θ + π / 4 = θ0 that the 
tangent plane at M makes with one of the principal planes of the ray: 
 

(21)    
1

ρ
= 

2 2
0 0

1 2

cos sinθ θ
ρ ρ

+ . 

 
 This Hamilton formula has the same form as the Euler formula (page 42) that relates 
to the variation of the normal curvature and will have analogous consequences.  Euler’s 
formula is, in fact, a special case of Hamilton’s.  Indeed, suppose that the congruence 
considered is the congruence of normals to a surface (S) and that M is a point of that 
surface.  Let (G) be the trace of the ruled surface (R) on the surface (S).  The angle θ0 will 
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be precisely the angle between the tangent to (C) at M and one of the principal planes of 
the ray – i.e., from the remark that was made in the preceding paragraph, one of the 
principal directions of the surface.  On the other hand, the surface (R) is nothing but the 
surface (Σn) that was considered in the remark that concluded Chapter V, in such a way 
that the point M′ for which the tangent plane to (R) is perpendicular to the tangent plane 
to (R) at M – i.e., is normal to (G) – is the center K of the normal curvature to (C).  
Formula (21) then expresses, in the special case in question, the normal curvature 1 / ρ of 
the curve (C) of (S) as a function of the principal curvatures 1 / ρ1 and 1 / ρ2 of (S) and 
the angle θ0 between (C) and one of the principal directions of the surface. 
 
 Distribution parameter. – Suppose that in the general formula for the deviation (18), 
M is the central point of (D) on (R) – i.e., that u is given by (15).  We then obtain: 
 
(22) pq – u2 = pq – (p + q)2 sin2 θ cos2 θ = (p cos2 θ – q sin2 θ) (q cos2 θ – p sin2 θ), 
 
and formula (18) will become: 
 

cos cos cos2
2 2

p q p qρ ψ ψ θ− + +  
 = (p cos2 θ – q sin2 θ) (q cos2 θ – p sin2 θ) sin ψ ; 

 
i.e., after dividing by the factor (p cos2 θ – q sin2 θ): 
 
(23)    0 = (q cos2 θ – p sin2 θ) · tan ψ . 
 
 We then get the Chasles formula (page 105), and the distribution parameter for (D) 
for each surface (R) will be given by the equation: 
 

(24)   K = q cos2 θ – p sin2 θ = 
2

p q+
cos 2θ −

2

p q−
 

 
as a function of the angle θ between the central plane and the plane zOx.  At the same 
time, the central point is given by formula (15): 
 

(15)     u = 
2

p q+
· sin 2θ. 

 
 One sees that q and – p are the extreme values of the distribution parameter: They 
correspond to two cases in which the central point is the center of the ray.  The central 
planes will then be the coordinate planes – i.e., the bisector planes of the focal planes and 
the principal planes. 
 The distribution parameter is annulled when the central plane becomes perpendicular 
to the one the focal planes.  The central point then tends towards the focus that 
corresponds to the other focal plane. 
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Properties of pencils of rays 
 

 7. – Density at a point. – Imagine a ruled surface (Σ) of the congruence that contains a 
ray (D) in its interior.  The section of that ruled surface by the perpendicular plane to (D) 
at an arbitrary point of that line is a closed curve (σ) that contains M in its interior.  
Consider all of its points to be situated at an infinitely-small distance from M: The set of 
all rays of the congruence that are contained in the interior of (Σ) will then be called an 
infinitely-thin pencil of rays that has the ray (D) for its axis.  The sections, such as (σ), 
will be called cross-sections of the pencil. 
 The fundamental property of these pencils results from the interpretation of the 
product u1 u2 of the roots of equation (5) of § 1, which determine the foci of the ray (D).  
That product is: 

u1 u2 = 
P

Π
,  P = 

a b c

f g h

v v v
f g h

w w w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

,  Π = 

a b c

a b c

v v v
a b c

w w w

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

. 

 
 If dv, dw denote positive infinitesimals then we will write it as: 
 

(1)     u1 u2 = 
P dv dw

dv dw

⋅
Π ⋅

. 

 
 The numerator in that formula is developed in the form: 
 

(2)   P dv dw = a · 
( , )

( , )

D g h

D v w
 · dv dw + b ·

( , )

( , )

D h f

D v w
 dv dw + c 

( , )

( , )

D f g

D v w
 dv dw. 

 Now: 

(3)   
( , )

( , )

D g h

D v w
 dv dw, 

( , )

( , )

D h f

D v w
 dv dw, 

( , )

( , )

D f g

D v w
 dv dw 

 
are the three components of a vector that is normal to the surface: 
 
(4)    x = f (v, w), y = g (v, w), z = h (v, w) 
 
at the point (v, w) of that surface, and whose length measures the area element of the 
surface at that point.  Hence, if one supposes that a, b, c are the direction cosines of the 
ray that has its foot at that point then the quantity (2), which is the projection of the 
vector (3) onto the direction a, b, c, is the projection of that area element onto the plane 
perpendicular to the ray that is drawn through the point considered.  Moreover, since the 
vector (3) and the positive directions: 
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, ,
f g h

v v v

∂ ∂ ∂ 
 ∂ ∂ ∂ 

, , ,
f g h

w w w

∂ ∂ ∂ 
 ∂ ∂ ∂ 

 

 
of the coordinate curves at the point considered define a direct trihedron, that projection 
will be positive if the direction a, b, c and the preceding positive directions also define a 
direct trihedron. 
 If we suppose that the support (4) is normal to the ray, and that its foot is the point M 
of the ray (D) that was considered before then that projection of the area element will 
reduce to the area element itself; i.e., up to higher-order infinitesimals, the area of the 
cross-section (σ) of the pencil, with the same sign convention. 
 Apply the same considerations to the denominator of formula (1).  The support (4) is 
replaced by a sphere of radius (1), which is also normal to (D) at the point (v, w).  That 
denominator Π dv dw (with an entirely similar sign convention) will then measure the 
elementary spherical area that is homologous to | σ |; i.e., the elementary solid angle that 
is filled with the directions of the rays that constitute the pencil, which are supposed to 
issue from the same point: That is what one can call the measure of the solid angle of the 
pencil. 
 Furthermore, one sees that the ratio (1) will be positive or negative according to 
whether the homologous points of the contours of the cross-section (σ) and the spherical 
area that they correspond to describe those two contours with respect to the positive 
direction of the axis of the pencil in the same or opposite sense when one makes a 
moving ray describe the ruled surface (Σ) that bounds the pencil. 
 Therefore, the product of the algebraic measures of the distances from a point M of 
an arbitrary ray of one congruence to the two foci of that ray is equal to the quotient of 
the area of the cross-section that one makes at M in an infinitely-thin pencil that has that 
ray for its axis with the measure of the solid angle of that pencil, and that quotient will 
have the sign that was just specified (Kummer).  That is equivalent to saying that it is the 
limit to which the analogous ratio that relates to a pencil with a finite cross-section will 
tend to when that cross-section tends to zero in all of its dimensions without the pencil 
ceasing to contain the ray in question in its interior.  One takes the inverse of that limit, 
which will not depend upon the manner by which the pencil reduces to its axis, to be the 
measure of the density of the infinitely-thin pencil at the point M. 
 Hence:  
 
 The measure of the density of a pencil of the infinitely-thin congruence at an arbitrary 
point of its axis will be the inverse of the product of the algebraic distances of that point 
to the foci of that axis. 
 
 That theorem will reduce to Gauss’s theorem on the total curvature (cf., page 70) for 
the normal congruence to a surface (S).  That results from the following remarks: If one 
takes M to be the foot of a normal on (S) then the algebraic distance from M to the foci of 
that normal, which are the centers of principal curvature of the surface (§ 5), will become 
the principal radii of curvature of (S) at M.  Moreover, one can then consider (S) to be the 
support of the congruence, and since that surface is normal to the ray considered (D) at 
M, its elementary area at M will be equal to the cross-section of an infinitely-thin pencil 
with axis (D).  Finally, the correspondence that is established between the support (S) and 
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a sphere of radius 1 by the directions of the rays is the spherical representation of (S) 
here.  The solid angle of a pencil will then be the elementary area of the sphere that is 
homologous to the elementary area of the surface (S) in its spherical representation. 
 
 Study of the cross-section. – If one imagines two cross-sections of the same infinitely-
thin pencil with axis (D) then the ratio of their areas σ and σ′ will be equal to the inverse 
ratio of the densities at the point M, M′ of (D) where those sections are made.  Hence, if 
r1, r2 ; 1r ′ , 2r ′  are the distances from M and M′ to the two foci, respectively, then one will 

have: 

(5)      
σ
σ

′
 = 1 2

1 2

r r

r r

′ ′
 

 
for the ratio of the area.  That ratio will tend to zero if M stays fixed and M′ tends to a 
focus.  The pencil will then flatten into its two foci, in such a manner that the areas of the 
corresponding cross-sections will be infinitesimals of higher order than the other cross-
sections. 
 Meanwhile, we can specify it by means of the formulas of § 6.  Suppose that the 
pencil is given by the cross-section that is made at the center of the ray.  From the choice 
of the coordinate axes, it is the section that is made by the xy-plane.  Upon neglecting the 
infinitesimals of order higher than one, the coordinates of a point of the contour of that 
section will be: 
(6)    x = dv,  y = dw,  z = 0. 
 
The coordinates of an arbitrary point of the ray of the congruence that passes through that 
point are: 
 

x = f (v + dv, w + dw) + u · a (v + dv, w + dw), y = …,  z = …, 
 
or, upon neglecting the higher-order infinitesimals and taking formulas (1), (2), (8), (9) of 
§ 6 into account: 

(7)    x = dv + u
dw

p
,  y = u

dv

q
 + dw,  z = u. 

 
 If one considers u to be constant then formulas (6) and (7) will express the 
correspondence that is established by the rays of the congruence between the points of the 
plane z = 0 and those of the plane z = u.  If we keep the letters x, y for the former and 
denote the latter by X, Y then that correspondence will be defined by the formulas: 
 

(8)    X = x +
u

p
y,  Y = 

u

q
x + y. 

 
 This is a linear correspondence that will become singular when the determinant of the 
coefficients of x and y is zero; i.e., for: 

u2 – pq = 0. 
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That condition expresses the idea [eq. (10), § 6] that the section z = u is drawn through 
one if the foci F; it can be realized only if the foci are real. 
 In the case where it is realized, one will have identically: 
 

Y = 
a

q
X 

 
for any x and y, or [eq. (11), § 6], if θ denotes the angle between the focal plane (P) that 
is associated with the focus F and the plane zOx then: 
 

Y = X tan θ. 
 
 Therefore, no matter what form the central cross-section (i.e., the plane that passes 
through the center of the ray) has, the pencil is cut by the plane of the cross-section that 
passes through one focus along a rectilinear segment that is situated in the focal plane 
that is associated with that focus.  If one neglects the infinitesimals of order higher than 
the diameter of the central cross-section then the external surface of the pencil will have 
the appearance of a ruled surface that has two rectilinear directrices that pass through the 
foci of the axis of the pencil, are perpendicular to that axis, and are situated in the 
associated focal planes to those foci, respectively. 
 For example, suppose that the central cross-section is a circle of radius r.  The section 
by the plane of the parameter value z = u will be the ellipse: 
 

(9)     
2 2

u u
X Y Y X

p q

   
− + −   

   
= 

22
2 1

u
r

pq

 
− 

 
, 

 
which effectively reduces to a double line for u2 = pq in the case where the foci are real. 
 The angle ω between one axis of that ellipse and the plane zOx will be given by the 
formula: 

(10)     tan 2ω = 
2 1pq

q p u
⋅

−
. 

 
In the case p = q (i.e., in the case of normal congruences, if that situation is true for all the 
rays, and more generally, whenever the focal planes are rectangular), the axes will then 
always be in the focal planes, and will then coincide with the principal planes of the ray. 
 If one discards that case then if one projects the section onto the plane z = 0 then one 
will see that when the parameter value u of the second plane varies from − ∞ to + ∞, the 
right angle that is defined by the two axes of the section will always turn in the same 
sense.  The total rotation will be π / 2, and when the parameter u tends to zero, those axes 
will tend to be located in the principal planes of the ray.  The two ellipses that are 
provided by two planes that are equidistant from the center of the ray will be symmetric 
to each other with respect to Ox and Oy upon projection, moreover. 
 In the case of real foci, if one regards the formulas (17) of § 6 then one can put 
formula (10) into the form: 
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tan 2ω = 
d

u
 · tan 2ϖ, 

 
into which the half-distance d between the foci and the angle 2ϖ between the focal planes 
enter. 
 The lengths l of the axes of the ellipse (9) are given by the equation: 
 

(11)   
22

4 2 2 2 4
2 2

1 1
2 1

u
l u r l r

p q pq

    
− + + + −    

    
 = 0, 

 
and the law of their variation will result from the study of the hyperbola that is 
represented by the equation that one will deduce by setting: 
 

l2 = r2 · y, u2 = pq · x. 
 
One will then see that if u varies from 0 to ± ∞ then one of these axes will constantly 
increase, while the other one will first decrease, pass through a minimum, and then also 
increase constantly: The two axes will become infinite along with the parameter u. 
 If the foci are real (pq > 0) then the minimum of the second axis will be zero, and in 
conformity to what we have seen, that will be true when the plane of the section goes 
through a focus.  The first axis, which is then situated in the corresponding focal plane, 
will have the length: 

2l = 
4

sin 2

R

ϖ
. 

 
One can then say that the pencil is smeared along its rectilinear directrices over a length 
that is, in general, greater than twice its central diameter and equal to twice that diameter 
in the case where the focal planes are rectangular. 
 
 Remark. – The case in which the foci coincide on the ray considered is treated by 
letting the origin O be arbitrary on that ray.  One supposes only that the plane zOx is the 
double focal plane.  Hence, if h is the parameter value of the double focus and the other 
hypotheses about the choice of axes that were made in § 6 are maintained then the 
correspondence between the plane z = 0 and the plane of the parameter value u will be 
expressed by the formulas: 

X = 1
u u

x y
h k

 − + 
 

, Y = 1
u

y
h

 − 
 

, 

in which we have set: 

h = − 1

a′
,  k = 

1

a′′
, 

here. 
 Indeed, upon writing down that the roots of equation (7) are equal to h, and that 
formula (6) gives the value 0 for u = h, one will get: 
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a′ = b″ = − 
1

h
,  b′ = 0. 

 
One sees that if one is given the section (6) of the pencil arbitrarily in the plane z = 0, 
which an arbitrary cross-sectional plane here, then the section by the plane z = h, which 
passes through the focus, is only rectilinear: It will then be in the focal plane, and its 
length will be proportional to the dimension of the section (6) that is perpendicular to that 
focal plane. 
 The hypothesis a″ = 0, which was discarded implicitly, corresponds to the case in 
which the focal plane is indeterminate.  The cross-section of the pencil by a plane that 
passes through the focus will then reduce to a point. 
 
 

___________ 
 



 

CHAPTER VII 
 

NORMAL CONGRUENCES 
 

Characteristic property of normal congruences 
 

 1. – Consider a surface, so the coordinates of one of its points will depend upon two 
parameters.  The set of all normals to that surface will depend upon two parameters and 
will constitute a congruence.  In order to obtain the developables of that congruence, it 
will suffice to consider the two families of curvature lines on the surface, since the 
normals to a surface at all points of a curvature line generate a developable surface.  The 
tangent plane to that developable passes through the normal (D) and the tangent to the 
corresponding line of curvature.  It is one of the focal planes of the line (D).  Therefore, 
the focal planes are the planes of the principal sections of the surface.  The focal planes 
of a normal congruence are rectangular.  It then results that an arbitrary congruence is 
not generally composed of the normals to a surface. 

 D 
T 

M 
(γ) 

(γ′ ) 

T′ 

F 

(A) 

F′ 

(A′ ) 

 
 Consider the two lines of curvature (γ), (γ′ ) that pass through a point M of the 
surface.  The developable of (γ) corresponds to an edge of regression (A) whose 
osculating plane is the focal plane, so the contact point F of (A) and the line D will be one 
of the focal points.  The edge of regression (A) is the envelope of the line (D) when the 
point M displaces along the curve (γ).  The point F is then one of the centers of principal 
curvature of the surface at the point M.  The associated focal plane is the second plane of 
the principal section FMT′.  One will likewise get a second edge of regression (A′ ) upon 
considering the curve (γ′ ). 
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 One will easily see that these properties of the centers of principal curvature and the 
planes of the principal sections will persist regardless of the nature of the focal 
multiplicities of the congruence considered. 
 Conversely, let a congruence be composed of the lines (D): 
 

x = f (v, w) + u · a (v, w), y = g (v, w) + u · b (v, w), z = h (v, w) + u · c (v, w). 
 
We seek the conditions under which one can choose a point M on each line (D) whose 
locus is a surface that is constantly normal to (D).  In order for that to be true, it is 
necessary and sufficient that one can determine u as a function of v, w in such a fashion 
that: 

∑ a dx = 0 
or: 

∑ a (df + u da + a du) = 0. 
 
Suppose that a, b, c are the direction cosines of (D).  u will then represent the distance 
from the point P where the line meets the support to the point M, and one will have: 
 

∑ a2 = 1, ∑ a da = 0. 
 
The preceding condition will, in turn, become: 
 

du + ∑ a da = 0 
or 
(1)      − du = ∑ a da . 
 
That equation expresses the idea that ∑ a da is an exact total differential. Now: 
 

∑ a da = ∑ a 
f

v

∂
∂

dv + ∑ a 
f

w

∂
∂

dw , 

so the condition will be: 
f

a
w v

∂ ∂
∂ ∂∑ = 

f
a

v w

∂ ∂
∂ ∂∑  

or 
a f

w v

∂ ∂
∂ ∂∑ = 

a f

v w

∂ ∂
∂ ∂∑  

or finally: 

(2)  
a f a f

w v v w

∂ ∂ ∂ ∂ ⋅ − ⋅ ∂ ∂ ∂ ∂ 
∑ = 0. 

 
We have found a unique condition.  Now, we have previously found that a necessary 
condition is the orthogonality of the focal planes.  We will then be led to compare the two 
conditions.  The direction coefficients A, B, C of a focal plane verify the relations: 
 
(3)      Aa + Bb + Cc = 0, 
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0,

0.

f a g b h c
A u B u C u

v v v v v v

f a g b h c
A u B u C u

w w w w w w

 ∂ ∂ ∂ ∂ ∂ ∂     + + + + + =      ∂ ∂ ∂ ∂ ∂ ∂      


∂ ∂ ∂ ∂ ∂ ∂      + + + + + =      ∂ ∂ ∂ ∂ ∂ ∂     

 

 
Eliminating u between the last two equations, we will obtain: 
 

(4)     

f a
A A

v v
f a

A A
w w

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∑ ∑

∑ ∑
 = 0. 

 
The direction coefficients of the normals to the focal planes are defined by (3) and (4).  If 
we consider A, B, C to be current coordinates then (3) will represent a plane that passes 
through the origin, and (3) will be a cone that has the origin for its summit, and the 
generators of the intersection will be precisely the desired normals.  We express the idea 
that those two lines are rectangular.  The plane (3) is perpendicular to the line (a, b, c), 
which is on the cone (4), because from the conditions ∑ a2 = 1 and ∑ a da = 0, one will 
deduce that: 

a
a

v

∂
∂∑ = 0, 

a
a

w

∂
∂∑ = 0. 

 
Hence, the two normals will be perpendicular to the line (a, b, c).  If they are rectangular 
then the cone (4) will admit an inscribed tri-rectangular trihedron, which will give the 
condition: 

f a f a

v w w v

∂ ∂ ∂ ∂ ⋅ − ⋅ ∂ ∂ ∂ ∂ 
∑  = 0. 

 
That is precisely the condition (2).  Hence, the necessary and sufficient condition for the 
congruence to be a normal congruence is that the focal planes of each ray must be 
rectangular. 
 Suppose that condition (2) is satisfied.  In order to obtain a normal surface to all lines 
of the congruence, it will suffice to calculate u as a function of v, w, which one does with 
equation (1).  By hypothesis, it has the form: 
 

du = dΦ (v, w), 
so 
(5)      u = Φ (v, w) + const. 
 
There is then an infinitude of surfaces that meet the requirement.  If two points M and M′ 
of (D) describe two of those surfaces (S) and (S′ ), respectively, which correspond to two 
functions u = PM and u′ = PM′, resp., and which are given by formula (5), then the 
distance MM′ = u′ − u will be a constant quantity.  The surfaces (S), (S′ ) are called 
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parallel surfaces, and a family of parallel surfaces will admit the same centers of 
principal curvature and the same focal multiplicities for each normal.  Those focal 
multiplicities constitute the development of any of those surfaces. 

 

T′ 
θ 

(C) 

(A) 

F 

T 

M 

(γ) 

(γ′ ) 

D 

 
 

Relations between a surface and its development 
 

 2. – Consider one sheet of the development of a surface (S).  First, suppose that it is a 
surface (Φ).  Consider a line (D) of the congruence of normals to (S).  That line is tangent 
at F to the edge of regression (A) that belongs to (Φ).  The focal planes that are associated 
with (D) are the osculating plane to (A) and the tangent plane to (Φ).  In order for the 
congruence to be a normal congruence, it is necessary and sufficient that the osculating 
plane to (A) must be normal to (Φ), and therefore that (A) must be a geodesic of (Φ).  The 
congruence of normals to a surface (S) is composed of the tangents to a family of 
geodesics of its development (Φ), and conversely, the tangents to a family of ∞1 geodesics 
of an arbitrary surface (Φ) constitute a normal congruence. 
 Let M be the point where the line (D) cuts the surface (S).  When the line (D) 
envelops the edge of regression (A), the point M will describe a line of curvature (γ) of 
(S).  Each point M of (S) corresponds to a point F of (Φ), so there is a point-by-point 
correspondence between the two surfaces.  The family of lines of curvature (γ) of (S) 
corresponds to a family of geodesics of (Φ). 
 Now, look at the contact curves (C) with (Φ).  Consider the tangent Fθ to (C).  It is 
the characteristic of the tangent plane to (Φ) when the point M describes (γ).  Now, that 
tangent plane to (Φ) is the second focal plane, so it is the plane perpendicular to the plane 
FMT that passes through FM, and thus the normal plane to (γ) to the point M.  Hence, Fθ 
is the characteristic to the normal plane to (γ), so it is the polar line to (γ).  Since Fθ is in 
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the plane normal to (γ), it will meet the tangent to the second principal section; it will 
pass through the center of geodesic curvature of (γ) on (S). 

 

T 

M 
(γ) 

(ϕ) 

F 

u 

 
 

Canal surfaces 
 

 Suppose that one of the sheets of the development reduces to a curve (ϕ).  The line 
(D) meets (ϕ) at one of the focal points F.  One of the developables that passes through 
(D) is a cone with summit F. One of the lines of curvature (γ) of (S) that passes through 
M is situated on that cone with its summit at F.  Now, (γ) is constantly normal to D, so it 
will be an orthogonal trajectory to the generators of the cone; i.e., the intersection of that 
cone with a sphere of center F.  At each point M of that sphere, it is normal to the line 
(D).  It will then be tangent to the surface (S) all along the curve (γ).  Each point F of (ϕ) 
corresponds to a sphere that has that point for its center and is tangent to (S) all along the 
corresponding line of curvature.  Hence, a surface (S) that has a curve for one sheet of its 
development is the envelope of a family of spheres that depend upon one parameter.  We 
call such a surface a canal surface.  Meanwhile, one sometime reserves that name for the 
envelopes of ∞1 equal spheres.  The converse of the preceding proposition is true, as we 
will see later on. 
 The curve (γ) is then the intersection of a sphere with an infinitely-close sphere; it is a 
circle.  The cone F is one of revolution whose axis is the limiting position of the line of 
centers, so it will be the tangent Fu to (ϕ).  Consider the tangent MT to (γ).  MT, which is 
tangent to a point of the circle, is orthogonal to Fu.  Fu is then in the second plane of the 
principal section.  The congruences considered are then composed of the generators of 
the ∞1 cones of revolution whose axes are tangents to the curve that is the locus of 
summits of those cones.  Conversely, any congruence, thus-constituted, is a normal 
congruence, because the focal planes will be the tangent planes and the meridian planes 
of those cones and will consequently be rectangular. 
 

Dupin cyclide 
 

 Let us see if the two sheets of the development can reduce to two curves (ϕ) and (ϕ′ ).  
The developables of the congruence are the cones that have their summits on one of the 
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curves and pass through the other one.  All of the cones (F) of revolution must pass 
through the curve (ϕ′ ).  That curve (ϕ′ ) is such that an infinitude of cones of revolution 
will pass through that curve, and similarly for (ϕ).  Hence, (ϕ), (ϕ′ ) can only be skew 
biquadratics or their elements of decomposition.   However, neither of those curves can 
be a skew biquadratic, since otherwise four cones of only second degree would pass 
through one of them. 

 

u 
F 

F′ 

 
 Now, let us see if one of them can be a twisted cubic.  The cones of degree two that 
pass through a twisted cubic (ϕ′ ) have their summits on (ϕ).  The two curves (ϕ) and 
( )ϕ′  will then coincide.  We then examine whether there can exist twisted cubics such 
that the cones of second degree that contain them will be cones of revolution.  Such a 
cone will have the tangent Fu for its axis.  Now, it contains that tangent, so it will 
decompose.  Therefore, neither (ϕ) nor (ϕ′ ) can be twisted cubics. 
 Suppose then that (ϕ′ ) is a cubic.  The locus of summits of the cones of revolution 
that pass through that conic is, as one knows, another conic, which is the focal surface of 
the first one.  There is reciprocity between those conics, and the cones of revolution have 
the tangents to the focal surfaces for their axes.  Therefore, the lines that meet both of two 
focal conics constitute a normal congruence.  The normal surfaces to those lines are 
called Dupin cyclides.  Their two systems of lines of curvature are circles. 
 
 Special cases. – Suppose, in particular, that (ϕ′ ) is a circle.  The locus of the summits 
of the cones of revolution that pass through (ϕ′ ) is the axis (ϕ) of that circle, and we see 
that all of the lines that are supported by a circle (ϕ′ ) and its axis (ϕ) are normal to a 
family of surfaces.  Those surfaces are torii  of revolution around the axis (ϕ), and the 
locus of the center of the meridian circle is the circle (ϕ′ ). 
 Suppose that (ϕ′ ) is a line: The surface is the envelope of a family of spheres that 
have their centers on that line.  It is a surface of revolution around (ϕ′ ).  The first sheet of 
the development is the line (ϕ′ ), while the second one generated by the rotation of the 
development of the principal meridian.  In order for it to be a curve, it is necessary that 
the development must be a point, and thus that the meridian must be a circle, and we 
come back to the case of the torus. 
  

Singular case 
 

 Finally, let us see whether the two sheets of the development can coincide.  If that 
were true then the two families of lines of curvature of the surface (S) would coincide:  
That is the case for ruled surfaces with isotropic generators.  For those surfaces, the two 
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sheets of the development will reduce to just one curve, as we will see in the following 
paragraph. 
 
 

Study of the enveloping surfaces of spheres 
 

 3. – While discussing the nature of the development of a surface, we were led to 
consider surfaces that were the envelopes of spheres.  The study of those surfaces will 
now lead us to the converses of those preceding properties. 
 Consider a surface (S) that is the envelope of ∞1 spheres (Σ).  Each sphere cuts the 
sphere infinitely close to a circle, and the normals to (S) at all points of the circle will 
pass through the center of the sphere.  The locus of the centers of the spheres is a curve 
that is met by all of the normals to (S), so it will be one of the sheets of the development.  
On the other hand, the sphere (S) is tangent to the surface (S) all along the characteristic 
circle, so that circle will be a line of curvature of the surface (S), from Joachimsthal’s 
theorem.  The surfaces that are envelopes of spheres have a family of circular lines of 
curvature.  Conversely, any surface that has a family of circular lines of curvature is an 
envelope of spheres.  Indeed, consider a circular line of curvature (K).  Any sphere that 
passes through (K) cuts the surface (S) at a constant angle, from Joachimsthal’s theorem.  
Now, there exists a sphere that passes through (K) and is tangent to (S) at one of the 
points of that circle.  That sphere will then be tangent to (S) at all points of the circle (K), 
and any circular line of curvature will be a contact curve of a sphere with the surface.  
The surface is the development of the spheres thus-determined. 
 Let (a, b, c) be the center, and let r be the radius of one of the ∞1 spheres considered; 
a, b, c, r are functions of the same parameter. 
 The sphere has the equation: 
 

(x – a)2 + (y – b)2 + (z – c)2 – r2 = 0. 
 
The characteristic is defined by that equation and the equation: 
 

(x – a) da + (y – b) db + (z – c) dc + r dr = 0. 
 

One indeed verifies that it is a circle whose plane is perpendicular to the direction da, db, 
dc of the tangent to the locus of centers of spheres. 
 We just considered surfaces with one family of lines of curvature that is composed of 
circles.  Let us see if the two families of lines of curvature can be circular.  The 
corresponding surface can be considered to be the envelope of ∞1 spheres in two different 
ways. The two sheets of the development will be curves.  The surfaces will then be a 
Dupin cyclide, and that will provide us with a new viewpoint for the study of that cyclide. 
 

Correspondence between lines and spheres 
 

 Lines and spheres are geometric elements that depend upon four parameters.  That 
fact permits one to predict that there will be a correspondence between the study of 
systems of lines and that of systems of spheres.  That correspondence finds its analytical 
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expression in a transformation that is due to Sophus Lie that we will present later on.  
However, we shall see that it manifests itself in various questions before that.  Therefore, 
in the geometry of spheres, one can consider envelopes of ∞1 spheres to correspond to 
ruled surfaces, which are loci of ∞1 lines.  The Dupin cyclides then correspond to doubly-
ruled surfaces, and thus to ruled surfaces of degree two.  We shall see the development of 
that analogy in what follows. 
 Let (Σ) be a sphere of the first family, and let (Σ′) be a sphere of the second family, 
such that (Σ) touches (S) along a circle (K) and (Σ′) touches (S) along a circle (K′ ).  The 
surface (S) is generated by the circle (K) or by the circle (K′ ), so it will result that those 
two circles will have at least one common point M.  Let O, O′ be the centers of the 
spheres (Σ), (Σ′), resp., so OM and OM′ will be normals to the spheres (Σ), (Σ′), and in 
turn, normals to M at the surface.  They will then coincide, so O, M, O′ will be on the 
same line.  The spheres (Σ), (Σ′) are tangent at M.  A sphere of one of the families is 
tangent to any sphere of the other family.  (More precisely: Two generators of different 
systems of a quadric will meet.) 
 Consider three fixed spheres (Σ), (Σ1), (Σ2) of one of the families.  They are tangent to 
all of the spheres of the other family, and in turn, the surface will be the envelope of 
spheres that are tangent to three fixed spheres.  (A quadric is the locus of all lines that 
meet three fixed lines.)  The three spheres (Σ), (Σ1), (Σ2) will cut at two points that can be 
considered to be spheres of radius zero that are tangent to (Σ), (Σ1), (Σ2).  Hence, there 
will be two spheres of radius zero in each family of spheres that is enveloped by the 
cyclide.  The spheres of the other family must be tangent to those two spheres of radius 
zero that pass through their centers.  Those two points are on the locus of centers of the 
spheres, and therefore on the focal conics.  Hence, if we consider the two focal conics 
then the spheres of one of the families will have their centers on one of the conics and 
pass through two fixed points of the other one that are symmetric with respect to the 
plane of the first one.  With that manner of generation, it will then be easy to find the 
equation of the cyclide. 
 

Equation of the Dupin cyclide 
 

 1. First suppose that one of the conics is an ellipse, for example, while the other one 
is a hyperbola.  Take the Ox, Oy axes to be the axes of the ellipse, whose equation in its 
plane is: 

(E)      
2 2

2 2

x y

a b
+ − 1 = 0. 

 
 The focal hyperbola is in the plane y = 0.  It has the equation in that plane: 
 

(H)      
2 2

2 2 2

x z

a b b
+

−
− 1 = 0. 
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x 

A 

A′ 

x 

y 

ω 

 
 A point ω of the ellipse (E) has the coordinates: 
 

x = a cos ϕ, y = b sin ϕ, z = 0. 
 

 Let the fixed points A and A′ on the hyperbola (H) be defined by the formulas: 
 

x0,      y0 = 0,      2
0z = 

2
2 0

2 2 1
x

b
a b

 
− − 

. 

 
 The equation of a sphere (Σ) that has ω for its center and passes through the points A 
and A′ will be: 

(x – a cos ϕ)2 + (y – b sin ϕ)2 + z2 = (x0 – a cos ϕ)2 + b2 sin2 ϕ + 
2

2 0
2 2 1
x

b
a b

 
− − 

, 

or 

x2 + y2 + z2 – 2ax cos ϕ – 2by sin ϕ = 2
0x  + b2

2
0

2 2

x

a b−  – b2 – 2ax0 cos ϕ, 

 
which is written: 

2a (x – x0) cos ϕ + 2by sin ϕ = x2 + y2 + z2 + b2 − 
2 2

0
2

a x

c
, 

upon setting: 
c2 = a2 – b2, 

according to habit. 
 The equation of the sphere (Σ) will then have the form: 
 

A cos ϕ + B sin ϕ = C, 
 
and the equation of the envelope, which expresses the idea that the preceding equation 
has a double root will be, in turn: 
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A2 + B2 = C2. 
 
 Therefore, the cyclide will have the equation: 
 

4a2 (x – x0)
2 + 4b2 y2 = 

22 2
2 2 2 2 0

2

a x
x y z b

c

 
+ + + − 

 
. 

 
 2. Now suppose that one of the conics is a parabola.  The other one is also a 
parabola.  Take Ox and Oy to be the axis and the tangent at the summit of one of those 
parabolas, resp.  The equations of those two conics will be: 
 
(P)     z = 0,  y2 = 2px, 
(P′ )    y = 0,  x2 + z2 = (x – p) 2. 
 

 z 

O 

y 

x 

(P) 
A′ 

c 

A 

(P′ ) 

 
 
 The center C of the sphere on the parabola P has the coordinates: 
 

x = 2pλ2, y = 2pλ, z = 0. 
 
 The fixed points A and A′ on the parabola (P′ ) are defined by the formulas: 
 

x0,  y0 = 0,  2
0z  = (x0 – p)2 − 2

0x . 

 
 The equation of the sphere is: 
 

(x − 2pλ2)2 + (y − 2pλ2)2 + z2 = (x0 − 2pλ2)2 + 4p2λ2 + (x0 − p)2 − 2
0x  

or 
x2 + y2 + z2 – (x0 – p)2 – 4pλy – 4p (x – x0) λ2 = 0, 

 
and the equation of the envelope – i.e., the cyclide – is: 
 

[x2 + y2 + z2 – (x0 – p)2] (x – x0) + p y2 = 0. 
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 The surface, which has order four, in general, is only three here. 
 

Isotropic canal surfaces 
 

 Among the ruled surfaces, we have considered the developable surfaces, for which 
each generator meets the infinitely-close generator.  The corresponding case for the 
envelopes of the spheres will be the one in which each sphere is tangent to the infinitely-
close sphere.  In order for that to be true, it is necessary and sufficient that the “radical 
plane” of the two spheres must be tangent to both of them. 
 Let: 
(1)     (x – a)2 + (y – b)2 + (z – c)2 – r2 = 0 
be a sphere. 
 The radical plane of that sphere and the infinitely-close sphere is: 
 
(2)  (x – a) da + (y – b) db + (z – c) dc + r dr = 0. 
 
In order for it to be tangent to the sphere (1), it is necessary and sufficient that the square 
of its distance to the center (a, b, c) must be equal to r2, so: 
 

2 2

2 2 2

r dr

da db dc+ +
= r2, 

or 
(3)  da2 + db2 + dc2 = dr2. 
 

 

(c) 

ω 

I 

(Γ) 

 
 That condition expresses the idea that the radius r is equal (up to sign) to the arc 
length s of the curve (C) that is the locus of centers of the spheres, when measured from 
an arbitrary origin.  Since r enters into equation (1) only by its square, one can adopt the 
solution r = s. 
 We seek the contact point of the sphere with the infinitely-close sphere.  It is the foot 
of the perpendicular that is based at the center of the tangent plane (2).  Its coordinates 
will then satisfy the equations: 
 

x a

da

−
 = a – s 

da

ds
 = a – sα, y = b – s β, z = c – s γ, 



§ 3. – Study of the enveloping surfaces of spheres 169 

in which α, β, γ are direction cosines of the tangent.  One then obtains the point I, which 
describes an involution (Γ) of the curve (C). 
 The intersection of a sphere with the infinitely-close sphere is nothing but the 
intersection of that sphere with one of the tangent planes to the infinitely-close one: It is a 
pair of isotropic lines that cut at the point I.  The envelope is composed of two ruled 
surfaces with isotropic generators.  We call it an isotropic canal surface.  Conversely, a 
ruled surface with isotropic generators is one sheet of the envelope of a family of spheres, 
each of which is tangent to the infinitely-close sphere.  Indeed, consider an isotropic 
generator (D) of one such surface (S).  An infinitude of spheres pass through that 
isotropic generator (D).  Those spheres contain the line (D) and the imaginary circle at 
infinity, which gives seven conditions; they depend upon two arbitrary parameters.  If we 
impose the condition upon such a sphere that it must be tangent to the surface considered 
(S) at two points at a finite distance from the line (D) then it will be determined 
completely.  However, it is tangent to the surface (S) at the point at infinity on (D), 
moreover.  Therefore, that sphere (Σ) will coincide with (S) all along the generator (D).  
The surface (S) will be a component of the envelope of those spheres.  Moreover, the 
sphere (Σ) has a generator (D) in common with the infinitely-close sphere, so it will be 
tangent to that generator at two points: One of them I will be at a finite distance. 
 The two systems of line of curvature on such a surface (S) will coincide with the 
isotropic generators [Chap. III, § 7, pp. 51].  The two sheets of the development will 
coincide with the curve (C), since the normals to (S) at the various points of the same 
isotropic generator (D) must pass through the center ω of the corresponding sphere (Σ).  
Here, the curve (Γ) plays a role that is analogous to the edge of regression of a 
developable surface.  Indeed, for a developable, there is a contact element (viz., a point of 
the edge of regression and the osculating plane at that point) that is common to a 
generator and the infinitely-close generator.  Here, it is the contact element that is 
composed of the point I and the tangent plane to the sphere at that point, which is the 
normal plane to Iω, that is common to the sphere (Σ) and the infinitely-close sphere. 
 The point I is an umbilic of the surface (S), because from what was just said, the locus 
(Γ) of the point I is normal to Iω, and will have the locus (C) of the centers ω of the 
spheres (Σ) for its development.  Hence, ω, which is the center of double principal 
curvature at any point of (D), is again the center of normal curvature of (Γ) at I, since it is 
on the normal to the surface and the polar surface of (Γ).  Moreover, all of the normal 
curves are equal at I, and I is indeed an umbilic. 
 For the envelope of spheres (Σ), the line (Γ) is a double line, so it is a locus of 
umbilics for each of the two surfaces (S) that comprise it, and which are tangent to any 
point of that line.  We call it the umbilical line of the isotropic canal surface. 
 
 

Curvature bands and asymptotic bands 
 

 4. – Consider a surface (S0) and an asymptotic line.  The tangents to that line at each 
of its points will generate a developable surface, and the contact element that is common 
to the generator and the infinitely-close generator, which consists of a point of the line 
and the osculating plane, which is tangent to (S0), is a contact element of (S0). 
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 (P) 

(r) 

O 

(c) 
 

 Similarly, consider a line of curvature (Γ) of a surface (S0): The normals to that 
surface at the various points I of (Γ) will generate a developable surface.  Let (C) be the 
edge of regression, and let O be the contact point with the normal; OI will then be equal 
to the arc length along (C).  Hence, if we consider the spheres with centers O and OI then 
each of those spheres will touch the infinitely-close sphere, and the contact element [I, 
(P)] that is common to those two spheres will be a contact element of the surface (S0). 
 We call any sphere that has its center at a principal center of curvature and the 
corresponding radius of principal curvature for its radius a curvature sphere of (S0).  We 
see that: 
 The spheres of curvature of (S0) that correspond to the same line of curvature (Γ) 
envelop an isotropic canal surface that has (Γ) for an umbilical line. 
 Conversely, if an isotropic canal surface (S) is circumscribed by the surface (S0) 
along its umbilical line then the latter will be a line of curvature for (S0), because the 
normals that are common to (S0) and (S) at the various points I of (Γ) envelop the locus of 
centers O of the spheres (Σ) that have (S) for their envelope.  Moreover, the spheres (Σ) 
that envelope the surface (S) will be the curvature spheres of (S0) that correspond to the 
line of curvature (Γ), because the center O of each of them is the contact point of the 
normal IO with the locus those centers. 
 Things can be phrased in a more concise manner when one substitutes the notion of 
band or bandeau of contact elements for the notion of curve.  By definition, a band is 
composed of ∞1 contact elements that belong to the same multiplicity [Chap. VI, § 3].  
The locus of points of those contact elements is a curve, and the planes of those contact 
elements will be tangent to the curve at the corresponding points.  A band that belongs to 
a surface is composed of the points of a curve that is traced on the surface and the planes 
tangent to the surface at those points that that they are associated with.  In other words, it 
is composed of the contact elements that are common to the curve and the surface. 
 One calls the locus of contact elements to a developable surface that are common to 
each generator and to the infinitely-close generator its band of regression, and one calls 
the locus of contact elements that are common to each of the spheres that are inscribed on 
the surface and the infinitely-close sphere the umbilical band. 
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 Similarly, we call the locus of contact elements of a surface that belong to an 
asymptotic line or a line of curvature of that surface an asymptotic band or a curvature 
band, respectively, and we can state the preceding results: 
 An asymptotic band of a surface is the band of regression of a developable surface.  A 
curvature band of a surface is the umbilical band of an isotropic canal surface.  
Conversely: Any band of regression of a developable that belongs to a surface (S0) is an 
asymptotic band of (S0).  Any umbilical band of an isotropic canal surface that belongs to 
a surface (S0) is a curvature band for (S0). 
 In particular, one then sees that from the standpoint of the correspondence between 
lines and spheres, the asymptotic lines correspond to the lines of curvature. 

 

M 

(P) 

(T) 

(γ) 
(K) 

 
 Remarks. – There are two linear elements to consider on each contact element [M, 
(P)] of a band, since a linear element is composed of a point and a line that passes 
through that point.  They are: The tangent linear element that is composed of the point M 
of the element and the tangent (T) to the curve that serves as the support of the band, 
which is a curve that one can simply call the curve of the band, and the characteristic 
linear element that is composed of the point M and the characteristic (K) of the plane (P); 
i.e., the rectilinear generator of the developable that is enveloped by the planes (P), or the 
developable of the band.  Those two linear elements are correlative from the standpoint 
of duality; a band is correlative to a band. 
 In an asymptotic band, the tangent linear elements and characteristic (T) and (K) 
coincide for any contact element of the band, and conversely.  In a curvature band, they 
are rectangular, and conversely.  The terms of the asymptotic band and the curvature 
band then have meaning in their right, without having to suppose that there is a surface 
(S0) to which the band considered will belong. 
 If the band of regression is given then the corresponding developable will be the 
developable of the band.  If the curvature band is given then its curve (γ) will be a line of 
curvature of the developable of the band, and the isotropic canal surface whose umbilical 
band coincides with that curvature band will be the envelope of the spheres of curvature 
of the developable that is constructed from the various points of M of the support of the 
band.  The terms: “umbilical band” and “curvature band” are equivalent then.  
Similarly, the terms “asymptotic band” and “band of regression” will also be equivalent. 
 We further remark that if one is given a curvature band then the curvature sphere that 
corresponds to a contact element [M, (P)] of the band will be defined by the conditions 
that it must admit [M, (P)] for one of its contact elements, and that it must have its center 
on the polar line of the curve (γ) that is the locus of point M. (See § 2 and § 3.)  That 
second condition expresses the idea that the sphere has second-order contact with (γ).  
Similarly, each plane (P) in an asymptotic band osculates (γ).  That is therefore a new 
analogy between the curvature bands and the asymptotic bands. 
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Lines of curvature of the envelopes of spheres 
 

 5. – We already know one of the families of lines of curvature, which is composed of 
the characteristics of the spheres.  Let us determine the second family. 
 

 B (α″, β″, γ″) 

T (α, β, γ) M 

I 

(K) 

θ 

N (α′, β′, γ′) 
(C) 

ϕ 

P 

ω 

 
 
 Let (C) be the locus of centers of the spheres (Σ) considered.  Express the coordinates 
x, y, z of one of its points as functions of the arc length (s).  One of the spheres with 
center ω will meet the infinitely-close sphere along a circle (K) whose plane is normal to 
the tangent ωT.  Introduce the Serret trihedron that is constructed from the point ω of the 
curve (C) and define the coordinates of a point M of the surface – i.e., of the circle (K) –  

with respect to that trihedron.  Let θ denote the angle �T Mω ; that angle is the same for all 
points of the circle (K).  Project M at P onto the normal plane, and let ϕ be the angle (ωN, 
ωP) between ωP and ωN, when measured positively from ωN to ωB.  The coordinates of 
M with respect to the Serret trihedron are, if one denotes the radius of the sphere (Σ) by ρ: 
 
(1)    ξ = ρ cos θ, η = ρ sin θ cos ϕ, ζ = ρ sin θ sin ϕ. 
 
 Those coordinates, with respect to an arbitrary system of axes, are: 
 
(2)  X = x + αξ + α′η + α″ζ,      Y = y + bξ + b′η + b″ζ,      Z = z + cξ + c′η + c″ζ. 
 
 Write down that (K) is the characteristic circle of the sphere (Σ).  That circle has the 
equations: 
 ∑ (X – x)2 – ρ2 = 0, 

 ∑ α (X – x)2 + ρ 
d

ds

ρ
= 0. 

 
 Upon supposing that the coordinate trihedron coincides with the Serret trihedron, the 
second equation will become: 

ξ + ρ 
d

ds

ρ
= 0; 
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i.e.: 

ρ cos θ + ρ 
d

ds

ρ
= 0, 

so 

(3)      cos θ = − 
d

ds

ρ
. 

 
 The angle θ is thus defined as a function of s, and the enveloping surface of the 
spheres (Σ) is represented by equations (2) by means of the parameters s and ϕ, 
moreover. 
 We seek the lines of curvature.  They are the orthogonal trajectories of the circles (K) 
that are defined by s = const.  The tangent to any curve that passes through M will have 
the direction coefficients: 
 

dX = α ds + ds ds ds
R R R T

α α α αξ η ζ
′ ′′ ′ − + + 

 
+ α dξ + α′ dη + α″ dζ, 

 
dY = …, dZ = … 

 
 Upon once more taking the Serret trihedron to be the coordinate trihedron, those 
direction coefficients will become: 
 

1
R

η − 
 

ds + dξ, 
R T

ξ ζ + 
 

ds + dη, − 
T

η
ds + dζ. 

 
 The condition that defines the orthogonal trajectories of the circles (K) will then be: 
 

− sin cosds d ds d
R T T

ξ ζ ηη ϕ ζ ϕ    + + + − +        
= 0. 

 
 Upon replacing ξ, η, ζ with their values (1), that will become: 
 

cos

R

ρ θ
sin ϕ ds + 

sin

T

ρ θ
ds – ρ sin θ · dϕ = 0, 

or: 

(4)     
d

ds

ϕ
= 

1 cot sin

T R

θ ϕ⋅+ . 

 
 This is an equation of the form dϕ / ds = A sin ϕ + B. 
 If one takes the unknown function to be tan ϕ / 2 then one will come down to a Ricatti 
equation. 
 The angle ϕ is the angle between the radius IM and a ray through the origin that is 
determined for each circle (K).  One then concludes, by an argument that is similar to the 
one in Chap. VI, § 4, pp. 140, that four non-circular lines of curvature of an envelope of 
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spheres cut the characteristic circles at four points whose anharmonic ratio is constant.  
That gives a new analogy with the asymptotic lines of a ruled surface. 
 One will get the usual simplifications if one knows one or more integrals of the 
equation a priori.  Hence, if one considers an envelope of spheres (Σ) that have their 
centers in a plane then all of the characteristic circles will be orthogonal to the section of 
the surface by that plane, which will then be a line of curvature.  The determination of the 
lines of curvature will then come down to two quadratures in that case. 
 
 Remark 1. – The search for orthogonal trajectories to ∞1 circles that generate an 
arbitrary circled surface also leads to a Ricatti equation, as we shall see.  Let x0, y0, z0 be 
the coordinates of the center I of any of the circles considered, and let ρ0 be its radius.  
Let α, β, γ be the direction cosines of its axis IT, which will not be tangent to a fixed 
curve (C) here, in general.  Finally, let α′, β′, γ′, α″, β″, γ″ be the direction cosines of two 
directions IT′, IT″ that are chosen in such a manner that the trihedron I·TT′ T″ is a direct 
tri-rectangular trihedron.  If one lets ϕ denotes the angle (IT′, IM) between IT′ and any 
radius IM of the circle, when measured positively from IT′ to IT″, then the direction 
cosines of that radius IM will be: 
 
(5)  α0 = α′ cos ϕ + α″ sin ϕ,      β0 = β′ cos ϕ + β″ sin ϕ,      γ0 = γ′ cos ϕ + γ″ sin ϕ, 
 
and the equations of the circled surface can be written: 
 
(6)   X = x0 + ρ0 α0 , Y = y0 + ρ0 β0 ,  Z = z0 + ρ0 γ0 , 
 
in which x0 , y0, z0 ; α, β, γ ; α′, β′, γ′ ; α″, β″, γ″  are functions of the same parameter t.  
The trihedron I·TT′ T″ displaces when t varies, and it will be convenient to interpret that 
displacement from the kinematical viewpoint while considering t to be a measure of time. 
 Let us seek the components of an infinitesimal displacement dX, dY, dZ of the surface 
relative to the axes IT, IT′, IT″.  Introduce the components of the velocity of the center I 
along the same axes into the calculations, along with those of the instantaneous rotation 
of the trihedron, which we denote by the notations: 
 

(7)    

0 0 0
0 0 0, , ,

, , .

dx dx dx
u v w

dt dt dt
d d d

p q r
dt dt dt

α α α

α α αα α α

 ′ ′′= = =
 ′ ′′ ′′ ′= = =


∑ ∑ ∑

∑ ∑ ∑
 

 
The summation ∑ extends to the letters α, β, γ; x, y, z.  We get the formulas: 
 

(8)   
0 0

0 0 0 0

0 0 0 0

[ ( sin cos )] ,

( sin ) cos sin ,

( cos ) sin cos ,

U dX u q r dt

V dX v p dt d d

W dX w p dt d d

α ρ ϕ ϕ
α ρ ϕ ϕ ρ ρ ϕ ϕ
α ρ ϕ ϕ ρ ρ ϕ ϕ

 = = + −
 ′= = − + ⋅ −
 ′′= = + + ⋅ +

∑
∑
∑

 

 
which will be easy to deduce directly from the theory of relative motion. 
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 If one expresses the idea that the displacement (8) is normal to the displacement along 
the generating circle, which has the components 0, − sin ϕ, cos ϕ along the same axes, 
then one will get the condition that defines the desired orthogonal trajectories: 
 

(9)     ρ0 
d

dt

ϕ
– v0 sin ϕ + w0 cos ϕ + ρ0 p = 0. 

 
 One effortlessly verifies that equation (3) that was found in Chap. VI, § 3 for the 
trajectories of a family of circles in a plane is a special case of this one. 
 Upon taking tan ϕ / 2 to be the unknown, as before, one will reduce equation (9) to 
the form of a Ricatti equation, and as before, one can conclude from this that, in 
particular, the orthogonal trajectories of a family of circles establish a homographic 
correspondence between the points of any two of those circles. 
 
 Remark 2. – From the calculation that was made above in order to arrive at the 
parametric equations of an envelope of spheres, one concludes that in order for the ∞1 
circles to be the characteristic circles of ∞1 spheres, it is necessary and sufficient that: 
 
 1. Their axes must generate a developable surface. 
 
 2. If one then defines each of those circles by the intersection of a sphere whose 
center is the contact point ω of the axis of the circle and the curve (C) that the axis 
envelops and a semi-cone of revolution that has its summit at the same point ω then the 
arc length s of (C), the radius ρ of that sphere, and the angle θ that the positive direction 
of the tangent to (C) makes with the generators of the semi-cone will be coupled by 
formula (3); i.e., by the condition: 
(10)     dρ + cos θ · ds = 0, 
 
which one will recover, moreover, upon applying the general formula on the variation of 
a line segment [Chap. V, § 6] to ωM. 
 However, we can replace those conditions with another one.  Indeed, we point out 
that the characteristic circle of a variable sphere: 
 
(11)   ∑ (X – x)2 – ρ2 = 0, ∑ (X – x) dx – ρ dρ = 0 
 
will meet the infinitely-close circle at two points that are defined by those equations (11) 
and the equation that is obtained by differentiating the second one.  We also seek to 
express the idea that any variable circle that is represented by equations (6) will 
effectively meet its infinitely-close circle at two points. 
 The points at which that circle meets the infinitely-close circle (if there are any) are 
defined by the equations dX = dY = dZ = 0; i.e., by the equivalent equations U = V = W = 
0.  If one eliminates the auxiliary unknown dϕ then one will get the two equations: 
 

(12)  r cos ϕ – q sin ϕ − 0

0

u

ρ
= 0, v0 cos ϕ + w0 sin ϕ + 0d

dt

ρ
= 0. 
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 One easily deduces the condition that expresses the idea that these equations have a 
common solution in tan ϕ / 2 from this: 
 

2 2

0 0
0 0 0 0 0 0

d d
q u w r u w

dt dt

ρ ρρ ρ   − + +   
   

= (q v0 + r w0)
2 2

0ρ . 

 
That is the condition for each circle to meet the infinitely-close circle at a point – i.e., for 
the ∞1 circles considered to have an enveloping curve. 
 In order for there to be two common points, it is necessary and sufficient that 
equations (12) should be identical.  That will first give the condition: 
 

q v0 + r w0 = 0. 
 
Upon taking formulas (7) into account, that condition will be written: 
 

0 = 0 0dx dx

d d

α α
α α α α

′ ′′
′ ′′

∑ ∑
∑ ∑

 = ∑ (β′ γ″ – γ′β″ ) (dy0 · dγ – dz0 · dβ) = 0 0 0dx dy dz

d d d

α β γ

α β γ
. 

 
They then express the idea that the axis of the circle generates a developable, which is the 
first of the conditions that were stated above for the circle generators of a canal surface. 
 If that condition is assumed to be satisfied then we will re-introduce the notations at 
the beginning of the paragraph, and the coordinates x, y, z of the contact point ω of the 
axis of the circle with its envelope (C).  Upon setting: 
 
(13)     h = ω I = ρ cos θ, 
we will then have, in succession: 
 

x0 = x + hα, y0 = y + hβ, z0 = z + hγ, 
dx0 = α (ds + dh) + h dα, dy0 = …, dz0 = …, 

u0 dt = ds + dh, v0 = hr,  w0 = − hq, 
 

in such a way that equations (12) will become: 
 

r cos ϕ – q sin ϕ − 
0

ds dh

dtρ
+

= 0, r cos ϕ – q sin ϕ − 0d

hdt

ρ
= 0. 

 
The identity condition of those equations then reduces to: 
 

h (ds + dh) + ρ0 dρ0 = 0, 
and upon observing that: 

h2 + 2
0ρ  = ρ2,      h dh + ρ0 dρ0 = ρ dρ, 

it can be written as: 
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h ds + ρ dρ = 0. 
 
All that remains is to replace h with its value (13) in order to recover the condition (10), 
which succeeds in characterizing the characteristic circles for the ∞1 spheres, from what 
we have seen. 
 We then conclude that the necessary and sufficient condition for ∞1 circles to 
generate a canal surface, or more precisely, for them to be the characteristic circles of 
∞1 spheres, is that each of them must meet the infinitely-close circle at two points. 
 
 

Case in which one sheet of the development is a developable 
 

 6. – We just considered the case in which one of the sheets of the development of a 
surface is a curve.  Correlatively, we now consider the case in which one of the sheets of 
the development is a developable surface.  The tangent planes to that developable will 
then constitute one of the families of developables of the congruence.  Such a plane (P) 
will cut the surface along a curve that is normal to all of the lines of the congruences that 
are situated in that plane and which will be a line of curvature.  At any point of that line, 
the normal to the surface is in the plane (P).  Therefore, the plane (P) will cut the surface 
(S) orthogonally all along the line of curvature. 
 Conversely, from Joachimsthal’s theorem, if a surface cuts a family of planes 
orthogonally then its sections by those planes will be lines of curvature, and those planes, 
which constitute one of the families of developables of the congruence of normals, will 
envelop a developable that is one of the sheets of the development of the surface. 

 

U 

(K) 
N 

P 

γ 

M 

 
 Consider the second line of curvature that passes through a point M of the surface.  Its 
tangent MU is perpendicular to the tangent MT to the first line of curvature and the 
normal MN to the surface.  Those two lines are in the plane (P), so MU will be 
perpendicular to the plane (P).  The lines of curvature of the second family are 
orthogonal trajectories to the planes (P). 
 Consider one of those orthogonal trajectories (K).  The planes (P) are normal to the 
curve (K).  One of the sheets of the developments, namely, the one that is a developable, 
will then be the envelope of the normal planes or the polar surface to the curve (K).  All of 
the non-planar lines of curvature (K) will then have the same polar surface, which is the 
envelope of the planes of the planar lines of curvature.  The edge of regression of that 
surface will then be the locus of the centers of the osculating spheres to the various 
curves (K) [Chap. I, § 12].  The curve (K) is a line of curvature, so the normals to the 
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surface at all points of (K) will define a developable, and in turn, envelop a development 
of the curve (K), which is a geodesic of its polar surface.  Therefore, if one starts from the 
planes (P), in order to get the curves (K), one will be reduced to the search for geodesics 
of a developable surface, which will reduce to quadratures, and since the desired surface 
can be considered to be generated by the curves (K), one will see that one will obtain that 
surface by quadratures. 
 Start with the planes (P) and look for their orthogonal trajectories directly.  Consider 
the edge of regression (A) of the envelope of the planes (P) and introduce the Serret 
trihedron at each point ω of that curve, namely, (ω, ξηζ).  The plane (P) will be the 
osculating plane ξωη, and we would like to look for a point M (ξ, η) in that plane whose 
locus is normal to (P).  The coordinates of M are: 
 

X = x + αξ + α′η, Y = y + βξ + β′η, Z = z + γξ + γ′η . 
 
The direction of the tangent at the locus of the point M will have the direction 
coefficients: 
 

(1)  dX = α ds + ds ds
R R T

α α αξ η
′ ′′ − + 

 
 + α dx + α′ dη,      dY = …,      dZ = …, 

 
which are expressions of the form: 
 

dX = Aα + Bα′ + Cα″, dY = Aβ + Bβ′ + Cβ″,  dZ = Aγ + Bγ′ + Cγ″. 
 
 We write down that this direction is normal to the plane ξωη – i.e., parallel to the 
binormal α″, β″, γ″.  That will give us A = B = 0, or: 
 

ds –
R

η
· ds + dξ = 0, 

R

ξ
ds + dη = 0, 

or: 

(2)     
d

ds

ξ
 = 

R

η − 1,  
d

ds

η
 = − 

R

ξ
. 

 
ξ, η are then given by two first-order differential equations.  It then results that one and 
only one orthogonal trajectory will pass through each point of the plane (P).  A point-to-
point correspondence will then exist between the various planes (P) such that the 
corresponding points are along the same orthogonal trajectory.  Consider two points M, N 
in a plane (P), and let (D) be the line MN.  When the plane (P) varies, the line (D) will 
generate a ruled surface on which the loci of the points M and N will be orthogonal 
trajectories of the generators.  Now, the orthogonal trajectories will intersect equal 
segments on the generators of the segments.  It will then result that if one considers two 
positions (P), (P′ ) and the corresponding positions MN, M′ N′ then MN = M′ N′.  The 
correspondence between any two of the planes (P) that are determined by the orthogonal 
trajectories of that family of planes will transform any curve of one of the planes into an 
equal curve.  In particular, the planes (P) contain planar lines of curvature, so all of the 
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planar lines of curvature of the surface (S) will be equal.  It will then be generated by the 
motion of a planar curve of invariable form.  In order to arrive at its definition, it will 
suffice to know the motion of its plane (P). 
 In order to do that, recall equations (2): 
 

(2)     
d

ds R

ξ η− + 1 = 0, 
d

ds R

η ξ+ = 0 

 
and integrate them.  First, consider the equations without a right-hand side: 
 

 
d

R
ds

ξ − η = 0,  
d

R
ds

η + ξ = 0. 

 
 Introduce the arc length σ of the spherical indicatrix of (A) and set: 
 

(3)      dσ = 
ds

R
. 

The equations will then become: 
 

d

d

ξ
σ

− η = 0,  
d

d

η
σ

+ ξ = 0, 

 
which is a system of linear equations with no right-hand side and constant coefficients, 
and whose general integral is: 
 
(4)  ξ = A cos σ + B sin σ,  η = − A sin σ + B cos σ. 
 
 We then pass on to the system with a right-hand side: 
 

(5)     
d

d

ξ
σ

= η − R,  
d

d

η
σ

= − ξ. 

 
 Consider A, B to be functions of ϕ, according to the method of the variation of 
constants, and seek to satisfy the system (5).  It will become: 
 

d

d

ξ
σ

= η + dA

dσ
cos σ +

dB

dσ
sin σ = η – R, 

d

d

η
σ

= − ξ − dA

dσ
sin σ +

dB

dσ
cos σ = −η; 

 
i.e.: 

dA

dσ
cos σ +

dB

dσ
sin σ = – R,  ξ − dA

dσ
sin σ +

dB

dσ
cos σ = 0. 

Hence: 

 
dA

dσ
= − R cos σ ,  dB

dσ
= − R sin σ , 
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or upon reintroducing s from formula (3): 
 

 
dA

ds
= − cos σ ,   dB

ds
= − sin σ , 

and 
  A = − ∫ cos σ · ds, B = − ∫ sin σ · ds. 
 Set: 
(6)    x0 = ∫ cos σ · ds, y0 = ∫ sin σ · ds, 
so 

A = − x0 , B = − y0 . 
 
 We then have a particular integral: 
 

ξ = − x0 cos σ – y0 sin σ, ξ = x0 sin σ – y0 cos σ, 
 
and if x1 , y1 denote two arbitrary constants then the general integral will be: 
 
(7)  ξ = (x1 – x0) cos σ + (y1 – y0) sin σ, η = − (x1 – x0) sin σ + (y1 – y0) cos σ. 
 
 These are the formulas that define the orthogonal trajectories of the planes (P).  They 
suppose that one has performed the three quadratures (3) and (6). 

 

x2 

(R) 

O1 

y2 
η 

ξ 

ω (x0, y0) 

(x1, y1) M 

 
 Let us interpret these results geometrically: 
 When the preceding formulas are solved for x1 , y1, they will have: 
 
(8)   x1 = x0 + ξ cos σ – η sin σ, y1 = y0 + ξ sin σ + η cos σ. 
 
Take two fixed axes O1 x1 , O1 y1 in the plane (P) and construct the curve (R) that is the 
locus of the point (x0 , y0) with respect to those axes.  The curve (R) is the curve of the 
plane (P) that has the same radius of curvature as the edge of regression (A).  For each 
value of s, the point (x0 , y0) will occupy a position ω on the curve (R), and σ will be the 
angle between the tangent to (R) at ω with O1 x1 .  Consider a system of axes ωξη, where 
the axis ωξ is the tangent to (R) that corresponds to the sense in which ω is displaced.  σ 
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is the angle between ωξ and O1 x1 .  ξ, η, which are functions of s, are the coordinates of 
a point M that is fixed with respect to the system x1 O1 y1, when taken with respect to the 
axes ξωη, and x1, y1 are the coordinates of that same point with respect to the axes x1 O1 
y1 .  In order to get the orthogonal trajectory, it is sufficient to carry the plane (P) in space 
on the osculating plane to the curve (A), while the lines in the plane, which are called ωξ 
and ωη, coincide with the tangent ωξ and the principal ωη normal to (A), respectively.  
During that motion, the curves (R) and (A) will coincide at all of their points in 
succession.  The radii of curvature are the same in magnitude and sign, so the centers of 
curvature will coincide.  If s varies then the curve (R) will roll on the curve (A), and any 
point M that is invariably coupled with the curve (R) will describe the orthogonal 
trajectory.  The motion of the plane P will then be obtained by making the planar curve 
(R) roll on the curve (A) in such a fashion that the plane P will coincide with the 
osculating plane to the curve (A) at each instant.  One can say that the plane P rolls on 
the developable that it envelops, as we shall explain. 

 

(A) 
(Γ) 

N 
u 

ω (s) 

 

(R) 
(Γ1) 

N1 
u 

ω (s) 

 
 Consider the edge of regression (A) and a tangent ωξ.  In order to develop that curve 
onto a plane, one must [Chap. V, § 4] construct the planar curve whose radius of 
curvature at each point has the same expression as a function of arc length as that of the 
curve (A); it is precisely the curve (R).  The position of a point N on the developable is 
defined by the arc s, which fixes the position of the point ω on (A), and by the segment 
ωN = n.  The point N1 that corresponds to N in the development is determined by the 
same values of s, u.  The generators of the developable are developed along the tangents 
to the curve (R).  Consider a curve (Γ) on the developable and the corresponding curve 
(Γ1) in the plane.  The homologous arcs on those two curves are equal, in such a way that 
any curve that is traced on the plane will roll on the corresponding curve of the 
developable.  One can imagine that one has rolled a deformable planar leaf onto the 
developable.  The motion of the plane (P) will then consist of unrolling that leaf in such a 
fashion that it remains constantly tensed.  An arbitrary point of the leaf will describe an 
orthogonal trajectory of the tangent planes to the developable.  In some way, we will then 
obtain the involute surface of a developable by the generalization of the process that 
gives the involute of a planar curve. 
 Finally, we shall examine the motion of the plane (P) from the kinematic viewpoint.  
From (1) and (2), we have: 
 

dX

ds
= − 

T

α ′′ η,  
dY

ds
= − 

T

β ′′ η,  
dZ

ds
= − 

T

γ ′′ η, 

 
and in turn, the projections of the velocity of the point M onto the axes ξηζ, which are 
invariably coupled with the plane (P), are: 
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Vξ = 
dX

ds
α∑ = 0, Vη = 

dY

ds
α ′∑ = 0, Vζ = 

dZ

ds
α ′′∑ = − 1

T
η . 

 
 The instantaneous motion of the plane (P) is a rotation around ωξ, which is tangent to 
(A), such that the instantaneous rotation is – 1 / T.  The osculating plane (P) rolls on the 
curve (A) while turning around the tangent with an angular velocity that is equal to – 1 / 
T. 
 The surface (S) that is generated by the preceding motion is a milling surface or 
Monge surface. 
 Consider a curve (C) in the plane (P) that is invariably coupled with the system of 
axes ωξη and its development (K).  During the motion of the plane (P), the curve (C) will 
generate a milling surface (S) with the developable on which the plane (P) rolls for one of 
the sheets of its development, and since the normals to (C), which are normal to (S), are 
tangent to (K), the second sheet of the development of (S) will be generated by the 
development (K) of the profile (C).  It will also be a milling surface then.  Hence, one of 
the sheets of the development of a milling surface will be a developable, while the other 
one will be a milling surface. 
 

Special cases 
 

 Let us examine the special case in which the developable that is the envelope of the 
planes (P) is a cylinder or a cone. 
 
 1. If the planes (P) envelop a cylinder then the tangents to the orthogonal trajectory 
will be parallel to the planes of the cross-section, so the orthogonal trajectories will be the 
involutes of the cross-sections; they will be planar lines.  The two systems of lines of 
curvature of the surface will then be planar curves.  The plane (P) rolls on the cylinder in 
such a fashion that its intersection with the plane of a cross-section will roll on that 
cross-section.  One can further generate the surface by considering a family of parallel 
curves (that are the involutes of the cross-section of the cylinder here) in a plane and 
displacing each of those curves with a motion that is a translation perpendicular to the 
plane. 
 
 2. Suppose that the plane (P) envelopes a cone with summit A, and consider an 
orthogonal trajectory that meets the plane (P) at M.  The tangent at M is perpendicular to 
AM, whose orthogonal trajectory is a curve that is traced on the sphere with center A.  
Then cut the cone with a sphere of center A and radius E, let (C) be the intersection, and 
consider the circle (S) in the plane P with its center at A and a radius of R.  The plane P 
rolls on the cone in such a fashion that the circle (S) rolls on the curve (C). 
 
 Other hypotheses. – Let us now seek to determine whether the two sheets of the 
development of a surface can be developables.  The surface will then be a milling surface 
in two ways; the two systems of lines of curvature are planar curves.  The orthogonal 
trajectories of the planes (P), which envelop one of the sheets of the development, must 
be planar, since they constitute one of the systems of lines of curvature.  Let (P1) be the 
plane of one of them.  The planes (P) are all normal to a curve that is situated in (P1); 
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they will then all be perpendicular to (P1).  Hence, if the planes (P) are not parallel then 
the planes (P1) will all be parallel; the planes (P) will envelope a cylinder, and the planes 
(P1) will be perpendicular to the generators of that cylinder, as well as the normals to the 
surface.  The profile that is situated in a plane (P) and generates the milling surface will 
be a parallel to the generators of the cylinder.  The surfaces thus-obtained will be 
cylinders then; the second sheet of the development will be a line that is pushed out to 
infinity. 
 If the planes (P) are parallel then one will arrive at the same conclusion, because the 
planes (P1) envelope a cylinder. 
 The case that was assumed will then be impossible. 
 Suppose that one of the sheets of the development is a developable, while the other 
one is a curve.  The surface is a milling surface that one obtains by the motion of a profile 
that is situated in the plane (P) that envelops the developable.  The second sheet of the 
development will be generated by the development of the profile under this motion.  In 
order for that to be a curve, it is necessary that the development of the profile must be a 
point, and therefore that the profile must be a circle.  Imagine the sphere that has that 
profile for its great circle then; it is inscribed on the surface.  The surface is an envelope 
of spheres of constant radius.  It is a canal surface with constant circular section. 
 Conversely, any envelope of a family of equal spheres satisfies the preceding 
condition.  Let a sphere have its center at a, b, c and a constant radius of r: 
 

∑ (x – a)2 – r2 = 0. 
The characteristic has: 

∑ (x – a) da = 0 
 
for the second equation.  It is then a great circle of the sphere.  The normals to the 
enveloping surface are in the plane of the circle.  One of the sheets of the development 
will be the envelope of the planes of that circle.  If we consider the locus of the centers of 
the sphere then the plane of its great circle will be constantly be normal.  The surface is 
generated by a circle of constant radius whose center describes a curve, and whose plane 
remains constantly normal to that curve. 
 Finally, as a singular case, we again have the one in which one of the sheets of the 
development is a line.  The surface will then be one of revolution around that line. 
 

_________ 
 


