
CHAPTER VIII 
 

CONGRUENCES OF LINES AND  
CORRESPONDENCES BETWEEN TWO SURFACES 

 
New representation of congruences 

 
 
 1. – In the foregoing, we defined a congruence by giving its support and the direction 
of the line or lines (D) that pass through each point of the support.  More generally (and 
this would be preferable from the projective standpoint), one can consider two support 
surfaces that correspond point-by-point, while the lines of the congruence are the ones 
that join the homologous points of two surfaces.  In reality, the contact elements of the 
two surfaces correspond to each other, and at the same time that one considers the 
congruence of lines that join the homologous points, one can consider the congruence of 
intersections of the homologous tangents planes. 
 It is natural then to employ homogeneous coordinates.  Let M (x, y, z, t) and M1 (x1, 
y1, z1, t1) be the homologous points on the two surfaces; the congruence will defined by 
the equations: 

X = x + ρ x1, Y = y + ρ y1, Z = z + ρ z1, T = t + ρ t1 . 
 
Similarly, let u, v, w, r be the tangential coordinates of a tangent plane to the first surface, 
and let u1, v1, w1, r1 be those of the homologous tangent plane to the second surface.  The 
congruence will be defined from the tangential viewpoint by the equations: 
 

U = u + ρ u1,      V = v + ρ v1,      W = w + ρ w1,      R = r + ρ r1 . 
 
 Let (S), (S1) be the two support surfaces.  Since the conjugate systems on those 
surfaces are invariant under any projective transformation, from their very definition, we 
will be led to study the relations that exist between them.  Let: 
 
(S)  x  = f  (λ, µ), y  = g  (λ, µ), z  = h  (λ, µ), t  = k  (λ, µ), 
(S1) x1 = f1 (λ, µ), y1 = g1 (λ, µ), z1 = h1 (λ, µ), t1 = k1 (λ, µ) 
 
be the coordinates of the current and homologous points of the two surfaces, respectively. 
 The choice of parameters λ, µ is fixed by the following theorem: 
 
 When two surfaces (S), (S1) correspond point-by-point, there will exist a conjugate 
net on (S) that corresponds to a conjugate net on (S1), and in general, there will exist 
only one of them. 
 
 Indeed, let δλ, δµ, and δ′λ, δ′µ be the infinitesimal variations of the parameters that 
correspond to the directions of the two curves of a conjugate net that cross at a point (λ, 
µ) of (S).  Those directions are harmonic conjugates with respect to the asymptotic 
directions that are defined by the variations dλ, dµ that satisfy the equation: 
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(1)     E′ dλ2 + 2F′ dλ · dµ + G′ dµ2 = 0. 
 
 Therefore, upon interpreting the variations dλ, dµ ; δλ, δµ ; δ′λ, δ′µ as the 
homogeneous coordinates of the various points of a line, the condition that expresses the 
idea that the directions that are defined on (S) by δλ, δµ ; δ′λ, δ′µ are conjugate will be 
interpreted thus: The two points (δλ, δµ), (δ′λ, δ′µ) are harmonic conjugates with respect 
to the pair of points that is defined by equation (1). 
 Similarly, two conjugate directions on (S1) are harmonic conjugates with respect to 
the directions: 
(2)     2 2

1 1 12E d F d d G dλ λ µ µ′ ′ ′+ ⋅ +  = 0, 

 
and in order for δλ, δµ ; δ′λ, δ′µ to define two such directions, from the preceding 
interpretation, it is necessary and sufficient that the two points (δλ, δµ), (δ′λ, δ′µ) must 
be harmonic conjugates with respect to the pair of points that are defined by equation (2). 
 Looking for a common conjugate system then amounts to looking for a pair of points 
that are harmonic conjugate with respect to the two pairs that are given by two quadratic 
equations (1) and (2).  If the two quadratic forms have no common factor then there will 
be one and only one pair that answers the question, which will be the pair of double 
points of the involution that is defined by the two pairs (1) and (2).  Now, the preceding 
two equations define asymptotic lines on the two surfaces.  Therefore, if two surfaces 
correspond point-by-point in such a fashion that one does not have a family of 
asymptotes on (S) that corresponds to a family of asymptotes on (S1) then there will exist 
one and only one conjugate system on (S) that corresponds to a conjugate system (S1), 
and it will be defined by the equation: 
 

1 1 1 1

E d F d F d G d

E d F d F d G d

λ µ λ µ
λ µ λ µ

′ ′ ′ ′+ +
′ ′ ′ ′+ +

 = 0. 

 
Its existence will be impossible if the forms (1) and (2) have one common factor, and it 
will be indeterminate if two factors are common; i.e., if the asymptotic lines correspond 
on the two surfaces.  Discarding that exceptional case, we suppose that the parameters λ, 
µ correspond to the common conjugate system. 
 
 

Use of homogeneous coordinates 
 

 2. – We shall recall the usual formulas and see what they will become in 
homogeneous coordinates. 
 A curve is defined by four equations in homogeneous coordinates: 
 

x = f (λ), y = g (λ), z = h (λ), t = k (λ). 
 
The tangent to the point M (x, y, z, t) joins the point M to the point M′ whose coordinates 
are dx, dy, dz, dt, because the point at infinity whose homogeneous coordinates are: 
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is indeed on the line thus-defined.  The osculating plane passes through the line MM′ and 
the point M″ with coordinates: d 2x, d 2y, d 2z, d 2t, because the point at infinity whose 
homogeneous coordinates are: 
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is indeed in the plane thus-defined. 
 Correlatively, it results from the classical theory of envelopes that the developable 
that is enveloped by the plane (P) with coordinates: 
 
 u = f (λ), v = g (λ), w = h (λ), r = k (λ) 
 
will have the intersection of the plane (P) and the plane (P′ ) with coordinates du, dv, dw, 
dr for its generator.  The contact point with the edge of regression will be in the plane 
(P″) with coordinates d 2u, d 2v, d 2w, d 2r. 
 An arbitrary surface will be defined point-wise by the equations: 
 
(1)   x = f (λ, µ), y = g (λ, µ), z = h (λ, µ), t = k (λ,  µ), 
 
and from the tangential viewpoint by the equations: 
 
(2)   u = F (λ, µ), v = G (λ, µ), w = H (λ, µ), r = K (λ,  µ). 
 
We seek to define the tangent plane by starting with the point-wise equations (1).  That 
plane contains the point, so: 

∑ u x = 0. 
 
It contains the tangents to the curves λ = const., µ = const., and thus, the points 

, , ,
x y z t

µ µ µ µ
 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 

 and , , ,
x y z t

λ λ λ λ
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ 
; hence, one has the conditions: 

 
x

u
λ

∂
∂∑ = 0, 

x
u

µ
∂
∂∑ = 0. 

 
We then have three equations that define quantities that are proportional to u, v, w, r.  The 
point-wise equation for the tangent plane at the point (x, y, z, t) will then be: 
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X Y Z T

x y z t

x y z t

x y z t
λ λ λ λ

µ µ µ µ

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= 0. 

 
 Correlatively, one will define a point of the surface upon starting from the tangential 
equations (2) by means of the conditions: 
 

u x∑ = 0, 
u

x
λ

∂
∂∑ = 0, 

u
x

µ
∂
∂∑ = 0. 

 
 By definition, one defines one of the elements – viz., point or tangent plane – as a 
function of the other one by means of the formulas: 
 
(3)  ∑ u x = 0, ∑ u dx = 0, ∑ x du = 0. 
 
 We now propose to express the idea that the two directions MT (dλ, dµ) and MS (δλ, 
δµ) are conjugate.  Those directions will be conjugates if the line MS is the characteristic 
of the tangent plane as the contact point of the tangent plane displaces.  Now, that 
characteristic is defined by the equations: 
 
 ∑ u X = 0, ∑ X du = 0, 
 
while the line MS is defined by the point (x, y, z, t) and the point (δx, δy, δz, δt).  In order 
to express the idea that MS is the characteristic, one must express the idea that those two 
points are on the characteristic, which will give: 
 
 ∑ u x = 0, ∑ x du = 0, 
 ∑ u · δx = 0, ∑ du · δx = 0. 
 
 From formulas (3), the first three equations are verified for any tangent direction (δλ, 
δµ) and for any characteristic direction (dλ, dµ); we will then get the single condition: 
 
(4)      ∑ du · δx = 0 
 
or the equivalent symmetric condition: 
 
(4′)      ∑ δu · dx = 0, 
 
which one will obtain by an analogous calculation upon changing the role of the two 
directions.  In particular, we will find the condition for a direction to be conjugate to 
itself; i.e., for it to be an asymptotic direction: 
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(5)      ∑ du · dx = 0. 
 
 Having said that, we express the idea that the curves λ = const, µ = const. define a 
conjugate net.  Here, the equivalent conditions (4), (4′) will give: 
 

(6)      
u x

λ µ
∂ ∂⋅
∂ ∂∑ = 0, 

 

(6′)      
u x

µ λ
∂ ∂⋅
∂ ∂∑ = 0. 

 
 Those conditions can be transformed.  When the identity equation: 
 

x
u

µ
∂
∂∑  = 0 

 
is differentiated with respect to λ, it will give, in fact: 
 

2u x x
u

λ µ λ µ
∂ ∂ ∂⋅ +
∂ ∂ ∂ ∂∑ ∑ = 0, 

and (6) will be written: 

(7)      
2x

u
λ µ
∂

∂ ∂∑ = 0. 

Upon starting with one of the relations: 
 

u
x

λ
∂
∂

 = 0, 
u

x
µ

∂
∂∑  = 0, 

 
one will likewise get the necessary and sufficient conditional relation that: 
 

(7′)      
2u

x
λ µ
∂

∂ ∂∑ = 0. 

 
 Equations (7), (7′) depend upon point-like and tangential elements simultaneously.  
Upon expressing u, v, w, r as functions of x, y, z, t, and their derivatives, one will obtain 
the condition in point-like coordinates: 

(8)      
2x x x

x
λ µ λ µ

∂ ∂ ∂
∂ ∂ ∂ ∂

= 0. 

 
In the relation (8), the left-hand side represents an abbreviation for the determinant whose 
first row is the row that is written between the two vertical lines, and whose other three 
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rows are deduced from it by replacing x with y, z, t, respectively.  That notation will be 
currently employed in what follows. 
 When t = const., the condition (5) will reduce to the known condition: 
 

2x x x

λ µ λ µ
∂ ∂ ∂
∂ ∂ ∂ ∂

 = F′ = 0. 

 
 The condition (8) can be interpreted thus: There exists the same homogeneous, linear 
relationship between the corresponding elements of the rows, so there will exist functions 
L, M, N of λ and µ, such that one will have identically: 
 

 
2x

λ µ
∂

∂ ∂
= 

x x
L M

λ µ
∂ ∂+
∂ ∂

 + Nx, 

 
2 y

λ µ
∂

∂ ∂
= …, 

 
2z

λ µ
∂

∂ ∂
= …, 

 
2t

λ µ
∂

∂ ∂
 = …; 

 
i.e.: the four homogeneous coordinates x, y, z, t satisfy the same linear partial differential 
equation of the form: 

2ϕ
λ µ
∂

∂ ∂
 = L M

ϕ ϕ
λ µ

∂ ∂+
∂ ∂

 + Nϕ . 

 
 Upon operating from the tangential viewpoint, one will likewise see that the condition 
(7′), which can be written: 

2u u u
u

λ µ λ µ
∂ ∂ ∂
∂ ∂ ∂ ∂

= 0, 

 
with a notation that is analogous to the one that was just introduced, expresses the idea 
that u, v, w, r are integrals of the same partial differential equation of the form: 
 

2

λ µ
∂ Φ

∂ ∂
 = P Q

λ µ
∂Φ ∂Φ+
∂ ∂

 + Rϕ . 

 
One can effortlessly show that if x, y, z, t or u, v, w, r satisfy an equation of the preceding 
form then they will satisfy only one such equation. 
 
 Remark. – In Cartesian coordinates, one must suppose that t = k (λ, µ) ≡ 1, and the 
preceding result will apply to point-like coordinates x, y, z upon setting N = 0. 
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 Now consider a ruled surface.  The equations of a generator that joins the point M (x, 
y, z, t) to the point M1 (x1, y1, z1, t1) are: 
 

X = x + ρ x1, Y = y + ρ y1, Z = z + ρ z1, T = t + ρ t1. 
 
Suppose that the surface is developable.  The tangent planes to the points (x, y, z, t) and 
(x1, y1, z1, t1) are the same.  Now, the tangent plane at M that passes through the generator 
and the tangent to the curve ρ = 0 will contain the point (dx, dy, dz, dt).  Similarly, the 
tangent plane at M1 will contain the point (dx1, dy1, dz1, dt1).  The condition for the planes 
to coincide will then be: 

| x  x1  dx  dx1 | = 0. 
 
 If we define the surface in tangential coordinates then we will likewise arrive at the 
condition: 

| u  u1  du  du1 | = 0. 
 

 Finally, we pass on to the congruences: A congruence will once more be represented 
by the equations: 
 

X = x + ρ x1 , Y = y + ρ y1 , Z = z + ρ z1 , T = t + ρ t1 . 
 
However, x, y, z, t and x1, y1, z1, t1, are functions of two arbitrary parameters (λ, µ) here.  
Let us look for its focal elements.  Let F be one focus of a line (D) with parameters (λ, µ).  
Let ρ be the value that will give the coordinates of that point when it is substituted in the 
preceding equations.  All of the ruled surfaces of the congruence that contain the line (D) 
will have the same tangent plane at the point F.  In particular, consider the surfaces λ = 
const., µ = const.  The tangent planes to the surfaces contain the points (x, y, z, t), (x1, y1, 

z1, t1), 1 ,
xx ρ

µ µ
 ∂∂ + ∂ ∂ 

⋯  and (x, y, z, t), (x1, y1, z1, t1), 1 ,
xx ρ

λ λ
∂∂ + ∂ ∂ 
⋯ , respectively.  The 

condition for those planes to coincide – i.e., the equation of the focal points – will then 
be: 

1 1
1

x xx x
x x ρ ρ

λ λ µ µ
∂ ∂∂ ∂+ +

∂ ∂ ∂ ∂
 = 0. 

 
 One will likewise find the equation of the focal planes: 
 

1 1
1

u uu u
u u ρ ρ

λ λ µ µ
∂ ∂∂ ∂+ +

∂ ∂ ∂ ∂
 = 0. 

 
 In the foregoing, we have supposed that the homogeneous coordinates are defined by 
the condition that the ratios x/t, y/t, z/t must be the corresponding Cartesian coordinates.  
One effortlessly verifies that the results obtained will apply to the more general 
coordinates that one deduces from them by an arbitrary homogeneous, linear 
transformation. 
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Special correspondences 
 

 3. – We shall study the correspondence between two points M, M1 of two surfaces, 
such that the developables of the congruence of lines MM1 cut the two surfaces along the 
two conjugate nets that they correspond to.  For example, there are the ones that relate to 
the conjugate nets that are formed by their lines of curvature, so the correspondence is 
determined on two parallel surfaces by the congruence of their common normals.  We 
suppose that the parameters λ, µ that fix the position of a point on each of the surfaces are 
precisely the ones that will make the homologous conjugate curves be λ = const. and µ = 
const. The curves λ = const. and µ = const. are conjugate on the first surface (S).  
Therefore, x, y, z, t satisfy [§ 2] the same partial differential equation: 
 

(1)     
2ϕ

λ µ
∂

∂ ∂
= P Q R

ϕ ϕ ϕ
λ µ

∂ ∂+ +
∂ ∂

. 

 
Similarly, the curves λ = const. and µ = const. are conjugate on the second surface (S1), 
x1, y1, z1, t1 satisfy the same partial differential equation: 
 

(2)     
2ϕ

λ µ
∂

∂ ∂
= 1 1 1P Q R

ϕ ϕ ϕ
λ µ

∂ ∂+ +
∂ ∂

. 

 
 Now, express the idea that the developables of the congruence correspond to λ = 
const. and µ = const.  If we represent the congruence by the equations: 
 

X = x + ρ x1 , Y = y + ρ y1 , Z = z + ρ z1 , T = t + ρ t1 
 
then the developables will be given [§ 2] by the equation: 
 
  | x x1 dx dx1 | = 0. 
Now: 

 dx = 
x x

d dλ µ
λ µ

∂ ∂+
∂ ∂

, dy = …, dz = …, dt = …, 

 

 dx1 = 1 1x x
d dλ µ

λ µ
∂ ∂+
∂ ∂

, dy1 = …, dz1 = …, dt1 = …, 

 
and the preceding equation must be verified for dλ = 0, dµ = 0, so we get the conditions: 
 

(3) 1
1

xx
x x

λ λ
∂∂

∂ ∂
 = 0, 

 

(4) 1
1

xx
x x

µ µ
∂∂

∂ ∂
 = 0. 
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 They express the idea that there exists the same linear, homogeneous relation between 
the line elements, so there exist factors A, B, A1, B1 ; C, D, C1, D1 such that one has the 
identities: 

(5)    Ax + 
x

B
λ

∂
∂

 = A1 x1 + 1
1

x
B

λ
∂
∂

, and analogous ones, 

 

(6)    Cx + 
x

D
µ

∂
∂

 = C1 x1 + 1
1

x
C

µ
∂
∂

, and analogous ones. 

 
 First case. – Let us first see what happens if one of the four coefficients B, B1, D, D1 
is zero.  For example, let B1 = 0.  Equations (5) then express the idea that the point M1 (x1, 

y1, z1, t1) is on the line that joins the points M (x, y, z, t) and , , ,
x y z t

M
λ λ λ λ

∂ ∂ ∂ ∂ ′ ∂ ∂ ∂ ∂ 
.  The 

line MM1 is tangent to the curve µ = const. that is traced on the surface (S).  All of the 
lines MM1 are then tangent to the surface (S), which is one of the sheets of the focal 
surface of the congruence.  The curves µ = const. on that focal surface (S) are the edges 
of regression of one of the families of developables of the congruence, and in turn, the 
curves λ = const., which are conjugate to the preceding ones, are the contact curves of the 
developables of the second family.  We seek how one must define (S1) in order for that 
surface to be cut along a conjugate net by the developables of the congruence.  In the case 
in question, if one supposes that A1 = 0 (as is legitimate) then equations (5) can be 
written: 
 

x1 = Ax +
x

B
λ

∂
∂

, y1 = Ay +
y

B
λ

∂
∂

, z1 = Az +
z

B
λ

∂
∂

, t1 = At +
t

B
λ

∂
∂

. 

 
 Since homogeneous coordinates can be replaced with proportional quantities: 
 

x = θX,      y = θY,      z = θZ,      t = θT, 
 
if θ is a function of λ, µ then the preceding formulas will become: 
 

x1 = AθX + B 
X

X
θθ

λ λ
∂ ∂ + ∂ ∂ 

, y1 = …, z1 = …, t1 = … 

 
 Determine the function θ by the condition: 
 

Aθ + B
θ
λ

∂
∂

= 0, 

which is always possible.  Hence: 
 

x1 = 
X

Bθ
λ

∂
∂

, y1 = 
Y

Bθ
λ

∂
∂

, z1 = 
Z

Bθ
λ

∂
∂

, t1 = 
T

Bθ
λ

∂
∂

, 
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and since the homogeneous coordinates are defined only up to a factor, if we substitute x, 
y, z, t for X, Y, Z, T then we can write: 
 

(7)   x1 = 
x

λ
∂
∂

, y1 = 
y

λ
∂
∂

, z1 = 
z

λ
∂
∂

, t1 = 
t

λ
∂
∂

. 

 
 From these relations, the differential equation (1), which is verified for ϕ = x, y, z, t, 
will then give: 

(8)    1x

µ
∂
∂

= P x1 +
x

Q
µ

∂
∂

+ Rx, and analogous ones, 

 
which are conditions of the form (6).  Equations (3) and (4) will then be verified. 
 Differentiating the relation (8) with respect to λ will give: 
 

2
1x

λ µ
∂

∂ ∂
= 

2
1

1

xP Q x x R x
x P Q x R

λ λ λ µ λ µ λ λ
∂∂ ∂ ∂ ∂ ∂ ∂+ + ⋅ + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
. 

 
However, x1 satisfies equation (2); i.e., one will have: 
 

2
1x

λ µ
∂

∂ ∂
= 1 1

1 1 1 1

x x
P Q R x

λ µ
∂ ∂+ +
∂ ∂

, 

 
and upon also taking (7) into account, the preceding identity will become: 
 

(9)   1 1
1 1 1 1

x x
P Q R x

λ µ
∂ ∂+ +
∂ ∂

= 1 1 1
1 1 1

P x x Q x R
x P Q R x x

λ λ µ λ µ λ
∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

. 

 
 Equations (8), (9) are two equations in x and ∂x / ∂µ.  If one can solve them then one 
can infer x, in particular, as a linear function of x1, ∂x1 / ∂λ, and ∂x1 / ∂µ.  Hence, the 
point M(x, y, z, t) will be found in the plane of the three points (x1, y1, z1, t1), 

1 ,
x

λ
∂ 
 ∂ 

⋯ , 1 ,
x

µ
 ∂
 ∂ 

⋯ ; i.e., in the tangent plane to the surface (S1) at M1 .  The line MM1 

will also be tangent to (S1) then, and (S1) will be the second sheet of the focal surface.  
Therefore, we have established the point-by-point correspondence between the two sheets 
of the focal surface in this case by means of rays of the congruence. 
 We discard this case, which was studied in Chapter VI.  One must then suppose that 
the equations (8), (9) can be solved for x and ∂x / ∂µ, which demands that: 
 

Q R

Q R

λ λ
∂ ∂
∂ ∂

 = 0; 

 
i.e., one will have an identity of the form: 
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R = Q · Ψ (µ). 
 

 Recall the relation (8) then and multiply the coordinates x, y¸ z, t; x1, y1, z1, t1 by a 
factor ω, which is a function of µ, in such a fashion that the relation (8) will simplify, 
which will be written: 

1x

µ
∂
∂

= P x1 + Q ( )
x

x µ
µ

 ∂ + Ψ ∂ 
. 

 
 We choose the factor ω in such a manner that the expression in brackets reduces to ω 
∂x / ∂µ .  Since the factor ω does not depend upon λ, equations (7) will persist, and we 
will get relations of the form: 
 

1x

µ
∂
∂

= P′ x1 + Q′ x

µ
∂
∂

,  1y

µ
∂
∂

= …,  1z

µ
∂
∂

= …, 1t

µ
∂
∂

= … 

 
 That amounts to supposing that R = 0 in equations (1), which will finally give: 
 

(10)  
2x

λ µ
∂

∂ ∂
= 

x x
P Q

λ µ
∂ ∂+
∂ ∂

, 
2 y

λ µ
∂

∂ ∂
= …, 

2z

λ µ
∂

∂ ∂
= …, 

2t

λ µ
∂

∂ ∂
= … 

 
Conversely, it is easy to see that if x, y, z, t satisfy (10) then if equations (7) were verified, 
the conditions (1), (2), (3), (4) would be satisfied.  (3) and (1) are, to begin with.  
Equations (10) can be written: 

1x

µ
∂
∂

= P x1 + Q
x

µ
∂
∂

, …, …, …, 

 
in such a way that the condition (4) will also be verified.  One finally infers from this, 
upon differentiation, that: 
 

2
1x

λ µ
∂

∂ ∂
= 1 1 1

1 1

1x x xP Q
x P Q Px

Qλ λ µ µ λ
 ∂ ∂ ∂∂ ∂+ + + − ∂ ∂ ∂ ∂ ∂ 

, and the analogous ones, 

 
which indeed gives equations of the form (2). 
 
 Second case. – We now suppose that B, D, B1, D1 ≠ 0.  Recall equations (5), (6).  
Upon multiplying x, y, z, t, and x1, y1, z1, t1 by convenient factors, one can make the term 
in x and the term in x1 disappear, in such a way: 
 

(11)  1x

λ
∂
∂

= 
x

L
λ

∂
∂

, 1y

λ
∂
∂

= 
y

L
λ

∂
∂

, 1z

λ
∂
∂

= 
z

L
λ

∂
∂

, 1t

λ
∂
∂

= 
t

L
λ

∂
∂

. 

 
Equation (6) is then written: 
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(12)    1x

µ
∂
∂

= 
x

M
µ

∂
∂

+ N x + S x1 ; 

 
differentiate with respect to λ, while taking (11) into account: 
 

x
L

µ λ
∂ ∂ 
 ∂ ∂ 

= 1( ) ( )
x

M Nx Sx
λ µ λ λ
 ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ 

. 

 

(1) expresses 
2x

λ µ
∂

∂ ∂
 as a function of x, 

x

λ
∂
∂

, and 
x

µ
∂
∂

, and the preceding relation can be 

written: 

λ
∂

∂
(S x1) = F , ,

x x
x

λ µ
 ∂ ∂
 ∂ ∂ 

, 

 
in which F is a linear function, or furthermore: 
 

1

S x
x SL

λ λ
∂ ∂+
∂ ∂

 = F , ,
x x

x
λ µ

 ∂ ∂
 ∂ ∂ 

. 

 

If ∂S / ∂λ ≠ 0 then x1 will be a linear function of x,
x

λ
∂
∂

,
x

µ
∂
∂

.  The point M is in the tangent 

plane to the surface (S) at M, which will then be one of the sheets of the focal surface, 
which is a case that was examined previously.  One must then suppose that ∂S / ∂λ = 0, 
so S will be a function of only µ.  Hence, if we recall equation (12) then we can multiply 
x1, y1, z1, t1 by a function of µ such that the term in x1 will disappear, so the relations (11) 
will keep the same form, and we will convert (12) into the form: 
 

1x

µ
∂
∂

= 
x

H
µ

∂
∂

+ K x . 

 
The same argument will show that K is independent of λ, and that one can, in turn, make 
the term in x disappear.  Finally, equations (12) can be reduced to the form: 
 

(13)  1x

µ
∂
∂

= 
x

M
µ

∂
∂

, 1y

µ
∂
∂

= 
y

M
µ

∂
∂

, 1z

µ
∂
∂

= 
z

M
µ

∂
∂

, 1t

µ
∂
∂

= 
t

M
µ

∂
∂

. 

 
The relations (11) and (13) are sufficient, moreover, since one can conclude that: 
 

 
2

1x

λ µ
∂

∂ ∂
= 

x
L

µ λ
∂ ∂ 
 ∂ ∂ 

, 
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2

1x

λ µ
∂

∂ ∂
= 

x
M

λ µ
 ∂ ∂
 ∂ ∂ 

. 

Hence: 

(14) 
x

M
λ µ
 ∂ ∂
 ∂ ∂ 

 = 
x

L
µ λ
∂ ∂ 
 ∂ ∂ 

, 

 
which is an equation of the form (1) with R = 0.  One will likewise obtain: 
 

(15)    11 x

Mλ µ
 ∂∂ ⋅ ∂ ∂ 

 = 11 x

Mµ λ
∂∂  

 ∂ ∂ 
, 

 
which is an equation of the form (2) with R1 = 0. 
 
 Conclusions. – In the first case, in which the surface (S) is one of the focal surfaces of 
the congruence, which is assumed to be given, we were led to make the term in x 
disappear in the equation: 

(16)    
2x

λ µ
∂

∂ ∂
= 

x x
P Q

λ µ
∂ ∂+
∂ ∂

 + Rx, 

 
which relates to that focal surface, by means of two transformations that are equivalent to 
a unique transformation of the form: 

x = ϖ X. 
 

In order to determine the factor ϖ, one directly finds the condition: 
 

2ϖ
λ µ
∂

∂ ∂
= P Q

ϖ ϖ
λ µ

∂ ∂+
∂ ∂

+ Rϖ, 

 
in such a way that equations (7) will show that any surface (S1) that is cut along a 
conjugate net by the developables of the congruence is defined by the equations: 
 

x1 = 
x

λ ϖ
∂  
 ∂  

,      y1 = 
y

λ ϖ
∂  
 ∂  

,      y1 = 
z

λ ϖ
∂  
 ∂  

,      t1 = 
t

λ ϖ
∂  
 ∂  

, 

 
in which ϖ is an integral of equation (1). 
 We pass on to the second case, in which neither of the two surfaces is a focal surface 
of the congruence.  One is given one of them – say, the surface (S) – and the conjugate 
net along which it must be cut by the developables of the desired congruence.  One must 
once more eliminate the term in x in equation (1), which corresponds to that conjugate net 
on (S).  That will again amount to looking for an integral of that equation.  The equation 
will take the form: 
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(17)     
2x

λ µ
∂

∂ ∂
= 

x x
P Q

λ µ
∂ ∂+
∂ ∂

. 

 
In order to then determine the factors L and M in formulas (11) and (13), we identify that 
equation (17) with equation (14) that we obtained previously.  That will give the 
conditions: 

L

µ
∂
∂

= P (M – L), 
M

λ
∂
∂

= Q (L – M). 

Set: 
(18)     L – M = ψ, 
and those equations will become: 

(19)     
L

µ
∂
∂

 = − P ψ, 

 

(20)     
M

λ
∂
∂

 =   Q ψ. 

 The first one can be written: 

(19′)     
M

µ
∂
∂

= − ψ
µ

∂
∂

− P ψ, 

 
and the compatibility condition for those equations is that ψ must be an integral of the 
equation: 

(21)     
2 ( ) ( )P Qψ ψ ψ

λ µ λ µ
∂ ∂ ∂+ +

∂ ∂ ∂ ∂
 = 0, 

 
which is what one calls the adjoint of (17).  Having ψ, one can determine L and M by a 
quadrature, because one has the total differential of M – for example, from (19′) and (20), 
and equation (18) will then give L.  Some new quadratures will succeed in determining 
the surface (S1) by means of formulas (11) and (13), and similarly, the congruence. 
 
 

Properties of the foregoing correspondence 
 

 It results from the preceding analysis that equations (11) and (13), viz.: 
 

(11)    1x

λ
∂
∂

= 
x

L
λ

∂
∂

, and the analogues, 

(13)    1x

µ
∂
∂

= 
x

M
µ

∂
∂

, and the analogues 

 
completely characterize the special point-by-point correspondence that is determined on 
the two surfaces (S) and (S1) by the rays of a congruence whose developables cut each of 



198 Chapter VIII – Congruences of lines and the correspondence between two surfaces 

those two surfaces along a conjugate net.  We shall examine the geometric properties that 
result from those formulas. 
 Let: 

M (x, y, z, t), M1 (x1, y1, z1, t1) 
 

be two homologous points.  Let P be the points whose coordinates are ,
x

λ
∂ 

 ∂ 
⋯  or 

1 ,
x

λ
∂ 
 ∂ 

⋯ , and let Q be the point whose coordinates are ,
x

µ
 ∂
 ∂ 

⋯  or 1 ,
x

µ
 ∂
 ∂ 

⋯ .  The line 

PM is tangent to the curve µ = const. on the surface (S) at M, and PM1 is tangent to the 
surface µ = const. on the surface (S1) at M1.  Similarly, the line QM is tangent to the curve 
λ = const. on the surface (S) at M, and QM1 is tangent to the curve λ = const. on the 
surface (S1) at M1 .  The tangent planes to the two surfaces (S), (S1) at the points M, M1 
then cut along the line PQ. 

 

Q D P 

M (x, y, z, t) 

M1 (x1, y1, z1, t1) 

,
xδ

δλ
 
 
 

⋯  
1 ,

xδ
δµ

 
 
 

⋯  

D′ 

 
 Consider the congruence of those lines PQ.  It is defined by the equations: 
 

X = 
x xρ
λ µ

∂ ∂+
∂ ∂

, Y = 
y yρ
λ µ

∂ ∂+
∂ ∂

, Z = 
z zρ
λ µ

∂ ∂+
∂ ∂

, T = 
t tρ
λ µ

∂ ∂+
∂ ∂

. 

 
The developables of that congruence are defined by the equation: 
 

2 2 2 2

2 2

x x x x x x
d d d dλ µ λ µ

λ µ λ λ µ λ µ µ
∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= 0, 

 
but x, y, z, t will satisfy identities of the form: 
 

2x

λ µ
∂

∂ ∂
= 

x x
P Q

λ µ
∂ ∂+
∂ ∂

, …, …, … 

 
in such a way that the preceding equation can be written: 
 

∆ · dλ · dµ = 0, 
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in which ∆ is a determinant that is non-zero, since the equation is not an identity.  The 
developables of the congruence of lines PQ, which are intersections of the tangent planes 
to the surface at two homologous points, will then correspond to the developables of the 
congruence of lines MM1 that join those homologous points; i.e., to systems of 
homologous conjugates on the two surface again. 
 We now seek the focal points.  They are given by the equation: 
 

2 2 2 2

2 2

x x x x x xρ ρ
λ µ λ λ µ λ µ µ

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

= 0, 

 
which is an equation that will reduce to ρ = 0, due to the condition that precedes it; one of 
its roots will be zero, and the other one will be at infinity.  The focal points are nothing 
but the points P, Q.  They are in the focal planes of the congruence of lines MM1 .  
Indeed, those focal planes are the planes MM1P, MM1Q, because they must be tangent to 
the two developables of the congruence that pass through MM1, and by hypothesis, they 
will cut the two surfaces (S) and (S1) along the curves µ = const., λ = const., whose 
tangents are MP, M1P, and MQ, M1Q, respectively. 
 Consider the point P, and suppose that one sets λ = const.  The direction of the 
tangent to the trajectory of the point P is defined by a second point whose coordinates 
are: 

x

µ λ
∂ ∂ 
 ∂ ∂ 

 = 
x x

P Q
λ µ

∂ ∂+
∂ ∂

, and analogous ones. 

 
It is a point of PQ.  The point P then describes a tangent curve to PQ.  It is the edge of 
regression of the developable of the congruence of lines PQ that corresponds to the value 
considered λ = const.  Likewise, the point Q will describe the edge of regression of the 
developable that corresponds to that value µ = const when µ remains constant. 
 One sees that the correspondence between the two surfaces (S) and (S1), which is first 
defined from the point-wise viewpoint by the congruence (K) of the lines MM1, or (D), is 
found to be similarly defined from the tangential viewpoint by the congruence (K′ ) of the 
lines PQ, or (D′ ).  The developables (K′ ) then correspond to the two homologous 
conjugate nets considered on (S) and (S1).  When the pairs of homologous points M, M1 
are defined in that way, the congruence (K) of lines MM1 will result as a logical 
consequence, and the focal planes of the ray (D) of that congruence will pass through the 
foci P and Q of the homologous ray (D′ ) of the congruence (K′ ). 
 The properties of the correspondence that we just studied then transform into 
themselves by duality.  Upon choosing the homogeneous tangential coordinates 
conveniently, one will have, in turn, at the same time as formulas (11) and (13), the 
identities: 

 1u

λ
∂
∂

=
u

H
λ

∂
∂

, and analogous ones, 

 1u

µ
∂
∂

=
u

K
µ

∂
∂

, and analogous ones. 
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 In summary: 
 
 If the developables of one congruence (K) cut two surfaces (S), (S1) along two 
conjugate nets then the pairs of tangent planes to (S) and (S1) whose contact points are 
on the same ray (D) of (K) will cut along the rays (D′ ) of a new congruence (K′ ), such 
that the contact points of the tangent planes that are drawn at (S) and (S1) with the 
generators of the developables of that congruence (K′ ) will describe the same two 
homologous conjugate nets, and conversely.  The focal points of the rays (D′ ), (K′ ) are 
in the focal planes of the rays (D) associated with (K), and each focal point will be found 
in the focal plane that it does not correspond to. 
 
 The correspondence between the two surfaces is, in fact, a correspondence between 
contact elements whose properties will correspond by duality when one passes from the 
points of those elements to their planes, or conversely. 
  
 

Correspondence by parallel tangent planes 
 

 4. – Consider a point-to-point correspondence between two surfaces (S) and (S1).  On 
the surface (S), let (C) be one of the curves of the conjugate net that corresponds to a 
conjugate net on (S1), and let (C1) be the corresponding curve on (S1).  Suppose that the 
tangent planes to the surfaces (S), (S1) at two arbitrary homologous points are parallel; 
their characteristics will also be parallel.  Hence, the homologous conjugate directions 
will be parallel.  If one supposes that the coordinates t and t1 are equal to 1 here then that 
parallelism will translate into identities of the form: 
 

(1)   1x

λ
∂
∂

= 
x

L
λ

∂
∂

,       1y

λ
∂
∂

= 
y

L
λ

∂
∂

,       1z

λ
∂
∂

= 
z

L
λ

∂
∂

,       1t

λ
∂
∂

= 
t

L
λ

∂
∂

= 0, 

 

(2)   1x

µ
∂
∂

= 
x

M
µ

∂
∂

,      1y

µ
∂
∂

= 
y

M
µ

∂
∂

,     1z

µ
∂
∂

= 
z

M
µ

∂
∂

,      1t

µ
∂
∂

= 
t

M
µ

∂
∂

= 0. 

 
We can then apply the results that were obtained before.  The tangent planes at M, M1 are 
parallel, so the line PQ will be at infinity.  The lines of the congruence (K′ ) are the lines 
of the plane at infinity.  On each of those lines, the points P, Q will be the points where 
they are met by the homologous tangents on (S) and (S1), and the locus of points P, Q is 
tangent to each line PQ at the points P, Q. 
 
 Special case. – In particular, suppose that the surface (S) is arbitrary and the surface 
(S1) is a sphere.  The congruence of lines MM1 has developables that cut out conjugate 
nets on (S) and (S1) whose homologous tangents are parallel.  Now, a conjugate net on a 
sphere is an orthogonal net.  Hence, the conjugate net on (S) is also an orthogonal net.  It 
is the net of the lines of curvature, whose study will then be reduced to that of the 
developables of a congruence.  In particular, suppose that the surface (S) has degree two, 
and consider the congruence of lines PQ of the plane at infinity.  The plane at infinity 
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cuts (S), (S1) along two conics (Γ), (Γ1).  Consider their points of intersection with a line 
PQ.  The points of intersection with (Γ) will correspond to the directions of the 
generators of (S) that pass through M and which are the asymptotic tangents.  The points 
P, Q, which correspond to the principal directions will then be conjugate with respect to 
those points of intersection; i.e., conjugate with respect to conic (Γ).  They will likewise 
be conjugate with respect to (Γ1).  The points P, Q are the double points of the involution 
that is determined on the line PQ by the pencil of conics that has (Γ), (Γ1) for its bases.  
The line PQ is tangent at P, Q to two conics of that pencil that are tangent to them, in 
such a way that the determination of the developables of the congruence (K) – i.e., of the 
lines of the curvature of the quadric (S) – which amounts to the determination of a pencil 
of conics, can be done algebraically. 
 If one takes the parameters to be those of the rectilinear generators that pass through a 
point of (S) then one will get the integration of the Euler equation. 
 Indeed, consider the hyperboloid of one sheet: 
 

(3)      
2 2 2

2 2 2

x y z

a b c
− + = 0, 

 
which will have the parametric equations: 
 

(4)    x = a 
1 w

u v

−
−

, y = b 
1 uv

u v

+
−

, z = c 
u v

u v

+
−

, 

 
when it is referred to its rectilinear generators. 
 The normal at a point will have the direction coefficients: 
 

2

x

a
, −

2

y

b
, 

2

z

c
, 

 
so the differential equation for the lines of curvature, which expresses the idea that the 
normal will meet the infinitely-close normal, will be: 
 

2 2

2 2

2 2

x dx
dx

a a
y dy

dy
b b
z dz

dz
c c

− − = 0, 

or 
(5)   (b2 + c2) x dy dz + (a2 − c2) y dz dx − (a2 + b2) z dx dy = 0. 
 
 The differentiation of the formulas (4) gives: 
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(6)  
2 2[ (1 ) (1 ) ]

dx

a v du u dv− − + −
= 

2 2[ (1 ) (1 ) ]

dy

b v du u dv− + + +
= 

2 [ ]

dz

c v du u dv− +
 

= 2

1

( )u v−
, 

 
and after all of the reductions have been made, equation (5) will then become the Euler 
equation: 

(7)      
2

2( )

du

uΦ
= 

2

2( )

dv

vΦ
, 

upon setting: 

(8)    Φ (ω) = ω2 + 2kω + 1,  k = 
2 2 2

2 2

2b c a

a b

+ −
+

. 

 
 The points P and Q of the preceding theory are the points at infinity of the tangents to 
the lines of curvature.  Their homogeneous coordinates X, Y, Z will then be given by the 
denominators of formulas (6), in which du, dv must be replaced by the proportional 

values 2( )uΦ , 2( )v± Φ  that are inferred from equation (7). 

 From the foregoing, the developables of the congruences considered, and 
consequently, the lines of the curvature of the surface, are obtained by writing that one or 
the other of the points (X, Y, Z) thus-defined describes one of the conics of the pencil: 
 

X 2 + Y 2 + Z 2 + 
2 2 2

2 2 2

X Y Z

a b c
σ  

− + 
 

 = 0 

in the plane at infinity T = 0. 
 After suppressing the factor du dv, one will then obtains the general algebraic integral 
that was asserted: 

(9)    2 2( ) ( )u v± Φ Φ − Φ0 (u
2, v2) – m (u – v)2 = 0, 

 
in which Φ0 (ω, ω′ ) denotes the polar polynomial to the trinomial Φ(ω): 
 

Φ(ω, ω′ ) = ωω′ + k (ω + ω′ ) + 1, 
 
and in which m is an arbitrary constant that is coupled to σ by the equation: 
 

m (a2 + b2) = − 2 (σ + c2). 
 
 Clear the radical, while taking into account the identity, which is classical in the 
theory of binary quadratic forms: 
 

Φ(ω) Φ(ω′ ) – 2
0Φ (ω, ω′ ) = ∆2 (ω – ω′ )2, 
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in which ∆ is the discriminant of the form.  After dividing by (u – v)2, we will get the 
general rational integral: 
 
(9′)    (1 – k2) (u + v)2 = m2 (u – v) 2 + 2m Φ0 (u

2, v2). 
 
Now, 2Φ0 (u

2, v2) is written: 
 

2Φ0 (u
2, v2) = (1 + uv)2 + (1 – uv)2 + k (u + v)2 + k (u – v)2. 

 
 Upon taking formulas (4) into account, one will see that the lines of curvature are the 
intersections of the hyperboloid with the quadrics: 
 

2 2

2 2

x y
m m

a b
+ + (mk – 1 + k2)

2

2

z

c
+ mk + m2 = 0. 

 
Replace that equation by the homogeneous combination that is obtained by adding 
equation (3), when multiplied by (mk + m2): 
 

m (m + k + 1)
2

2

x

a
– m (m + k – 1)

2

2

y

b
+ (m + k + 1) (m + k – 1) 

2

2

z

c
= 0. 

 
That can also be written: 

2 2 2

2 2 2( 1) ( 1)

x y z

a m k b m k c m
− +

+ − + +
= 0, 

 
or, due to the value (8) of k: 
 

2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2[ ( ) 2 2 ] [ ( ) 2 2 ] [ ( )]

x y z

a m a b c a b m a b c b c m a b
− +

+ + − + + + +
= 0. 

 
 Upon then setting: 

− 2s = m (a2 + b2) + 2c2, 
one will finally write: 

2 2 2

2 2 2 2 2 2( ) ( ) ( )

x y z

a s a b s b c s c
+ +

+ − +
= 0. 

 
 Moreover, it will suffice to add it to the equation of the hyperboloid, after multiplying 
it by (− s), in order to obtain the equations of the homofocal quadric: 
 

(10)    
2 2 2

2 2 2

x y z

s a s b s c
+ +

+ − +
= 0. 
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 One then finds the classical result that the lines of curvature of the hyperboloid (3) 
are the intersections of that surface with the ellipsoids and the hyperboloids with two 
homofocal sheets that are represented by equation (10).  [Cf., Chap. XII, § 1 and § 6]. 
 
 Remark 1. – Instead of the plane at infinity, one can consider an arbitrary fixed plane 
(π).  The correspondence will be such that the tangent planes at two homologous points 
of (S), (S1) will cut in the plane (π).  The results will then be analogous, and similarly, if 
correlatively, one establishes a correspondence between two surfaces such that the line 
MM1 passes through a fixed point. 
 
 Remark 2. – Consider two surfaces (S), (S1) that correspond by parallel tangent 
planes.  Take a fixed point O in space and replace (S1) with one of its homothetic images 
with respect to O, namely, 1( )S′ .  Any conjugate net on (S1) will correspond to a 

homothetic net on 1( )S′  that is also conjugate, and the conjugate net on (S), which 

corresponds to a conjugate net on (S1), will also correspond to a conjugate net on 1( )S′ .  

Imagine that the homothety ratio increases indefinitely: The point 1M ′  that is homothetic 

to M1 will be stretched to infinity, so the line 1MM ′  will become the parallel to the ray 

OM1 that is drawn through M.  Hence: If one has two surfaces (S), (S1) that correspond 
by parallel tangent planes, and one takes a fixed point O in space and draws the parallel 
MN to the ray OM1 through the point M on (S) then the developables of the congruence 
of lines MN will cut out the conjugate net on (S) that corresponds to a conjugate net on 
(S1).  In particular, if we take (S1) to be a sphere and take O to be its center, then OM1 will 
be perpendicular to the tangent plane to (S1), and consequently to the tangent plane to (S).  
MN, which is parallel to it, is the normal to (S).  The congruence of normals to a surface 
will have developables that determine an orthogonal conjugate net on that surface. One 
will then recover the fundamental property of the lines of curvature of the surface (S). 
 We further remark that if the radius of the sphere (S1) is equal to 1 then the 
coordinates x1, y1, z1 will be the direction cosines of the normal, and formulas (1), (2) will 
be nothing but the formulas of Olinde Rodriguez [Chap. V, § 3]: − L and – M are then the 
principal curvatures. 
 
 

Isothermal surfaces 
 

 5. – One will be led to an important class of surfaces when one looks for the cases in 
which the correspondence by parallel tangent planes between two surfaces (S) and (S1) 
yields a conformal representation of one surface on the other [Chap. II, § 2].  Suppose the 
two surfaces are referred to homologous conjugate systems, as in the preceding 
paragraph, in such a way that the correspondence between them satisfies equations (1) 
and (2) of that paragraph: 
 

(1)    1x

λ
∂
∂

 = 
x

L
λ

∂
∂

,      1y

λ
∂
∂

 = 
y

L
λ

∂
∂

,      1z

λ
∂
∂

 = 
z

L
λ

∂
∂

, 
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(2)    1x

µ
∂
∂

= 
x

M
µ

∂
∂

,      1y

µ
∂
∂

= 
y

M
µ

∂
∂

,      1z

µ
∂
∂

= 
z

M
µ

∂
∂

, 

 
in which the rectangular Cartesian coordinates of the homologous points figure. 
 Let: 

ds2 = E dλ2 + 2F dλ dµ + G dµ2 
 

be the linear element of the surface (S), in such a way that: 
 

(3)    E = 
2

x

λ
∂ 

 ∂ 
∑ , F = 

x x

λ µ
∂ ∂
∂ ∂∑ , G = 

2
x

µ
 ∂
 ∂ 

∑ . 

 
The condition that expresses the idea that the correspondence considered will realize a 
conformal representation is that there must exist a function k (λ, µ) such that: 
 
(4)     2 2 2

1 1 1dx dy dz+ + = k2 ds2. 

 
Upon taking formulas (1), (2), (3) into account, it will translate into the equations: 
 
(5)    (L2 – k2) E = (LM – k2) F = (M 2 – k2) G = 0. 
 
 1. Discard the case (E = 0, F = 0), (F = 0, G = 0), in which the surface (S) is an 
isotropic developable [Chap. III, § 4].  We can first suppose that E = 0, G = 0, in such a 
way that the coordinate lines will be minimal lines on (S) and (S1).  Since they are 
conjugate, by hypothesis, the asymptotic directions will be harmonic conjugate with 
respect to the isotropic directions of the tangent plane, and will be rectangular.  Hence, 
the indicatrix will be an equilateral hyperbola, and the surface (S), like (S1), will be a 
minimal surface. 
 Conversely, the equations that were given in Chapter III, § 6, page 50, to represent an 
arbitrary minimal surface will imply the formulas: 
 

(6)    

2 2( ) ( ) ( ) ,

( ) ( ) ( ) ,

( ) ( ) .

d x iy u F u du v G v dv

d x iy F u du G v dv

dz u F u du v G v dv

′′′ ′′′ + = − −
 ′′′ ′′′− = +
 ′′′ ′′′= − −

 

 
Therefore, when two surfaces (S) and (S1) are represented in that way, with the functions 
F, F; F1, G1, respectively, one will have identities of the form (1), (2), and (5): 
 

 1x

u

∂
∂

= 1F x

F u

′′′ ∂⋅
′′′ ∂

, 1y

u

∂
∂

= 1F y

F u

′′′ ∂⋅
′′′ ∂

, 1z

u

∂
∂

= 1F z

F u

′′′ ∂⋅
′′′ ∂

, 

 

 1x

v

∂
∂

= 1G x

G v

′′′ ∂⋅
′′′ ∂

, 1y

v

∂
∂

= 1G y

G v

′′′ ∂⋅
′′′ ∂

, 1z

v

∂
∂

= 1G z

G v

′′′ ∂⋅
′′′ ∂

, 
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2
1ds = 1 1F G

F G

′′′ ′′′
′′′ ′′′

· ds2. 

 
Hence: Two arbitrary minimal surfaces will correspond by parallel tangent planes in 
such a manner that the correspondence is a conformal representation. 
 
 2. Now suppose that F is not zero, and that E and G are not both zero.  When the 
condition LM = k2 is then combined with one of the conditions L2 = k2, M 2 = k2, it will 
imply that: 

L = M,  k2 = L2 = M2, 
 

in which L and M cannot be zero.  Upon supposing that k = L, which is legitimate, one 
will then conclude that: 
 
(7)  dx1 = k dx, dy1 = k dy, dz1 = k dz. 
 
Now, at least two of the functions x, y, z of λ and µ are independent: Suppose that they 
are x and y, for example.  The first two identities (7) express the idea that the 
correspondence between (S) and (S1) will translate into the formulas: 
 

x1 = ϕ (x), y1 = ψ (y), k = ϕ′ (x) = ψ′ (y), 
 
in which x and y can be considered to be independent variables.  One then concludes that 
k is a constant, since it does not depend upon either x or y, and formulas (7) will then 
give: 

 x1 = kx + a,  y1 = ky + b,  z1 = kz + c, 
 
in which a, b, c are three constants.  We then find the obvious solutions, in which (S) is 
an arbitrary surface, and (S1) is an arbitrary homothetic image of (S). 
 
 3. It remains to examine the case in which F is zero, without E or G being so.  The 
conditions (5) will then give: 

F = 0,  L = − M = k 
 
when we discard the hypothesis L = M that we encountered already.  We must then 
examine what the two surfaces (S) and (S1) would be that are coupled by the conditions: 
 

(8)  1x

λ
∂
∂

=   
x

k
λ

∂
∂

, 1y

λ
∂
∂

=   
y

k
λ

∂
∂

, 1z

λ
∂
∂

=   
z

k
λ

∂
∂

, 

 

(9)  1x

µ
∂
∂

= − x
k

µ
∂
∂

, 1y

µ
∂
∂

= − y
k

µ
∂
∂

, 1z

µ
∂
∂

= − z
k

µ
∂
∂

, 

and 

(10)    F = 
x x y y z z

λ µ λ µ λ µ
∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 
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 Eliminate x1, y1, z1 by differentiating equations (8) with respect to µ, differentiating 
equations (9) with respect to λ, and subtracting corresponding sides of the equations.  We 
will then find that x, y, z will satisfy the same equation of the form: 
 

(11)  0 = k k
ω ω

µ λ λ µ
 ∂ ∂ ∂ ∂ +   ∂ ∂ ∂ ∂   

 ≡ 
2

2
k k

k
ω ω ω

λ µ µ λ λ µ
∂ ∂ ∂ ∂ ∂+ ⋅ + ⋅

∂ ∂ ∂ ∂ ∂ ∂
. 

 
 Now, upon differentiating equations (3), we will get the identities: 
 

(12)   
2

2
x x

λ λ µ
∂ ∂
∂ ∂ ∂∑ = 

E

µ
∂
∂

,  
2

2
x x

µ λ µ
∂ ∂
∂ ∂ ∂∑ = 

G

λ
∂
∂

. 

 

Upon replacing 
2

2
x

λ µ
∂

∂ ∂
, 

2

2
y

λ µ
∂

∂ ∂
, 

2

2
z

λ µ
∂

∂ ∂
 as functions of the first derivatives in this by 

means of the identities that result from (11) when one replaces ω with x, y, z, and upon 
taking formulas (3) and the condition (10) into account, those identities (12) will become: 
 

− k
E

µ
∂
∂

= 
E

k
µ

∂
∂

, − k
G

λ
∂
∂

= 
G

k
λ

∂
∂

. 

 
 Therefore, E and G will have the form: 
 

E =
1

k
ϕ (λ), G =

1

k
ψ (µ), 

 
and the linear element of (S) will take the form: 
 

(13)    ds2 =
1

k
[ϕ (λ) dλ2 + ψ (µ) dµ2]. 

 
 We can replace the coordinate λ with a function of λ and the coordinate µ with a 
function of µ without changing formulas (8) and (9).  Moreover, we can arrange for that 
change of coordinates to reduce formula (13) to the form: 
 

(14)     ds2 =
1

k
[dλ2 + dµ2], 

 
in which we keep the notations λ, µ in order to denote the new coordinates λ′, µ′ that are 
defined by: 

dλ′ = ( )ϕ λ  · dλ, dµ′ = ( )ψ µ  · dµ. 

 
 By virtue of formula (4), the linear element of (S1) will itself reduce to the form: 
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(15)     2
1ds = k (dλ2 + dµ 2). 

 
 The systems of coordinate curves that form conjugate nets on (S) and (S1), by 
hypothesis, also form orthogonal nets, by virtue of the hypothesis F = 0; they will then be 
systems of lines of curvature on one surface and the other.  However, in addition, from 
formulas (14) and (15), they will form isothermal, orthogonal systems [Chap. IV, § 4].  
The two surfaces can then be divided into infinitely-small squares by their lines of 
curvature.  In order to express that property, one says that they are isothermal surfaces.  
An isothermal surface is then a surface that has a ds2 of the form (13): 
 

ds2 = K [ϕ (λ) dλ2 + ψ (µ) dµ 2] 
 

when it is referred to its lines of curvature. 
 
 Converse. – Conversely, take an arbitrary isothermal surface (S).  Suppose that it is 
referred to its lines of curvature, in such a way that its ds2 has the form (14).  We have 
conditions: 

(16)  
2

x

λ
∂ 

 ∂ 
∑ = 

1

k
, 

x x

λ µ
∂ ∂
∂ ∂∑ = 0,  

2
x

µ
 ∂
 ∂ 

∑ = 
1

k
, 

 
at the same time as the condition F′ = 0, which expresses the idea that the coordinate 
lines are conjugate: 

(17)    0 = 
2 ( , )

( , )

x y z

λ µ λ µ
∂ ∂⋅

∂ ∂ ∂∑  ≡ 
2x

A
λ µ
∂

∂ ∂∑ . 

 
 Upon differentiating equations (16), we will get: 
 

(18)   
2x x

λ µ λ
∂ ∂⋅

∂ ∂ ∂∑ = 
1 (1/ )

2

k

µ
∂

∂
, 

2x x

λ µ µ
∂ ∂⋅

∂ ∂ ∂∑ = 
1 (1/ )

2

k

λ
∂

∂
, 

 

and we can infer the values of the second derivatives 
2x

λ µ
∂

∂ ∂
, 

2 y

λ µ
∂

∂ ∂
, 

2z

λ µ
∂

∂ ∂
 from 

equations (17) and (18).  The three directions: 
 

x

λ
∂
∂

, 
y

λ
∂
∂

, 
z

λ
∂
∂

; 
x

µ
∂
∂

, 
y

µ
∂
∂

, 
z

µ
∂
∂

; A, B, C 

 
define a direct tri-rectangular trihedron, so we introduce their direction cosines, which 
are: 

x
k

λ
∂
∂

, 
y

k
λ

∂
∂

, 
z

k
λ

∂
∂

; 
x

k
µ

∂
∂

, 
y

k
µ

∂
∂

, 
z

k
µ

∂
∂

; kA, kB, kC, 
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since E = G = 1 / k, A2 + B2 + C2 = EG – F2 = 1 / k2.  In order to obtain 
2x

λ µ
∂

∂ ∂
, for 

example, it suffices to multiply equations (17) and (18) by k2A, 
x

k
λ

∂
∂

, 
x

k
µ

∂
∂

, 

respectively, and add them, which will give: 
 

2x

λ µ
∂

∂ ∂
 = 

1 (1/ ) 1 (1/ )

2 2

k x k x
k k

µ λ λ µ
∂ ∂ ∂ ∂⋅ + ⋅

∂ ∂ ∂ ∂
; 

i.e.: 
2

2
x k x k x

k
λ µ µ λ λ µ
∂ ∂ ∂ ∂ ∂+ +

∂ ∂ ∂ ∂ ∂ ∂
 = 0. 

 
 Hence, x, y, z indeed satisfy the same equation (11).  Now, that is precisely the 
necessary and sufficient condition for equations (8) and (9), in x1, y1, z1, to be compatible.  
One can then calculate x1, y1, z1 by quadrature from the total differentials: 
 

(19)   dx1 = k 
x x

d dλ µ
λ µ

 ∂ ∂− ∂ ∂ 
,   dy1 = k 

y y
d dλ µ

λ µ
 ∂ ∂− ∂ ∂ 

,   dz1 = k 
z z

d dλ µ
λ µ

 ∂ ∂− ∂ ∂ 
. 

 
 The surface (S1) is then well-defined, and its ds2 will be given by formulas (15).  That 
is, it is itself isothermal and referred to its lines of curvature, since, from formulas (1), the 
coordinate lines will be conjugate on the two surfaces, and from (15), they will be 
orthogonal and isothermal for (S1). 
 Therefore:  
 
 If one is given an arbitrary isothermal surface that has a ds2 that is given by (14) 
when it is referred to its lines of curvature then it will correspond to one and only one 
other isothermal surface (up to an arbitrary translation), such that the correspondence 
that is established by parallel tangent planes between the points of those two surfaces is a 
conformal representation of one surface on the other one.  Under that correspondence, 
the lines of curvature on the two surfaces will correspond, and the ds2 of the second one 
will be given by formula (15).  There will be reciprocity between the two surfaces. 
 
 Remark. – The preceding calculations show that in order for a surface to be 
isothermal, it is necessary and sufficient that the Cartesian coordinates of any point on the 
surface must satisfy not only the condition that F = 0, but also the same partial 
differential equation of the form (11).  That equation will not change in form under a 
change of variables of the form: 
 
(20)    λ′ = ϕ (λ), µ′ = ψ (µ). 
 
 However, one can simplify this by setting: 
 
(21) ω′  = ω · χ (λ, µ), 
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and suitably determining the factor χ.  Indeed, it will become: 
 

2 1 1 1 1

2 2

k k

k k

ω χ ω χ ω
λ µ µ χ µ λ λ χ λ µ

′ ′ ′   ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + −   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   
− θ · ω′  = 0, 

 
and it will suffice to take: 

(22)     χ = k  

in order to reduce it to the form: 

(23)     
2ω

λ µ
′∂

∂ ∂
= θ ω′. 

 
 The expression for θ in terms of λ and µ is deduced from the fact that since ω = 1 is a 

solution of equation (11), ω′ = χ = k  will be a solution of (23); hence: 

 

(24)     θ = 
21 k

k λ µ
∂
∂ ∂

. 

 
 Saying that equation (11) is verified by the Cartesian coordinates x, y, z, 1 is 
equivalent to saying that equation (23) is verified by the homogeneous coordinates: 
 

X = x k , Y = y k , Z = z k , T = k . 

 
 Therefore: In order for a surface to be isothermal, it is necessary and sufficient that 
for a conveniently-chosen system of homogeneous coordinates X, Y, Z, T, the four 
coordinates of any point on the surface, which is supposed to be referred to its lines of 
curvature, satisfy the same partial differential equation of the form (23); the linear 
element of the surface will then be: 

ds2 = 
2

1

T
(dλ2 + dµ2). 

 
 

Examples of isothermal surfaces 
 

 1. Any surface of revolution: 
 

x = u cos µ, y = u sin µ, z = ϕ (u) 
 
is isothermal because it is then referred to its lines of curvature, and its linear element: 
 

ds2 = [1 + ϕ′ 2(u)] du2 + u2 dµ2 
has the form (13). 
 The sphere is, in turn, isothermal in an infinitude of ways. 
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 2. Cones and cylinders whose linear elements (1) and (2), which were given in 
Chap. V, § 4, pp. 91, are referred to their lines of curvature are also isothermal surfaces, 
from the form of those linear elements: 
 

ds2 = du2 + dv2,  ds2 = 2 2 2
2

1
u du dv

u
 +  

. 

 
 3. Second-degree surfaces are isothermal.  We verify this for the hyperboloid of one 
sheet, while appealing to the formulas of the preceding paragraph.  To that effect, 
formulas [(6), § 4] will give: 
 
(u – v)4 ds2 = (a2 + b2) [Φ (v2) du2 – 2Φ0 (u

2, v2) du dv + Φ (u2, dv2)] + 4c2 (u – v)2 du dv. 
 
Introduce the parameters of the lines of curvature that were defined by [(7), § 4] by 
setting: 

(25)  
2 2( ) ( )

du dv

u v
−

Φ Φ
= dλ, 

2 2( ) ( )

du dv

u v
+

Φ Φ
 = dµ, 

 
and the ds2 will become: 
 

(20)  ds2 = 1
2 (a2 + b2) 2 2( ) ( )u vΦ Φ  [E0 dλ2 + G0 dµ2] (u – v)−2, 

with: 

 (u – v)2 · E0 = 2 2( ) ( )u vΦ Φ  + Φ0 (u
2, v2) −

2

2 2

2c

a b+
(u – v)2,  

 

 (u – v)2 · G0 = 2 2( ) ( )u vΦ Φ  − Φ0 (u
2, v2) +

2

2 2

2c

a b+
(u – v)2. 

 
 Now, due to the form [(9), § 4] of the integral of the Euler equation [(7), § 4], E0 = 
const. defines the same lines of curvature as µ = const.   Hence, E0 is a function of only µ, 
and similarly, G0 is a function of only λ.  Therefore, the ds2 in (26) will come down to the 
form (13), which is characteristic of isothermal surfaces, by using E0 G0 as the factor. 
 
 4. We will find a new class of isothermal surfaces by looking for the pairs of parallel 
surfaces (S) and (S1) on which the common normals determine a conformal 
correspondence.  For that to be true, if l, m, n denote the direction cosines of the normal 
to S then it will suffice to suppose that: 
 

x1 = x + hl, y1 = hm, z1 = z + hn, 
 
in formulas (8), (9), in which h is a constant length.  From the formulas of Olinde 
Rodriguez [Chap. V, § 3], in which R1 and R2 are the radii of principal curvature on (S), 
one will have: 
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l

λ
∂
∂

= −
1

1 x

R λ
∂⋅
∂

, 
m

λ
∂
∂

= −
1

1 y

R λ
∂⋅
∂

, 
n

λ
∂
∂

= −
1

1 z

R λ
∂⋅
∂

, 

 

 
l

µ
∂
∂

= −
2

1 x

R µ
∂⋅
∂

, 
m

µ
∂
∂

= −
2

1 y

R µ
∂⋅
∂

, 
n

µ
∂
∂

= −
2

1 z

R µ
∂⋅
∂

. 

Hence: 

1x

λ
∂
∂

= 
1

1
h x

R λ
  ∂−  ∂ 

, …, 1x

µ
∂
∂

= 
2

1
h x

R µ
  ∂−  ∂ 

, …, 

 
and in order for one to able to identify those formulas with formulas (8) and (9), it is 
necessary and sufficient that one must have: 
 

1 2

1 1
h h

R R

   
− + −   

   
= 0 

or 

(26)     
1 2

1 1

R R
+  = 

2

h
; 

 
i.e., the mean curvature of (S) must be constant.  The same thing is true for the mean 
curvature of (S1), which is equal and opposite to that of (S).  That is obvious a priori, due 
to the symmetry of the relationship between (S) and (S1), and one effortlessly confirms 
that the equality: 

1 2

1 1

R h R h
+

− −
 = − 2

h
 

 
is equivalent to (26).  We further remark that the centers of principal curvature that are 
common to (S) and (S1) are harmonic conjugates with respect to the feet of the common 
normal to the two surfaces. 
 One then finds a means of deducing a surface of constant mean curvature – 1 / h from 
any surface of mean constant curvature 1 / h. 
 Therefore: Any surface of constant mean curvature is isothermal. 
 
 5. The preceding conclusion would no longer be justified if the mean curvature were 
zero – i.e., if (S) were a minimal surface – because h would have to be infinite then.  
However, it is easy to verify directly that any minimal surface is isothermal. 
 To that effect, recall formulas (6): The direction l, m, n of the normal is defined by the 
condition: 

(l – im) d (x + iy) + (l + im) d (x – iy) + 2n dz = 0, 
 
from which, one will infer: 
(27)    l + in = 2nv, l – im = − 2, n = u + v. 
 
 The condition for the normal to meet the infinitely-close normal is then written: 
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0 = 

1 1 0

0

0 0 1

l dl dx

m dm dy i i

n dn dz

× −  = 

( ) ( )

( ) ( )

l im d l im d x iy

l im d l im d x iy

n dn dz

+ + +
− − − . 

 
Upon substituting the values (6) and (27), one will then obtain the differential equation of 
the lines of curvature, which will reduce to: 
 
(28)    F″′ du2 + G″′ dv2 = 0. 
 
On the other hand, from formulas (6), the ds2 is: 
 
(29)  ds2 = d (x + iy) d (x – iy) + dz2 = − (u – v)2 F″′ G″′  du dv. 
 
In order to introduce the parameters λ, µ of the lines of curvature, it will suffice to set: 
 

F ′′′ · du − G′′′ · dv = dλ, F ′′′ · du + G′′′ · dv = dµ, 

 
and ds2 will become: 

ds2 = 
2( )

4

u v

F G

−
′′′ ′′′

(dλ2 − dµ2), 

 
which has, in fact, the isothermal form. 
 
 

Use of penta-spherical coordinates 
 

 6. – In order for the equations: 
 
(1)    x = f (λ, µ), y = g (λ, µ), z = h (λ, µ) 
 
to represent a surface that is referred to its lines of curvature, from what we have seen, it 
is necessary and sufficient that those functions must satisfy the same partial differential 
equation of the form: 

(2)     
2

L M
ω ω ω

λ µ λ µ
∂ ∂ ∂+ +

∂ ∂ ∂ ∂
 = 0, 

 
at the same time as the orthogonality condition: 
 

(3)     0 = F = 
x x y y z z

λ µ λ µ λ µ
∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

. 

 
One can replace that condition with another one in the following manner.  To abbreviate, 
let Ω (ω) denote the left-hand side of (2), and one will get the identity: 
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1
2 Ω (x2 + y2 + z2) = x Ω (x) + y Ω (y) + z Ω (z) + F. 

 
Since Ω (x), Ω (y), Ω (z) are zero, one can then conclude that the condition (3) is 
equivalent to Ω (x2 + y2 + z2) = 0. 
 Hence: 
 
 In order for equations (1) to represent a surface that is referred to its lines of 
curvature, it is necessary and sufficient that the four functions x, y, z, and (x2 + y2 + z2) 
must satisfy the same partial differential equation of the form (2). 
 That is obviously equivalent to saying that 1, x, y, z, (x2 + y2 + z2) must satisfy the 
same partial differential equation of the more general form: 
 

(4)     
2

L M
ω ω ω

λ µ λ µ
∂ ∂ ∂+ +

∂ ∂ ∂ ∂
+ Nω = 0. 

 
 Introduce the combinations: 
 

(5)     u = 
2 2 21

2

x y z− − −
, v = 

2 2 21

2

x y z

i

+ + +
, 

 
and let the term penta-spherical coordinates of a point with rectangular Cartesian 
coordinates x, y, z refer to the five quantities: 
 
(6)   x1 = mx, x2 = my, x3 = mz, x4 = mu, x5 = mv, 
 
in which m is an arbitrary proportional factor.  They are related by the relation: 
 
(7)     2 2 2 2 2

1 2 3 4 5x x x x x+ + + +  = 0. 
 
Conversely, if x1, x2, x3, x4, x5 are five numbers that are coupled by the condition (7) then 
one will infer from equations (6), upon noting that u + iv = 1, that: 
 

(8)   m = x4 + i x5 ,  x = 1x

m
, y = 2x

m
, z = 3x

m
, 

 
and the condition (7) will give: 
 

x4 – i x5 = − m (x2 + y2 + z2) = m (u – iv). 
One will then have: 
 

x4 + i x5 = m (u + iv),  x4 − i x5 = m (u − iv), 
 

and the latter equations x4 = mu, x5 = mv will be verified.  Hence, five numbers that are 
linked by equation (7) will be the penta-spherical coordinates of a point. 
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 Having said that, since equation (4) will transform into an equation of the same form 
when one makes the change of variable ω′ = ω · χ (λ, µ), the result that was stated above 
can be translated as follows: 
 
 In order for equations (1) to represent a surface that is referred to its lines of 
curvature, it is necessary and sufficient that the five penta-spherical coordinates of a 
point on that surface will satisfy the same partial differential equation of the form (4). 
 
 Any homogeneous linear combination with constant coefficients of several integrals 
of (4) will again be an integral.  Hence, the same result will persist when one replaces the 
previously-defined penta-spherical coordinates with the general penta-spherical 
coordinates that one deduces from an arbitrary orthogonal, homogeneous, linear 
transformation: 

(9)     hx′  = 
5

1
hk k

k

xα
=
∑   (h = 1, 2, 3, 4, 6). 

 
 Saying that this transformation is orthogonal signifies that it leaves the quadratic form 

5
2

1
h

h

x
=
∑  invariant; i.e., that equations (9) imply the identity: 

(10)     
5

2

1
h

h

x
=

′∑ =
5

2

1
h

h

x
=
∑ .  

 
 Those orthogonal transformations possess some properties that are quite similar to 
those of the analogous transformations of three variables; i.e., changes of rectangular 
coordinates (without displacing the origin). 
 The identity (10) is equivalent to the orthogonality conditions: 
 

(11)  
5

2

1
hk

h

α
=
∑ = 1, 

5

1
hk hk

h

α α ′
=
∑ = 1  (k ≠ k′ = 1, 2, 3, 4, 5). 

 
Hence, one will deduce the equivalent inverse formulas: 
 

(12)    xk = 
5

1
hk k

k

xα
=

′∑   (k = 1, 2, 3, 4, 5) 

 
by combinations of equations (9), which satisfy orthogonality conditions that are 
analogous to (11), since the identity (10) does not cease to be true.  The orthogonality 
conditions thus-defined: 
 

(13)   
5

2

1
hk

k

α
=
∑ = 1, 

5

1
hk h k

k

α α ′
=
∑ = 1  (h ≠ h′ = 1, 2, 3, 4, 5) 

 
will then be equivalent to the conditions (11). 
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 Upon squaring the determinant ∆ = [αhk] of the forms (9), one will see that it is equal 
to ± 1, and upon conveniently choosing the notations (i.e., the order in which those give 
linear forms are enumerated), one can suppose that it is equal to 1.  The identification of 
formulas (12) with the ones that give the application of Cramer’s rule to equations (9) 
will again give equality between the elements of ∆ and the corresponding minors: 
 

(14)    αhk = 
hkα

∂∆
∂

  (h, k = 1, 2, 3, 4, 5). 

 
 Interpretation of general penta-spherical coordinates. − It results immediately from 
the defining formulas (6) that any homogeneous linear equation: 
 

(15) 0 = 
5

1
h h

h

a x
=
∑ ≡ 

2

m−
[(a4 + i a5) (x

2 + y2 + z2) – 2a1 x − 2a2 y – 2a3 z − (a4 − i a5)] 

 
represents a sphere, and conversely.  We can suppose that the coefficients ah, which are 
defined only up to a constant factor, are chosen in such a manner that they satisfy the 
orthogonality condition: 
(16)     2

ha∑ = 1. 

 
 We then say that a1, a2, a3, a4, a5 are the coordinates of the sphere. 
 One confirms immediately that the radius R of that sphere is given by: 
 

R2 = 
2 2 2
1 2 3 4 5 4 5

2
4 5

( )( )

( )

a a a a ia a ia

a ia

+ + + + −
+

 = 
2

4 5

1

( )a ia+
. 

 
 For example, and this amounts to choosing the sign ±, which was left arbitrary by the 
condition (16), one can take: 

(17)     R = 
4 5

1

a ia+
. 

 
 The power of the point (x1, x2, x3, x4, x5) with respect to the sphere in question then 
has the expression: 

(18)     Px = −
5

1

2
h h

h

R
a x

m =
⋅∑ . 

 
 Now consider a second sphere that is similarly defined by its coordinates bh (h = 1, 2, 
3, 4, 5), and radius R′.  The angle V between the two spheres is then given by: 
 

2RR′ cos V = 1 1 2 2 3 3 4 5 4 5 4 5 4 5

4 5 4 5

2( ) ( )( ) ( )( )

( )( )

a b a b a b a ia b ib b ib a ia

a ia b ib

+ + + − + + − +
+ +

, 

so 
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(19)     cos V = 
5

1
h h

h

a x
=
∑ . 

 
 This cosine is then defined unambiguously, as long as one is given the signs of the 
radii of the two spheres.  One will note the analogy between formulas (16) and (19) and 
the ones that are concerned with directions in Cartesian geometry with rectangular 
coordinates. 
 Having said that, the interpretation of the coordinates (9) is immediate.  The 
equations hx′  = 0 (h = 1, 2, 3, 4, 5) define five spheres (S1), (S2), (S3), (S4), (S5) that have 

the coefficients of the left-hand sides of the corresponding equations (9) for their 
coordinates.  From the conditions (11), those spheres are pair-wise orthogonal: They 
constitute what one calls an orthogonal penta-sphere, which will serve as the reference 
penta-sphere for the definition of the coordinates (9).  From formula (18), the penta-
spherical coordinates (9) are themselves proportional to the quotients that are obtained 
by dividing the powers of the point M considered with respect to the five reference 
spheres by the respective radii of those spheres. 
 Here is another interpretation that we will find useful.  Let M be the point considered, 
and suppose that its coordinates 1x′  and 2x′  are not both zero; i.e., that there is no common 

point to the spheres (S1) and (S2).  We can then determine one and only one sphere (S) 
that passes through M and cuts the spheres (S3), (S4), (S5) at a right angle, because the 
coordinates b1, b2, b3, b4, b5 of (S) will be defined by the conditions: 
 

(20)  
5

1
h h

h

b x
=
∑ = 0, 

5

3
1

h h
h

b α
=
∑ = 0, 

5

4
1

h h
h

b α
=
∑ = 0, 

5

5
1

h h
h

b α
=
∑ = 0. 

  
 Those equations in b1, b2, b3, b4, b5 are independent, since otherwise one would have: 
 

xh = λ3 α3h + λ4 α4h + λ5 α5h   (h = 1, 2, 3, 4, 5), 
 
and in turn, due to the orthogonal conditions, 1x′ = 2x′  = 0, which is contrary to 

hypothesis. 
 Let V1 and V2 denote the angles that (S) makes with (S1) and (S2), resp.  They are 
defined by the formulas: 

(21)    cos V1 = 
5

1
1

h h
h

b α
=
∑ , cos V2 = 

5

2
1

h h
h

b α
=
∑ , 

 
and if one takes into account the fact that ∑ bh

2 = 1 and the orthogonality conditions (13) 
then that will imply the condition: 
(22)     cos2 V1 + cos2 V2 = 1, 
 
in such a way that the two angles V1 and V2 will be complementary.  One relation will 
then suffice to determine them; one obtains it by eliminating the bh from equations (20) 
and (21).  Upon leaving aside the first equation in (20), one will infer: 
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(23)   bh = α1h cos V1 + α2h cos V2  (h = 1, 2, 3, 4, 5), 
 
and upon substituting these values in the equation ∑ bh xh = 0, one will get: 
 
(24)    1x′  cos V1 + 2x′  cos V2 = 0. 

 
 Equations (22) and (24) determine cos V1 and cos V2 up to a factor (± 1); that comes 
from the indeterminacy in the definition of (S) that pertains to the sign of its radius.  
However, no matter what sign is adopted, formula (24) will unambiguously give the ratio 
of the coordinates 1x′  and 2x′  as a function of cos V1 and cos V2. 

 One should note that if 2x′ , for example, is zero then the solution to equations (20) 

will be given by bh = α1h ; i.e., the sphere (S) will then be the sphere (S1).  As a result, cos 
V1 = 1, cos V2 = 0, and formula (24) will give 1 2/x x′ ′  = 0, since 2x′  is non-zero, by 

hypothesis. 
 We then conclude that the penta-spherical coordinates of a point, which are defined 
only up to the same factor, are determined completely by the cosines of the angles that 
the spheres that pass through that point and are orthogonal to three spheres of the 
reference penta-sphere make with the other two spheres of that penta-sphere. 
 
 Remark 1. – From formulas (12), the sphere that has the coordinates b1, b2, b3, b4, b5 
in the initial system of penta-spherical coordinates x1, x2, x3, x4, x5 has the equation: 
 

5 5

1 1
k hk h

h k

b xα
= =

  ′⋅ ⋅ 
 

∑ ∑  = 0 

 
in the general system of coordinates (9). 
 One will then say that the quantities: 
 

(29)    hb′  = 
5

1
k hk

k

b α
=
∑   (h = 1, 2, 3, 4, 5) 

 
are the coordinates of the sphere in the new system.  It results from the orthogonality 
conditions (11) that such coordinates will further satisfy the orthogonality condition that 
is analogous to (16): 

5
2

1
h

h

b
=

′∑ = 1. 

 
 The coordinate transformation of the spheres is then performed like that of the 
coordinates of points. 
 It further results from the orthogonality conditions (11) that formula (19), which gives 
the angle between two spheres, will keep the same form in general penta-spherical 
coordinates. 
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 Remark 2. – Let x0, y0, z0 be the coordinates of the center of a sphere (S), let R be its 
radius, and let P be the power of the origin with respect to (S): The five penta-spherical 
coordinates of (S) that are defined by equation (15) and the condition ∑ ak

2 = 1 are: 
 

(30)  a1 = 0x

R
, a2 = 0y

R
, a3 = 0z

R
, a4 =

1

2

P

R

−
, a1 = 

1

2

P

iR

+
. 

 
 One can replace them with the six homogeneous coordinates c1, c2, c3, c4, c5, c6 , 
which are coupled with the symmetric relation: 
 

 (31)     
6

2

1
k

k

c
=
∑ = 0. 

 To that effect, we set: 
 
(32)  c1 = ρ (1 – P),  c2 = − ρ i (1 – P), c3 = 2ρ x0 ,  
 c4 = 2ρ y0 , c5 = 2ρ z0 ,  c6 = − 2iρ R, 
 
in which ρ is an arbitrary factor. 
 For c6 = 0, the sphere has radius zero, and c1 , c2 , c3 , c4 , c5 are the penta-spherical 
coordinates of its center.  For c6 ≠ 0, formulas (32) are equivalent to the following ones: 
 

(33)  a1 = 3

6

c

ic
, a2 = 4

6

c

ic
, a3 = 5

6

c

ic
, a4 = 1

6

c

ic
, a5 = 2

6

c

ic
. 

 
 One can employ formulas that are analogous to the latter in order to pass from the 
general penta-spherical coordinates of a sphere that is defined by equations (29) to the 
homogeneous coordinates that satisfy the condition (31). 
 Formula (19) shows that a linear, homogeneous relation: 
 

(34)     
6

1
k k

k

C c
=
∑ = 0, 

 
in which the Ck are arbitrary constants, expresses the idea that the sphere (S) cuts the 
sphere (S′ ) with the homogeneous coordinates: 
 

(35)  hc′ = Ch (h = 1, 2, 3, 4, 5), 6c′ = 2 2 2
1 2 5i C C C+ + +⋯  

 
at a constant angle V that is given by the formula: 
 

(36)     cos V = 6

6

C

c′
. 
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 In the case where the constants Ck verify the condition 
6

2

1
k

k

C
=
∑ = 1, one will have 6c′  = 

C6 .  The constants Ck are themselves the coordinates of the sphere (S) then, and the 
condition (34) will express the idea that the two spheres (S) and (S′ ) are tangents. 
 
 Remark 3. – In the case where the sphere (S) reduces to the plane λ x + µ y + ν z − δ = 
0, where λ, µ, ν are the direction cosines of a direction that is normal to the plane, the 
coordinates ah will be: 
 
(37)  a1 = λ,      a2 = µ,       a3 = ν,      a4 = − δ,      a5 = − iδ (a4 + i a5 = 0). 
 
 Remark 4. − One can pass directly from the coordinate system hx′  that relates to an 

orthogonal penta-sphere (II) to the coordinate system hx′′  that relates to another 

orthogonal penta-sphere (II′).  From the formulas: 
 

xk = 
6

1
hk h

h

xα
=

′∑ ,  lx′′ =
6

1
lk k

h

xβ
=
∑   (k, l = 1, 2, 3, 4, 5), 

 
one concludes, in fact, that: 
 

(38)  lx′′ = 
6 6

1 1
lk hk h

h k

xα β
= =

  ′⋅ 
 

∑ ∑ = 
6

1
lk k

h

xβ
=

′ ′∑   (l = 1, 2, 3, 4, 5). 

 
 In that expression for the coordinates lx′′ , the coefficients: 

 

lhβ ′ = 
6

1
lk hk

k

β α
=
∑   (h = 1, 2, 3, 4, 5) 

 
are again the coordinates of the new reference sphere ( )lS′  with respect to the first penta-

sphere (II).  The analogy with the formulas for the transformation of rectangular 
Cartesian coordinates (without displacing the origin) is obvious. 
 
 Condition for a surface to be isothermal. – From what we saw in § 5, in order for the 
surface considered to be isothermal, it is necessary and sufficient that equation (4) can be 
reduced to the form of equation (23) of § 5 by a transformation ω′ = ω · χ (λ, µ).  
Therefore: 
 
 In order for equations (1) to represent an isothermal surface that is referred to its 
lines of curvature, it is necessary and sufficient that the five penta-spherical coordinates 
of a point satisfy the same partial differential equation of the form: 
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(39)     
2ω

λ µ
∂

∂ ∂
= θ (λ, µ) · ω 

 
for a convenient choice of proportionality factor that figures in those coordinates. 
 
 Remark. – An argument that is similar to the one at the beginning of this paragraph 
can be made for the coordinates of a tangent plane to the surface, which one assumes can 
be written in the form: 
  ax + by + cz + 1 = 0. 

 
 The coefficients are functions of λ and µ, and in order for the surface that is defined 
to be envelope of those planes to have the lines λ = const., µ = const. for its lines of 
curvature, it is necessary and sufficient that 1, a¸ b, c (a2 + b2 + c2) satisfy the same 
equation of the form (4). 
 
 

Application to the cyclides 
 

 7. – Let x1, x2, x3, x4, x5 be the five penta-spherical coordinate of a point in an 
arbitrary system of such coordinates.  A surface will be represented by a homogeneous 
equation between those coordinates.  We have seen that the case in which that equation 
has degree one corresponds to the sphere.  The surfaces that are represented by second-
degree equations will be called cyclides. 
 It results from the theory of quadratic forms that if: 
 

Φ (x1, x2, x3, x4, x5) 
 
is a homogeneous second-degree polynomial then one can always find a homogeneous 
linear transformation: 

kx′ = 
5

1
kh h

h

xα
=
∑   (k = 1, 2, …, 5) 

 
that leaves the form ∑ xh

2 invariant and transforms Φ into: 
 

Φ (x1, x2, x3, x4, x5) = 
5

2

1
h h

h

s x
=

′∑ . 

 
 There will then exist a change of penta-spherical coordinates that will reduce the 
equation of any cyclide to the form: 

5
2

1
h h

h

s x
=
∑ = 0. 
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 If one discards the special case in which one or more of the sh (which are roots of the 

equation in s that is obtained by equating the discriminant of Φ – 
5

2

1
h

h

s x
=
∑ to zero) are zero 

then one can take the equation of the cyclide in the form: 
 

25

1

h

h h

x

a=
∑ = 0, 

 
and consider it to belong to the family of cyclides that is represented by the equation: 
 

(1)      
25

1

h

h h

x

a σ= −∑  = 0, 

in which σ is an arbitrary parameter. 

 By hypothesis, the coordinates xh are coupled by the condition 
5

2

1
h

h

x
=
∑ = 0, so equation 

(1) will be an equation of degree three in σ, in such a way that three cyclides of the 
family will pass through each point of space.  The parameters σ1, σ2, σ3 of those three 
cyclides will then be the curvilinear coordinates for the points of space.  One calculates 
the xh as functions of σ1, σ2, σ3 by the same mode of calculation that served for the 
analogous problem that related to the families of homofocal quadrics.  Set: 
 

ϕ (σ) = 
5

1

( )h
h

aσ
=

−∏ , 

and we can write down the identity: 
 

25

1

h

h h

x

aσ= −∑ = 1 2 3( )( )( )

( )

σ σ σ σ σ σ
ϕ σ

− − −
, 

 
upon neglecting the identification factor on the right-hand side, since the xh can be 
calculated up to the same factor.  Here, one has the identity for decomposing the right-
hand side, which is a rational fraction in s, into simple elements, so: 
 

(2)    2
hx = 1 2 3( )( )( )

( )
h h h

h

a a a

a

σ σ σ
ϕ

− − −
′

 (h = 1, 2, …, 5). 

 
 If one supposes that σ3 = const. then one will have the parametric representation of 
any of the surfaces (1). 
 Now, if one sets, in general: 

ω = 1 2( )( )a aσ σ− −  

then one will have: 
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1

ω
σ

∂
∂

= 2

2

aσ
ω
−

, 
2

ω
σ

∂
∂

= 1

2

aσ
ω
−

, 

2

1 2

ω
σ σ
∂

∂ ∂
= 1 2

3

( )( )1

2 4

a aσ σ
ω ω

− −−  = 
1

4ω
, 

so 

(3) 2 (σ1 – σ2) 
2

1 2 1 2

ω ω ω
σ σ σ σ
∂ ∂ ∂+ −

∂ ∂ ∂ ∂
 = 0. 

 
 This is an equation of the form (11), § 5: Indeed, one needs only to set k = (σ1 – σ2)

−1 
in equation (11) to recover present equation (3).  It will then be reducible to the form 
(39), § 6, by a transformation ω′ = ωχ. 
 Therefore, the penta-spherical coordinates (2) of any cyclide (1) indeed satisfy the 
condition that was stated above, and the cyclides are isothermal surfaces. 
 
 Remark 1. – It is then proved that the three cyclides of the system (1) that pass 
through a point will intersect pair-wise along common lines of curvature: They will then 
cut at a right angle, and as a result, any two of the cyclides will cut at a right angle all 
along their intersection. 
 
 Remark 2. – An analogous calculation applies to the homofocal quadrics: 
 

23

1

h

h h

x

a σ= −∑ − 1 = 0, 

 
in which x1, x2, x3 are rectangular coordinates.  One finds that: 
 

2
hx = 1 2 3( )( )( )

( )
h h h

h

a a a

a

σ σ σ
ϕ

− − −
′

, ϕ (σ) = (σ – a1)(σ – a2)(σ – a3). 

 

Therefore, x1, x2, x3 satisfy equation (13).  It remains to verify that 
3

2

1
h

h

x
=
∑  also satisfies it.  

Now, the substitution of that function in the left-hand side of (13) will give: 
 

(σ1 – σ2) · 
3

3

1 ( )
h

h h

a

a

σ
ϕ=

−
′∑ , 

 
and when one identifies that with the left-hand side, and expresses the idea that there is 
no term in σ2 in the right-hand side, the identity: 
 

3

( )

σ σ
ϕ σ

−
= 

3
3

1 ( )( )
h

h h h

a

a a

σ
ϕ σ=

−
′ −∑  

will give: 
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3
3

1 ( )
h

h h

a

a

σ
ϕ=

−
′∑  = 0. 

 
 

Application to the conformal transformations 
 

 8. – Definitions. – Consider a point-like transformation; i.e., one that makes any point 
of M correspond to a homologous point M′ (as displacements, homotheties, and 
inversions do, for example).  It is defined by equations: 
 
(1)    x′ = f (x, y, z),      y′ = g (x, y, z),      z′ = h (x, y, z) 
 
that give the coordinates (x′, y′, z′) of M′ as functions of the coordinates (x, y, z) of M.  
Inversely, one supposes that each point M′ corresponds to a point M; i.e., that equations 
(1) define the implicit functions: 
 
(2)    x = F (x′, y′, z′), y = G (x′, y′, z′), z = H (x′, y′, z′). 
 
In order to do that, as one knows, it will suffice that f, g, h must have continuous partial 

derivatives and that the functional determinant 
( , , )

( , , )

f g h

x y z

∂
∂

 must not be identically zero. 

 The transformation makes any locus of points M correspond to a homologous locus of 
points M′ : e.g., a curve will go to a curve, and a surface, to a surface.  Two curves that 
intersection at M0 will correspond to two curves at the point 0M ′  that is the homologue of 

M0 , and two curves that are tangent at M0 will go to two curves that are tangent at 0M ′ . 
 That will result from what one deduces from equations (1) upon differentiating them: 
 

(3)   dx′ = 
f f f

dx dy dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

,  dy′ = 
g g g

dx dy dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

,  

 

dz′ = 
h h h

dx dy dz
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

, 

 
in such a way that each linear element (x, y, z ; dx, dy, dz) will correspond to a 
homologous linear element (x′, y′, z′ ; dx′, dy′, dz′), which is the same for any curve that 
passes through M and to which the former element belongs.  One says that the 
transformation of the linear elements of space, thus-defined, results from a prolongation 
of the transformation (1). 
 From formula (3), the square ds′2 of the transformed linear element is a quadratic 
form in dx, dy, dz whose coefficients are functions of x, y, z, namely: 
 
(4)      ds′2 = Φ (dx, dy, dz), 
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and the angle between the two linear elements that are homologous to two linear elements 
at the same point (x, y, z) (which we suppose to correspond to two different 
differentiations d and δ) is given by the formula: 
 

(5)     cos V′ = 
( )

( , , ) ( , , )

x
dx

dx dy dz x y z

δ

δ δ δ

∂Φ
∂

Φ Φ

∑
. 

 
 Having said that, one says that the transformation (1) is a conformal transformation if 
it preserves angles; i.e., if the homologues of two arbitrary curves that cut at M make an 
angle at the homologous point M′ that is equal to the one that the former two made at M.  
That amounts to saying that the angle between any two linear elements at the same point 
M is equal to the angle between the transformed linear elements. 
 If that were true then a right angle, in particular, would correspond to a right angle, 
and as a result the equation: 

( ) ( ) ( )
x y z

dx dy dz
δ δ δ∂Φ ∂Φ ∂Φ+ +

∂ ∂ ∂
= 0 

 
would be a consequence of the equation: 
 

dx δx + dy δy + dz δz = 0 
 
for any x, y, z.  One would then conclude an identity of the form: 
 

( ) ( ) ( )
x y z

dx dy dz
δ δ δ∂Φ ∂Φ ∂Φ+ +

∂ ∂ ∂
= 2k2 (x, y, z) (dx δx + dy δy + dz δz), 

 
since those two equations are homogeneous and have degree two in the differentials.  In 
the particular case in which δx = dx, δy = dy, δz = dz, that identity will imply the 
following one: 
(6)    Φ (dx, dy, dz) = 2k2 (x, y, z) (dx2 + dy2 + dz2). 
 
 Hence: Any conformal transformation will imply an identity of the form: 
 
(7)      ds′2 = k2 · ds2 ; 
 
i.e., it will transform all of the linear elements at the same point by a constant ratio, and 
that ratio k will be a function of the coordinates of the point considered. 
 Conversely, if such an identity (7) or (6) were valid then formula (5) would reduce to: 
 

cos V′ = 
2 2 2 2 2 2

dx x

dx dy dz x y z

δ
δ δ δ+ + + +

∑ = cos V, 

 
and the transformation would be a conformal transformation. 
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 The preceding property can then be taken to be the definition of conformal 
transformations. [Cf., Chap. II, § 2.] 
 
 Search for the conformal transformations. – By virtue of the identity (7), any 
conformal transformation will change the equation ds2 = 0 into ds′2 = 0.  It will then 
change any minimal curve into a minimal curve, and in turn, any isotropic developable 
whose minimal curves coincide into a surface with double minimal curves; i.e., an 
isotropic developable. 
 Having said that, consider an isotropic line.  One can find two isotropic developables 
that touch along that line in an infinitude of ways.  Their transforms will touch along a 
common minimal line, and therefore along an isotropic line.  Hence, any isotropic line 
will have an isotropic line for its homologue, any isotropic ruled surface will become an 
isotropic ruled surface, and any sphere that is doubly generated by isotropic lines will 
change into a doubly-ruled surface with isotropic generators – i.e., a sphere. 
 Conversely, any point-like transformation that changes spheres into spheres will 
change any pair of isotropic lines that one can always consider to be the curve of 
intersection of two tangent spheres into a pair of isotropic lines.  It will then change the 
isotropic lines that pass through a point M into isotropic lines that pass through its 
homologue M′.  As a result, it will change the set of isotropic linear elements at that 
point, which are characterized by the equation ds2 = 0, into the analogous set that is 
characterized by the equation ds′2 = 0.  It will then give rise to an identity of the form (7), 
and it will be a conformal transformation. 
 The conformal transformations of three-dimensional space will then be the 
transformations that change any sphere into a sphere. 
 Having said that, let (T) be a conformal transformation, and suppose that the points M 
are referred to an orthogonal penta-sphere (π).  The transformation (T) changes spheres 
into spheres and preserves angles, so it will change the penta-sphere (π) into another 
orthogonal penta-sphere (π′ ).  The coordinates of the homologue M′ to M, when taken 
with respect to (π′ ), are the same as the coordinates of M with respect to (π), because the 
latter coordinates depend upon only the angles that the spheres that are drawn through M 
normally to three spheres of (π) will make with the other two spheres of (π). [Cf., page #-
9], and since the transformation (T) does not alter angles, it will not alter the coordinates 
of the point with respect to the penta-sphere, which are supposed to transform at the same 
time as that point. 
 Therefore, let x1, x2, x3, x4, x5 be the coordinates of M with respect to the penta-sphere 
(π), and let bh = βkh (k = 1, 2, …, 5; h = 1, 2, …, 5) be the coordinates with respect to (π) 
of the spheres that the transformation (T) substitutes for the spheres xk = 0 (k = 1, 2, …, 
5), respectively.  The powers of the point M′ with respect to those spheres will be 
quantities that are proportional to the coordinates xk of M, multiplied by their radii kR′ , 

respectively.  On the other hand, one will have values that are proportional to the 

expressions 
5

1
k kh h

h

R xβ
=

′ ′⋅∑  for the same products [§ 6, formula (18)].  The formulas of the 

transformation (T) can then be written: 
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(8)   x = 
5

1
kh h

h

xβ
=

′∑ ,  hx′  =
5

1
kh k

k

xβ
=
∑   (k, h = 1, 2, …, 5). 

 
 Therefore, the conformal transformations are represented by orthogonal, 
homogeneous, linear transformations in penta-spherical coordinates.  Consequently, they 
define a group of ∞10 transformations, since twenty-five coefficients figure in them that 
are linked by fifteen independent relations.  The word group indicates that when two of 
those transformations are performed in succession, that will give another conformal 
transformation as a final result, which is obvious a priori. 
 One proves that each of those transformations can be decomposed into displacements, 
homotheties, and inversions. 
 
 Remark. – If we compare those formulas (8) with the formulas for the change of 
penta-spherical coordinates, which are defined by replacing the reference penta-sphere 
(π) with the penta-sphere (π′ ) that is homologous to (π) under the transformation (T), and 
those formulas are [§ 6, eq. (38)]: 

kx′  =
5

1
kh h

h

xβ
=
∑ , 

 
then we will see that inversions correspond to changes of coordinates in penta-spherical 
coordinates, just as displacements correspond to changes of rectangular coordinates in 
Cartesian geometry.  The preceding analysis gives the reason for that analogy. 
 
 Conformal transformations of the plane. – The point-like transformations of a plane: 
 
(9)     x′ = f (x, y), y′ = g (x, y) 
 
define and prolong to transformations of linear elements (x, y; dx, dy), just as the point-
like transformations of space do.  The conformal transformations are defined by the 
invariance of angles, and by reasoning as above, one confirms that this invariance is 
equivalent to the invariance of ds2, up to a coefficient k2.  Upon developing that identity: 
 

df 2 + dg2 = k2 (dx2 + dy2), 
one will obtain the conditions: 
 

2 2
f g

x x

∂ ∂   +   ∂ ∂   
= k2,  

f f g g

x y x y

∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂

= 0,  
2 2

f g

y y

   ∂ ∂+   ∂ ∂   
= k2. 

 
 One then concludes from the Lagrange identity that: 
 

f g f g

x y y x

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

= ε k2  (ε = ± 1), 
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in which ε is equal to + 1 or – 1, as is easy to verify, according to whether the 
homologous angles have the same disposition or opposite dispositions. 
 Be that as it may, one has two linear equations in ∂f / ∂x and ∂f / ∂y, so one will infer: 
 

f

x

∂
∂

= ε 
g

y

∂
∂

, 
f

y

∂
∂

= − ε 
g

x

∂
∂

, 

 
which is equivalent to saying that f + ig (when ε = + 1) and g + if (when ε = − 1) is an 
analytic function of x + iy. 
 The study of conformal transformations of the plane is then equivalent to the theory of 
analytic functions of a complex variable. 
 Those transformations depend upon an arbitrary function, and no longer upon a 
certain number of arbitrary constants, as in the case of space.  It will no longer be exact to 
say that any conformal transformation changes any circle into a circle, but one can look 
for the point-like transformations of the plane that do change any circle into a circle, just 
as we looked for the transformations of space that changed any sphere into a sphere. 
 To that effect, one introduces tetra-cyclic coordinates, which will be: 
 

x1 = mx, x2 = my, x1 = m 
2 21

2

x y− −
,  x4 = m 

2 21

2

x y

i

+ +
, 

 
and more generally, combinations of them: 
 

hx′  = 
4

1
hk k

k

xα
=
∑    (h = 1, 2, 3, 4) 

 
will define orthogonal, homogeneous, linear transformations in four variables.  One will 
find that in arbitrary tetra-cyclic coordinates, the transformations that change any circle 
into a circle are defined by the various orthogonal, homogeneous, linear transformations 
in four variables.  One will then have a group of ∞6 transformations, which one calls the 
group of reciprocal radius vectors because its transformations can be decomposed into 
displacements, homotheties, and inversions (or transformations by reciprocal radius 
vectors). 
 
 Invariance of the lines of curvature and isothermal nets. – We return to the case of 
space: From a remark that was made already, if the penta-spherical coordinates x1, x2, x3, 
x4, x5 of a point on a surface satisfy an equation of the form (4), § 6, then the variables 

1x′ , 2x′ , 3x′ , 4x′ , 5x′  that one deduces by an arbitrary homogeneous, linear transformation 

will satisfy the same equation.  Hence, if the equations (1), § 6 represent a surface that is 
referred to its lines of curvature then the same thing will be true for the equations that are 
deduced from them by an arbitrary conformal transformation. 
 In other words, the conformal transformations leave invariant the property of a curve 
on a surface that it is a line of curvature. [Cf., Chap. XI, § 6]. 
 On the other hand, since the conformal transformations multiply the ds2 at a point M 
by a function of the coordinates of the point M, they will not at all alter the form ds2 of a 
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surface that characterizes the isothermal orthogonal coordinates.  Hence, the conformal 
transformations will leave invariant the property of a net of curves on a surface that it 
defines an isothermal, orthogonal net. 
 One concludes from this that conformal transformations change every isothermal 
surface into an isothermal surface.  That will also result from the remark that was made 
for the lines of curvature; equation (4), § 6 will then be reducible to the form: 
 

2ω
λ µ
∂

∂ ∂
= ω · θ (λ, µ). 

 
 Remark. – The last results can be established and completed without calculation by 
the following geometric considerations:  From the remark that was made in Chap. VI, § 4 
in regard to the lines of curvature, any line of curvature is a locus of points M of the 
surface (S) considered, such that it will be possible to associate each of its points with a 
sphere that is tangent to (S) in such a manner that the sphere that is tangent to (S) at M 
will also be tangent to the infinitely-close sphere at that point.  It will then result 
immediately that any point-like transformation that changes any sphere into a sphere will 
change any line of curvature of (S) into a line of curvature of the homologous surface by 
that fact itself. 
 Conversely, any point-like transformation that changes any line of curvature into a 
line of curvature will change any isotropic ruled surface that is not developable or 
spherical into a surface of the same nature, because those surfaces are the only ones 
whose lines of curvature are double [Chap. III, § 7].  Moreover, the lines of curvature of 
those surfaces are their isotropic generators, and an isotropic line can be considered to be 
the generator of such a surface in an infinitude of ways, so the transformation will change 
any isotropic line into an isotropic line, and as a result, as we have seen above, any sphere 
into a sphere.  Therefore, any point-like transformation that changes any line of 
curvature into a line of curvature is a conformal transformation. 
 On the other hand, any conformal transformation that preserves the angles and the 
ratios of infinitely-close arc lengths that issue from the same point will transform any net 
of infinitely-small squares that is traced on a surface into a similar net that is traced on 
the transformed surface.  In other words, any conformal transformation will change any 
isothermal, orthogonal net that is traced on a surface into an isothermal, orthogonal net 
of the homologous surface. 
 Upon combining the two results thus-obtained, one will conclude that any conformal 
transformation will change any isothermal surface into an isothermal surface. 
 Conversely, any point-like transformation that changes any isothermal surface into 
an isothermal surface is a conformal transformation.  Indeed, it must change any sphere 
into a sphere, because the sphere (the plane being regarded as a special case of a sphere) 
is the only surface that is isothermal in an infinitude of ways. 
 

____________ 
 



 

CHAPTER IX 
 

LINE COMPLEXES AND  
FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS 

 
Fundamental elements of a line complex 

 
 1. – One calls a system of ∞3 lines – i.e., a family of lines that depend upon three 
parameters – a complex. 
 Let A be a point of space.  There are ∞1 lines (D) of the complex that pass through 
that point, and they constitute the cone of the complex that is attached to A: We call it the 
cone (K). 
 Correlatively: Let (P) be a plan.  There are ∞1 lines of the complex in that plane, and 
they envelop a curve (C) that is the curve of the complex that is associated with (P).  The 
tangent at any point of that curve is a line of the complex. 

 

A 

(K) 
D′ 

(c) 

D 

P  
 

A 

(K) 
(c) 

P  
 More generally, we call a curve (C) whose tangents all belong to the complex a curve 
of the complex.  Consider a point A on such a curve and the cone of the complex (K) that 
is associated with the point A.  That cone is tangent to the curve (C).  A curve of the 
complex is a curve that is tangent to the cones of the complex that are associated with 
each of its points. 
 Consider a plane (P) and a point A on that plane.  We seek the lines of the complex 
that are situated in the plane (P) and pass through A.  One can obtain them in two ways: 
First, consider the cone of the complex that is associated with the point A.  The desired 
lines are the generators of the cone that are situated in the plane (P).  On the other hand, 
consider the curve of the complex that is associated with the plane (P).  The desired lines 
will also be the tangents to that curve that issue from A.  Having said that, we seek the 
locus of points A in the plane P such that two of the lines of the complex that are situated 
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in the plane (P) and pass through A coincide.  From the foregoing, the corresponding 
points A are the ones for which the corresponding cone of the complex is tangent to the 
plane (P), and must also be on the curve of the complex.  The coincident lines of the 
complex will coincide with the contact generator of the cone of the complex and with the 
tangent to the curve of the complex.  Hence: The curve of the complex that is situated on 
a plane is the locus of the points of that plane for which the cone of the complex is 
tangent to the plane, and the contact generator at such a point is the tangent to the curve.  
The curve of the complex is then defined by points and tangents. 

 

(D) 

(P) 

(K) 
A 

(c) 

 
 Now consider a line (D) of the complex: Take a point A on that line, and consider the 
cone (K) of the complex that is associated with the point A.  Let (P) be the tangent plane 
to that cone along the generator (D).  Each point A of the line will then correspond to a 
plane (P).  Consider the curve (C) of the complex that is situated in the plane (P), as well.  
It is tangent to the line (D) at precisely the point A in such a way that a point of that line 
will correspond to each plane (P) that passes through the line.  There is a homographic 
correspondence between the points and the planes of a line of the complex. 
 Let us specify the nature of that homography.  An arbitrary line is represented by two 
equations of the form: 
(1)     X = aZ + f, Y = bZ + g. 
 
 In order for it to belong to a complex, it is necessary and sufficient that there must 
exist a relation between the parameters a, b, f, g, namely: 
 
(2)      ϕ (a, b, f, g) = 0. 
 
 We then seek all of the lines of the complex that are infinitely close to the line (1) and 
meet that line.  Such a line is represented by the equations: 
 
(3)    X = (a + da) Z + (f + df), Y (b + db) Z + (g + dg). 
 
 We express the idea that it meets the line (1).  The equations: 
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(4)     Z da + df = 0,  Z db + dg = 0 
 
must have a common solution in Z, which will give the condition: 
 
(5)      da · dg – db · df = 0. 
 
 The point of intersection M of the two infinitely-close lines will then have the 
parameter: 

(6)      Z = − df

da
 = − dg

db
. 

 
 If we suppose that the point M is known then the relations (4), in which Z is known, 
will determine the ratios of the differentials.  Moreover, the plane that passes through the 
two infinitely-close lines (1) and (3) is obtained by multiplying equations (3) by db and – 
da, respectively, and adding them, because upon taking (5) into account, that will give the 
equation of a plane that passes through the line (1): 
 
(7)     (X – aZ – f) db – (Y – bZ – g) da = 0. 
 
 The equation of that plane depends upon only the ratio da / db.  We then conclude 
that all of the lines of the complex that are infinitely close to the line (D) and meet that 
line at a given point M are in the same plane, and conversely, all of the lines of the 
complex that are infinitely close to the line (D) and situated in the same plane that passes 
through (D) will meet that line at the same point.  To abbreviate, set: 
 

(8)      λ = 
da

db
. 

Equation (7) is written: 
(9)     X – a Z – f – λ (Y – b Z – g) = 0. 
 
 We show that there is a homographic relation between λ and Z.  For that, it will 
suffice to infer df, dg from equations (4) and substitute them into the identity: 
 

da db df dg
a b f g

ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

= 0, 

 
which results from differentiating the equation of the complex (2).  One will get: 
 

Z da Z db
a f b g

ϕ ϕ ϕ ϕ   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   
 = 0, 

 
and from (8), the homographic relation will be: 
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(10)    Z Z
a f b g

ϕ ϕ ϕ ϕλ  ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
 = 0. 

 
 In particular, consider the cone of the complex with its summit at M.  The infinitely-
close generator is a line of the complex that meets (D) at M.  The plane of those two lines 
is the tangent plane to the cone of the complex, and we recover the homography that was 
defined before. 
 Once more, let an arbitrary curve of the complex be tangent to the line (D) at the 
point A.  Consider an infinitely-close tangent to that curve.  In the limit, that tangent will 
meet (D) at the point A, and the plane of those two lines will be nothing but the 
osculating plane to the curve at the point A.  Hence, that osculating plane will be 
associated with the point A under the preceding homography.  Therefore: All of the 
curves of the complex that are tangent to a line (D) at the same point A will have the 
same osculating plane at that point: It is the tangent plane to the cone of the complex that 
is associated with the point A. 
 Finally, consider a congruence of lines that belongs to the complex.  Take a line (D) 
in that congruence and a focal point A on that line.  The point A belongs to one of the 
sheets of the focal surface of the congruence.  It will also belong to the edge of regression 
that is one of the developables of the congruence, and that edge of regression, which is 
the envelope of the lines (D) that belong to the complex, will be a curve of the complex.  
Its osculating plane at A will be the second focal plane of the congruence.  From the 
foregoing, all of the congruences of the complex that pass through the line (D) and have 
a focus at A will have the same second focal plane that relates to the line (D).  There is a 
homographic correspondence between that second focal plane and the point A. 
 
 

Surfaces of a complex 
 
 2. – We seek to find whether there are congruences in a complex that have a double 
focal surface.  On such a surface (Φ), the edges of regression of the developables are the 
asymptotic lines [Chap. VI, § 1, pp. 127, § 2, pp. 132]; now, they are curves of the 
complex. 
 The problem then comes down to finding surfaces such that a family of asymptotic 
lines is composed of curves of the complex.  Consider such an asymptote (C) and one of 
its points A.  The osculating plane to the curve (C) at A is the tangent plane to the cone 
(K) of the complex that is associated at the point, and that osculating plane is tangent to 
the surface (Φ).  The desired surfaces are then tangent at each of their points to the cone 
of the complex that is associated with each point.  Conversely, let (Φ) be such a surface.  
Consider the contact generator (D) of the cone of the complex at each of its points with 
the tangent plane.  There will exist a family of curves (C) on the surface (Φ) that are 
tangent at each of their points to that line (D) of the family that is thus associated with 
that point [cf., Chap. VI, pp. 126].  Those curves (C) are the curves of the complex.  
Their osculating plane is the tangent plane to the cone of the complex along the line (D).  
It is then the tangent plane to the surface (Φ), and the curves (C) are asymptotes of that 
surface. 
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 Such surfaces that are tangent at each point to the cone of the complex that has that 
point for its summit are called surfaces of the complex. 
 Consider the equations of a line of the complex: 
 
(1)     x = az + f, y = bz + g. 
 
a, b, f, g are linked by the equation: 
(2)      ϕ (a, b, f, g) = 0 
on it. 
 Transport the origin to the point (x, y, z) and call the new coordinates X, Y, Z.  X, Y, Z 
will then be the direction coefficients of a line that passes through the point x, y, z, and 
the angular coefficients of that line will be: 
 

a = 
X

Z
, b = 

Y

Z
, 

 
so the equation of the cone of the complex that is associated with the point (x, y, z) will 
be: 

, , ,
X Y X Y

x z y z
Z Z Z Z

ϕ  − − 
 

= 0, 

 
or, upon making that homogeneous: 
 
(3)     Ψ (X, Y, Z, x Z – z X, yZ – zY) = 0. 
 
 It will then result that the curves of the complex are defined by the differential 
equation: 
(4)     Ψ (dx, dy, dz, x dz – z dx, y dz – z dy) = 0, 
 
which is homogeneous in dx, dy, dz.  One can consider it to be the equation of the 
complex itself since one can deduce it by replacing dx, dy, dz with X, Y, Z in the general 
equation (3) of the cones of complex, and one will then get back to equation (2) of the 
complex by setting: 

X = a, Y = b, Z = 1, x – az = f, y – bz = g. 
 

 Now introduce the tangential equation of the cone of complex: 
 
(5)      χ (x, y, z, U, V, W) = 0, 
 
which, by definition, will express the idea that the plane: 
 

UX + VY + WZ = 0 
is tangent to the cone (3). 
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 The condition for such a surface z = G (x, y) to be tangent to that cone at each of its 
points is that equation (5) must be verified by U = ∂G / ∂x = p, V = ∂G / ∂x = q, W = − 1.  
The surfaces of the complex are then defined by the partial differential equation: 
 
(6)      χ (x, y, z, p, q, − 1) = 0, 
which has the form: 
(7)      F (x, y, z, p, q) = 0. 
 
 We will then get a first-order partial differential equation that represents the complex 
from the tangential viewpoint, since one can immediately deduce the tangential equation 
(5) of the cone of the complex in the form: 
 

(8)      F , , , ,
U V

x y z
W W

 − − 
 

= 0. 

 
 Conversely, any first-order partial differential equation (7) will express the idea that 
the tangent plane to an integral surface is tangent to the cone (8) that is associated with 
the point of contact.  However, the generators of all those ∞2 cones will generally fill up 
all of space and will form a complex only in the exceptional case. 
 Likewise, an arbitrary Monge equation – i.e., any equation of the form: 
 
(9)      G (x, y, z, dx, dy, dz) = 0 
 
that is homogeneous in dx, dy, dz – will define the curves of a complex only 
exceptionally, because it will not reduce to the form (4), in general. 
 
 

On certain partial differential equations 
 

 3. – In order to be able to specify those exceptional cases better, we recall some 
essential notions on the geometric theory of first-order partial differential equations; i.e., 
ones of the form: 
(1)      F (x, y, z, p, q) = 0. 
 
 An integral contact element is a contact element whose coordinates (x, y, z, p, q) 
satisfy the given equation (1). 
 The elementary cone that is associated with the point (x, y, z) is the envelope of 
integral contact elements that belong to that point.  With the preceding notations, its 
tangential equation is the equation: 

(2)      F , , , ,
U V

x y z
W W

 − − 
 

 = 0. 

 
 Any linear element that is composed of a point and a generator of the elementary 
cone that is associated with that point is called an integral linear element.  If dx, dy, dz 
are the direction coefficients of one such generator then the equation that characterizes 
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the integral linear elements will be obtained by looking for the point-wise equation of the 
cone that has equation (2) for its tangential equation and replacing the coordinates X, Y, Z 
with dx, dy, dz.  That amounts to eliminating p and q from the equations: 
 

(3)   F (x, y, z, p, q) = 0, dz – p dx – q dy = 0, 
F F

dy dx
p q

∂ ∂−
∂ ∂

 = 0, 

 
which will define the linear element along which the elementary cone with summit (x, y, 
z) touches the integral contact element (x, y, z, p, q). 
 The equation that one obtains is a Monge equation: 
 
(4)      G (x, y, z, p, q) = 0, 
 
which is said to be associated with the partial differential equation (1). 
 The integral curves are the curves for which all of the linear elements (viz., points 
and tangent planes) are integral linear elements.  They are defined by equation (4). 
 Conversely, any Monge equation (4) will define integral curves of a partial 
differential equation that one gets by passing from the point-wise equation: 
 
(5)      G (x, y, z, X, Y, Z) = 0 
 
to the corresponding tangential equation (2) – i.e., upon eliminating dx, dy, dz from 
equation (4) and the equations: 
 

(6)    
( ) ( )

G G
p

dx dz

∂ ∂+
∂ ∂

= 0,  
( ) ( )

G G
q

dy dz

∂ ∂+
∂ ∂

= 0, 

 
which define the coefficients p, q of the tangent plane to the cone (5) along the generator: 
 

X

dx
= 

Y

dy
 = 

Z

dz
. 

 
 If one appeals to the principle of duality then one will be led to consider another 
direction on each integral contact element, in addition to the integral linear element.  
Indeed, let A and (P) be the point and the plane that constitute the integral contact 
element (x, y, z, p, q).  The elementary cone (K) with its summit at A that is the envelope 
of the planes that form integral contact elements with A will correspond to the curve (Γ) 
by duality, which is the locus of points M that will give integral contact elements when 
they are associated with the plane (P).  The contact generator of the elementary cone (K) 
and the plane (P) that is the intersection of that plane and the infinitely-close tangent 
plane to (K) will correspond to the tangent to (Γ) at A that joins A to the infinitely-close 
point of (Γ).  It is the direction of that tangent that must then intervene.  We call the linear 
element that it defines with A the characteristic linear element of the contact element 
considered. 



§ 3. – On certain partial differential equations 237 

 We now look for that characteristic element.  Let (δx, δy, δz) be an infinitesimal 
displacement of the point A.  If it defines the element considered then the contact element 
(x + δx, y + δy, z + δz) will be an integral contact element that is expressed by the 
conditions: 

F (x + δx, y + δy, z + δz, p, q) = 0, δz – p δx – q δy = 0. 
 In the first of these, one must neglect the higher-order infinitesimals, and since 
equation (1) is verified, by hypothesis, what will remain are the equations: 
 

F F F
x y z

x y z
δ δ δ∂ ∂ ∂+ +

∂ ∂ ∂
= 0,  δz = p δx + q δy, 

 
which will give the desired direction.  One can write them as: 
 

(7)   
F F F F

p x q y
x z y z

δ δ ∂ ∂ ∂ ∂ + + +  ∂ ∂ ∂ ∂   
 = 0,  δz = p δx + q δy. 

 
 We are now in a position to express analytically the idea that the partial differential 
equation (1) defines the surfaces of the complex.  Indeed, it results from § 1 that in this 
case the curve (Γ), which is the curve of the complex that is situated in the plane (P) then, 
will have the contact generator of the cone (K) with that plane for its tangent at A.  
Therefore, the integral linear elements and the characteristic linear element of the contact 
element [A, (P)] will then coincide.  From formulas (3) and (7), one will then have: 
 

(8)     
F F F F F F

p q
p x z q y z

 ∂ ∂ ∂ ∂ ∂ ∂ + + +  ∂ ∂ ∂ ∂ ∂ ∂   
= 0 

 
for any system of numbers (x, y, z, p, q) that verifies equation (1).  In other words, 
equation (8) is a consequence of equation (1). 
 That condition is sufficient, because it implies the coincidence of the integral linear 
element and the characteristic linear element for any integral contact element, and we 
shall show that this coincidence demands that the elementary cones (K) are the cones of a 
complex of lines. 
 Indeed, recall the point-wise equation (5) of the cones (K).  Any integral contact 
element is defined by a point A (x, y, z) and the plane (P) that is tangent to the cone (5) 
along any of its generators.  It is defined by its direction coefficients X, Y, Z, and the six 
quantities x, y, z; X, Y, Z verify equation (5). 
 An infinitely-close integral contact element is similarly defined by the six quantities x 
+ δx, y + δy, z + δz; X + δX, Y + δY, Z + δZ, and the six differentials δy, δy, δz; δX, δY, δZ 
are coupled by δG = 0; i.e.: 
 

(9)    
G G G G G G

x y z X Y Z
x y z X Y Z

δ δ δ δ δ δ∂ ∂ ∂ ∂ ∂ ∂+ + + + +
∂ ∂ ∂ ∂ ∂ ∂

 = 0. 
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 If the direction δy, δy, δz is that of the characteristic linear element of the first contact 
element then it will be parallel to the plane (P), which will give: 
 

(10)    
G G G

x y z
X Y Z

δ δ δ∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 

 
and the direction X + δX, Y + δY, Z + δZ of the new contact generator is once more in the 
plane (P), in such a way that δX, δY, δZ is also a direction in that plane.  One will 
likewise have: 

G G G
X Y Z

X Y Z
δ δ δ∂ ∂ ∂+ +

∂ ∂ ∂
 = 0 

then. 
 Upon comparing this with equation (9), one will conclude that: 
 

(11)    
G G G

x y z
x y z

δ δ δ∂ ∂ ∂+ +
∂ ∂ ∂

= 0. 

 
 Equations (10) and (11) then define the characteristic linear element.  Moreover, if 
one expresses the idea that its direction is precisely X, Y, Z then one will deduce the 
equation: 

 
G G G

X Y Z
X Y Z

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0 

 
from (10), which is nothing but (5), by virtue of Euler’s theorem on homogeneous 
functions, and one will infer the desired condition from (11): 
 

(12)    
G G G

X Y Z
x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0. 

 
 We must then express the idea that equation (12) is a consequence of equation (5).  
To that effect, we take it in the solved form: 
 

x − , , ,
X Y

y z
Z Z

 Γ  
 

= 0 

and make the change of variable: 

y = ω +
Y

z
Z

, 

 
in such a way that Γ will be a function ξ of ω ≡ y – (Y / Z) z, and of z, X/Z, Y/Z.  Equation 
(5) will then be written: 

(13)   0 = G ≡ x − , , ,
X Y

z
Z Z

ξ ω 
 
 

,  ω ≡ y − 
Y

z
Z

, 

 
and the condition (12) will become: 
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X − 
Y

Y Z
Z z

ξ ξ ξ
ω ω

∂ ∂ ∂ − − + ∂ ∂ ∂ 
= 0; 

i.e.: 

z

ξ∂
∂

= 
X

Z
. 

 
 That equation must be a consequence of (13), but, since it does not contain x, that will 
demand that it must be an identity.  Upon integrating, one will then conclude that: 
 

ξ = , ,
X X Y

z
Z Z Z

ψ ω +  
 

. 

 
 Equation (13) for the cones (K) will then be: 
 

x − X
z

Z
= , ,

Y X Y
y x

Z Z Z
ψ  − 
 

, 

 
and from the calculations of § 2, that is the general equation for the cones of the complex: 
 

f = ψ (g, a, b). 
 

 We can then conclude that the partial differential equations whose integral surfaces 
are the surfaces of a complex are characterized by the coincidence of the integral linear 
element and the characteristic linear element of each of their integral contact elements.  
They are the equations: 
(1)      F (x, y, z, p, q) = 0, 
which will imply the equation: 

(8)     
F F F F F F

p q
p x z q y z

 ∂ ∂ ∂ ∂ ∂ ∂ + + +  ∂ ∂ ∂ ∂ ∂ ∂   
 = 0 

as an algebraic consequence. 
 
 

Characteristics and the surfaces of the complex 
 

 4. – The integration of the first-order partial differential equation: 
 
(1)      F (x, y, z, p, q) = 0 
and the Monge equations: 
(2)      G (x, y, z, dx, dy, dz) = 0 
 
will result from the following considerations: 
 One calls the locus of contact elements that belong to the same curve (viz., points and 
tangent planes), and which are all integral contact elements an integral band.  It will then 
be a set of ∞1 contact elements that satisfy the equations: 
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(3)     F (x, y, z, p, q) = 0, dz – p dx – q dy = 0. 
 
 If one takes an arbitrary curve and draws a tangent plane to the elementary cone that 
is associated with the point of contact through each of its tangents then one will obtain an 
integral band.  Hence, if equation (3) is algebraic in p, q then a limited number of integral 
bands will pass through any curve.  That number will reduce by one unit in the case in 
which the curve is an integral curve. 

 T 

A 

(K) 
 

 Imagine an integral surface (S).  Any curve that is traced on that surface will provide 
an integral band that is defined by contact elements that are common to the curve and the 
surface.  Among them, we shall seek the ones that have integral curves for their support.  
The elementary cone (K) at each point A of the surface (S) touches the tangent plane (P) 
to the surface along the integral linear element of the integral contact element [A, (P)].  
We will then be reduced to finding the curves on (S) that have the integral linear element 
thus-defined for the linear element at each of their points A.  From equations (3) of the 
preceding paragraph, that will amount to integrating the differential equation: 
 

(4)      
dx
F

p

∂
∂

= 
dy
F

q

∂
∂

, 

 
in which one must suppose that z, p, q are replaced as functions of x and y by means of 
the equation: 
(5)      z = Φ (x, y) 
 
of the surface (S).  Equation (4) will then be an ordinary differential equation, and one 
(and only one, in general) integral curve that is situated on (S) will pass through each 
point of (S).  The surface (S) will then be generated by those curves (C). 
 Now consider the integral band that is circumscribed on the surface along one of 
those curves (C).  The elements already satisfy equations (3) of the preceding paragraph, 
which we write as: 
 

(6)  F (x, y, z, p, q) = 0, dx = 
F

p

∂
∂

dθ, dy = 
F

q

∂
∂

dθ, dz = 
F F

p q
p q

 ∂ ∂+ ∂ ∂ 
dθ, 

 
upon introducing an auxiliary variable θ. 
 Moreover, it will satisfy the equations: 
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(7)     dp = r dx + s dy, dq = s dx + t dy, 
 
in which r, s, t are the second derivatives of the function (5).  Now, that function satisfies 
equation (1) identically, so one will deduce by differentiation that: 
 

F F F F
p r s

x z p q

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

= 0,  
F F F F

q s t
y z p q

∂ ∂ ∂ ∂+ + +
∂ ∂ ∂ ∂

= 0, 

 
and upon taking equations (6) and (7) into account, those equations will give: 
 

(8)   dp = − 
F F

p
x z

∂ ∂ + ∂ ∂ 
dθ,  dq = − 

F F
q

y z

 ∂ ∂+ ∂ ∂ 
dθ. 

 
 It results from this that: The contact elements on any integral surface subdivide into 
∞1 bands that belong to the ∞3 bands that are defined by equations (6) and (8).  Those ∞3 
bands are called the characteristic bands of the partial differential equation (1).  The 
curves that serve as their supports are the characteristic curves, or more simply, the 
characteristics. 
 
 The characteristic bands do, in fact, depend upon three arbitrary constants.  Indeed, 
the differential equations: 
 

(9)   dx = 
F

p

∂
∂

dθ,  dy = 
F

q

∂
∂

dθ,  dz = 
F F

p q
p q

 ∂ ∂+ ∂ ∂ 
dθ, 

 

dp = − F F
p

x z

∂ ∂ + ∂ ∂ 
dθ, dq = − F F

q
y z

 ∂ ∂+ ∂ ∂ 
dθ 

 
will reduce to four equations if one eliminates dθ.  Moreover, they will imply the 
combination: 

(10)   0 = dF = 
F F F F F

dx dy dz dp dq
x z z p q

∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂

, 

 
and conversely, if that combination dF = 0 is verified then those equations (9) will reduce 
to three.  Therefore, if one takes into account the equation: 
 
(1)      F (x, y, z, p, q) = 0, 
 
while solving it for q (for example) and substituting it into equations (9), what will 
remain is a system of three first-order differential equations in x, y, z, p whose general 
integral indeed depends upon three arbitrary constants. 
 On the contrary, suppose that we have integrated the system (9) in that way.  We will 
get functions of θ: 
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(11)  x = ξ (θ ; x0, y0, z0, p0, q0), y = η (θ ; x0, y0, z0, p0, q0),  
z = ζ (θ ; x0, y0, z0, p0, q0), 

(12)  p = ϖ (θ ; x0, y0, z0, p0, q0), q = χ (θ ; x0, y0, z0, p0, q0)  
 
that will reduce to the initial values x0, y0, z0, p0, q0 for θ = 0, for example.  They will 
have equation (10) for a consequence; i.e.: 
 
(13)    F (x, y, z, p, q) = F (x0, y0, z0, p0, q0), 
 
in such a way that they will define a characteristic band, provided that the initial contact 
element (x0, y0, z0, p0, q0) that figures in it is an integral contact element. 
 Therefore: One and only one characteristic band will pass through any integral 
contact element, and as a result an integral surface that contains one integral contact 
element will contain the entire characteristic band that has that element for its initial 
element. 
 We are in a position to construct all integral surfaces then, because if one is given an 
arbitrary integral band on an arbitrary integral surface then that surface will be 
generated by the characteristic bands that have the various elements of that band for 
their initial elements.  That will result from the foregoing. 
 Conversely: The characteristic bands that have the elements of an arbitrary integral 
band for their initial elements will generate an integral surface. 
 Indeed, suppose that we replace the constants x0, y0, z0, p0, q0 in equations (11) and 
(12) with the functions: 
 
(14)  x = x0 (u), y = y0 (u), z = z0 (u), p = p0 (u), q = q0 (u), 
 
which define the given integral band by means of the parameter u.  Due to the identity 
(13), all of the contact elements obtained will be integral, and equations (11) will define a 
surface as a function of the parameters θ and u.  In order to prove that it is, in fact, the 
stated surface, it is sufficient to verify that it has the elements (11) and (12) for contact 
elements; i.e., that if one denotes the differentiations with respect to θ and u by d and δ, 
respectively, then the functions (11), (12) of θ and u will satisfy the two identities: 
 
(15)  D ≡ dz – p dx – q dy = 0, ∆ ≡ δz – p δx – q δy = 0. 
 
 As far as the first one is concerned, it results from equations (9).  The second one is a 
consequence of the identity: 
 

d∆ – δD = − dp · δx – dq δy + dx · δp + dy δq. 
 
 Upon taking equations (9) into account, the left-hand side will, in fact, become: 
 

δF – 
F

z

∂
∂

(δz – p δx – q δy) dθ ≡ δF – ∆ F

z

∂
∂

dθ. 
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 The elements (11), (12) are both integral, so δF will be zero.  Therefore, since the 
first condition (15) is realized, what will remain is: 
 

(16)     
d

dθ
∆

= − F

z

∂
∂

∆. 

 
 One must suppose that the variables are replaced by the functions (11) and (13) in the 
factor ∂F / ∂z.  One will then have an equation for ∆ that has the form: 
 

(17)     
d

dθ
∆

 = M (θ, u) · ∆. 

 
 Now, ∆ is annulled for θ = 0, since the initial elements (14) form a band of elements, 
and one such equation (17) will not admit any solution besides the solution ∆ ≡ 0, which 
is annulled for θ = 0.  Hence, the second condition (15) is indeed verified for any θ and u. 
 In summary, one and only one integral surface will pass through any integral band. 
 The bands that are an exception to that are the characteristic bands.  An infinitude of 
integral surfaces will pass through a characteristic band that coincide all along the 
characteristic that serves as the support of the band. 
 If we now return to the particular case in which equation (1) is the one that defines 
the surfaces of a complex then we will see, upon comparing the preceding analysis with 
that of § 2, that since the integral curves are curves of the complex, the characteristics 
that are situated on an integral surface will constitute the family of ∞1 curves of the 
complex that are the asymptotic lines of that surface.  The condition for that to be true is 
that equations (6) and (8) must have the consequence that: 
 

dp dx + dq dy = 0; 
 

i.e., that equation (1) must have the consequence that: 
 

F F F
p

p x z

∂ ∂ ∂ + ∂ ∂ ∂ 
+

F F F
q

q y z

 ∂ ∂ ∂+ ∂ ∂ ∂ 
= 0. 

 
 That is equation (8) of § 3.  From the results of § 3, we can then conclude that the 
first-order partial differential equations for which the characteristics are the asymptotic 
lines of the integral surfaces are (if one ignores linear equations) the equations whose 
elementary cones are the cones of the complexes of lines. 
 
 Remark 1. – If equation (1) is linear in p, q then the elementary cone will reduce to a 
line.  The characteristic curves will be defined independently of the characteristic bands 
by the equations in x, y, z: 

dx
F

p

∂
∂

=
dy
F

q

∂
∂

= 
dz

F F
p q F

p q

∂ ∂+ −
∂ ∂

. 
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 There are more than ∞2 characteristic curves, even though there are always ∞3 
characteristic bands, each of which is defined by a characteristic and a neighboring 
characteristic. 
 The integral surfaces are the ones that are generated by ∞1 characteristics.  The 
characteristics are asymptotes for all integral surfaces in the case where they are lines, 
and only in that case. 
 
 Remark 2. – If the cone of the complex reduces to a plane then the complex will be 
called a linear complex.  The cone will not have a tangential equation then, and the 
preceding theory will no longer apply to it. 
 
 The case of linear complexes will be studied in the following chapter.   
 
 

Geometric properties of characteristics 
 

 5. – In what follows, we will discard the linear equations.  Consider a contact element 
(x, y, z, p, q) of a characteristic band and the infinitely-close element.  The intersection of 
the planes of the two elements is defined by the two equations: 
 

Z – z – p (X – x) – q (Y – y) = 0, (X – x) dp + (Y – y) dq = 0. 
 

 Indeed, the second one will result from differentiating the first one, while taking into 
account that: 

dz – p dx – q dy = 0. 
 

 If one compares this with equations (7) of § 3, while taking equations (8), § 4 into 
account, then one will see that the intersection of the plane of a contact element of a 
characteristic band with that of the infinitely-close element will be the characteristic 
linear element.  That will explain the name that we have given to that linear element [cf., 
Chap. VII, § 4, pp. 171]. 
 That property will suffice to define the characteristic bands among the ones that have 
an integral curve for their support, except in the case where the partial differential 
equation is that of the surfaces of a complex of lines.  Because of the equations: 
 

dx = 
F

p

∂
∂

dθ, dy = 
F

q

∂
∂

dθ, dz = 
F F

p q
p q

 ∂ ∂+ ∂ ∂ 
dθ, 

 

dp = − F F
p

x z

∂ ∂ + ∂ ∂ 
dτ, dq = − F F

q
y z

 ∂ ∂+ ∂ ∂ 
dτ, 

 
one will conclude upon substituting them into dF = 0 that: 
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F F F F F F
p q

p x z q y z

  ∂ ∂ ∂ ∂ ∂ ∂ + + +   ∂ ∂ ∂ ∂ ∂ ∂    
(dθ – dτ) = 0; 

 
i.e., dθ = dτ, if one excludes the reserved case.  Moreover, the preceding equations are 
the ones that define the characteristic bands of the equation: 
 
(1)      F (x, y, z, p, q) = 0. 
 
 One sees that in all cases the integral linear element and the characteristic linear 
element of an (integral) contact element of an integral surface have conjugate directions 
on that surface.  Those directions coincide in the case of the surfaces of a complex, which 
will indeed correspond to the fact that the characteristics are then asymptotes of the 
integral surfaces. 
 As for the characteristic curves of an integral surface, their fundamental property is 
that if one excludes the singular solutions then in order for ∞1 characteristics to generate 
an integral surface, it is necessary and sufficient that each of them must meet the 
infinitely-close characteristic. 
 The results that were obtained in the preceding paragraph in the generation of integral 
surfaces by the characteristics (11) can, in fact, be stated thus: In order for a family of ∞1 
curves (11) to generate an integral surface, it is necessary and sufficient that one must 
take x0, y0, z0, p0, q0 to be functions of one parameter u such that one will have both: 
 
(2)     F (x0, y0, z0, p0, q0) = 0, 
 
(3)     δz0 – p0 δx0 – q0 δy0 = 0. 
 
 The first of them is assumed to be realized if equation (11) represents the ∞3 
characteristics of equation (1).  We shall see that the second one express the idea that two 
infinitely-close characteristics will meet. 
 Indeed, we seek to express the idea that this is the case.  We continue to let d and δ 
denote the differentiations that relate to θ and u.  We must express the idea that equations 
(11) are compatible with the equations that one will deduce from them by differentiation 
under the hypothesis that x, y, z are constant; they are: 
 

(4)   
d

d

ξ
θ

δθ + δξ = 0, 
d

d

η
θ

δθ + δη = 0, 
d

d

ζ
θ

δθ + δζ = 0. 

 
 Since those equations do not contain x, y, z, it will suffice to eliminate θ and δθ from 
them.  Now, upon remarking that one has: 
 

d

d

ζ
θ

− ϖ d

d

ξ
θ

 − χ 
d

d

η
θ

 = 0 

 
identically, one will conclude the combination: 
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(5)     δζ – ϖ δξ – χ δη = 0 
from equations (4). 
 For θ = 0, that will reduce to (3), which will then be a consequence of it.  Moreover, 
we have seen in the preceding paragraph that if (3) is true then (5) will be verified for any 
θ.  Hence, upon excluding the possible singular solutions that are due to the presence of 
the factor ∂F / ∂z in the fundamental formula (16), we conclude that the combination (5) 
of equations (4) is equivalent to equation (3), which contains neither θ nor δθ.  That will 
then result from the elimination of θ and δθ from equations (4).  They will then indeed 
express the intersection condition for two infinitely-close characteristics. 
 Moreover, we see that this conditional equation (3) is linear and homogeneous with 
respect to the differentiations with arbitrary constants that figure in the general equations 
of the characteristics.  Without altering that character, one can suppose that the equations 
of the characteristics have been put into the form: 
 
(6)    P (x, y, z; α, β, γ) = 0,  Q (x , y, z; α, β, γ) = 0, 
 
because x0, y0, z0, p0, q0 are expressed in terms of α, β, γ by means of the equations: 
 

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0 0

( , , ; , , ) 0,

( , , ; , , ) 0,

( , , ; , , ) 0, 1

P x y z P P P

x y z

Q x y z Q Q Q

x y z

F x y z p q

α β γ

α β γ

α β γ

= ∂ ∂ ∂
∂ ∂ ∂

= ∂ ∂ ∂
∂ ∂ ∂

= −

 = 0. 

 
δx0 , δy0 , δz0 will be homogeneous linear forms in δα, δβ, δγ, whose coefficients will be 
functions of α, β, γ, and the condition (3) will become a Pfaff equation in α, β, γ : 
 
(7)    A (α, β, γ) δα + B (α, β, γ) δβ + C (α, β, γ) δγ = 0. 
 
 

Complete integrals 
 

 One can recover this result, as well as its converse, by considering complete integrals.  
One will call any family of ∞2 integral surfaces: 
 
(8)     H (x, y, z; α, β) = 0 
 
a complete integral of equation (1), with the reservation that any integral contact element 
must belong to one of the surfaces of the family.  The method of generating integral 
surfaces that was obtained before proves the existence of an infinitude of complete 
integrals for any nonlinear equation (1). 
 Let (S) be an arbitrary integral that is not included in the complete integral (8), and 
take an integral band of that surface.  Each contact element (E) of that band belongs to 
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one and only one of the surfaces (8).  One thus defines ∞1 surfaces (8), each of which has 
a characteristic band in common with (S) that is defined by the initial element (E), 
because that characteristic band is defined entirely on (S) and on the surface (8) 
considered.  Therefore: Any integral surface is the envelope of ∞1 surfaces that belong to 
the complete integral. 
 Conversely, any envelope of ∞1 surfaces (8) has elements of those surfaces for 
contact elements – i.e., integral contact elements.  It will then be an integral surface. 
 Moreover, since one will then obtain all integral surfaces, the characteristics are the 
intersection curves of the various surfaces of the complete integral with an arbitrary 
infinitely-close surface. 
 An arbitrary integral surface is then defined by two equations of the form: 
 

(9)    H (x, y, z; α, β) = 0,  0 = δH ≡ 
H Hδα δβ
α β

∂ ∂+
∂ ∂

, 

 
in which α and β are coupled by an arbitrary relation β = ϕ (α). 
 The characteristics that are situated on that surface are defined by the same equations 
for the various values of α. 
 The set of characteristics is represented by the equations: 
 

(10)   H (x, y, z; α, β) = 0,  
H Hγ
α β

∂ ∂+
∂ ∂

 = 0, 

with three arbitrary constants α, β, γ. 
 The intersection condition of a characteristic (10) and an infinitely-close 
characteristic are obtained by eliminating x, y, z between equations (10) and the 
equations: 

H Hδα δβ
α β

∂ ∂+
∂ ∂

 = 0, 
H Hδ γ
α β

 ∂ ∂+ ∂ ∂ 
 = 0, 

which gives: 
(11)     δβ – γ δα = 0. 
 
 That is indeed a Pfaff equation, and it expresses the idea that: 
 

β = ϕ (α), γ = ϕ′ (α). 
 

 One then recovers the condition that one must replace α, β, γ in order for the 
characteristics (10) to be the ones that generate an integral surface. 
 The preceding results are then indeed proved once again. 
 Furthermore, let us study the converse.  We first remark that any Pfaff equation: 
 
(12)     A δα + B δβ + C δγ = 0 
 
can be reduced to the integrable form δα = 0 or the form (11) δβ – γ δα = 0 by a change 
of variables. 
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 Indeed, set: 
(13)     β = ψ (α, γ ; α0) 
 
in (12), in which α0 is an arbitrary constant, and ψ is chosen arbitrarily.  We will then get 
a differential equation α and γ whose general integral will have the form: 
 
(14)     β0 = χ (α, γ ; α0), 
 
in which β0 denotes a new arbitrary constant.  We then determine ∞2 integral curves of 
the Pfaff equation by equations (13), (14). 
 Having said that, make the changes of variables in (12) that is defined by formulas 
(13) and (14), while considering α0, β0 to be new variables and inferring α and β.  Since 
the function ψ is arbitrary, one can then suppose that this solution is possible.  It will give 
a Pfaff equation in α0, β0, γ that must be verified for arbitrary constant values of α0 and 
β0; viz., for δα0 = δβ0 = 0, it will reduce to the form: 
 

A0 δα0 + B0 δβ0 = 0 
or: 

δβ0 – γ0 (α0, β0, γ) δα0 = 0. 
 
 If γ0 does not depend upon γ then what will remain is an equation of degree one in 
only α0 and β0 that can be written δα1 = 0, if its general integral is: 
 
(15)   α1 = M (α0, β0) ≡ N (α, β, γ)  (α1 = const.). 
 
 On the contrary, if the function γ0 does depend upon γ then one can take it to be a new 
variable, in place of γ, and the Pfaff equation will be reduced to the form: 
 
(16)     δβ0 – γ0 δα0 = 0. 
 
 In this case, the general solution of (12) is: 
 

β0 = ϕ (α0), γ0 = ϕ′ (α0); 
 
there is no surface that satisfies the equation then. 
 On the contrary, in the preceding case, equation (12) is equivalent to: 
 

N (α, β, γ) = const., 
 

which defines a family of surfaces that satisfy the equation, as well as any curve that is 
traced on one of its surfaces.  In that case, one says that the Pfaff equation is integrable. 
 Having said that, suppose that one has a complex of curves (6) such that the 
intersection condition of the infinitely-close curves has the Pfaff form (7), and suppose 
that this equation is not integrable.  One can suppose that one has made a preliminary 
change of parameters, such that this relation reduces to the canonical form (11): 
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(11)     δβ – γ δα = 0. 
 
 Moreover, we can suppose that the equations of the complex of curves have been 
solved in the form: 
(17) z = K (x, y ; α, β),  γ = L (x, y ; α, β), 
 
since otherwise, upon inferring γ from one of the equations (6) and substituting it into the 
other one, what will remain is a relation that is independent of the coordinates x, y, z. 
 We express the idea that the curve (17) meets the infinitely-close curve.  One must 
eliminate x and y from: 
 

γ = L (x, y; α, β), 
K Kδα δβ
α β

∂ ∂+
∂ ∂

 = 0,  δγ = 
L Lδα δβ
α β

∂ ∂+
∂ ∂

. 

 
 In order for that to reproduce equation (11), it is necessary and sufficient that one 
must have: 

K K
L

α β
∂ ∂+
∂ ∂

= 0, 

 
in such a way that equations (17) can be written: 
 

(18) z = K (x, y; α, β), 
K Kγ
α β

∂ ∂+
∂ ∂

= 0. 

 
 In order to prove that they represent a family of characteristics, it will suffice, 
moreover, to prove that there exists one and only one partial differential equation that has 
the complete integral: 
(19)     z = K (x, y; α, β), 
 
since equations (10) will become equations (18) if one replaces H with (z – K). 
 Now, the functions (19) of x and y satisfy the equations: 
 

(20)     p = 
K

x

∂
∂

, q = 
K

y

∂
∂

, 

 
and one can eliminate α and β from (19) and (20), which will indeed give an equation of 
the form (1): 
(1)      F (x, y, z, p, q) = 0. 
 
 Nonetheless, one must verify that this elimination will give only one equation; i.e., 
that K, ∂K / ∂x, ∂K / ∂y are coupled by only one relation when considered to be functions 
of α, β.  If things were otherwise then the functional determinants: 
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2 2K K K K

x xα β β α
∂ ∂ ∂ ∂−

∂ ∂ ∂ ∂ ∂ ∂
, 

2 2K K K K

y yα β β α
∂ ∂ ∂ ∂−

∂ ∂ ∂ ∂ ∂ ∂
 

 
would both be identically zero.  One would then have the simultaneous identities: 
 

K K
L

α β
∂ ∂+
∂ ∂

 = 0, 
2 2K K

L
x xα β
∂ ∂+

∂ ∂ ∂ ∂
= 0,  

2 2K K
L

y yα β
∂ ∂+

∂ ∂ ∂ ∂
 = 0. 

 
 Upon differentiating the first one in x and y and comparing it to the other two, one 
will conclude that ∂L / ∂x ≡ ∂L / ∂y ≡ 0.  However, the second equation (18), which is L = 
γ, will not contain x and y then, which is impossible. 
 We then conclude that in order for a complex of curves to be composed of ∞3 
characteristics of the same first-order partial differential equation, it is necessary and 
sufficient that the intersection condition for two infinitely-close curves of the complex is 
expressed by a non-integrable Pfaff equation for the three parameters that those ∞3 
curves depend upon. 
 
 

Determination of the integral curves 
 

 6. – It remains for us to show how to integrate of the Monge equation: 
 
(2)     G (x, y, z, dx, dy, dz) = 0, 
 
which is (as we saw in § 3) associated with the partial differential equation: 
 
(1)     F (x, y, z, p, q) = 0; 
 
i.e., to determine the integral curves of that equation, which will result from the preceding 
considerations. 
 Now, any integral curve is the envelope of the characteristics that are defined by the 
initial contact elements that one obtains by associating the tangent plane each point M of 
the integral curve that is drawn to the elementary cone (K) with summit M with the 
generator of that cone that is tangent to the curve at M.  Since each of those 
characteristics has an envelope, they will generate an integral surface, since each of them 
meets the infinitely-close characteristic. 
 Conversely, any family of characteristics that generates an integral surface has an 
envelope, since each of them will meet the infinitely-close characteristic, and that 
enveloping curve will be an integral surface, since every linear element of a characteristic 
is an integral linear element. 
 One will then obtain all integral curves by looking for the most general integral 
surface, and the envelope of the characteristics on it that it generates. 
 The result is presented in an explicit form if one is given a complete integral: 
 
(3)     H (x, y, z; α, β) = 0. 
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 An arbitrary integral surface is defined by the characteristics: 
 

(4)   H = 0,  ( )
H Hϕ α
α β

∂ ∂′+
∂ ∂

= 0  [β = ϕ (α)], 

 
and the envelope of those characteristics is defined by the three equations: 
 

(5)  H = 0, ( )
H Hϕ α
α β

∂ ∂′+
∂ ∂

 = 0, 
2 2 2

2
2 22 ( ) ( ) ( )

H H H Hϕ α ϕ α ϕ α
α α β β β

∂ ∂ ∂ ∂′ ′ ′′+ + +
∂ ∂ ∂ ∂ ∂

= 0, 

 
in which β must be replaced with the arbitrary function ϕ (α). 
 
 Remark. – There is only one integral curve on an integral surface that is not a 
characteristic then, and it is the envelope of the characteristics.  The integral surfaces of 
the same partial differential equation then exhibit a remarkable analogy with the 
developable surfaces.  Characteristics will then play the role of generators, and the non-
characteristic integral curve will play the role of the edge of regression.  That analogy 
will become an identity in the particular case that defines the object of the following 
paragraph. 
 
 

Special complexes 
 

 7. – We say that a complex is special when the homography that exists between the 
points and planes of a line of the complex is special.  Any element of a system will 
always correspond to the same element in the associated system, except for one element 
of the first system whose correspondent is indeterminate.  The equation of the 
homography that relates to the complex: 
 
(1)      ϕ (a, b, f, g) = 0 
is [§ 1, eq. (10)]: 

Z Z
a f b g

ϕ ϕ ϕ ϕλ  ∂ ∂ ∂ ∂− + − ∂ ∂ ∂ ∂ 
 = 0, 

 
so the condition for that homography to be special is that: 
 

(2)      
a g b f

ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂⋅ − ⋅
∂ ∂ ∂ ∂

 = 0. 

 
The complex (1) will then be special if that equation (2) is a consequence of equation (1). 
 The complex of the lines that are tangent to a surface gives an example of a special 
complex.  Indeed, consider a congruence of that complex.  The developables of the 
congruence are circumscribed by the surface, so one of the focal planes will then be 
independent of the congruence that one considers.  One will get the same result if one 



252 Chapter IX – Line complexes and first-order partial differential equations 

considers the complex of lines that meet a given curve.  One will then obtain some special 
complexes.  We shall show that there are no other ones. 
 Indeed, take the equation of a complex in the form: 
 

ϕ = g – Ψ (a, b, f) = 0; 
the condition (2) is written: 

(3)      
a b f

∂Ψ ∂Ψ ∂Ψ+ ⋅
∂ ∂ ∂

 = 0. 

 
That relation no longer contains g; it must then be an identity with respect to a, b, f. 
 Consider a line (D) of the complex then, and the infinitely-close lines that it meets.  
We have obtained the intersection condition [§ 1, eq. (5)], which is written: 
 

da · dΨ – db · df = 0 
here, or: 

db · df – da da db df
a b f

 ∂Ψ ∂Ψ ∂Ψ+ + ∂ ∂ ∂ 
 = 0. 

 
Replace ∂Ψ / ∂a with its value that is inferred from (3), which will give: 
 

2da da db da df db df
b f b f

∂Ψ ∂Ψ ∂Ψ ∂Ψ⋅ − ⋅ − ⋅ + ⋅
∂ ∂ ∂ ∂

= 0, 

or 

(4)     da df da db
b f

 ∂Ψ ∂Ψ − −  ∂ ∂  
= 0. 

 
For example, suppose that it is the first factor that is annulled.  The point at which the line 
(D) meets the corresponding infinitely-close line is given [§ 1, eq. (6)] by: 
 

(5)      z = − 
df

da
 = −

b

∂Ψ
∂

, 

 
in such a way that all of the lines considered will cut (D) at the same point F: 
 

(6)     x = az + f, y = bz + Ψ, z = −
b

∂Ψ
∂

. 

Differentiate those formulas: 
 

dx = a dz + z da + df,  dy = b dz + z db + dΨ, 
 
so that upon replacing z with its value, one will get: 
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dx – a dz = −
b

∂Ψ
∂

 da + df, dy – b dz = da df
a f

∂Ψ ∂Ψ+
∂ ∂

. 

 
Upon eliminating df and taking the relation (3) into account, one will conclude that: 
 

(7)     −
f

∂Ψ
∂

(dx – a dz) + dy – b dz = 0. 

 
The differentials dx, dy, dz are then coupled by a homogeneous, linear relation.  As a 
result, the functions x, y, z will be linked by at least one relation. 
 If there is only one relation then the locus of points F will be a surface, and equation 
(7), which defines the infinitely-small tangent displacements, will show that the line (D) 
is tangent to that surface.  If there are two relations then the locus of points F will be a 
curve, and any line (D) will meet that curve, since each point F is on one of the lines (D).  
The only two cases that are possible for special complexes will then indeed be the 
indicated cases. 
 

 Remark 1. – Up to now, we have considered only the factor da df
b

∂Ψ − ∂ 
 in 

equation (4).  If one annuls the other factor then: 
 

db

da
= 

b

∂Ψ
∂

, 

 
so we will have the lines of the complex that, from equation (7) of § 1, will all be situated 
on the same plane with (D).  That plane: 
 

(X – a Z – f)
f

∂Ψ
∂

 – (Y – b Z – y) = 0 

 
will be the singular plane of the homography, and from equation (7), it will be tangent to 
the locus of points F.  One will then see that upon taking one or the other factor, one will 
define the same locus by the points and tangent planes. 
 
 Remark 2. – If the equation of the complex contains neither f nor g then it will define 
a relation between the direction coefficients of the line (D).  One will then have the 
complex of lines that meet the same curve at infinity. 
 
 Remark 3. – The preceding calculation can be interpreted in the case of an arbitrary 
complex.  Equation (2), which is no longer a consequence of the equation of the complex 
then, will define the congruence of lines of the complex on which the homography is 
special when it is joined with that equation of the complex.  They are the singular lines of 
the complex.  Hence: All of the ruled surfaces of the complex that pass through a 
singular line will have the same tangent plane at the point F of the line that was defined 
previously, since that tangent plane is parallel to the plane: 
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−
f

∂Ψ
∂

(x – az) + y – bz = 0. 

 
If the locus of singular points is a surface then equation (7) will show that this surface is 
also the envelope of the singular plane and the singular lines to which they are tangent.  
The surface of singularities is one of the sheets of the focal surface of the congruence of 
the singular lines.  The singular points and singular planes are the focal elements of that 
congruence that are not associated with each other.  If the locus of singular points is a 
curve then, from (7), the singular planes will be tangent to that curve, which is a focal 
curve of the congruence of singular lines. 
 
 Remark 4. – In particular, consider the case of the second-degree complexes.  The 
plane that is associated with an arbitrary point is tangent to the cone of the complex; it is 
unique and well-defined.  It will be indeterminate only if the cone of the complex that is 
associated with that point decomposes.  The surface of singularities is then the locus of 
points where the cone of the complex decomposes.  It is also the envelope of planes for 
which the curve of the complex decomposes, as one will verify by an analogous argument 
by assuming the correlative viewpoint. 
 
 

Surfaces and curves of special complexes 
 

 Let us return to the special complex: First, consider the case of the complex of 
tangents to a surface (Φ).  The cones of the complex are the cones that are circumscribed 
on that surface.  An arbitrary surface integral will then be the envelope of ∞1 tangent 
planes to (Φ); i.e., an arbitrary developable that is circumscribed by (Φ).  The 
characteristics, which are, in general the contact curves of the surface integral with the 
surfaces that belong to the complete integral that it envelops, are the rectilinear generators 
of those developables; i.e., lines of the complex.  Finally, one will obtain the integral 
curves by taking the envelope of the characteristics on the integral surfaces.  They will 
then be the edges of regression of the developables that are circumscribed by (Φ), which 
are curves of the complex. 
 Now consider the complex of lines that meet a curve.  One will likewise see that the 
surfaces of the complex are the developables that pass through the curve, so the 
characteristics will be the lines of the complex, and the curves of the complex will be the 
edges of regression. 
 Hence: In the special complexes, the first-order partial differential equation upon 
which the search for the surfaces of the complex will depend will have the lines of the 
complex for its characteristics.  Conversely, any first-order partial differential equation 
whose characteristics are lines will be associated with a special complex. 
 Indeed, let: 

F (x, y, z, p, q) = 0 
 

be a partial differential equation whose characteristics are lines.  One will get its integral 
surfaces by taking an integral curve and drawing the tangent characteristics.  Hence, the 
integral surfaces will be developables, and the tangent plane will be the same along each 
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characteristic; i.e., dp = 0, dq = 0 must be consequences of the characteristic equations.  
That amounts to saying that F = 0 must imply the equations: 
 

F F
p

x z

∂ ∂+
∂ ∂

= 0, 
F F

q
y z

∂ ∂+
∂ ∂

 = 0 

 
as a consequence.  Suppose that z figures in the partial differential equation and set: 
 

F ≡ z – θ (x, y, p, q). 
 
The preceding conditions will be written: 
 

x

θ∂
∂

− p = 0, 
y

θ∂
∂

− q = 0, 

so θ will have the form: 
θ = px + qy + Ψ (p, q), 

 
and the partial differential equation will be: 
 

z – px – qy = Ψ (p, q). 
 
The tangent plane to any of the integral surfaces will then be: 
 

pX + qY – Z + Ψ (p, q) = 0. 
 
The set of all those planes will then have an envelope that is a surface or a curve.  The 
elementary cone that is associated with any point is the cone that is circumscribed by that 
surface or curve, and the partial differential equations will indeed be associated with a 
special complex. 
 
 Remark. – We have supposed that z figures in the partial differential equation.  If that 
were not true then, as one could predict by changing the role of the coordinates, that 
equation would contain neither x nor y, because one could write, for example: 
 

F ≡ x – θ (y, p, q) = 0, 
so the condition: 

F F
p

x z

∂ ∂+
∂ ∂

 = 0 

 
would not be verified.  Hence, the partial differential equation will then take the form: 
 

Φ (p, q) = 0, 
 
which will give the complex of lines that meet a curve at infinity. 
 For example, consider the equation: 
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1 + p2 + q2 = 0; 
 
it defines the complex of isotropic lines.  The curves of the complex are the minimal 
curves, and one will get them without integration as the edges of regression of the 
isotropic developables.  That is how we determined the minimal curves in Chap. III, § 4. 
 
 

Surfaces normal to the lines of a complex 
 

 8. – We now propose to look for the surfaces whose normals belong to the complex 
that is defined by the equation: 
(1)      ϕ (a, b, f, g) = 0. 
 
A normal to a surface of the complex is defined by the equations: 
 

X x

p

−
= 

Y y

q

−
 = − (Z – z), 

or 
X = − pZ + x + pz, Y = − qZ + y + qz, 

 
in such a way that the desired surfaces will be defined by the partial differential equation: 
 
(2)     ϕ (− p, − q, x + pz, y + qz) = 0. 
 
If a surface meets that requirement then all of the surfaces that are parallel to it will also 
meet that requirement. 
 If the complex is special then the problem will amount to the search for a congruence 
of normals when one knows one of the focal multiplicities.  If the focal multiplicity is a 
curve (ϕ) then the desired surfaces will be the envelopes of the spheres that have their 
centers on (ϕ), from what we said in Chap. VII, § 2, pp. 162.  Moreover, those spheres 
will constitute an obvious complete integral of the equation of the problem. 
 If the focal multiplicity is a surface (Φ) then the problem will amount to the 
determination of the geodesics lines of that surface [Chap. VII, § 2, pp. 161]. 
 In the case of an arbitrary complex, we shall look for the normal congruences that 
belong to the complex.  One will then find the surfaces by means of a quadrature.  In 
order for the ∞2 lines: 

x f

a

−
= 

y g

b

−
= 

0

1

z−
 

 
to be the normals to the same surface, upon setting: 
 

α = 
2 2 1

a

a b+ +
, β = 

2 2 1

b

a b+ +
, γ = 

2 2

1

1a b+ +
, 
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it is necessary and sufficient that α df + β dg must be an exact total differential [Chap. 
VII, § 1, pp. 159].  Now, when the equation of the complex is solved for β, it can be 
written: 
(3)      β = Ψ (α, f, g), 
 
and α df + Ψ (α, f, g) dg must be a total differential with respect to the two independent 
variables.  For example, determine α as a function of f, g, which will give the condition: 
 

(4)      
g

α∂
∂

 = 
f f

α
α

∂Ψ ∂ ∂Ψ⋅ +
∂ ∂ ∂

. 

We seek a solution of the form: 
θ (α, f, g) = const. 

 
Upon differentiating this with respect to f, g, we will get: 
 

f f

θ α θ
α

∂ ∂ ∂+ ⋅
∂ ∂ ∂

= 0, 
g g

θ α θ
α

∂ ∂ ∂+ ⋅
∂ ∂ ∂

= 0, 

 
and the condition (4) will become: 
 

g f f

θ θ θ
α α

∂ ∂Ψ ∂ ∂Ψ ∂− ⋅ + ⋅
∂ ∂ ∂ ∂ ∂

 = 0. 

 
That is a partial differential equation whose integration reduces to the system of ordinary 
differential equations: 

dg = 
df

α
∂Ψ−
∂

 = 
d

f

α
∂Ψ−
∂

, 

which determine the characteristics. 
 Having thus calculated α as a function of f and g, one will deduce β by using equation 

(3), and one will have γ = 2 21 α β− − .  One performs the quadrature of the total 
differential: 

u = − ∫ α df + Ψ dq, 
 
and the desired surfaces will be defined [Chap. VII, 1, pp. 159] by the formulas: 
 

x = f + α u, y = g + β u, z = γ u. 
 

 REMARK. – The developables of the desired surfaces are the surfaces for which ∞1 
geodesics are the curves of the complex.  They are the focal surfaces of the congruences 
considered. 

 
__________



 

CHAPTER X 
 

LINEAR COMPLEXES  
 

Generalities on algebraic complexes 
 

 1. – Let: 
(1)     x = az + f, y = bz + g 
 
be a line.  An algebraic complex will be defined by an algebraic relation between a, b, f, 
g: 

ϕ (a, b, f, g) = 0. 
 
If one considers the lines of the complex that pass through a point A and are situated on a 
plane (P) that passes through that point then they will be the generators of the intersection 
of the plane (P) with the cone of the complex that is associated with the point A or the 
tangents to the curve of the complex that is situated on the plane (P) and issues from A 
[Chap. IX, § 1].  If the complex is algebraic then the cone and the curve will be algebraic, 
and one will say that the order of the cone of the complex is equal to the class of the 
planar curve of the complex.  Their common value is called the degree of the complex; it 
is the number of lines of the complex that are situated in a plane and pass through a point 
of that plane. 
 If that number is equal to 1 then the complex will be called a linear complex.  The 
cone of the complex that is associated with the point A is a plane that one calls the focal 
plane or polar plane of a point A.  The curve of the complex that is situated in a plane (P) 
will reduce to a point that one calls the focus of pole of the plane (P).  If the plane (P) is 
the polar plane to the point A then the point A will be the pole of the plane (P).  There is 
reciprocity between a pole and its polar plane from viewpoint of the duality principle; 
the duality transformations will not alter the degree of an arbitrary algebraic complex. 
 
 

Homogeneous coordinates 
 

 2. – For the study of algebraic complexes, it is advantageous to replace a, b, f, g with 
the homogeneous coordinates of lines. 
 
 Plücker coordinates. – Consider the equations of a line in Cartesian coordinates: 
 

(2)     
X f

a

−
 = 

Y g

b

−
 = 

Z h

c

−
, 

 
which are equations that contain equations (1) as a particular case.  We take the six 
quantities: 
(3)   a, b, c, p = gc – hb, q = ha – fc, r = fb – ga 
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to be the Plücker coordinates of the line.  As one sees immediately, those coordinates are 
coupled by the homogeneous relation: 
 
(4)      pa + qb + rc = 0. 
 
Those six parameters, which are defined only up to the same factor, and which are 
coupled by one homogeneous relation, reduce to four in reality.  a, b, c are the projections 
onto the axes of a certain vector that is carried by the line.  p, q, r are the moments of that 
vector with respect to the axes (in rectangular coordinates).  One can also define them to 
be the coefficients of the equations of the three projection of the line onto the three 
coordinate planes, which are supposed to be put into the form: 
 
(5)   cY – bZ – p = 0, aZ – cX – q = 0, bX – aY – r = 0. 
 
 Let us see what the equation of the complex will become.  One infers from (2) that: 
 

X = 
a q

Z
c c

− ,  Y = 
b p

Z
c c

+ , 

and the equation: 
ϕ (a, b, f, g) = 0 

will become 

, , ,
a b q p

c c c c
ϕ  − 
 

 = 0. 

 
When that equation is rendered homogeneous, it will take the form: 
 

Ψ (a, b, c, p, q) = 0. 
 

One can introduce r by virtue of equation (4), and one will finally obtain a homogeneous 
equation of degree equal to the degree of the complex: 
 
(6) χ (a, b, c, p, q, r) = 0 
 
that will define the complex in Plückerian coordinates.  Conversely, due to its 
homogeneity, if one sets c = 1, h = 0 in formulas (3) then any equation of the preceding 
form can be reduced to the original form for the equation of a complex: 
 
(7)     χ (a, b, 1, g, − f, fb – ga) = 0. 
 
 We seek the cone of the complex whose summit is (x, y, z).  Let X, Y, Z denote the 
current coordinates; it will result from the definition of the Plückerian coordinates that: 
 

, , ,

, , .

a X x b Y y c Z z

p cY bZ q aZ cX r bX aY

= − = − = −
 = − = − = −
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The equation of the cone of the complex is obtained by replacing a, b, c, p, q, r with the 
preceding values in the equation of the complex.  It will then be: 
 

χ (X – x, Y – y, Z – z, yZ – zY, zX – xZ, xY – yY) = 0. 
 

 If one transports the origin of the coordinates by translation to the summit of the cone 
then that equation will be simply: 
 

χ (X, Y, Z, yZ – zY, zX – xZ, xY – yY) = 0. 
 
 If one seeks a curve of the complex then one will take: 
 

, , ,

, , ,

a dx b dy c dz

p y dx z dy q z dx xdz r x dy y dx

= = =
 = − = − = −

 

 
by which the differential equation of the curves of the complex will be: 
 

χ (dx, dy, dz, y dz – z dy, z dx – x dz, x dy – y dx) = 0. 
 
 The condition for a complex to be special is that [Chap. IX, § 7]: 
 

a g b f

ϕ ϕ ϕ ϕ∂ ∂ ∂ ∂⋅ − ⋅
∂ ∂ ∂ ∂

 = 0; 

here, it will become: 

(8)     
a p b q c r

χ χ χ χ χ χ∂ ∂ ∂ ∂ ∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

= 0. 

 
Indeed, upon taking the equation of the complex in the form (7) and taking the 
corresponding formulas: 

 c = r,      p = q,      q = − f,      r = fb – ga 
 
into account, it can be written: 
 

a b p q r
a p b q r a b p q r

χ χ χ χ χ χ χ χ χ χ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⋅ + ⋅ − + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
= 0. 

 
If one wishes to obtain equation (8) then it will suffice to take the equation: 
 

a b p q r
a b p q r

χ χ χ χ χ∂ ∂ ∂ ∂ ∂+ + + +
∂ ∂ ∂ ∂ ∂

= 0 

 
into account, which is deduced from (6) by means of the Euler identity on homogeneous 
functions, or, due to its homogeneity, one can give an arbitrary value to c, while the other 
coordinates take on values that correspond to that value of c. 
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 In the case of an arbitrary algebraic complex, equation (8), when combined with that 
of complex, will define the congruence of the singular lines. 
 Recall the homography between lines and planes of lines of the complex.  The 

coefficients of that homography are 
a

ϕ∂
∂

, 
b

ϕ∂
∂

, 
f

ϕ∂
∂

, 
g

ϕ∂
∂

 , and as a result, in homogeneous 

coordinates, they will be homogeneous, linear combinations of the derivatives 
a

χ∂
∂

, … 

r

χ∂
∂

.  Consider the line of the complex (a0, b0, c0, p0, q0, r0). 

 The equation: 

0 0

a p
a p

χ χ∂ ∂+
∂ ∂∑ ∑ = 0 

 
defines a linear complex that contains the line considered, and on that line, the 
homography for that linear complex will be precisely the same as it was for the original 
complex.  That linear complex is called tangent to the given complex. 
 
 Remark. − If we define a line by two points (x, y, z) and (x′¸ y′, z′) then we will see 
that: 

, , ,

, , .

a x x b y y c z z

p yz zy q zx xz r xy yx

′ ′ ′= − = − = −
 ′ ′ ′ ′ ′ ′= − = − = −

 

 
Hence, as above, the equation of the cone of the complex will be: 
 
(9)    χ (x′ − x, y′ − y, z′ − z, yz′ – zy′, zx′ – xz′, xy′ – yx′) = 0. 
 
 Correlatively, we define the line by two planes (u, v, w, s), (u′, v′, w′, s′).  Upon 
deducing the equations of the projections of the line from the equations of those planes: 
 

uX + vY + wZ + s = 0,  u′X + v′Y + w′Z + s′ = 0, 
 
and upon reducing the latter to the form (5), one will deduce: 
 

, , ,

, , .

a vw uw b wu uw c uv vu

p su us q sv vs r sw ws

′ ′ ′ ′ ′ ′= − = − = −
 ′ ′ ′ ′ ′ ′= − = − = −

 

 
One will then obtain the tangent equation of a planar curve of the complex: 
 
(10)  χ (vw′ – wv′, wu′ – uw′, uv′ – vu′, su′ – us′, sv′ – vs′, sw′ – ws′) = 0, 
 
and one will then see that the class of that curve, like the order of the cone of the 
complex, is equal to the degree of the equation of the complex. 
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 General coordinates of Grassmann and Klein. − More generally, take an arbitrary 
reference tetrahedron, and let x1, x2, x3, x4 be the coordinates of a point, while u1, u2, u3, u4 
are the coordinates of a plane.  Consider the line to be defined by two points (x), (y).  We 
take the quantities: 

(11)    pik = i k

i k

x x

y y
ρ   (i, k = 1, 2, 3, 4) 

 
to be the coordinates of that line, in which ρ is an arbitrary homogeneity factor. 
 We remark that pii = 0 and pki = − pik , in such a way that one will then obtain only six 
distinct coordinates; for example, p12 , p13 , p14 , p34 , p42 , p23 .  They are the relative 
moments, with respect to the vector of the two points (x), (y), of the vectors that are equal 
to 1 when taken on the six edges of the tetrahedron, or at least, quantities that are 
proportional to those moments. 
 Let (pik) and ( )ikp′  be two lines.  The relative moment M of the two corresponding 

vectors is given by the formula: 
 

µ M = 12 34 34 12 13 42 42 13 14 23 23 14p p p p p p p p p p p p′ ′ ′ ′ ′ ′+ + + + + , 

 
in which µ is a constant factor. 
 If that moment is zero then the two lines will meet.  Now consider the determinant: 
 

Θ = 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

x x x x

y y y y

x x x x

y y y y

, 

which is identically zero. 
 Develop it using Laplace’s rule: 
 
 Θ = 2 (p12 p34 + p13 p42 + p14 p23). 
 
 Upon introducing the function: 
 
(12)    Φ (pik) = p12 p34 + p13 p42 + p14 p23 , 
 
the coordinates of an arbitrary lines will satisfy the condition: 
 
(13)     Φ (pik) = 0, 
 
and the condition for two lines to meet can be written: 
 

(14)     ik
ik

p
p

∂Φ′
∂∑ = 0, 
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in which the summation extends over the six coordinates. 
 If we define the line by two planes (u), (v) then we can take the coordinates to be: 
 

(15)     qik = σ i k

i k

u u

v v
, 

 
in which σ is an arbitrary homogeneity factor.  We seek the relations between the 
coordinates pik and the coordinates qik .  Since the line is the intersection of the planes (u), 
(v), a point (x) of that line will be the intersection of the three planes (u), (v), (w).  Hence: 
 
 u1  x1 + u2 x2 + u3 x3 + u4  x4 = 0, 
 v1  x1 + v2 x2 + v3 x3  + v4  x4 = 0, 
 w1 x1 + w2 x2 + w3 x3 + w4 x4 = 0. 
Consider the determinant: 

Ω = 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

u u u u

v v v v

w w w w

s s s s

; 

 
one can take the coordinate xi to be the coefficient Si = ∂Ω / ∂si of si .  In order to get 
another point (y) on the line, we define it by three planes (u), (v), (s), and then yi = Wi = 
∂Ω / ∂wi .  Consider the adjoint of Ω: 
 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

U U U U

V V V V

W W W W

S S S S

. 

 
We have the classical relationship between each second-order minor of Ω that is defined 
by the last two lines and the complementary minor of the adjoint, which can be written: 
 

1
ikp

ρ
= 

( )1 ik

ik

q

qσ
∂ΦΩ ⋅

∂
, 

 
with the notation that is defined by formula (12). 
 Upon disposing of the proportionality factors, one can write this more simply as: 
 

(16)     pik = 
( )ik

ik

q

q

∂Φ
∂

, 

and similarly: 
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(17)     qik = 
( )ik

ik

p

p

∂Φ
∂

. 

 
 The equation of then complex will then be F (pik) = 0, or F (qhl) = 0, in which the 
indices i, k; h, l will correspond in such a manner that phl = ∂Φ / ∂pik ; one will then have 
the equations of the cone or the curve of the complex.  The condition for the complex to 
be special is that: 

(18)   
12 34 13 24 14 32

F F F F F F

p p p p p p

∂ ∂ ∂ ∂ ∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

= 0. 

 
 Remark. – One can define the coordinates pik by the remark that the line considered is 
found in the planes: 

pik xl + pkl xi + pli xk = 0, 
 

and one can deduce the relations between the pik and the qhl the from this.  The condition 
Φ(pik) = 0 expresses the necessary and sufficient condition for those four planes to pass 
through the same line if one supposes that pik = − pki .  It is then necessary and sufficient 
that the pik should be the coordinates of a line. 
 
 

Linear complexes 
 

 3. – Let us study the linear complexes in more detail.  The equation of such a 
complex is: 
(1)      hl ikA p∑ = 0, 

with the notations that were adopted. 
 The complex will be special if it satisfies the relation: 
 
(2)     A12 A34 + A13 A42 + A14 A23 = 0, 
 
and that equation expresses the idea that the Aik are the coordinates of a line.  The 
equation of the complex expresses the idea that any line of the complex meets that line.  
A special linear complex is then composed of the lines that meet a fixed line, which one 
calls the directrix of the complex. 
 Let (D) be a line of an arbitrary linear complex, let M be a point of that line, and let 
(P) be its polar plane.  The cone of the complex reduces to the plane (P) here, so the 
homography of the complex is that of the planes (P) of the line (D) that are associated 
with their poles M. 
 
 

Pencils of complexes 
 

 4. – Let: 
(1)      ∑ Ahl pik = 0, 
(2)      ∑ Bhl pik = 0 
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be two linear complex; the equation: 
 

∑ (Ahl + λ Bhl) pik = 0 
 
will represent a pencil of complexes.  Let us look for the special complexes in that pencil.  
They are defined by the equation: 
 
(3)   (A12 + λ B12) (A34 + λ B34) + (A13 + λ B13) (A12 + λ B12)  

+ (A14 + λ B14) (A23 + λ B23) = 0, 
 
which is an equation of degree two.  There are then two special complexes in any pencil 
of linear complexes.  Let look for the conditions under which those two special 
complexes might coincide. 
 To that effect, suppose that λ = 0 is a root of equation (3).  The necessary and 
sufficient condition for that to be true is: 
 

∑ A12 A34 = 0, 
 

and the preceding equation will reduce to: 
 
(4)    λ (A12 B34 + A34 B12 + …) + λ2 (B12 B34 + …) = 0. 
 
 We call the expression: 
(5)     ∆A = A12 A34 + A13 A24 + A14 A23 
 
the invariant of the complex (1), and the expression: 
 

(6)      ∆AB = A
ik

ik

B
A

∂∆
∂∑  

 
is the simultaneous invariant of the two complexes (1) and (2).  With those notations, 
equation (4) can be written: 
(7)      λ ∆AB + λ2 ∆B = 0. 
  
In order for λ = 0 to be a double root, it is necessary that ∆AB = 0, addition.  Now, ∆A = 0 
expresses the idea that the Aik are the coordinates of a line, so ∆AB = 0 will express the 
idea that the line belongs to the second complex that defines the pencil.  Obviously, it 
belongs to the first one, so it will belong to all complexes of the pencil.  One then 
concludes that: In order for one of the special complexes to be double, it is necessary and 
sufficient that it must belong to all complexes of the pencil. 
 In order for the equation to reduce to an identity – i.e., in order for all of the 
complexes of the pencil to be special – it is further necessary that one must have ∆B = 0.  
It is therefore necessary that the complexes must be special and their directrices must 
meet. 
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 We call the set of lines that are common to two linear complexes a linear congruence.  
In general, one and only one line of that congruence will pass through every point of 
space: It is the intersection of the polar planes to the point in the two complexes.  One 
likewise sees that there is generally one and only one line of the congruence in any plane, 
and it joins the foci of that plane in the two complexes.  Consider the pencil that is 
determined by the two complexes that define the congruence.  If that pencil contains two 
distinct special complexes then all of the lines of the congruence will belong to those 
special complexes, and as a result they will meet two fixed directrices; conversely, a 
linear congruence is generally composed of the lines that meet two fixed directrices. 
 If the special complexes coincide then let (A) be their common directrix.  Consider an 
arbitrary complex (C) of the pencil.  (A) is a line of the complex (C).  Homographically, 
each point M of (A) corresponds to its polar plane (P) with respect to the complex (C).  
The lines of the congruence that pass through M and belong to the complex (C) will be in 
that polar plane (P).  Now, the points of (A) have the same polar plane with respect to all 
of the complexes of the pencil.  The lines of the congruence meet the line (A), and for 
each point of that line, they will be situated in the corresponding polar plane. 
 Conversely, if one is given a homography arbitrarily and makes each point M of a 
fixed line (A) correspond to a plane (P) that passes through that line then the set of ∞2 
lines that each pass through a point M and are located in the plane (P) that is associated 
with that point M will be a linear congruence, and the special complexes of the 
corresponding pencil will coincide. 
 Indeed, take (A) to be the z-axis.  A point M of (A) will be defined by its parameter z, 
and a plane (P) that passes through (A) will be defined by its equation y − mx = 0.  The 
equation of the given homography will then be written: 
 
(8)     P + Bz + Qm – Amz = 0. 
 
 The Plückerian coordinates a, b, c, p, q, r of a ray of the congruence in question will 
first satisfy: 
(9)      r = 0, 
 
which expresses the idea that the ray meets Oz.  If a and b are not both zero then suppose, 
for example, that a ≠ 0.  The ray meets Oz at the point whose parameter is z = q / a, and it 
will be found in the plane bx – ay = 0.  Upon taking into account that ap + bq + cr = 0, 
along with equation (9), the relation (8) will then give: 
 
(10)    Ap + Bq + Pa + Qb = 0. 
 
 If a = b = 0, and if p, q are not both zero, then the ray will meet Oz at infinity, and its 
equations will be cy = p, cx = − q.  The relation (8) then gives Ap + Bq = 0, and equation 
(10) will be once more verified.  It will still be true for a = b = p = q = r = 0, which 
corresponds to the singular ray (A). 
 In summary, the congruence will be defined by equations (9), (10).  Now, they define 
two linear complexes: The invariant of the first one is zero, as well as their simultaneous 
invariant.  One has then returned to the indicated case. 
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Complexes in involution 
 

 5. – Recall the preceding pencil of complexes.  The two basic complexes are said to 
be in involution of ∆AB = 0.  Consider a line (D) that is common to two complexes, in the 
general case.  A point M of that line will correspond homographically to its polar plane in 
each of the complexes, so let (P), (Q) be those planes.  A homographic correspondence 
(H) between the planes (P), (Q) of the line will then result.  Similarly, upon starting with 
a plane of the line, one will see that there exists a homography (H′ ) between the points of 
the line. 

 D ∆ 

∆′ A′ 
 

 
 We seek the double planes of the homography (H).  To that effect, consider one of the 
directrices (∆) of the linear congruence that is defined by the two complexes and the 
plane (D)(∆).  The pole of that plane with respect to each of the two complexes is the 
intersection A′ of (D) with the second directrix (∆), because all of the lines that pass 
through A′ and meet (∆) will belong to the congruence, and as a result, to the two 
complexes.  Therefore, in each of the two complexes, A′ will be the focus of the plane 
(D)(∆), and similarly, A, which is the intersection of (D) and (∆), will be the focus of the 
plane (D)(∆′).  It will then result that those planes correspond to themselves under the 
homography (H), and consequently that those two planes will be the desired double 
planes. 
 One likewise sees that the points A and A′ are the double points of the homography 
(H′ ).  Having said that, we shall show that the condition ∆AB = 0 expresses the idea that 
each of the two homographies (H) and (H′ ) is an involution. 
 Indeed, in order for the homography (H) between the planes (P) and (Q) to be an 
involution, it is necessary and sufficient that the planes (P), (Q) must be conjugate with 
respect to its double planes.  The equation of the polar plane of a point with respect to an 
arbitrary complex of the pencil is: 

(Ahl + λ Bhl) 
i k

i k

X X

x x
 = 0, 

which is an equation of the form: 
P + λ Q = 0. 

 
We point out that it will then result that all of the polar planes of a point with respect to 
the complexes of a pencil will form a pencil of planes.  The axis of that pencil of planes is 
the line of the linear congruence that is common to the two complexes that pass through 
the point considered.  Consider four arbitrary complexes of the pencil then.  The 



268 Chapter X – Linear complexes 

anharmonic ratio of the four polar planes of the same point in those four complexes will 
be equal to the anharmonic ratio of the four corresponding quantities λ.  In particular, 
take the two basic complexes and the special complexes.  The values of λ are 0, ∞, and 
the roots of the equation: 

∑ (A14 + λ B14) (A23 + λ B23) = 0, 
 

and the condition for the first two to be harmonically conjugate with respect to the other 
two is that: 

λ1 + λ2 = 0, 
 

or ∆AB = 0.  Now, if the point considered is found on the line (D) then its polar planes 
with respect to the two special complexes will be precisely the planes (D)(∆) and (D)(∆′).  
Hence: If two complexes are in involution then the polar planes of a point in those two 
complexes will be harmonic conjugates with respect to the planes that pass through that 
point and through the directrices of the congruence that is common to the two complexes, 
and conversely. 
 That is equivalent to saying that the homography (H) in an involution.  The analogous 
property that relates to the homography (H′) will be established similarly by utilizing the 
tangential coordinates qhl instead of the point-wise ones pik .  The property of two 
complexes being in involution will then correspond to itself under duality, and one can 
further say: The poles of an arbitrary plane with respect to the complexes of a pencil are 
on a line that meets the directrices of the congruence that is common to those complexes.  
If two complexes are in involution then the poles of any plane with respect to those 
complexes are harmonic conjugates with respect to the points of the intersection of the 
line that joins them with the two directrices of the congruence that is common to those 
complexes, and conversely. 
 
 Symmetric coordinates of a line. – One can further generalize the coordinates of lines.  
Recall the fundamental relation: 
(1)      ap + bq + cr = 0; 
 
it is homogeneous and has degree two.  Now, there exists a remarkable type of second-
degree equation in which only the squares appear.  In order to reduce the preceding 
relation to that form, it will suffice to set, for example: 
 

(2)    1 3 5

2 4 6

, , ,

, , .

a p t b q t c r t

a p it b q it c r it

+ = + = + =
 − = − = − =

 

 
The condition will then become: 
 
(3)     2 2 2 2 2 2

1 2 3 4 5 6t t t t t t+ + + + +  = 0. 

 
One introduces the tk as homogeneous coordinates, which are homogeneous linear 
functions of the Plückerian coordinates.  Upon equating those six coordinates to 0, one 
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one will obtain the equations of the six complexes that are pair-wise in involution, 
because will easily see that the condition for the two complexes: 
 

∑ Ak tk = 0, ∑ Bk tk = 0 
to be an involution is that 
(4)      ∑ Ak Bk = 0. 
 
 Those results will persist if one replaces a, b, c, p, q, r with the general coordinates pik 
in the definition of the coordinates tk , and if, even more generally, one replaces the tk 
with the coordinates that one deduces from them by an orthogonal, homogeneous linear 
transformation in six variables. 
  
 

Conjugate lines 
 

 6. – Consider a complex (C) that is not special and a line (∆) that does not belong to 
that complex.  Consider the congruence that is common to (C) and the special complex 
whose directrix is (∆).  That congruence has a second directrix (∆′) that is called the line 
that is conjugate to (∆).  There is obviously reciprocity between those two lines.  All of 
the lines of the complex (C) that meet the line (∆) will meet its conjugate (∆′), since they 
are lines of the congruence, and conversely, any line that meets both of two conjugate 
lines (∆), (∆′) will belong to the congruence, and in turn, to the complex.  If one considers 
a point A of (∆) then its polar plane will pass through (∆′), since all of the lines that pass 
through A and meet (∆′) will belong to the complex.  Therefore, (∆′) is the envelope of 
the planes polar to the points of its conjugate (∆).  One likewise sees that (∆′) is the locus 
of polar of the planes that pass through its conjugate (∆).  If the line (∆) belongs to the 
complex (C) then the two directions of the preceding congruence will coincide.  The lines 
of the complex are their own conjugates. 
 Let the equation of the complex be: 
 

F (a, b, c, p, q¸ r) = Pa + Qb + Rc + Ap + Bq + Cr = 0. 
 
Let us look for the coordinates (a2, b2, c2, p2, q2¸ r2) of the conjugate to a line (a1, b1, c1, 
p1, q1¸ r1).  It suffices to express the idea that the given complex and the special 
complexes that have the lines (a1, b1, c1, p1, q1¸ r1), (a2, b2, c2, p2, q2¸ r2) for their 
directrices will belong to the same pencil, which gives: 
 

P + λ1 p1 + λ2 p2 = 0  and its analogues. 
 
Multiply this by a1, b1, c1, p1, q1¸ r1, respectively, and add corresponding sides, so the 
coefficient of λ1 will disappear, and we will get: 
 

F (a1, b1, c1, p1, q1¸ r1) + λ2 ∑ (a1 p1 + a2 p2) = 0. 
Set: 

∑ (a1 p1 + a2 p2) = σ, 
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to abbreviate, which will give: 
 
(1)    F (a1, b1, c1, p1, q1¸ r1) + λ2 σ = 0. 
 
If we multiply this equation by a2, b2, c2, p2, q2¸ r2 , resp.,  and add the resulting equations 
then the coefficient of λ2 will disappear, and we will have: 
 
(2)     F (a1, b1, c1, p1, q1¸ r1) + λ1 σ = 0. 
 
Finally, if we multiply by A, B, C, P, Q, R, resp., then upon setting: 
 

∆ = AP + BQ + CR, 
we will get: 

2∆ + λ1 F (a1, b1, c1, p1, q1¸ r1) + λ2 F (a2, b2, c2, p2, q2¸ r2) = 0, 
 
which will be written: 

∆ = 1 2λ λ σ′ , 

 
upon taking (1) and (2) into account, so: 
 

λ1 = 
2λ σ
∆
′

 = − 
1 1 1 1 1 1( , , , , , )F a b c p q r

∆
. 

 
We can then take the coordinates of the conjugate line to be: 
 

   a2 = A − 1

1 1 1 1 1 1( , , , , , )

a

F a b c p q r

∆
,  and its analogues, 

or 
(3)   a2 = A − 1 1 1 1 1 1 1( , , , , , )AF a b c p q r a− ∆ ,  and its analogues. 

 
 Suppose that one takes two conjugate lines to be the opposite edges of the reference 
tetrahedron.  If we call the tetrahedral coordinates x, y, z, t then we have seen that: 
 

, , ,

, , .

a xt tx b yt ty c zt tz

p yz zy q zx xz r xy yx

′ ′ ′ ′ ′ ′= − = − = −
 ′ ′ ′ ′ ′ ′= − = − = −

 

 
Suppose that one takes the lines (x = 0, y = 0) and (z = 0, t = 0) to be conjugate lines.  
Their coordinates are: 
 
 a1 = 0, b1 = 0, c1, p1 = 0, q1 = 0, r1 = 0, 
 a2 = 0, b2 = 0, c2 = 0, p2 = 0, q2 = 0, r2 . 
 
We express the idea that these lines are conjugate.  The conditions that were found before 
give us: 
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0 = AF(a1, …),      0 = BF(a1, …),      0 = CF – ∆c1,      0 = PF,      0 = QF,      r2 = RF. 
 

Now: 
F (a1, b1, c1, p1, q1¸ r1) = F (0, 0, c1, 0, 0, 0) = R c1 . 

 
Since ∆ is non-zero, by hypothesis, it will result that: 
 

A = 0, B = 0, P = 0, Q = 0, R ≠ 0, C ≠ 0. 
Hence: 

∆ = RC, 
 
and the equation of the complex will take the reduced form: 
 

Cr + Rc = 0, 
or 
(4)  r = kc. 
 
 In particular, we seek to perform that reduction in Cartesian axes.  We take the 
conjugate lines to be the axis Oz and the line at infinity in the xy-plane.  One must first 
show that there are lines whose conjugates can be pushed out to infinity.  In order for a 
line (a1, b1, c1, p1, q1, r1) to be at infinity, it is necessary and sufficient that a1 = 0, b1 = 0, 
c1 = 0, and from the formulas that were found before, the conjugates to those lines will be 
such that: 

2a

A
 = 2b

B
 = 2c

C
 = 1 1 1(0,0,0, , , )F p q r

∆
. 

 
a2, b2, c2 are then proportional to fixed quantities.  The conjugates of the lines at infinity 
are parallel to the same direction.  Those lines are the loci of the poles of the planes 
parallel to a fixed plane.  One calls them diameters, and the parallel planes whose poles 
are on a diameter are said to be conjugate to that diameter.  Upon referring a complex to 
a diameter and a conjugate plane, the equation of the complex will then take the form: 
 

r = kc. 
 
 One can obtain that reduction in rectangular axes.  Indeed, there exists an infinitude 
of lines perpendicular to their conjugates.  They are defined by the relation: 
 

a1 a2 + b1 b2 + c1 c2 = 0, 
or 

(Aa1 + Bb1 + Cc1) F (a1, b1, c1, p1, q1, r1) − 2 2 2
1 1 1( )a b c∆ + +  = 0. 

 
Those lines then constitute a second-degree complex. 
 Take an arbitrary diameter (a1, b1, c1, p1, q1, r1) of the linear complex.  The conjugate 
plane that passes through the origin and the line at infinity that is conjugate to the 
diameter (0, 0, 0, p2, q2, r2) will have the equation: 
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p2X + q2Y + r2Z = 0. 
 
The condition for it to be perpendicular to the diameter is: 
 

1

2

a

p
= 1

2

b

q
= 1

2

c

r
, 

or 

1

1 1

a

PF p− ∆
= 1

1 1

b

QF q− ∆
= 1

1 1

c

RF r− ∆
, 

in which we have set: 
F1 = F(a1, b1, c1, p1, q1, r1), 

to abbreviate. 
 Since the conjugate line to the diameter is at infinity, a2 = b2 = c2 = 0.  Hence, from 
formulas (3), a1, b1, c1 will be proportional to A, B, C, which will give: 
 

1 1

A

PF p− ∆
= 

1 1

B

QF q− ∆
= 

1 1

C

RF r− ∆
. 

 Now: 
a1 p1 + b1 q1 + c1 r1 = 0, 

which gives: 
A p1 + B q1 + C r1 = 0, 

here, so: 
F1 = F(a1, b1, c1, p1, q1, r1) = P a1 + Q b1 + R c1 . 

 
If we multiply the two terms in the preceding ratios by A, B, C, respectively, and add 
them then we will get a ratio that equals 2

1/A F∆∑ .  We can then take a1 = A, b1 = B, c1 

= C, so F1 = ∆, and finally: 
 

1

A

PF p− ∆
= 

2

2

A

∆
∑ , and analogous equations. 

 
We will then have the defining formulas: 
 

(5)  a1 = A,    b1 = B,    c1 = C,    p1 = P − 
2

A

A

∆

∑
,    q1 = Q − 

2

B

B

∆

∑
,    r1 = R − 

2

C

C

∆

∑
. 

 
We then obtain one and only one diameter that is perpendicular to the conjugate plane: It 
is the axis of the complex.  Upon taking it to be the z-axis, we will get the reduced 
equation in rectangular coordinates: 

r – mc = 0. 
 
 The form of the complex depends upon only one parameter m, which is its invariant with 
respect to the group of motion. 
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 If r = 0, c = 0 then the equation will be satisfied.  Now, r = 0, c = 0 are the 
coordinates of the lines that meet Oz and are perpendicular to it.  The complex contains 
all lines that meet the axis and are perpendicular to it; c, r are coordinates that do not 
change when one turns the line around Oz; similar statements will be true if one displaces 
it parallel to Oz.  In other words: A helicoidal motion with axis Oz will leave the complex 
unaltered.  It will then result that if one has ∞1 lines that belong to the complex and are 
derived from each other by a helicoidal motion then one will obtain all lines of the 
complex by subjecting that system of lines to the preceding rotations and translations.  
Consider the lines whose coordinates a, p are zero, and look for those lines among them 
that belong to the complex.  One will find the lines: 
 

bx = mc, cy – bz = 0, 
 
which constitute a family of generators of the paraboloid: 
 

xy – mz = 0. 
 
Consequently, in order to obtain the lines of a complex, it will suffice to take a system of 
generators of an equilateral paraboloid and to subject it to all of the helicoidal 
displacements that have the axis of the paraboloid for their axis. 
 
 

Nets of complexes 
 

 7. – If Φ = 0, Φ′ = 0, Φ″ = 0 are the equations of three linear complexes then a net of 
complexes will be defined by the equation: 
 

λ Φ + λ′ Φ′ + λ″ Φ″ = 0. 
 

Consider the lines that are common to all of the complexes of the net – i.e., common to 
the three complexes Φ = 0, Φ′ = 0, Φ″ = 0; there are ∞1 of them.  They belong to the 
special complexes of the net, so one can define them, in general, by means of three of 
those special complexes.  Now, a special complex is composed of all the lines that meet 
its directrix.  Since the preceding lines will then meet three arbitrary fixed lines, they will 
constitute a system of generators of a quadric, and the second system of generators will 
consist of the directrices of the special complexes of the net. 
 
 Application. – One can define a complex by five lines that do not belong to the same 
linear congruence.  Indeed, let the lines be 1, 2, 3, 4, 5; we pick a point P and seek its 
polar plane.  Consider the lines 1, 2, 3, 4; there exist two lines (∆), (∆′) that meet those 
four lines.  Those lines are conjugate with respect to the complex, so the line that passes 
through P and is supported by (∆), (∆′) will belong to the complex.  Similarly, upon 
considering the lines 2, 3, 4, 5, we will get a second line that passes through P and 
belongs to the complex; the polar plane to P will be then determined by those two lines. 
 
 Remark. – In order to find the lines that are common to four complexes: 
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Φ = 0,     Φ′ = 0,      Φ″ = 0,      Φ″′ = 0, 
 
one can likewise, in general, replace these complexes with four of the special complexes 
that are contained in the family of ∞3 complexes: 
 

λ Φ + λ′ Φ′ + λ″ Φ″ + λ″′ Φ″′ = 0. 
 
 The problem then amounts to finding the lines that meet four arbitrary fixed lines, and 
as one knows, one will have two solutions. 
 
 

Curves of a linear complex 

 8. – We propose to determine the curves of the complex: 
 

r = kc. 
 
Consider a line that passes through a point (x, y, z) and the direction coefficients a, b, c.  
In order for them to belong to the complex, in it necessary and sufficient that: 
 

bx – ay = kc. 
 

 The differential equation of the curves of the complex is then: 
 
(1)      x dy – y dx = k · dz. 
That equation can be written: 

x2 
y

d
x

 
 
 

= d (kz). 

Set: 

(2)     kz = Y,  
y

x
= X,  x2 = P. 

 
The preceding equation will become: 
 

dY – P dX = 0; 
 

it shows that P is the derivative of Y with respect to X.  One will then obtain the general 
integral to (1) by setting: 

(3)     X = ϕ (t), X = ϕ (t), P = 
d

d

ψ
ϕ

 

 
in equation (2).  One will then obtain x, y, z, expressed as functions of one arbitrary 
variable t, by means of two arbitrary functions.  If one takes the independent variable to 
be X then it will suffice to set: 

Y = f (X), P = f (X); 
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hence, the equations of the curve will be: 
 

(4)     kz = 
y

f
x

 
 
 

, x2 = 
y

f
x

 ′ 
 

. 

Upon finally setting: 
y

x
= u, 

 
one will obtain the expressions for x, y, z as functions of u: 
 

(5)    x = ( )f u′ , y = ( )u f u′ , z = 
1

( )f u
k

. 

 
 It is easy to obtain some remarkable curves of the complex by specializing the form 
of the function f. 
 
 1. One will get all of the algebraic curves of the complex by taking f to be an 
algebraic function of u.  In particular, set: 

f (u) = 
3

3

u
, 

so 
f′ (u) = u2, 

and therefore: 

(6)     x = u,  y = u2,  z = 
3

3

u

k
. 

 
Those are the equations of a twisted cubic that osculates the plane at infinity in the 
direction x = 0, y = 0.  Conversely, one can reduce the equations of any twisted cubic to 
the preceding form by a projective transformation, so it will result that the tangent to any 
twisted cubic belongs to a linear complex. 
 
 2. The general formulas (5) will contain a radical, provided that one has set x2 = P.  
One can make the radical disappear by choosing the parameter in such a fashion that P is 
a perfect square.  In order to do that, consider the plane curve X = ϕ (t), Y = ψ (t), which 
is the envelope of the line: 

Y – u2 X + 2 θ (u) = 0. 
X, Y are such that: 

dY

dX
= u2, 

 
and the envelope is defined by the equation of the line and by: 
 

− u X + θ′ (u) = 0. 
Hence, one infers that: 
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X = 
( )u

u

θ ′
, Y = u θ′ (u) – 2θ (u); 

hence: 

(7)    x = u,      y = θ′ (u),      z = [ ]1
( ) 2 ( )u u u

k
θ θ′ − . 

 
 These formulas permit one to find all of the unicursal curves of the complex.  One 
only has to take u to be a rational function of an arbitrary parameter and to take θ to be a 
rational function of u. 
 
 3. The differential equation (1) is then written: 
 

(x2 + y2) arctan
y

d
x

 
 
 

 = k dz. 

Set: 

kz = Y,  arctan 
y

x
 = X,  x2 + y2 = P = 

dY

dX
. 

 
Upon taking X to be an independent variable, one will obtain the general integral in the 
form: 

arctan 
y

x
 = ω,  kz = f (ω), x2 + y2 = f′ (ω), 

which is written: 
 

(8)   x = ( )f ω′  · cos ω,      y = ( )f ω′  · sin ω,      z = 
2

1
( )f

k
ω . 

 
One will get some particular curves by setting: 
 

f (ω) = R2ω + C; 
hence: 

(9)    x = R cos ω, y = R sin ω, z = 
2R

k
ω + a. 

 
Those are helices that are traced on cylinders of revolution around the axis of the 
complex.  The pitch of those helices 2πR2 / k is uniquely a function of R; therefore, all of 
the helices of the complex that are traced on the same cylinder that has the axis of the 
complex for its axis will have the same pitch. 
 
 

General properties of the curves of a complex 
 

 It results immediately from the definition of the curves of a complex that in a linear 
complex, the polar plane to a point of a curve of the complex is the osculating plane to 
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the curve at that point [Chap. IX, § 1].  Consider the osculating planes to a curve of the 
complex that issues from a point P.  Let A be one of the contact points.  The osculating 
plane at A is the polar plane to A, so the line PA will belong to the complex, and in turn, it 
will be in the polar plane of P.  It will then result that the contact points of the osculating 
planes that issue from a point on a curve of a linear complex are in the same plane that 
passes through that point.  In particular, the contact points of the osculating planes that 
issue from a point of a twisted cubic are in the same plane that passes through that point. 
 Take formulas (7).  We find that: 
 

 A = y′ z″ – z′ y″ = 
1

k
θ′ θ″′ = 

y

k
θ″′, 

 

 B = z′ x″ – x′ z″ = − u

k
θ″′ = − x

k
θ″′, 

 
 C = x′ y″ – y′ z″ = θ″′ , 
and 

x y z

x y z

x y z

′ ′ ′
′′ ′′ ′′
′′′ ′′′ ′′′

 = 
1

k
θ″′ 2. 

 
One then sees that the torsion at the point (x, y, z) is given by: 
 

T = −
2 2 2x y k

k

+ +
. 

 
It depends upon only the point, and not on the curve.  Therefore, all curves of the linear 
complex that pass through a point will have the same torsion at that point (Sophus Lie). 
 
 

Surfaces normal to the rays of a complex 

 9. – There is no reason to search for the surfaces of a linear complex.  Indeed, let: 
 

ay – bx + kc = 0 
 
be a linear complex.  The polar plane to the point (x, y, z) is parallel to the plane: 
 

Xy – Yx + kZ = 0, 
 

and in order for a surface z = f (x, y) to be tangent to that plane, it is necessary that: 
 

p

x
 = 

q

x−
= 

1

k

−
, 



278 Chapter X – Linear complexes 

or 

p = − 
y

k
,  q = 

x

k
. 

 
Now, the integrability condition: 

p

y

∂
∂

= 
q

x

∂
∂

 

 
is not realized.  The problem is therefore insoluble. 
 We then seek the surfaces whose normals are lines of the complex.  We will have to 
integrate the partial differential equation: 
 

py = qx = k = 0, 
 
which amounts to the integration of the system: 
 

dx

y
 = 

dy

x−
 = 

dz

k
 = − dt, 

 
which is precisely the system to which one arrives when one looks for the normal curves 
to the polar planes of their points.  That system is written: 
 

dx = − y · dt, dy = x · dt, dz = − k · dt, 
 
and is integrated immediately.  Since t defined only up to an additive constant, the 
general integral will be written: 
 

x = R cos t, y = R sin t, z = − kt + h. 
 
 The orthogonal trajectories depend upon two arbitrary constants.  They are circular 
helices that all have the same pitch, and thus the trajectories of a uniform helicoidal 
motion of pitch – 2kπ. 
 One then has the kinematical interpretation of the linear complex: Consider a uniform 
helicoidal motion.  Each point M corresponds to the velocity at that point, and the polar 
plane to the point M in the complex is the plane perpendicular to that velocity.  The linear 
complex is composed of the normals to the velocities of instantaneous motion of a solid 
body. 
 The surfaces that are normal to the complex are defined by the equations: 
 

x = v cos u, y = v sin u, z = − ku + ϕ (v), 
 
because they are generated by the preceding helices.  They are the helices that are 
generated by an arbitrary profile in the preceding motion.  The preceding equations 
represent the most general helicoid, moreover.  It will then result that the normals that 
issue from a point of a helicoid are in the same plane (viz., the polar plane to that point). 
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 Remark. – The helices that are orthogonal trajectories to the polar planes are obtained 
by setting v = const., and their orthogonal trajectories are the curves of the complex that 
are situated on the preceding surfaces.  Let us look for them.  We form the linear element 
on those surfaces: 

ds2 = dx2 + dy2 + dz2 
= (cos u · dv – v sin u · du)2 + (sin u · dv + v cos u · du)2 + (− k du + ϕ′  · dv)2 

or: 
ds2 = (v2 + k2) du2 – 2k ϕ′ · du dv + (1 + ϕ′ 2) · dv2. 

 
 The orthogonal trajectories of the helices v = const., dv = 0 are defined by the 
equation: 

(v2 + k2) du − k ϕ′ · dv = 0; 
hence: 

u = 
2 2

k

k v

ϕ ′
+∫ dv. 

 
Their determination depends upon one quadrature. 

 
 

Ruled surfaces of a complex 
 

 10. – Consider a ruled surface whose generators belong to the complex.  Let (G) be 
one of its generators.  It belongs to the complex, and therefore each of its points M will 
correspond to a plane (P) that is the focal plane.  On the other hand, the point M also 
corresponds homographically to the tangent plane to the surface at that point.  It will then 
result that there is a homographic correspondence between the polar plane to a point of 
the generator and the tangent plane to the surface at that point.  There are two double 
elements to that homography, and therefore there will exist two points A, B on each 
generator of the surface such that polar planes to those points are tangent to the surface.  
Consider the locus of points A on the surface.  The tangent plane to the surface at each of 
those points is the polar plane to A.  The tangent to the curve, which is in the tangent 
plane to the surface, will then be in the polar plane.  Hence: The locus of points A, and 
also the locus of points B (which can coincide algebraically, moreover) will be curves of 
the complex.  The osculating plane at each point is the polar plane, so it will be tangent to 
the surface.  Those curves are asymptotes to the ruled surface then.  Moreover, the 
asymptotes are determined by means of only one quadrature [Chap. V, § 10]. 
 It can happen that the generators of the surface belong to a linear congruence.  They 
will then belong to an infinitude of linear complexes, and for each complex, one will 
have asymptotic lines that are curves of the complex.  One will then obtain all of the 
asymptotes without any integration.  The generators of the preceding surface are then 
supported by two fixed directrices.  That is the case for conoids with a director plane and 
the general third-order ruled surfaces [Chap. V, § 10, pp. 115].  Conversely, one will 
easily see that an arbitrary curve of the complex is asymptotic to an infinitude of ruled 
surfaces of the complex.  One can then find an arbitrary curve of the complex by means 
of those ruled surfaces. 
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 If the generators of the surface belong to a special linear complex then the curves of 
the complex are plane curves whose planes contain the directrix of the complex: The 
normal surfaces of the complex are the surfaces of revolution around the directrix; the 
ruled surfaces of the complex are surfaces whose generators meet a fixed line.  That 
directrix is an asymptote of the surface, and the other asymptotes will be determined by 
two quadratures. 
 

___________ 
 



 

CHAPTER XI 
 

CONTACT TRANSFORMATIONS. – DUALITY 
TRANSFORMATIONS.  – SOPHUS LIE’S 

TRANSFORMATION THAT CHANGES LINES INTO 
SPHERES 

 
 1. – First recall the notions of the geometry of contact elements that was introduced in 
Chapter IV, § 4, and was used frequently in the chapters that followed, while completing 
those notions: 
 A contact element is the set that consists of a point M and a plane (P) that passes 
through that point.  Such an element is defined by its five coordinates: viz., the 
coordinates (x, y, z) of the point and the coefficients (p, q, − 1) of the normal to the plane. 
 Consider a point A.  The contact elements at that point are composed of that point and 
all of the planes that pass through the point.  The coordinates x, y, z are then fixed, while 
p, q are arbitrary.  A point then possesses ∞2 contact elements. 
 Consider a curve.  One of its contact elements is composed of a point of the curve and 
a plane that is tangent to the curve at that point.  The coordinates are x, y, z, which are 
functions of one arbitrary parameter u, and p, q are coupled by the relation: 
 

dx dy dz
p q

du du du
+ − = 0. 

 
There are then two arbitrary parameters.  A curve possesses ∞2 contact elements. 
 Now consider a surface.  One of its contact elements is composed of a point and the 
tangent plane at that point.  Its coordinates are x, y, z = f (x, y), p = ∂f / ∂x, q = ∂f / ∂y.  
There are two arbitrary parameters then, and a surface therefore possesses ∞2 contact 
elements.  We remark that p, q might depend upon just one parameter.  That is the case 
for developable surfaces, which then possess ∞2 points and ∞1 tangent planes, and 
correspond, by duality, to curves, which possess ∞1 points and ∞2 tangent planes. 
 The points, curves, and surfaces that are generated by ∞2 contact elements are called 
multiplicities M2 .  More generally, one calls any family of contact elements whose 
coordinates verify the relation: 
(1)      dz – p dx – q dy = 0 
 
a multiplicity.  If those coordinates depend upon only one arbitrary parameter then one 
will have a multiplicity M1 .  If they depend upon two arbitrary parameters then one will 
have a multiplicity M2 . 
 We seek to determine all multiplicities M2 .  The coordinates x, y, z, p, q are functions 
of two arbitrary parameters: 
 

x = f (u, v), y = g (u, v), z = h (u, v), p = k (u, v), q = l (u, v). 
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Consider the first three relations.  One can eliminate u, v from them, and one can obtain 
one, two, or three relations as a result of that elimination. 
 First suppose that obtains a relation: 
 

F (x, y, z) = 0. 
 
z, for example will then be a function of x, y, and if one writes that the relation (1) is 
satisfied for any x, y then one will get: 
 

p = 
z

x

∂
∂

, q = 
z

y

∂
∂

. 

 
That will give the contact elements of a surface. 
 Suppose that one has two relations: 
 

F (x, y, z) = 0,  G (x, y, z) = 0. 
 
Two of the coordinates will then be functions of the third one; for example, x, y might be 
functions of z: 

x = ϕ (z), y = ψ (z). 
 
Those equations define a curve, and equation (1) will become: 
 

dz – p ϕ′ (z) dz – q ψ′ (z) dz = 0, 
or 

p ϕ′ (z) + q ψ′ (z) – 1 = 0. 
 
The plane of the contact element is then tangent to the curve, and is subject to only that 
condition: One then obtains the contact elements of a curve. 
 Finally, if one obtains three relations then x, y, z will be constants.  Equation (1) will 
be verified for any p, q, which are then arbitrary parameters, and one will have the 
contact elements of a point. 
 We now look for the multiplicities M1.  x, y, z, p, q are functions of just one parameter: 
 

x = f (t), y = g (t), z = h (t), p = k (t), q = l (t). 
 

Consider the first three equations, and eliminate t from them.  We will then obtain two or 
three relations. 
 If there are two relations then the locus of points of the multiplicity, which one also 
calls the support of the multiplicity, is a curve, and the planes depend upon only one 
parameter, so each point of the curve will correspond to a well-defined tangent plane.  
One then has a strip of contact elements. 
 If there are three relations then x, y, z will be constant, and the support will be a point.  
One will then have a family of planes that depend upon one parameter and pass through a 
fixed point.  That is what one calls an elementary cone. 
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 Consider two multiplicities M2 .  They can have zero or one contact element in 
common, or even an infinitude of them. 
 Consider the case of one common contact element.  If the multiplicities are two points 
A, A′ then they will have a common contact element only if the two points coincide, and 
there will be ∞2 common contact elements. 
 If the multiplicities are a point and a curve then the point will be on the curve, and all 
of the tangent planes to the curve at that point will belong to common contact elements, 
which will then be ∞1 in number. 
 If the multiplicities are a point and a surface then the point will be on the surface, and 
the common contact element will be unique and composed of the point and the tangent 
plane to the surface at that point. 
 Consider two curves.  If they have a common contact element then they will meet at a 
point, and if they are not tangent then there will be only one common contact element. 
 Consider a curve and a surface.  They will have a common contact element if the 
curve is tangent to the surface. 
 Finally, two surfaces will have a common contact element if they are tangent at a 
point. 
 There will be ∞1 common contact elements for a point on a curve, two curves that are 
tangent at a point, a curve that is situated on a surface, and two surfaces that are 
circumscribed along a curve. 
 Consider a point that describes a curve.  We have a family of ∞1 points, each of 
which will give ∞1 contact elements to the curve. 
 Consider a surface that is generated by a curve.  We have ∞1 curves, each of which 
has a strip in common with the surface, and will in turn give ∞1 contact elements to the 
surface. 
 Consider the enveloping surface of ∞1 surfaces.  Each envelope has a strip of ∞1 
contact elements in common with the envelope.  In the three cases, we have ∞1 
multiplicities M2 of generators. 
 Consider the case in which each generating element gives, on the contrary, only one 
contact element to the generated multiplicity: ∞2 points generate a surface. ∞2 curves 
define a congruence of curves. (In this case, as in that of congruences of lines, there will 
generally be a focal surface that is tangent to each of those curves and has one common 
contact element with each of them.)  Finally, if one considers ∞2 surfaces then they will 
have an envelope that has one contact element in common with each of them. 
 
 Remarks: 
 
 1. In the three preceding cases, when we said that each generator element gave one 
contact element to the multiplicity, we necessarily meant that the multiplicity could be 
decomposed into sheets, and that the statement then applied to each of the sheets 
separately. 
 
 2. There is an exceptional case, namely, that of ∞1 curves that have a curve for their 
envelope.  One will then have ∞1 curves that each give ∞1 contact elements to that 
envelope. 
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CONTACT TRANSFORMATIONS  
 

 2. –  One calls any transformation of the contact elements that changes any 
multiplicity M2 into a multiplicity M2 a contact transformation.  Such a transformation is 
defined by five equations: 
 
(1)   x′ = f (x, y, z, p, q), y′ = g (x, y, z, p, q), z′ = f (x, y, z, p, q), 

p′ = k (x, y, z, p, q), q′ = l (x, y, z, p, q). 
 
If the variable contact element (x, y, z, p, q) belongs to a multiplicity then its coordinates 
will verify the condition: 
(2)      dz – p dx – q dy = 0, 
 
and for the transformed element (x′, y′, z′, p′, q′) to also belong to a multiplicity, it is 
necessary and sufficient that one must have: 
 
(2′)      dz′ – p′ dx′ – q′ dy′ = 0. 
 
A contact transformation is then defined by equations (1), such that each of the Pfaff 
equations (2), (2′) transforms into the other one when one makes the change of variables 
that is defined by those equations.  That is what one expresses by saying that contact 
transformations are the transformations of x, y, z, p, q that leave the Pfaff equation (2) 
invariant. 
 Such a transformation changes two multiplicities that have a common contact element 
into two multiplicities that have a common contact element.  Similarly, it will transform 
two multiplicities that have ∞1 common contact elements into two multiplicities that have 
∞1 common contact elements.  A contact transformation changes points, curves, and 
surfaces into points, curves, or surfaces, indistinctly. 
 Recall the equations of the transformation, and eliminate p, q, p′, q′ from them.  We 
will then get one, two, or three relations between x, y, z; x′, y′, z′. 
 
 Prolonged point-like transformations. – If one obtains three relations: 
 
(3)   x′ = f (x, y, z),  y′ = g (x, y, z),   z′ = h (x, y, z) 
 
in the contact transformation then it will contain a point-like transformation.  Such a 
transformation changes a point into a point, a curve into a curve, and a surface into a 
surface.  Two curves that meet will transform into two curves that meet, and two tangent 
surfaces will transform into two tangent surfaces.  A contact element that is common to 
two multiplicities will correspond to a contact element that is common to two 
transformed multiplicities.  One will obtain p′, q′ as functions of p, q by considering z′ to 
be a function of x′, y′.  Hence: 
 

dx′ = f f f
dx dy

x y z

∂ ∂ ∂+ +
∂ ∂ ∂

 (p dx + q dy), dy′ = …, dz′ = … 
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 Eliminating dx, dy from these three relations, one will obtain an equation of the form: 
 

dz′ = k (x, y, z, p, q) dx′ + l (x, y, z, p, q) dy′, 
so 

p′ = k (x, y, z, p, q), q′ = l (x, y, z, p, q). 
 
 In that case, one says that the contact transformation is a prolonged point-like 
transformation. 
 

Case of just one directrix equation 
 

 3. – Now suppose that one obtains a relation by elimination: 
 
(4)     Ω (x, y, z; x′, y′, z′) = 0. 
 
 Consider a point A (x, y, z) in the first space.  Look for the multiplicity that it 
corresponds to in the second space.  It is generated by the contact elements whose points 
are linked to the point A by equation (4), which represents a surface AS′ .  The multiplicity 

that corresponds to a point is a surface.  If one has a curve that is the locus of points A 
then it will correspond to a family of ∞1 surfaces, and the multiplicity that is generated by 
those surfaces – i.e., their envelope – will be the transform of the curve.  Finally, if one 
has a surface that is a locus of ∞2 points A then it will correspond to ∞2 surfaces, whose 
envelope will correspond to the given surface. 
 Equation (4) is called the directrix equation of the transformation.  It defines surfaces 
in the second space that are homologous to surfaces in the first space, and conversely. 
 

Duality transformations 
 
 In particular, suppose that the relation (4) is bilinear in x, y, z; x′, y′, z′.  Each point of 
the first space corresponds to a plane in the second space, and conversely.  ∞3 points in 
the first space will correspond to ∞3 distinct planes.  Let: 
 

Ω = Ax′ + By′ + Cz′ + D, 
in which: 
 

A = u x + v y + w z + h, B = u′ x + …, C = u″ x + …, D = u″′ x + … 
 
In order to have the transform of a surface: 
 

f (x′, y′, z′) = 0, 
 
one must take the envelope of planes Ω = 0, x′, y′, z′ that are coupled by the preceding 
relation, which gives: 
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A
f

x

∂
′∂

 =
B
f

y

∂
′∂

=
C
f

z

∂
′∂

= 
D
f

t

∂
′∂

. 

 
Those are the equations of the transformation.  It is necessary that one must be able to 
infer x, y, z, so the forms A, B, C, D must be independent, and then the set of planes Ω = 0 
will indeed constitute the set of all planes in space.  The preceding transformation is a 
duality transformation. 
 We remark that the set of contact transformations obviously forms a group [cf., Chap. 
VIII, § 8, pp. 227].  As a result, a contact transformation can often decompose into 
simpler contact transformations.  We shall see that this is the case for duality 
transformations. 
 Take the new variables to be: 
 

X = 
A

D
, Y = 

B

D
, Z = 

C

D
, 

so 
Ω = X x′ + Y y′ + Z z′ + 1 = 0, 

 
and the transformation will be a transformation by polar reciprocals with respect to the 
sphere: 

x2 + y2 + z2 + 1 = 0. 
 

 Hence, any duality transformation will reduce to the preceding transformation 
followed by a projective transformation, and conversely. 
 
 Remark. – One sees, in an analogous manner, that any duality transformation can 
also be reduced to the same transformation by polar reciprocals, preceded by a projective 
transformation.  Therefore, if one performs two duality transformations in succession 
then the final result that is obtained (viz., the product of the two operations) will be a 
projective transformation. 
 
 Involutive duality transformations. – Look for all the duality transformation that are 
symmetric – or involutive; i.e., such that the plane that is homologous to a point is the 
same, regardless of whether one considers the point to belong to one or the other space.  
The equations: 

Ω (x, y, z; x′, y′, z′) = 0, Ω (x′, y′, z′; x, y, z) = 0 
 
must be equivalent.  There will then exist a constant factor k such that: 
 

Ω (x, y, z; x′, y′, z′) ≡ k Ω (x′, y′, z′; x, y, z). 
Set x′ = x, y′ = y, z′ = z: 

Ω (x, y, z; x, y, z) ≡ k Ω (x, y, z; x, y, z). 
 
One will then have either Ω (x, y, z; x, y, z) = 0 or k = 1. 
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 If Ω = 0 then the corresponding plane will have a point that passes through that point.  
For any x, y, z, one will have: 
 

x (ux + vy + wz + h) + y (u′x + v′y + w′z + h′) + z (u″x + …) + u′″ x + … ≡ 0, 
 
which amounts to writing that the determinant: 
 

u v w h

u v w h

u v w h

u v w h

′ ′ ′ ′
′′ ′′ ′′ ′′
′′′ ′′′ ′′′ ′′′

 

 
is a skew-symmetric determinant, so it will have the form: 
 

0

0

0

0

C B P

C A Q

B A R

P Q R

−
−

−
− − −

. 

 
 The directrix equation will then be written: 
 

Ω = x′ (Cy – Bz + P) + y′ (– Cy + Az + Q) + z′ (Bx – Ay + R) – Px – Qy – Rz = 0, 
or: 

A (yz′ – zy′) + B (zx′ – xz′) + C (xy′ – yx′) + P (x – x′) + Q (y – y′) + R (z – z′) = 0. 
 
 This is the equation of a linear complex, and the locus of points (x′, y′, z′) that are 
associated with the point (x, y, z) is the polar plane to the point (x, y, z) by the relationship 
that the complex defines.  The polar plane to a point is the multiplicity that is the 
transform of that point, and conversely.  As a result, the transform of a line is its 
conjugate, and a line of the complex is its own homologue.  Two homologous 
multiplicities M2 are the two focal multiplicities of a congruence of lines of the complex, 
and conversely.  Since a multiplicity M2 can always be considered to be a focal 
multiplicity of the congruence of the ∞2 lines of the complex that have at least one 
contact element in common with that multiplicity, and since those lines are homologous 
to themselves, the transformed multiplicity of M2 must have at least one contact element 
in common with each of those lines. 
 A curve will generally correspond to a developable.  A curve of the complex will 
correspond to the developable of its tangents. 
 If we now take the solution k = 1 then we will have: 
 

x′ (ux + vy + wz + h) + … = x (ux′ + vy′ + wz′ + h) + … 
 

The form Ω will then be symmetric in x, y, z; x′, y′, z′, and will be written: 
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Ω = Axx′ + Byy′ + Czz′ + M (yz′ + zy′) + N (zx′ + xz′) + P (xy′ + yx′) 
+ Q (x + x′) + R (y + y′) + S (z + z′) + T. 

 
 The two points (x, y, z), (x′, y′, z′) are conjugate with respect to the quadric: 
 

Ax2 + By2 + Cz2 + 2Myz + 2Nzx + 2Pxy + 2Qx + 2Ry + 2Sz + T = 0. 
 
 We then obtain the most general transformation by polar reciprocals. 
 The Legendre transformation is given by the quadric x2 + y2 – 2 z = 0.  The directrix 
equation is xx′ + yy′ – z – z′ = 0, and the equations of the transformation are x = p, y = q, p 
= x, q = y, z = px + qy – z. 
 
 Remark. – In order to get the equations of a contact transformation that is defined by 
just one directrix equation Ω = 0, one must write down that the equation: 
 
(2′)      dz′ – p′ dx′ – q′ dy′ = 0 
is a consequence of the equations: 
(2)      dz – p dx – q dy = 0, 
(5)       dΩ = 0, 
 
which is equivalent to posing an identity of the form: 
 
(6)    dz′ – p′ dx′ – q′ dy′ ≡ λ (dz – p dx – q dy) + µ dΩ. 
 
 Indeed, let Ω = 0, Ω1 = 0, …, Ω4 = 0 be five distinct equations in x, y, z, p, q; x′, y′, z′, 
p′, q′ that define the transformation.  The invariance of equation (2) is expressed by an 
identity of the form: 
 

dz′ – p′ dx′ – q′ dy′ ≡ λ (dz – p dx – q dy) + µ dΩ + µ1 dΩ1 + … + µ4 dΩ4 . 
 

 If not all four µ1, …, µ4 are zero then one will conclude from this that (µ1 dΩ1 + … + 
µ4 dΩ4) contains only the differentials dx, dy, dz; dx′, dy′, dz′ without being identically 
zero.  The equations of the transformation then imply two linear relations that are 
homogeneous in dx, dy, dz; dx′, dy′, dz′, namely: 
 

dΩ = 0, µ1 dΩ1 + … + µ4 dΩ4 = 0. 
 
 They then imply two relations between the variables x, y, z; x′, y′, z′, which is contrary 
to hypothesis. 
 One will then identify the two sides of the equation (6), which will give six equations.  
If one eliminates λ, µ from them then one will have four equations that will give x′, y′, z′, 
p′, q′ as functions of x, y, z, p, q, or conversely, when they are combined with Ω = 0. 
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Case of two directrix equations 
 

 4. – We now pass on to the case in which one obtains two relations: 
 
(7)    Ω (x, y, z; x′, y′, z′) = 0, Θ (x, y, z; x′, y′, z′) = 0 
 
by eliminating p, q; p′, q′ from the equations (1) of the contact transformation considered.  
A point M (x, y, z) in the first space will correspond to a curve (C′ ) in the second space 
that is defined by those equations (7) in x′, y′, z′.  A curve that is the locus of ∞1 points M 
will correspond to a surface that is generated by the homologous ∞1 curves (C′ ) while a 
surface (S) that is a locus of ∞2 points will correspond to the congruence of curves (C′ ) 
that are homologous to those points.  In general, such a congruence has a focal surface 
that is tangent to all of those curves, and which will be the transform of the surface (S). 
 In order to get the equations of such a transformation, one must write down that the 
relation: 

dz′ – p′ dx′ – q′ dy′ = 0 
 
is a consequence of the relations: 
 

dz′ – p′ dx′ – q′ dy′ = 0, dΩ = 0, dΘ = 0, 
 
which will give an identity of the form: 
 
(8)   dz′ – p′ dx′ – q′ dy′ ≡ λ (dz – p dx – q dy) + µ dΩ + v dΘ. 
 
 One proves the effective existence of such an identity as above.  Upon identifying 
coefficients, one will have six equations.  If one eliminates λ, µ, ν from them then one 
will have three equations that will give the formulas for the transformation when they are 
combined with Ω = 0, Θ = 0. 
 

Sophus Lie’s transformation that changes lines into spheres 
 

 In particular, suppose that equations (7) are bilinear.  A point M (x, y, z) corresponds 
to a line (D′).  The ∞3 points M correspond to a complex of such lines (D′), namely, (K′).  
Similarly, every point in the second space will correspond to a complex (K) in the first 
space.  We study the nature of those complexes.  To that effect, consider just one of 
equations (7).  It defines a duality transformation in which each point M has a plane (P′) 
for its homologue.  The other equation likewise defines a duality transformation that 
makes the same point M correspond to a plane (Q′), and the line (D′) is the intersection of 
the planes (P′), (Q′), which then corresponds to the point M under those two duality 
transformations.  Now, we have see that the product of two duality transformations is a 
projective transformation.  Hence, the complex (K′) is the complex of lines along which 
planes that correspond under a projective transformation intersect.  Such a complex is 
called a Reye complex, or tetrahedral complex.  We recall the properties in the general 
case.  The lines of the complex are cut by the tetrahedron that is defined by the four 
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invariant planes of the homography at four points whose anharmonic ratio is constant.  
The anharmonic ratio of the four planes that are drawn through a line of the complex and 
through the four summits of the same tetrahedron is constant (Von Staudt).  The complex 
(K′) has degree two, and the surface of singularities is composed of the four faces of the 
tetrahedron. 
 Having said that, we return to our contact transformation.  A curve (C) corresponds to 
a ruled surface of the complex (K′).  A surface (S) corresponds to a congruence of lines 
that belong to the complex (K′); that congruence will admit two focal multiplicities.  
Therefore, a contact element in the first space will correspond to two contact elements in 
the other one. 
 We seek the equations of the two complexes (K) and (K′).  Let: 
 

Ω = Ax′ + By′ + Cz′ + D, Θ = Lx′ + My′ + Nz′ + P, 
 
in which A, B, …, P are linear functions of x, y, z. 
 Let M′ (x′, y′, z′) be a point of the second space; let (D) be the corresponding line.  If 
(x, y, z) and (x0, y0, z0) are two points on that line then one will have: 
 
 Ω (x, y, z; x′, y′, z′) = 0, Θ (x, y, z; x′, y′, z′) = 0, 
 Ω (x0, y0, z0; x′, y′, z′) = 0, Θ (x0, y0, z0; x′, y′, z′) = 0. 
 
If we eliminate x′, y′, z′ from those four equations then, upon letting A0, B0, …, P0 denote 
what the linear functions A, B, …, P will become when one replaces x, y, z with x0, y0, z0 
in them, we will get: 

0 0 0 0

0 0 0 0

A B C D

A B C D

L M N P

L M N P

= 0. 

 
That is the equation of the complex.  Upon developing it by Laplace’s rule, one will get a 
second-degree equation in the coordinates of the line that is defined by means of the two 
points (x, y, z), (x0, y0, z0).  The complex (K), and likewise the complex (K′), will then 
indeed be of second degree, in general. 
 A curve (C) corresponds to a ruled surface that is generated by the line (D′).  Let us 
see whether that ruled surface can be developable.  The lines (D′) have the equations: 
 

Ax′ + By′ + Cz′ + D = 0, Lx′ + My′ + Nz′ + P = 0, 
 

in which x, y, z, and in turn, A, B, C, D are functions of one parameter u.  We express the 
idea that this line meets the infinitely-close line.  We combine its equations with the 
equations: 

x′ dA + y′ dB + z′ dC + dD = 0, x′ dL + y′ dM + z′ dN + dP = 0. 
 

Hence, one has the condition that defines the curve (C): 
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A B C D

L M N P

dA dB dC dD

dL dM dN dP

 = 0. 

However, upon setting: 
 

A0 – A = ∆A, B0 – B = ∆B, …, P0 – P = ∆P, 
 
the equation of the complex (K) can be written in the form: 
 

A B C D

L M N P

A B C D

L M N P

∆ ∆ ∆ ∆
∆ ∆ ∆ ∆

 = 0. 

 
Now A, B, …, P are linear functions, so the increments ∆A, …, ∆P are formed from: 
 

∆x = x0 – x, ∆y = y0 – y, ∆z = z0 – z, 
 
in the same way that the differentials dA, …, dP are formed from dx, dy, dz.  The 
equation of the curve (C) is then deduced from the equation of the complex by replacing 
x0 – x, y0 – y, z0 – z with dx, dy, dz.  It is then such that its tangent belongs to the complex 
(K). 
 The curves of the first complex then correspond to developables whose generators are 
lines of the second complex, and whose edges of regression are, in turn, curves of the 
second complex.  Each point M of a curve (C) of the first complex corresponds to a 
generator (T′) of a developable.  Let M′ be its point of contact with the edge of 
regression.  If one considers the linear element that is composed of a point M and the line 
(T) in the first complex that passes through point and is tangent to (C) then it will 
correspond to the well-defined linear element of the second complex that is composed of 
M′ and (T′ ).  The curves of the two complexes will then correspond by points and 
tangents. 

 
 

M′ 

(S) 

D 

D1 

(γ) 

D′ 

(γ′ ) 

( )γ ′  

1M ′  
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 Let (S) be a surface, and suppose that the complex (K) is effectively of second degree.  
Consider a point M on the surface and the tangent plane (P).  The cone of the complex 
(K) whose summit is M is cut by the plane (P) along two lines (D), (D1) that belong to the 
complex (K).  Two lines of the complex (K) then pass through each point of (S) that are 
tangent to the surface.  Two curves (γ), (γ1) of the complex (K) pass through any point of 
the surface (S) and belong to that surface.  The point M corresponds to a line (D′ ) of the 
complex (K′ ).  The line (D) of the complex (K) corresponds to a point M′  of (D′ ), and 
similarly the line (D1) corresponds to a point 1M ′  of (D′ ).  The curves (γ), (γ′ ) of the 

complex (K) correspond to two curves (γ1), 1( )γ ′ , resp., of the complex (K) that are 

tangent to the line (D′ ) at M′, 1M ′ , resp.  If the point M describes the curve (γ) then the 

corresponding lines (D′ ) have the curve (γ′ ) for their envelope, and if M describes (γ1) 
then (D′ ) will envelop 1( )γ ′ . 

 If one considers the congruence of lines (D′ ) that correspond to the points M of the 
surface (S) then the curves (γ′ ) will be edges of regression of a family of developables in 
that congruence, and the curves 1( )γ ′  will be the edges of regression of the other family.  

The curves (γ′ ) generate one of the sheets of the focal surfaces, while the curves 1( )γ ′  

generate the other sheet.  The tangent plane at M to the focal multiplicity is the osculating 
plane to 1( )γ ′ , and in turn, the tangent plane to the cone of the complex (K′ ) whose 

summit is 1M ′ . 

 A contact element corresponds to the element (M, P) that is composed of a point M′ 
and the tangent plane to the cone of the complex (K′ ) that has 1M ′  for its summit. 

 If the surface (S) is a surface of the complex (K) that is tangent at each of its points to 
the cone of the complex then the lines (D), (D1) will coincide.  The two contact elements 
that correspond to the element (M, P) will coincide, and the surface (S′) that is defined by 
those elements will be a surface of the complex (K′ ). 
 
 Remarks. – The only possible cases are the following ones: 
 
 1. The complexes (K), (K′ ) are effectively of second degree.  As we have said 
before, one will then prove that they are both tetrahedral. 
 
 2. Just one of the complexes is linear.  One proves that the other is composed of 
lines that meet a conic.  That case will give us Sophus Lie’s transformation that changes 
lines into spheres. 
 
 3. Both complexes are linear; one will then prove that they are both special.  That 
case will give us Ampère’s transformation, in particular, which is defined by the directrix 
equations: 

xx′ + z + z′ = 0, y + y′ = 0, 
and whose equations are: 
 

x′ = p,      y′ = − y,      z′ = − z – px,      p′ = x,      q′ = − q. 
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 Transformation of lines into spheres. – Suppose, in particular, that: 
 

Ω = x – iy + x′z – z′ = 0,  Θ = x′ (x + iy) – z – y′ = 0. 
 
 The equation of the first complex is: 
 

0 0 0

0 0 0

0 0 0

0 0 ( )

0 1

1 0

( ) 0 0

z z x iy x iy

z x iy

x iy z

x iy x iy z z

− − − −
− −

+ − −
+ − + −

 = 0, 

which becomes: 
(x – x0)

2 + (y – y0)
2 + (z – z0)

2 = 0; 
i.e.: 
(K)      a2 + b2 + c2 = 0. 
 
The complex (K) is the complex of minimal lines. 
 We seek the second complex.  It suffices to consider two points (x′, y′, z′), 

0 0 0( , , )x y z′ ′ ′ that correspond to the same point (x, y, z).  That will give: 

 

0

0 0

0 0 0

0 0 0

0 0

1

( ) 0

1

x x z z

i x iz

x x i x x y y

x ix y

′ ′ ′ ′− − +
′ ′− −

′ ′ ′ ′ ′ ′− − − +
′ ′ ′− −

 = 0, 

which will become: 

0 0 0 0 0( )( ) ( )( )x x x y y x z z x x′ ′ ′ ′ ′ ′ ′ ′ ′ ′− − + − −  = 0; 

 
i.e., with the classical notations for the Plückerian coordinates: 
 
 a (r – c) = 0. 
 
The solution a = 0 is singular, and one gets: 
 
(K′ )     r – c = 0 
 
for the complex (K′ ).  We then have a correspondence between a second-degree special 
complex and a linear complex.  The cones of the complex (K) are isotropic cones.  Each 
contact element in the first space corresponds to two contact elements of the second space 
that are conjugate with respect to the complex (K′ ), because, in a general fashion, the 
points M′, 1M ′  are on a line (D′ ) of (K′ ), and the plane that is associated with M′ is the 

polar plane to 1M ′  here, and conversely. 

 Start with a sphere: Take two generators of a system; they will be the minimal lines 
(D), (D1).  The second system of generators is entirely well-defined, because each of 



294 Chapter XI – Contact transformations. 

them must meet (D), (D1), and the imaginary circle at infinity.  Two lines (D), (D1) 
correspond to M′, 1M ′ , resp.  Consider an isotropic generator (∆) that meets (D), (D1); it 

corresponds to a point µ′.  (∆) meets the line (D), the line M′µ′ is a line of the linear 
complex, and similarly, so is 1M µ′ ′ .  Therefore, µ′ is the pole of a plane that passes 

through 1M M′ ′ .  When (∆) describes the sphere, the plane 1 1M Mµ′ ′ ′  will turn around 

1M M′ ′ .  The sphere then corresponds to a line.  Upon starting with the second system of 

generators, one will likewise obtain a line.  (D) and (D1) give the points M′, and that line 
will then be the line 1M M′ ′  that is conjugate to the preceding one.  Therefore: A sphere 

corresponds to two lines that are conjugate with respect to the linear complex (K′ ). 
 One can see this by calculation.  Take the line (∆′), whose Plückerian coordinates are 
a0, b0, c0, p0, q0, r0 : 
(∆′)    c0 x′ = a0 z′ − q0 , c0 y′ = b0 z′ + p0 . 
 
The corresponding ruled surface is generated by the lines: 
 
  c0 (x – iy) + z (a0 z′ − q0) − c0 z′ = 0, 
  (a0 z′ − q0) (x + iy) − c0 z − b0 z′ − p0 = 0 
 
that are obtained by substituting the values for x′ and y′ that are inferred from equations 
(∆′) into Ω = 0, Θ = 0.  Order them in terms of z′, and get: 
 
 c0 (x – iy) − q0 z + z′ (a0 z − c0) = 0, 
 [q0 (x + iy) + c0 z + p0] − z′ [a0 (x + iy) − b0] = 0. 
 
 Upon eliminating z′, one will get the desired surface: 
  

[c0 (x – iy) – q0 z] [a0 (x + iy) – b0] + (a0 z – c0) [q0 (x + iy) + c0 z + p0] = 0, 
 

or, upon taking into account that a0 p0 + b0 q0 + r0 c0 = 0: 
 
(Σ)  a0 (x

2 + y2 + z2) – b0 (x – iy) – q0 (x + iy) – (c0 + r0) z – p0 = 0. 
 
That is the equation of a sphere, and it is easy to see that it can be an arbitrary sphere by 
choosing (∆′) conveniently. 
 We seek the conjugate 1( )′∆  to (∆′) with respect to (K′ ); let its coordinates be 0a′ , 0b′ , 

0c′ , 0p′ , 0q′ , 0r ′ .  We must express the idea that the complex (K′ ) and the special 

complexes (∆′), 1( )′∆  belong to the same sheaf.  If λ, λ′, and µ are unknown auxiliary 

variables then that will give: 
 
 λa0 + 0aλ′ ′  = 0, λb0 + 0bλ′ ′  = 0, λp0 + 0pλ′ ′  = 0, 

 λq0 + 0qλ′ ′  = 0, λc0 + 0cλ′ ′  + µ = 0, λr0 + 0rλ′ ′  − µ = 0. 
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Since the coordinates are defined only up to a factor, one can replace a0, b0, … with λa0, 
λb0, …, and 0a′ , 0b′ , … with − 0aλ′ , − 0bλ′ , …  That amounts to setting λ = 1, λ′ = − 1, 

and will give the simplified equations: 
 

0a′ = a0, 0b′  = b0, 0p′  = p0, 0q′  = q0 , 0c′  = c0 + µ, 0r ′  = r0 – µ. 

 
 The condition: 

0 0 0 0 0 0a p b q c r′ ′ ′ ′ ′ ′+ +  = 0 

then gives: 
µ [µ + c0 – r0] = 0, 

 
and upon dropping the trivial solution µ = 0, what will remain is: 
 

µ + c0 – r0 = 0. 
 

One will then find that 0c′  = r0 and 0r ′  = c0, and one sees that one will recover the same 

sphere (Σ) upon starting with 1( )B′ , instead of (B′ ). 
 
 Equations of the transformation. – The formulas of the transformation are obtained 
by the general method.  One finds that: 
 

 

1 ( )
,

2 2

( )
,

2 2

,

1
,

1
.

z x px qy y p
x

x q

iz i x px qy y p
y

x q

p x q y
z

x q

q x
p

q x

q x
q i

q x

′ ′ ′ ′ ′ ′+ − − = − ′ ′−


′ ′ ′ ′ ′ ′+ + + = + ′ ′−


′ ′ ′ ′+ = ′ ′−
 ′ ′ −= − ′ ′+
 ′ ′ += ′ ′+

 

 
This transformation of Sophus Lie, which changes lines that meet into tangent spheres – 
i.e., lines that have a common contact element into spheres that have a common contact 
element – realizes the correspondence between lines and spheres that was announced in 
the preceding chapters. 
 For example, it transforms a ruled surface into a canal surface, a quadric into a Dupin 
cyclide, a developable surface into an isotropic canal surface, and an asymptotic strip on 
a surface into a curvature strip on its transform, and in such a way that one can say that it 
transforms the asymptotic lines into curvature lines. 
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 One easily verifies that it transforms a linear complex of lines into a family of ∞2 
contact spheres that cut a fixed sphere at a constant angle, and that the constant angle will 
be a right angle when the linear complex is in involution with the complex (K′ ). 
 
 Lie’s transformation in penta-spherical coordinates. – The last results will become 
immediate when one remarks that from the equation that was found above, the sphere 
(Σ), which is the homologue of the line (∆′) (whose Plückerian coordinates are a0, b0, c0, 
p0, q0, r0), will have the homogeneous penta-spherical coordinates [Ch. VIII, § 6, pp. 
219]: 
 c1 = a0 + p0 , c2 = − i (a0 − p0), c3 = b0 + q0 , 
 c4 = − i (b0 − q0), c5 = c0 + r0, c6 = − i (c0 − r0). 
 
Now, from the formulas of [Chap. X, § 5, pp. 268], these are precisely the symmetric 
coordinates t1, t2, …, t6 of the line (∆′). 
 Therefore, the Lie transformation translates into the interpretation of the penta-
spherical coordinates of spheres as the symmetric coordinates of lines, in absolutely the 
same way that the duality transformation translates into the interpretation of point 
coordinates as line coordinates. 

 The equation 
6

1
k k

k

C t
=
∑ = 0 of a linear complex then becomes, in particular, the 

equation 
6

1
k k

k

C c
=
∑ = 0, which expresses [Chap. VIII, § 6, pp. 219] the idea that a sphere 

cuts a sphere at a constant angle; that angle will be a right angle if C6 is zero.  Now, the 
equation of the complex (K′ ) is t6 = 0 in symmetric coordinates, in such a way that the 
condition C6 = 0 indeed expresses [Chap. X, § 6] the idea that the complex is in 

involution with the complex 
6

1
k k

k

C t
=
∑ = 0. 

 
 

Transformation of asymptotic lines 
 

 5. – We propose to find all of the contact transformations that change the asymptotic 
lines of an arbitrary surface into asymptotic lines of the transform of that surface; i.e., 
they change every asymptotic strip into an asymptotic strip.  To that effect, we remark 
that such a transformation will change any multiplicity M2 for which the asymptotic strips 
do not depend solely upon arbitrary constants, but upon arbitrary functions, into a 
multiplicity M2 of the same nature.  Now, the asymptotic strips (or strips of regression) 
are defined by the equations: 
 

dz – p dx – q dy = 0,  dp dx + dq dy = 0, 
 
so one must also consider that in the present question, ∞1 contact elements that have the 
same point in common – i.e., an elementary cone – will form an asymptotic strip, because 
the coordinates of those elements satisfy the preceding equations, since they are such that 
dx = dy = dz = 0. 
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 Moreover, the particular M2 in question are planes, lines, and points.  The desired 
transformation then exchanges the figures that consist of lines, points, and planes 
amongst themselves.  There are several cases of that to examine: 
 
 1. If the transformation is point-like then it will change points into points, planes 
into planes, and lines into lines.  As a result, it is a projective transformation (or 
homography). 
 
 2. If the transformation is a contact transformation of the first kind – i.e., it makes 
every point of the first space (E) correspond to a surface in the second space (E′ ) – then 
it will change the points of (E) into planes of (E′ ), and since it will also make each point 
of (E′ ) correspond to a surface in (E) then, it will change the points of (E′ ) into planes in 
(E).  Therefore, it will change points into planes, planes into points, and lines into lines.  
Therefore, if one composes it with a transformation by polar reciprocals then one will 
obtain a homographic transformation, and in turn, it will be obtained when one composes 
a homographic transformation with a transformation by polar reciprocal.  It will then be a 
duality transformation. 
 
 3. If the transformation is a contact transformation of the second kind – i.e., any 
point of one of the spaces corresponds to a curve in the other one – then any point in one 
of the spaces will correspond to a line in the other one.  Now, take four points P1, P2, P3, 
P4 in the space (E) that are not situated in the same plane, and let (D1), (D2), (D3), (D4), 
resp. be the lines that correspond to them in the space (E′ ).  There exists at least one line 
(∆) that has a common contact element with each of the four lines (D1), (D2), (D3), (D4), 
and (∆) must correspond to a point, plane, or line in (E) that has a common contact 
element with each of the four points P1, P2, P3, P4 .  But, it does not exist.  Hence, the 
third case is impossible. 
 
 The only transformations that can answer the question are then homographies or 
duality transformations.  However, every contact transformation that changes lines into 
lines will answer the question, because it will change the family of generators of a 
developable, each of which will have a common contact element with the infinitely-close 
generator, into the family of generators of another developable.  As a result, the strip of 
regression of the first developable will change into the strip of regression of the second 
one. 
 One then deduces that: 
 
 1. The homographic transformations and the duality transformations change 
asymptotic lines into asymptotic lines, and they are the only contact transformations that 
possess that property. 
 
 2. Those transformations are also the only contact transformations that change 
every line into a line. 
 
 Remark. −−−− The transformations thus-obtained form two distinct families (projective 
transformations and duality transformations) of ∞15 transformations, but the product of 
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two duality transformations will be a projective transformation, as we saw above, and the 
set of all transformations that are obtained will form a group, as was obvious a priori. 
 
 

Transformation of lines of curvature 
 

 6. – Lie’s contact transformation of lines into spheres permits one to immediately 
deduce all of the contact transformations that change lines of curvature on an arbitrary 
surface into lines of curvature on its transform from the preceding results. 
 One sees, moreover, that they are also the ones that change any sphere into a sphere.  
One can then say that they constitute the sphere group.  From the preceding, there will be 
two families that each have ∞15 transformations. 
 In order to obtain the preceding result, one can repeat an argument that is directly 
analogous to the one in § 5, while starting from multiplicities M2 for which the curvature 
strips depend upon arbitrary functions. 
 More especially, look for the transformations in question that are point-like 
transformations.  Under Lie’s transformation, the points in a space (E) will correspond to 
lines in a linear complex (K′ ).  The desired transformations then provide projective or 
duality transformations that leave that complex invariant.  Upon composing them with 
the transformation by polar reciprocals that the complex (K′ ) defines, one will then 
obtain any of the projective transformations that leave the complex invariant. 
 Hence, one finds that a correspondence between the projective group of a linear 
complex and the group of point-like transformations that change every sphere into a 
sphere has been established.  The latter is, as one saw in Ch. VIII, § 8, the conformal 
group.  One knows that its transformations are obtained by combining inversions, 
homotheties, and displacements. 
 That correspondence will be found effortlessly, moreover, by the use of symmetric 
coordinates for lines and penta-spherical homogeneous coordinates for spheres, as was 
indicated above. 
 Among the contact transformation that change lines of curvature into lines of 
curvature, one finds the dilatations, under which any contact element is subjected to a 
translation perpendicular to its plane that has a given amplitude; i.e., each surface will be 
replaced by a parallel surface.  They are defined by the directrix equation (x′ − x)2 + (y′ − 
z)2 + (z′ − z)2 = h2, in which h is an arbitrary constant. 
 Another class of contact transformations that changes any sphere into a sphere is 
defined by the directrix equations of the form: 
 

(x′ − x)2 + (y′ − z)2 + z′2 – 2mz′z + z2 = 0, 
 
in which m is an arbitrary constant.  Each point (x, y, z) has its homologue in a sphere that 
cuts the xy-plane at a constant angle V (cot V = mi).  The circle of intersection is the one 
along which the isotropic cone whose summit is (x, y, z) cuts the same plane. 
 Those transformations are called transformations by reciprocal semi-planes 
(Ribaucour, Laguerre, Darboux), because they change a plane into a pair of planes that 
pass through the line of intersection of the first one with the xy-plane.  Since they are 
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involutive, the equation that defines them will be symmetric with respect to the two 
coordinate systems (x, y, z) and (x′, y′, z′). 
 Among the transformations considered, one also finds the Ribaucour transformations, 
which will be defined in Chapter XIII. 
 
 Remark. −−−− One proves that when one defines a sphere by its six homogeneous penta-
spherical coordinates, the two families of ∞15 transformations of the sphere group will be 
defined by orthogonal, homogeneous, linear transformations that act upon those six 
variables.  The two families are distinguished by the value (+ 1 or – 1) of the determinant 
of that substitution. 
 
 

Apsidal transformations.  Fresnel’s wave surface. 
 

 7. – Finally, we point out an important class of contact transformations that are 
defined by two directrix equations.  Each of them corresponds to a point in space, or pole 
of the transformation.  If one takes the pole to be the coordinate origin then the directrix 
equations of the transformation will be: 
 

(1)     
2 2 2 2 2 2,

0.

x y z x y z

xx yy zz

′ ′ ′ + + = + +
 ′ ′ ′+ + =

 

 
 That transformation, which is called apsidal, will then be involutive, and transform 
each point M into a circle: It is the circle of radius OM that has O for its center and the 
line OM for its axis. 
 As a result, one can obtain the transform of a surface (S) by cutting it with the various 
planes (II) that pass through O and measuring out lengths OM along the normal to each of 
those planes at O that are equal to the radii of circles that are centered at O, situated in the 
plane in question, and tangent to the surface (S).  Those radii are, moreover, lengths of 
the normals that are drawn through O to the section of (S) of by the plane (Π). 
 
 The apsidal surface of a sphere is a torus. – Indeed, let C be the center of the sphere 
(S), and let (Π0) be a plane that passes through OC; let (γ) be the circle that is the section 
of the sphere (S) by that plane.  Any plane (Π) that is perpendicular to (Π0) and drawn 
through O will cut (γ) along a chord AB, and OA, OB will be the normals through O to the 
second of the sphere by (Π).  The perpendicular that is drawn through O to (Π) is, 
moreover, situated in (Π0).  One then obtains the points P that are situated in the plane 
(Π) by making the chord AB turn in the plane (Π0) through a right angle around O in one 
sense or the other.  That operation, when repeated with all the chords of (γ) that pass 
through O, will give two circles (γ1) and (γ2) that are symmetric with respect to OC, and 
are obtained by subjecting (γ) to the same two rotations.  Those circles constitute the 
meridians of the transform of (S), which must be, like (S), a surface of revolution around 
OC.  The theorem is then proved. 
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 Wave surface. – By definition, the wave surface is the apsidal transform of an 
ellipsoid with respect to its center.  From the preceding, one will then obtain it by 
measuring out lengths along each diameter of the ellipsoid, starting from the center and in 
one direction or the other, that are equal to the semi-axes of the central section that is 
perpendicular to that diameter. 
 We calculate the wave surface directly by completing the equations of the 
transformation.  To that effect, from the general theory of contact transformations, we 
must write down the identity: 
 

dz′ – p′ dx′ – q′ dy′ – λ (dz – p dx – q dy) 
 

= ρ (x dx + y dy + z dz – x′ dx′ – y′ dy′ – z′ dz′) 
+ σ (x dx′ + y dy′ + z dz′ + x′ dx + y′ dy + z′ dz), 

 
which will give, by identification: 
 
 1 = − ρ z′ + σ z, − p′ = − ρ x′ + σ x, − q′ = − ρ y′ + σ y, 
 − λ = ρ z + σ z′, λp = ρ x + σ x′, λq = ρ y + σ y′. 
 
Upon eliminating λ, ρ, and σ: 
 

(2)   

( ) ( ) ( ),

( ) ( ) ( ),

1 0.

p yz zy q zx xz xy yx

p yz zy q zx xz xy yx

pp qq

′ ′ ′ ′ ′ ′− + − = −
 ′ ′ ′ ′ ′ ′ ′ ′− + − = −
 ′ ′+ + =

 

 
 The interpretation is immediate.  Let M be the point of the contact element (x, y, z, p, 
q) and let (P) be its plane; let M′, (P′ ) be the point and plane of the element (x′, y′, z′, p′, 
q′).  The radius OM′, which is already perpendicular and equal to OM, is in the plane 
normal to (P) that is drawn through OM.  The normal to (P′) at M′ is in the same plane 
MOM′, and it is perpendicular to the normal to (P). 
 One then has the complete definition of the transformation of the contact elements. 
 Having said that, if one starts with the ellipsoid: 
 

(3)     
2 2 2

2 2 2

x y z

a b c
+ + − 1 = 0 

then 

2 2 2

x y z

a b c
x y z

x y z′ ′ ′
= 0, 

 
and that will be equivalent to some relations of the form: 



§ 7.  Apsidal transformations. 301 

(4)   µ′ x′ = x 2

1

a
µ − 

 
, µ′ y′ = y 2

1

b
µ − 

 
, µ′ z′ = z 2

1

c
µ − 

 
. 

 
 Upon taking into account the first one and (3), the second of equations (1) will then 
give: 

0 = 1 – µ (x2 + y2 + z2), or µ = 2 2 2

1

x y z′ ′ ′+ +
. 

 
 All that remains is to substitute the values of x, y, z that are inferred from equations 
(4) into the homogeneous combination of the first equation (1) and (3): 
 

x2 2

1

a
µ − 

 
 + y2 2

1

b
µ − 

 
 + z2 2

1

c
µ − 

 
 = 0. 

 
 Upon suppressing the primes, one will get: 
 

2 2 2

2 2 2

1 1 1
x y z

a b c
µ µ µ

+ +
− − −

= 0,  µ = 2 2 2

1

x y z+ +
, 

 
or, after reductions: 

∑ a2 x2 ⋅⋅⋅⋅ c2 – ∑ (b2 + c2) a2 x2 + a2 b2 c2 = 0. 
 
 

______________ 



 

CHAPTER XII 
 

TRIPLY-ORTHOGONAL SYSTEMS  
 

Dupin’s theorem 
 

 1. – The use of rectangular coordinates amounts to defining each point to be the 
intersection of three planes that are parallel to the three faces of the coordinate trihedron, 
respectively, and consequently they will be mutually orthogonal.  It is then based upon 
the consideration of the triply-orthogonal system that is composed of three families of 
planes, such that each plane of one of the families is orthogonal to every plane of one of 
the other two families. 
 One can generalize that and employ a triple system as coordinate surfaces, which is a 
system that is composed of three families of surfaces: 
 
(1)   ϕ (x, y, z) = u,  ψ (x, y, z) = v,  χ (x, y, z) = w. 
 
 Each point P (x, y, z) will then found to be defined by the parameters u, v, w of three 
coordinate surfaces that cut at that point, and those values of u, v, w will be its curvilinear 
coordinates in the coordinate system thus-defined. 
 Formulas (1) transform the coordinates x, y, z into coordinates u, v, w.  If we solve the 
preceding equations for x, y, z (which we assume to be possible) then we will have the 
equivalent formulas: 
 
(2)   x = f (u, v, w),  y = g (u, v, w),  z = h (u, v, w). 
 
 In general, one employs a triply-orthogonal system.  We then seek to express the idea 
that the equations (1) or (2) define a triply-orthogonal system.  The pair-wise 
intersections of the surfaces must be orthogonal.  The surfaces of the three families are 
obtained by setting u = const., v = const., w = const. in (2) in succession. 
 The pair-wise intersections of the surfaces are respectively: 
 

(v = const., w = const.), (w = const., u = const.), (u = const., v = const.), 
 

and the directions of the tangents will be: 
 

f

u

∂
∂

, 
g

u

∂
∂

, 
h

u

∂
∂

;  
f

v

∂
∂

, 
g

v

∂
∂

, 
h

v

∂
∂

;  
f

w

∂
∂

, 
g

w

∂
∂

, 
h

w

∂
∂

, 

respectively. 
 The orthogonality conditions will then be: 
 

(3)   
f f

v w

∂ ∂⋅
∂ ∂∑ = 0,  

f f

w u

∂ ∂⋅
∂ ∂∑ = 0,  

f f

u v

∂ ∂⋅
∂ ∂∑ = 0. 
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 Let us interpret those conditions.  Take the surface w = const.  The third condition 
expresses the idea that the lines u = const., v = const. are orthogonal on that surface, and 

the first two express the idea that 
f

w

∂
∂

, 
g

w

∂
∂

, 
h

w

∂
∂

 is a direction that is perpendicular to the 

tangents to those curves, and as a result, it is the normal direction.  Let l, m, n be three 
coefficients of the direction of that normal.  Differentiate the third relation with respect to 
w; we will get: 

2 2f f f f

u v w v u w

∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ = 0, 

or 
f l f l

u v v u

∂ ∂ ∂ ∂+
∂ ∂ ∂ ∂∑ ∑  = 0. 

Now: 
f

l
u

∂
∂∑ = 0, 

f
l

v

∂
∂∑  = 0; 

hence: 
2 f

l
u v

∂
∂ ∂∑  = − l f

v u

∂ ∂
∂ ∂∑ , 

2 f
l

u v

∂
∂ ∂∑  = − l f

u v

∂ ∂
∂ ∂∑ . 

 
The preceding condition can then be written: 
 

2 f
l

u v

∂
∂ ∂∑ = 0, 

 
which expresses the idea (Chap. II, § 3, pp. 27) that the lines u = const., v = const. (i.e., 
the intersections of the surface w = const. with the surfaces u = const. and v = const.) are 
conjugate on that surface.  Since those curves are already orthogonal, by hypothesis, they 
will be lines of curvature.  Hence: 
 
 Dupin’s theorem:  The intersections of each surface of a triply-orthogonal system 
with the other surfaces of that system are lines of curvature. 

 
 

Darboux’s partial differential equation  
 

 2. – We propose to look for the triply-orthogonal systems.  We take a family of 
surfaces: 
(1)      ϕ (x, y, z) = u 
 
and seek to determine two other families that constitute a triply-orthogonal system along 
with that family.  Take a point M in space.  Pass a surface u through that point M.  Take 
the tangents MT, MT′ to its lines of curvature at M; those lines are perfectly well-defined.  
If p, q, − 1 are the coefficients of the direction of MT then they will be known functions 
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of x, y, z, and similarly for MT′.  One will then have a surface of another family at each 
point M; for example, let: 
(2)      ψ (x, y, z) = v 
 
be normal to MT.  One must then have that p, q are the partial derivatives of z with 
respect to x, y (z being defined by the preceding equation), hence that ψ is a solution of 
the equation: 

(3)     p
x z

ψ ψ∂ ∂+
∂ ∂

 = 0, q
y z

ψ ψ∂ ∂+
∂ ∂

= 0. 

 
Those equations are not compatible, in general.  In order for that to be true, from the 
theory of complete systems of homogeneous linear partial differential equations, it is 
necessary and sufficient that p and q must satisfy the condition: 
 

(4)      
q q

p
x z

∂ ∂+
∂ ∂

= 
p p

q
y z

∂ ∂+
∂ ∂

, 

 
which is obtained by eliminating ψ from the preceding two equations by differentiation.  
It is a third-order partial differential equation, since p, q are expressed as functions of the 
first and second derivatives of ϕ with respect to x, y, z.  Hence, a family of given surfaces 
cannot, in general, belong to a triply-orthogonal system.  If the condition (4) is realized 
then the general solution to equations (3) will be an arbitrary function of a well-defined 
function of x, y, z, and we will have a second family of surfaces that are entirely well-
defined, each of which cuts each of the surfaces (S) of the family ϕ (x, y, z) = const. at 
right angles along a line of curvature of that surface (S).  From Joachimsthal’s theorem, 
the intersection of each surface (S1) of that family with each surface (S) of the first will 
also be a line of curvature on (S1). 
 In summary, we have two families of surfaces: 
 
(S)      ϕ (x, y, z) = const., 
(S1)     ψ (x, y, z) = const., 
 
which intersect orthogonally along curves that are each lines of curvature for both of the 
two corresponding surfaces.  It remains to study whether one can determine a third family 
of surfaces: 
(S2)     χ (x, y, z) = const. 
 
that constitutes a triply-orthogonal system with the first two; i.e., to study the system of 
linear partial differential equations that the unknown function χ depends upon: 
 

(5)     

0,

0.

x x y y z z

x x y y z z

ϕ χ ϕ χ ϕ χ

ψ χ ψ χ ψ χ

∂ ∂ ∂ ∂ ∂ ∂ ⋅ + ⋅ + ⋅ = ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ⋅ + ⋅ + ⋅ =
 ∂ ∂ ∂ ∂ ∂ ∂
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 To abbreviate, introduce the differential operators: 
 

 Af = 
x x y y z z

ϕ χ ϕ χ ϕ χ∂ ∂ ∂ ∂ ∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

, 

 Bf = 
x x y y z z

ψ χ ψ χ ψ χ∂ ∂ ∂ ∂ ∂ ∂⋅ + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂

. 

 
 From the theory of complete systems of linear equations, the necessary and sufficient 
condition for the system (5) to be integrable is that the equation: 
 

A B A B A B
x x x y y y z z z

ψ ϕ χ ψ ϕ χ ψ ϕ χ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂   − ⋅ + − ⋅ + − ⋅    ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂    
= 0 

 
should be an algebraic consequence of equations (5); i.e., that ϕ and ψ should satisfy the 
condition: 

(6)     

A B
x x x x

A B
y y y y

A B
z z z z

ψ ϕ ϕ ψ

ψ ϕ ϕ ψ

ψ ϕ ϕ ψ

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

= 0. 

 
That condition simplifies.  Indeed, we remark that: 
 

 A B
x x

ψ ϕ∂ ∂+
∂ ∂

 = 
2 2 2 2 2 2

2 2 2 2x x y x z x x x y y x z z x

ϕ ψ ϕ ψ ϕ ψ ψ ϕ ψ ϕ ψ ϕ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + + + ⋅ + ⋅
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 

  = 
x x x y y z z

ϕ ψ ϕ ψ ϕ ψ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ + ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
, 

 
so, due to the orthogonality of the surfaces (S) and (S1), one will have the identity: 
 

A B
x x

ψ ϕ∂ ∂+
∂ ∂

= 0, 

 
and similarly, the analogous identities: 
 

A B
y y

ψ ϕ∂ ∂+
∂ ∂

= 0, A B
z z

ψ ϕ∂ ∂+
∂ ∂

= 0. 

 
As a result, the condition (6) will become: 
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A
x x x

A
y y y

A
z z z

ψ ϕ ψ

ψ ϕ ψ

ψ ϕ ψ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

 = 0. 

 

 Now, for an arbitrary value of x, y, z, the derivatives 
x

ψ∂
∂

, 
y

ψ∂
∂

, 
z

ψ∂
∂

 will be the 

direction coefficients l, m, n of the normal to those of the surfaces (S1) that pass through 

the point with coordinates x, y, z, and 
x

ϕ∂
∂

, 
y

ϕ∂
∂

, 
z

ϕ∂
∂

 will be the direction coefficients of 

the normal to those of the surfaces (S) that pass through the same point; i.e., of the 
tangent to a line of curvature (S1).  Upon denoting a displacement that is performed along 
the direction of that tangent by dx, dy, dz, one will have: 
 

x

ϕ∂
∂

= λ ⋅⋅⋅⋅ dx, 
y

ϕ∂
∂

= λ ⋅⋅⋅⋅ dy, 
z

ϕ∂
∂

= λ ⋅⋅⋅⋅ dz, 

and as a result: 

A
x

ψ∂
∂

= A l = λ 
l l l

dx dy dz
x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 
 = λ ⋅⋅⋅⋅ dl, 

and similarly: 

A
y

ψ∂
∂

= λ ⋅⋅⋅⋅ dm, A
z

ψ∂
∂

= λ ⋅⋅⋅⋅ dn. 

 
 The condition (7) will then become: 
 

dl dx l

dm dy m

dn dz n

= 0. 

 
 It is satisfied, since the displacement dx, dy, dz takes place along a line of curvature. 
 The integrability condition of the system (5) is then satisfied, and the third family (S2) 
always exists and is entirely well-defined.  One then has the following results: 
 
 1. There exists a third-order partial differential equation [viz., equation (4)] that 
expresses the necessary and sufficient condition for a function ϕ (x, y, z) to provide a 
family of surfaces (S) that belong to a triply-orthogonal system.  If the family (S) is given 
then the other families (S1) and (S2) will be entirely well-defined. 
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 2. In order for two families of surfaces (S) and (S1) to belong to a triply-orthogonal 
system, it is necessary and sufficient that they should intersect at a right angle, and that 
the intersections should be lines of curvature on the surfaces (S) or on the surfaces (S1). 
 
 Finally, one should note that if one knows the lines of curvature (C1) of the surfaces 
(S1), for example, that are not intersections of the surfaces (S1) and the surfaces (S), and 
the lines of curvature (C) of just one surface (S), then each surface (S2) will be generated 
by the curves (C1) that rest upon the same curve (C). 
 
 

Triply-orthogonal systems that contain a given surface 
 

 3. – One easily recognizes that any given surface can belong to a triply-orthogonal 
system.  Indeed, trace out the lines of curvature on that surface (S), and draw the normals 
to the surface at all points of those lines.  They will generate two families of developables 
that are orthogonal to the given surface.  One will get a triply-orthogonal system upon 
adjoining the parallel surfaces to (S). 
 
 Remark I. – The surfaces that are parallel to a surface (S) are derived by the contact 
transformation that is defined by the equation: 
 

(X – x)2 + (Y – y)2 + (Z – z)2 – r2 = 0, 
 
in which r is an arbitrary constant.  Indeed, the parallel surface is the envelope of a family 
of spheres of constant radius that have their centers on the surface (S).  As we have seen, 
that contact transformation is called a dilatation [Cf., Chap. XI, § 6]. 
 
 Remark II.  – When one knows that a family of surfaces (S) belongs to a triply-
orthogonal system, the determination of the other two families of that triple system can 
be accomplished as follows: One determines the lines of curvature of one of the surfaces 
(S), and on the other hand, looks for the curves (T) that are orthogonal trajectories of the 
surfaces (S).  The other families of the system are generated by the orthogonal trajectories 
(T) that rest upon the lines of curvature that were found.  In the particular case of a family 
of parallel surfaces, the orthogonal trajectories will be the normals to those surfaces, and 
one will recover the mode of construction that was indicated above. 

 
 

Triply-orthogonal systems that contain a family of planes 
 

 4. – Consider a family of planes (P).  As we saw in the context of milling surfaces, 
the orthogonal trajectories are obtained [Chap. VII, § 6] by rolling a moving plane around 
the developable that is the envelope of the planes (P).  Take two systems of orthogonal 
curves in the plane, which is always possible, because if we give one of the systems: 
 

ϕ (x, y) = a 
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then the other one is determined by the integration of the equation: 
 

dx

x

ϕ∂
∂

= 
dy

y

ϕ∂
∂

. 

 
 One will generate the other families of the triply-orthogonal system by means of the 
curves of the planes (P) that are subject to meeting the orthogonal trajectories.  Those 
families are then composed of the milling surfaces.  One can then recover their lines of 
curvature by means of Dupin’s theorem. 

 
 

 Triply-orthogonal systems that contain a family of spheres 
 

 5. – The fact that any family of planes belongs to a triply-orthogonal system is based 
upon the fact that any curve in a plane is a line of curvature of the plane, in such a way 
that a family of surfaces that are orthogonal to the given planes will satisfy the necessary 
and sufficient condition for the existence of a third family that completes the triply-
orthogonal system. 
 The same fact will then also be true for a family of spheres, and in order to determine 
an arbitrary triply-orthogonal systems that contains the given family of spheres (S), it will 
suffice: 
 
 1. To take two families of orthogonal curves (C), (C1) on one of the spheres, and 
 2. To determine the orthogonal trajectories (T) to the spheres (S), 
 
because then the curves (T) that rest upon the curves (C) and the curves (T) that rest upon 
the curves (C1) will generate the surfaces of the two families (S1) and (S2) that form the 
desired triply-orthogonal system with the spheres (S). 
 Everything then comes down to solving the following two problems: 
 
 1. Determine an arbitrary orthogonal system on a sphere. 
 2. Determine the orthogonal trajectories to a family of spheres. 
 
 The first problem immediately comes down to the analogous problem in the plane by 
means of a stereographic projection. 
 Let us study the second one then: 
 If we consider two spheres of the family then the orthogonal trajectories will establish 
a point-wise correspondence between them, and from the preceding, that correspondence 
will be such that an orthogonal system on one of the spheres will correspond to an 
orthogonal system on the other.  Now, two rectangular directions are harmonically 
conjugate with respect to the isotropic direction.  On the other hand, for an arbitrary 
point-wise correspondence between two surfaces, the anharmonic ratio of four tangents is 
an invariant, because one can suppose that the correspondence expresses the manner by 
which the coordinate curves u = const., v = const. are homologous, in such a way that the 
homologous points will have the same curvilinear coordinates (u, v), and then the 
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anharmonic ratio of four tangents and that of the four homologous tangents will be equal 
to the same anharmonic ratio of the same four values of the ratio dv / du.  Hence, under 
the correspondence in question, the isotropic directions on one of the spheres will 
transform into isotropic directions on the other one.  The rectilinear generators of one of 
the spheres will then transform into rectilinear generators on the other one, and since the 
anharmonic ratio of the two arbitrary directions with the isotropic directions will remain 
constant, the angles will be preserved.  The transformation that is established between the 
spheres of one one-parameter family and their orthogonal trajectories is then a 
conformal transformation. 
 Therefore, let: 
(1)      ∑ (x – x0)

2 – R2 = 0 
 
be the general equation of the spheres considered, which depend upon a parameter t.  The 
preceding considerations lead us to introduce the rectilinear generators.  Then set: 
 
 x – x0 + i (y – y0) =      λ [(z – z0) + R], 

 x – x0 + i (y – y0) = − 
1

λ
 [(z – z0) − R], 

 x – x0 + i (y – y0) =      µ [(z – z0) + R]; 
hence: 

(2) 

0

0 0

0 0

1
,

1

2
( ) ,

1

2
( ) .

1

z z R

x x i y y R

x x i y y R

λµ
λµ

λ
λµ
µ
λµ

 −− = +


− + − = +


− − − = +

 

 
 The differential equations of the orthogonal trajectories are: 
 

0

dx

x x−
= 

0

dy

y y−
 = 

0

dz

z z−
= 

0 0

( )

( )

d x iy

x x i y y

+
− + −

 = 
0 0

( )

( )

d x iy

x x i y y

−
− − −

. 

 
Upon equating the third ratio to the other two in succession and setting: 
 

dA = 0 0( )

2

d x iy

R

+
, dB = 0 0( )

2

d x iy

R

−
, dC = 0

2

dz

R
, 

 
one will get the two Ricatti equations: 
 

(3)   
d

dt

λ
= 2 2

dB dC dA

dt dt dt
λ λ+ − , 

d

dt

µ
= 2 2

dA dC dB

dt dt dt
µ µ+ − . 
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 One can verify that since A and B will be conjugate-imaginary quantities in the case 
in which one works with real spheres, the solutions of the second of those Ricatti 
equations will be conjugate imaginaries of the solutions of the first one, in such a way 
that everything will come down to integrating one of them. 
 If one knows an orthogonal trajectory then one will know an integral of each 
equation, and the solution to the problem will reduce to two quadratures.  If one knows 
two orthogonal trajectories then one will have only one quadrature to perform, and if one 
knows three orthogonal trajectories then the problem will have been solved without any 
quadratures.  The general integral of the first equation is then provided by the formula: 
 

3 11

2 3 2

:
λ λλ λ

λ λ λ λ
−−

− −
 = 

0 00 0
3 11

0 0 0 0
2 3 2

:
λ λλ λ

λ λ λ λ
−−

− −
, 

 
upon denoting the values that correspond to t = t0 by the index zero.  It will then be a 
relation of the form: 

l = 
0

0

M N

P Q

λ
λ

+
+

. 

 
 One will likewise have an integral of the form: 
 

µ = 
0

0

R S

T U

µ
λ

+
+

 

 
for the second Ricatti equation, in which R, S, T, U are conjugate to M, N, P, Q, 
respectively, moreover. 
 Those two forms define the correspondence between the sphere that corresponds to 
the value t0 of the parameter and the sphere that corresponds to the value t of the 
parameter that is established by the orthogonal trajectories. 
 One then sees that the transformation will change the circles on one of the spheres 
into circles on the other one, because the circles, which are plane sections of the sphere 
that is represented by equations (2) are defined by a relation that is homographic in λ, µ.  
By stereographic projection, it will become one of the planar transformations of the group 
of reciprocal radius vectors [Chap. VIII, pp. 228]. 
 
 

Particular triply-orthogonal systems 
 

 6. – As particular triply-orthogonal systems, recall the system of homofocal quadrics: 
 

2 2 2x y z

a b cλ λ λ
+ +

− − −
− 1 = 0, 

 
and the system of homofocal fourth-degree cyclides [Chap. VIII, § 7]: 
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2 2 2 2 2 2 2 2 2 2 2 2 2

2 2

( ) ( )

4 ( ) 4 ( )

x y z x y z R x y z R

a b c R d R eλ λ λ λ λ
+ + − + + ++ + + −

− − − − −
= 0. 

 
 One verifies that one obtains another system that is composed of third-degree Dupin 
cyclides by considering the surfaces that are loci of contact points of tangent planes that 
are drawn from a point on one of the axes to a family of homofocal quadrics. 
 

______________ 
 



 

CHAPTER XIII 
 

CONGRUENCES OF SPHERES AND CYCLIC SYSTEMS 
 
 

Generalities 
 

 1. – We call a family of ∞2 spheres (Σ): 
 
(1)      ∑ (x – f)2 – r2 = 0 
 
in which f, g, h, r are functions of the two parameters u, v, a congruence of spheres.  The 
locus of the centers of those spheres is a surface (S): 
 
(S)    x = f (u, v), y = g (u, v), z = h (u, v). 
 
 We seek the envelope of those spheres.  We must append the two equations: 
 

(2)   ( )
f r

x f r
u u

∂ ∂− +
∂ ∂∑ = 0, ( )

f r
x f r

v v

∂ ∂− +
∂ ∂∑ = 0 

 
to equation (1).  Equations (2) represent a line, and thus the envelope of the spheres (Σ) 
touches each of the spheres at two points, which one calls focal points.  The envelope (F), 
which one calls the focal surface, then decomposes into two sheets (F1), (F2). 
 Consider a family of ∞1 spheres (Σ) in the congruence (1); it suffices to define u, v as 
functions of one parameter t.  Those spheres admit an envelope that touches each of them 
along a characteristic circle whose plane has the equation: 
 
(3)      ∑ (x – f) df + r dr = 0. 
 
When the expressions for u, v as functions of t vary, all of the characteristic circles pass 
through two fixed points, which are the focal points of the sphere considered.  The 
envelopes thus-obtained correspond to the ruled surfaces of congruences of lines; one 
calls them the canal surfaces of the congruence (1). 
 Among those canal surfaces, we seek the ones for which each sphere is tangent to the 
infinitely-close sphere.  They are, in reality, ruled surfaces with isotropic generators 
[Chap. VII, § 3, pp. 168].  The circle that is defined by equations (1), (3) must reduce to a 
pair of isotropic lines.  The plane (3) must then be tangent to the sphere (1), which will 
give the condition: 
(4)      ∑ df 2 – dr2 = 0, 
 
which is a first-order, second-degree differential equation.  There are then two special 
families of spheres in which each sphere touches the infinitely-close sphere.  The point of 
contact is defined by the following equations, which one will get by writing down the 
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equations of the normal to the plane (3) that is drawn through the center, and taking (1) 
and (4) into account: 

(5)     
x f

df

−
 = 

y g

dg

−
= 

z h

dh

−
= 

r

dr

−
. 

 
One sees that df, dg, dh are direction coefficients of the radius of the point of contact; the 
direction cosines are: 

− df

dr
, − dg

dr
, − dh

dr
. 

 

(Σ) 

∆ 

D 

M 

M′ 

(F) 

 

D 

(Σ) 

ω 

∆ 

I 

I′ 

 
 Let I, I′ be the points of contact thus-found.  Equation (4) defines two directions ωI, 
ωI′ on the surface (S).  Let M, M′ be the points of contact of the corresponding sphere (Σ) 
with the focal surface (F).  The line MM′ is represented by the two equations (2), or 
furthermore, since the points M, M′ are on all of the characteristic circles, by the two 
equations (3) that correspond to the special envelopes (isotropic canal surfaces).  Now, in 
that case, equation (3) will represent the tangent plane to the sphere at one of the points I, 
I′.  Hence, the lines II ′, MM′ will be polar reciprocals with respect to the sphere (Σ).  
Moreover, one sees that if one considers the ratio dv / du in equations (5) to be variable 
then the point that it defines will describe a line, which will contain the poles of the two 
planes (2) for dv = 0 and du = 0.  That line, which is the line II ′, will then be the 
conjugate to MM′. 
 If we suppose that (Σ) is a real sphere then I, I′ will be imaginary in the case where M, 
M′ are real, and conversely.  ωI, ωI′ are in the tangent plane to the surface (S) at ω.  MM′ 
is perpendicular to that tangent plane.  The points M, M′, and in turn, the lines ωM, ωM′ 
are symmetric with respect to that tangent plane. 
 Now recall that ωM is normal to the first sheet of the focal surface, and ωM′ is normal 
to the second one, and consider ωM to be an incident ray to the surface (S) and ωM′  to be 
the reflected one.  We then have a congruence of normals that reflects from the surface 
(S) into a congruence of normals.  The surface (S) can be arbitrary, as well as the surface 
(F1).  Indeed, consider the spheres that have their centers on (S) and their tangents on 
(F1).  (F1) will be one of the focal sheets of the congruence of spheres thus-obtained, and 
the congruence of normals to (F1) reflect from (S) into the congruence of normals to (F2), 
which is the second focal sheet.  Hence, one has: 
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 Malus’s theorem: The rays that are normal to an arbitrary surface reflect from an 
arbitrary surface along normals to a new surface. 
 

 
N 

M 

T 

P 
i i ′ 

ω 

 
 As one can see, this theorem extends to refracted rays.  To that effect, recall the 
classical Huyghens construction.  Consider a sphere of center ω.  Let ωM be the incident 
ray, let ωN be the normal to the refringent surface, and let n be the index of refraction.  
Construct a second sphere with its center at ω, whose radius has the ratio of n with the 
radius of the first one.  Consider the tangent plane to the refringent surface at ω.  At the 
point M where the incident ray meets the first sphere, draw the plane that is tangent to 
that sphere, which will cut the plane ωT along a line (T).  Through the line (T), draw the 
plane (T) P that is tangent to the second sphere.  Upon letting i, i′ denote the angles that 
ωM and ωP make with ωN, respectively, one will have immediately that: 
 

ωT = 
sin

M

i

ω
 = 

sin

P

i

ω
′
, 

so: 
sin

sin

i

i

′
=

P

M

ω
ω

= n. 

 
Hence, ωP will be the refracted ray.  Start with a congruence of normals then.  Let (F1) 
be the surface normal, and let (Σ) be spheres tangent to (F1) whose centers ω are on the 
refringent surface.  In order to construct the refracted rays, one must consider the spheres 
(Σ′) that are concentric to the spheres (Σ) and of radius nr.  Now, the line (∆) that relates 
to the spheres (Σ) is defined by equations (5), in which du, dv are variables, and those 
equations will not change when one replaces r with nr.  The line (∆) is then the same for 
a sphere (Σ) and for the concentric sphere (Σ′).  On the other hand, since it is in the 
tangent plane to (S) at ω and in the tangent plane to M at (Σ), it will be the line (T) of 
Huyghens’s construction, and since it keeps the same significance for (Σ′), it will belong 
to the tangent planes that are common to (Σ′) and its envelope.  Hence, P will be one of 
the contact points of (Σ′) with its envelope, and the refracted rays ωP will be normal to 
one of the sheets of the focal surface of the congruence of spheres (Σ′). 
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Special congruences 
 

 2. – We have associated four congruences of lines with the congruence of spheres 
considered: viz., the lines ωM that are normal to (F1), the lines ωM′ that are normal to 
(F2), the lines (∆), and the lines (D). 
 Suppose that M, M′ coincide on each sphere (Σ); they will also coincide with I, I′.  
The two focal sheets will then coincide.  The loci of coincident points I, I′ that 
correspond to each family of spheres (Σ) that satisfies condition (4) will then be a line of 
curvature on the double focal surface (F), and the spheres (Σ) of that family will be 
corresponding curvature spheres.  The congruence of spheres is then composed of the 
curvature spheres of a surface (F), which corresponds to one of the families of the lines 
of curvature. 
 Conversely, consider a surface (F) and its curvature spheres (Σ) of the same family.  
The surface (F) will be the double focal surface of the congruence of those curvature 
spheres, because one of the points I, I′ that belongs to (F), which belongs to the focal 
surface, will coincide with one of the points M, M′.  The two conjugate lines (∆) and (D), 
which intersect, will be tangent to (Σ) at the same point, and the points I, I′, M, M′ will 
coincide at that point.  One will then revert to the case in question. 
 All of the congruences of lines considered reduce to three here: viz., the normals to 
the surface (F), the lines (D) that are tangent to one family of lines of curvature of (F), 
and the lines (∆) that are tangent to the other family.  The surface (S) will then be one of 
the sheets of the development of the double focal surface.  The lines of curvature, which 
are integrals of (4), will correspond to a family of geodesics [Chap. VII, § 2] on the 
surface (S). 
 

Application to the search for geodesics 
 

 One will then be led to determine the geodesics of (S) upon writing down that 
equation (4) has a double root at du, dv.  With the usual notations for the ds2 of (S) [Chap. 
II], that equation can be written: 

(6)    E du2 + 2F du dv + G dv2 – 
2

r r
du dv

u v

∂ ∂ + ∂ ∂ 
 = 0 

or: 
2 2

2 22
r r r r

E du F du dv G dv
u u v v

   ∂ ∂ ∂ ∂     − + − + −       ∂ ∂ ∂ ∂           
= 0. 

 
In order for it to have a double root, it is necessary and sufficient that: 
 

2 2 2
r r r r

E G F
u v u v

   ∂ ∂ ∂ ∂     − − − −        ∂ ∂ ∂ ∂           
= 0 

or 
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(7)     H 2 − 
2 2

2
r r r r

E F G
u u v v

 ∂ ∂ ∂ ∂   − +    ∂ ∂ ∂ ∂     
 = 0, 

 
which is a partial differential equation that determines r.  Having calculated r, one will 
get the family of geodesics that corresponds, by integration, to the ordinary differential 
equation that one obtains by equating the square root in the left-hand side of (6) to zero.  
Indeed, the latter is the square of a linear form in du, dv, due to the condition (7). 
 The curves of (S) that are defined by the condition r = const. have the following 
significance, moreover: If that condition is realized then the center ω of (Σ) will describe 
a curve (γ) on (S), and the point of contact M of (Σ) with (F) will describe a curve (γ′ ) on 
(F).  Since ωM is normal to (F), (γ′ ) will remain orthogonal to ωM, and since ωM = r is 
constant, (γ) will also be orthogonal to each of the lines ωM.  Consequently, (γ) will cut 
each of the geodesics considered at a right angle, since ωM will be tangent to one of 
those geodesics at each point ω of (S). 
 Hence, the curves r = const. of (S) are the orthogonal trajectories of a family of 
geodesics [cf., Chap. III, § 9].  One verifies that immediately upon noting that equation 
(6), which has a perfect square for its left-hand side, has the consequence that for any δu 
and δv, one will have: 
 

(E du + F dv) δu + (F du + G dv) δv = 
r r r r r r

du dv u du dv v
u v u u v

δ δ∂ ∂ ∂ ∂ ∂ ∂   + + +   ∂ ∂ ∂ ∂ ∂ ∂   
 

≡ dr δr. 
 

The left-hand side will then be annulled if one supposes that δr = 0, which indeed 
expresses the orthogonality of the geodesics considered to the curves r = const. 
 
 

Dupin’s theorem 
 

 3. – Suppose that the focal surface (F) has two distinct sheets (F1) and (F2), and study 
their relationship to the surface (S) that is the locus of the centers of the spheres (Σ).  If x, 
y, z denote the coordinates of M then the direction cosines of ωM, which is normal to one 
of the sheets, will be: 

     λ = 
x f

r

−
, µ = 

y g

r

−
, ν = 

z h

r

−
. 

Hence, we will have: 
(8)     x = f + λr, y = g + µr, z = h + vr 
 
for the equations of the focal sheet considered.  Substitute those values for x, y, z into 
equations (2).  They will become: 
 

(9)     
f r

u u
λ ∂ ∂+

∂ ∂∑ = 0, 
f r

v v
λ ∂ ∂+

∂ ∂∑ = 0. 
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Those equations, when combined with λ2 = 1, define the two systems of values of λ, µ, v 
that correspond to the two sheets. 
 Let i, i′ be the angles that ωM and ωM′ , resp., make with the normal ωN to the locus 
(S) of centers ω.  Those angles are supplementary (cos i′ = − cos i), and if l, m, n are the 
direction cosines of ωN then: 
(10)     cos i = ∑ λl. 
 
Calculate the angle i.  It will suffice to infer λ, µ, ν from equations (9) and (10) and 
substitute the values obtained into ∑ λ2.  In order to avoid the calculation, we employ 
another method.  In the tangent plane to (S), let ωU, ωV be tangents to the curves v = 
const., u = const., resp., that are directed in the senses of increasing u and v, resp. 

 W 

ω 

V 

β 

U 

δ 

i 

α 

δ′ 
θ 

 
 The direction cosines of ωU are: 
 

1 f

uE

∂
∂

, 
1 g

uE

∂
∂

, 
1 h

uE

∂
∂

. 

Those of ωV are: 
1 f

vG

∂
∂

, 
1 g

vG

∂
∂

, 
1 h

vG

∂
∂

. 

 
Let ωδ be the vector of length 1 that is measured along the half-line ωM.  From formulas 
(9), its orthogonal projections ωα, ωβ, on ωU, ωV, resp., will be: 
 

ωα = A = − 
1 r

uE

∂
∂

,  ωβ = B = − 
1 r

vG

∂
∂

. 

 
The sine of i is the projection ωδ of ωδ′ onto the plane UOV, and everything will come 
down to calculating ωδ′.  Let θ be the angle between ωU and ωV: 
 

cos θ = 
F

EG
, sin θ = 

2EG F

EG

−
= 

H

EG
. 
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Since ωδ′ is the diameter of the circle that is circumscribed in the triangle ωαβ whose 

edge αβ is 2 22 cosA AB Bθ− + , we will get immediately: 
 

 sin2 i = ωδ′ 2 = 
2 2

2

2 cos

sin

A AB Bθ
θ

− +
. 

Now: 
2 2

2

2 cos

sin

A AB Bθ
θ

− +
= 2

1
,

r r

H v u

∂ ∂ Φ − ∂ ∂ 
, 

if we set: 
Φ (du, dv) = E du2 + 2F du dv + G dv2, 

 
with our usual notations.  We then obtain the desired formula: 
 

(11)    sin2 i = 2

1
,

r r

H v u

∂ ∂ Φ − ∂ ∂ 
. 

 
We now return to equations (8), and we propose to determine the lines of curvature of the 
sheet of the focal surface that they represent.  The lines of curvature are defined by the 
equation: 

| dx    λ    dλ | = 0, 
or: 

| df + λ dr + r dλ    λ    dλ | = 0, 
which reduces to: 

| dx    λ    dλ | = 0. 
Multiply that by the determinant: 

f f

u v
λ ∂ ∂

∂ ∂
, 

 
which is not zero, since the normal ωM is not in the tangent plane to (S).  The equation 
will become: 

2df d

f f f
df d

u u u
f f f

df d
v v v

λ λ λ λ

λ λ

λ λ

∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂
∂ ∂ ∂

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

 = 0, 

 
or, upon taking (9) into account: 
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1 0dr

f r f
df d

u u u
f r f

df d
v v v

λ

λ

−
∂ ∂ ∂−
∂ ∂ ∂
∂ ∂ ∂−
∂ ∂ ∂

∑ ∑

∑ ∑

 = 0. 

 
Multiply the first row by ∂r / ∂u and add it to the second one, and multiply it by ∂r / ∂u 
and add it to the third one.  We then get the equation: 
 

(12)    

f r f
df dr d

u u u
f r f

df dr d
v v v

λ

λ

∂ ∂ ∂−
∂ ∂ ∂
∂ ∂ ∂−
∂ ∂ ∂

∑ ∑

∑ ∑
= 0. 

 
The elements of the first column are one-half the partial derivatives with respect to du, dv 
of the quadratic form: 
(13)    ∑ df 2 − dr2 = Φ1 (du, dv), 
 
which defines the pair of directions ωI, ωI′ on (S).  Let us see if the elements of the 
second column are susceptible to an analogous interpretation.  If we differentiate 
equations (9) then we will get: 
 

f
d

u
λ∂

∂∑ = − f f
d d

u u
λ ∂ ∂   −   ∂ ∂   

∑ . 

 
Now, if one totally differentiates with respect to the independent variables u, v, while 
consequently supposing that d 2u = d 2v = 0, then: 
 

r
d

u

∂ 
 ∂ 

 = 
21 ( )

2 ( )

d r

du

∂⋅
∂

,  
f

d
u

∂ 
 ∂ 

 = 
21 ( )

2 ( )

d f

du

∂⋅
∂

, 

and: 

f
d

u
λ ∂ ⋅  ∂ 

∑ = 
2( )1

2 ( )

d f

du

λ∂ ⋅
⋅

∂
∑ . 

Set: 
(14)   Θ (du, dv) = ∑ λ d 2 f,  Ω (du, dv) = Θ + d 2r, 
 
and the equation can be written: 

(15)     

1

1

du du

dv dv

∂Φ ∂Ω
∂ ∂
∂Φ ∂Ω
∂ ∂

= 0. 
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Hence, the principal directions of the sheet of (F) considered will be harmonic conjugates 
with respect to the two pairs Φ1 = 0 and Ω = 0. 
 Calculate Θ.  In order to do that, eliminate λ, µ, v from equations (9), (10), and: 
 

∑ λ d 2 f − Θ = 0. 
One will get: 

(16)    

2

2

2

cos

f f
l d f

u v
g g

m d g
u v
h h

n d h
u v
r r

i
u v

∂ ∂
∂ ∂
∂ ∂
∂ ∂
∂ ∂
∂ ∂
∂ ∂ − −Θ
∂ ∂

= 0, 

which will give: 
ΘH – H cos i Ψ (du, dv) + H χ (du, dv) = 0 

 
when one develops it in the elements of the last row.  As in [Chap. II, § 3], Ψ (du, dv) 
denotes the form ∑ l d 2x in that formula; however, l, m, n are direction cosines here.  The 
form χ (du, dv) is deduced from the left-hand side of (16) by replacing the elements – cos 
i, − Θ with zeros and dividing by H.  By combining the first two columns, one will get: 
 

H χ = 2f r f r
l d f

v u u v

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

, 

 
as a third-degree determinant, and it will suffice to multiply the two sides by the 
determinant: 

H = 
f f

l
u v

∂ ∂
∂ ∂

 

in order to obtain: 

(17)    H 2χ = 

2

2

r r f
F E d f

u v u
r r f

G F d f
u v v

∂ ∂ ∂−
∂ ∂ ∂
∂ ∂ ∂−
∂ ∂ ∂

∑

∑
, 

 
which, from the calculations of [Chap. II, § 4, pp. 32], can be expressed in terms of E, F, 
G, and their derivatives.  Moreover, we have: 
 
     Ω = d 2r + cos i Ω (du, dv) – χ (du, dv) 
or: 
(18)    Ω = Ψ1 (du, dv) – cos i ⋅⋅⋅⋅ Ψ (du, dv), 
with 

Ψ1 = d 2r − χ. 
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 The lines of curvature of the second sheet are likewise tangents to the conjugate 
directions with respect to Φ1 = 0 and to the pair that one deduces from Ω = 0 upon 
changing the sign of cos i; i.e.: 
 

Ψ1 (du, dv) – cos i ⋅⋅⋅⋅ Ψ (du, dv) = 0. 
 
 Consider the points of contact of the same sphere (Σ) with its two sheets to be 
homologous on those two sheets.  It then results from the preceding conclusions that in 
order for the lines of curvature to correspond on the two sheets – i.e., in order for them to 
be defined by the same quadratic equation (15) in du, dv − it is necessary and sufficient 
that there should exist a pair of variations du, dv that are conjugate with respect to the 
three pairs: 

Φ1 = 0,  Ψ1 + cos i ⋅⋅⋅⋅ Ψ = 0, Ψ1 − cos i ⋅⋅⋅⋅ Ψ = 0; 
 
i.e., with respect to the pairs: 
 

Φ1 = 0,  Ψ1 + cos i ⋅⋅⋅⋅ Ψ = 0, Ψ = 0, 
or furthermore: 

Φ1 = 0,  Ψ1 = 0,  Ψ = 0. 
 
Equation (15) defines curves on the surface (S) along which the developables of the 
normals to one of the sheets of (F) will cut (S).  The condition for those curves to also be 
intersections of (S) with the developables of the normals to the other sheet of (F) is then 
that at each point of (S) their directions must be harmonic conjugates with respect to the 
directions that are defined by Ψ = 0; i.e., that they must be conjugate directions on (S). 
 We then obtain: 
 
 Dupin’s theorem: If the lines of curvature correspond on the two focal sheets then 
the developables of the corresponding normals will cut the surface (S) along the same 
conjugate net, and conversely.  Moreover: The necessary and sufficient condition for the 
developables of a congruence of normals to reflect from a surface into other 
developables is that it must determine conjugate nets on the surface. 
 
 

Congruence of lines (D) 
 

 4. – We seek the developables of the congruence of lines (D); they are defined by the 
equation: 

(19)     

dx dy dz

l m n

dl dm dn

 = 0. 

 
x, y, z always denote the coordinates of M, and l, m, n are the direction cosines of the 
normal to (S) at ω, which is parallel to (D). 
 Now: 
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x = f + rλ, y = g + rµ, z = h + rν, 
 
from equation (8), and equation (19) will become: 
 

| df + r dλ + λ dr  l  dl | = 0. 
 

Multiply the left-hand side by the non-zero determinant: 
 

H = 
f f

l
u v

∂ ∂
∂ ∂

; 

we will get: 

 

1 0

0

0

r l d dr l

f f f f
df r d dr dl

u u u u
f f f f

df r d dr dl
v v v v

λ λ

λ λ

λ λ

+
∂ ∂ ∂ ∂+ + ⋅
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂+ + ⋅
∂ ∂ ∂ ∂

∑ ∑

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

= 0, 

or 

(20)  

f f f f
df r d dr dl

u u u u
f f f f

df r d dr dl
v v v v

λ λ

λ λ

∂ ∂ ∂ ∂+ + ⋅
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂+ + ⋅
∂ ∂ ∂ ∂

∑ ∑ ∑ ∑

∑ ∑ ∑ ∑
 = 0. 

 
 The elements of the second column are one-half the partial derivatives of the form Ψ 
(du, dv) with respect to du, dv.  As for the elements of the first one, we point out that 
from a calculation in the preceding paragraph: 
 

f
d

u
λ∂

∂∑  = − 1

2 ( )du

∂Ω
∂

, 
f

d
v

λ∂
∂∑  = − 1

2 ( )dv

∂Ω
∂

, 

or, from (18): 
Ω = Ψ1 + cos i Ψ. 

 
Finally, the points M, M′ are defined by the relations (9): 
 

f r

u u
λ ∂ ∂+

∂ ∂∑  = 0,  
f r

v v
λ ∂ ∂+

∂ ∂∑  = 0, 

 
in such a way that with the notation that was introduced by formula (13): 
 

 
f f

df dr
u u

λ∂ ∂+ ⋅
∂ ∂∑ ∑ = 

f r
df dr

u u

∂ ∂−
∂ ∂∑ = 11

2 ( )du

∂Φ
∂

, 
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f f

df dr
v v

λ∂ ∂+ ⋅
∂ ∂∑ ∑ = 

f r
df dr

v v

∂ ∂−
∂ ∂∑ = 11

2 ( )dv

∂Φ
∂

. 

 
The elements of the first columns will then be one-half the partial derivatives of the form 
Φ1 – r [Ψ1 + Ψ cos i] with respect to du, dv. 
 Therefore: The developables of the congruence of lines (D) correspond to curves on 
the surface (S) whose tangents are conjugate at each point with respect to the pairs of 
directions that are defined by the equations: 
 
    Ψ = 0,  Φ1 – r [Ψ1 + Ψ cos i] = 0, 
 
or with respect to the pairs: 
 
(21)   Ψ = 0,  Φ1 – r Ψ1 = 0. 
 
As one should expect, that result will not change if one changes i into π – i, and the 
developables of the congruence of lines (D) will correspond to a conjugate net on the 
surface (S). 
 Consider the focal planes.  One focal plane is parallel to the direction l, m, n, and to 
the direction dl, dm, dn, which corresponds to an infinitely-close line (D) on one of the 
developables that pass through (D).  However: 
 

l2 + m2 + n2 = 1, 
so: 

l dl + m dm + n dn = 0. 
 

dl, dm, dn then define the direction of the lines of the focal plane that that is parallel to 
the tangent plane to the surface.  Now, the two directions will correspond to two focal 
planes, and thus to two developables, and since they are conjugate, if we define them by 
the characteristics d and δ then they will satisfy the equation: 
 

∑ dl · δf = 0, 
 

which expresses the idea that the first focal plane is perpendicular to the direction δf, δg, 
δh, which corresponds to the other focal plane.  Each focal plane is perpendicular to the 
direction of the surface (S) that corresponds to the developable that is not tangent to the 
focal plane. 
 
 

Congruence of lines (∆) 
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 5. – The line (∆) is the intersection of the tangent planes to the sphere at M and the 
surface (S) at ω, which have the equations: 
 

∑ λ (X – f) – r = 0, ∑ l (X – f) = 0, 
respectively.  We express the idea that the preceding line will meet the infinitely-close 
line.  That gives: 
 

∑ dλ · (X – f) − ∑ λ df – dr = 0, ∑ dl · (X – f) − ∑ l df = 0, 
 

which are conditions that will simplify upon remarking that: 
 

∑ l df = 0 and ∑ λ df + dr = 0 
What remains will be: 
 
(22) ∑ dλ · (X – f) = 0,  ∑ dl · (X – f) = 0. 
 
If we express the idea that the equations that are obtained are compatible then we will get 
the equation that defines the developables: 
 
(23) | l    dλ   dl | = 0. 
 
We further multiply this by the non-zero determinant: 
 

  
f f

l
u v

∂ ∂
∂ ∂

. 

We get: 

1 0

0

0

l d

f f
d dl

u u
f f

d dl
v v

λ

λ

λ

∂ ∂⋅ ⋅
∂ ∂
∂ ∂⋅ ⋅
∂ ∂

∑

∑ ∑

∑ ∑

= 0, 

or 

(24) 

f f
d dl

u u
f f

d dl
v v

λ

λ

∂ ∂
∂ ∂
∂ ∂
∂ ∂

∑ ∑

∑ ∑
 = 0. 

 
The elements of the first column are, up to sign, one-half the partial derivatives of the 
form Ω = Ψ1 + Ψ cos i with respect to du, dv.  Those of the second column are one-half 
the partial derivatives of Ψ with respect to du, dv.  The developables of the congruence of 
lines (∆) will then correspond to a net of curves on the surface (S) whose directions are 
harmonic conjugate at each point with respect to the pairs of directions that are defined 
by the equations: 
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(25)    Ψ = 0,  Ψ1 = 0. 
 
 In particular, the developables of the congruence of lines (∆) correspond to a 
conjugate net on the surface (S). 
 As for the focal points, they are defined by the equations of (∆) and equations (22), 
which are compatible by virtue of the relation (23).  One deduces from this that the 
directions that join ω to the focal points are defined by the relations: 
 

∑ l ·δf = 0, ∑ dl ·δf = 0, ∑ dλ ·δf = 0. 
 
The first one expresses the idea that those lines are in the tangent plane to (S), while the 
second one says that they are the tangents conjugate to the directions of (S) that 
correspond to the developables. 
 
 Special cases. – Suppose that the two preceding congruences correspond by 
developables.  The two conjugate nets that we have determined on the surface (S) will 
then coincide.  For that to be true, it is necessary and sufficient that the three pairs: 
 

Ψ = 0,  Ψ1 = 0,  Φ1 – r · Ψ1 = 0, 
or: 

Ψ = 0,  Ψ1 = 0,  Φ1 = 0 
 

must belong to the same involution, and then, from the results of § 2, the lines of 
curvature will correspond on the two sheets of the surface (S), and conversely. 

 
D ∆ 

H 

f 

f′ 

(c) 

(γ) 

M′ 

ω θ 

M 
(K) 

 
 
 In this case, we have a conjugate net (R) on the surface (S) that corresponds to the 
developables of the four congruences ωM, ωM′, (D), (∆).  From what we just saw, the 
focal points f, f′ of (∆) are on the tangents to the two curves of the net that pass through 
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ω.  The lines Mf, Mf′ are the tangents at M to the lines of curvature of one of the sheets of 
the enveloping surface (F), because the tangent planes to the developables of the normals 
to that sheet are Mω f, Mω f′, since those developables cut (S) along the conjugate net (R) 
considered, and the plane M (∆), which cuts the planes along Mf and Mf′, is tangent to 
that same sheet of (F) at M.  The line (D) is perpendicular to the plane fω f′ that is tangent 
to (S), and its focal places are perpendicular to ω f and ω f′.  The developables of the 
congruence of lines (D) cut the two sheets of the envelope (F) along their lines of 
curvature, moreover. 
 
 

Ribacour’s triple system 
 

 6. – We address the latter case.  Let (γ) be one of the curves of the conjugate net (R) 
on the surface (S).  When ω describes (γ), the point M will describe a line of curvature on 
the sheet of the surface (F) that is tangent to Mf, and the line (∆) will envelope a curve 
(C) that is the locus of f′.  Consider the sphere (σ) with its center at f that passes through 
M.  That sphere will have a canal surface (E) for its envelope.  Since the sphere (σ) has 
its radius Mf′ perpendicular to Mf, it will be constantly tangent to the curve (K), so the 
point M will be a point of the characteristic circle (H).  The plane of that circle is 
perpendicular to the line ∆ that is tangent to (C), so its center will be the foot of the 
perpendicular that is based at M on ∆.  That circle will then be orthogonal to the sphere 
(Σ) at the point M and the point M′ that is symmetric with respect to the plane fω f′, and 
the surface (E) will be generated by the circles that are orthogonal to the sphere (Σ) at the 
points M, M′.  That tangent circle to ωM at M will remain orthogonal to the line of 
curvature (K).  Now, it is a line of curvature on the surface (E), so (K) will also be a line 
of curvature on the surface (E).  If we vary (K) then we will get a family of surfaces (E) 
that will all be orthogonal to the two sheets (F1), (F2) of (F), and which will cut along the 
lines of curvature. 
 Now, if we look for the second system of lines of curvature on (F1) and (F2) then we 
must consider the spheres whose centers are at f and pass through M.  The characteristic 
circle will again be the circle (H).  Moreover, since fM and f′M are perpendicular, the 
corresponding spheres (σ), (σ′ ) are orthogonal, so their envelopes (E), (E′ ) will also be 
orthogonal. 
 We will then have two families of canal surfaces that cut orthogonally along the lines 
of curvature, which are the circles (H).  They will then belong to a triply-orthogonal 
system.  In other words, the circles (H) are orthogonal to a family of surfaces to which 
the two sheets (F1), (F2) of (F) belong, and they will establish a correspondence between 
the points of any two of those surfaces that is like the one between the points M, M′, such 
that there is a correspondence between the lines of curvature of those surfaces. 
 Conversely, if two surfaces (F1), (F2) are orthogonal to a family of ∞2 circles (H), and 
if M and M′ are the points where one of those circles cuts (F1) and (F2), respectively, then 
the sphere (Σ) that is orthogonal to the circle at those two points will be tangent to (F1) 
and (F2), which will then be the two sheets of the envelope of spheres (Σ) thus-defined.  
Moreover, if the circles (H) that have their feet on (F1) along one line of curvature also 
cut (F2) at various points of a line of curvature then the lines of curvature will correspond 
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on the two sheets of the envelope of the spheres (Σ), and one will get back to the special 
case that was just studied. 
 Therefore: 
 
 If the circles (H) of a congruence are orthogonal to two surfaces (F1), (F2), and if 
they establish a correspondence between the lines of curvature on those two surfaces 
then they will be orthogonal to an infinitude of surfaces on which the lines of curvature 
correspond.  Those surfaces will belong to a triply-orthogonal system whose other two 
families will be composed of canal surfaces, each of which is generated by the circles (H) 
that rest upon one of the lines of curvature of (F1) or (F2).  Such congruences of circles 
are called (Ribaucour) cyclic systems. 

 B 

M′ Q 
M 

C 

t 

P A 

 
 

Congruences of circles and cyclic systems 
 
 7. – We shall re-address the question of cyclic systems analytically.  Consider a 
family of ∞2 circles and then look for the existence of normal surfaces to all of those 
circles.  Let (K) one of them, let C (x0, y0, z0) be its center, and let ρ be its radius, in 
which x0, y0, z0, ρ are functions of the two parameters u, v.  We define the plane of that 
circle by way of the direction cosines of two rectangular directions CA(a, b, c) and CP(a′, 
b′, c′ ) that pass through the center of the circles, and we fix the position of a point M on 
the circle by the angle (CA, CM) = t, which is measured positively from CA to CB.  The 
coordinates of M with respect to the system CAB are ρ cos t, ρ sin t, and its coordinates x, 
y, z are: 

(1)    
0 0

0 0

0 0

( cos sin ) ,

( cos sin ) ,

( cos sin ) .

x x a t a t x

y y b t b t b

z z c t c t z

ρ ρα
ρ ρβ
ρ ργ

′ ′= + + = +
 ′ ′= + + = +
 ′ ′= + + = +

 

 
We seek to determine t as a function of u, v, in such a fashion that the surface that is the 
locus of the corresponding points will admit the tangent to the circle at the point M for its 
normal, and we denote its direction cosines by α, β, γ.  To that effect, we have the 
condition: 
(7)      ∑ α dx = 0, 
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which is the total differential equation of the desired surfaces.  We develop that equation, 
where α, β, γ are the projections of the directing segment of the direction CM′ that 
corresponds to t + π / 2: 
 

α = − a sin t + a′ cos t, β = − b sin t + b′ cos t, γ = − c sin t + c′ cos t. 
 

On the other hand: 
 

dx = dx0 + α′ · dρ + ρα′ dt + ρ (cos t · da + sin t · da′), dy = …, dz = …, 
 

and upon taking into account that: 
 

∑ α2 = 1,  ∑ αα′ = 0, 
we will conclude that: 
 

∑ α dx = ∑ α dx0 + ρ · dt + ρ [cos t ·∑ α dα + sin t ·∑ α dα′ ] 
= − sin t ·∑ α dx0 + cos t ·∑ α′ dx0 + ρ dt + ρ [cos2 t ·∑ α′ dα − sin2 t ·∑ α dα′ ] = 0. 

 
However: 

∑ αα′ = 0, 
so upon differentiating: 

∑ α dα′  + ∑ α′ dα = 0, 
 
and equation (2) will be written simply: 
 

(3)    dt = ∑ α′ dα +
1

ρ
∑ α dx0 · sin t − 

1

ρ
∑ α′ dx0 · cos t. 

Set: 

(4)      tan 
2

t
 = w, 

so 
t = 2 arctan w, 

and we will get: 

(5)    2 dw = (1 + w2) ∑ α′ dα +
2w

ρ
∑ α dx0 +

2 1w

ρ
−

∑ α′ dx0 . 

 
 That equation enjoys some properties that are analogous to those of the Riccati 
equation.  In particular, one can verify that the anharmonic ratio of four solutions has a 
vanishing total differential, and consequently, it will be constant.  It can be put into the 
form: 

dw = A du + A′ dv + w (B du + B′ dv) + w2 (C du + C′ dv), 
 
and will decompose into two partial differential equations: 
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(6)   
w

u

∂
∂

= A + B w + C w2,  
w

v

∂
∂

= A′ + B′ w + C′ w2.  

 

 Upon writing down the idea that the 
2w

u v

∂
∂ ∂

 that is inferred from the first one is equal 

to the 
2w

v u

∂
∂ ∂

 that one infers from the second one, one will deduce that: 

 

(7)    2 2( 2 )( )
A B C

w w B Cw A B w C w
v v v

∂ ∂ ∂ ′ ′ ′+ + + + + +
∂ ∂ ∂

 

− 2 2( 2 )( )
A B C

w w B C w A Bw Cw
v v v

′ ′ ′∂ ∂ ∂ ′ ′+ + + + + + ∂ ∂ ∂ 
= 0. 

 
 Any integral of the system (6) will then satisfy that condition, which will take the 
form: 
(8)      L + M w + Nw2 = 0. 
 
If that condition is not satisfied identically then there will be no other solutions than those 
of equation (8), which will admit two of them.  If one prefers that there should be an 
infinitude of them then that condition must be satisfied identically, and since it has degree 
two, it will be sufficient that it is satisfied by three functions.  The conditions for that to 
be true will then be: 

(9)     

0,

2( ) 0,

0.

A A
L BA AB

v u
B B

M CA AC
v u
C C

N CB BC
v u

′∂ ∂ ′ ′= − + − = ∂ ∂
 ′∂ ∂ ′ ′= − + − = ∂ ∂

′∂ ∂ ′ ′= − + − = ∂ ∂

 

 
 It results from the theory of partial differential equations that if these are identities 
then the system (6) will have effectively an infinitude of solutions. 
 Therefore: If the circles of a congruence are normal to three surfaces then they will 
be normal to an infinitude of surfaces. 
 It is easy to construct the circles that are normal to two arbitrary surfaces, because 
there exist ∞2 spheres that are tangent to those two surfaces, and the circles that are 
orthogonal to the spheres at the contact points will be normal to the two surfaces.  If the 
lines of curvature on the two surfaces correspond then, as we have seen, we will have a 
cyclic system that is composed of circles that are normal to the ∞1 surfaces. 
 We remark that if the given family of ∞2 circles is composed of circles that are 
normal to the two surfaces then we must expect that the integrability conditions (9) will 
reduce to just one.  On the other hand, if we have an envelope of spheres then in order to 
express the idea that the lines of curvature on the two sheets correspond, we will also get 
just one condition.  It remains for us to examine whether those conditions are identities. 
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 First, suppose that there exists a surface (F1) that is normal to all of the circles (1).  
We can do that in such a way that it corresponds to t = 0 or w = 0.  Equation (5) will then 
admit the solution w = 0, so one will have the condition: 
 

∑ a da′  − 
1

ρ
∑ a′ dx0 = 0, 

 
and equation (5) will then become: 
 

(10)    dw = w2 ∑ a da′  + 
w

ρ
∑ a dx0 . 

 
Let M0(x, y, z) be the point that corresponds to t = 0: 
 
 x = x0 + ρ a, y = y0 + ρ b, z  = z0 + ρ c, 
 x0 =  x − ρ a, y0 = y − ρ b, z0 = z − ρ c, 
 dx0 = dx − ρ da – a dρ, …, …, 
so 

∑ a dx0  = ∑ a dx − dρ. 
 

 

M 

t 

M0(x, y, z)  (x0, y0, z0)  

ω 

 
 If we now consider the normal (l, m, n) to (F1) at M0 then it will be tangent to the 
circle, and (10) will become: 

dw = w2 ∑ a dl + 
w

ρ
(∑ a dx − dρ) 

or 
dw d

w

ρ
ρ

+ = w · ∑ a dl + 
1

ρ
∑ a dx. 

 
We then introduce the quantity: 
(11)     ρ w = r, 
and get: 
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dr

r
= 

1r
a dl a dx

ρ ρ
+∑ ∑  

or 

(12)    dr = 
2r r

a dl a dx
ρ ρ

+∑ ∑ . 

Now, from (4): 

r = ρ tan 
2

t
, 

 
which shows that r is the radius of the sphere (Σ) that is tangent to the surfaces that are 
the loci of M and M0 .  Its center is the point ω, which is the intersection of the tangents to 
the circle at M and M0 . 
 Now suppose that there exists a second surface (F2) that is normal to the circles.  Set: 
 

(13)     
1

r
 = S, 

so 
 dr = − r2 · dS, 
and equation (12) will become: 
 

dS + 
1S

a dx a dl
ρ ρ

+∑ ∑  = 0. 

 
Let S1 be the known solution: 

(14)    dS1 + 1 1S
a dx a dl

ρ ρ
+∑ ∑  = 0, 

 
so, upon subtracting, one will get: 
 

d (S – S1) + 1S S
a dx

ρ
−
∑  = 0, 

or 

(15)    d ln (S – S1) = − 
1

a dx
ρ ∑

. 

 
In order for that equation to have other integrals, it is necessary and sufficient that 
1

a dx
ρ ∑

 must be an exact differential.  Now, from (4), we have: 

 

(16)  1 1 1S S x l
a a

u u uρ ρ
∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑ = 0, 1 1 1S S x l

a a
v v vρ ρ

∂ ∂ ∂+ +
∂ ∂ ∂∑ ∑  = 0. 
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Suppose that the coordinate lines are lines of curvature on (F1).  Upon denoting the radii 
of principal curvature by R, R′, the formulas of Olinde Rodrigues will give: 
 

l

u

∂
∂

= − 
1 x

R u

∂
∂

,  
m

u

∂
∂

= − 
1 y

R u

∂
∂

,  
n

u

∂
∂

= − 
1 z

R u

∂
∂

, 

 
l

v

∂
∂

= − 
1 x

R v

∂
′ ∂

,  
m

v

∂
∂

= − 
1 y

R v

∂
′ ∂

, 
n

v

∂
∂

= − 
1 z

R v

∂
′ ∂

. 

Set: 

(17)    − 1

R
= T,  − 1

R′
= T′, 

and we will then have: 
 

(18)  
, , ,

, .

l x m y n z
T T T

u u u u u u
l x m y n z

T T T
v v v v v v

∂ ∂ ∂ ∂ ∂ ∂ = = = ∂ ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ = = =
 ∂ ∂ ∂ ∂ ∂ ∂

 

Hence: 
l

a
u

∂
∂∑ = T ·

x
a

u

∂
∂∑ ,  

l
a

v

∂
∂∑ = T′ · x

a
v

∂
∂∑ , 

 
and the integrability conditions (16) for S1 will become: 
 

1S

u

∂
∂

+ (S1 + T)

x
a

u
ρ

∂
∂∑

 = 0, 1S

v

∂
∂

+ (S1 + T)

x
a

v
ρ

∂
∂∑

 = 0, 

so 

− 1
a dx

ρ ∑
= 1 1

1 1

1 1S S
du dv

S T u S T v

∂ ∂+
+ ∂ + ∂

. 

 
If we now express the idea that the right-hand side is an exact differential then, upon 
suppressing the index on S1, we will get the partial differential equation: 
 

(19)    ∆ ≡ 
1 1S S

v S T u u S T v

∂ ∂ ∂ ∂   −   ′∂ + ∂ ∂ + ∂   
= 0 

 
for the definition of the systems of circles that are normal to the ∞1 surfaces.  In that 
equation, T and T′ are the principal curvatures of a surface, referred to its lines of 
curvature: 

u = const., v = const. 
 
S is the inverse of the radius of a sphere (Σ) that is tangent to that surface at the point (u, 
v), and the system of ∞2 circles that is defined by a solution of that equation is composed 
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of the circles that are orthogonal to the corresponding spheres (Σ) at their contact points 
with their envelope.  Moreover, the given surface will be one of the sheets of that 
envelope. 
 We shall see that equation (19) expresses precisely the idea that the lines of curvature 
on the two sheets of the envelope will correspond.  From Dupin’s theorem, in order for 
that to be true, it is necessary and sufficient that the lines of curvature of the given surface 
(F1) must correspond to a conjugate net on the surface that is the locus of ω.  Let X, Y, Z 
be the coordinates of ω: 

(20)    X = x +
1

l
S

, Y = y +
1

m
S

, Z = z +
1

n
S

. 

 
In order for the curves u = const., v = const. to form a conjugate net on the surface, it is 
necessary and sufficient that one must have: 
 

(21)     
2X X X

u v u v

∂ ∂ ∂
∂ ∂ ∂ ∂

 = 0. 

 
However, upon taking the formulas of Olinde Rodrigues (18) into account: 
 

 
X

u

∂
∂

= 
( )1/Sx T x

l
u S u u

∂∂ ∂+ +
∂ ∂ ∂

= 
( )1/

1
ST x

l
S u u

∂∂ + +  ∂ ∂ 
, …, …, 

 

 
X

v

∂
∂

= 
( )1/

1
ST x

l
S v v

∂′ ∂ + +  ∂ ∂ 
, 

 
which are relations that one can further write: 
 

(22) 
2

2

1
, , ,

1
, ,

X S T x S
S l

u S u S T u

X S T x S
S l

v S v S T v

 ∂ + ∂ ∂ = −  ∂ ∂ + ∂  
 ′∂ + ∂ ∂  = −  ′∂ ∂ + ∂ 

… …

… …

 

 

We can replace 
2X

u v

∂
∂ ∂

 and the other elements of the first column in the determinant (21) 

with: 
X X

M N
v u u v

∂ ∂ ∂ ∂   −   ∂ ∂ ∂ ∂   
, 

 
and the analogous quantities, under the condition that (M – N) must not be identically 
zero.  We take: 

M = 
2S

S T+
, and N = 

2S

S T′+
, 
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in such a way that, upon taking into account (18), (19), and (22): 
 

X X
M N

v u u v

∂ ∂ ∂ ∂   −   ∂ ∂ ∂ ∂   
 = 

1 1S x S x S x S x
T T

v u u v S T u v S T v u

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂′− − ⋅ + ⋅
′∂ ∂ ∂ ∂ + ∂ ∂ + ∂ ∂

− ∆l. 

 
We must then express the idea that: 
 

1

1

S x S T T S x S T T
l

u v S T v u S T
x S

S l
u S T u
x S

S l
v S T v

′ ′∂ ∂ + + ∂ ∂ + +− ⋅ + ⋅ − ∆
∂ ∂ + ∂ ∂ +

∂ ∂+
∂ + ∂
∂ ∂−
∂ + ∂

⋯ ⋯

⋯ ⋯

⋯ ⋯

= 0. 

 

Multiply the second row by −
( )

S T T S

S S T v

′+ + ∂
′+ ∂

 and the third one by 
( )

S T T S

S S T u

′+ + ∂
′+ ∂

 and add 

them to the first one.  After simplification, we will get: 
 

− ∆ · S2 
x x

l
u v

∂ ∂
∂ ∂

= 0. 

 
Now, the determinant in this is not zero, and neither is S, so that condition will be 
equivalent to ∆ = 0, as we asserted. 
 
 One can then define a cyclic system to be a congruence of circles that are normal to 
∞1 surfaces. 

 
Ribaucour’s contact transformation 

 
 Consider a fixed sphere with center ω and the ∞4 circles (H) that are orthogonal to 
that sphere.  On the other hand, consider a surface (S), one of its points M, and the contact 
element at that point.  There is one and only one circle (H) that passes through M and is 
normal to the surface (S) at that point.  Hence, the surface (S) will correspond to a 
congruence of circles (H) that are orthogonal to it.  Furthermore, those circles will be 
orthogonal to the sphere (ω) at two points, so they will be orthogonal to three surfaces; 
they will then constitute a cyclic system.  Let P, P′ be the points where the circle (H) 
meets the sphere.  Determine the point M on that circle such that the anharmonic ratio (M, 
M′, P, P′ ) are equal to a given constant C.  The locus of the point M′ is a surface that is 
normal to (H), since equation (5) has the same properties as the Ricatti equation in just 
one variable.  For each value of C, the contact element of the surface (S) at the point (M) 
will then correspond to a contact element on another surface.  The lines of curvature will 
then correspond on the two surfaces, and we will then have a group of ∞1 contact 
transformations that preserve the lines of curvature. 
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 These results will obviously persist if one takes the circles (H) to be normal to a fixed 
plane. 
 
 

Weingarten Surfaces 
 
 8. – We have considered some congruences of spheres such that the lines of curvature 
correspond on the two focal sheets.  S. Lie’s transformation makes spheres correspond to 
lines and lines of curvature correspond to asymptotic lines.  It is then natural to also 
consider congruences of lines such that the asymptotes correspond on the two focal 
sheets.  We confine ourselves to the case in which the congruence is a normal 
congruence, and the problem will then amount to looking for surfaces such that the 
asymptotes correspond on the two sheets of the developable. 
 Therefore, let (Σ) be a surface on which we take the lines of curvature to be the 
coordinate lines.  Let l, m, n be the direction cosines of the normal, and let R, R′ be the 
radii of principal curvature.  The two sheets of the developable are defined by the 
equations: 
(S)    X = x + R l,   Y = y  + R m,   Z = z + R n, 
(S)   X′ = x + R′l,  Y′ = y′ + R′m,  Z′ = z + R′n. 
 
We seek the asymptotes of (S), (S′ ) and express the idea that the differential equations in 
u, v that define them are the same.  Here, the coordinate lines form an orthogonal, 
conjugate net: 

       ds2 = E du2 + G dv2, 
∑ l d 2x = L du2 + N dv2, 

 
and [Chap. III, § 10 and Chap. IV, § 2]: 
 

1

R
= 

L

E
, 

1

R′
= 

N

G
, 

so: 

∑ l d 2x = 
E

R
du2 + 

G

R′
dv2. 

 
The formulas of O. Rodrigues give: 
 

 
l

u

∂
∂

= − 
1 x

R u

∂
∂

, 
m

u

∂
∂

= − 
1 y

R u

∂
∂

, 
n

u

∂
∂

= − 
1 z

R u

∂
∂

, 

and 

 
l

v

∂
∂

= − 
1 x

R v

∂
′ ∂

, 
m

v

∂
∂

= − 
1 y

R v

∂
′ ∂

, 
n

v

∂
∂

= − 
1 z

R v

∂
′ ∂

, 

 
and consequently: 
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dX = dx + R dl + l dR = 
1 1x x x x

du dv R du dv
u v R u R v

∂ ∂ ∂ ∂ + − + ′∂ ∂ ∂ ∂ 
+ l dR, 

or 

(1)    dX = 1
R x

dv
R v

∂ − ′ ∂ 
+ l dR. 

 
 As one could have predicted, that formula and its analogues show that the normal to 
(S) will have the direction coefficients: 
 

x

u

∂
∂

, 
y

u

∂
∂

, 
z

u

∂
∂

. 

 
Furthermore, one concludes that for that surface (S): 
 

(2)     ds2 = 
2

21
R

G dv
R

 − ′ 
+ dR2, 

 
which exhibits a family of geodesics v = const. on the surface (S) and their orthogonal 
trajectories R = const. [Cf., Chap. III, § 9, Chap. VII, § 2, and Chap. XIII, § 2]. 
 The differential equation of the asymptotes is: 
 

∑ dl · dX = 0, 
or 

x
d dX

u

∂  ⋅ ∂ 
∑ = 0. 

 
We develop that equation upon appealing to the formulas (1).  The coefficient of 

1
R

R
 − ′ 

· dv is: 

x x
d

v u

∂ ∂ 
 ∂ ∂ 

∑ = 
2 2

2

x x x x
du dv

v u v u v

∂ ∂ ∂ ∂⋅ + ⋅
∂ ∂ ∂ ∂ ∂∑ ∑ . 

Now: 
x x

u v

∂ ∂
∂ ∂∑  = 0, 

so 
2

2

x x

v u

∂ ∂
∂ ∂∑ = −

2x x

u u v

∂ ∂
∂ ∂ ∂∑ = − 1

2

E

v

∂
∂

, 

and 
2x x

v u v

∂ ∂
∂ ∂ ∂∑ = 

1

2

G

u

∂⋅
∂

. 

 
On the other hand, the coefficient of dR is: 
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x
l d

u

∂ 
 ∂ 

∑  = 
2 2

2

x x
l du l dv

u u v

∂ ∂⋅ +
∂ ∂ ∂∑ ∑  = 

E

R
du, 

 
so the equation of the asymptotes will be: 
 

(3)    21
1

2

R E G E
du dv dv dR du

R v u R

∂ ∂   − − + +   ′ ∂ ∂   
= 0. 

 
From the general properties of the developables of the congruences [Chap. VI, § 2], the 
curves u = const., v = const. correspond to conjugate curves on the surface (S).  Hence, 
the coefficient of du dv in the preceding equation will be zero: 
 

(4)     − 
1

1
2

R E E R

R v R v

∂ ∂ − + ′ ∂ ∂ 
 = 0, 

and equation (3) will become: 
 

2 21
1

2

R G E R
dv du

R u R u

∂ ∂ − + ′ ∂ ∂ 
 = 0. 

 
Similarly, on the surface (S′ ), one will get the condition: 
 

(5)  − 1
1

2

R G E R

R u R u

′ ′∂ ∂ − +  ′∂ ∂ 
 = 0, 

 
in such a way that the equation for the asymptotes on (S) can be written: 
 

− 2 2
2 2

G R E R
dv du

R u R u

′∂ ∂+
′ ∂ ∂

 = 0, 

or 

(6)     2 2(1/ ) (1/ )R R
G dv E du

u u

′∂ ∂−
∂ ∂

 = 0. 

 
Similarly, the differential equation for the asymptotes of (S′ ) is: 
 

(7)     2 2(1/ ) (1/ )R R
E du G dv

v v

′∂ ∂−
∂ ∂

= 0. 

 
In order for those equations to be identical, it is necessary and sufficient that: 
 



338 Chapter XIII – Congruences of spheres and cyclic systems. 

(1/ ) (1/ )

(1/ ) (1/ )

R R

v v
R R

v v

′∂ ∂
∂ ∂

′∂ ∂
∂ ∂

= 0; 

 
i.e., that 1 / R is a function of 1 / R′.  The radii of curvature are functions of each other 
(Ribaucour).  The surfaces that satisfy that condition are called Weingarten surfaces or 
W-surfaces.  The minimal surfaces are a special case of them (R + R′ = 0). 
 Suppose that we start with a surface (W) as the surface (Σ) in the preceding 
calculations.  R′ is a function of R, and the condition (5) will show that: 
 

ln G

u

∂
∂

= Ψ (R) 
R

u

∂
∂

, 

so 
ln G = χ (R) + θ (v), 

and 
G = eχ(R) eθ(R) = F(R) K(v). 

 
Formula (2) gives the ds2 of the developable, and it will then be written in the form: 
 

ds2 = Θ2(R) K(v) dv2 + dR2. 
Set: 

( )K v dv= dV, 

and it will become: 
(8)     dS 2 = dR2 + Θ2(R) dV 2, 
 
which is the characteristic form of the element of arc length for a surface of revolution 
with respect to the meridians and parallels.  If we refer the meridian to its arc length σ 
then its equations will be: 

x = Θ(σ),      y = 0,      z = Θ1(σ), 
 
and those of the surface of revolution will be: 
 

x = Θ(σ) cos V, y = Θ(σ) sin V, z = Θ1(σ), 
 
so due to the fact that Θ′2 + 2

1′Θ  = 1, one will deduce that the ds2 of the surface is: 

 
ds2 = dσ2 + Θ2(σ) dV 2. 

 
Upon setting σ = R, this will be formula (8). 
 One then sees that the developables of any surface (W) can be mapped to a surface of 
revolution, such that the meridians will correspond to a family of geodesics and the 
parallels to their orthogonal trajectories. 
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 Application. – Suppose that the surface (W) has constant negative total curvature 
[Chap. IV, § 6].  Upon changing units, one can always suppose that this total curvature is 
equal to – 1.  One will then have: 

RR′ = − 1, 
or 

R′ = − 
1

R
. 

The condition (5) will then be written: 
 

2

1
1

G

R u

∂ +  ∂ 
= − 2G R

R u

∂
∂

, 

or 
ln G

u

∂
∂

= −
2

2

1

R R

R u

∂
+ ∂

= −
2ln( 1)R

u

∂ +
∂

. 

 
One concludes from this that: 

G =
2

1

1R +
K(v), 

 

and if one again sets dV = ( )K v dv then one will infer from formula (2) that: 
 

ds2 = (R2 + 1) · dV 2 + dR2. 
Then set: 

Θ(R) = 2 1R + , 
 

and from the calculation above,  the meridian of the surface of revolution will be such 
that one has: 

x = 2 1σ + , 
so 

σ = 2 1x − . 

We look for z.  It suffices to write: 
 

dx2 + dz2 = dσ2 = dx2 · 
2

2 1

x

x −
, 

and one concludes that: 

dz2 = 
2

2 1

dx

x −
, 

or: 

dz = 
2 1

dx

x −
. 

Hence: 
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z = ln (x + 2 1x − ), 
so 

x + 2 1x −  = ez ; 
thus: 

x − 2 1x −  = e−z. 
 

 Therefore, we finally get the catenary (chaînette): 
 

x = 1
2 (ez + e−z) = cosh z 

 
for the desired meridian.  The catenary: 
 

x = a cosh 
z

a
 

 
will likewise correspond to a constant total curvature that is equal to (− a2).  Therefore: 
 The two sheets of the development of a surface of negative constant total curvature 
can be mapped to an alysséide; i.e., the surface that is generated by a catenary that turns 
around its base. 
 

___________ 



 

EXERCISES 
 

_____ 
 
 

FIRST CHAPTER 
 

 1. – Find the instantaneous axis of rotation and sliding for the Serret trihedron.  
Confirm that it meets the principal normal at the central point of the ruled surface that is 
generated by that principal normal [Chap. V, § 8, pp. 106]. 
 
 2. – Find the circular helices that osculate a skew curve at one of its points.  
Determine those of its helices that have the same torsion as the given curve. 
 
 3. – Determine the fundamental elements (arc length, curvature, torsion) of the locus 
of centers of the osculating sphere to a skew curve.  Conclude from that study that in 
order for a curve to be a spherical curve, it is necessary and sufficient that the radius of its 
osculating sphere must be constant.  [Cf., Chap. V, § 10, pp. 118]. 
 
 5 [sic]. –  
 
 a.  Show that in order for the principal normals of a curve (C) to also be the principal 
normals of a second curve (C′ ), it is necessary and sufficient that the radii of curvature 
and torsion of (C) must satisfy an identity of the form: 
 

(1)     
h k

R T
+ = 1 (h = const., k = const.). 

 
Find the relation that results for (C′ ).  Examine the case in which the osculating planes to 
(C) and (C′ ) at the points that were situated on the common principal normal are 
rectangular. 
 
 b.  Show that if one is given the relation (1) and the spherical curve (γ) that is 
described by the point with coordinates: 
 

ξ = α cos θ + α″ sin θ, η = β cos θ + β″ sin θ, ζ = γ cos θ + γ″ sin θ 
 

(h = m cos θ, k = m sin θ) 
 

then the Serret formulas will yield: 
 

α, β, γ ; α′, β′, γ′ ; α″, β″, γ″ ; ds

dσ
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as functions of the arc length s of (γ), and for the curve (C), they will lead to the 
equations: 
 
(2)   x = h ∫ ξ dσ – k ∫ (η dζ – ζ dη), y = …,  z = … 
 
 c.  Verify that for any spherical curve (γ), formulas (2) will give a curve (C) that 
satisfies equation (1).  (Such curves are called Bertrand curves.)  Examine the special 
case: 

R = h, T = k, 
 
which will yield the curves of constant curvature and the curves of constant torsion. 
 
 6. – Determine a curve (C) when one knows the expressions for the radius of 
curvature R and the radius of torsion as functions of the arc length s.  One will appeal to 
the Serret formulas: 
 

dx = α ds, dα =
R

α ′
ds, dα″ =

R

α ′′
ds, dα′ = −

R T

α α ′′ + 
 

ds, 

 
upon pursuing the following path: 
 
 a.  Consider α, α′, α″ to be coordinates of a point of the sphere (Σ) whose center is at 
O and whose radius is 1.  Take the unknowns to be the parameters of the rectilinear 
generators of (Σ) by setting [Cf., Chap. IV, § 6]: 
 

1 + α′ = − u (α + iα″ ), α + iα″ = v (1 + α′), 
 
and one will find that u, v are two solutions to the Ricatti equation [Chap. V, § 10, pp. 
112]: 

dW = (MW 2 + M0) ds  0

1 1 1 1
,

2 2

i i
M M

R T R T

    = + = −    
    

. 

 b.  Let: 

u = 0

0

Au B

Cu D

+
+

, v = 0

0

Av B

Cv D

+
+

  (u0 = const., v0 = const.) 

 
be two arbitrary solutions to that Ricatti equation.  Show that the points α, α′, α″ ; β, β′, 
β″ ; γ, γ′, γ″  that correspond to the values: 
 

u0 = 1, v0 = 1,  u0 = i, v0 = − i; u0 = 0, v0 = ∞ 
 
provide a solution to the problem, and show how one can deduce the most general 
solution from it. – Conclude from this that there is an infinitude of curves (C) that meet 
the requirements of this problem and that they are all curves that can be superimposed on 
each other. 
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 c.  What would make the ratio R / T const?  Do the calculations while supposing that 
R and T are constant. 
 
 d.  Remark. – Upon considering α, α′, α″ to be the direction cosines of a given 
direction with respect to three rectangular coordinate axes, any change of coordinates, or 
(what amounts to the same thing) any rotation around the origin, will translate into the 
same projective transformation that is performed on u and v.  The point at infinity in the 
direction considered will then be subjected to the most general projective transformation 
in the plane at infinity that leaves the imaginary circle at infinity invariant. 
 
 

CHAPTER II  
 

 7. – Consider the surface S that is the locus of diametral circular sections of a family 
of homofocal ellipsoids.  Determine the orthogonal trajectories on S of the circular 
sections that generate it. 
 
 8. – Determine all of the conformal representations of a sphere on the plane.  Find all 
of the ones that give the known systems of cartographic projections (e.g., stereographic 
projection, Mercator projection). 
 
 9. – Suppose that the coordinate curves of a surface S are rectangular.  Let MU and 
MV be their tangents, and let ϕ0 be the angle (MU, MT).  Calculate the expressions r1 and 
r1 in formula (9) [page 35]: 

sin d

R ds

θ ϕ−  = 1 2

du dv
r r

ds ds
+ . 

 
Generalize that, while supposing that the coordinates u and v are arbitrary. 
 

 10. – Establish the fundamental formulas that give 
cos

R

θ
, 

sin

R

θ
 by deducing the first 

terms in the series developments [Chap. I, § 5, pp. 7] of the coordinates of a point of the 
curve when referred to the trihedron M ·TPB [Chap. II, § 4, pp. 28], and the series 
developments [that are deduced from x = f (u, v), y = g (u, v), z = h (u, v)] of the 
coordinates of a point on the curve when it is referred to the trihedron M ·TN′ N [Chap. 
II, § 4, pp. 29]. – It will suffice to calculate the terms up to degree two in ds. 
 
 11. – A surface (S) is assumed to be defined to be the envelope of a family of surfaces 
(Σuv) that are given by an equation of the form F (x, y, z; u, v) = 0, in such a way that u, v 
are the curvilinear coordinates of a running point M on (S).  Any curve (C) that is traced 
on (S) will then correspond to a family of ∞1 surfaces (Σuv), each of which cuts the 
infinitely-close surface along a characteristic.  Let (K) be those of the characteristics that 
pass through the point M of (C).  Show that there is reciprocity between the directions of 
the tangents to (C) and (K) at M. – Examine the case in which the surfaces (Σuv) are 
planes. 
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CHAPTER III  
 

 12. – Consider the surface: 
 

x = 
2 2c b uv

bc u v

− ⋅
−

, y = 
2 2 2 2c b v b u

b u v

− −
⋅

+
, z = 

2 2 2 2c b u v c

c u v

− −
⋅

+
. 

 
Determine its lines of curvature and calculate the radii of principal curvature. 
 
 13. – Show that the surfaces: 
 

0( )m z ze −  = cos m (x – x0) cos m (y – y0) 
 
are surfaces of translation whose two families of generators are plane curves that are 
situated in rectangular planes (parallel to zOx and zOy), and are such that the planar 
generators that pass through an arbitrary point of the surface are tangents to the conjugate 
diameters that are equal to the indicatrix there. – Examine the lines of curvature of those 
surfaces. 
 
 14. – Consider the surface: 
 

 x = 2 21 1
(1 ) ( ) (1 ) ( )

2 2
u f u du v v dvϕ− + −∫ ∫ , 

 

 y = 2 2(1 ) ( ) (1 ) ( )
2 2

i i
u f u du v v dvϕ+ − +∫ ∫ , 

 

 z = ( ) ( )u f u du v v dvϕ+∫ ∫ . 

 
Calculate the radii of principal curvature and the coordinates of the centers of principal 
curvatures.  Construct the differential equation for the lines of curvature and the 
asymptotic lines.  Study the lines of curvature by taking: 
 

f (u) = 
2

2 2 2

2

( )

m

m u+
, ϕ (v) = 

2

2 2 2

2

( )

m

m v+
, 

 
and introducing new coordinates by means of the formulas: 
 

u = m tan 
2

iλ µ+
, v = m tan 

2

iλ µ−
. 

 
 15. – In rectangular coordinates, suppose that one has the equations: 
 
 x = 1

2 eu cos (v – α) + 1
2 e−u cos (v + α), 
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 y = 1
2 eu sin (v – α) + 1

2 e−u sin (v + α), 

 z = u cos α + v sin α. 
 
 a.  For each value of α, those formulas will define a surface Sα .  Indicate a way of 
generating that surface.  What are S0 and Sπ/2, in particular? 
 
 b.  Consider two of those surfaces Sα and Sβ , and make them correspond point-by-
point in such a manner that the tangent planes to the corresponding points will be parallel.  
Prove that the tangents to the two corresponding curves that are drawn at two 
homologous points will define a constant angle. 
 
 c.  Find the lines of curvature and the asymptotic lines of Sα and find a geometric 
property of the curves to which they correspond on S0 under the preceding 
transformation.  What will happen for α = π / 2? 
 
 16. – Study the surfaces whose lines of curvature of one system are situated on 
concentric spheres.  What can one say about the lines of curvature of the other system? 
 
 17. –  
 
 a.  If the coordinate curves u = const., v = const. on a surface (S) are asymptotic lines 
of that surface, and if λ, µ, υ are the direction cosines of the normal to (S) at an arbitrary 
point of (S) then show that there exists a function θ such that one will have: 
 

 dx = θ du dv du dv
u v u v

υ υ µ µµ υ ∂ ∂ ∂ ∂    − − −    ∂ ∂ ∂ ∂    
, 

 

 dy = θ du dv du dv
u v u v

λ λ υ υν λ ∂ ∂ ∂ ∂    − − −    ∂ ∂ ∂ ∂    
, 

 

 dz = θ du dv du dv
u v u v

µ µ λ λλ µ ∂ ∂ ∂ ∂    − − −    ∂ ∂ ∂ ∂    
. 

 
 b.  Find the ds2 of the surface, the equations of the lines of curvature, and the equation 
for the radii of principal curvature when one starts with those formulas.  Calculate the 
torsion of the asymptotic lines and show that it is expressed by means of only the radii of 
principal curvature. 
 
 c.  If one sets: 

l = λ θ , m = µ θ , n = υ θ  
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then one will get the Lelieuvre formulas.  Show that l, m, n are three particular solutions 

of the same partial differential equations of the form 
2

u v

ω∂
∂ ∂

= Kω. 

 
 

CHAPTER IV  
 

 18. – Establish the integrability conditions that couple the fundamental invariants 
while supposing that the surface is referred to its lines of curvature. 
 
 19. – Same question, but while supposing that the surface is referred to a family of 
geodesics and their orthogonal trajectories.  Express the total curvature and the 
differential form ds / Rg – dϕ0 [Chap. II, pp. 34; Chap. III, pp. 55] as functions of the 
quantity H, and then recover the formula of Ossian Bonnet [Chap. IV, pp. 75]. 
 
 20. – Find the integrability conditions that give the expression for the total curvature 
while supposing that the coordinates are arbitrary. 
 
 21. – Discuss the form of the meridian of the surfaces of constant total curvature 
when that curvature is either positive or negative. 
 
 22. –  
 
 a.  The equations of the pseudo-sphere are [Chap. IV, pp. 81]: 
 

x = R cos θ cos ϕ,      y = R cos θ sin ϕ,      z = R ln tan sin
4 2

π θ θ  + −  
  

   (1 < θ < π / 2). 

 
One will get one conformal representation of that surface on a half-plane by setting: 
 

X = mϕ, Y =
cos

m

θ
  (m positive constant, thus Y > 0). 

 
On the other hand, upon setting: 
 

u = X + iY, v = X – iY, 
 

one will reduce ds2 to a form of type: 
 

ds2 = − 4l 2 2( )

du dv

u v−
. 

 
 b.  Upon appealing to the coordinates u, v, find all of the transformations of the points 
of the surface that preserve the arc length.  If one interprets this on the plane (X, Y) then 
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one will find that leave the X-axis invariant, and that they change every circle into a 
circle. 
 
 c.  With that same conformal representation, the geodesic lines of the pseudo-sphere 
are represented by the semi-circles that have their centers on the X-axis and are situated 
in the half-plane that is bounded by that axis and extends in the direction of positive Y. 
 
 d.  Up to the factor l, the distance between two points is ln (M1, M2, A1, A2), if M1, M2 
denote the homologues of the points in the XY-plane, and A1, A2 denote the points where 
the X-axis is cut by the circle that is the image of the geodesic that joins the two points. – 
The points of the X-axis play the role of points at infinity. – Two pairs of points whose 
separation distance is the same can be made to coincide by a displacement of the surface 
onto itself that is defined by the transformations that were found. 
 
 

CHAPTER V  
 

 23. – Find the contact points of the isotropic planes that are drawn through an 
arbitrary generator of a ruled surface.  What relationship do they have to the central point 
and the distribution parameter? 
 
 24. – Find the ruled surfaces whose asymptotic lines intersect equal segments on the 
generators. 
 
 25. – Find the ruled surfaces whose lines of curvature intersect equal segments on the 
generators. 
 
 26. – Find the lines of curvature and the geodesic lines of the developable that is the 
helicoid. 
 
 27. – Show that the lines of an arbitrary surface (S) for which ds – Rg dϕ0 = 0 (with 
the same notations as in exercise 9) are characterized by the property that if one draws a 
tangent to the curve v = constant through each of the points of one of them then the ruled 
surface that one obtains will have the line in question for its line of striction. 
 
 28. – Given a surface (S) and a curve (C) on that surface, consider the ruled surface 
(G) that is generated by the normals MN that are drawn to (S) at the various points M of 
(C).  The central point of MN is called the metacenter of (S), which corresponds to the 
point (M) and to the tangent MT of (C). 
 
 a.  Determine that metacenter, the asymptotic plane, and the distribution parameter.  
Discuss the variation of the metacenter when the curve (C) varies while always passing 
through M. 
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 b.  Show that the metacenter is the center of curvature of the cross-section of the 
cylinder that is circumscribed by (S) and whose generators are perpendicular to the 
asymptotic plane of G. 
 
 c.  Suppose that one has several surfaces (S), and that one has endowed each of them 
with a numerical coefficient a.  Consider the points M on those various surfaces (which 
are taken on each surface) to be homologous when the tangent planes to those various 
surfaces are parallel.  Let M0 be the center of the proportional distances of one such 
system of homologous points M, and relative to the system of coefficients a.  Let (S0) be 
the surface that is the locus of point M0 .  Show that it corresponds to each of the surfaces 
(S) by parallel tangent planes, and that if I0 is the metacenter of (S0) that corresponds to 
the various metacenters I of the surfaces (S) that are found to be associated under the 
correspondence considered then one will have: 
 

(∑ a) · M0 I0 = ∑ (a · MI). 
 

 29. – Suppose that one is given a skew curve (R) that is an edge of regression of a 
developable (∆).  Each of the generators (G) of such a surface is perpendicular to a 
tangent plane (P) to (∆), and the point at which (G) and (P) meet is the central point of 
(G).  Therefore, let (Σ) be one of its ruled surfaces, so each of the isotropic planes that 
pass through one if its generators will envelop a developable.  Show that the locus of the 
midpoints of the segments whose extremities describe the edges of regression of those 
two developables, independently of each other, is a minimal surface that is inscribed in 
(∆). 
 
 30. – 
 
 a.  Construct the equations for the radii of principal curvature of a skew ruled surface 
(S) with the expressions for ds2 and the form Ψ that were employed in § 11 of Chapter V. 
 
 b.  One then deduces the relation: 
 

KM = [ϕ(v) – PT] KT  – K′ T 1 KT− , 

in which: 

M = 
1 2

1 1

R R
+ ,  T = 

1 2

1

R R−
. 

 
Conclude from this that if the radii of principal curvature R1, R2 are functions of each 
other [Cf., Chap. XIII, § 8] then P, K, and ϕ (v) will be constants. 
 
 c.  Show that if that were true then the surface (S) would be a ruled helicoid or a skew 
surface of revolution. 
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CHAPTER VI  
 

 31. – Consider the congruence of tangents that are common to the two surfaces: 
 

x2 + y2 = 2az,  x2 + y2 = − 2az. 
 

Determine the developables of that congruence.  Study their edges of regression, their 
contact curves, and their traces on the plane z = 0. 
 
 32. – If the two focal multiplicities of a congruence are isotropic developables (viz., 
an isotropic congruence) then all of the ruled surfaces that pass through the same line of 
the congruence will have the same central point and the same distribution parameter.  The 
plane that is perpendicular to each line its of the congruence that is drawn at an equal 
distance to the two focal points will envelope a minimal surface.  One can then obtain the 
most general minimal surface. 
 
 33. – Suppose that the rays (D) and (D′ ) of two congruences correspond in such a 
manner that two corresponding rays will be parallel.  If the developables of the two 
congruences correspond then the focal planes of (D) will be parallel to those of (D′ ).  
The lines (∆), (∆′) that join the corresponding focal points will cut at a point M.  The 
locus of that point admits (∆) and (∆′) for conjugate tangents, and the conjugate curves 
that are enveloped by those lines will correspond to the developables of the two 
congruences. 
 
 

CHAPTER VII  
 

 34. – Study the congruences that are composed of lines that are tangent to a sphere 
and normals to the same surface.  Study the surfaces that are normal to the lines of such a 
congruence and their lines of curvature. 
 
 35. – Study the congruence that is composed of lines that are normal to a surface, one 
of whose families of lines of curvature is situated on concentric spheres. 
 
 36. – Show that in the case where one of the sheets of the developable is a cylinder or 
a cone, milling surfaces can be defined by the motion of a profile plane of invariable 
form whose plane remains constantly normal to a cylinder or a cone.  Specify the motion 
of that profile.  Determine whether one can say something analogous for the general 
milling surfaces. 
 
 37. – Show that the lines tangent to two homofocal quadrics constitute a normal 
congruence.  If one makes all of those lines (when considered to be light rays) reflect 
from another quadric that is homofocal to the first two then what will be the focal 
multiplicities of that second congruence? 
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 38. – Suppose that one is given two homofocal surfaces of degree two and a plane 
(P).  If one draws tangent planes to the two surfaces through the lines (d′ ) of the plane 
(P) then the lines (d) that join the corresponding contact points will be normal to a family 
of parallel surfaces.  Let (δ) be the line that contains the poles of the plane (P) with 
respect to the two homofocal quadrics, and let (d′ ) be the line of the plane (P) that 
corresponds to a line (d) of the congruence of normals considered.  The plane that is 
drawn through (δ) perpendicular to (d′ ) will cut (d) at a point m.  The locus of the point 
m will be one of the desired surfaces; it is a cyclide.  The developables of the congruence 
will cut out conjugate nets on the homofocal nets. 
 
 39. – Consider the congruence of lines in space on which three planes define a tri-
rectangular trihedron that determines invariable segments.  Prove that it is a normal 
congruence and determine the normal surfaces to the lines of the congruence.  Determine 
the focal points on any of those lines.  Determine the director cones of the developable of 
the congruence. 
 
 40. – Prove that there exist (isogonal) congruences such that the focal planes define a 
constant dihedron.  What is the property of the edges of regression of the developables of 
the congruence with respect to the sheets of the focal surface that contain them?  Find the 
differential equation of those curves on the focal surface, which is assumed to be given.  
What can one say in the cases where one of the sheets of the focal multiplicity is a 
developable, a curve, or a sphere? 
 
 41. – Consider a family of spheres whose locus of centers ω is a plane curve (C) and 
whose radii are proportional to the distances from the centers ω to a fixed line (∆) in the 
plane of the curve (C).  Show that all of the lines of curvature in the envelope of those 
spheres will be planar.  What can one say about the planes of those lines of curvature? – 
Conversely, how can one get all canal surfaces whose lines of curvature are all planar? 
 
 

CHAPTER VIII  
 

 42. – Suppose that one is given two curves (C), (C1).  Find all of the surfaces (S) on 
which the contact curves of the cones that are circumscribed by (S) and have their 
summits on (C) and (C1) will form a conjugate net.  Upon defining (C) and (C1) by the 
equations: 
 x = f (λ), y = g (λ), z = h (λ), t = k (λ), 
 x = ϕ (µ), y = ψ (µ), z = χ (µ), t = θ (µ), 
 
the most general surface that meets the requirements will be defined by the equations: 
 

 x = ∫ A (λ) f (λ) d λ  + ∫ B (µ) ϕ (µ) d µ, 

 y = ∫ A (λ) g (λ) d λ + ∫ B (µ) ψ (µ) d µ, 

 z = ∫ A (λ) h (λ) d λ  + ∫ B (µ) χ (µ) d µ, 
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 t = ∫ A (λ) k (λ) d λ   + ∫ B (µ) θ (µ) d µ. 
 
 Geometrically interpret the formulas that were obtained in such a fashion that one can 
find a geometric definition of these surfaces.  Transform the results obtained by duality. 
 
 43. – Let (Σ) be a sphere whose center is at O and whose radius is equal to unity.  Let 
(S) be any sphere and let (S′ ) be its polar reciprocal with respect to (Σ).  Let M be any 
point of (S) and let (P) be the tangent plane at that point.  Let M′ and (P′ ) be the point 
and the tangent plane to (S′ ) that correspond to (P) and M, resp., as polar reciprocals.  
Now, consider the congruence (K) of lines MM′ and the congruence (K′ ) of the 
intersections of the planes (P) and (P′ ).  Show that their developables correspond, and 
that the developables of (K) cut out conjugate nets on (S) and (S′ ).  How do the 
developables of (K) cut (Σ)? – Determine (S) in such a manner that (K) is a normal 
congruence.  What can one then say about the developables of (K) and the surface (S)? 
 
 44. – Suppose that (C) is a skew curve through a fixed point O and draw segments 
OM that are equipollent to the various chords of (C).  The locus of points M is a surface 
(S0).  Through each point M of that surface, draw the parallel (∆) to the intersection of the 
osculating planes to (C) that is drawn through the points P and P1 of (C) such that PP1 is 
equipollent to OM.  Let (S1) and (S2) be two sheets of the focal surface of the congruence 
of lines (∆). 
 
 a.  Determine (S1) and (S2), their ds2, and their ∑ l d 2 x.  Show that the asymptotes 
will correspond on (S1) and (S2).  What are the curves of (S0) that they correspond to? 
 
 b.  Find a necessary and sufficient condition that (C) must satisfy in order for the 
congruence of lines (∆) to be a normal congruence, and then find a normal surface.  Show 
that the radii of curvature of (Σ) are functions of each other. 
 
 c.  While remaining in that case, refer the ds2 of (S1) to the geodesics that are tangent 
to the lines (∆) and to their orthogonal trajectories.  Conclude from this that (S1) can be 
mapped to a paraboloid of revolution. 
 
 N. B. – The last two parts of this exercise are attached to the end of Chapter XIII. 
 
 

CHAPTER IX  
 

 45. – Consider two rectangular planes and all of the lines such that the segment that is 
intersected on each of them by the preceding planes has a constant length.  Find the 
normal congruences of the complex of those lines. 
 
 46. – Consider three planes that define a tri-rectangular trihedron and the lines that 
are such that the ratio of the segments that are determined by those three planes on each 
of them are constant.  Find the surfaces whose normals belong to the complex of those 
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lines.  Among those surfaces, there is an infinitude of second-order surfaces that admit 
the three given planes as symmetry planes.  The preceding complex is that of the normals 
to a family of homofocal quadrics, or to a family of quadrics that are homothetic with 
respect to their center (viz., Chasles complex). 
 
 

CHAPTER X  
 

 47. – Study the asymptotes of third-order ruled surfaces.  Show that in the general 
case, they will be fourth-order unicursals, and that each generator will meet an asymptote 
at two harmonic conjugate points with respect to the points where the generator is 
supported by the double line and the singular line. 
 Examine the case in which the surface is a Cayley surface with a unique direction. 
 
 N. B. – As one knows, the equation of a skew ruled surface can reduce to either the 
form: 
 x2 z – y2 t = 0   (general ruled surface) 
or the form: 
 x3 + 2xyz – y2 t = 0  (Cayley surface) 
 
by a convenient choice of reference tetrahedron. 
 
 48. – Determine the asymptotes of the Steiner surface.  For which curves is it 
represented in the parametric representation of the surface? 
 
 N. B. – One knows that the equations of a Steiner surface have the form: 
 

x = 
( , )

( , )

f u v

k u v
, y = 

( , )

( , )

g u v

k u v
, z = 

( , )

( , )

h u v

k u v
, 

 
in which f, g, h, k are four arbitrary second-degree polynomials.  Upon excluding the 
special cases, one can reduce it to the form: 
 

x = 
2 2

2

2

u

u v+ +
, y = 

2 2

2

2

v

u v+ +
, z = 

2 2

2 2 2

u v

u v

−
+ +

 

 
by a projective transformation and a convenient choice of parameters.  Any section of the 
surface by a tangent plane will decompose into two conics.  Upon interpreting u, v as the 
rectangular coordinates in a plane, the preceding formulas will realize the representation 
of the surface on a plane. 
 
 49. – Determine the most general canal surface whose lines of curvature are all 
spherical.  Show that those lines of curvature can be determined without integration. 
 
 50. – What can one say about the determination of the lines of curvature of a canal 
surface that is envelope of ∞1 spheres that cut a fixed sphere at a constant angle? 
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 51. – Determine the ruled surfaces of a linear complex that admits a given line for its 
asymptotic line.  Show that all of their asymptotes can be determined without integration, 
and that they will be algebraic if the given curve is algebraic. 
 
 

CHAPTER XI  
 

 52. – Study the congruence of lines that are defined by the equations: 
 

Aλ + Bµ + C = 0, A1λ + B1µ + C1 = 0, 
 
in which A, B, C, A1, B1, C1 are linear functions of the coordinates and λ, µ are arbitrary 
parameters.  In particular, discuss the questions of the lines that pass through a point, the 
lines that meet a fixed line, the lines that are situated in a plane, and focal multiplicities. 
 
 53. – Prove the results that were stated at the end of § 3 of this Chapter. 
 
 54. – Prove, by calculation, the properties of the Lie transformation that were stated at 
the end of § 4 of this chapter. 
 
 

CHAPTER XII  
 

 55. – Consider a family of ∞1 paraboloids (P) that have the same principal planes.  
How must one choose those paraboloids in order for the congruence of rectilinear 
generators of the same system to be a normal congruence for all of those paraboloids?  
Show that the paraboloids (P) will then constitute one of the three families of a triply-
orthogonal system and find the other two families.  Show that one can choose the 
paraboloids (P), more especially, in such a manner that one of those other families is 
again composed of paraboloids and give the geometric significance of the two families of 
paraboloids in that case. 
 
 

CHAPTER XIII  
 

 56. – Let (S) be an arbitrary surface, and let (Π) be an arbitrary plane.  Consider all of 
the spheres (U) that have their centers on (S) and cut the plane (Π) at a constant angle ϕ 
such that one will have cos ϕ = 1 / k.  Let (S′ ) be the surface that is deduced from (S) by 

reducing the ordinates of (S) perpendicular to (Π) by the ratio 21 k− / 1.  The spheres 
(U) envelope a surface with two sheets.  Show that their lines of curvature correspond 
point-wise with the ones on (S′ ).  Examine the case in which (S) has degree two. 
 
 57. – Describe a circle (K) in the tangent plane to a surface (S) at each point M whose 
radius is equal to a given constant. 
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 a.  Determine the families of ∞1 circles (K) that generate a surface on which those 
circles are lines of curvature.  Find the loci of the centers of the spheres that have such a 
surface for their envelope. 
 
 b.  Find the necessary and sufficient condition for the circles (K) to define a cyclic 
system.  If that condition is assumed to be satisfied then let (S1) be one of the normal 
surfaces to the circles (K).  Show that the lines of curvature of (S1) will correspond to the 
ones on (S) when one makes each point M of (S) correspond to the point M1 of the 
corresponding circle where (S1) is normal to (K). 
 
 c.  Show that (S1) has constant total curvature, and that the line congruence that has 
(S), (S1) for its focal surfaces is a normal congruence. 
 
 d.  Let C be one of the centers of principal curvature of (S) at M, and let C1 be the 
center of principal curvature of (S1) at M1, which corresponds to C.  Study the congruence 
of lines CC1 . 
 
 58. – Given a surface (S), let (C) denote any of the lines of curvature of one of the 
family, and let (C′ ) denote any of the lines of curvature of the other family, in such a way 
that a curve (C) and a curve (C′ ) cross at a point M of (S).  Let ω, ω′  be the centers of 
principal curvature that correspond to those two curves, and let G, G′  be the centers of 
geodesic curvature of those two curves. 
 
 a.  What can one say about the congruences that are defined by the four lines MG, 
MG′, Gω, G′ω′ , respectively? 
 
 b.  Let (γ) be the osculating circle to (C) at M.  Prove that (γ) generates a canal surface 
when M describes a curve (C′ ).  Find the spheres whose envelope is that canal surface. 
 
 c.  Show that if (S) belongs to one of the families of a triply-orthogonal system then 
the osculating circles to the orthogonal trajectories of the surfaces of that family that are 
constructed at the various points of (S) will define a cyclic system. 
 
 59. – Let O be a fixed point, and let (S) be an arbitrary surface.  Draw the tangent 
plane (P) to (S) at an arbitrary point, and drop a perpendicular to (P) from O; let H be its 
foot. 
 
 a.  Find the curves of (S) that admit MH for their normal at each of their points M. 
 
 b.  Let HI be the midpoint of the triangle OHM.  The congruence of lines HI is a 
normal congruence.  Find the surfaces that are normal to all of those lines.  Show that 
their lines of curvature will correspond to a net of conjugate curves that are described by 
M on (S). 
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 c.  Let K be the point at which the plane perpendicular to MO meets MH, and let (γ) 
be the circle with its center at K that passes through O and is situated in the plane MOK.  
Show that the circles (γ) form a cyclic system. 
 
 60. – Describe a sphere (Σ) that is tangent to the plane xOy at each point M of the 
paraboloid: 
(P)      xy – az = 0. 
 
Let A be the contact point of (Σ) with that plane, and let B be the second contact point of 
(Σ) with its envelope. 
 
 a.  What sort of curve on (P) must M describe in order for AB to generate a 
developable?  Those curves will form a conjugate net on (P), and their tangents at each 
point M will be perpendicular to the focal planes of the congruence that is generated by 
AB. 
 
 b.  Determine the lines of curvature of the envelope of (Σ).  The normals that are 
drawn to the envelope along each line of curvature will cut out a conjugate net on (P). 
 
 c.  Consider the circle (C) that is normal to (Σ) at A and B.  Show that there is an 
infinitude of surfaces that are normal to all of the circles (C) and determine them. 
 
 d.  Show that those surfaces form one of the families of a triply-orthogonal system 
and succeed in determining that system. 
 

__________ 
 


