CHAPTER VI

CONGRUENCES OF LINES AND
CORRESPONDENCES BETWEEN TWO SURFACES

New representation of congruences

1. — In the foregoing, we defined a congruence by giving its suppdrthe direction
of the line or lines@) that pass through each point of the support. More généxad
this would be preferable from the projective standpoimg can consider two support
surfaces that correspond point-by-point, while the linethefcongruence are the ones
that join the homologous points of two surfaces. dality, the contact elements of the
two surfaces correspond to each other, and at the damaethiat one considers the
congruence of lines that join the homologous points, aneconsider the congruence of
intersections of the homologous tangents planes.

It is natural then to employ homogeneous coordinates.MLE, vy, z t) andM; (X,

Y1, Z1, t1) be the homologous points on the two surfaces; thgroence will defined by
the equations:
X=xX+px, Y=y+py, Z=z+pz, T=t+pt;.

Similarly, letu, v, w, r be the tangential coordinates of a tangent planectértt surface,
and letus, vi, Wi, r1 be those of the homologous tangent plane to the dextoface. The
congruence will be defined from the tangential viewpointheyequations:

U=u+pw, V=v+pv, W=w+pw, R=r+pr;.

Let (S, (&) be the two support surfaces. Since the conjugatemmgson those
surfaces are invariant under any projective transformafiom their very definition, we
will be led to study the relations that exist betweamth Let:

©) x=f AW, y=9WlWw z=h@Kw, t=k@A4u,
(S1) Xi=f1(A 1), =0, z=h@y t=k@

be the coordinates of the current and homologous pointeaivo surfaces, respectively.
The choice of parameteds i is fixed by the following theorem:

When two surfacetS), (S) correspond point-by-point, there will exist a conjugate
net on(S) that corresponds to a conjugate net @), and in general, there will exist
only one of them.

Indeed, letdd, du, and d’A, o'u be the infinitesimal variations of the parametéat t
correspond to the directions of the two curves of augatg net that cross at a poidt (
L) of (§. Those directions are harmonic conjugates with reésfmet¢he asymptotic
directions that are defined by the variatiods du that satisfy the equation:
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(1) E’dA?+ 2F’d) - du+G’di = 0.

Therefore, upon interpreting the variatiodd, dy; oA, du; oA, ou as the
homogeneous coordinates of the various points of a heegdndition that expresses the
idea that the directions that are defined §nbly oA, du; oA, o' are conjugate will be
interpreted thus: The two pointéA, du), (oA, d’1) are harmonic conjugates with respect
to the pair of points that is defined by equation (1).

Similarly, two conjugate directions o] are harmonic conjugates with respect to
the directions:

7 E/dA?+2F dA Dy + G ¢4 =0,

and in order fordd, ou; oA, o'u to define two such directions, from the preceding
interpretation, it is necessary and sufficient tihat two points §4, du), (0’4, o'1) must
be harmonic conjugates with respect to the pair of pduatsare defined by equation (2).

Looking for a common conjugate system then amountsotang for a pair of points
that are harmonic conjugate with respect to the two faatsare given by two quadratic
equations (1) and (2). If the two quadratic forms haveamoneon factor then there will
be one and only one pair that answers the question, wtiltibe the pair of double
points of the involution that is defined by the two pairsgid (2). Now, the preceding
two equations define asymptotic lines on the two surfaddserefore, if two surfaces
correspond point-by-point in such a fashion that one duwsshave a family of
asymptotes ong) that corresponds to a family of asymptotes @hthen there will exist
one and only one conjugate system 8nthat corresponds to a conjugate syst&m, (
and it will be defined by the equation:

Edi+Fdu Fdi+Gau|
Edi+Fdy Fdi+Gau|

Its existence will be impossible if the forms (1) and{@ye one common factor, and it
will be indeterminate if two factors are common; iiethe asymptotic lines correspond
on the two surfaces. Discarding that exceptional c@sesuppose that the parametérs
M correspond to the common conjugate system.

Use of homogeneous coordinates
2. — We shall recall the usual formulas and see whay thiél become in

homogeneous coordinates.
A curveis defined by four equations in homogeneous coordinates:

x=f(), y=gW), z=h@), t=k).

The tangent to the poiM (X, y, z t) joins the pointM to the pointM “whose coordinates
aredx, dy, dz dt, because the point at infinity whose homogeneous cotediaae:
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d(—j::—Lded—l, d(zj:}dy+yd—, d(zj:}dﬁ zd-l, 0::_Ldt+to|_1
t t t t t t t t t

is indeed on the line thus-defined. The osculating plassegahrough the lindM “and
the pointM ” with coordinatesd %x, d %y, d ?z d %, because the point at infinity whose
homogeneous coordinates are:

dz(éj = Laxe 2axodt+ xcf—l, dz(zj = ..., dz(zj = ...,
t t t t t t
0 = 1dt? + 2dt e+ t
t t t
is indeed in the plane thus-defined.

Correlatively, it results from the classical theaf envelopes that thdevelopable
that is enveloped by the plari®) (vith coordinates:

u=f(l), v=g@), w=h(), r=k()

will have the intersection of the plari@) (@and the planeR”) with coordinateslu, dv, dw,
dr for its generator. The contact point with the edgeegfession will be in the plane
(P”) with coordinates! %u, d %, d 2w, d °r.

An arbitrarysurfacewill be defined point-wise by the equations:

1) x=ftA 4, y=9W4, z=hA 4y, t=k@ 4,
and from the tangential viewpoint by the equations:
2) u=F@ ), v=G@ ), w=H(@A 4, r=K(@A 4.

We seek to define thangent planeby starting with the point-wise equations (1). That
plane contains the point, so:
2 ux=0.

It contains the tangents to the curvés= const., 4 = const., and thus, the points

%ﬂﬂﬂ and(ax dy 0z ﬂj; hence, one has the conditions:
oy oy ou ou

9470191 aA
ox 1)

u=0, SuZ=-o.
EY 2 ou

We then have three equations that define quantiegsare proportional to, v, w, r. The
point-wise equation for the tangent plane at thatg@, y, z, t) will then be:
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X Y Z T
X 'y z t
ox dy 0dz Ot
9 04 04 A
ox 0y 0z Ot
ou oy du ou

Correlatively,one will define goint of the surface upon starting from the tangential
equations (2) by means of the conditions:

du

ZUX:O, Xa_A:O’ ZXa:O.

By definition, one defines one of the elements — viz., point mydat plane — as a
function of the other one by means of the formulas:

(3) 2 ux=0, 2udx=0, > xdu=0.

We now propose texpress the idea that the two directions (dX, dx) andMS (A4,
ou) are conjugate.Those directions will be conjugates if the IM& is the characteristic
of the tangent plane as the contact point of the tangklne displaces. Now, that
characteristic is defined by the equations:

2uX=0, XXdu=0,
while the lineMS is defined by the poinix(y, z t) and the pointdx, dy, dz, &). In order
to express the idea thslS is the characteristic, one must express the idedlibae two

points are on the characteristic, which will give:

>ux=0, > xdu=0,
Yu-X=0, Ydu-x=0.

From formulas (3), the first three equations are wgfifor any tangent directiorf,
i) and for any characteristic directio( d); we will then get the single condition:

4) 2du-Xx=0

or the equivalent symmetric condition:

(4) > di-dx=0,

which one will obtain by an analogous calculation upomglmy the role of the two

directions. In particular, we will find the conditicfor a direction to be conjugate to
itself; i.e., for it to be aasymptotic direction:
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(5) Y du-dx=0.

Having said thatywe express the idea that the curves const,u = const.define a
conjugate net.Here, the equivalent conditions (4),)(#ill give:

ou Qi)_x_

6 —0LE—=0,

©) 0A ou

©) du px_
ou 0A

Those conditions can be transformed. When theitgeguation:
ZUQ =0
ou
is differentiated with respect t it will give, in fact:

ou _Px 9°x _
Za_/]%+zu6/16ﬂ_ 0,

and (6) will be written:

9°x
7 u =0.
0 Z 0Adu
Upon starting with one of the relations:
X% = 0’ X% = 0’
0A ou

one will likewise get the necessary and sufficientditional relation that:

0%u
7' X =0.
(7) Z 0Adu

Equations (7), (7 depend upon point-like and tangential elements simultalyeous
Upon expressing, v, w, r as functions 0%, y, z t, and their derivatives, one will obtain
the condition in point-like coordinates:

2
(8) X % % —a X =
04 0u O0Adu

In the relation (8), the left-hand side represents areaidtion for the determinant whose
first row is the row that is written between theotwertical lines, and whose other three
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rows are deduced from it by replacirgvith y, z, t, respectively. That notation will be
currently employed in what follows.
Whent = const., the condition (5) will reduce to the knownaiton:

ox ox 0%x
oA ou Aoy

! —_

The condition (8) can be interpreted thus: There ethstsame homogeneous, linear
relationship between the corresponding elements abthis, so there will exist functions
L, M, N of A andy, such that one will have identically:

2
0°X Lax M% £ Nx
0Aou 0A ou

0’y _
Aoy
0’z _
Aoy
0t
Aoy

i.e.: the four homogeneous coordinates X, v, z, t sahsefgame linear partial differential
equation of the form:

0 90,1490 g
oAdy  9A ay

Upon operating from the tangential viewpoint, one wkikWise see thahe condition
(7"), which can be written:

du du 0% |_
00 du 0oy

with a notation that is analogous to the one thaswust introduced, expresses the idea
that u, v, w, r are integrals of the same partidfetential equation of the form:

FRY) acp
Aoy

Q— +Rg.

One can effortlessly show thatxify, z t or u, v, w, r satisfy an equation of the preceding
form then they will satisfy only one such equation.

Remark.— In Cartesian coordinates, one must suppose th&t (A, 1) = 1, and the
preceding result will apply to point-like coordinatey, z upon settind\ = 0.
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Now consider auled surface The equations of a generator that joins the pdifx,
Yy, Z 1) to the pointM; (X1, V1, 1, t1) are:

X=X+px, Y=y+pw, Z=z+pz, T=t+pt.

Suppose that the surfacedsvelopable. The tangent planes to the pointsy, z t) and
(x1, Y1, &1, t1) are the same. Now, the tangent plané #éhat passes through the generator
and the tangent to the curge= 0 will contain the pointdx, dy, dz dt). Similarly, the
tangent plane dl, will contain the pointdx, dyi, dz, dt;). The condition for the planes
to coincide will then be:

[ X X dx dx |=0

If we define the surface in tangential coordinates thierwill likewise arrive at the
condition:
|[uu dudw|=0

Finally, we pass on to tleongruencesA congruence will once more be represented
by the equations:

X=X+px1, Y=y+py, Z=z+pz, T=t+pt;.

However,x, vy, z t andxy, Y1, z1, ta, are functions of two arbitrary parametefs g) here.
Let us look for itdocal elementsLetF be one focus of a lind®]) with parametersA, ).
Let p be the value that will give the coordinates of thahtpahen it is substituted in the
preceding equations. All of the ruled surfaces of thegyagence that contain the linB)(
will have the same tangent plane at the pBintin particular, consider the surfackés
const.,.z = const. The tangent planes to the surfaces cottt@ipoints X, y, z t), (X1, Y1,

X 0 X 0% j :
2, t), | —+ and z, 1), (X, V1, 21, t —L , respectively. The
1, 1) [a,u ,Oa’u j Ky zt), (X, Yy, 21, ty), ((’M ,Oa)l p y

condition for those planes to coincide — i.e., ¢@ation of the focal points will then
be:

oX_  0x O0X_ 0% | _
X X tP T tP | T

an 0A ou ou
One will likewise find theequation of the focal planes:

u —+ it
Yo TPa ou Pau

ou . du du aul‘

In the foregoing, we have supposed that the homamges coordinates are defined by
the condition that the ratiogt, y/t, zZt must be the corresponding Cartesian coordinates.
One effortlessly verifies that the results obtainedl apply to the more general
coordinates that one deduces from them by an arpithomogeneous, linear
transformation.
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Special correspondences

3. — We shall study theorrespondence between two pointsN¥ of two surfaces,
such that the developables of the congruence of lineg ddivthe two surfaces along the
two conjugate nets that they correspond Emr example, there are the ones that relate to
the conjugate nets that are formed by their lines of cumwatar the correspondence is
determined on two parallel surfaces by the congruenceeaf tbmmon normals. We
suppose that the parametdrgs that fix the position of a point on each of the stefaare
precisely the ones that will make the homologous conjugatess bel = const. angy =
const. The curved = const. anduy = const. are conjugate on the first surfaGe (
Thereforex, y, z, t satisfy [§ 2] the same partial differential equation:

0’ _ 909

oAdy oA

99
ou

(1) +Q -+ Rp.

Similarly, the curvesl = const. angz = const. are conjugate on the second surf&ge (
X1, Y1, 21, 11 satisfy the same partial differential equation:

¢ _

@ Aoy

R3S TR
Now, express the idea that the developables of the wemge correspond té =
const. angv = const. If we represent the congruence by the equations:
X=xX+pX, Y=y+py, Z=z2+pz, T=t+pty
then the developables will be given [§ 2] by the equation:

[X x2 dx dx|=0.

Now:
0Xx oX
dx=—dA+—dyu, dy= ..., dz=..., dt=...,
04 ou H y
0% 0%
dxy = —=2dA+—=2dy, dyi=..., dz=..., dt; = ...,
aq Y| ol U V1 1 1

and the preceding equation must be verifieddfor 0,dw = 0, so we get the conditions:

oX 0x
3 — —| =0,
() Xxla)l 04

oX 0x
4 — —+| =0.
(4) XX o ou
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They express the idea that there exists the sanas,lin@mogeneous relation between
the line elements, so there exist factars, As, B; ; C, D, Cyi, D; such that one has the
identities:

0X 0X,
5 Ax+ B— =A; xy + B—%, and analogous ones,
(5) X Py 1 X1 Bla/l g

(6) Cx+ D% =Cyix + Cla—x1 , and analogous ones.
ou ou

First case~ Let us first see what happens if one of the fouffimeents B, B, D, D;
is zero. For example, |8 = 0. Equations (5) then express the idea that the lhi(x,,

. . . . ,(0Xx 0y 0z Ot
Y1, Z1, t1) is on the line that joins the poifts (x, y, z t) and M (M FYEFy, ,Mj. The
line MM; is tangent to the curvg = const. that is traced on the surfagg (All of the
lines MM; are then tangent to the surfa&®, (which is one of the sheets of the focal
surface of the congruence. The curues const. on that focal surfacg) (are the edges
of regression of one of the families of developahi¢ the congruence, and in turn, the
curvesA = const., which are conjugate to the preceding ome the contact curves of the
developables of the second family. We seek howroust define &) in order for that
surface to be cut along a conjugate net by theldpables of the congruence. In the case
in question, if one supposes that = 0 (as is legitimate) then equations (5) can be
written:

0x ay 0z ot
X1 = AX+B—, =Ay+B—, z1=Az+B—, t1=At+B—.
! a) Vi=AYTES) ' a) ! o

Since homogeneous coordinates can be replaceg@miportional quantities:
x=6X, y=6&, z=6 t=6I,
if @is a function ofd, i then the preceding formulas will become:

ox aej ) )
, Yi= ..., = ..., hh=...

x1:A6><+B(9—+X—
04 04

Determine the functiof by the condition:

AG+ B%: 0,
04
which is always possible. Hence:
X1 = Bé?a—x Y1 = BHa—Y, = BHa—Z = BHa—T

01’ 04 01’ 01’
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and since the homogeneous coordinates are defined onlyaufadtor, if we substitute
y, z, tfor X, Y, Z, T then we can write:

(7) X1=—=, Yi=—., = —, t1 = —.

From these relations, the differential equation i)ich is verified forg = x, y, z t,
will then give:

(8) 6_xl: P x +Q%+ Rx and analogous ones,
ou ou

which are conditions of the form (6). Equations (3) @)dwill then be verified.
Differentiating the relation (8) with respectAawill give:

2 2
a_xiz a_PX1+ Pa_xl.i.a_Qﬂ(.{. a X +6_RX+ R2<
0Adu 04 04 04 Ju 0Adu 0A 04

However x; satisfies equation (2); i.e., one will have:

0% _ 5 0%, ~ 0%
=P—2+Q—2+ ,
Aoy oA Qlay R

and upon also taking (7) into account, the preceding idemtlithecome:

0X, 0% _0R 0X . ~0% 0Q dx , dR
9 P=2+Q 22+ =—Ix +P22+0Q0=2+ =+,
®) taA Qla,u RX 041 % 041 Qa,u 1 04 o 94 ’

Equations (8), (9) are two equationxiandox / du. If one can solve them then one
can inferx, in particular, as a linear function ®f, 0x, / 04, anddx; / du. Hence, the
point M(x, y, z t) will be found in the plane of the three points, (y1, z, ti),

(%j[%j l.e., in the tangent plane to the surfaBg @tM; . The lineMM;
will also be tangent toS) then, and &) will be the second sheet of the focal surface.
Therefore, we have established the point-by-pamnespondence between the two sheets
of the focal surface in this case by means of chyke congruence.

We discard this case, which was studied in ChaykerOne must then suppose that
the equations (8), (9) can be solvedX@nddx / du, which demands that:

Q R
Q oR|=0:
04 04

i.e., one will have an identity of the form:
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R=Q ¥ (4.

Recall the relation (8) then and multiply the cooadesx, y, z t; xi1, y1, z1, t1 by a
factor &g which is a function ofs, in such a fashion that the relation (8) will simplif
which will be written:

9% - Px+Q {%+xw(,u)]
ou ou

We choose the factapin such a manner that the expression in brackets rethuces
ox /ou . Since the factow does not depend upoh equations (7) will persist, and we
will get relations of the form:

a—X1=P’x1+Q’% %: 6_21_ ot _

o o oy u o
That amounts to supposing thiat 0 in equations (1), which will finally give:

9°x _ ax Q— 9’y _ 0’z _ 0%t

(10) = .. = .. =
YR Pon EYE, EYEN, Aoy

Conversely, it is easy to see that,if, z t satisfy (10) then if equations (7) were verified,
the conditions (1), (2), (3), (4) would be satisfied3) and (1) are, to begin with.
Equations (10) can be written:

in such a way that the condition (4) will also beified. One finally infers from this,
upon differentiation, that:

0°x, _ 0P 0%, X 0Q
= +Q—2+ Px |—, and the analogous ones,
0Adu 04 ou Q(a,u X 0A g

which indeed gives equations of the form (2).
Second case- We now suppose th&, D, B;, D; # 0. Recall equations (5), (6).

Upon multiplyingx, v, z t, andxy, yi, z1, t1 by convenient factors, one can make the term
in x and the term iy disappear, in such a way:

(12) a_xlz L%, ayl ay 6_21: LE, a_tlz —_.
04 oA 04 6/1 04 0A 04 041

Equation (6) is then written:
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(12) M X Nx+S %
ou ou

differentiate with respect té, while taking (11) into account:

0 ox\)_ 0 0x 0 0
—(L—j-—(M—}a—A(Nxﬂa—A(S)p.

ou\ 04 0A ou
9°x 0X 0x
(1) expresses— as a function ok, — , and—, and the preceding relation can be
0Adu 01’ ou
written:
0 0X 0X
— (S X)) =F| X,—,— |,
04 (5%) ( 04 a,uj

in whichF is a linear function, or furthermore:

05, L 0% _p(, 0% ox)
041 04 0A ou

If 0S/dA # 0 thenx, will be a linear function oi,g—;( g_x The pointM is in the tangent
7

plane to the surfaceS( at M, which will then be one of the sheets of the focafasar,
which is a case that was examined previously. One mestsilpppose thatS/ 0A = 0,
so Swill be a function of only.. Hence, if we recall equation (12) then we can miyltip
X1, Y1, Z, t1 by a function ofu such that the term ixy will disappear, so the relations (11)
will keep the same form, and we will convert (12) inte tbrm:

9% H—+Kx
a,u ou

The same argument will show thatis independent of, and that one can, in turn, make
the term inx disappear. Finally, equations (12) can be reduced to the form:

(13) MO dy_ Oy 0z 0z 0y 3t
ou ou  ou ou  ou ou ou ou

The relations (11) and (13) are sufficient, moreovegesone can conclude that:

62)(1 :i(L%j
orou  oul ar)
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ale :i M%
Aoy oAl ou)

Hence:
(14) i M% :i(L%j
04 ou ou\ 04
which is an equation of the form (1) with= 0. One will likewise obtain:
(15) (1 0%, 1(&6_@,
0A\M ou ou\ M aA

which is an equation of the form (2) with = 0.

Conclusions= In thefirst case in which the surface is one of the focal surfaces of
the congruence, which is assumed to be given, we Wegl to make the term IR
disappear in the equation:

(16)

2
IX = P%+Q% + RX
0Adu 0A ou

which relates to that focal surface, by means of thansformations that are equivalent to
a unigque transformation of the form:
X=aX

In order to determine the factax one directly finds the condition:

2
o‘w _ P6w+ ow

= Q—+Ra
AN ou Y ou

in such a way that equations (7) will show thaty surface(S) that is cut along a
conjugate net by the developables of the congrusndefined by the equations:

X :i(lj \% :i(lj % :i(ij t :i(ij
Yoarlag) T a\e) T anlw) TTan\w)

in which wis an integral of equatioi).

We pass on to theecond casdn which neither of the two surfaces is a focaface
of the congruence. One is given one of them — tbeysurface) — and the conjugate
net along which it must be cut by the developabfethe desired congruence. One must
once more eliminate the termnn equation (1), which corresponds to that corjegeet
on (9. That will again amount to looking for an intayof that equation. The equation
will take the form:
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2
(17) X _ pOX, 9%
ou

oAdu A

In order to then determine the factarandM in formulas (11) and (13), we identify that
equation (17) with equation (14) that we obtained previoushhat Wwill give the
conditions:

oL oM
—=P(M-0), —=Q (L -M).
o ( ) 3 QL-M
Set:
(18) L-M=y,
and those equations will become:
(19) L Py,
ou
oM
20 — = ,
(20) 3 Q.
The first one can be written:
(19) M__% by
ou ou

and the compatibility condition for those equationshit t must be an integral of the
equation:
2
21) o'y LoPy) o) _,
0Adu 04 ou

which is what one calls thedjoint of (17). Havingy, one can determine andM by a
guadrature, because one has the total differentldl-effor example, from (19and (20),
and equation (18) will then giie. Some new quadratures will succeed in determining
the surface%) by means of formulas (11) and (13), and similarly, thegcuence.

Properties of the foregoing correspondence

It results from the preceding analysis that equationsgdd X13), viz.:

(11) a—xlz %, and the analogues,
041 04

(13) 6_xl: M %, and the analogues
ou ou

completely characterize the special point-by-point espondence that is determined on
the two surfaces§ and &) by the rays of a congruence whose developables cutoéach
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those two surfaces along a conjugate net. We shall exaha@rgeeometric properties that
result from those formulas.
Let:
M(Y,zt), Mi(X,VY, z,t)

be two homologous points. L& be the points whose coordinates {%j or

(6_><1j and letQ be the point whose coordinates él‘%}ij or [axi j The line
0A ou ou

PM is tangent to the curye = const. on the surfac&)(at M, andPM; is tangent to the
surfaceu = const. on the surfac&) atM;. Similarly, the lineQM is tangent to the curve
A = const. on the surfac&)(at M, andQM; is tangent to the curvé = const. on the
surface &) atM; . The tangent planes to the two surfac®s (&) at the pointsvl, M,
then cut along the linBQ.

(X’ y’ Z’ t)

M1 (X1, Y1, Z1, 1)

Consider the congruence of those liR€¥ It is defined by the equations:

_ O0x p%, Y_ay+ oy 7= 0z pﬂ, T= ot pﬁ.
T ou 04 ou ) ou ) ou

The developables of that congruence are defingtddogquation:

2 2 2 2
%%aﬁhaxdﬂ 6di+62xd’u:O,
0A o0u 04 0Adu 0Adu ou

butx, y, z t will satisfy identities of the form:

9°x 6x

6/16,u 6/1 Q—

in such a way that the preceding equation can lieewr

A-dA-du=0,



§ 3. — Special correspondences 199

in which A is a determinant that is non-zero, since the equaiot an identity. The
developables of the congruence of lines RQich are intersections of the tangent planes
to the surface at two homologous points, will then correspond to theogabéds of the
congruence of lines MMthat join those homologous points; i.e., to systems of
homologous conjugates on the two surface again.

We now seek the focal points. They are given byethetion:

oXx 0x 0%x 0°Xx  0%x 0%x
+ +

- = :O,
oA ou ox Parou arou FPord

which is an equation that will reduce o= 0, due to the condition that precedes it; one of
its roots will be zero, and the other one will berdinity. The focal points are nothing
but the points PQ. They are in the focal planes of the congruence of lines MM
Indeed, those focal planes are the plavibs P, MM1Q, because they must be tangent to
the two developables of the congruence that pass thidiih and by hypothesis, they
will cut the two surfacesS| and &) along the curveg/ = const.,A = const., whose
tangents ar&P, M1P, andMQ, M;Q, respectively.

Consider the poinP, and suppose that one séts= const. The direction of the
tangent to the trajectory of the pointis defined by a second point whose coordinates
are:

i(%j = P%+Q%, and analogous ones.
o\ 04 04 ou

It is a point ofPQ. The pointP then describes a tangent curveP@Q. It is the edge of
regression of the developable of the congruence of iithat corresponds to the value
considered! = const. Likewise, the poir®® will describe the edge of regression of the
developable that corresponds to that valweconst when/ remains constant.

One sees that the correspondence between the two suBpaad &), which is first
defined from the point-wise viewpoint by the congruen€eaf the linesMM;, or D), is
found to be similarly defined from the tangential viewpdiy the congruenc&() of the
lines PQ, or O’). The developableK( ) then correspond to the two homologous
conjugate nets considered @) and &). When the pairs of homologous poiis M;
are defined in that way, the congruent¢® Ef lines MM; will result as a logical
consequence, and the focal planes of the Bayof that congruence will pass through the
foci P andQ of the homologous ray)X(") of the congruence(").

The properties of the correspondence that we just stuiien transform into
themselves by duality. Upon choosing the homogeneous talgedtordinates
conveniently, one will have, in turn, at the same tmseformulas (11) and (13), the
identities:

o 0u g analogous ones,
04 04
ou _  du

—+ =K —, and analogous ones.
ou ou
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In summary:

If the developables of one congruen@® cut two surfaceqS), (S) along two
conjugate nets then the pairs of tangent planeSta@and &) whose contact points are
on the same ragD) of (K) will cut along the raygD ") of anew congruencéK”), such
that the contact points of the tangent planes that are drawf®aand (S) with the
generators of the developables of that congrueiice) will describe the same two
homologous conjugate nets, and conversely. The focal points of thrgy¢K”) are
in the focal planes of the rayB) associated witl{K), and each focal point will be found
in the focal plane that it does not correspond to.

The correspondence between the two surfaces is, inafadrrespondence between
contact elements whose properties will correspond byitdwathen one passes from the
points of those elements to their planes, or conlerse

Correspondence by parallel tangent planes

4. — Consider a point-to-point correspondence between twacsgrd and &)). On
the surface 9, let (C) be one of the curves of the conjugate net that corrdspmna
conjugate net ong), and let C;) be the corresponding curve d®)( Suppose that the
tangent planes to the surfac&, (S) at two arbitrary homologous points are parallel,
their characteristics will also be parallel. Henites homologous conjugate directions
will be parallel. If one supposes that the coordingtaadt; are equal to 1 here then that
parallelism will translate into identities of the rior

(1) a_xlzL%, %:Lﬂ, a_zlzLE, a_tlzLﬂ:O,
oA 0A' 9 oA’ ad or'  aa oA
2) LR VICASC (R VIO A T VI S LY )

ou o’  ou ou’ ou o’ ou ou
We can then apply the results that were obtained hefbine tangent planes bt M; are
parallel, so the lin@®Q will be at infinity. The lines of the congruend€’() are the lines
of the plane at infinity. On each of those lines, pbetsP, Q will be the points where
they are met by the homologous tangents®rand &), and the locus of poinf8, Q is
tangent to each lineQ at the point$, Q.

Special case- In particular, suppose that the surfaSeig arbitrary and the surface
(S1) is a sphere. The congruence of lihdsl; has developables that cut out conjugate
nets on § and &) whose homologous tangents are parallel. Now, a comjugston a
sphere is an orthogonal net. Hence, the conjugaten@ is also an orthogonal net. It
is the net of thdines of curvature whose study will then be reduced to that of the
developables of a congruence. In particular, supposehihautface$ has degree two,
and consider the congruence of life@ of the plane at infinity. The plane at infinity
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cuts ©), (&) along two conicsli), (F'1)). Consider their points of intersection with a line
PQ. The points of intersection with"Y will correspond to the directions of the
generators ofY) that pass througkl and which are the asymptotic tangents. The points
P, Q, which correspond to the principal directions will thendonjugate with respect to
those points of intersection; i.e., conjugate with resfmeconic (). They will likewise
be conjugate with respect tb;J. The pointd, Q are the double points of the involution
that is determined on the lif®Q by the pencil of conics that has)( (1) for its bases.
The linePQ is tangent aP, Q to two conics of that pencil that are tangent to them
such a way that the determination of the developablésafongruenceK() — i.e., of the
lines of the curvature of the quadrig & which amounts to the determination of a pencil
of conics, can be done algebraically.

If one takes the parameters to be those of theineetil generators that pass through a
point of (S then one will get the integration of tBeller equation.

Indeed, consider the hyperboloid of one sheet:

Xy Z_
© PO

which will have the parametric equations:

- + +
4) x:al W, y:bl uv, Z:Cu v’
u-v u-—v u-v

when it is referred to its rectilinear generators.
The normal at a point will have the direction dménts:

X 'y z
52 2

a’ b*' c

so the differential equation for the lines of curvatwrlijch expresses the idea that the
normal will meet the infinitely-close normal, wileb

X dx
? ? dx
y _dy _
—F _F dy = O,
z dz
? ? dz
or
(5) b® +c®) x dy dz+ (a° - &) y dz dx- (a + b z dx dy= 0.

The differentiation of the formulas (4) gives:
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dx _ dy _ dz
a[-A-v) du+(1- &) df b[-(1+V*)du+(@+ &) df 2c[-vdu+ udy
1
CEVE

(6)

and after all of the reductions have been madeatequ(5) will then become the Euler
equation:

(7)

upon setting:

du? _ dv?
dU’) D)’

b*+2c* - a?
(8) CD((A):(A}‘FZ(C()‘F]., k:W

The pointd? andQ of the preceding theory are the points at infimfyhe tangents to
the lines of curvature. Their homogeneous cootds¥ Y, Z will then be given by the
denominators of formulas (6), in whiadu, dv must be replaced by the proportional

values\/ du?), i\/ ®(v?) that are inferred from equation (7).

From the foregoing, the developables of the coswgras considered, and
consequently, the lines of the curvature of théasa;, are obtained by writing that one or
the other of the points(( Y, Z) thus-defined describes one of the conics of et

2 2 2
X2+Y24+27%2+ a(x_z—%+£2j =0
a C
in the plane at infinityl = O.
After suppressing the factdu dy one will then obtains the general algebraic iraeg
that was asserted:

9) £/ BUZ) | B(P) = Do (2 VD) —m (U -2 =0,

in which®, (g ') denotes the polar polynomial to the trinontiky:
Pww)=ww+k(wtw)+1,
and in whichm is an arbitrary constant that is coupledstby the equation:
m(@®+b%) =-2 (o+cd).

Clear the radical, while taking into account tlderitity, which is classical in the
theory of binary quadratic forms:

D(W) (W) - (W W) =A% (w— ),
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in which A is the discriminant of the form. After dividing by ¢ W?, we will get the
general rational integral:

(9) (1 =) (U+ V)=t (u—V 2+ 2m Dy (L, V).
Now, 2D, (U2, VP) is written:
200 (U2 VA) = (1 +uv)® + (1 —uv)? + k (u + V)2 + k (u — V2

Upon taking formulas (4) into account, one will sed tha lines of curvature are the
intersections of the hyperboloid with the quadrics:

XZ y2 ZZ
M=+ M5+ (Mk—1 +K) = + mk+n’ = 0.
a c

Replace that equation by the homogeneous combination ghabtained by adding
equation (3), when multiplied bynk+ n7):

X2 y2 ZZ
m(m+k+ 1)—2—m(m+k—1)ﬁ+(m+k+ 1) (m+k-1)—=0.
a c

That can also be written:
X _ Y N z
a’(m+k-1) B(m k1) én

or, due to the value (8) &f

X Y 4

(M a+)+2¢-24] O a+ B+2 &+2 ﬁ+ T j):O.

Upon then setting:
-2s=m (@& +b?) + 2c%,

one will finally write:
2

X + y2 + 4 =0
a’(s+a&) bP(sB & s 9

Moreover, it will suffice to add it to the equatiof the hyperboloid, after multiplying
it by (- 9), in order to obtain the equations of the homolfgcadric:

x? y? z

(10) std =B &

0.
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One then finds the classical result tha lines of curvature of the hyperboldi)
are the intersections of that surface with the ellipsoids and the hypatbalith two
homofocal sheethat are represented by equation (10). [Cf., Chap. Xllagd § 6].

Remark 1- Instead of the plane at infinity, one can considearditrary fixed plane
(7). The correspondence will be such that the tangameplat two homologous points
of (9, (S1) will cut in the plane . The results will then be analogous, and similafly, i
correlatively, one establishes a correspondence betimeesurfaces such that the line
MM; passes through a fixed point.

Remark 2.— Consider two surfacesS( (S)) that correspond by parallel tangent
planes. Take a fixed poi@ in space and replac&] with one of its homothetic images
with respect toO, namely, (S). Any conjugate net onS() will correspond to a

homothetic net on(S) that is also conjugate, and the conjugate net n wghich
corresponds to a conjugate net &),(will also correspond to a conjugate net (@&)) .
Imagine that the homothety ratio increases indefiyiitThe pointM,; that is homothetic
to My will be stretched to infinity, so the lin®M; will become the parallel to the ray

OM; that is drawn througM. Hence:lf one has two surfacd$), (S) that correspond
by parallel tangent planes, and one takes a fixed point O in space and dravesdtel
MN to the ray OM through the point M oitS) then the developables of the congruence
of lines MN will cut out the conjugate net (8) that corresponds to a conjugate net on
(S1). In particular, if we takeS) to be a sphere and taketo be its center, the@M; will
be perpendicular to the tangent planeSg, @nd consequently to the tangent planesjo (
MN, which is parallel to it, is the normal t8)( The congruence of normals to a surface
will have developables that determine an orthogonal conjugate net on that sWWfaze
will then recover the fundamental property of thedié curvature of the surfacg)(

We further remark that if the radius of the sphe®® (s equal to 1 then the
coordinatess, yi1, z2 will be the direction cosines of the normal, and folam (1), (2) will
be nothing but the formulas of Olinde Rodriguez [Chap. V, & 8]and —M are then the
principal curvatures.

Isothermal surfaces

5. — One will be led to an important class of surfacesmtine looks for the cases in
which the correspondence by parallel tangent planesebetitwo surfacesS( and &)
yields a conformal representation of one surface oottier [Chap. Il, 8 2]. Suppose the
two surfaces are referred to homologous conjugate systamiSn the preceding
paragraph, in such a way that the correspondence bethweensatisfies equations (1)
and (2) of that paragraph:

(1) a_x'l:LaX %—Lﬂ a_zlzLaZ

oA~ aA’  aA Y Y Y
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(2) a_xlz M%, %: Mﬂ, 6_21: ME,
ou ou ou ou ou ou

in which the rectangular Cartesian coordinates of timadlogous points figure.
Let:

d=Edi¥+ 2F didy+Gd/

be the linear element of the surfa&g {n such a way that:

ax )’ ax Ox ax )’
(3) E= (—j F=) —~-—, G=>|—+1.
EY o) du ou

The condition that expresses the idea that the comdspoe considered will realize a
conformal representation is that there must exishetionk (4, £) such that:

(4) o + dy? + dZ= K ds”.
Upon taking formulas (1), (2), (3) into account, it wfiinslate into the equations:
(5) LC-K)E=M-K)F=M?-K)G=0.

1. Discard the cas&(= 0,F = 0), F = 0,G = 0), in which the surface5( is an
isotropic developable [Chap. Ill, § 4]. We can first sugpitbsitE = 0,G = 0, in such a
way that the coordinate lines will be minimal lines @) &nd &). Since they are
conjugate, by hypothesis, the asymptotic directions will @embnic conjugate with
respect to the isotropic directions of the tangenteylamd will be rectangular. Hence,
the indicatrix will be an equilateral hyperbola, and Hurface 9, like (S), will be a
minimal surface.

Conversely, the equations that were given in Chapteg Bl page 50, to represent an
arbitrary minimal surface will imply the formulas:

d(x+iy)=- U F"(U) du- V G( ¥ d)
(6) d(x-iy)=  F'(ydu+ G(y dy
dz=-uF'(Y du- vG( ¥ dv

Therefore, when two surfaceS) @nd &) are represented in that way, with the functions
F, F; F1, G1, respectively, one will have identities of therfo(l), (2), and (5):

ox _ R ox % _ Ry 9z _ K9z
ou F" ou’ ou F" ou’ ou F" ou’
% _ G ox o _ G 9y 9z _ G/ 9z
ov G" ov’ ov G" ov’ ov G" ov’
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FI"G"I
dg’'= - ds’
F" G
Hence: Two arbitrary minimal surfaces will correspond by parallel tangent pdaime
such a manner that the correspondence is a conformal representation.

2. Now suppose tha&t is not zero, and thd& and G are not both zero. When the
conditionLM = K is then combined with one of the conditidrfs= k%, M 2 = I, it will
imply that:

L =M, I =L2=M?

in whichL andM cannot be zero. Upon supposing tkat L, which is legitimate, one
will then conclude that:

(7) dx =k dx dyp =kdy dz=kdz

Now, at least two of the functionsy, z of A andu are independent: Suppose that they
are x and y, for example. The first two identities (7) expre$e tidea that the
correspondence betwee® and &) will translate into the formulas:

=), =g, k=g =¢'©y),

in whichx andy can be considered to be independent variables. Onedhefudes that
k is a constant, since it does not depend upon eitleery, and formulas (7) will then
give:

x1 =kx+a, y1 =ky+Db, 7z =kz+c,

in whicha, b, ¢ are three constants. We then find the obvious salsitin which §) is
an arbitrary surface, an&f is an arbitrary homothetic image & (

3. It remains to examine the case in whicls zero, withouE or G being so. The
conditions (5) will then give:
F=0, L=—-M=k

when we discard the hypothedis= M that we encountered already. We must then
examine what the two surfaced énd &) would be that are coupled by the conditions:

(8) a_xlz k%, %: ﬂ, 6_21: kz,
0A 0A 0A 0A 0A 0A

(9) a_xlz—k%, %:—kﬂ, a_:—kz,
ou ou ou ou ou ou

and

(10) F_%%_}_Q/Q_FG_Z(”_Z:O

T 9oy AAdu 0Adu
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Eliminatex,, yi, z1 by differentiating equations (8) with respect/podifferentiating
equations (9) with respect #h and subtracting corresponding sides of the equatiores. W
will then find thatx, y, z will satisfy the same equation of the form:

(11) o_i(ka_‘”j 0 (ka_wj 0’w , k Jw, ok o

ou\ 0A) 0A\ ou 0Aou oy 0A 04 du
Now, upon differentiating equations (3), we will get ithentities:

% aZX :a_E 2 % aZX :a_G
0N 0Aou  ou’ OuoAdu 04

(12)

9°x 262y 2622
oAou’ “arou’ “arou

means of the identities that result from (11) when @macesw with X, y, z, and upon
taking formulas (3) and the condition (10) into accoumséhdentities (12) will become:

Upon replacing2 as functions of the first derivatives in this by

_E%_ ka_E —G%: ka_G
ou ou’ 0A 0A

Therefore E andG will have the form:
1 1
E==¢), G== :
” ¢ (A) ” A0
and the linear element d§)(will take the form:
1
(13) d’ X [ (A) d* + g (1) di].

We can replace the coordinatewith a function ofA and the coordinatg with a
function of i without changing formulas (8) and (9). Moreover, we @aange for that
change of coordinates to reduce formula (13) to the form:

(14) dg :% (A% + di2,

in which we keep the notatiods 4 in order to denote the new coordinatésy’ that are

defined by:
g(A) -dA, du'= () - du

By virtue of formula (4), the linear element &) will itself reduce to the form:
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(15) ds? =k (dA* + du?).

The systems of coordinate curves that form conjugate owtfS and &), by
hypothesis, also form orthogonal nets, by virtue ofhyy@thesid= = 0; they will then be
systems of lines of curvature on one surface and the. othewever, in addition, from
formulas (14) and (15), they will form isothermal, ogboal systems [Chap. 1V, § 4].
The two surfaces can then be divided into infinitely-small squaretheiy lines of
curvature. In order to express that property, one says thatdheigothermal surfaces.
An isothermal surface is then a surface that has’afithe form(13):

ds" =K [¢ (A) dI* + @ (1) du?]
when it is referred to its lines of curvature.

Converse— Conversely, take an arbitrary isothermal surf&e Suppose that it is
referred to its lines of curvature, in such a way thatlfshas the form (14). We have
conditions:

ox) 1 0x 0x ax)_ 1
(16) Z(—j ==, ——=0, Yli—|==,

04 k 0A ou ou k
at the same time as the conditibh= 0, which expresses the idea that the coordinate
lines are conjugate:

< 9% (v, 2 _ 92X
(17 0 _26/1 ou Eg(/l,,u) - ZAM ou’

Upon differentiating equations (16), we will get:

5 0'x_Px_ 10@Kk) 5 0°x_ px _ 19(1/K)

(18) = =
0A0u 0A 2 Ou 0Aou ou 2 04

. . 0%X 9’y  0°z
and we can infer the values of the second dermati—7 9 , from
0Adu  0Aou 0Aou

equations (17) and (18). The three directions:

X 0y oz X Yy oz g
04 04 04 ou oy ou

define a direct tri-rectangular trihedron, so waaduce their direction cosines, which

are:
—0X o0y [0z, K 0x K oy K 0z
ka)l’ ka)l’ ka)l’ ou’ ou’ ou’ kA kB, kG,
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2
SinceE=G=1/k A2+B>+C?>=EG - P =1/K. In order to obtaina(jl—(;(, for
7,
)4 1)

— k=,
04

example, it suffices to multiply equations (17) and (18) KBp, k o’

respectively, and add them, which will give:

2
o°x_ _ 1, 0(LK) Px, 1k6(1/k)ga_x;
Aoy 2 oy o1 2 oA

0%x +akaerakax
0Adu OuoA 04 du

Hence,x, y, z indeed satisfy the same equation (11). Now, thatrecisely the
necessary and sufficient condition for equationsa(®l (9), inxi, yi1, z1, to be compatible.
One can then calculakg, y1, zz by quadrature from the total differentials:

0x 0X oy ay 0z 0z
19) dxy =k | —dA-—dy |, dyi =k dA-—d dz =k| —dA-—d
(19) dx (6/1 o ,Uj Y1 (6/1 o ,Uj L (6/1 o ,Uj

The surface%) is then well-defined, and is” will be given by formulas (15). That
is, it is itself isothermal and referred to itseléof curvature, since, from formulas (1), the
coordinate lines will be conjugate on the two stefga and from (15), they will be
orthogonal and isothermal fo%,.

Therefore:

If one is given an arbitrary isothermal surface theas a d$that is given by(14)
when it is referred to its lines of curvature thiémill correspond to one and only one
other isothermal surface (up to an arbitrary trasusbn), such that the correspondence
that is established by parallel tangent planes leetwthe points of those two surfaces is a
conformal representation of one surface on therotime. Under that correspondence,
the lines of curvature on the two surfaces willrespond, and the 8®f the second one
will be given by formul@15). There will be reciprocity between the two surfaces.

Remark.— The preceding calculations show that in ordar dosurface to be
isothermal, it is necessary and sufficient thatGhaetesian coordinates of any point on the
surface must satisfy not only the condition that= 0, but also the same partial
differential equation of the form (11). That edaatwill not change in form under a
change of variables of the form:

(20) A=¢A), H=¢W).
However, one can simplify this by setting:

(21) W =w x (A ),
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and suitably determining the factgr Indeed, it will become:

2kou  xou

9“ 9. w =0,
EYED, 94 | 2koA y oA

9% {16k 16)(}60) {16k 16)(}60}
ou

and it will suffice to take:

(22) x=4k
in order to reduce it to the form:
2
(23) 0°a _
0Adu

The expression fof in terms ofA andy is deduced from the fact that singe= 1 is a
solution of equation (11w’ = y = \/? will be a solution of (23); hence:

_ 19k
(24) T Jkodou’

Saying that equation (11) is verified by the Csigte coordinates, vy, z 1 is
equivalent to saying that equation (23) is verifigathe homogeneous coordinates:

X=xJk, Y=yJk, z=z[k, T=k.

Therefore:n order for a surface to be isothermal, it is nesa&y and sufficient that
for a conveniently-chosen system of homogeneoudlinates X, Y, Z, T, the four
coordinates of any point on the surface, whichugp®sed to be referred to its lines of
curvature, satisfy the same partial differentialuatjon of the form(23); the linear
element of the surface will then be:

dg = T—lz(d)IZ rdid).

Examples of isothermal surfaces
1. Anysurface of revolution:
X=ucosy y=usiny z=¢(u)
is isothermal because it is then referred tonsdiof curvature, and its linear element:

ds’ = [1 + ¢ (u)] dUf + u? di/
has the form (13).
Thesphereis, in turn, isothermal in an infinitude of ways.
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2. Conesand cylinders whose linear elements (1) and (2), which were given in
Chap. V, 8 4, pp. 91, are referred to their lines of curvateelso isothermal surfaces,
from the form of those linear elements:

ds’ = du? + dV4, d§:u2[u—12du2+ d\f}.

3. Second-degree surfacaee isothermal. We verify this for the hyperbdlof one
sheet, while appealing to the formulas of the piewe paragraph. To that effect,
formulas [(6), § 4] will give:

(u—=V*ds = (@ + b [@ (V) dUf — 2Dg (U, V?) du dv+ & (U2 dVA)] + 4c? (u — V)2 du dv

Introduce the parameters of the lines of curvathet were defined by [(7), § 4] by
setting:

- o T Tous Yo
and theds’ will become:
(20) dS’ =1 (8 +b%) | D)y D(V) [Eo dA® +Go ci] (u—97?,
with:
(U=Y? - Eo= { W) &) +o (1, V) - afsz (u-v?
@9 Go= S () =00 () +- 2 -V

Now, due to the form [(9), § 4] of the integraltbe Euler equation [(7), § 4o =
const. defines the same lines of curvaturg asconst. Hencegy is a function of onlyy,
and similarly,Go is a function of onlyl. Therefore, the< in (26) will come down to the
form (13), which is characteristic of isothermalfaaes, by using, Go as the factor.

4. We will find a new class of isothermal surfabgdooking for the pairs of parallel
surfaces § and &) on which the common normals determine a conformal
correspondence. For that to be true, m, n denote the direction cosines of the normal
to Sthen it will suffice to suppose that:

xg=x+hl, y;=hm z=z+hn,
in formulas (8), (9), in whichh is a constant length. From the formulas of Olinde

Rodriguez [Chap. V, 8§ 3], in whidR; andR;, are the radii of principal curvature o8 (
one will have:
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o _ 1ox  om_ 1y on_ 1.9z
oA R 0/ 0 R 0/ 0 R 0/
A __1px  om__ 1.y on__1 .9z
ou R, ou ou R ou ou R, ou
Hence:
a_xlz [1—&}% a_xlz [1—&}%
0 RJoA™ ou R jou

and in order for one to able to identify those falas with formulas (8) and (9), it is
necessary and sufficient that one must have:

or
(26) —+

i.e., the mean curvature d¥)(must be constant. The same thing is true forntlean
curvature of &), which is equal and opposite to that 8f ( That is obvious priori, due
to the symmetry of the relationship betwe&h dnd &), and one effortlessly confirms
that the equality:

1 1 2

R-h R-h h

is equivalent to (26). We further remark that temters of principal curvature that are
common to § and &) are harmonic conjugates with respect to the dé¢the common
normal to the two surfaces.

One then finds a means of deducing a surface mdtaot mean curvature — b from
any surface of mean constant curvaturdn.l /

ThereforeAny surface of constant mean curvature is isothermal.

5. The preceding conclusion would no longer béfjad if the mean curvature were
zero — i.e., if § were a minimal surface — becausavould have to be infinite then.
However, it is easy to verify directly thahy minimal surface is isothermal.

To that effect, recall formulas (6): The directlpm, n of the normal is defined by the
condition:

(I—imdXx+iy) + (I +im)d(x —iy) + 2n dz= 0,

from which, one will infer:
27) [+in=2nv, |I—-im=-2, n=u+v.

The condition for the normal to meet the infintelose normal is then written:
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I d dx|/ |12 1 O [+im d(l+im) d(x+1iy)
O=|m dm dyx| i —i O] =|l-im d(I-im) d(x—iy)]|.
n dn dz |0 0 1 n dn dz

Upon substituting the values (6) and (27), one will theaialihe differential equation of
the lines of curvature, which will reduce to:

(28) F7di +G” dv = 0.
On the other hand, from formulas (6), t is:
(29) d=d(x +iy)d (x —iy) +dZ =- (U —=VY?>F”G” du dv

In order to introduce the parametdrg of the lines of curvature, it will suffice to set:
F" - du-/G" - dv=di, F" - du+, G" - dv=dy,

andd<® will become:

- (u-v)? 12 -
ds —4\/F\/E(d di),

which has, in fact, the isothermal form.

Use of penta-spherical coordinates

6. — In order for the equations:

(1) x=t(A 4, y=g@ 4, z=h@A 4

to represent a surface that is referred to its linesiofature, from what we have seen, it
is necessary and sufficient that those functions mat&tfy the same partial differential
equation of the form:

(2)

2
0"w +L6_a)+M6_a) :O,
ooy 9A  ou

at the same time as the orthogonality condition:

- Lo 00 dydy, 020z
0Aou 0Aou 0Adu

One can replace that condition with another onéénfollowing manner. To abbreviate,
let Q (&) denote the left-hand side of (2), and one will getideatity:
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1Q(C+Y+D)=xQ X +yQ(y)+zQ (2 +F.

Since Q (x), Q (y), Q (20 are zero, one can then conclude that the condiByns(
equivalent td) (¢ +y?* +7) = 0.
Hence:

In order for equationq1l) to represent a surface that is referred to its lines of
curvature, it is necessary and sufficient that the four functiogs x, and( + y* + 7)
must satisfy the same partial differential equation of the {@)m

That is obviously equivalent to saying tHatx, y, z, (¢ + y* + 7) must satisfy the
same partial differential equation of the more general form:

2
0w 0w, 9%, Nw=o0.

4) —
oAdy 9 ou

Introduce the combinations:

—y2 _\2 — +¥2 + 2+ A2
u:1x y zzivzlx V' + z

©) 2 2

and let the ternmpenta-spherical coordinatesf a point with rectangular Cartesian
coordinates, y, z refer to the five quantities:

(6) X1 =mx X2 = my, X3 =Mz X4 = MU, X5 =MV,
in whichm is an arbitrary proportional factor. They aratetl by the relation:
(7) XX+ + X+ X =0.

Conversely, ifxi, X2, X3, X4, X5 are five numbers that are coupled by the cond{{fQrthen
one will infer from equations (6), upon noting thiat iv = 1, that:

(8) m=X4 +iXs, x= 2, y=—>=, 2=
m m m

and the condition (7) will give:

Xa—ixs=—mO¢+Y¥ +2) =m(u - V).
One will then have:

Xq+iXs=m(u+iv), Xgs—1Xs=m(u-—iv),

and the latter equations = mu, xs = mv will be verified. Hence, five numbers that are
linked by equation (7) will be the penta-sphermadrdinates of a point.
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Having said that, since equation (4) will transform intcegnation of the same form
when one makes the change of variable w- x (A, ), the result that was stated above
can be translated as follows:

In order for equationq1l) to represent a surface that is referred to its lines of
curvature, it is necessary and sufficient that the five penta-g@atheroordinates of a
point on that surface will satisfy the same partial differential equati the forn{4).

Any homogeneous linear combination with constant coefftsi of several integrals
of (4) will again be an integral. Hence, the sameltregil persist when one replaces the
previously-defined penta-spherical coordinates with thpeneral penta-spherical
coordinates that one deduces from an arbitraoythogonal, homogeneous, linear
transformation:

(9) X, = ) X, (h=1, 2,3, 4, 6).

5
k=1
Saying that this transformation is orthogonal sigsitigat it leaves the quadratic form

5
ZX,f invariant; i.e., that equations (9) imply the identity:
h=:

1

(10) PR AED I

Those orthogonal transformations possess some pexpénat are quite similar to
those of the analogous transformations of three vasable., changes of rectangular
coordinates (without displacing the origin).

The identity (10) is equivalent to tlhethogonality conditions:

5 5
(11) dYai=1, Daan=1 kzk =1,2,3,4,5).
h=1
Hence, one will deduce the equivalent inverse formulas:

5
(12) X=X k=1,2,3,4,5)
k=1

by combinations of equations (9), which satisfy orthogonationditions that are
analogous to (11), since the identity (10) does not ceabe tme. The orthogonality
conditions thus-defined:

5 5
(13) dYai=1, Daau=1 hzh=1,23,4,5)
k=1

k=1

will then be equivalent to the conditions (11).
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Upon squaring the determinaht= [an of the forms (9), one will see that it is equal
to £ 1, and upon conveniently choosing the notatioms, tihhe order in which those give
linear forms are enumerated), one can suppose thaquel to 1. The identification of
formulas (12) with the ones that give the applicatibrf€amer’s rule to equations (9)
will again give equality between the elementd@nd the corresponding minors:

(14) Ohk = (hk=1,2,3,4,5).

oa,,

Interpretation of general penta-spherical coordinatedt results immediately from
the defining formulas (6) thainy homogeneous linear equation:

(15) o:iahxhs‘—zm[(wias) OC+Y +2)— 24X~ 28y~ 22~ (u—i as)]

represents a sphere, and converselye can suppose that the coefficiemtswhich are
defined only up to a constant factor, are chosen in suchnaanshat they satisfy the
orthogonality condition:

(16) Sar=1,

We then say that;, ay, as, a4, a are thecoordinates of the sphere.
One confirms immediately that the radiRef that sphere is given by:

Rodtyrat(atia)a-iy) o 1
(a, +ias)® (a, +ia)*

For example, and this amounts to choosing the sigvhich was left arbitrary by the
condition (16), one can take:

(17) R=_ 1
a, + ia

The power of the pointx{, X2, X3, X4, Xs) With respect to the sphere in question then
has the expression:

2R 3
(18) I:)x:__q:ahxh-
m v

Now consider a second sphere that is similarlynddfby its coordinatds, (h = 1, 2,
3, 4, 5), and radiuR’. The angle/ between the two spheres is then given by:

JRRcosv = 2@b* &b+ ab)+(a- ia)(h+ i+ (b B(a+ ig
(a, +ia)(b, + iby)

SO
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5
(19) cosV =D a, X, .
h=1

This cosine is then defined unambiguously, as long as ogigeis the signs of the
radii of the two spheres. One will note the analbgiween formulas (16) and (19) and
the ones that are concerned wihections in Cartesian geometry with rectangular
coordinates.

Having said that, the interpretation of the coording®s is immediate. The
equationsx, =0 (=1, 2, 3, 4, 5) define five spher&})( (), (&), (&), (S) that have
the coefficients of the left-hand sides of the corredpmy equations (9) for their
coordinates. From the conditions (11), those sphereparavise orthogonal: They
constitute what one calls amhogonal penta-spheravhich will serve as theeference
penta-spherédor the definition of the coordinates (9From formula(18), the penta-
spherical coordinate§9) are themselves proportional to the quotients thrat @btained
by dividing the powers of the point M consideredhwiespect to the five reference
spheres by the respective radii of those spheres.

Here is another interpretation that we will find usefLetM be the point considered,
and suppose that its coordinatésand x, are not both zero; i.e., that there is no common
point to the spheress() and &). We can then determine one and only one spi®@re (
that passes througWlt and cuts the sphereSs), (&), (S) at a right angle, because the
coordinateds, by, bs, by, bs of (S will be defined by the conditions:

(20) qu % =0, quash:Q quam:()’ quashzo-

Those equations imy, by, bs, bs, bs are independent, since otherwise one would have:
Xnh = A3 an + As aan + A5 O5n (h:]., 2, 3, 4, 5),

and in turn, due to the orthogonal conditiong= X, = 0, which is contrary to

hypothesis.
Let V; andV, denote the angles tha®) (makes with &) and &), resp. They are

defined by the formulas:
5 5

(21) cosVi= Y bay,, cosVe= ) b a,,

h=1 h=1

and if one takes into account the fact tHat,” = 1 and the orthogonality conditions (13)
then that will imply the condition:
(22) coéV, +cogV, =1,

in such a way that the two anghgs and V. will be complementary. One relation will
then suffice to determine them; one obtains it by ielting theb, from equations (20)
and (21). Upon leaving aside the first equation in (20), alhénver:
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(23) bn = a1n cOSVy + aon COSV; (h=1, 2, 3,4,5),
and upon substituting these values in the equaiibnx, = 0, one will get:
(24) X cosVi+ X, cosV, = 0.

Equations (22) and (24) determine d4sand cosV, up to a factor (x 1); that comes
from the indeterminacy in the definition o$)(that pertains to the sign of its radius.
However, no matter what sign is adopted, formula (2d)umambiguously give the ratio
of the coordinates; and x, as a function of cog; and cosv/,.

One should note that iX,, for example, is zero then the solution to equat{@63

will be given byby, = a1y ; i.e., the spherey will then be the spheré&{). As a result, cos
Vi = 1, cosV, = 0, and formula (24) will givex;/ X, = 0, sinceXx, is non-zero, by
hypothesis.

We then conclude thahe penta-spherical coordinates of a powhich are defined
only up to the same factaaye determined completely by the cosines of the angles that
the spheres that pass through that point and are orthogonal to three spheres of the
reference penta-sphere make with the other two spheres of that paeta-s

Remarkl. — From formulas (12), the sphere that has the caaiediy, by, bs, bs, bs
in the initial system of penta-spherical coordinates,, X3, X4, X5 has the equation:

5 5
3 zwhkjcxh -0
h=1 k=1

in the general system of coordinates (9).
One will then say that the quantities:

(29) b = iq ap (h=1,2 3 4,5)

are the coordinates of the sphere in the new systiémesults from the orthogonality
conditions (11) that such coordinates will further sgtibe orthogonality condition that

is analogous to (16):
5
> b2=1.
h=1
The coordinate transformation of the spheres is theriormed like that of the
coordinates of points.
It further results from the orthogonality conditiofdd) that formula (19), which gives

the angle between two spheres, will keep the sanm far general penta-spherical
coordinates.
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Remark 2- LetXo, Yo, Z0 be the coordinates of the center of a sph8xeldt R be its
radius, and leP be the power of the origin with respect 8): (The five penta-spherical

coordinates of9) that are defined by equation (15) and the condEj@ = 1 are:

_% Y _Z _1-P _1+P
30 a =2 a =20 =2, ==, =
(30) 'R "R = =R YT 2R

One can replace them with the $immogeneous coordinateg, €;, Cs, C4, Cs, Cs ,
which are coupled with the symmetric relation:

6
(31) Y>ci=0.
k=1
To that effect, we set:

(32) ci=p(1-P), C=-pi(1-P), c3=20%,
Cs= 20Yo, =202, Cs=—2pR,

in which pis an arbitrary factor.
For cs = 0, the sphere has radius zero, endc,, cs, ¢4, Cs are the penta-spherical
coordinates of its center. Foy# 0, formulas (32) are equivalent to the following ones:

(33) al:-&’ =2, 33:.&, a =2, 6=—2
ICq ICq IC4 ICq ICq

One can employ formulas that are analogous to tter lem order to pass from the
general penta-spherical coordinates of a sphere tlt#fised by equations (29) to the
homogeneous coordinates that satisfy the condition (31).

Formula (19) shows that a linear, homogeneous relation:

6
(34) z G G=0,
k=1

in which theCy are arbitrary constants, expresses the idea thaiptere $ cuts the
sphere $’) with the homogeneous coordinates:

(35) ¢=Ci(h=1,234,5), c,=iJC?+Cl+...+C’

at a constant angkéthat is given by the formula:

(36) cosV = &
C6
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6
In the case where the consta@sverify the conditionz C. =1, one will havec, =
k=1
Cs . The constant€ are themselves the coordinates of the sphgrehén, and the
condition (34) will express the idea that the two spbé®) and §") are tangents.

Remark 3- In the case where the spheBgréduces to the plankx + yy + vz—- 0=
0, whereA, y, v are the direction cosines of a direction that ism& to the plane, the
coordinatesy, will be:

(37) a=A &=y &=V, ;=-6 a=-id (as +i as = 0).

Remark 4- One can pass directly from the coordinate systenthat relates to an
orthogonal penta-sphere (ll) to the coordinate systémthat relates to another
orthogonal penta-sphere’{ll From the formulas:

6 6
X = ) Ay X, X'=> By % k1=1,2 3 4, 5)
h=1 h=1

one concludes, in fact, that:

(38) X'= 20> ay /J’hij'f 2B (1=1,2345)

6
h=1
In that expression for the coordinat€s the coefficients:

6
Bh= . B (h=1,234,5)
k=1

are again the coordinates of the new reference sg{88ravith respect to the first penta-

sphere (Il). The analogy with the formulas for thansformation of rectangular
Cartesian coordinates (without displacing the originjigaus.

Condition for a surface to be isothermalFrom what we saw in 8 5, in order for the
surface considered to be isothermal, it is necessalgafficient that equation (4) can be
reduced to the form of equation (23) of 8 5 by a transfoomad¥ = w - x (A, L).
Therefore:

In order for equationgl) to represent an isothermal surface that is refertedts
lines of curvature, it is necessary and sufficiématt the five penta-spherical coordinates
of a point satisfy the same partial differentiabatjon of the form:



§ 6. — Use of penta-spherical coordinates 221

0%w
0Adu

(39) =AY w

for a convenient choice of proportionality factor that figures in thasedinates.

Remark.— An argument that is similar to the one at the to@igg of this paragraph
can be made for the coordinates of a tangent plane sutface, which one assumes can
be written in the form:

ax+by+cz+1=0.

The coefficients are functions dfand , and in order for the surface that is defined
to be envelope of those planes to have the llhesconst.,iz = const. for its lines of
curvature, it is necessary and sufficient thag1b, c (a® + b? + ¢ satisfy the same
equation of the form (4).

Application to the cyclides

7. — Let x1, X2, X3, X4, X5 be the five penta-spherical coordinate of a point in an
arbitrary system of such coordinates. A surface béllrepresented by a homogeneous
equation between those coordinates. We have seen thaasden which that equation
has degree one corresponds to the sphere. The sutiatesd represented by second-
degree equations will be callegiclides.

It results from the theory of quadratic forms that if:

@ (X1, X2, X3, X4, X5)

is a homogeneous second-degree polynomial then one caysalind a homogeneous
linear transformation:

5
XL: zakhxh k=1,2,...,5)
h=1
that leaves the form xh2 invariant and transforn® into:

5
D (X1, X2, X, Xa, X5) = DS, %7
h=1

There will then exist a change of penta-sphericardioates that will reduce the
equation of any cyclide to the form:
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If one discards the special case in which one or wbtlee s, (which are roots of the
5
equation ins that is obtained by equating the discriminantof sz x?to zero) are zero

h=1
then one can take the equation of the cyclide in tha:fo

and consider it to belong to the family of cyclides thatpresented by the equation:

5 2
(1) n =,
Za-0
in which gis an arbitrary parameter.

5
By hypothesis, the coordinatesare coupled by the conditioEx,f = 0, so equation
h=1

(1) will be an equation of degree threeanin such a way that three cyclides of the
family will pass through each point of space. The patamoi, ¢, oz of those three
cyclides will then be the curvilinear coordinates for plants of space. One calculates
the x, as functions ofoi, &, oz by the same mode of calculation that served for the
analogous problem that related to the families of honadipeadrics. Set:

$(0)= |j(a—ah),

and we can write down the identity:

i Xhz :(0'—0'1)(0'—0'2)(0'—0'3)
10 —a, ¢(o)

h

upon neglecting the identification factor on thghtihand side, since the, can be
calculated up to the same factor. Here, one hasd#mtity for decomposing the right-
hand side, which is a rational fractionsininto simple elements, so:

(2) Xh2: (ah _Ul)(ah’_az)(%_aé) (h — 1’ 2, e 5)
9'(a,)

If one supposes that = const. then one will have the parametric repreed®n of
any of the surfaces (1).
Now, if one sets, in general:

w= \/ (a—al)(a—az)

then one will have:
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ow_ g,-a ow _ 0,—a

a0, 2w 90, 2w
0w _ 1 (0,-a)o,-a) _ 1
00,00, 2w 4 4w’

SO

0w | dw Ow
3 2 (01— + - =0.
() € -2) do,00, 00, 00,

This is an equation of the form (11), § 5: Indeed, one nemlg<o setk = (o — &) "
in equation (11) to recover present equation (3). It wéint be reducible to the form
(39), § 6, by a transformatio®’ = wy.

Therefore, the penta-spherical coordinates (2) of anidey¢l) indeed satisfy the
condition that was stated above, a&né cyclides are isothermal surfaces.

Remark 1.— It is then proved that the three cyclides of theesys{l) that pass
through a point will intersect pair-wise along commared of curvature: They will then
cut at a right angle, and as a result, any two otttedides will cut at a right angle all
along their intersection.

Remark 2— An analogous calculation applies to the homofocadliqest

ixh

h:l

in whichxs, X2, X3 are rectangular coordinates. One finds that:

2 (8,—0)(8,~0,)(8~0;) = (- a)(o— a)(o—
X, 5@) , 90 =(0-a)(og—a)(o-a).

3
Therefore xi, Xo, X3 satisfy equation (13). It remains to verify tr@xh2 also satisfies it.
h=1

Now, the substitution of that function in the lefind side of (13) will give:

(G- ) - Z¢( %

and when one identifies that with the left-handesiand expresses the idea that there is
no term ind” in the right-hand side, the identity:

o-0, <
¢(0) Z¢'(ah)(0 a,)

will give:
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S &, 0, =0.
hzzl‘ ¢'(a,)

Application to the conformal transformations

8. — Definitions.— Consider goint-like transformation; i.e., one that makes any point
of M correspond to a homologous poiM’ (as displacements, homotheties, and
inversions do, for example). It is defined by equations:

(1) X=fxy.2, y=gkVy2 Z=hKxy2

that give the coordinates'(y’, Z) of M’ as functions of the coordinates y, 2) of M.
Inversely, one supposes that each pMritorresponds to a poiM; i.e., that equations
(1) define the implicit functions:

(2 x=F X,y 2), y=G(X,y’2Z), z=H (X,y’ Z).

In order to do that, as one knows, it will sufficatth g, h must have continuous patrtial
derivatives and that the functional determln%%gi)) must not be identically zero.
X, VY, Z

The transformation makes any locus of poMtsorrespond to a homologous locus of
pointsM’: e.g., a curve will go to a curve, and a surfaceg surface. Two curves that
intersection aMg will correspond to two curves at the poMt; that is the homologue of
Mo, and two curves that are tangenMatwill go to two curves that are tangentf .

That will result from what one deduces from equagi(1) upon differentiating them:

(3) dx = ﬂdx+ﬂ dy+ﬂ dz, dy’= a_gdx+6_g dw@ dz,
0x oy 0z 0x oy 0z
dz = @dx+@ dy+ﬂ] dz,
0x oy 0z

in such a way that eacimear element(x, y, z ; dx dy, d2 will correspond to a
homologous linear element' (y’, Z ; dX, dy’, dZ), which is the same for any curve that
passes throughM and to which the former element belongs. One ghgs$ the
transformation of the linear elements of spaces-thefined, results from prolongation
of the transformation (1).

From formula (3), the squams? of the transformed linear element is a quadratic
form indx, dy, dzwhose coefficients are functions»fy, z namely:

(4) ds? = @ (dx dy, d2),
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and the angle between the two linear elements thatcemelogous to two linear elements
at the same pointx(y, 2 (which we suppose to correspond to two different
differentiationsd andd) is given by the formula:

a0
) a0

" JO(Ax dy, 3/ G x3 5 ¥

) cosV’

Having said that, one says thié transformatior{l) is a conformal transformation if
it preserves angles;e., if the homologues of two arbitrary curveatthut atM make an
angle at the homologous poit’that is equal to the one that the former two mddd.a
That amounts to saying that the angle betweenwaoylihear elements at the same point
M is equal to the angle between the transformedrialements.

If that were true then a right angle, in particulaould correspond to a right angle,
and as a result the equation:

0P 0P 0P

OX+ oy+ o
o(dx) o(dy) 0(dz

would be a consequence of the equation:
dxox+dydy+dzdz=0
for anyx, y, z One would then conclude an identity of the form:

oo oo 0P

300 Ox+ 30y oy+ 33 0z=2C (X, Y, 2) (dx & + dy dy + dz &),

since those two equations are homogeneous anddeavee two in the differentials. In
the particular case in whicBx = dx, oy = dy, & = dz that identity will imply the
following one:

(6) @ (dx, dy, d2) = 22 (x, Y, 2) (dX + dy? + d2).

Hence:Any conformal transformation will imply an identaf the form:
(7) ds?=12-d<;
i.e., it will transform all of the linear elemerds the same point by a constant ratamd

that ratiok will be a function of the coordinates of the paiohsidered.
Conversely, if such an identity (7) or (6) werdidvdéhen formula (5) would reduce to:

> dxdx

cosV’'=
JAC+dy + dZ . %+ y+0 2

=cosV,

and the transformation would be a conformal tramsé&tion.
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The preceding property can then be taken to be the definition of conformal
transformations[Cf., Chap. I, § 2.]

Search for the conformal transformations. By virtue of the identity (7), any
conformal transformation will change the equatish = 0 intods? = 0. It will then
change any minimal curve into a minimal curve, andumm,tany isotropic developable
whose minimal curves coincide into a surface with douhleimal curves; i.e., an
isotropic developable.

Having said that, consider an isotropic line. One aaoh thivo isotropic developables
that touch along that line in an infinitude of ways. Thransforms will touch along a
common minimal line, and therefore along an isotropie.li Hence, any isotropic line
will have an isotropic line for its homologue, any ispic ruled surface will become an
isotropic ruled surface, and any sphere that is doubly gedeby isotropic lines will
change into a doubly-ruled surface with isotropic genesata.e., a sphere.

Conversely, any point-like transformation that changpberes into spheres will
change any pair of isotropic lines that one can awayssider to be the curve of
intersection of two tangent spheres into a pair ofegat lines. It will then change the
isotropic lines that pass through a poMtinto isotropic lines that pass through its
homologueM’. As a result, it will change the set of isotropimelr elements at that
point, which are characterized by the equatish= 0, into the analogous set that is
characterized by the equatidg® = 0. It will then give rise to an identity of therifo (7),
and it will be a conformal transformation.

The conformal transformations of three-dimensional space will then be the
transformations that change any sphere into a sphere.

Having said that, lefl) be a conformal transformation, and suppose that tmghi
are referred to an orthogonal penta-spheje (The transformationT( changes spheres
into spheres and preserves angles, so it will chang@ehta-spheresj into another
orthogonal penta-spherer(). The coordinates of the homologMe to M, when taken
with respect to '), are the same as the coordinateMlafith respect to f), because the
latter coordinates depend upon only the angles that theesptfat are drawn throuds
normally to three spheres ofj(will make with the other two spheres @) ([Cf., page #-
9], and since the transformation) (does not alter angles, it will not alter the cooatis
of the point with respect to the penta-sphere, whietsapposed to transform at the same
time as that point.

Therefore, lek, X, X3, X4, X5 be the coordinates & with respect to the penta-sphere
(79, and letoh = G (k=1, 2, ..., 5h =1, 2, ..., 5) be the coordinates with respectdo (
of the spheres that the transformatidi gubstitutes for the spheres=0 k=1, 2, ...,
5), respectively. The powers of the poMt'with respect to those spheres will be
quantities that are proportional to the coordinatesf M, multiplied by their radiiR, ,

respectively. On the other hand, one will have valled &are proportional to the
5

expressionsR, @ﬁkh X, for the same products [§ 6, formula (18)]. The formolathe
h=1

transformationT) can then be written:
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(8) X= i,[z’khx'h, x;zzs:ﬁkhxk kh=1,2,..,5).

k=1

Therefore, the conformal transformations are repréged by orthogonal,
homogeneous, linear transformations in penta-sgiaécoordinates. Consequently, they
define a group of'® transformationssince twenty-five coefficients figure in them that
are linked by fifteen independent relations. The wgnalip indicates that when two of
those transformations are performed in succession, whlhgive another conformal
transformation as a final result, which is obvi@ugriori.

One proves that each of those transformations caed@mposed into displacements,
homotheties, and inversions.

Remark.— If we compare those formulas (8) with the formuiaisthe change of
penta-spherical coordinates, which are defined by replacingeteeence penta-sphere
(79 with the penta-spherer() that is homologous toj under the transformatioif), and
those formulas are [8 6, eq. (38)]:

5
X :zﬁkh X s
h=1
then we will see that inversions correspond to changesartdinates in penta-spherical

coordinates, just as displacements correspond to charigestangular coordinates in
Cartesian geometry. The preceding analysis givestson for that analogy.

Conformal transformations of the planeThe point-like transformations of a plane:

(9) X =f(xy), y=9Xy)

define andprolong to transformations of linear elemenis y; dx, dy), just as the point-
like transformations of space do. Thenformal transformationsre defined by the
invariance of angles, and by reasoning as above, one roertfirat this invariance is
equivalent to the invariance d€, up to a coefficienk’. Upon developing that identity:

df 2 + dg = k& (d¢ + dyP),

one will obtain the conditions:

2 2 2 2
(ﬂj +(6_9j — 2 ofof L9g0g_ o) L[99 -
0x 0X oxdy 0xady oy oy
One then concludes from the Lagrange identity that:

ofog _9tdg_ .

(e=+1),
ox dy 0yodx
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in which € is equal to + 1 or — 1, as is easy to verify, accgrdm whether the
homologous angles have the same disposition or oppdsitesdions.
Be that as it may, one has two linear equatiod$ i@x andodf / dy, so one will infer:

o _,00 o__, 09
ox oy oy ox

which is equivalent to saying that- ig (wheng = + 1) andg + if (whene=-1) is an
analytic function ok + iy.

The study of conformal transformations of the plenden equivalent to the theory of
analytic functions of a complex variable.

Those transformations depend upon an arbitrary functiad, no longer upon a
certain number of arbitrary constants, as in the caspace. It will no longer be exact to
say that any conformal transformation changes anyecintb a circle, but one can look
for the point-like transformations of the plane tdatchange any circle into a circle, just
as we looked for the transformations of space thatgddany sphere into a sphere.

To that effect, one introducéstra-cycliccoordinates, which will be:

2 2 2 2
mi Xy Xty
2 2

X1 =MX X2 = my, X1 =
and more generally, combinations of them:
4
X, = D A Xy h=1,23 4)

will define orthogonal, homogeneous, linear transfations in four variables. One will
find that in arbitrary tetra-cyclic coordinateéle transformations that change any circle
into a circle are defined by the various orthogqoriadmogeneous, linear transformations
in four variables. One will then have a group of transformations, which one calls the
group of reciprocal radius vectorsecause its transformations can be decomposed into
displacements, homotheties, and inversions (orstoamations by reciprocal radius
vectors).

Invariance of the lines of curvature and isothermats.— We return to the case of
space: From a remark that was made already, pénéa-spherical coordinates Xz, Xs,
X4, X5 Of @ point on a surface satisfy an equation offtle (4), § 6, then the variables
X, X, X, X, X% that one deduces by an arbitrary homogeneousy ltnensformation

will satisfy the same equation. Hence, if the ¢igmsa (1), 8 6 represent a surface that is
referred to its lines of curvature then the sanmegtiwill be true for the equations that are
deduced from them by an arbitrary conformal tramsédion.

In other wordsthe conformal transformations leave invariant thhegerty of a curve
on a surface that it is a line of curvatuf€f., Chap. Xl, § 6].

On the other hand, since the conformal transfommstmultiply theds’ at a pointM
by a function of the coordinates of the pdifitthey will not at all alter the forms’ of a
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surface that characterizes the isothermal orthogam@idmates. Hencehe conformal
transformations will leave invariant the property of a net of cuwes surface that it
defines an isothermal, orthogonal net.

One concludes from this thabnformal transformations change every isothermal
surface into an isothermal surfacd&hat will also result from the remark that was made
for the lines of curvature; equation (4), 8 6 will therréducible to the form:

0%w
0Adu

=w- 6(A Q).

Remark.— The last results can be established and completeduvitalculation by
the following geometric considerations: From the rentak was made in Chap. VI, § 4
in regard to the lines of curvature, any line of curvatura iscus of point$vl of the
surface § considered, such that it will be possible to asse@aich of its points with a
sphere that is tangent t§)(in such a manner that the sphere that is tanger8) tat U
will also be tangent to the infinitely-close spheretlat point. It will then result
immediately that any point-like transformation thaamtpes any sphere into a sphere will
change any line of curvature @) (into a line of curvature of the homologous surface by
that fact itself.

Conversely, any point-like transformation that changeslimeyof curvature into a
line of curvature will change any isotropic ruled surfacat tis not developable or
spherical into a surface of the same nature, because gwfaces are the only ones
whose lines of curvature are double [Chap. Ill, 8 7]. Meeegcthe lines of curvature of
those surfaces are their isotropic generators, ansb&opic line can be considered to be
the generator of such a surface in an infinitude of wayshe transformation will change
any isotropic line into an isotropic line, and as a tesislwe have seen above, any sphere
into a sphere. Thereforgny point-like transformation that changes any line of
curvature into a line of curvature is a conformal transformation.

On the other hand, any conformal transformation thatepres the angles and the
ratios of infinitely-close arc lengths that issue frtima same point will transform any net
of infinitely-small squares that is traced on a surfite a similar net that is traced on
the transformed surface. In other worasy conformal transformation will change any
isothermal, orthogonal net that is traced on a surface into an isothermal, orthogenal
of the homologous surface.

Upon combining the two results thus-obtained, one wilckade that any conformal
transformation will change any isothermal surface am isothermal surface.

Converselyany point-like transformation that changes any isothermal surface into
an isothermal surface is a conformal transformatidndeed, it must change any sphere
into a sphere, because the sphere (the plane being reégardespecial case of a sphere)
is the only surface that is isothermal in an infinitodevays.




CHAPTER IX

LINE COMPLEXES AND
FIRST-ORDER PARTIAL DIFFERENTIAL EQUATIONS

Fundamental elements of a line complex

1. — One calls a system of lines — i.e., a family of lines that depend upon three
parameters — eomplex.

Let A be a point of space. There asé lines D) of the complex that pass through
that point, and they constitute tbene of the complethat is attached t&: We call it the
cone K).

Correlatively: Let P) be a plan. There are' lines of the complex in that plane, and
they envelop a curvel] that is thecurve of the complethat is associated witlP). The
tangent at any point of that curve is a line of the cempl

D’
(K)

A ©
D
P

(K)
(©
A

P

More generally, we call a curv€)whose tangents all belong to the complexieve
of the complex Consider a poind on such a curve and the cone of the compgxifat
is associated with the poi#t. That cone is tangent to the cur@.( A curve of the
complex is a curve that is tangent to the cones of the complex ¢éhassociated with
each of its points.

Consider a planePj and a pointA on that plane. We seek the lines of the complex
that are situated in the plar®) @nd pass through. One can obtain them in two ways:
First, consider the cone of the complex that is @ased with the poinA. The desired
lines are the generators of the cone that are situatée plane ). On the other hand,
consider the curve of the complex that is associafddtte plangP). The desired lines
will also be the tangents to that curve that issoenfA. Having said that, we seek the
locus of pointdA in the planeP such that two of the lines of the complex that arsasitd



§ 1. — Fundamental elements of a line complex 231

in the plane ) and pass throughA coincide. From the foregoing, the corresponding
pointsA are the ones for which the corresponding cone otémeplex is tangent to the
plane P), and must also be on the curve of the complex. cdwecident lines of the
complex will coincide with the contact generator af ttone of the complex and with the
tangent to the curve of the complex. Heridee curve of the complex that is situated on
a plane is the locus of the points of that plane for which the cone afothplex is
tangent to the plane, and the contact generator at such a point is the tangentuovihe
The curve of the complex is then defined by points angletats.

_—]

(K)

(©
P |_—
(D)

Now consider a linelf) of the complex: Take a poiAton that line, and consider the
cone K) of the complex that is associated with the pdintLet (P) be the tangent plane
to that cone along the generat®).( Each pointA of the line will then correspond to a
plane P). Consider the curveC] of the complex that is situated in the plaRg és well.

It is tangent to the linelY) at precisely the poirA in such a way that a point of that line
will correspond to each plan®)(that passes through the lindhere is a homographic
correspondence between the points and the planes of a line of the complex.

Let us specify the nature of that homography. An arlitiae is represented by two
equations of the form:

(1) X=az+f, Y=bZ+g.

/

In order for it to belong to a complex, it is necegsand sufficient that there must
exist a relation between the paramegets, f, g, namely:

(2) #(a,b,f,g)=0.

We then seek all of the lines of the complex thatiadfinitely close to the line (1) and
meet that line. Such a line is represented by the egsatio

(3) X=(a+da) Z+F+df), Y(b+dbZ+(g+dg.

We express the idea that it meets the line (1). Ghat®ns:
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(4) Z da+df =0, Z db+dg=0
must have a common solutiondnwhich will give the condition:
(5) da- dg —db- df = 0.

The point of intersectioM of the two infinitely-close lines will then have the

parameter:
(6) Z= —ﬂ = —% )
a db

If we suppose that the poilt is known then the relations (4), in whighs known,
will determine the ratios of the differentials. Moveo, the plane that passes through the
two infinitely-close lines (1) and (3) is obtained by npliting equations (3) bgb and —
da, respectively, and adding them, because upon taking (baaaount, that will give the
equation of a plane that passes through the line (1):

7) X —aZ-Ydb— (Y —bZ — yda=0.

The equation of that plane depends upon only the datiodb. We then conclude
that all of the lines of the complex that are infinitely close to e (D) and meet that
line at a given point M are in the same plane, and conversely, all ding=® of the
complex that are infinitely close to the li(i2) and situated in the same plane that passes
through(D) will meet that line at the same poinfo abbreviate, set:

da
8 A=—.
(8) b
Equation (7) is written:
9) X—-azZ-f-A(Y-bZ-y=0.

We show that there is a homographic relation betwkamd Z. For that, it will
suffice to inferdf, dg from equations (4) and substitute them into the identit

%da+% db+% df+% dc= 0,
oa ob of 09

which results from differentiating the equation of teenplex (2). One will get:

90 792 ) gas 22 799 | 4 =0
da < of b “ag |

and from (8), the homographic relation will be:
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(10) A(%—z%}%—z%:o
da of ) ab " ag

In particular, consider the cone of the complex wishsummit atM. The infinitely-
close generator is a line of the complex that md2tsa{M. The plane of those two lines
is the tangent plane to the cone of the complex, andeaover the homography that was
defined before.

Once more, let an arbitrary curve of the complexXdrgent to the line) at the
point A. Consider an infinitely-close tangent to that curiethe limit, that tangent will
meet D) at the pointA, and the plane of those two lines will be nothing the t
osculating plane to the curve at the poMt Hence, that osculating plane will be
associated with the poik under the preceding homography. Therefdkk:of the
curves of the complex that are tangent to a (D¢ at the same point A will have the
same osculating plane at that point: It is the tangent plane to the conecurtipdex that
is associated with the point A.

Finally, consider a congruence of lines that belonghéacomplex. Take a lind®}
in that congruence and a focal pofbn that line. The poinA belongs to one of the
sheets of the focal surface of the congruence. Italath belong to the edge of regression
that is one of the developables of the congruence, atcetye of regression, which is
the envelope of the line®J that belong to the complex, will be a curve of thenptex.
Its osculating plane a\ will be the second focal plane of the congruenceonfFthe
foregoing,all of the congruences of the complex that pass through thé€Dinand have
a focus at A will have the same second focal plane that relates toal{®). There is a
homographic correspondence between that second focalagidrtae poinA.

Surfaces of a complex

2. — We seek to find whether there are congruences in aleonffat have a double
focal surface. On such a surfage),(the edges of regression of the developables are the
asymptotic lines [Chap. VI, 8§ 1, pp. 127, § 2, pp. 132]; now, theyanges of the
complex.

The problem then comes down to finding surfaces such tfahiy of asymptotic
lines is composed of curves of the complex. Considdr ancasymptoteQ) and one of
its pointsA. The osculating plane to the cun@) @t A is the tangent plane to the cone
(K) of the complex that is associated at the point,thatlosculating plane is tangent to
the surface®). The desired surfaces are then tangent at eachiopthets to the cone
of the complex that is associated with each po@dnverselylet (®) be such a surface.
Consider the contact generat@®) (of the cone of the complex at each of its poinith w
the tangent plane. There will exist a family of cer€) on the surfacedf) that are
tangent at each of their points to that li® Of the family that is thus associated with
that point [cf., Chap. VI, pp. 126]. Those curv€ are the curves of the complex.
Their osculating plane is the tangent plane to the @drihe complex along the lin®).

It is then the tangent plane to the surfa®@, @nd the curvedd) are asymptotes of that
surface.
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Such surfaces that are tangent at each point to tleeafdine complex that has that
point for its summit are calleslirfaces of the complex.
Consider the equations of a line of the complex:

(1) X =az+f, y=bz+g.
a, b, f, g are linked by the equation:

(2) ¢(abfg)=0
on it.

Transport the origin to the point, {y, z) and call the new coordinat¥sy, Z. X, Y, Z
will then be the direction coefficients of a line thmasses through the pomty, z, and
the angular coefficients of that line will be:

azé, bzi,
Z Z

so the equation of the cone of the complex thatds@ated with the pointx(y, 2) will

be:
XY X Y
—, = ,X——=2 Yy-— z|=0,
¢(Z Z z y Zj
or, upon making that homogeneous:

(3) WXY,ZxZ-zXyZ-zY=0.

It will then result thatthe curves of the complex are defined by the eifiial
equation:
(4) W (dx dy, dz x dz —z dxy dz — z dy= 0,

which is homogeneous in dx, dy, dDne can consider it to be the equation of the
complex itself since one can deduce it by repladgly, dzwith X, Y, Z in the general
equation (3) of the cones of complex, and one théih get back to equation (2) of the
complex by setting:

X=a, Y=b, Z=1, x-az=f, y —bz=g.

Now introduce the tangential equation of the coheomplex:
(5) Xy zU VW) =0,
which, by definition, will express the idea tha¢ ghlane:

UX+VY+WZ=0
is tangent to the cone (3).
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The condition for such a surfaze= G (X, y) to be tangent to that cone at each of its
points is that equation (5) must be verifiedby: 0G/dx=p,V=0G/dx=q, W=- 1.
The surfaces of the complex are then defined by the partial diffdrequation:

(6) XX ¥.zp,q-1)=0,
which has the form:
(7) F(XV,zp, q) =0.

We will then get a first-order partial differentiajueation that represents the complex
from the tangential viewpoint, since one can immediaieduce the tangential equation
(5) of the cone of the complex in the form:

u V)\_
(8) F (x, Y, Z’_W ,—V—Vj— 0.

Conversely, any first-order partial differentiauation (7) will express the idea that
the tangent plane to an integral surface is tangetite cone (8) that is associated with
the point of contact. However, the generatorsliadhase~? cones will generally fill up
all of space and will form a complex only in thecegtional case.

Likewise, an arbitrariMonge equatior- i.e., any equation of the form:

9) G(xYy,zdxdy,d2d =0

that is homogeneous idx dy, dz — will define the curves of a complex only
exceptionally, because it will not reduce to thenf@4), in general.

On certain partial differential equations

3. — In order to be able to specify those exceptiarzsles better, we recall some
essential notions on the geometric theory of firster partial differential equations; i.e.,
ones of the form:

(1) F(Xy,zp, q) =0.

An integral contact elemen a contact element whose coordinatesy( z p, Q)
satisfy the given equation (1).

The elementary conehat is associated with the poing §, 2) is the envelope of
integral contact elements that belong to that poil¥ith the preceding notations, its
tangential equation is the equation:

) F (x, Y, Z—— ,—lj = 0.

Any linear element that is composed of a point angenerator of the elementary
cone that is associated with that point is callednéegral linear element.If dx, dy, dz
are the direction coefficients of one such genertiten the equation that characterizes
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the integral linear elements will be obtained by looKmgthe point-wise equation of the
cone that has equation (2) for its tangential equatidir@placing the coordinates§ Y, Z
with dx, dy, dz That amounts to eliminatingandq from the equations:

(3) F(XVy,zp,g) =0, dz-pdx—qdyO0, a—de—a—Fdx:O,
op 0q

which will define the linear element along which thenedatary cone with summik(y,
2) touches the integral contact elemedqty(z p, Q).
The equation that one obtains islange equation:

(4) GXxYy,zp g =0,

which is said to be associated with the partial diffda¢ equation (1).
Theintegral curvesare the curves for which all of the linear elementz. ( points
and tangent planes) are integral linear elements. Teeyedined by equation (4).
Conversely, any Monge equation (4) will define integral esrwof a partial
differential equation that one gets by passing from thetyaise equation:

(5) GXxVy,zXY,2)=0

to the corresponding tangential equation (2) — i.e., ugomnating dx, dy, dz from
equation (4) and the equations:

0G 0G 0G 0G

©) o Yoy ady) Yo(as

which define the coefficients, q of the tangent plane to the cone (5) along thegear:

X_Y _z
dz’

dx dy

If one appeals to the principle of duality thereoill be led to consider another
direction on each integral contact element, in @midito the integral linear element.
Indeed, letA and @) be the point and the plane that constitute thiegmal contact
elementX, y, z, p, ). The elementary con&) with its summit atA that is the envelope
of the planes that form integral contact elementk W will correspond to the curved )
by duality, which is the locus of poink that will give integral contact elements when
they are associated with the plaf. (The contact generator of the elementary céne (
and the planeR) that is the intersection of that plane and tHaitely-close tangent
plane to K) will correspond to the tangent tb)(at A that joinsA to the infinitely-close
point of (7). It is the direction of that tangent that musdrt intervene. We call the linear
element that it defines withA the characteristic linear elememtf the contact element
considered.
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We now look for that characteristic element. L&, (dy, o) be an infinitesimal
displacement of the poiit. If it defines the element considered then the comtiacnent
x+ X y+ 9y z+ & will be an integral contact element that is exprédsg the
conditions:

FX+Xy+dy,z+ap,q =0, &-pX-qoy=0.

In the first of these, one must neglect the higheer infinitesimals, and since

equation (1) is verified, by hypothesis, what will remaia the equations:

a_F5x+a_F5y+a—F52= 0, aZ=pa+qoy,
oX oy 0z

which will give the desired direction. One can wrher as:

(7) (6_F+ pa—Fj5x+ 6_F+ qa—F oy=0, aZ=pX+(qJy.
X 0z dy 0z

We are now in a position to express analyticallyitlea that the partial differential
equation (1) defines the surfaces of the complex. Indeegsults from 8§ 1 that in this
case the curvd {, which is the curve of the complex that is situatethenplane ) then,
will have the contact generator of the coig (ith that plane for its tangent &t
Therefore, the integral linear elements and the chenisisc linear element of the contact
element A, (P)] will then coincide. From formulas (3) and (7), omé then have:

oF ( oF oF ) OF(oF OF |_
(8) — | —+p— |+—| —+g— |=0
op \ 0x 0z) 0qloy 0z

for any system of numbers,(y, z p, Q) that verifies equation (1). In other words,
equation (8) is a consequence of equation (1).

That condition is sufficient, because it implies twencidence of the integral linear
element and the characteristic linear element foriatggral contact element, and we
shall show that this coincidence demands that the elameconesK) are the cones of a
complex of lines.

Indeed, recall the point-wise equation (5) of the cqigs Any integral contact
element is defined by a poiAt (x, y, 2 and the planeR) that is tangent to the cone (5)
along any of its generators. It is defined by its dicgctioefficientsX, Y, Z, and the six
guantitiesx, y, z X, Y, Z verify equation (5).

An infinitely-close integral contact element is garly defined by the six quantities
+Xyt+toy,z+d X+ Y+, Z+ , and the six differentialdy, oy, oz, oX, oY, &
are coupled by)G = 0; i.e.:

©) 9C 5x+285y+985,4 955 %4 9C85v4 965 ;- ¢
0x oy 0z 0X oY 0Z
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If the directiondy, dy, dzis that of the characteristic linear element offttst contact
element then it will be parallel to the pla®®,(which will give:

(20) a—de+a—GJy+a—GJZ:O,
oX oY 0Z

and the directioiX + oX, Y + dY, Z + & of the new contact generator is once more in the
plane P), in such a way thadX, dY, &Z is also a direction in that plane. One will
likewise have:

9 sx+285v+2857 =0

oX oY 0Z
then.

Upon comparing this with equation (9), one will concluds:th

(11) a—de+a—65y+a—Gdz: 0.
0x oy 0z

Equations (10) and (11) then define the characteristicrlialeanent. Moreover, if
one expresses the idea that its direction is precisely, Z then one will deduce the
equation:

X a_G+Ya_G+ Za_G =0
oX oY 0Z

from (10), which is nothing but (5), by virtue of Euler's th@m on homogeneous
functions, and one will infer the desired conditionfir¢l1):

(12) Xa—G+Ya—G+ Za—G =0.
X oy 0z

We must then express the idea that equation (12) isigeguence of equation (5).
To that effect, we take it in the solved form:

X = F(y, z,é,ij: 0
Z Z
and make the change of variable:

y= w2
Z )

in such a way thdt will be a functioné of w=y — (Y/ Z) z, and ofz, X/Z, Y/Z. Equation
(5) will then be written:

(13) 0=G=x- E(a), s Ij, o=y Y

k) _Zl
Z Z Z

and the condition (12) will become:
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x-y9¢ - z[ _Yoe, %j 0;
ow Zow 0z
ie.:
o0& _ X
0z Z

That equation must be a consequence of (13), but, sidoestnot contair, that will
demand that it must be an identity. Upon integrating, will then conclude that:

XY
£= g w(“zz)

Equation (13) for the coneK) will then be:

- Xom sy Y),
z 27722

and from the calculations of § 2, that is the gahequation for the cones of the complex:

f=¢ (g, a b).

We can then conclude thiite partial differential equations whose integrakfaces
are the surfaces of a complex are characterizethbycoincidence of the integral linear
element and the characteristic linear element afheaf their integral contact elements.
They are the equations:

(1) F(xy.zpg=0

which will imply the equation:

(8) 6_F(6_F+p6Fj oF 6F+q6_F _0
op \ ox 0z aq oy 0z

as an algebraic consequence.

Characteristics and the surfaces of the complex

4. — The integration of the first-order partial digatial equation:

(1) Fxy.zpa=0
and the Monge equations:
(2) G((xY,zdxdy,d)=0

will result from the following considerations:

One calls the locus of contact elements that lgetorthe same curve (viz., points and
tangent planes), and which are all integral cortdnents amtegral band. It will then
be a set ofo® contact elements that satisfy the equations:
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(3 F(XVy,zp g =0, dz—pdx-qdyO.

If one takes an arbitrary curve and draws a tangent pathe telementary cone that
is associated with the point of contact through eacats ddngents then one will obtain an
integral band. Hence, if equation (3) is algebraig, ipthen a limited number of integral
bands will pass through any curve. That number will rediycene unit in the case in
which the curve is an integral curve.

T

(K)

Imagine an integral surfac&)( Any curve that is traced on that surface will provide
an integral band that is defined by contact elementsateatommon to the curve and the
surface. Among them, we shall seek the ones thatihtagral curves for their support.
The elementary con&J at each poinA of the surface§) touches the tangent plarfe) (
to the surface along the integral linear element ofittegral contact elemenf\[ (P)].
We will then be reduced to finding the curves Bnthat have the integral linear element
thus-defined for the linear element at each of theirtpdin From equations (3) of the
preceding paragraph, that will amount to integrating tfieréntial equation:

dx _ dy
@ oF " oF
op dq

in which one must suppose tlafp, q are replaced as functionsfindy by means of
the equation:
(5) 2= (x,y)

of the surface§). Equation (4) will then be an ordinary differentigluation, and one
(and only one, in general) integral curve that is situatedS will pass through each
point of (§). The surfaceS) will then be generated by those curvés (

Now consider the integral band that is circumscribedhensurface along one of
those curves®). The elements already satisfy equations (3) optkeeding paragraph,
which we write as:

© Fxyzpd=0 dx=2"dg dy=2dg dz=|p2+q%" |ag
op aq op

upon introducing an auxiliary variab&
Moreover, it will satisfy the equations:
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(7) dp=rdx+sdy dg=s dx+tdy,

in whichr, s, t are the second derivatives of the function (5). Nt function satisfies
equation (1) identically, so one will deduce by diffeiaidn that:

a_F+pa_F+ra_F+Sa_F:O a—F+qa—F+sa—F+ta—F:O,

ox 0z dp 0q dy 0z dp O0q

and upon taking equations (6) and (7) into account, those eagatilh give:

®) dp:__(6F4_ aFj OF  oF

—+p— |dg, dg=-|—+qg— |dé&.
()4 paz “ (ay qazj

It results from this thafThe contact elements on any integral surface sudelivmto
o' bands that belong to the® bands that are defined by equatiq6$and(8). Thosex®
bands are called the characteristic bands of theipladifferential equation(1). The
curves that serve as their supports are the charetic curves, or more simply, the
characteristics.

The characteristic bands do, in fact, depend upon thbiteagy constants. Indeed,
the differential equations:

9 dx=§Eda dy:QEda dz:(p95+q95jda
ap aq p

dp:—(a—FJf pa—FjdH, dg=- 6_F+q6_F dé
0x 0z
will reduce to four equations if one eliminatdg. Moreover, they will imply the
combination:
oF oF oF oF oF

F
10 0 =dF = — dx+— dy+— dz#— d ds,
(10) 0x 0z y 0z op IOFaq

and conversely, if that combinatiolr = O is verified then those equations (9) will reduce
to three. Therefore, if one takes into account the equat

(1) FXVY.zp0q =0,

while solving it forq (for example) and substituting it into equations (9), wivak
remain is a system of three first-order differentigligions inx, y, z, p whose general
integral indeed depends upon three arbitrary constants.

On the contrary, suppose that we have integrated #tersy9) in that way. We will
get functions o#
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(11) X =¢(6; Xo, Yo Z0, Po, Go), Y =17 (8; Xo, Yo, Zo, Po, To),
z2={(8; %o, Yo, Zo, Po, Qo)
(12) p=a@(8; X, Yo, 20, Po: do), 9= (&; Xo, Yo, Zo, Po, Qo)

that will reduce to the initial values, Yo, zo, po, Qo for = 0, for example. They will
have equation (10) for a consequence; i.e.:

(13) F (X, ¥,z p, q) =F (X, Yo, Zo, Po, Qo),

in such a way that they will define a characteristicdygmovided that the initial contact
element Xo, Yo, Zo, Po, Qo) that figures in it is an integral contact element.

Therefore:One and only one characteristic band will pass through any integral
contact elementand as a resulin integral surface that contains one integral contact
element will contain the entire characteristic band that has thatesiérior its initial
element.

We are in a position to construct all integral suréatteen, becauséone is given an
arbitrary integral band on an arbitrary integral surface then that surfacé e
generated by the characteristic bands that have the various elememiat dfand for
their initial elements.That will result from the foregoing.

ConverselyThe characteristic bands that have the elements of an arbitrary integral
band for their initial elements will generate an integral surface.

Indeed, suppose that we replace the consi@nis, zo, po, o in equations (11) and
(12) with the functions:

(14) X=X U), Yy=Yo(U), z=2(), p=p(W), g=0do(u),

which define the given integral band by means of the pdemme Due to the identity
(13), all of the contact elements obtained will be integrad equations (11) will define a
surface as a function of the paramet@@ndu. In order to prove that it is, in fact, the
stated surface, it is sufficient to verify that itshidne elements (11) and (12) for contact
elements; i.e., that if one denotes the differeiotist with respect t& andu by d and J,
respectively, then the functions (11), (12)&dndu will satisfy the two identities:

(15) D=dz-pdx-qdy0, A= —-px-qody=0.

As far as the first one is concerned, it resuttsnfequations (9). The second one is a
consequence of the identity:

dA-AD =-dp- X—dgdy +dx- p +dy Q.
Upon taking equations (9) into account, the left-hand sitleimfact, become:

d:—a—F(Jz—p&—qd/) dHEéF—Aa—FdH.
0z 0z
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The elements (11), (12) are both integral,dsowill be zero. Therefore, since the
first condition (15) is realized, what will remain is:

(16) da__oF
dé 0z

One must suppose that the variables are replaced bynitieofis (11) and (13) in the
factordF / 0z. One will then have an equation fdthat has the form:

da _
(17) ag M@ -2

Now, A is annulled ford = 0, since the initial elements (14) form a band of eleis
and one such equation (17) will not admit any solution begiie solutiomd = 0, which
is annulled ford= 0. Hence, the second condition (15) is indeed verfifiiedny & andu.

In summarypne and only one integral surface will pass through any integral band.

The bands that are an exception to that are the characteristic bandsifiditude of
integral surfaces will pass through a characteristic band that coincidelalg the
characteristic that serves as the support of the band.

If we now return to the particular case in which eaquaf(il) is the one that defines
the surfaces of a complex then we will see, upon cangdahe preceding analysis with
that of § 2, that since the integral curves are curvabetomplex, the characteristics
that are situated on an integral surface will constithee family of «® curves of the
complex that are the asymptotic lines of that surfadge cbndition for that to be true is
that equations (6) and (8) must have the consequence that:

dp dx+dq dy=0;

i.e., that equation (1) must have the consequence that:

6F(6F aFj OF(0F OF |_
—| —+p— |+—| —+gq— |=0.
op \ ox 0z) o0q\ dy 0z

That is equation (8) of 8 3. From the results of 8§ 8,can then conclude thtte
first-order partial differential equations for witicthe characteristics are the asymptotic
lines of the integral surfaces are (if one ignoheear equations) the equations whose
elementary cones are the cones of the complexeesf

Remarkl. — Ifequation(l) is linear in p, gthen the elementary cone will reduce to a
line. The characteristic curves will be defined indepatigef the characteristic bands
by the equations X, y, z

dx _dy _ dz
oF OoF oF OF
op 0q op 09

F
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There are more tham? characteristic curves, even though there are always
characteristic bands, each of which is defined by a ctarstic and a neighboring
characteristic.

The integral surfaces are the ones that are genebgted characteristics. The
characteristics are asymptotes for all integral surfatébe case where they are lines,
and only in that case.

Remark2. — If the cone of the complex reduces to a plane tiercomplex will be
called alinear complex. The cone will not have a tangential equation theml the
preceding theory will no longer apply to it.

The case of linear complexes will be studied in tileviong chapter.

Geometric properties of characteristics

5. — In what follows, we will discard the linear equatior@3onsider a contact element
(X, ¥, z p, q) of a characteristic band and the infinitely-clokareent. The intersection of
the planes of the two elements is defined by the two emsati

Z-z-p(X-%-q(Y-y=0, K—=Xdp+(Y-ydg=0.

Indeed, the second one will result from differentigtine first one, while taking into
account that:
dz—p dx—-qdy 0.

If one compares this with equations (7) of 8 3, whilanglequations (8), 8§ 4 into
account, then one will see thdite intersection of the plane of a contact element of a
characteristic band with that of the infinitely-close element bal the characteristic
linear element.That will explain the name that we have given &t tmear element [cf.,
Chap. VII, § 4, pp. 171].

That property will suffice to define the characteristic bands amongrthe that have
an integral curve for their support, except in the case where theapalfferential
equation is that of the surfaces of a complex of lilgscause of the equations:

ax=2 40 dy=Cdg dz=|p2+q% |ag
ap 0q ap 0q
oF oF oF oF
dp=-| —+p— |dr, dq=-| —+q— |d7,
P (ax pazj d (ay qazj

one will conclude upon substituting them it6 = O that:
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{GF(GF aFj aF[aF oF
+ +

OF[OF L pOF 1 R 9F | 9F V(do=dn = 0;
aolax Paz) aday qazﬂ( )

i.e.,d@d = dr, if one excludes the reserved case. Moreover, treegirey equations are
the ones that define the characteristic bands ofgbat®n:

1) F(xy,zp,q) =0.

One sees that in all cases the integral linear elem uash the characteristic linear
element of an (integral) contact element of an irgkegurface have conjugate directions
on that surface. Those directions coincide in the cht®e surfaces of a complex, which
will indeed correspond to the fact that the charadtesisare then asymptotes of the
integral surfaces.

As for thecharacteristic curve®f an integral surface, their fundamental property is
that if one excludes the singular solutions timearder foreo® characteristics to generate
an integral surface, it is necessary and sufficient that each of thest meet the
infinitely-close characteristic.

The results that were obtained in the preceding paragrdaphl generation of integral
surfaces by the characteristics (11) can, in fact, diedthus: In order for a family of*
curves (11) to generate an integral surface, it is negeasd sufficient that one must
takexo, Yo, Zo, Po, 0o to be functions of one parametesuch that one will have both:

(2 F (Xo: Yo, 0, Po, Co) = 0,
(3) Zy — Po Ko — Qo o = 0.

The first of them is assumed to be realized if eqnafibl) represents the?®
characteristics of equation (1). We shall see tleasétond one express the idea that two
infinitely-close characteristics will meet.

Indeed, we seek to express the idea that this is the ¥dsecontinue to letl and o
denote the differentiations that relate@andu. We must express the idea that equations
(11) are compatible with the equations that one will dedwara them by differentiation
under the hypothesis thaty, z are constant; they are:

dé dn dd
4 —~ 00+ =0, —-00+dn=0, —= 06+ o= 0.
“) dé % dé 7 dé *

Since those equations do not contaiw, z, it will suffice to eliminated and o8 from
them. Now, upon remarking that one has:

%-mﬁ-){d_nzo
dée dée dée

identically, one will conclude the combination:
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(5) X—wd—xon=0
from equations (4).

For 6= 0, that will reduce to (3), which will then be ansequence of it. Moreover,
we have seen in the preceding paragraph that if (3) ishteme(5) will be verified for any
6. Hence, upon excluding the possible singular solutiorisatigadue to the presence of
the factordF / 0z in the fundamental formula (16), we conclude that thekination (5)
of equations (4) is equivalent to equation (3), which contagitherd nor 6. That will
then result from the elimination @& and o6 from equations (4). They will then indeed
express the intersection condition for two infinitelgse characteristics.

Moreover, we see th#his conditional equatio3) is linear and homogeneous with
respect to the differentiations with arbitrary constattist figure in the general equations
of the characteristics. Without altering that chaagaine can suppose that the equations
of the characteristics have been put into the form:

(6) PXxvy.zapB)=0, QX,y.za, B ) =0,

because, Yo, 20, Po, Qo are expressed in terms @f B, yby means of the equations:

P(X, ¥ %:a.8,¥)=0, |gP P 0P

%, 0y, 0%
Q0 ¥ 2:@,8./)=0. | 0Q 0Q 9Q| _,
0%, 0y, 0%

F(%: Yo Z@.8.¥)=0, | p, ¢ -1

o, Ao, 0o Will be homogeneous linear forms dar, 5, dy; whose coefficients will be
functions ofa, g, y; and the condition (3) will becomePdaff equationn a, 5, y:

(7) A(a,Byoa+B(a, B y) dB+C(a, B )y oy=0.

Complete integrals

One can recover this result, as well as its casydry considering complete integrals.
One will call any family o#o? integral surfaces:

(8) HXxy zapP=0

acomplete integrabf equation (1), with the reservation that anggnal contact element
must belong to one of the surfaces of the familyhe method of generating integral
surfaces that was obtained before proves the exstef an infinitude of complete
integrals for any nonlinear equation (1).

Let (S be an arbitrary integral that is not includedhe complete integral (8), and
take an integral band of that surface. Each comtiement E) of that band belongs to
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one and only one of the surfaces (8). One thus defihesrfaces (8), each of which has
a characteristic band in common wit§) (that is defined by the initial elemenE)(
because that characteristic band is defined entirel(Snand on the surface (8)
considered. Thereforény integral surface is the envelopecdfsurfaces that belong to
the complete integral.

Conversely,any envelope ofo’ surfaces (8) has elements of those surfaces for
contact elements — i.e., integral contact elemetsill then be an integral surface.

Moreover, since one will then obtain all integralfsoes,the characteristics are the
intersection curves of the various surfaces of the complete ahteggth an arbitrary
infinitely-close surface.

An arbitrary integral surface is then defined by two equataf the form:

6_H5a+6_H5ﬁ,

(9) HXy za =0, 0=cH P Y

in which a and 3 are coupled by an arbitrary relatig ¢ (a).

The characteristics that are situated on that sudse@efined by the same equations
for the various values af.

The set of characteristics is represented by the iegsat

oH oH
. = — 4y — =
(20) HXxy,zap=0, g yaﬁ 0,
with three arbitrary constants g, y.
The intersection condition of a characteristic (10d aan infinitely-close
characteristic are obtained by eliminating y, z between equations (10) and the

equations:

a_Hda/+a_H5ﬁ :0, o) a_H+ya_H :O,
oa s oa B
which gives:
(11) oB-yda=0.

That is indeed a Pfaff equation, and it expresses thehdea

B=¢(a), y=¢'(a)

One then recovers the condition that one must cepda £, y in order for the
characteristics (10) to be the ones that generate&egral surface.

The preceding results are then indeed proved once again.

Furthermore, let us study the converse. We first reti@atany Pfaff equation:

(12) Adx+B dB+Cdy=0

can be reduced to the integrable fodan = 0 or the form(11) 96— yda = Oby a change
of variables.
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Indeed, set:
(13) B=w(a,y; a)

in (12), in whichag is an arbitrary constant, angis chosen arbitrarily. We will then get
a differential equatioar and ywhose general integral will have the form:

(14) bo=x(a,y, a),

in which & denotes a new arbitrary constant. We then determfriategral curves of
the Pfaff equation by equations (13), (14).

Having said that, make the changes of variables in (12)idldefined by formulas
(13) and (14), while consideringy, % to be new variables and inferrimgand5. Since
the functiony is arbitrary, one can then suppose that this solutipogsible. It will give
a Pfaff equation i, (b, ythat must be verified for arbitrary constant valuespénd
[o; viz., for dap = o = 0, it will reduce to the form:

Ao dap +By 9 =0
or:

o — W (ao, [, ) oo = 0.

If  does not depend upagnthen what will remain is an equation of degree one in
only ap and/% that can be writteda; = O, if its general integral is:

(15) =M (a0, ) =N(a, 5 ) (a1 = const.).

On the contrary, if the functiop does depend uparthen one can take it to be a new
variable, in place of; and the Pfaff equation will be reduced to the form:

(16) OB — ) 0ap = 0.
In this case, the general solution of (12) is:

Bo=¢(a), Kw=¢ (),

there is no surface that satisfies the equation then.
On the contrary, in the preceding case, equation §l&juivalent to:

N (a, B, y) = const.,

which defines a family of surfaces that satisfy the equats well as any curve that is
traced on one of its surfaces. In that case, orgethaythe Pfaff equation ilstegrable.

Having said that, suppose that one has a complex of c@6yesuch that the
intersection condition of the infinitely-close curveas the Pfaff form (7), and suppose
that this equation is not integrable. One can supp@geotie has made a preliminary
change of parameters, such that this relation redudée twanonical form (11):
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(11) dB-yda=0.

Moreover, we can suppose that the equations of the legrp curves have been
solved in the form:

a7 z=KXYV;a/PD, y=LXxVy;apD,

since otherwise, upon inferringirom one of the equations (6) and substituting it ihe t
other one, what will remain is a relation that is jpeledent of the coordinat&sy, z.

We express the idea that the curve (17) meets thetéhhulose curve. One must
eliminatex andy from:

y=L(x, Y; 0',,6?, a—K50’+a—K5,3 =0, 5y: a_L5a+a_L5ﬁ

da B oa  op

In order for that to reproduce equation (11), it is necgsmad sufficient that one
must have:

K, HK_o

oa 08
in such a way that equations (17) can be written:

oK oK
+ -

Ty,
oa ' ap

(18) z=K XY, a p),

In order to prove that they represent a family of abiristics, it will suffice,
moreover, to prove that there exists one and only angpdifferential equation that has
the complete integral:

(19) z=K XY, a, p),

since equations (10) will become equations (18) if one replhedth (z — K.
Now, the functions (19) of andy satisfy the equations:

oK oK
20 = =
(20) P 1) g oy

and one can eliminate and S from (19) and (20), which will indeed give an equation of
the form (1):

1) F(Xy,zp,q) =0.

Nonetheless, one must verify that this eliminatiofi give only one equation; i.e.,
thatK, 0K / 0x, dK / dy are coupled by only one relation when considered to beidusc
of a, B. If things were otherwise then the functional determisia
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0’°K 9K _ 9°K 9K 0°K 0K _ 9°K 9K
oxda 0 0xdB da dyda 0 0ydp da

would both be identically zero. One would then havesthmiltaneous identities:

oK = 0K _ 0°K 0°K _ 9°K 0°K  _
—+L— =0, +L =0, +L =
Jda 0B oxda  0xopf oyda  dyoS

Upon differentiating the first one mandy and comparing it to the other two, one
will conclude thaoL / dx=0L / dy = 0. However, the second equation (18), whidhis
¥ will not containx andy then, which is impossible.

We then conclude thah order for a complex of curves to be composedodf
characteristics of the same first-order partial fdilential equation, it is necessary and
sufficient that the intersection condition for twidinitely-close curves of the complex is
expressed by a non-integrable Pfaff equation fa three parameters that those’
curves depend upon.

Determination of the integral curves
6. — It remains for us to show how to integrate of the §fpaquation:
(2) G (x, Y, z dx dy, d2 =0,
which is (as we saw in 8§ 3) associated with the patifitdrential equation:

1) FXY.zpq=0;

i.e., to determine the integral curves of that equatitnch will result from the preceding
considerations.

Now, any integral curve is the envelope of the charattey that are defined by the
initial contact elements that one obtains by assogidhe tangent plane each politof
the integral curve that is drawn to the elementary qéfewith summitM with the
generator of that cone that is tangent to the curveMat Since each of those
characteristics has an envelope, they will generatetaegral surface, since each of them
meets the infinitely-close characteristic.

Conversely, any family of characteristics that getesran integral surface has an
envelope, since each of them will meet the infinitetysel characteristic, and that
enveloping curve will be an integral surface, since elmear element of a characteristic
is an integral linear element.

One will then obtain all integral curves by lookigr the most general integral
surface, and the envelope of the characteristici trat it generates.

The result is presented in an explicit form if osig@iven a complete integral:

(3) HXvy, zapf=0.
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An arbitrary integral surface is defined by the chargsttes:

(4) H=0, ¢()BE- [6=¢(a),

and the envelope of those characteristics is difiryethe three equations:

(5) H= +¢()£- g 2

6aﬁ ﬁ W(%E_O

in which 8 must be replaced with the arbitrary functipia).

Remark.— There is only one integral curve on an integmnaiface that is not a
characteristic then, and it is the envelope ofdh@racteristics. The integral surfaces of
the same partial differential equation then exhiditremarkable analogy with the
developable surfaces. Characteristics will thexy phe role of generators, and the non-
characteristic integral curve will play the role the edge of regression. That analogy
will become an identity in the particular case tdafines the object of the following
paragraph.

Special complexes

7. — We say that a complex specialwhen the homography that exists between the
points and planes of a line of the complex is sgeciAny element of a system will
always correspond to the same element in the adedcsystem, except for one element
of the first system whose correspondent is inddteate. The equation of the
homography that relates to the complex:

(1) ¢(@bfg=0
is [8 1, eq. (10)]:
A(%_z%}%_z% “o
oa of ob Jg

so the condition for that homography to be spasitiat:

@ 999 %99

da 0g db of

The complex (1) will then be special if that eqoat{2) is a consequence of equation (1).
Thecomplex of the lines that are tangent to a surfgives an example of a special

complex. Indeed, consider a congruence of thatptedn The developables of the

congruence are circumscribed by the surface, soobribe focal planes will then be

independent of the congruence that one considérse will get the same result if one
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considers theomplex of lines that meet a given cur@ne will then obtain some special
complexes. We shall show that there are no othes.one
Indeed, take the equation of a complex in the form:

¢=9-¥(@ahbf)=0;
the condition (2) is written:
3) W oww
da db oOf

That relation no longer contaigsit must then be an identity with respecid, f.
Consider a lined) of the complex then, and the infinitely-close linkat it meets.
We have obtained the intersection condition [8 1, 8, Which is written:

da-d¥ —-db-df=0
here, or:

oV oV oV Y
ob of

db- df —da (—da+— db+—d
oda

ReplacedW / 0a with its value that is inferred from (3), which willugi:

O W 2 9 arb-2* qads dmd=o,
b of ab of
or
@ (a—wda— dfj 9% a- dbl=o.
ab of

For example, suppose that it is the first factor thannulled. The point at which the line
(D) meets the corresponding infinitely-close line is gived [eq. (6)] by:

(5) Z:—ﬂ :—a_LP,
da ob

in such a way that all of the lines considered will(@ijtat the same poirk:

(6) X=az+f, y=bz+W, z:—%—t.
Differentiate those formulas:
dx=a dz+z da+ df, dy=b dz+z db+ d¥,

so that upon replacirgwith its value, one will get:
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dx—adz-2 da+df.  dy—bdz= 2" da+r 2 df.
ab da o of

Upon eliminatingdf and taking the relation (3) into account, one will cadelthat:
(7) —%—T(dx —adz+dy—bdz=0.

The differentialsdx, dy, dz are then coupled by a homogeneous, linear relation. As a
result, the functiong, y, z will be linked by at least one relation.

If there is only one relation then the locus of poltsill be a surface, and equation
(7), which defines the infinitely-small tangent displae@s, will show that the lineX)
is tangent to that surface. If there are two retetithen the locus of poinEswill be a
curve, and any linel)) will meet that curve, since each pokhts on one of the line<)).
The only two cases that are possible for special cexagl will then indeed be the
indicated cases.

Remark 1.— Up to now, we have considered only the facﬁ%%da— dfj in

equation (4). If one annuls the other factor then:

do_ 0w
da ob’

so we will have the lines of the complex that, fraguagion (7) of 8 1, will all be situated
on the same plane witb). That plane:

(X—aZ—)‘%—T—(Y—bZ—)/:O

will be the singular plane of the homography, and fromagqn (7), it will be tangent to
the locus of point&. One will then see that upon taking one or the otetof, one will
define the same locus by the points and tangent planes.

Remark 2— If the equation of the complex contains neitheor g then it will define
a relation between the direction coefficients c¢ tne O©). One will then have the
complex of lines that meet the same curve at infinity.

Remark 3—~ The preceding calculation can be interpreted irceis® of an arbitrary
complex. Equation (2), which is no longer a consequent®eactquation of the complex
then, will define the congruence of lines of the commexwhich the homography is
special when it is joined with that equation of the clexp They are theingular linesof
the complex. HenceAll of the ruled surfaces of the complex that pdssugh a
singular line will have the same tangent planeha point F of the line that was defined
previously,since that tangent plane is parallel to the plane:
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oy
-—(XX—-—az+y—-bz=0.
af( 3+y

If the locus of singular points is a surface then eqodf@ will show that this surface is
also the envelope of the singular plane and the singjo&s to which they are tangent.
The surface of singularities is one of the sheets of the focal swffabe congruence of
the singular lines. The singular points and singular planes are the focadriemf that
congruence that are not associated with each other. If the locus of sinppitds is a
curve thenfrom (7), the singular planes will be tangent to that curve, which is a focal
curve of the congruence of singular lines.

Remark 4— In particular, consider the case of sexond-degree complexe3he
plane that is associated with an arbitrary point igeahto the cone of the complex; it is
unique and well-defined. It will be indeterminate only if dee of the complex that is
associated with that point decompos@$e surface of singularities is then the locus of
points where the cone of the complex decomposes. It is also thepenetbplanes for
which the curve of the complex decomppassne will verify by an analogous argument
by assuming the correlative viewpoint.

Surfaces and curves of special complexes

Let us return to the special complex: First, considher case of the complex of
tangents to a surfac®). The cones of the complex are the cones thatiamemscribed
on that surface. An arbitrary surface integral wirihbe the envelope of* tangent
planes to @); i.e., an arbitrary developable that is circumscribed (). The
characteristics, which are, in general the contactesuof the surface integral with the
surfaces that belong to the complete integral theitvielops, are the rectilinear generators
of those developables; i.e., lines of the complex. Ikinane will obtain the integral
curves by taking the envelope of the characteristicghe integral surfaces. They will
then be the edges of regression of the developablearthatrcumscribed byd), which
are curves of the complex.

Now consider the complex of lines that meet a cu®ee will likewise see that the
surfaces of the complex are the developables that thassgh the curve, so the
characteristics will be the lines of the complex, dr@ldurves of the complex will be the
edges of regression.

Hence:In the special complexes, the first-order partial differential equetipon
which the search for the surfaces of the complex will dependchavi the lines of the
complex for its characteristics. Conversely, any first-ordatigladifferential equation
whose characteristics are lines will be associated with a specraplex.

Indeed, let:

Fy,zpa)=0

be a partial differential equation whose charactessire lines. One will get its integral
surfaces by taking an integral curve and drawing the tamfpnacteristics. Hence, the
integral surfaces will be developables, and the tangene pléll be the same along each
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characteristic; i.e.dp = 0,dq = 0 must be consequences of the characteristic equations
That amounts to saying that= 0 must imply the equations:

as a consequence. Suppose thgures in the partial differential equation and set:

F=z-6(xYV,p, Q).

The preceding conditions will be written:

%— =0, %— q= 0,
0x oy
so @will have the form:

f=px+qy+W¥ (p q),

and the partial differential equation will be:

z—px—qy ¥ (p, 9.
The tangent plane to any of the integral surfaces kgl the:
pX+qY-Z+W¥(p,q) =0.

The set of all those planes will then have an envelbakis a surface or a curve. The
elementary cone that is associated with any poifitei€bne that is circumscribed by that
surface or curve, and the partial differential equatieilsindeed be associated with a
special complex.

Remark— We have supposed tlatigures in the partial differential equation. If that
were not true then, as one could predict by changingdleeaf the coordinates, that
equation would contain neithemory, because one could write, for example:

F=x-6(,p,q =0,
so the condition:
oF oF _
— 4+ p— = 0
1) 0z

would not be verified. Hence, the partial differenggliation will then take the form:

@ (p.g) =0,

which will give the complex of lines that meet a cuatenfinity.
For example, consider the equation:
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1+p2+q2:0;

it defines thecomplex of isotropic lines.The curves of the complex are the minimal
curves, and one will get them without integration as d@tlges of regression of the
isotropic developables. That is how we determined th@maircurves in Chap. Ill, 8 4.

Surfaces normal to the lines of a complex

8. — We now propose to look for tlseirfaces whose normals belong to the complex
that is defined by the equation:

(1) ¢ (a b, f g)=0.

A normal to a surface of the complex is defined by the emst

X=X_Y-y

p q

=-(Z-2,

or
X=-pZ+x+pz Y=-QZ+y+0qz

in such a way that the desired surfaces will be defindtibpartial differential equation:

(2) $(-p.—q x+pzy+qs=0.

If a surface meets that requirement then all of théases that are parallel to it will also
meet that requirement.

If the complex is special then the problem will amaionthe search for a congruence
of normals when one knows one of the focal muttipés. If the focal multiplicity is a
curve @) then the desired surfaces will be the envelopes o§pheres that have their
centers ong), from what we said in Chap. VII, 8§ 2, pp. 162. Moreoweose spheres
will constitute an obvious complete integral of the eiguedf the problem.

If the focal multiplicity is a surfaced) then the problem will amount to the
determination of the geodesics lines of that surfacedCWH, § 2, pp. 161].

In the case of an arbitrary complex, we shall looktfe normal congruences that
belong to the complex. One will then find the surfalsgameans of a quadrature. In
order for theo? lines:

to be the normals to the same surface, upon setting:

a b 1
Q9= — L= — y=

Jai+b2+1 Jai+b2+1 Jat+bi+1’
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it is necessary and sufficient thatdf + £ dg must be an exact total differential [Chap.
VII, 8 1, pp. 159]. Now, when the equation of the comp&esolved forg, it can be
written:

(3 B=¥ (a1, 09),

anda df + W (aq, f, g) dg must be a total differential with respect to the independent
variables. For example, determiaeas a function of, g, which will give the condition:

oa alPdﬂ o

(4) :
ag da of of

We seek a solution of the form:
6 (a,f, g) = const.

Upon differentiating this with respect tog, we will get:

a6 60’@;_ a6 60'93; 0,

of of da ag J0g da
and the condition (4) will become:

00 _o¥ 08 o¥ 00 _
dg Oda of of oda

That is a partial differential equation whose integratieduces to the system of ordinary
differential equations:

gq= df _ da
9T Tw T o
oa of

which determine the characteristics.
Having thus calculated as a function of andg, one will deduces by using equation

(3), and one will havey = /1-a®-3?. One performs the quadrature of the total
differential:

u:—fadf+lvdq,
and the desired surfaces will be defined [Chap, ¥Ipp. 159] by the formulas:
x=f+au, y=g+pfu z=ypu
REMARK. —The developables of the desired surfaces are ttiacas for whicteo®

geodesics are the curves of the compl€key are the focal surfaces of the congruences
considered.
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LINEAR COMPLEXES

Generalities on algebraic complexes

1.—Let:
1) Xx=az+f, y=bz+g

be a line. Aralgebraic complexvill be defined by an algebraic relation betweetb, f,
o:
¢ (a b, f,g) =0.

If one considers the lines of the complex that passigh a poinfA and are situated on a
plane P) that passes through that point then they will begthreerators of the intersection

of the plane R) with the cone of the complex that is associateth wie pointA or the
tangents to the curve of the complex that is situatethe plane ) and issues from
[Chap. IX, 8§ 1]. If the complex is algebraic then tome and the curve will be algebraic,
and one will say thathe order of the cone of the complex is equal to the class of the
planar curve of the complexTheir common value is called tdegree of the complek

is the number of lines of the complex that are situatedplane and pass through a point
of that plane.

If that number is equal to 1 then the complex willcadled alinear complex. The
cone of the complex that is associated with the pdiista plane that one calls thecal
planeor polar planeof a pointA. The curve of the complex that is situated in a p{&@ye
will reduce to a point that one calls tfezusof pole of the planeR). If the plane P) is
the polar plane to the poiAtthen the poinA will be the pole of the pland®). There is
reciprocity between a pole and its polar plafmem viewpoint of the duality principle;
the duality transformations will not alter the degreamrbitrary algebraic complex.

Homogeneous coordinates

2. — For the study of algebraic complexes, it is advaagéo replacea, b, f, g with
the homogeneous coordinates of lines.

Pltcker coordinates- Consider the equations of a line in Cartesian coordinates

(2) = = ,

which are equations that contain equations (1) as a garticase. We take the six
guantities:
3) a, b, C, p=gc—-hh qg=ha-f¢ r=fb-ga
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to be thePlicker coordinatesf the line. As one sees immediately, those cootelnare
coupled by the homogeneous relation:

(4) pa+gb+rc=0.

Those six parameters, which are defined only up to thes damtor, and which are
coupled by one homogeneous relation, reduce to four inyealib, c are the projections
onto the axes of a certain vector that is carriethbyline. p, g, r are the moments of that
vector with respect to the axes (in rectangular coatds). One can also define them to
be the coefficients of the equations of the threeeptmn of the line onto the three
coordinate planes, which are supposed to be put into the form:

(5) cY —bZ-p0, aZ—-cX -0, bX —-aY -r=0.

Let us see what the equation of the complex will becofne infers from (2) that:

X= Z+

olw

z-9 Y=
C

olT
olo

and the equation:
¢(@bfg=0

¢(9,9,_3,_pj - 0.
c C c C

When that equation is rendered homogeneous, itat# the form:

will become

W@ becpqg=0.

One can introduce by virtue of equation (4), and one will finally taln a homogeneous
equation of degree equal to the degree of the ampl

(6) X@hb,cpaqr=0
that will define the complex in Plickerian coordesm Conversely,due to its

homogeneity, if one sets= 1,h = 0 in formulas (3) then any equation of the pdaog
form can be reduced to the original form for thaaen of a complex:

(7) x(@b, 1,g, —f fb—gg=0.

We seek theone of the complewhose summit isx( y, 2. LetX, Y, Z denote the
current coordinates; it will result from the defian of the Pliickerian coordinates that:

a=X-x b=Y-y G £ 7
p=cY-bZ o aZ cX E bXx a



260 Chapter X — Linear complexes

The equation of the cone of the complex is obtainedeplacinga, b, c, p, g, r with the
preceding values in the equation of the complex. ltthan be:

XX=XY—-yZ—-2zyZ—-2YzX—-xZXY —-yY=0.

If one transports the origin of the coordinates by tegios to the summit of the cone
then that equation will be simply:

XX Y,Z yZ—-zYzX - xZxY —-yY=0.

If one seeks aurve of the complethen one will take:

a=dx b= dy < dz
p=ydx-zdy o zdx xdz =F xdy y(

by which the differential equation of the curves of ¢benplex will be:

x(dx dy,dzydz—-zdyzdx—-xdzxdy—ydx=0.

The condition for a complex to be special is thdtdg. IX, 8 7]:

09 99 094 99 _,.
da dg Jdb of ’
here, it will become:
@® X QX Ox X X X _ ¢
da dp 0b dg odcoar

Indeed, upon taking the equation of the complex in the férinand taking the
corresponding formulas:
c=r, p=g, qg=-f r=fb-ga

into account, it can be written:

a_Xd”l.}.a_Xd’l_a_X aa_X+ba_X+ pa_X+ qa_X+ ra_X =0.
da dp 0b dq odr da 0b dop o0q Or
If one wishes to obtain equation (8) then it will stéfto take the equation:

oY, ,.0x, Ox, Ox. ox
a2 +b2+ p L+ +r2=0
da "ob Fop Jaq ar

into account, which is deduced from (6) by means of ther&déntity on homogeneous
functions, or, due to its homogeneity, one can giverbitrary value toc, while the other
coordinates take on values that correspond to that value o
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In the case of an arbitrary algebraic complex, equg8), when combined with that
of complex, will definghe congruence of the singular lines.
Recall the homography between lines and planes of lihdbeocomplex. The

coefficients of that homography a#eé gz 3? gg and as a result, in homogeneous

coordinates, they will be homogeneous, linear combinatafrthe derivatives?,
a

?S_)r(' Consider the line of the complesg,(bo, Co, Po, o, ro)-

The equation:

Za +Zp

defines a linear complex that contains the line comnsdjeand on that line, the
homography for that linear complex will be precisely sene as it was for the original
complex. That linear complex is callehgentto the given complex.

Remark.— If we define a line by two pointx,(y, 2 and &, vy, Z) then we will see
that:

a=X-x b=y-y C z- 7
P=yZ-2zy, OF 2% Xz ¥ Xy ¥

Hence, as above, the equation of the cone of the earpll be:
(9) XX =XY -VY,Z-2YyZ—12y,zX —x2,xy —yX) =0.

Correlatively, we define the line by two planes ¥, w, s), (U, V, W, S). Upon
deducing the equations of the projections of the line fitmarequations of those planes:

uxX+vY¥+wZ+s=0, UX+vY+wZ+s =0,
and upon reducing the latter to the form (5), one will deduc

a=w-uw, b= wli-uwy e uUwv wvu
p=sUd-u§ o Sv Vs ¥ Sw W

One will then obtain the tangent equation of a planarecof the complex:
(20) X (VW —wV, wu' — uw, uv —vu, su — us, sV —vs, sw —ws) =0

and one will then see that the class of that cuike, the order of the cone of the
complex, is equal to the degree of the equation of thelexn
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General coordinates of Grassmann and KleinMore generally, take an arbitrary
reference tetrahedron, andJetx,, xs, X4 be the coordinates of a point, whilg uy, us, us
are the coordinates of a plane. Consider the line tefined by two point, (y). We

take the quantities:
(11) Pik = ,0‘ nok

Yo %

(i,k=1,2,3,4)

to be the coordinates of that line, in whigls an arbitrary homogeneity factor.

We remark thap; = 0 andpki = — pik, in such a way that one will then obtain only six
distinct coordinates; for examplpi2 , P13, P14, P34, Paz, P23. They are the relative
moments, with respect to the vector of the two pdijts(y), of the vectors that are equal
to 1 when taken on the six edges of the tetrahedroni @gast, quantities that are
proportional to those moments.

Let (ow) and (p,) be two lines. The relative momelt of the two corresponding

vectors is given by the formula:
MM =Py, Pyt Pay Bt Pus Past Pap Pt P Pot PP

in which g is a constant factor.
If that moment is zero then the two lines will meBlow consider the determinant:

% % %
o=|% ¥ % %
% % %
S

which is identically zero.
Develop it using Laplace’s rule:

O = 2 (P12 P34 + P13 Paz + Pa P23).
Upon introducing the function:
(12) D (pi) = P12 P24 + P13 Paz + P14 Pos,
the coordinates of an arbitrary lines will satisfy tbadition:
(13) @ (pi) = 0,

and the condition for two lines to meet can be written

0o
14  ——=0,
( ) z p|k aplk
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in which the summation extends over the six coordinates
If we define the line by two planes)( (v) then we can take the coordinates to be:

(15) Ok = U‘ 4K
VoV

in which o is an arbitrary homogeneity factor. We seek the ioslat between the
coordinategi and the coordinateg . Since the line is the intersection of the plafugs
(v), a point §) of that line will be the intersection of the thi@anes (), (v), (w). Hence:

Uy X1+ U2 X +UsXz+Us X4 =0,

Vi X1 +VaXe+Vaxs +Va X4 =0,

Wi X1+ Wo X2 + W3 X3 + Wy X3 = O.
Consider the determinant:

ul u2 u3 u4
Q = Vl V2 V3 V4 :

W W, W W,

S S 3 38

one can take the coordinateto be the coefficien§ = 0Q / 0s of s . In order to get
another pointy) on the line, we define it by three plane (v), (), and thery; = W =
0Q /ow; . Consider the adjoint @:

U, U, U, U,
Vl V2 V3 \/4
WoW W W
S S § 9

We have the classical relationship between each secded+minor ofQ that is defined
by the last two lines and the complementary minor ofithjeint, which can be written:

with the notation that is defined by formula (12).
Upon disposing of the proportionality factors, @aa write this more simply as:

) o 0@
aq,

and similarly:
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(17) qik = aq)(plk) .
0P

The equation of then complex will then Be(pi) = 0, orF (gn) = 0, in which the
indicesi, k; h, | will correspond in such a manner tipat= 0® / dpi ; one will then have
the equations of the cone or the curve of the cerapllhe condition for the complex to
be special is that:

(18) oF D@F + oF DGF + oF DGF _

0P, O0pPs; 0Py 0P, 0Py, 0Py

0.

Remark— One can define the coordinapgsby the remark that the line considered is
found in the planes:
Pik X + P X +Pi X = 0,

and one can deduce the relations betweeptfand theg, the from this. The condition
®(pik) = 0 expresses the necessary and sufficient gondir those four planes to pass

through the same line if one supposes fhat — p«i . It is then necessary and sufficient
that thepi should be the coordinates of a line.

Linear complexes

3. — Let us study the linear complexes in more detdihe equation of such a
complex is:

(1) 2. A =0,
with the notations that were adopted.
The complex will be special if it satisfies théateon:

(2) A2 Aza + A1z Agp + A1a Aoz = 0,

and that equation expresses the idea thatAth@re the coordinates of a line. The
equation of the complex expresses the idea thatim@yf the complex meets that line.
A special linear complex is then composed of theslithat meet a fixed linevhich one
calls thedirectrix of the complex.

Let (D) be a line of an arbitrary linear complex, Mtbe a point of that line, and let
(P) be its polar plane. The cone of the complex ceduo the planeP] here, so the
homography of the complex is that of the plan@sdf the line D) that are associated
with their polesM.

Pencils of complexes

4, — Let:
(1) 2 A pk =0,
(2) 2Bnpk=0
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be two linear complex; the equation:

2 (An+ABn) pk=0

will represent gencil of complexesLet us look for the special complexes in that pencil.
They are defined by the equation:

(3 (A12+ A B12) (Asa + A Bas) + (A1z+ A Bra) (A2 + A Byo)
+ (A1a+ A Bug) (Acz+ A By =0,

which is an equation of degree twdhere are then two special complexes in any pencil
of linear complexes. Let look for the conditions under which those two ggec
complexes might coincide.

To that effect, suppose thdt= 0 is a root of equation (3). The necessary and
sufficient condition for that to be true is:

2 A12A=0,
and the preceding equation will reduce to:
(4) A(A12834+A(>,4B]_2+ ) +A2 (812834+ ):O

We call the expression:
(5) A= A12 Aza + A1z Aza + A1 Azs

theinvariant of the compleil), and the expression:

an,
oA,

(6) Apg = z B,

is the simultaneous invarianbf the two complexes (1) and (2). With those notations
equation (4) can be written:
(7) ADpg+ A*Dg = 0.

In order forA = 0 to be a double root, it is necessary fhat= 0, addition. NowAx =0
expresses the idea that thg are the coordinates of a line, Ags = 0 will express the
idea that the line belongs to the second complex thatedethe pencil. Obviously, it
belongs to the first one, so it will belong to allngmexes of the pencil. One then
concludes thatin order for one of the special complexes to bebtiut is necessary and
sufficient that it must belong to all complexeshef pencil.

In order for the equation to reduce to an identity - ue.order for all of the
complexes of the pencil to be special — it is furthezessary that one must hawe= 0.
It is therefore necessary that the complexes muspbeial and their directrices must
meet.
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We call the set of lines that are common to twodimmplexes Anear congruence.
In general, one and only one line of that congruence patis through every point of
space: It is the intersection of the polar planesh&point in the two complexes. One
likewise sees that there is generally one and onlhflineef the congruence in any plane,
and it joins the foci of that plane in the two compkexeConsider the pencil that is
determined by the two complexes that define the congrudhdtleat pencil contains two
distinct special complexes then all of the lines of ¢begruence will belong to those
special complexes, and as a result they will meet finexl directrices; conversely
linear congruence is generally composed of the lines that meet egodivectrices.

If the special complexes coincide then kY be their common directrix. Consider an
arbitrary complex@) of the pencil. A) is a line of the complexd). Homographically,
each pointM of (A) corresponds to its polar plan@) (with respect to the complexC).
The lines of the congruence that pass thrddgind belong to the comple&) will be in
that polar planeR). Now, the points of4) have the same polar plane with respect to all
of the complexes of the pencil. The lines of thegtoance meet the liné\), and for
each point of that line, they will be situated in tberesponding polar plane.

Conversely,if one is given a homography arbitrarily and makes eaatt p of a
fixed line (A) correspond to a plan®) that passes through that line then the seb®f
lines that each pass through a pdand are located in the plarn®) that is associated
with that point M will be a linear congruence, and the special complefeshe
corresponding pencil will coincide.

Indeed, takeA) to be thez-axis. A pointM of (A) will be defined by its parameter
and a planeR) that passes throug) will be defined by its equatiop— mx= 0. The
equation of the given homography will then be written:

(8) P+Bz+Qm-Amz=0.

The Plickerian coordinatesb, c, p, g, r of a ray of the congruence in question will
first satisfy:
9) r=0,

which expresses the idea that the ray m@etslif a andb are not both zero then suppose,
for example, thaa # 0. The ray meet®zat the point whose parameterzis q/ a, and it
will be found in the planéx — ay= 0. Upon taking into account thap + bq + cr = 0,
along with equation (9), the relation (8) will then give:

(20) Ap+Bg+Pa+Qb=0.

If a=b=0, and ifp, g are not both zero, then the ray will m&at infinity, and its
equations will becy = p, cx=-g. The relation (8) then givesp + Bg = 0, and equation
(20) will be once more verified. It will still be trder a=b =p =q =r = 0, which
corresponds to the singular rad) (

In summary, the congruence will be defined by equat®))g10). Now, they define
two linear complexes: The invariant of the first oseero, as well as their simultaneous
invariant. One has then returned to the indicated case.
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Complexes in involution

5. — Recall the preceding pencil of complexes. The twaichaomplexes are said to
bein involutionof Axg = 0. Consider a lineX) that is common to two complexes, in the
general case. A poii of that line will correspond homographically to its pgiane in
each of the complexes, so I&),((Q) be those planes. A homographic correspondence
(H) between the plane®), (Q) of the line will then result. Similarly, upon stadiwith
a plane of the line, one will see that there exidtermographyK ") between the points of

the line.
D /

/

A’ A

We seek the double planes of the homography {To that effect, consider one of the
directrices Q) of the linear congruence that is defined by the twopdexes and the
plane D)(A). The pole of that plane with respect to each efttho complexes is the
intersectionA’ of (D) with the second directrixAj, because all of the lines that pass
through A’ and meet &) will belong to the congruence, and as a result, totwee
complexes. Therefore, in each of the two comple&ésvill be the focus of the plane
(D)(4), and similarly, A, which is the intersection obDj and @), will be the focus of the
plane D)(A'). It will then result that those planes correspamdhemselves under the
homography Kl), and consequently that those two planes will be trerete double
planes.

One likewise sees that the poidtsand A’ are the double points of the homography
(H”). Having said that, we shall show that the condifigg= 0 expresses the idea that
each of the two homographidd)(and @) is an involution.

Indeed, in order for the homography)(between the plane$) and Q) to be an
involution, it is necessary and sufficient that thengls P), (Q) must be conjugate with
respect to its double planes. The equation of the ptdae of a point with respect to an
arbitrary complex of the pencil is:

X, X,
(Ani + A Bn) =0,
X X%

which is an equation of the form:
P+1Q=0.

We point out that it will then result that all ofetlpolar planes of a point with respect to
the complexes of a pencil will form a pencil of pland$e axis of that pencil of planes is
the line of the linear congruence that is common tawlecomplexes that pass through
the point considered. Consider four arbitrary compleskshe pencil then. The
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anharmonic ratio of the four polar planes of the sanet po those four complexes will
be equal to the anharmonic ratio of the four corresponguamtitiesA. In particular,
take the two basic complexes and the special complekas values ofl are 0,0, and
the roots of the equation:

2 (A1a+ A B1g) (A2z+ A Bg) =0,

and the condition for the first two to be harmonicalhnjugate with respect to the other
two is that:
A1 +A2=0,

or Aag = 0. Now, if the point considered is found on the [[B¢ then its polar planes
with respect to the two special complexes will be igedg the planesY)(A) and D)(4).
Hence If two complexes are in involution then the polar planes of a poittidse two
complexes will be harmonic conjugates with respect to the planes thathpaugh that
point and through the directrices of the congruence that is common to thertivateges,
and conversely.

That is equivalent to saying that the homogragtyit an involution. The analogous
property that relates to the homograpHhly) (will be established similarly by utilizing the
tangential coordinateg instead of the point-wise ongm . The property of two
complexes being in involution will then correspond to ftselder duality, and one can
further sayThe poles of an arbitrary plane with respect to the complexes of d peaci
on a line that meets the directrices of the congruence that is conentioose complexes.
If two complexes are in involution then the poles of any plane with atespdhose
complexes are harmonic conjugates with respect to the points of theeatien of the
line that joins them with the two directrices of the congruenceishedbmmon to those
complexes, and conversely.

Symmetric coordinates of a line.One can further generalize the coordinates of lines.
Recall the fundamental relation:
(1) ap+bqg+cr=0;

it is homogeneous and has degree two. Now, there existvakable type of second-

degree equation in which only the squares appear. In ordedtme the preceding
relation to that form, it will suffice to set, fexample:

) {a+p=n, b+ =1, o+ r=t,

a-p=it, b-qg=it, c-r=it,.
The condition will then become:
(3) t?+t) +t7+t +t2+t = 0.

One introduces thex as homogeneous coordinates, which are homogeneous linear
functions of the Pliickerian coordinates. Upon equatingelsix coordinates to 0, one
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one will obtain the equations of the six complexes #o& pair-wise in involution,
because will easily see that the condition for the ¢complexes:

2AML=0, 2B«t=0
to be an involution is that

(4) > A«Bc=0.

Those results will persist if one repla@®, c, p, g, r with the general coordinates
in the definition of the coordinatdg, and if, even more generally, one replacestthe
with the coordinates that one deduces from them by angwtifal, homogeneous linear
transformation in six variables.

Conjugate lines

6. — Consider a compleXj that is not special and a lin&)(that does not belong to
that complex. Consider the congruence that is comimd@) and the special complex
whose directrix is£). That congruence has a second directxiX that is called théine
that is conjugatdo (A). There is obviously reciprocity between those twedi All of
the lines of the compldC) that meet the lin€A) will meet its conjugatéA’), since they
are lines of the congruence, and conversaty, line that meets both of two conjugate
lines(4), (A") will belong to the congruence, and in turn, to the complérne considers
a pointA of (A) then its polar plane will pass througki)( since all of the lines that pass
throughA and meet4’) will belong to the complex. Therefor&)') is the envelope of
the planes polar to the points of its conjug@i® One likewise sees thal'f is the locus
of polar of the planes that pass through its conjudgaje If the line @A) belongs to the
complex C) then the two directions of the preceding congruendiecaincide. The lines
of the complex are their own conjugates.

Let the equation of the complex be:

F(abcpqgr)=Pa+Qb+Rc+Ap+Bg+Cr=0.

Let us look for the coordinateay( by, Cz, p2, O, r2) Of the conjugate to a liney( by, c,
p1, qi, r1). It suffices to express the idea that the given dexnand the special
complexes that have the lineas,(bi, €1, p1, G, r1), (@2, b2, C2, P2, Q2, r2) for their
directrices will belong to the same pencil, which give

P+Aipr+A2p2=0 and its analogues.

Multiply this by ai, b1, ¢, p1, qi, r1, respectively, and add corresponding sides, so the
coefficient ofA; will disappear, and we will get:

F(ag, by, C, pr,qr, 1) + 22X (@ pr tazp) = 0.
Set:

Y@ptap) =g
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to abbreviate, which will give:
(1) F (a1, by, €1, p1, Q1, 1) + A2 0= 0.

If we multiply this equation by, by, ¢, p2, 02, 2, resp., and add the resulting equations
then the coefficient o, will disappear, and we will have:

(2) F (al, bl, C1, P1, Oa, rl) + /]1 o=0.
Finally, if we multiply byA, B, C, P, Q, R, resp., then upon setting:

A=AP+BQ+CR
we will get:
20 + A1 F (a4, by, €1, p1, Q1, r1) + A2 F (a2, by, C2, p2, O, 12) = 0,

which will be written:
A=A Ao,

upon taking (1) and (2) into account, so:

Y S A

Ao F(a,b,g, p.q.5)

We can then take the coordinates of the conjugate line:to b

o =A- B2, : and its analogues,
F(a,b,c, p. g, 1)
or
3 a=A- AF(a,h,q, p.q, f-Aa, and its analogues.

Suppose that one takes two conjugate lines thid®pposite edges of the reference
tetrahedron. If we call the tetrahedral coordisatg, z t then we have seen that:

a=xt-tX, b=yt-ty, < Zt- {z
Pp=YyZ-2zy, F 2¢ Xz ¥ Xy Y

Suppose that one takes the lines=(0,y = 0) and £= 0,t = 0) to be conjugate lines.
Their coordinates are:

=0, bl =0, Ci1, P1= 0, 01 = 0, r, =0,
a=0, b2:0, c, =0, p2:0, CI2:0, Io.

We express the idea that these lines are conjuddte.conditions that were found before
give us:
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0=AF(a, ...), O=BF(ay,..), O=CF-Ac, O0=PF, 0=QF r,=RF.

Now:
F (al, bl, C1, P1, Qa, rl) =F (0, 0,cq, O, O, O) Raqg.

SinceA is non-zero, by hypothesis, it will result that:

A=0,B=0,P=0,Q=0,R#0, Cz0.
Hence:
A =RC

and the equation of the complex will take the reduced:form

Cr+Rc=0,
or
(4) r =kc.

In particular, we seek to perform that reduction in €aain axes. We take the
conjugate lines to be the axix and the line at infinity in th&y-plane. One must first
show that there are lines whose conjugates can be pashéal infinity. In order for a
line (az, by, ¢1, p1, 1, 1) to be at infinity, it is necessary and sufficierdttiy = 0,b; = 0,
¢ = 0, and from the formulas that were found beforectigugates to those lines will be
such that:

a _b _c _F(000p )

A B C A

ap, by, c; are then proportional to fixed quantitie§he conjugates of the lines at infinity
are parallel to the same direction. Those lines are the loci opthes of the planes
parallel to a fixed plane.One calls thendiameters and the parallel planes whose poles
are on a diameter are said todmmjugate to that diameterUpon referring a complex to
a diameter and a conjugate plane, the equation of thplermill then take the form:

r =kc.

One can obtain that reduction in rectangular axes. thdkeere exists an infinitude
of lines perpendicular to their conjugates. They arenddfby the relation:

aya+bh+cic,=0,
or

(Aal + Bb; + CCl) F (al, by, ¢, P1, J1, rl) —A(af + qz + Cf) =0.

Those lines then constitute a second-degree complex.

Take an arbitrary diametea( by, ¢1, p1, Q1, r1) of the linear complex. The conjugate
plane that passes through the origin and the line atitinfthat is conjugate to the
diameter (0, 0, Oy2, Oz, I2) Will have the equation:
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p2X + Y + 122 = 0.

The condition for it to be perpendicular to the diamete

a_b_g
P. Q I
or
a  _ b _ ¢

PR-4p, QFR-Aq RR-ArR’
in which we have set:
Fi= F(al, by, ¢y, P1, a, I’l),
to abbreviate.
Since the conjugate line to the diameter is at infirgtys b, = ¢, = 0. Hence, from
formulas (3) a1, bi, c1 will be proportional tdA, B, C, which will give:

A _ B _ C
PR-Ap, QR-Ag RR-An
Now:
apprt+tbip+ciri=0,
which gives:
Ap+Bga+Cr=0,
here, so:

Fi=F(ai, by, ¢, pi, 1, 1) =Pa+Qb+Ra.

If we multiply the two terms in the preceding ratios AyB, C, respectively, and add
them then we will get a ratio that equisA2 I AF, . We can then taka = A, by =B, ¢

=C, soF; =A, and finally:

A DN

PF-pA A

, and analogous equations.

We will then have the defining formulas:

AA BA CcA
®) a=A b=B ¢=C p=P-o55 h=0-<= =

A IS Y

We then obtain one and only one diameter that is pdipdar to the conjugate plane: It
is the axis of the complex.Upon taking it to be the-axis, we will get the reduced
equation in rectangular coordinates:

r—-mc=0.

The form of the complex depends upon only one paramgtehich is its invariant with
respect to the group of motion.
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If r = 0,c = 0 then the equation will be satisfied. Nowz 0, c = 0 are the
coordinates of the lines that mé@r and are perpendicular to iThe complex contains
all lines that meet the axis and are perpendicular to it; are coordinates that do not
change when one turns the line aro@xl similar statements will be true if one displaces
it parallel toOz In other wordsA helicoidal motion with axis Oz will leave the complex
unaltered. It will then result that if one heg lines that belong to the complex and are
derived from each other by a helicoidal motion then one will obtain radsliof the
complex by subjecting that system of lines to the preceding rotationsaasthtions.
Consider the lines whose coordinatep are zero, and look for those lines among them
that belong to the complex. One will find the lines:

bx =mg cy — bz=0,
which constitute a family of generators of the paraidolo
Xy —mz= 0.

Consequentlyin order to obtain the lines of a complex, it will suffice to taksystem of
generators of an equilateral paraboloid and to subject it to all of the helicoidal
displacements that have the axis of the paraboloid for their axis.

Nets of complexes

7.—1f®d =0,9" =0,9" =0 are the equations of three linear complexes timet af
complexesvill be defined by the equation:

AP +A P +A"P" =0.

Consider the lines that are common to all of the dergs of the net — i.e., common to
the three complexe® = 0, ®' = 0, " = 0; there areo® of them. They belong to the

special complexes of the net, so one can define thregeneral by means of three of

those special complexes. Now, a special complegngposed of all the lines that meet
its directrix. Since the preceding lines will then mibege arbitrary fixed lines, they will

constitute a system of generators of a quadric, and tledeystem of generators will

consist of the directrices of the special complex{abe net.

Application. — One can define a complex by five lines that do not belong dartree
linear congruence.Indeed, let the lines be 1, 2, 3, 4, 5; we pick a p@iahd seek its
polar plane. Consider the lines 1, 2, 3, 4; there existlitves @), (A') that meet those
four lines. Those lines are conjugate with respect tadhneplex, so the line that passes
throughP and is supported by}, (A") will belong to the complex. Similarly, upon
considering the lines 2, 3, 4, 5, we will get a second tiee¢ passes through and
belongs to the complex; the polar planétwill be then determined by those two lines.

Remark— In order to find the lines that are common to four dergs:
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®=0, =0, ®" =0, P"=0,

one can likewisein genera) replace these complexes with four of the specialptexes
that are contained in the family ®f complexes:

A ¢ + A' ¢' + A" ¢" + A"' ¢"' = 0.

The problem then amounts to finding the lines that heestarbitrary fixed lines, and
as one knows, one will have two solutions.

Curves of a linear complex
8. — We propose to determine the curves of the complex:
r =kc.

Consider a line that passes through a poiny,(z) and the direction coefficients b, c.
In order for them to belong to the complex, in itegsary and sufficient that:

bx — ay=kc.
The differential equation of the curves of the compdethen:

(1) xdy—ydxek-dz
That equation can be written:
3 d(yj: d (k2.

x
Set:
) kz=Y, Yoy, 2 = P.
X

The preceding equation will become:
dY — P dX=0;

it shows thalP is the derivative o with respect toX. One will then obtain the general
integral to (1) by setting:

d
© X=g@®, X=40 P=-2

oy

in equation (2). One will then obtaiy y, z, expressed as functions of one arbitrary
variablet, by means of two arbitrary functions. If one takesitigdependent variable to
be X then it will suffice to set:

Y=f(X), P=f(X);



§ 8. — Curves of the complex 275

hence, the equations of the curve will be:

(4) kz = f(lj, X2: f’(lj
X X

Upon finally setting:

Yoy,
X
one will obtain the expressions fary, z as functions of:

5) x= T, y:u«/f’(u),z:%f(u).

It is easy to obtain some remarkable curves of the iy specializing the form
of the functiorf.

1. One will get all of the algebraic curves of the pem by takingf to be an
algebraic function ofi. In particular, set:

u3
f(u=—,
(u) 3
SO
f7(u) =%,
and therefore:
u3
6 X =, =% 7= —.
(6) y X

Those are the equations of a twisted cubic thaulaszs the plane at infinity in the
directionx = 0,y = 0. Conversely, one can reduce the equatiomsyptwisted cubic to
the preceding form by a projective transformat®mjt will result thathe tangent to any
twisted cubic belongs to a linear complex.

2. The general formulas (5) will contain a radiqabvided that one has sét= P.
One can make the radical disappear by choosingatameter in such a fashion tirais
a perfect square. In order to do that, considemptane curv&X = ¢ (t), Y = ¢ (t), which
is the envelope of the line:

Y-u*X+28(u) =0.
X, Y are such that:
dy

—=u ,
dXx
and the envelope is defined by the equation ofitleeand by:

—uX+6(u=0.
Hence, one infers that:
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X=——=%, Y=ub'(u-20(u);
hence:
7) x=u, y=6W), z:%pewn—mxmy

These formulas permit one to find all of the unicusales of the complex. One
only has to take to be a rational function of an arbitrary parameta to takedto be a
rational function otu.

3. The differential equation (1) is then written:

¢ +y9) d (arctan%j =k dz

Set:
kz=Y, arctany =X, x2+y2:P:ﬂ.
X dX

Upon takingX to be an independent variable, one will obtaingbaeral integral in the
form:

arctany = i kz=f(e), X+y=f" (),
X
which is written:
(8) x=, f'(w) -cosw y=.f'(w) -sinw z:izf(a)).

k
One will get some particular curves by setting:

f () = Rw+C;

hence:
2

(9) Xx=Rcosw Yy=Rsihw z:?a)+a.

Those are helices that are traced on cylindersewblution around the axis of the
complex. The pitch of those helices / k is uniquely a function oR; thereforeall of
the helices of the complex that are traced on #maescylinder that has the axis of the
complex for its axis will have the same pitch.

General properties of the curves of a complex

It results immediately from the definition of tharves of a complex than a linear
complex, the polar plane to a point of a curvehs# tomplex is the osculating plane to
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the curve at that poirfChap. IX, § 1]. Consider the osculating planes to aewoifthe
complex that issues from a poiAt Let A be one of the contact points. The osculating
plane atA is the polar plane t8, so the linedPA will belong to the complex, and in turn, it
will be in the polar plane d®. It will then result thathe contact points of the osculating
planes that issue from a point on a curve of a linear complex are irathe glane that
passes through that pointn particular,the contact points of the osculating planes that
issue from a point of a twisted cubic are in the same plane that ghssegh that point.
Take formulas (7). We find that:

A e ylzll_ ZIyII: % el el/I: % el//,

V4 V4 4 V4 u 777 X 777
B=z'X"-xz2"=—68"=--8",
k k

C e lell_ yIZII: el//,

and
X y Z
1/ " I’ — 1 1112
Xy Z|= M g
X"l y" z"

One then sees that the torsion at the paint, ) is given by:

_x2+y2+k2
k

T=

It depends upon only the point, and not on the curve. Tdrereldl curves of the linear
complex that pass through a point will have thees#éonsion at that point (Sophus Lie).
Surfaces normal to the rays of a complex
9. — There is no reason to search for the surfacedimdar complex. Indeed, let:
ay — bx+kc=0
be a linear complex. The polar plane to the poiny,(2) is parallel to the plane:

Xy — Yx+kZ=0,

and in order for a surfaae=f (X, y) to be tangent to that plane, it is necessary that:
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or

| x

=Y
p==a q

Now, the integrability condition:
%_0q
dy 0x

is not realized. The problem is therefore insoluble.
We then seek the surfaces whose normals are lind® @bmplex. We will have to
integrate the partial differential equation:

py = gx = k=0,

which amounts to the integration of the system:

which is precisely the system to which one arrives war@looks for the normal curves
to the polar planes of their points. That systemrigen:

dx=-y-dt, dy=x-dt, dz=-k-dt

and is integrated immediately. Sintedefined only up to an additive constant, the
general integral will be written:

x=Rcost, y=Rsint, z=-kt+h.

The orthogonal trajectories depend upon two arbitranstants. They are circular
helices that all have the same pitch, and thus tgectories of a uniform helicoidal
motion of pitch — Rz

One then has tHenematical interpretation of the linear complé&onsider a uniform
helicoidal motion. Each poi¥l corresponds to the velocity at that point, and tHarpo
plane to the poiny in the complex is the plane perpendicular to thidogy. The linear
complex is composed of the normals to the velscitfenstantaneous motion of a solid
body.

The surfaces that are normal to the complex areetkhy the equations:

X=vcosu, y=vsinu, z=-ku+g¢(Vv),

because they are generated by the preceding helices. arbethe helices that are
generated by an arbitrary profile in the preceding motidrhe preceding equations
represent the most general helicoid, moreover. Itthan result thathe normals that
issue from a point of a helicoid are in the samanplviz., the polar plane to that point).
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Remark— The helices that are orthogonal trajectories tqtiar planes are obtained
by settingv = const., and their orthogonal trajectories are thees of the complex that
are situated on the preceding surfaces. Let us loakdéon. We form the linear element

on those surfaces:
ds’ =dxé +dy? +dZ
= (cosu - dv—vsinu - du)®+ (sinu - dv+vcosu - du)® + (- kdu+ ¢’ - dv)?
or.

ds = (V +K) dif — X ¢’- du dv+ (1 +¢7?) - dVA.

The orthogonal trajectories of the helicess const.,dv = 0 are defined by the
equation:
(V+K)du-k¢’- dv=0;

hence:

ko'
u:Iszvzdv.

Their determination depends upon one quadrature.

Ruled surfaces of a complex

10. — Consider a ruled surface whose generators belong tthplex. Let G) be
one of its generators. It belongs to the complex,thacefore each of its pointd will
correspond to a plané) that is the focal plane. On the other hand, thetpd also
corresponds homographically to the tangent plane toutifece at that point. It will then
result thatthere is a homographic correspondence between the polar plane to a point of
the generator and the tangent plane to the surface at that pdinére are two double
elements to that homography, and therefivere will exist two points A, B on each
generator of the surface such that polar planes to those points are tangenstoftee.
Consider the locus of poinfson the surface. The tangent plane to the surfacechtoda
those points is the polar plane A0 The tangent to the curve, which is in the tangent
plane to the surface, will then be in the polar plakience:The locus of points A, and
also the locus of points B (which can coincide algebraically, morg¢avi#trbe curves of
the complex.The osculating plane at each point is the polareplaa it will be tangent to
the surface. Those curves are asymptotes to the ruled surface thdareover, the
asymptotes are determined by means of only one quadrature NGH&apO].

It can happen that the generators of the surface dpétoa linear congruence. They
will then belong to an infinitude of linear complexesddor each complex, one will
have asymptotic lines that are curves of the compl@xe will then obtain all of the
asymptotes without any integrationfhe generators of the preceding surface are then
supported by two fixed directriceS.hat is the case for conoids with a director plamé a
the general third-order ruled surfaces [Chap. V, § 10, pp. 115hvetsely, one will
easily see that an arbitrary curve of the complex ysnpsotic to an infinitude of ruled
surfaces of the complex. One can then find an arbitnanye of the complex by means
of those ruled surfaces.
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If the generators of the surface belong to a speciarinoemplex then the curves of
the complex are plane curves whose planes contaiditéetrix of the complexThe
normal surfaces of the complex are the surfaces of revolution around datridir the
ruled surfaces of the complex are surfaces whose generators meeddiffie. That
directrix is an asymptote of the surface, and the adbgmptotes will be determined by
two quadratures.




CHAPTER XI

CONTACT TRANSFORMATIONS. — DUALITY
TRANSFORMATIONS. — SOPHUS LIE'S
TRANSFORMATION THAT CHANGES LINES INTO
SPHERES

1. — First recall the notions of the geometry of coneements that was introduced in
Chapter 1V, § 4, and was used frequently in the chapter$otlatved, while completing
those notions:

A contact elemenis the set that consists of a poMtand a planeR) that passes
through that point. Such an element is defined by e &oordinates: viz., the
coordinatesy, y, 2) of the point and the coefficients, @, — 1) of the normal to the plane.

Consider a poinA. The contact elements at that point are compos#thbpoint and
all of the planes that pass through the point. The coatehx, y, z are then fixed, while
p, g are arbitrary. A point then possessésontact elements.

Consider a curve. One of its contact elementsngposed of a point of the curve and
a plane that is tangent to the curve at that poirte doordinates are y, z, which are
functions of one arbitrary parameterandp, g are coupled by the relation:

p%+ ﬂl—izz 0

du du du

There are then two arbitrary parameters. A curve pssse” contact elements.

Now consider a surface. One of its contact elementemposed of a point and the
tangent plane at that point. Its coordinatesxase z =f (X, y), p = of / 0x, q = of / dy.
There are two arbitrary parameters then, and a sutfecefore possesses’ contact
elements. We remark thpt g might depend upon just one parameter. That is the case
for developable surfaces, which then posse$spoints ande' tangent planes, and
correspond, by duality, to curves, which posse'spoints ando? tangent planes.

The points, curves, and surfaces that are generated tyntact elements are called
multiplicities M . More generally, one calls any family of contat#ngents whose
coordinates verify the relation:

(1) dz—-pdx—-qdy0

a multiplicity. If those coordinates depend upon only one arbitrary paramheterone
will have amultiplicity M; . If they depend upon two arbitrary parameters thenaolhe
have amultiplicity M, .

We seek to determine all multiplicities M The coordinates, vy, z, p, q are functions
of two arbitrary parameters:

x=f(uv), y=gvVv), z=h(uv), p=kuv), g=I(uVv).
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Consider the first three relations. One can elimimatefrom them, and one can obtain
one, two, or three relations as a result of thatiaktion.
First suppose that obtains a relation:

FXy,2=0.

z, for example will then be a function &fy, and if one writes that the relation (1) is
satisfied for any, y then one will get:

0z 0z

That will give the contact elements of a surface.
Suppose that one has two relations:

F(y 2=0, Gxy,2=0.

Two of the coordinates will then be functions of thedline; for examplex, y might be
functions ofz

x=¢@, y=¢@.

Those equations define a curve, and equation (1) will become

dz—-p ¢’(2 dz—q ¢’ (29 dz= 0,
or

pg'(@d+ay'(@-1=0.

The plane of the contact element is then tangethidéccurve, and is subject to only that
condition: One then obtains the contact elementscofze.

Finally, if one obtains three relations thery, z will be constants. Equation (1) will
be verified for anyp, g, which are then arbitrary parameters, and one will haee
contact elements of a point.

We now look for the multiplicitiesMX, y, z, p, g are functions of just one parameter:

x =1 (1), y=g9(. z=h(p, p=k (), q=1(.

Consider the first three equations, and elimindtem them. We will then obtain two or
three relations.

If there are two relations then the locus of powoitshe multiplicity, which one also
calls thesupport of the multiplicityis a curve, and the planes depend upon only one
parameter, so each point of the curve will correspona teell-defined tangent plane.
One then has strip of contact elements.

If there are three relations thery, z will be constant, and the support will be a point.
One will then have a family of planes that depend up@pamameter and pass through a
fixed point. That is what one calls alementary cone.
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Consider two multiplicitiesM, . They can have zero or one contact element in
common, or even an infinitude of them.

Consider the case ohe common contact elemertthe multiplicities are two points
A, A’then they will have a common contact element ontheftwo points coincide, and
there will beco® common contact elements.

If the multiplicities are a point and a curve then plét will be on the curve, and all
of the tangent planes to the curve at that point lvélbng to common contact elements,
which will then bew" in number.

If the multiplicities are a point and a surface thies point will be on the surface, and
the common contact element will be unique and compokétegoint and the tangent
plane to the surface at that point.

Consider two curves. If they have a common corgkerhent then they will meet at a
point, and if they are not tangent then there will b onke common contact element.

Consider a curve and a surface. They will have a acomoontact element if the
curve is tangent to the surface.

Finally, two surfaces will have a common contacineat if they are tangent at a
point.

There will beco® common contact elemerfter a point on a curve, two curves that are
tangent at a point, a curve that is situated on a syréaee two surfaces that are
circumscribed along a curve.

Consider gpoint that describes a curveWe have a family of! points, each of
which will give «* contact elements to the curve.

Consider asurface that is generated by a curn@/e haves® curves, each of which
has a strip in common with the surface, and will in tyitre «® contact elements to the
surface.

Consider theenveloping surface ok’ surfaces. Each envelope has a strip of
contact elements in common with the envelope. In tthiee cases, we have®
multiplicities M, of generators.

Consider the case in which each generating elemees,gdn the contrary, only one
contact element to the generated multiplici/: points generate a surface? curves
define a congruence of curves. (In this case, as irofl@ingruences of lines, there will
generally be a focal surface that is tangent to eathose curves and has one common
contact element with each of them.) Finally, if @memsiderso® surfaces then they will
have an envelope that has one contact element in camwith each of them.

Remarks:

1. In the three preceding cases, when we said thatgearerator element gave one
contact element to the multiplicity, we necessanilgant that the multiplicity could be
decomposed into sheets, and that the statement theiedappl each of the sheets
separately.

2. There is an exceptional case, namely, that'afurves that have a curve for their
envelope. One will then have® curves that each give' contact elements to that
envelope.
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CONTACT TRANSFORMATIONS

2. — One calls any transformation of the contact efémdhat changes any
multiplicity M- into a multiplicity M, a contact transformation Such a transformation is
defined by five equations:

(1) X=fxy.zpad, y=9gKyzpad, Z=fkyznp0q,
p=k(xy.zpaq, q=IXyzp 0).

If the variable contact elemerx, §/, z p, q) belongs to a multiplicity then its coordinates
will verify the condition:
(2) dz-pdx—-qdy0,

and for the transformed element, (y', Z, p', ) to also belong to a multiplicity, it is
necessary and sufficient that one must have:

2) dZ —p dxX —d dy = 0.

A contact transformation is then defined by equations ga¢h that each of the Pfaff
equations (2), (2 transforms into the other one when one makes thegehof variables
that is defined by those equations. That is what oneesges by saying that contact
transformations are the transformationsxoy, z, p, g that leave the Pfaff equation (2)
invariant.

Such a transformation changes two multiplicities tieeve a common contact element
into two multiplicities that have a common contatgment. Similarly, it will transform
two multiplicities that haveo' common contact elements into two multiplicitieatthave
c' common contact elements. A contact transformatibanges points, curves, and
surfaces into points, curves, or surfaces, indisginctl

Recall the equations of the transformation, and ahteip, g, p', d from them. We
will then get one, two, or three relations betwrey z X', Y, Z.

Prolonged point-like transformations.If one obtains three relations:

3) X =f(xy. 2, y=9KxYV.2 Z=h(xy. 2

in the contact transformation then it will contairpaint-like transformation. Such a
transformation changes a point into a point, a curve aturve, and a surface into a
surface. Two curves that meet will transform into tuoves that meet, and two tangent
surfaces will transform into two tangent surfacescofitact element that is common to
two multiplicities will correspond to a contact elamethat is common to two
transformed multiplicities. One will obtapi, g as functions op, g by considering to

be a function ok, y'. Hence:

dx :ﬂdx+ﬂ dy+ﬂ (p dx+ q dy), ay = ..., dz = ...
0x oy 0z
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Eliminatingdx, dy from these three relations, one will obtain an egquabif the form:

dZz =k(x,y,zp,q)dX +1(x,y,z p, g) dy,
SO

p=k(xy.zpaq, q=1Xyzp 0).

In that case, one says that the contact transfaymas a prolonged point-like
transformation.

Case of just one directrix equation
3. — Now suppose that one obtains a relation by eliminatio
(4) QXY zX,y,Z)=0.

Consider a pointA (X, y, 2) in the first space. Look for the multiplicity that
corresponds to in the second space. It is generated bgtect elements whose points
are linked to the poimA by equation (4), which represents a surf&e The multiplicity
that corresponds to a point is a surface. If one haswe ¢hat is the locus of poinfs
then it will correspond to a family o§* surfaces, and the multiplicity that is generated by
those surfaces — i.e., their envelope — will be the toamsdf the curve. Finally, if one
has a surface that is a locusedfpointsA then it will correspond teo? surfaces, whose
envelope will correspond to the given surface.

Equation (4) is called thairectrix equationof the transformation. It defines surfaces
in the second space that are homologous to surfacles findt space, and conversely.

Duality transformations

In particular, suppose that the relation (4) is bilineag, y, z, X', y', Z. Each point of
the first space corresponds to a plane in the second spatepnversely.co® points in
the first space will correspond ¢& distinct planes. Let:

Q=AX +By +CZ +D,
in which:

A=ux+tvy+wz+h, B=ux+.. C=u"x+..,D=u"x+ ...
In order to have the transform of a surface:
f(xX,y,Z)=0,

one must take the envelope of plages 0, X, y, Z that are coupled by the preceding
relation, which gives:
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A _B_C_D

o o aa
ox ody o7 ot

Those are the equations of the transformation. ie@essary that one must be able to
infer x, y, z, so the formg\, B, C, D must be independent, and then the set of p@red
will indeed constitute the set of all planes in spacée preceding transformation is a
duality transformation.

We remark that the set of contact transformatidnsonisly forms agroup[cf., Chap.
VIII, 8§ 8, pp. 227]. As a result, a contact transformatean often decompose into
simpler contact transformations. We shall see tiwg is the case for duality
transformations.

Take the new variables to be:

A

X=—, Y:E, Z:E,
D D D

SO
Q=XX+YYy+Z22+1=0,

and the transformation will be a transformation byapaeéciprocals with respect to the
sphere:
X +y¥+Z+1=0.

Hence, any duality transformation will reduce to the preceding transfaymat
followed by a projective transformation, and conversely.

Remark. — One sees, in an analogous manner, that any dualitycmaragion can
also be reduced to the same transformation by polar oeaisiprecededoy a projective
transformation. Therefore, if one performs two dualignsformations in succession
then the final result that is obtained (viz., gh@duct of the two operations) will be a
projective transformation.

Involutive duality transformations- Look for all the duality transformation that are
symmetric— or involutive i.e., such that the plane that is homologous to at p®ithe
same, regardless of whether one considers the pob#ldog to one or the other space.
The equations:

QXxy,zX,y,Z)=0, QX,y,Z;%xy,2=0

must be equivalent. There will then exist a constanof& such that:
QXY,zX,y,Z)=kQ X,Y,Z; XY, 2.
SetX =x,y =y, Z =z
QXY,zXY,2=kQXYVY,zXY,2.

One will then have eithe® (x,y, z X, y, 2 =0 ork= 1.
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If Q =0 then the corresponding plane will have a pointphasases through that point.
For anyx, y, z, one will have:

X(ux+vy+wz+h) +yUx+Vvy+wz+h)+z@Uu'x+..)+u" x+..=0,

which amounts to writing that the determinant:

u v w h
u V. w H
u vV o wH
u" VW

is a skew-symmetric determinant, so it will have thenfor

0O C -B P
-C 0 ADQ
B -A 0 R|
-P -Q -R O

The directrix equation will then be written:

Q=X (Cy—-Bz+P) +y (- Cy+ Az+Q) +Z (Bx— Ay+R) —Px — Qy - Rz 0,
or:
AWYZ-zy) +B(zX —x2)+C(Xy —yX) +PX—-X)+Q((y-y)+R(z-2=0.

This is the equation of a linear complex, and the lafusoints &', y', Z) that are
associated with the poin,(y, 2) is the polar plane to the poirg, §, ) by the relationship
that the complex defines. The polar plane to a pmsinthe multiplicity that is the
transform of that point, and conversely. As a redihée transform of a line is its
conjugate, and a line of the complex is its own homologuBwo homologous
multiplicities M, are the two focal multiplicities of a congruencdioés of the complex,
and conversely. Since a multiplicityl, can always be considered to be a focal
multiplicity of the congruence of the? lines of the complex that have at least one
contact element in common with that multiplicityydasince those lines are homologous
to themselves, the transformed multiplicityM$ must have at least one contact element
in common with each of those lines.

A curve will generally correspond to a developable. A euf the complex will
correspond to the developable of its tangents.

If we now take the solutiok= 1 then we will have:

X (ux+vy+wz+h)+..=xUuX+vy +wzZ +h)+ ...

The formQ will then be symmetric in, y, z X, ¥, Z, and will be written:
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Q =AxX +Byy +CzZ+M (yZ +zy) + N (zX + xZ) + P (xy + yX)
+tQX+X)+R(y+y)+S(z+2z)+T.
The two pointsX, y, 2), (X, Y, Z) are conjugate with respect to the quadric:
AX + By + CZ + Myz+ 2Nzx+ 2Pxy+ 2Qx + 2Ry + 25z+ T = 0.

We then obtain the most general transformation bgrpekiprocals.

TheLegendre transformatiois given by the quadri’ + y* — 2z = 0. The directrix
equation ixx +yy —z—Z =0, and the equations of the transformatiorxas®, y = q, p
=X, Qq=Y,z=px+qQy—z

Remark. — In order to get the equations of a contact transfoomahat is defined by
just one directrix equatiof2 = 0, one must write down that the equation:

(2) dZ-pdX-ddy =0
is a consequence of the equations:

(2) dz-pdx—-qdy0,
5) dQ =0,

which is equivalent to posing an identity of the form:
(6) dZ —pdX—-ddy =4 (dz—-p dx—qdy+ 1 dQ.

Indeed, leQQ =0,Q; =0, ...,Q4 = 0 be five distinct equations xay, z, p, q; X, Y, Z,
p', g that define the transformation. The invariance of eqoaf2) is expressed by an
identity of the form:

dZ—-pdX-ddy=A(dz—pdx—qdyrpdQ + 4 dQ1 + ... + 14 dQ,.

If not all four 4, ..., s are zero then one will conclude from this thatdQ; + ... +
M dQy) contains only the differentialdx, dy, dz dx, dy, dZ without being identically
zero. The equations of the transformation then intplg linear relations that are
homogeneous idx, dy, dz dx, dy, dZ, namely:

dQ =0, ,U]_dQ]_+...+,U4dQ4:0.

They then imply two relations between the varialles z X', y', Z, which is contrary
to hypothesis.

One will then identify the two sides of the equati6)y (vhich will give six equations.
If one eliminatesi,  from them then one will have four equations that will give/', Z,
p', g as functions ox, y, z p, g, or conversely, when they are combined Witk 0.
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Case of two directrix equations
4. —\We now pass on to the case in which one obtainselabons:
(7) QXxy,zX,y,Z)=0, OKxyY,zX,y,Z)=0

by eliminatingp, g; p', g from the equations (1) of the contact transformatmmsalered.
A point M (X, y, 2) in the first space will correspond to a cur@ ) in the second space
that is defined by those equations (7Xiny, Z. A curve that is the locus ef' pointsM
will correspond to a surface that is generated by the lugmose! curves C’) while a
surface ) that is a locus of? points will correspond to the congruence of cun@s)(
that are homologous to those points. In general, swdngruence has a focal surface
that is tangent to all of those curves, and which willHeetransform of the surfac8)(

In order to get the equations of such a transformatina, must write down that the
relation:

dZ-pgdX-dqdy=0

is a consequence of the relations:

dZ-pdX—-ddy =0, dQ =0, do =0,
which will give an identity of the form:
(8) dZ-pdX—-ddy=A(dz—pdx—qggdyt xdQ +v do.

One proves the effective existence of such an igeastabove. Upon identifying
coefficients, one will have six equations. If onematiatesA, 4, v from them then one
will have three equations that will give the formulasthe transformation when they are
combined withQ = 0,0 = 0.

Sophus Lie’s transformation that changes lines into spheres

In particular, suppose that equations (7) are bilinear. ia pb (X, y, 2) corresponds
to a line P'). Thew® pointsM correspond to a complex of such lin&%)( namely, K').
Similarly, every point in the second space will copaasl to a complexK) in the first
space. We study the nature of those complexes. Tcettet, consider just one of
equations (7). It defines a duality transformation in wigabh pointM has a planeR)
for its homologue. The other equation likewise defines ditguaansformation that
makes the same poihlt correspond to a plan®/), and the lined') is the intersection of
the planesR'), (Q'), which then corresponds to the poMtunder those two duality
transformations. Now, we have see that the produtivofduality transformations is a
projective transformation. Hence, the complkX (s the complex of lines along which
planes that correspond under a projective transformatiensect. Such a complex is
called aReye complexor tetrahedral complex.We recall the properties in the general
case. The lines of the complex are cut by the tefranethat is defined by the four
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invariant planes of the homography at four points whoserammc ratio is constant.
The anharmonic ratio of the four planes that are démough a line of the complex and
through the four summits of the same tetrahedron istaah(Von Staudt). The complex
(K") has degree two, and the surface of singularities igoeed of the four faces of the
tetrahedron.

Having said that, we return to our contact transformatié curve C) corresponds to
a ruled surface of the compleK']. A surface $ corresponds to a congruence of lines
that belong to the complexXY); that congruence will admit two focal multiplicisie
Therefore, a contact element in the first space awittespond to two contact elements in
the other one.

We seek the equations of the two complex@sapd K'). Let:

Q=AX +By +CZ +D, O =LX +My +NZ +P,

in whichA, B, ..., P are linear functions of y, z
LetM’ (X, Y, Z) be a point of the second space; [} be the corresponding line. If
(%, y, 2 and o, Yo, Zo) are two points on that line then one will have:

QXxy,zX,y,Z)=0, OKxY,zX,y,Z)=0,
Q (%0, Yo, 20, X, ¥, 2) =0, O (X0, Yo, Z0; X, ¥, Z) = 0.

If we eliminatex, y', Z from those four equations then, upon letthagBy, ..., Po denote
what the linear functiond, B, ..., P will become when one replacesy, z with xo, Yo, 2
in them, we will get:

A B C D
A B G Db -0
L M N P '
LO IVIO NO I:)0

That is the equation of the complex. Upon developihy itaplace’s rule, one will get a
second-degree equation in the coordinates of the linastdafined by means of the two
points &, v, 2, (X, Yo, 20). The complexK), and likewise the compleX{), will then
indeed be of second degree, in general.

A curve C) corresponds to a ruled surface that is generated byneh@l). Let us
see whether that ruled surface can be developable. () have the equations:

AX +By +CZ +D =0, Lx +My +NZ + P =0,
in whichx, y, z, and in turnA, B, C, D are functions of one parameter We express the
idea that this line meets the infinitely-close line. e Wbmbine its equations with the
equations:
X dA+y dB+Z dC+dD =0, XdL+y dM+Z dN+dP=0.

Hence, one has the condition that defines the c@ye (
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A B C D
L M N P
dA dB dC d
dL dM dN dP

However, upon setting:
Ac—A=D0A, Bp—B=AB, ..., Py—P=AP,
the equation of the compleK) can be written in the form:

A B C D
L M N P
AA AB AC AD
AL AM AN AP

Now A, B, ..., P are linear functions, so the incremefts ..., AP are formed from:
AX=Xo—X, Ay=Yo-Yy, Az=Z-Z

in the same way that the differentiad#, ..., dP are formed fromdx, dy, dz The
equation of the curved) is then deduced from the equation of the complex byciga
Xo—X, Yo=Y, Zo —zwith dx, dy, dz It is then such that its tangent belongs to theptex
(K).

The curves of the first complex then correspond toldpables whose generators are
lines of the second complex, and whose edges of regremsoin turn, curves of the
second complex. Each poiM of a curve C) of the first complex corresponds to a
generator T) of a developable. LeM’ be its point of contact with the edge of
regression. If one considers the linear elementisraamposed of a poitll and the line
(T) in the first complex that passes through point and ngesat to C) then it will
correspond to the well-defined linear element of the rsc@mplex that is composed of
M”and T"). The curves of the two complexes will then cqooesl by points and
tangents.

®
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Let (S be a surface, and suppose that the complgis(effectively of second degree.
Consider a poinM on the surface and the tangent plaPe (The cone of the complex
(K) whose summit i#/ is cut by the planeR) along two linesD), (D,) that belong to the
complex K). Two lines of the complexX( then pass through each point 8f (hat are
tangent to the surface. Two curvel ()4) of the complexK) pass through any point of
the surface® and belong to that surface. The pdihtorresponds to a lin®() of the
complex K”). The line D) of the complexK) corresponds to a poiM” of (D"), and
similarly the line D1) corresponds to a poirl; of (D). The curves), () of the

complex K) correspond to two curves4), (),), resp., of the complexKj that are
tangent to the lined(”) atM’, M,, resp. If the poinM describes the curvg)(then the

corresponding linedX") have the curvey() for their envelope, and W describes }§)
then © ) will envelop (y,) .

If one considers the congruence of linBs ) that correspond to the poirits of the
surface § then the curvesy() will be edges of regression of a family of developabies
that congruence, and the curv@g) will be the edges of regression of the other family.

The curves x’) generate one of the sheets of the focal surfaces, wigleurves(),)

generate the other sheet. The tangent plahktatthe focal multiplicity is the osculating
plane to(y,), and in turn, the tangent plane to the cone of theptemK’) whose
summit isM; .

A contact element corresponds to the elemihtR) that is composed of a poikt’
and the tangent plane to the cone of the com{éxthat hasM, for its summit.

If the surface 9 is a surface of the compleK)that is tangent at each of its points to
the cone of the complex then the lin€9,((D1) will coincide. The two contact elements

that correspond to the elemeM, (P) will coincide, and the surfac&f that is defined by
those elements will be a surface of the comp#eX) .(

Remarks. — The only possible cases are the following ones:

1. The complexesK]), (K" ) are effectively of second degree. As we have said
before, one will then prove that they are both tetdaal.

2. Just one of the complexes is linear. One provastlibaother is composed of
lines that meet a conic. That case will giveSaphus Lie’s transformatiatiat changes
lines into spheres.

3. Both complexes are linear; one will then prove thay are both special. That
case will give ufmpere’s transformatigrin particular, which is defined by the directrix
equations:

xX+z+7Z =0, y+y’=0,
and whose equations are:

!

X=p, Y==Y., Z=-z-px p=% (¢=-0
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Transformation of lines into spheresSuppose, in particular, that:
Q=x-iy+xz-2=0, O@=xX (x+iy)—z—-y=0.

The equation of the first complex is:

A A 0 0 x=iy=(%-iy)
% 0 -1 x-iy -0
X+iy -1 0 -z '

% +iy,=(x+iy) 0 0 z-3
which becomes:
_ (X=%)°+ Y —w +@z-2)°>=0;
ie.:

(K) a?+b?+c?=0.

The complexK) is the complex of minimal lines.
We seek the second complex. It suffices to consider points &, Yy, Z),
(X5 Vo, Z,) that correspond to the same poity 2). That will give:

0 0 X=X -Z+1

1 ol Xg —iz, _o

X=% i(X-%) 0 —y+y|
’ X -1 ~Yo

which will become:

X =X) XY=y +( 2= (% P =0;
I.e., with the classical notations for the Pliickeganrdinates:
a(r—-o=0.
The solutiora = 0 is singular, and one gets:
(K") r-c=0

for the complexK”). We then have eorrespondence between a second-degree special
complex and a linear complexihe cones of the compleK) are isotropic cones. Each
contact element in the first space corresponds tactwatact elements of the second space
that are conjugate with respect to the complkeX)( because, in a general fashion, the
pointsM’, M; are on a line@") of (K”), and the plane that is associated wWithis the

polar plane toM; here, and conversely.

Start with a sphereTake two generators of a system; they will be theimahlines
(D), (D1). The second system of generators is entirely wéitheld, because each of



294 Chapter Xl — Contact transformations.

them must meetD), (D1), and the imaginary circle at infinity. Two lineB)( (D1)
correspond toM’, M, , resp. Consider an isotropic generatdy that meetsd), (D1); it

corresponds to a poingt’. (A) meets the linel¥), the lineMu’is a line of the linear
complex, and similarly, so i8, /. Therefore,u’ is the pole of a plane that passes

through M'M,. When Q) describes the sphere, the plageM’'M; will turn around
M'M;. The sphere then corresponds to a line. Upon stawithgthe second system of

generators, one will likewise obtain a lindd) @nd D) give the pointdM’, and that line
will then be the lineM'M; that is conjugate to the preceding one. Therefargphere

corresponds to two lines that are conjugate with respect to the linegilen( ).

One can see this by calculation. Take the Iixig (vhose Pliickerian coordinates are
o, bo, Co, Po, Go, o :
(A) CoX =aZ — (o, CoY =boZ +po.

The corresponding ruled surface is generated by the lines:

Qo (X—0y) +z(@Z-q)-CZ =0,
(@Z -0qo) (x+iy)-Coz-hoZ -pp=0

that are obtained by substituting the valuesxfandy' that are inferred from equations
(A") intoQ = 0,0 =0. Order them in terms @f and get:

Co(X—1iy) —Qoz+Z (@z—Cy =0,
[o (X +iy) + Coz+po] —Z [ao (X +iy) — bo] = 0.

Upon eliminatingz, one will get the desired surface:
[Co (X — 1Y) — Qo Z [@0 (X +iy) —bo] + (B0 Z—Co) [0 (X +1iy) +Co Z+ po] = O,
or, upon taking into account thafpo + bp o + o Co = O:
(2) 20 ()¢ +y* +2Z) —bo (x —iy) —Go (X +iy) = (o +T0) Z— P = 0.

That is the equation of a sphere, and it is easyddls# it can be an arbitrary sphere by
choosing 4") conveniently.
We seek the conjugai@’) to (A") with respect tok); let its coordinates be, by,

Co, Py, Gps I. We must express the idea that the complek)(and the special
complexes 4'), (A}) belong to the same sheaf. Af A, andy are unknown auxiliary

variables then that will give:

Aag + A'ay =0, Abg + A’y =0, Apo+ A'py, =0,
Ag + A'qy =0, Ao+ A'cy + =0, Aro+ A'r; —u=0.
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Since the coordinates are defined only up to a factorcameeplacey, bo, ... with Aap,
Abg, ..., anday, by, ... with—A"a,, —A'b,, ... That amounts to settinlg= 1,1"=-1,
and will give the simplified equations:

a,= ao, by, = bo, Po = Po, % = o, G =Cotf, Iy =To—[
The condition:
aphthdgtgr=0
then gives:
U+ Co—To =0
and upon dropping the trivial solutign= 0, what will remain is:
M+ Co—ro=0.

One will then find thatc, =ro and r, = co, and one sees that one will recover the same
sphere ¥) upon starting with(B)) , instead of 8").

Equations of the transformatior. The formulas of the transformation are obtained
by the general method. One finds that:

w=Z _1X(px+ ay)- §- p
2 2 X —q ’
iz lxuﬂ+qw+y+b

Y= 2 2 X=q

o= PX+dy

Xr_qr !

_ _gX-1

p i’
gX+1

= 1 .

q T+ X

This transformation of Sophus Lie, which changes linesriggt into tangent spheres —

e., lines that have a common contact elementgpteeres that have a common contact
element — realizes the correspondence between limkspdreres that was announced in
the preceding chapters.

For example, it transforms a ruled surface into alcsurface, a quadric into a Dupin
cyclide, a developable surface into an isotropic candaeirand an asymptotic strip on
a surface into a curvature strip on its transform, arglich a way that one can say tihat
transforms the asymptotic lines into curvature lines.
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One easily verifies that it transforms a linear ctemmf lines into a family ofo?
contact spheres that cut a fixed sphere at a constdet and that the constant angle will
be a right angle when the linear complex is in involutvith the complexk”).

Lie’s transformation in penta-spherical coordinatesThe last results will become
immediate when one remarks that from the equationwhat found above, the sphere
(%), which is the homologue of the linA'Y (whose Plickerian coordinates argbo, Co,

Po, Qo, o), Will have the homogeneous penta-spherical coordinates\QI, 8§ 6, pp.
219]:

Ct=a+po, C2 == (a0 — Po), C3=bo+qo,

C4 == (bo = o), Cs = Co + Ig, Co == 1 (Co—Tro).

Now, from the formulas of [Chap. X, 8 5, pp. 268], these mexisely thesymmetric
coordinatest, ty, ..., ts of the line Q").

Therefore,the Lie transformation translates into the interpretation of the penta-
spherical coordinates of spheres as the symmetric coordinates qgfifiressolutely the
same way that the duality transformation translatee the interpretation of point
coordinates as line coordinates.

6
The equationZCk t.= 0 of a linear complex then becomes, in particulae, th
k=1

6
equationZCk ¢, = 0, which expresses [Chap. VIII, § 6, pp. 219] the idea dhsppthere
k=1

cuts a sphere at a constant angle; that angle willrightiangle ifCs is zero. Now, the
equation of the complexX(') is ts = 0 in symmetric coordinates, in such a way that the
condition Cs = 0 indeed expresses [Chap. X, § 6] the idea that the legnmp in

6
involution with the complex)_C, t, = 0.
k=1

Transformation of asymptotic lines

5. — We propose to find all of the contact transformatithat change the asymptotic
lines of an arbitrary surface into asymptotic lines @& transform of that surface; i.e.,
they change every asymptotic strip into an asymptotip.stfio that effect, we remark
that such a transformation will change any multiphdi, for which the asymptotic strips
do not depend solely upon arbitrary constants, but upon arbitwactions, into a
multiplicity M, of the same nature. Now, the asymptotic strips (gusstf regression)
are defined by the equations:

dz-pdx—-qdy0, dp dx+dg dy= 0,

so one must also consider that in the present questiarpntact elements that have the

same point in common — i.e., an elementary cone Homih an asymptotic strip, because

the coordinates of those elements satisfy the pregedjuations, since they are such that
dx=dy=dz=0.
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Moreover, the particulaM; in question are planes, lines, and points. The desired
transformation then exchanges the figures that comdidines, points, and planes
amongst themselves. There are several cases ¢bthghmine:

1. If the transformation is point-like then it wdhange points into points, planes
into planes, and lines into lines. As a result, itaiprojective transformation(or
homography.

2. If the transformation is a contact transformatidrine first kind — i.e., it makes
every point of the first spac&) correspond to a surface in the second space - then
it will change the points of) into planes off£”), and since it will also make each point
of (E”) correspond to a surface i8)(then, it will change the points dE() into planes in
(E). Therefore, it will change points into planes, plamés points, and lines into lines.
Therefore, if one composes it with a transformationpbiar reciprocals then one will
obtain a homographic transformation, and in turn, it lellobtained when one composes
a homographic transformation with a transformation byipaciprocal. It will then be a
duality transformation.

3. If the transformation is a contact transformataf the second kind — i.e., any
point of one of the spaces corresponds to a curveeionther one — then any point in one
of the spaces will correspond to a line in the other dvew, take four point®;, Py, Ps,

P4 in the spaceK) that are not situated in the same plane, andgf (D>), (Ds), (Da),
resp. be the lines that correspond to them in the sgdge There exists at least one line
(A) that has a common contact element with eacheofdtir lines D1), (D2), (D3), (Da),
and Q) must correspond to a point, plane, or line B) that has a common contact
element with each of the four poirfes, P,, Ps, P4. But, it does not exist. Hencine
third case is impossible.

The only transformations that can answer the questiertreen homographies or
duality transformations. However, every contact tramsétion that changes lines into
lines will answer the question, because it will change family of generators of a
developable, each of which will have a common contacheht with the infinitely-close
generator, into the family of generators of anotheefigpable. As a result, the strip of
regression of the first developable will change intodtng of regression of the second
one.

One then deduces that:

1. The homographic transformations and the duality transformations change
asymptotic lines into asymptotic lines, and they are the only condasformations that
possess that property.

2. Those transformations are also the only contact transformations that change
every line into a line.

Remark. — The transformations thus-obtained form two distiaehifies (projective
transformations and duality transformations)edf transformations, but the product of
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two duality transformations will be a projective trangfation, as we saw above, and the
set of all transformations that are obtained withica group, as was obvioaspriori.

Transformation of lines of curvature

6. — Lie’s contact transformation of lines into sphepesmits one to immediately
deduce all of the contact transformations that chamgs lof curvature on an arbitrary
surface into lines of curvature on its transform fréwn preceding results.

One sees, moreover, that they are also the oneshtiage any sphere into a sphere.
One can then say that they constitutegpieere group.From the preceding, there will be
two families that each have' transformations.

In order to obtain the preceding result, one can repeargument that is directly
analogous to the one in 8§ 5, while starting from multifidis M, for which the curvature
strips depend upon arbitrary functions.

More especially, look for the transformations in questithat are point-like
transformations. Under Lie’s transformation, the oin a spaceH) will correspond to
lines in a linear complexX("). The desired transformations then provide projeative
duality transformations that leave that complex invdriaUpon composing them with
the transformation by polar reciprocals that the cemgK’) defines, one will then
obtain any of the projective transformations thavdethe complex invariant.

Hence, one finds that a correspondence betweemrt)ective group of a linear
complexand the group of point-like transformations that changayegphere into a
sphere has been established. The latter is, as onendatu VIIl, § 8, theconformal
group. One knows that its transformations are obtained dyhbining inversions,
homotheties, and displacements.

That correspondence will be found effortlessly, meeepby the use of symmetric
coordinates for lines and penta-spherical homogeneous oataslifor spheres, as was
indicated above.

Among the contact transformation that change linEswvature into lines of
curvature, one finds thdilatations under which any contact element is subjected to a
translation perpendicular to its plane that has angamaplitude; i.e., each surface will be
replaced by a parallel surface. They are defined by thetdk equationx — x)? + (y’—
2%+ (Z - 2* = % in whichh is an arbitrary constant.

Another class of contact transformations that charggssphere into a sphere is
defined by the directrix equations of the form:

(X =X+ (' -2°+2°-2mZz+7 =0,

in whichm s an arbitrary constant. Each poixty, 2 has its homologue in a sphere that
cuts thexy-plane at a constant angle(cotV = mi). The circle of intersection is the one
along which the isotropic cone whose summiijs/(z) cuts the same plane.

Those transformations are calledansformations by reciprocal semi-planes
(Ribaucour, Laguerre, Darboux), because they change a iptana pair of planes that
pass through the line of intersection of the first o the xy-plane. Since they are



8 6. Transformation of lines of curvature. 299

involutive, the equation that defines them will be symmetvith respect to the two
coordinate systems,(y, 2) and ', y’, Z).

Among the transformations considered, one also fimelRibaucour transformations,
which will be defined in Chapter XIII.

Remark. — One proves that when one defines a sphere by its swdeneous penta-
spherical coordinates, the two familiescef transformations of the sphere group will be
defined by orthogonal, homogeneous, linear transformatibats act upon those six
variables. The two families are distinguished bywleie (+ 1 or — 1) of the determinant
of that substitution.

Apsidal transformations. Fresnel's wave surface.

7. — Finally, we point out an important class of contaensformations that are
defined by two directrix equations. Each of them corredpdm a point in space, pole
of the transformation. If one takes the pole tolmedoordinate origin then the directrix
equations of the transformation will be:

(1) X2+y2+22= X+ ¥+ 7,
xX +yy+ zz=0.

That transformation, which is callegpsidal will then be involutive, and transform
each pointM into a circle: It is the circle of radiuBM that hagO for its center and the
line OM for its axis.

As a result, one can obtain the transform of aaser by cutting it with the various
planes (Il) that pass throughand measuring out lengtl¥vl along the normal to each of
those planes @ that are equal to the radii of circles that are exent atO, situated in the
plane in question, and tangent to the surf&e Those radii are, moreover, lengths of
the normals that are drawn througho the section of3) of by the plane).

The apsidal surface of a sphere is a tord$ndeed, leCC be the center of the sphere
(9, and let [1p) be a plane that passes thro@; let ()) be the circle that is the section
of the sphere§) by that plane. Any plandl{ that is perpendicular td1g) and drawn
throughO will cut ()) along a chord\B, andOA, OB will be the normals throug to the
second of the sphere b{l1\. The perpendicular that is drawn throughto (1) is,
moreover, situated iM1p). One then obtains the poirfesthat are situated in the plane
(M) by making the chordB turn in the planel{o) through a right angle arour@ in one
sense or the other. That operation, when repeatedallithe chords of jff that pass
throughO, will give two circles {4) and (4) that are symmetric with respect@C, and
are obtained by subjecting) (to the same two rotations. Those circles constitbe
meridians of the transform o8), which must be, likeS), a surface of revolution around
OC. The theorem is then proved.
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Wave surface— By definition, the wave surface is the apsidal tiamns of an
ellipsoid with respect to its center. From the prewgdone will then obtain it by
measuring out lengths along each diameter of the ellipstaiding from the center and in
one direction or the other, that are equal to the sews- of the central section that is
perpendicular to that diameter.

We calculate the wave surface directly by completthg equations of the
transformation. To that effect, from the genefraary of contact transformations, we
must write down the identity:

dZ-pdX—-ddy —-A(dz—pdx—qdy

= p(xdx+ydy+zdz—x dX —y dy —Z d2)
+o(xdX+ydy +zdz+x dx+y dy+Z d2,

which will give, by identification:

1=-pZ+o0z —p=-px+ox —q=-py+oy,
-A=pz+o0Z, Ap=px+ 0oX, Aq=py+oy.

Upon eliminatingd, p, ando:

p(yZ—z9)+ d Zx Xp=( xy Hx
2) P(yZ-z9+ §( 2% Xp=( xy Hx
pp +qd+1=0.

The interpretation is immediate. Ltbe the point of the contact elemexty, z p,
g) and let P) be its plane; lemM’, (P") be the point and plane of the elemetity, Z, p',
g). The radiusOM’, which is already perpendicular and equaldfg, is in the plane
normal to P) that is drawn throug®M. The normal toR") at M’is in the same plane

MOM' and it is perpendicular to the normal R).(
One then has the complete definition of the transdbion of the contact elements.
Having said that, if one starts with the ellipsoid:

2 2
then
X Yy z
@ Ve
X y z|=0,
X y Z

and that will be equivalent to some relations of thienfo
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(4) ﬂ'X=X(iz—uj, /J’y=y(iz—uj, ,U’izz(iz—,uj.
a b o

Upon taking into account the first one and (3§ slecond of equations (1) will then
give:
1
0=1-u(C+y+7) = -
U (E+Y +7) o0 HE T
All that remains is to substitute the valuesxoy, z that are inferred from equations
(4) into the homogeneous combination of the ficgtagion (1) and (3):

(i) oy (3] 2300

Upon suppressing the primes, one will get:

2 2

y z B 1
1 + 1 + 1 —O, /«1_ X2+y2+221
g_ﬂ g_ﬂ ?_,U

X

or, after reductions:
YaxX -y W+ aix +a’b’c?=0.




CHAPTER XIlI

TRIPLY-ORTHOGONAL SYSTEMS

Dupin’s theorem

1. — The use of rectangular coordinates amounts to definioly paint to be the
intersection of three planes that are parallel tahhee faces of the coordinate trihedron,
respectively, and consequently they will be mutually gytmal. It is then based upon
the consideration of th&iply-orthogonal systenthat is composed of three families of
planes, such that each plane of one of the famdiesthogonal to every plane of one of
the other two families.

One can generalize that and employ a triple systetb@slinate surfacesvhich is a
system that is composed of three families of surfaces:

(1) ¢ (XY, 2=u, Yy, 2=V, XXy, 2 =w.

Each pointP (x, y, 2) will then found to be defined by the parameters, w of three
coordinate surfaces that cut at that point, and thdeewvafu, v, w will be itscurvilinear
coordinatesn the coordinate system thus-defined.

Formulas (1) transform the coordinakey, z into coordinates, v, w. If we solve the
preceding equations fog y, z (which we assume to be possible) then we will have the
equivalent formulas:

(2) x=f(u,v,w), y=g(u,v,w), z=h(u, v, w.

In general, one employstiaply-orthogonal system We then seek to express the idea
that the equations (1) or (2) define a triply-orthogonastesy. The pair-wise
intersections of the surfaces must be orthogonal. slinces of the three families are
obtained by setting = const.yv = const.w = const. in (2) in succession.

The pair-wise intersections of the surfaces areaxsly:

(v = const.w = const.), W = const.u = const.), ( = const.y = const.),
and the directions of the tangents will be:

of 9g oh, of 9g oh, of dg oh
ou’ du’ du’ ov' ov' ov’ ow’' ow’ ow’
respectively.
The orthogonality conditions will then be:

3) ) IARE LIy N U L) A L

ov ow ow du % ov
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Let us interpret those conditions. Take the surface const. The third condition
expresses the idea that the limes const.,v = const. are orthogonal on that surface, and

the first two express the idea thg&—, a_g oh Is a direction that is perpendicular to the

W ow ow
tangents to those curves, and as a result, it isaheat direction. Let, m, n be three
coefficients of the direction of that normal. [Riféntiate the third relation with respect to
w; we will get:

of 0> f N of 9°f
ou dvow ovouw w

or
of al of ol
——+ ) —— =0.
Z6u6v Z:6v6u
Now:
of of
|—=0, |— =0;
Z ou Z ov
hence:
> O°f __goof > O°f _ _golof
ouov ovou’ oudv ou ov

The preceding condition can then be written:

2
19t o,
ouodv

which expresses the idea (Chap. Il, § 3, pp. 27) thairteeud = const.,v = const. (i.e.,
the intersections of the surfase= const. with the surfaces= const. and/ = const.) are
conjugate on that surface. Since those curves ara@plogthogonal, by hypothesis, they
will be lines of curvature. Hence:

Dupin’s theorem: The intersections of each surface of a triply-orthogonal system
with the other surfaces of that system are lines of curvature.

Darboux’s partial differential equation

2. — We propose to look for the triply-orthogonal system#/e take a family of
surfaces:

1) p(xy,2=u

and seek to determine two other families that constittitiplg-orthogonal system along
with that family. Take a poin¥l in space. Pass a surfacéhrough that poinM. Take

the tangent$1T, MT "to its lines of curvature &; those lines are perfectly well-defined.
If p, g, — 1 are the coefficients of the directionMT then they will be known functions
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of X, y, z and similarly forMT". One will then have a surface of another familgath
point M; for example, let:

(2) Yxy.2=v

be normal toMT. One must then have thpt q are the partial derivatives afwith

respect t, y (z being defined by the preceding equation), hence¢hata solution of
the equation:
(3) 6_¢/+ 61// = a_l,l/+qa_¢/_

__0’
0Xx paz

oy 0z

Those equations are not compatible, in general. In dodethat to be true, from the
theory of complete systemsf homogeneous linear partial differential equationgs it
necessary and sufficient thaaindg must satisfy the condition:

(4) %.{- %:@+qa_p,
0x dz 0y 0z

which is obtained by eliminating/from the preceding two equations by differentiation.
It is a third-order partial differential equation, singe) are expressed as functions of the
first and second derivatives gfwith respect t, y, z Hencea family of given surfaces
cannot, in general, belong to a triply-orthogongktem. If the condition (4) is realized
then the general solution to equations (3) will be anrarlitfunction of a well-defined
function ofx, y, z, and we will have a second family of surfaces thetemtirely well-
defined, each of which cuts each of the surfa&®f(the family ¢ (x, y, 2 = const. at
right angles along a line of curvature of that surf&®e Erom Joachimsthal's theorem,
the intersection of each surfac®)(of that family with each surfac&)(of the first will
also be a line of curvature o&).

In summary, we have two families of surfaces:

S @ (X, y, 2) = const.,
(S) W (x Y, 2 = const.,

which intersect orthogonally along curves that ardrdaes of curvature for both of the
two corresponding surfaces. It remains to study whetreecan determine a third family
of surfaces:

(S) x (X, y, 2) = const.

that constitutes a triply-orthogonal system with fingt two; i.e., to study the system of
linear partial differential equations that the unknowrctiom y depends upon:

%d’l+%d’l+%d’l:0,

0X 0X 0y 0y 0z 0z

6¢’g1+0¢/g1+0¢/g1:0_

OX 0x 0y 0y 0z 0z

(5)
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To abbreviate, introduce the differential operators:

(= 0901 00 0K 09 Ox

0X 0x 0y 0y 0z 02z

Bf = awﬂ+awd’1+awd’—.

OX 0x 0y 0y 0z 0z

From the theory of complete systems of linear eqostithe necessary and sufficient
condition for the system (5) to be integrable is thatgquation:

(20 o28) 28 303010030 @8 r

0x 0x) 0X oy oy) 0y 0z

should be an algebraic consequence of equations (5jhaeg and ¢ should satisfy the
condition:

A0 _g0b 3
1) OX 0X 0X

©) AU g8 04 du|_
oy gy 9y 0y
AOY _go¢ 09 oy
0z 0z 0z 0z

That condition simplifies. Indeed, we remark that:

0P _ 000w 090y 090 WP oy 9% oy 3%
ax ax axax2 ayax2 626)3 d X0 X ayaﬁxaza&

0 [0p3y  0pow 03¢0y
ax ox 0x 0yody 0z0dz

so, due to the orthogonality of the surfac®sapnd &), one will have the identity:

Aa_l//+ B%: O,
ox o0X

and similarly, the analogous identities:

,g%_o A%%.g%_,
oy oy 0z 0z

As a result, the condition (6) will become:
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pAY 99 0y
ox O0x 0xX

A0 09wl
dy dy 0y

A% 99 oy
0z 0z 0z

Now, for an arbitrary value of, y, z, the derivativesaw : oy : oy will be the
ox oy o0z
direction coefficientd, m, n of the normal to those of the surfac&g that pass through

0p 09 09
ox ' oy o0z
the normal to those of the surfac&y that pass through the same point; i.e., of the
tangent to a line of curvatur&j. Upon denoting a displacement that is performedgalo
the direction of that tangent lolx, dy, dz one will have:

the point with coordinates vy, z, and — will be the direction coefficients of

%:/Hiblx, 99 = A [y, a¢—/1IZbIz,

0X oy 0z
and as a result:
A - at=a] L+ L g+ I g = A,
0X 0X oy 0z
and similarly:
6_1//_ A Hm, 61// = A dn.
oy az

The condition (7) will then become:

dl dx |
dm dy =0.
dn dz n

It is satisfied, since the displacemert dy, dztakes place along a line of curvature.
The integrability condition of the system (5) is tlsatisfied, and the third familys)
always exists and is entirely well-defined. One thentha@dollowing results:

1. There exists a third-order partial differential emiion [viz., equation(4)] that
expresses the necessary and sufficient conditioma fonction ¢ (x, y, 2 to provide a
family of surface¢S) that belong to a triply-orthogonal system. If taenily (S is given
then the other familieS;) and ($) will be entirely well-defined.
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2. In order for two families of surfac€$) and (S;) to belong to a triply-orthogonal
system, it is necessary and sufficient that they should inteasa right angle, and that
the intersections should be lines of curvature on the sur{&es on the surfacets,).

Finally, one should note that if one knows the lioésurvature C;) of the surfaces
(S1), for example, that are not intersections of théasess &) and the surfacess), and
the lines of curvatureQ) of just one surfacey, then each surfac&,) will be generated
by the curves;) that rest upon the same cur@.(

Triply-orthogonal systems that contain a given surface

3. — One easily recognizes that any given surface can b&oagriply-orthogonal
system. Indeed, trace out the lines of curvature drsthréace §), and draw the normals
to the surface at all points of those lines. Theygdherate two families of developables
that are orthogonal to the given surface. One willagériply-orthogonal system upon
adjoining the parallel surfaces t8) (

Remark I. — The surfaces that are parallel to a surf&euie derived by the contact
transformation that is defined by the equation:

(X=R*+ (Y -y’ +@Z-2*-r*=0,

in whichr is an arbitrary constant. Indeed, the parallel surtatee envelope of a family
of spheres of constant radius that have their centethe surfaceS). As we have seen,
that contact transformation is calleditatation [Cf., Chap. XI, 8 6].

Remark Il. — When one knows that a family of surfac&s ljelongs to a triply-
orthogonal system, the determination of the other famoilies of that triple system can
be accomplished as follows: One determines the linesirohture of one of the surfaces
(S, and on the other hand, looks for the curv@gltat are orthogonal trajectories of the
surfaces$. The other families of the system are generatethdpithogonal trajectories
(T) that rest upon the lines of curvature that were foundhe particular case of a family
of parallel surfaces, the orthogonal trajectories el the normals to those surfaces, and
one will recover the mode of construction that walsciated above.

Triply-orthogonal systems that contain a family of planes
4. — Consider a family of plane®). As we saw in the context of milling surfaces,
the orthogonal trajectories are obtained [Chap. V@] By rolling a moving plane around

the developable that is the envelope of the plaRes Take two systems of orthogonal
curves in the plane, which is always possible, becusegive one of the systems:

p(xy)=a
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then the other one is determined by the integrationeoétjuation:

dx_ dy
op 04
ox oy

One will generate the other families of the triplghogonal system by means of the
curves of the planed?) that are subject to meeting the orthogonal trajeedoriThose
families are then composed of the milling surfaces. €amethen recover their lines of
curvature by means of Dupin’s theorem.

Triply-orthogonal systems that contain a family of spheres

5. — The fact that any family of planes belongs ta@ytorthogonal system is based
upon the fact that any curve in a plane is a line of ¢urgaof the plane, in such a way
that a family of surfaces that are orthogonal togiven planes will satisfy the necessary
and sufficient condition for the existence of a thiagnily that completes the triply-
orthogonal system.

The same fact will then also be true for a famflgpheres, and in order to determine
an arbitrary triply-orthogonal systems that contéliresgiven family of sphere$), it will
suffice:

1. To take two families of orthogonal curv€y,((C;) on one of the spheres, and
2. To determine the orthogonal trajectori€stf the spheresy,

because then the curvé (hat rest upon the curveS)(and the curvesT] that rest upon
the curves@;) will generate the surfaces of the two famili&g @nd &) that form the
desired triply-orthogonal system with the sphe&s (

Everything then comes down to solving the following problems:

1. Determine an arbitrary orthogonal system on a sphere.
2. Determine the orthogonal trajectories to a family of spheres.

The first problem immediately comes down to the analsgmoblem in the plane by
means of a stereographic projection.

Let us study the second one then:

If we consider two spheres of the family then theagtinal trajectories will establish
a point-wise correspondence between them, and frompréeeding, that correspondence
will be such that an orthogonal system on one ef $hheres will correspond to an
orthogonal system on the other. Now, two rectamgdieections are harmonically
conjugate with respect to the isotropic direction. QOa d¢kher hand, for an arbitrary
point-wise correspondence between two surfaces, the aohiarmtio of four tangents is
an invariant, because one can suppose that the corresperagmesses the manner by
which the coordinate curves= const.y = const. are homologous, in such a way that the
homologous points will have the same curvilinear cootdsdy, v), and then the
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anharmonic ratio of four tangents and that of the fourdiogous tangents will be equal
to the same anharmonic ratio of the same four valuéseofatiodv / du. Hence, under
the correspondence in question, the isotropic directmmsone of the spheres will
transform into isotropic directions on the other oifiée rectilinear generators of one of
the spheres will then transform into rectilinear getogsaon the other one, and since the
anharmonic ratio of the two arbitrary directions witle isotropic directions will remain
constant, the angles will be preservddhe transformation that is established between the
spheres of one one-parameter family and their orthogonal trajectoriehes &
conformal transformation.

Therefore, let:

(1) S(x—x%)P°-FR=0

be the general equation of the spheres considered, déEnd upon a parameterThe
preceding considerations lead us to introduce the rectilpenerators. Then set:

X=%+i(y—-w)= A[(z-23) +R],
x—x+ily-W=- (-9~
X=%+i(y-w)= ul(z-23 +R]

hence:
g g = M
1+ Au
) 2A
2 X=X +i(y— =R ,
e % +ily- %)= R
. 2u
X=X =1(y— =R )
% —i(y=Yp) AL

The differential equations of the orthogonal tcigeies are:

dx _ dy _ dz _ d(x+1y) _ d(x-1y)
X% Y™% z-7% X=X%t+i(y-Y) X=% = i(Y= Y)

Upon equating the third ratio to the other twouce®ession and setting:
dA: d(X0+IyO), :d(XO_IyO)’ dC:d—ZO,
2R 2R 2R

one will get the two Ricatti equations:

di_ 0B, ,,dC_dA du_ ,dA , dC_dB

3 aa | |
3) at at Tat dt dt at o Tt
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One can verify that sinc& andB will be conjugate-imaginary quantities in the case
in which one works with real spheres, the solutionshef $econd of those Ricatti
equations will be conjugate imaginaries of the solutiontheffirst one, in such a way
that everything will come down to integrating one of them

If one knows an orthogonal trajectory then one wilbwnan integral of each
equation, and the solution to the problem will reduce to qwadratures. If one knows
two orthogonal trajectories then one will have onig @uadrature to perform, and if one
knows three orthogonal trajectories then the problelinhave been solved without any
guadratures. The general integral of the first equatitireis provided by the formula:

1 — /]0_/]10 : /]30_/]10
, A°=ATAL-AY

A=A A=A
A=A, A=A

3

upon denoting the values that correspond #oty by the index zero. It will then be a
relation of the form:

_ MA°+N
PA°+Q

One will likewise have an integral of the form:

_Ru’+S
=40

for the second Ricatti equation, in whiéh S T, U are conjugate tiM, N, P, Q,
respectively, moreover.

Those two forms define the correspondence betweeisphere that corresponds to
the valuety, of the parameter and the sphere that correspandket valuet of the
parameter that is established by the orthogongictaries.

One then sees that the transformation will chahgecircles on one of the spheres
into circles on the other one, because the cireks;h are plane sections of the sphere
that is represented by equations (2) are defined kgjation that is homographic A L.

By stereographic projection, it will become ondlad planar transformations of the group
of reciprocal radius vectors [Chap. VIII, pp. 228].

Particular triply-orthogonal systems
6. — As particular triply-orthogonal systems, rethé system of homofocal quadrics:

X y? z
+ +
a-A b-A4 c-A1

-1=0,

and the system of homofocal fourth-degree cycli@sp. VI, § 7]:
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X2 N Yy N z +(x2+ Y+ Z- R)? ( X+ y+ & 32_0
a-A b-A c-4 AR (d-1) 4B(ed)

One verifies that one obtains another system thabmposed of third-degree Dupin
cyclides by considering the surfaces that are locpbotaxct points of tangent planes that
are drawn from a point on one of the axes to a faafiyomofocal quadrics.




CHAPTER Xl

CONGRUENCES OF SPHERES AND CYCLIC SYSTEMS

Generalities
1. — We call a family ofo? spheres):
(1) > (x—H-r>=0

in whichf, g, h, r are functions of the two parameterss, acongruence of sphereshe
locus of the centers of those spheres is a surfce (

(9 x=f(uv), y=gVv), z=h(uv).

We seek the envelope of those spheres. We must appdamibtbquations:
(2) D (x- f)—+ __o D (x- f)—+ __o

to equation (1). Equations (2) represent a line, and thusniredope of the spheres)(
touches each of the spheres at two points, which dissf@eal points. The envelopeR),
which one calls théocal surfacethen decomposes into two sheétg,((F>).

Consider a family ofo* spheresY) in the congruence (1); it suffices to defimes as
functions of one parameter Those spheres admit an envelope that touches edudnof t
along a characteristic circle whose plane has thetiequa

(3 >(x—fdf+rdr=0.

When the expressions far v as functions of vary, all of the characteristic circles pass
through two fixed points, which are the focal points lo¢ sphere considered. The
envelopes thus-obtained correspond to the ruled surfacesngfuences of lines; one
calls them theanal surface®f the congruence (1).

Among those canal surfaces, we seek the ones for whdhsphere is tangent to the
infinitely-close sphere. They are, in reality, edil surfaces with isotropic generators
[Chap. VII, § 3, pp. 168]. The circle that is defined by equest(1), (3) must reduce to a
pair of isotropic lines. The plane (3) must then be tanhgethe sphere (1), which will
give the condition:

(4) > df?—dr =0,

which is a first-order, second-degree differential equatidimere are then two special
families of spheres in which each sphere touchesthetely-close sphere. The point of
contact is defined by the following equations, which oné get by writing down the
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equations of the normal to the plane (3) that is drawoutih the center, and taking (1)
and (4) into account:
x— f - z-h_ -r
(5) = y—9d = =
df dg dh dr

One sees thatf, dg, dh are direction coefficients of the radius of the pahtontact; the
direction cosines are:

_df _dg _dh
dr’ dr’ dr’
D
D
(%) (2) A

A

Let I, I"be the points of contact thus-found. Equation (4) detwesdirectionsal,
ad “on the surfaceS). LetM, M’be the points of contact of the corresponding sp{xre
with the focal surfaceH). The lineMM“ is represented by the two equations (2), or
furthermore, since the pointd, M” are on all of the characteristic circles, by the two
equations (3) that correspond to the special envelopes figotanal surfaces). Now, in
that case, equation (3) will represent the tangent pitatiee sphere at one of the poihts
. Hence, the lined , MM’ will be polar reciprocals with respect to the sphetk (
Moreover, one sees that if one considers the thtibdu in equations (5) to be variable
then the point that it defines will describe a line, wahiall contain the poles of the two
planes (2) fordv = 0 anddu = 0. That line, which is the lind ", will then be the
conjugate tavIM .

If we suppose that] is a real sphere thénl “will be imaginary in the case whelké,
M’ are real, and converselyd, al “are in the tangent plane to the surfé€geatf w MM’
is perpendicular to that tangent plane. The pdwit#1’, and in turn, the linesM, aM’
are symmetric with respect to that tangent plane.

Now recall thateM is normal to the first sheet of the focal surfacel aW “is normal
to the second one, and considéd to be an incident ray to the surfa& &nd«M ’ to be
the reflected one. We then have a congruence of tothet reflects from the surface
(9 into a congruence of normals. The surfé®ec@n be arbitrary, as well as the surface
(F1). Indeed, consider the spheres that have theiereoin § and their tangents on
(F1). (F2) will be one of the focal sheets of the congruerfcgpberes thus-obtained, and
the congruence of normals 6] reflect from @ into the congruence of normals &),
which is the second focal sheet. Hence, one has:
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Malus’s theorem: The rays that are normal to an arbitrary surface reflect from an
arbitrary surface along normals to a new surface.

N

~ P

As one can see, this theorem extends to refracted rdygsthat effect, recall the
classical Huyghens construction. Consider a spherertercw Let «M be the incident
ray, let «N be the normal to the refringent surface, anchlbe the index of refraction.
Construct a second sphere with its centesgatvhose radius has the ratio fvith the
radius of the first one. Consider the tangent plartedaefringent surface at At the
point M where the incident ray meets the first sphere, dreaptane that is tangent to
that sphere, which will cut the plamd along a line T). Through the lineT), draw the
plane ) P that is tangent to the second sphere. Upon lettinglenote the angles that
aM andaP make withaN, respectively, one will have immediately that:

oM P
ol = — = ——,
sini  sini
o}
sini' _ wP _ N
sini WM

Hence,«P will be the refracted ray. Start with a congruentearmals then. LetH;)

be the surface normal, and I&) (be spheres tangent tB;] whose centergvare on the
refringent surface. In order to construct the refracagd,rone must consider the spheres
(') that are concentric to the spherEs g4nd of radiusir. Now, the line f) that relates
to the spheresy] is defined by equations (5), in whicly, dv are variables, and those
equations will not change when one replacesth nr. The line Q) is then the same for
a sphere Y) and for the concentric spherg). On the other hand, since it is in the
tangent plane to§ at wand in the tangent plane k at ), it will be the line T) of
Huyghens’s construction, and since it keeps the samdisagmue for £'), it will belong

to the tangent planes that are commonxtp §nd its envelope. Henck,will be one of
the contact points o®() with its envelope, and the refracted rayR will be normal to
one of the sheets of the focal surface of the congriehspheresX).
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Special congruences

2. — We have associated four congruences of lines witltahgruence of spheres
considered: viz., the lineeM that are normal toF), the linesaM’ that are normal to
(F2), the lines 4), and the linesd).

Suppose thav, M’ coincide on each spherg)( they will also coincide with, I
The two focal sheets will then coincide. The lodi amwincident pointsl, |’ that
correspond to each family of spherg$ (hat satisfies condition (4) will then be a line of
curvature on the double focal surfadg,(and the sphere<) of that family will be
corresponding curvature sphere$he congruence of spheres is then composed of the
curvature spheres of a surfa@€), which corresponds to one of the families of the lines
of curvature.

Conversely consider a surfacd=) and its curvature spheres) (of the same family.
The surface K) will be the double focal surface of the congruence oehcurvature
spheres, because one of the polints that belongs toK), which belongs to the focal
surface, will coincide with one of the poirtts M. The two conjugate lined) and D),
which intersect, will be tangent t&)(at the same point, and the poiht$’, M, M will
coincide at that point. One will then revert to tase in question.

All of the congruences of lines considered reduce to theee: viz., the normals to
the surfaceK), the lines D) that are tangent to one family of lines of curvaturér),
and the linesX) that are tangent to the other family. The surf&eav{ll then be one of
the sheets of the development of the double focal surfébe lines of curvature, which
are integrals of (4), will correspond to a family of geside [Chap. VII, § 2] on the
surface §).

Application to the search for geodesics
One will then be led to determine the geodesicsSpfufpon writing down that

equation (4) has a double rootdat dv. With the usual notations for thi&® of (S [Chap.
l], that equation can be written:

6) E dif + 2F du dv+ G dvf — (a du +a—rdj -0
u Vv

(3] oo o3 o

In order for it to have a double root, it is ne@@gsand sufficient that:

e & -2 -

or:

or
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2
@) H2- E(arj 2Fa_ri+e(‘}j =0,
ou Jduov ov

which is a partial differential equation that deteéresr. Having calculated, one will
get the family of geodesics that corresponds, bggration, to the ordinary differential
equation that one obtains by equating the squareimadhe left-hand side of (6) to zero.
Indeed, the latter is the square of a linear forshy dv, due to the condition (7).

The curves of9 that are defined by the condition= const. have the following
significance, moreover: If that condition is realizthen the centevof (&) will describe
a curve §) on (8, and the point of contad of () with (F) will describe a curve){) on
(F). SinceaM is normal to ), (y') will remain orthogonal taM, and sinceeM = is
constant, g will also be orthogonal to each of the linesl. Consequently,)j will cut
each of the geodesics considered at a right asglee «M will be tangent to one of
those geodesics at each pawof (S).

Hence, the curves = const. of § are the orthogonal trajectories of a family of
geodesics [cf., Chap. Ill, 8 9]. One verifies timmediately upon noting that equation
(6), which has a perfect square for its left-haige,shas the consequence that for amy
and ov, one will have:

s s oy
(Edu+tFdvyyau+ (Fdu+Gdy ov= +—dv out| — dur— d o\
oJu ou ov )0

The left-hand side will then be annulled if one moges thatr = 0, which indeed
expresses the orthogonality of the geodesics ceraido the curves= const.

Dupin’s theorem

3. — Suppose that the focal surfa€¢ as two distinct sheetB) and €,), and study
their relationship to the surfacg) that is the locus of the centers of the sphexgs If x,
Yy, zdenote the coordinates lfthen the direction cosines aM, which is normal to one
of the sheets, will be:

Hence, we will have:
(8) x=f+Ar, y=g+m, z=h+wr

for the equations of the focal sheet consideredbsfute those values fog y, z into
equations (2). They will become:

9 )I—+— 0, )l—+——0
©) Jdu adu Z ov ov
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Those equations, when combined wift= 1, define the two systems of valuesiofs, v
that correspond to the two sheets.

Leti, i' be the angles thatM andaM ’, resp., make with the normaN to the locus
(S of centerscw Those angles are supplementary (tes— cosi), and ifl, m, n are the
direction cosines o&N then:
(10) cod =X Al

Calculate the angle It will suffice to infer A, i, v from equations (9) and (10) and
substitute the values obtained iffpA% In order to avoid the calculation, we employ

another method. In the tangent plane3p let «lJ, @V be tangents to the curves=
const.,u = const., resp., that are directed in the senses r@fasiogu andv, resp.

W
o
i
a
7
) U
5/
B
V
The direction cosines atU are:
1o 129 10h
Eou’ Edu’ E du
Those ofwV are:
1 of 1 a_g 1 oh
Gov' Gov' G ov

Let awo be the vector of length 1 that is measured along tlidifa «M. From formulas
(9), its orthogonal projectionsa, B, onad, wV, resp., will be:

1 or 1 or
=2 =B= .
JE “@ Y

wa=A=-

The sine of is the projectionwo of awd’ onto the planéJOV, and everything will come
down to calculatingw’. Let @be the angle between) and wV:

cosH:L, sin@=- EG- l:2: H .
J EG \J EG J EG
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Since wd’ is the diameter of the circle that is circumsailde the trianglecwaS whose
edgeapfis \/ A>-2ABcosf+ B, we will get immediately:

A? -2 ABcosf + 82

sirfi = wy'? =
sin® @
Now:
A? - 2ABcos§’+B2 1 q{ar 6rj
sin® @ H? (ov' ou)’
if we set:

@ (du, dv) = E dif + 2F du dv+ G dV,

with our usual notations. We then obtain the @esformula:

(11) sifii = — (ar a—rj
H v’ du

We now return to equations (8), and we proposeterchine the lines of curvature of the
sheet of the focal surface that they represente liffes of curvature are defined by the
equation:
[dx A dA|=0
or:
|df+Adr+rdd A dA|=0
which reduces to:

|[dx A dA|=0
Multiply that by the determinant:
‘ of of
A ~ -~ b
ou ov

which is not zero, since the normad\ is not in the tangent plane t8)( The equation
will become:

Z)ldf Z)lz > AdA
Z—df z)l Z%d)l =0,

I D WA 3R

or, upon taking (9) into account:
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—dr 1 0
of or of
—df -—— —dA| =0.
ou oJu zau
of or of
daf —-— —dA
Zav ov z6v

Multiply the first row byor / du and add it to the second one, and multiply it©9by ou
and add it to the third one. We then get the equation:

> &dr-Sar ¥ ai

of or of
ZE df v dr za dA

(12) =0.

The elements of the first column are one-half thtigdaderivatives with respect wu, dv
of the quadratic form:
(13) > df?2 - dr? = ®, (du, dv),

which defines the pair of directionsl, ad”on (§. Let us see if the elements of the
second column are susceptible to an analogous interpretatibrwe differentiate
equations (9) then we will get:

Z—d)l = Z)ld(auj (gfuj

Now, if one totally differentiates with respect to timelependent variablas, v, while
consequently supposing théfu =d ?v = 0, then:

d(a_rj _ 19w d(ﬁj _ 10 1)
ou) 2 d(du)’ ou) 2 a(du)’
and:
A Ala*f
ZA d (ﬂj = 1 [_}L

ou 2 d(du)
Set:
(14) © (du, dv) =X A d?f, Q(dudy=0+d7,
and the equation can be written:

00, 00
(15) ddu odu|_ 0.

0P, 0Q

odv odv
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Hence, the principal directions of the sheetF)f¢onsidered will be harmonic conjugates
with respect to the two pai®; = 0 andQ = 0.
Calculateo. In order to do that, eliminat& L, v from equations (9), (10), and:

>Ad?f-0=0.

One will get:

ﬂ ﬂ [ d?f

ou ov

9 99 d’g
T )

— — n d?h

ou ov

ﬂ a_r -cos -0

ou ov

which will give:
©OH -H cosi W (du,dv) +H x(du,dv) =0

when one develops it in the elements of the last réd\s in [Chap. II, § 3]¥ (du, dv)
denotes the formx | d 2 in that formula; howevet, m, n are direction cosines here. The
form y (du, dv) is deduced from the left-hand side of (16) bylaejmg the elements — cos
I, — © with zeros and dividing bi. By combining the first two columns, one will get

= ﬂa_r_ia_r | d?f

| ovou aduav

as a third-degree determinant, and it will sufftee multiply the two sides by the
determinant:

Ju ov
in order to obtain:
FX _gX Zidzf
(17) H2y= g“ gv gf“ ,
GI-FL & ¢t
du ov ov

which, from the calculations of [Chap. I, 8§ 4, 32], can be expressed in termdof,
G, and their derivatives. Moreover, we have:

Q =d? + cosi Q (du, dv) — y (du, dv)
or:
(18) Q =W¥; (du, dv) — cosi (W (du, dv),
with
Wi=d% - x.
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The lines of curvature of the second sheet are likevaisgents to the conjugate
directions with respect t®; = 0 and to the pair that one deduces fr@n= 0 upon
changing the sign of casi.e.:

W; (du, dv) — cosi ¥ (du, dv) = 0.

Consider the points of contact of the same sphEyewith its two sheets to be
homologous on those two sheets. It then results ft@rpreceding conclusions that in
order for the lines of curvature to correspond on thedie®ts — i.e., in order for them to
be defined by the same quadratic equation (18ujrdv — it is necessary and sufficient
that there should exist a pair of variatiahs dv that are conjugate with respect to the
three pairs:

&, =0, W, +cosiW=0, W;-cosi¥=0;

I.e., with respect to the pairs:

®, =0, W, +cosiW=0, W=0,
or furthermore:

Equation (15) defines curves on the surfaSealong which the developables of the
normals to one of the sheets Bj ill cut (S. The condition for those curves to also be
intersections of%) with the developables of the normals to the other shie@l) is then
that at each point o their directions must be harmonic conjugates with redpoeite
directions that are defined By = 0; i.e., that they must be conjugate directionsn (

We then obtain:

Dupin’s theorem: If the lines of curvature correspond on the two focal sheets then
the developables of the corresponding normals will cut the suf@calong the same
conjugate net, and converseliloreover:The necessary and sufficient condition for the
developables of a congruence of normals to reflect from a surface inte othe
developables is that it must determine conjugate nets on the surface.

Congruence of linegD)

4. — We seek the developables of the congruence of lileshey are defined by the
equation:

dx dy d
(29) Il m n|=0.
dl dm dn

X, Y, z always denote the coordinatesMf andl, m, n are the direction cosines of the
normal to §) at &g which is parallel to[d).
Now:
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X=f+rA, y=g+ry, z=h+ry,
from equation (8), and equation (19) will become:
|df +rdA+Adr 1 dl|=0

Multiply the left-hand side by the non-zero determinant:

ou ov
we will get:
ry ldA+dr) A 1 0
of of of _
Za—df+ z%d)Hdr@)l% 0 z—dl =0,
of of of
Za—df+ zad)Hdr@)la/ 0 z—dl
or
STt ery Tarrary sl vy
ou Jdu Ju ou _
(20) of of of o |70
Za—df+ za—vd)l+drEE)la zﬁ/dl

The elements of the second column are one-half th@lpaderivatives of the forn¥
(du, dv) with respect tadu, dv. As for the elements of the first one, we point thatt
from a calculation in the preceding paragraph:

CLUPPR o o 4 =100
ou 20(du)’ ov 20(dv)’
or, from (18):
Q =Y, + cosi V.

Finally, the pointgvl, M “are defined by the relations (9):

)I— +— =0, )l— +— =0,
Z ou ou Z ov ov
in such a way that with the notation that was idtied by formula (13):

of . or , 19
9 df + )l—— P -Lgr== 20
Z d dri, Z:aud el 209(du)’

ou
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6f or 1 0,
2 df + ;|__ hall bl
Z d ar DZ Z 6vdr 26(dv)

The elements of the first columns will then be tiadf-the partial derivatives of the form
®; —r [W1 + W cosi] with respect talu, dv.

Therefore: The developables of the congruencéne$ Q) correspond to curves on
the surface § whose tangents are conjugate at each point wipect to the pairs of
directions that are defined by the equations:

W =0, @ -r[W,+Wcosi]=0
or with respect to the pairs:
(21) Y =0, Dy —r W =0.

As one should expect, that result will not changene changes into 77— i, andthe
developables of the congruence of liiB3 will correspond to a conjugate net on the
surface(S).

Consider the focal planes. One focal plane islfrto the direction, m, n, and to
the directiondl, dm dn, which corresponds to an infinitely-close liri2) (on one of the
developables that pass throu@¥).( However:

P+mP+n’=1
SO:
| dl + m dm+n dn= 0.

dl, dm dn then define the direction of the lines of the foglane that that is parallel to
the tangent plane to the surface. Now, the twectivns will correspond to two focal
planes, and thus to two developables, and singeatteeconjugate, if we define them by
the characteristiod anddthen they will satisfy the equation:

2dl-a=0,
which expresses the idea that the first focal plamgerpendicular to the directiaf, Jg,
Jh, which corresponds to the other focal plalch focal plane is perpendicular to the

direction of the surfac€S that corresponds to the developable that is not tangent to the
focal plane.

Congruence of linegA)
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5. — The line Q) is the intersection of the tangent planes to thergphtM and the
surface § at g which have the equations:

2AX=Hh-r=0, 2IX-=-9=0,
respectively. We express the idea that the precedingnilheneet the infinitely-close
line. That gives:

YdA-(X=) -2 Adf-dr =0, 2dl-(X-H-21df=0,
which are conditions that will simplify upon remarKkitigat:

>ldf=0 and X Adf+dr=0
What remains will be:

(22) Ydl-(X-§=0, Yd-(X-9=0.

If we express the idea that the equations that aser@at are compatible then we will get
the equation that defines the developables:

(23) Il di di|=0.

We further multiply this by the non-zero determinant:

‘. of ot
ou ov|
We get:
1 >ldA 0
f fl_
0 Zd)l% Zd'% =0,
f f
0 ZOMBZV Zdl%
or
of of
>—da Y —d
(24) o u |-

of of
Zad)l za—vou

The elements of the first column are, up to sign, lzadéthe partial derivatives of the
form Q = W¥; + W cosi with respect taly, dv. Those of the second column are one-half
the partial derivatives dP with respect tau, dv. The developables of the congruence of
lines @) will then correspond to a net of curves on the sur{&evhose directions are
harmonic conjugate at each point with respect to the péidsrections that are defined
by the equations:
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(25) W =0, W, = 0.

In particular, the developables of the congruence of lii@s correspond to a
conjugate net on the surfa¢g.

As for the focal points, they are defined by the equat@nl) and equations (22),
which are compatible by virtue of the relation (23). Ondudes from this that the
directions that joirwto the focal points are defined by the relations:

21-d=0, X2Xd-&=0, Xdi-&=0.

The first one expresses the idea that those linem dhe tangent plane t&®), while the
second one says that they are the tangents conjugatee tdirdttions of § that
correspond to the developables.

Special cases— Suppose that the two preceding congruences correspond by
developables. The two conjugate nets that we have determmé#te surfaceS) will
then coincide. For that to be true, it is necessadysalfficient that the three pairs:

W =0, ¥, =0, ®—r-¥Y1 =0,
or:
Y=o, Y1=0,  ®,=0

must belong to the same involution, and then, from #dwilts of § 2, the lines of
curvature will correspond on the two sheets of the sarfg, and conversely.

D A
(K)

AH "
¢

MI

In this case, we have a conjugate m®tdn the surfaceS) that corresponds to the
developables of the four congruenagd, «M’, (D), (A). From what we just saw, the
focal pointsf, f” of (A) are on the tangents to the two curves of the ragtgass through
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w The linedvif, Mf” are the tangents Mt to the lines of curvature of one of the sheets of
the enveloping surfacé), because the tangent planes to the developables odtimals

to that sheet all wf, Mwf’, since those developables c8t &long the conjugate ndR)
considered, and the plahd (A), which cuts the planes alomgf and Mf’, is tangent to
that same sheet dfY atM. The line D) is perpendicular to the plahe@f’that is tangent

to (9, and its focal places are perpendicularadd and wf’. The developables of the
congruence of linesD) cut the two sheets of the envelog® @long their lines of
curvature, moreover.

Ribacour’s triple system

6. — We address the latter case. Lgtbe one of the curves of the conjugate Rt (
on the surfaceS). Whenwdescribes}), the pointM will describe a line of curvature on
the sheet of the surfacg)(that is tangent td/f, and the line &) will envelope a curve
(C) that is the locus df. Consider the spher@)(with its center at that passes through
M. That sphere will have a canal surfaEg for its envelope. Since the sphe® has
its radiusMf’ perpendicular taMf, it will be constantly tangent to the curv€)(so the
point M will be a point of the characteristic circlel)( The plane of that circle is
perpendicular to the linA that is tangent toQ), so its center will be the foot of the
perpendicular that is basedMtonA. That circle will then be orthogonal to the sgher
(%) at the pointM and the poinM “that is symmetric with respect to the pldng’, and
the surfaceK) will be generated by the circles that are orthoganéhé sphereX() at the
points M, M’. That tangent circle taM at M will remain orthogonal to the line of
curvature K). Now, it is a line of curvature on the surfa&g, (so K) will also be a line
of curvature on the surfac&); If we vary K) then we will get a family of surfaceE)(
that will all be orthogonal to the two sheeks)( (F2) of (F), and which will cut along the
lines of curvature.

Now, if we look for the second system of lines of atave on ;) and §) then we
must consider the spheres whose centers drarat pass througkl. The characteristic
circle will again be the circleH). Moreover, sincédM andf™M are perpendicular, the
corresponding sphereg)( (o) are orthogonal, so their envelop&s, ((E”) will also be
orthogonal.

We will then have two families of canal surfaced tha orthogonally along the lines
of curvature, which are the circleBl)( They will then belong to a triply-orthogonal
system. In other words, the circlds)(are orthogonal to a family of surfaces to which
the two sheetd}), (F,) of (F) belong, and they will establish a correspondence between
the points of any two of those surfaces that is lleedne between the poirts M, such
that there is a correspondence between the lines \adtoue of those surfaces.

Conversely, if two surface§{), (F2) are orthogonal to a family of circles {), and
if M andM "are the points where one of those circles defsdnd €2), respectively, then
the sphereX) that is orthogonal to the circle at those twong®will be tangent toH})
and §2), which will then be the two sheets of the envelopspiferesy) thus-defined.
Moreover, if the circlesH) that have their feet or{) along one line of curvature also
cut (F2) at various points of a line of curvature then the lmkesurvature will correspond
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on the two sheets of the envelope of the sphé&gesa(d one will get back to the special
case that was just studied.
Therefore:

If the circles(H) of a congruence are orthogonal to two surfa¢es, (F.), and if
they establish a correspondence between the lines of curvature on tloosartaces
then they will be orthogonal to an infinitude of surfaces on which the linesredture
correspond. Those surfaces will belong to a triply-orthogonal systemewdtibsr two
families will be composed of canal surfaces, each of which is geddmatie circlegH)
that rest upon one of the lines of curvaturgr) or (F;). Such congruences of circles
are called (Ribaucourgyclic systems.

B

M’ Q M

Congruences of circles and cyclic systems

7. — We shall re-address the question of cyclic systemitmadly. Consider a
family of «? circles and then look for the existence of normafasas to all of those
circles. Let K) one of them, leC (xo, Yo, Zo) be its center, and led be its radius, in
which o, Yo, 2, p are functions of the two parameters.. We define the plane of that
circle by way of the direction cosines of two regialar direction<CA(a, b, ¢) andCP(a’
b’ ¢”) that pass through the center of the circles, anfixstbe position of a poinM on
the circle by the angleCA, CM) =t, which is measured positively fro8A to CB. The
coordinates oM with respect to the syste@AB arep cost, p sint, and its coordinates
y, zare:

X=X, + p(acost+ d sint)= x + pa’
1) y =Y, +p(bcost+ B sint)= b+ o5,
z=z +p(ccost+ Csint= g+py .

We seek to determirteas a function o, v, in such a fashion that the surface that is the
locus of the corresponding points will admit the tangerhe circle at the poimd for its
normal, and we denote its direction cosinesayys, ). To that effect, we have the
condition:

(7) 2. adx=0,
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which is the total differential equation of the desisaedfaces. We develop that equation,
where a, £, y are the projections of the directing segment of tinection CM’ that
corresponds tb+ 77/ 2:

a=-asint +a’cost, L =-Dbsint +b’cost, y=-csint +c’cost.
On the other hand:

dx=dxy+a’- dpo+ pa’dt+ p(cost - da+ sint - dd), dy=..., dz=...,
and upon taking into account that:

SaF=1, S aa’=0,
we will conclude that:

adx=2 adx+p-dt+ p[cost -2 ada+sint -2 ada’]
=-sint-Y adx + cost-Y a’dx + pdt+ p[cost-Y a’da-sift-> ada’] = 0.

However:
> aa’' =0,
so upon differentiating:
2 ada’ +> a’da=0,

and equation (2) will be written simply:

(3) dt:Za’da+%Z adm-sint—%Z a’dx - cost.
Set:

t
4 tan— =w,
(4) >
SO

t = 2 arctarw,

and we will get:
(5) 2dw= (1 +wz)2a’da+%NZ ad>©+w2_12 a’dx.

That equation enjoys some properties that areogaat to those of the Riccati
equation. In particular, one can verify that tidarmonic ratio of four solutions has a
vanishing total differential, and consequentiyyitl be constant. It can be put into the
form:

dw=A du+A’dv+w (B du+B’dV) +w (C du+C’advy),

and will decompose into two partial differentiauedions:
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(6) ow =A+Bw+C W, ow
au v

=A’'+B’'w+C’'W.

2
Upon writing down the idea that th{gﬂ that is inferred from the first one is equal

Juov

2
to the 66 ;V that one infers from the second one, one will dedoae t

vou
@) 9A L wIB, +(B+2CW( A+ Bw CW)

ov av
—[a_AJr 9B , ac +(B+2Cw( A+ Bu C\fv)}
ov av

Any integral of the system (6) will then satisfyat condition, which will take the
form:
(8) L +M w+Nw = 0.

If that condition is not satisfied identically thérere will be no other solutions than those
of equation (8), which will admit two of them. dihe prefers that there should be an
infinitude of them then that condition must be S&d identically, and since it has degree
two, it will be sufficient that it is satisfied ree functions. The conditions for that to
be true will then be:

L-a—A—a—A+BA AB =0,
ov odu
) m=28_%8 sca-ac)=o,
ov du
N-a—C—a—C+CB BC=0.
ov odu

It results from the theory of partial differentiedjuations that if these are identities
then the system (6) will have effectively an infiide of solutions.

Therefore:f the circles of a congruence are normal to theeefaces then they will
be normal to an infinitude of surfaces.

It is easy to construct the circles that are nbimawo arbitrary surfaces, because
there existo? spheres that are tangent to those two surfacesthencircles that are
orthogonal to the spheres at the contact pointsb&ihormal to the two surfaces. If the
lines of curvature on the two surfaces correspbied,tas we have seen, we will have a
cyclic system that is composed of circles thatremenal to theo! surfaces.

We remark that if the given family @2 circles is composed of circles that are
normal to the two surfaces then we must expectttimintegrability conditions (9) will
reduce to just one. On the other hand, if we leavenvelope of spheres then in order to
express the idea that the lines of curvature onvwbesheets correspond, we will also get
just one condition. It remains for us to examirteether those conditions are identities.
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First, suppose that there exists a surf&ge that is normal to all of the circles (1).
We can do that in such a way that it corresponds=td orw = 0. Equation (5) will then
admit the solutionv = 0, so one will have the condition:

> ada - 1Za’dmz 0,
Yo,
and equation (5) will then become:
(10) dw:V\FZada’+%Zad>©.

Let Mo(X, Y, 2) be the point that correspondstte O:

X =X+pa, Y=Yo+pb, z=n+pc,
Xo = X—pa, Yo=Yy—pb, 2=2-p¢C,
dx=dx-pda—-ado ...,
SO
2adyp =2 adx—dp.

t

(X0, Yo, 20) | Mo(X, Y, 2)

If we now consider the normdl, (m, n) to (F1) at Mg then it will be tangent to the
circle, and (10) will become:

dW:V\FZadH%(Zadx—dp)

or

d—W+d—:w-ZadI+£Zadx

woop P

We then introduce the quantity:
(11) PW=T,
and get:
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dr r 1
—=—>» adl+=) adx
r pZ pZ

or

re r
(12) dr=—)>» adl+— ) adx.
P 2 ,02
Now, from (4):

r—,otanl
2!

which shows that is the radius of the spherE)(that is tangent to the surfaces that are
the loci ofM andMjy . Its center is the poirty which is the intersection of the tangents to
the circle aM andMp .

Now suppose that there exists a second surkafeh@at is normal to the circles. Set:

(13)

SO

and equation (12) will become:
S 1
dS+ —» adx+—)>» adl=0.
,02 ,02

Let S; be the known solution:
(14) d$+52adx+£z adl =0,
P P

S0, upon subtracting, one will get:

d(S-9 + S;§Zadx:0,
or

(15) dlin (S—S):—%Zadx.

In order for that equation to have other integrilsis necessary and sufficient that

1Zadx must be an exact differential. Now, from (4), heave:
yo,

=0.

(16) a_§+§2a%+i aal = O, a_§+§2a%+£ aﬂ =
u p ov p ov p ov

du p au
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Suppose that the coordinate lines are lines of curvaturE;pn Upon denoting the radii
of principal curvature bR, R’, the formulas of Olinde Rodrigues will give:

ﬂ 1 0x am _loy on__ 1oz
ou RAU’ ou  Rou’ u  Rau’
A__1x  om__1y 12
ov R oV’ v R oV’ v R ov
Set:
17) Lor ~ioT
R R

and we will then have:

ﬂ_Tax am ay on Taz

(18) ou oJu ou 6u au Ju
ﬂ: % om TQ on_ az
ov oV v av v 6 v
Hence:

al 0x ol 0x
a—=T-) a—, a—=T")> a—,
Z ou Z ou Z ov Z ov
and the integrability conditions (16) f& will become:

0x 1)
ai

ai
Big+n=W =0 Bigan= ¥ =g
ou P ov P
SO
——z asldu+ ! 63
“getou er v

If we now express the idea that the right-hand &dan exact differential then, upon
suppressing the index &, we will get the partial differential equation:

19) A 1( 1 Ej_i 1 @J:
oviS+Tou/ 0 S To0

for the definition of the systems of circles thae mormal to theo' surfaces. In that
equation,T and T are the principal curvatures of a surface, reterti@ its lines of
curvature:

u=const.,, Vv=const.

Sis the inverse of the radius of a sphetethat is tangent to that surface at the paint (
v), and the system of? circles that is defined by a solution of that e@rais composed
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of the circles that are orthogonal to the correspandpheres) at their contact points
with their envelope. Moreover, the given surface w#l one of the sheets of that
envelope.

We shall see thaquation(19) expresses precisely the idea that the lines of curvature
on the two sheets of the envelope will correspoRtbm Dupin’s theorem, in order for
that to be true, it is necessary and sufficient thatines of curvature of the given surface
(F1) must correspond to a conjugate net on the surface ttia lscus ofw LetX, Y, Z
be the coordinates a#

(20) X:x+il, Y:y+1m, Z:z+£n.
S S S

In order for the curvea = const.,v = const. to form a conjugate net on the surface, it is
necessary and sufficient that one must have:

0%X 090X 90X

(21) — =
duov Odu 0V

=0.

However, upon taking the formulas of Olinde Rodrigues (18)account:

%:%+I%+IM:(1+IJ%+|6(1/S)
Ju Jdu Sou Jdu S/ou Ju

X _ (1+T_'j6x+|6(1/8)

W Sa/ ov

which are relations that one can further write:

6X_S+T[ ox_ 1 as@

Y. 2

(22) ou S Ju St Tou
a_X:S;T[ f’_X_LEq
ov S ov St Tov| 7

2
We can replaceg—x and the other elements of the first column indaterminant (21)

uov
2 (%) 8\ X)
ov du,) odu ov

and the analogous quantities, under the conditiah M — N) must not be identically
zero. We take:

with:

2 2
S , and N:i,
S+T S+T
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in such a way that, upon taking into account (18), (19),(28):

Q(Ma_xj_i(Na_xj:asax 0S9x 1 0S0x 1 080 _,
ov Jdu,) odu ov 0

VOou Oudv SrTou OV S To v

We must then express the idea that:

_0Sox_S+ T+ T 09 ﬁ

uov S+ T 6 vo u
6x 1 0S ~0
6u S+Tdu
ox 1 0S
v S+Tav

Multiply the second row byﬂa—s and the third one byST—Ta—S and add

S(S+ T)ov S(S+T)o

them to the first one. After simplification, wellnget:

_Asz‘l 6X 6X
ou  dv

=0.

Now, the determinant in this is not zero, and meitls S, so that condition will be
equivalent taA = 0, as we asserted.

One can then define a cyclic system to be a comgruef circles that are normal to
oo! surfaces.

Ribaucour’'s contact transformation

Consider a fixed sphere with ceni@rand theo? circles {) that are orthogonal to
that sphere. On the other hand, consider a suf&cene of its pointd/, and the contact
element at that point. There is one and only aredec(H) that passes throudg¥t and is
normal to the surfaceS| at that point. Hence, the surfac® (ill correspond to a
congruence of circledH) that are orthogonal to it. Furthermore, thoseles will be
orthogonal to the sphere)( at two points, so they will be orthogonal to ghr=urfaces;
they will then constitute a cyclic system. LRtP’ be the points where the circlel)(
meets the sphere. Determine the pMnin that circle such that the anharmonic ratio (
M’ P, P") are equal to a given constaiit The locus of the poiri¥l’is a surface that is
normal to H), since equation (5) has the same propertiesea&itatti equation in just
one variable. For each value®©fthe contact element of the surfa& 4t the point 1)
will then correspond to a contact element on anathgface. The lines of curvature will
then correspond on the two surfaces, and we wihthave a group ob' contact
transformations that preserve the lines of cureatur
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These results will obviously persist if one takesdiheles () to be normal to a fixed
plane.

Weingarten Surfaces

8. — We have considered some congruences of spheres sutifethiaes of curvature
correspond on the two focal sheets. S. Lie’s transtion makes spheres correspond to
lines and lines of curvature correspond to asymptotic lingégs then natural to also
consider congruences of lines such that the asymptotesspond on the two focal
sheets. We confine ourselves to the case in which thgrwemce is a normal
congruence, and the problem will then amount to lookingstofaces such that the
asymptotes correspond on the two sheets of the developable.

Therefore, let X) be a surface on which we take the lines of curvatureetdhe
coordinate lines. Leét m, n be the direction cosines of the normal, andReR be the
radii of principal curvature. The two sheets of the tpable are defined by the
equations:

(9 X=x+R], Y=y +Rm Z=z+Rn
9 X’'=x+RI, Y'=y’+Rm, Z'=z+Rn.

We seek the asymptotes &,((S") and express the idea that the differential equations
u, v that define them are the same. Here, the coordina¢és florm an orthogonal,
conjugate net:
d$ =E df + G dV,
>1d*=Ldf +N dv,

and [Chap. IIl, 8 10 and Chap. IV, § 2]:

i_t 1_N
R E’ R G’
SO:
S1dx=Edr+ Sav
R R

The formulas of O. Rodrigues give:

o _ 10x om_ _ 1loy on_ 1oz

u  RaU ou  Rau’ u  Rau
and

a _  10x om_ 1oy on_ 1oz

v RV v R & RV

and consequently:



336 Chapter XIll — Congruences of spheres and cyclic systems

dX = dx+RdI+IdR——d +—d— 19X g L 9% d9+IdR
ou Rou RO v
or
(1) dX:( jaxd v+1dR
R )9

As one could have predicted, that formula andiitalogues show that the normal to
(S will have the direction coefficients:

ox 9y o0z

ou’ du’ du’

Furthermore, one concludes that for that surf&e (
R 2
(2) ds* = (1_ﬁj GdvV+dR,

which exhibits a family of geodesias= const. on the surfac&)(and their orthogonal
trajectoriesR = const. [Cf., Chap. Ill, § 9, Chap. VII, § 2, aGtap. XIll, § 2].
The differential equation of the asymptotes is:

2 dl-dX=0,

Zd(%jmx:o.

or

We develop that equation upon appealing to the ddasn (1). The coefficient of

R :
1-— |- dvis:
( j vis

Now:

ox [ 0x 0X 0°X 0x 9%x
Z—d =dull ———+dvlp ————.
ov \odu ov ou ovouov

0X 0X _

ou ov
SO

x0x__g0x x __L0E
ov ou? dududv  20v’

and
x O°x _ 146
ovoudv 2 du

On the other hand, the coefficientdR is:
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ox 9°x 9°x E
ld|— | =) I—du+ ) | dv = =du,
2 (auj ) ou’ ) ouov R
so the equation of the asymptotes will be:

(3) 1(1—5}[—6—%[; dv+a—G d\?}+—E dRdi= 0.
2 R ov Jdu R

From the general properties of the developablahettongruences [Chap. VI, § 2], the
curvesu = const.,v = const. correspond to conjugate curves on thiaciS). Hence,
the coefficient otlu dvin the preceding equation will be zero:

(4) - E(l_ﬂja_'5+_E@ =0
2 R)ov Rov
and equation (3) will become:

1(1—5ja—de2 +E%Rr -0
2 R Jou Rou

Similarly, on the surface(), one will get the condition:

1( R’jaG EOR
— + :0
Ju Rou

© 2R

in such a way that the equation for the asymptoneS) can be written:

_%ﬁdvz+_E@du? =0,
R? du Rou
or
(6) Gmd\f_ EM dd = 0.

ou ou
Similarly, the differential equation for the asyroas of §) is:

e9@/R) yp - GOAR) o=,
ov ov

(7)

In order for those equations to be identical, tegessary and sufficient that:
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d(L/R) 9(/R)

ov ov _
01l/R) 0(1/R) ’
ov ov

l.e., that 1 Ris a function of 1 R. The radii of curvature are functions of each other
(Ribaucour). The surfaces that satisfy that condition are calledngarten surfaces or
W-surfaces.The minimal surfaces are a special case of tiiemR = 0).

Suppose that we start with a surfadd) (as the surfaceZ] in the preceding
calculations.R is a function oR, and the condition (5) will show that:

2InG -y R %
ou Ju
SO
ING=x(R) +8(V),
and

G =e® &R = F(R) K(v).
Formula (2) gives thds’ of the developable, and it will then be written in fbwem:

ds’ = @4(R) K(v) dV* + dR%.

Set:

K(v) dv=dV,
and it will become:
(8) ds? =drR + ©4(R) dV?,

which is the characteristic form of the element af length for a surface of revolution
with respect to the meridians and parallels. If eferthe meridian to its arc length
then its equations will be:

x=0(0), y=0, z=04(0),
and those of the surface of revolution will be:
X =0(0) cosV, y=0(0g) sinV, z=04(0),
so due to the fact th@'* + ©,? = 1, one will deduce that thi’ of the surface is:
ds’ =dd? + ©%(0) dV2
Upon settingo = R, this will be formula (8).
One then sees thiite developables of any surfad) can be mapped to a surface of

revolution, such that the meridians will correspond to a family of gecglesid the
parallels to their orthogonal trajectories.
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Application — Suppose that the surfacd))(has constant negative total curvature
[Chap. IV, § 6]. Upon changing units, one can always s this total curvature is
equal to — 1. One will then have:

or

The condition (5) will then be written:

( 1)6@_ 2G 0R
= | ==-25
R?) ou R du
or
0InG_ _ 2R 90R__0In(R*+1)
ou RZ+10u ou '

One concludes from this that:
1

R?+1

K(v),

and if one again seth/ = / K(v) dv then one will infer from formula (2) that:
ds = (R + 1)- dV? +dR.
Then set:

O(R) = R*+1,

and from the calculation above, the meridian @&f shrface of revolution will be such

that one has:
X =4 0% +1,

o=+ x*-1.

SO

We look forz. It suffices to write:

B +dZ2=dP =dé - —

X2 -1’
and one concludes that:
2=
X -1
or:
dz= dx

Hence:
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z=1In (x +4/ x> -1),
S0

X+ X -1 =€
thus:

X—+ X°-1 =€~

Therefore, we finally get the catenachéinettg:
x=1(e’ +e®) =coshz

for the desired meridian. The catenary:

z
X =acosh—=
a

will likewise correspond to a constant total cunvatthat is equal to-(@%). Therefore:
The two sheets of the development of a surfacegstive constant total curvature
can be mapped to an alysséide;, the surface that is generated by a catematyttirns

around its base.




EXERCISES

FIRST CHAPTER

1. — Find the instantaneous axis of rotation and slidimgtHe Serret trihedron.
Confirm that it meets the principal normal at thetcarpoint of the ruled surface that is
generated by that principal normal [Chap. V, § 8, pp. 106].

2. — Find the circular helices that osculate a skew catvene of its points.
Determine those of its helices that have the sanseotoas the given curve.

3. — Determine the fundamental elements (arc lermgttvature, torsion) of the locus
of centers of the osculating sphere to a skew cu@enclude from that study that in
order for a curve to be a spherical curve, it is necgssal sufficient that the radius of its
osculating sphere must be constant. [Cf., Chap. V, §1.Q118].

5 [sic]. —

a. Show that in order for the principal normals aduave C) to also be the principal
normals of a second curv€(), it is necessary and sufficient that the radicofvature
and torsion of ) must satisfy an identity of the form:

h k
1 —+—=1 = const.k = const.).
1) R T (g K )

Find the relation that results fo€ (). Examine the case in which the osculating planes to
(C) and C’) at the points that were situated on the common ipahaormal are
rectangular.

b. Show that if one is given the relation (1) and $pderical curve )j that is
described by the point with coordinates:

E=acosf+a' sing, n=ppcos@+ [”sin g, {=ycos@+ y’sin@
(h=mcosf k=msinf
then the Serret formulas will yield:

ds
do

a, By, a, By, a, By,
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as functions of the arc lengthof ()), and for the curve(@), they will lead to the
equations:

(2) x=h[ &do-k/ (ndJ-dn), y= ..., z= ...

c. Verify that for any spherical curvg)( formulas (2) will give a curveQ) that
satisfies equation (1). (Such curves are caledrand curveg. Examine the special
case:

R=h, T=k,
which will yield thecurves of constant curvatuend thecurves of constant torsion.
6. — Determine a curveC] when one knows the expressions for the radius of

curvatureR and the radius of torsion as functions of the argtlea One will appeal to
the Serret formulas:

al a" a a"
dx=ad da=—d da”=—ds da’'=-|—+—|d
S R S R S (R Tj S

upon pursuing the following path:

a. Considera, a’, a”to be coordinates of a point of the sph&ewhose center is at
O and whose radius is 1. Take the unknowns to be thenptees of the rectilinear
generators ofX) by setting [Cf., Chap. IV, § 6]:

l+a’=-u(a+ia”), a+ia”=v(l+a),

and one will find thau, v are two solutions to thRicatti equationChap. V, § 10, pp.

112]:
dW= (MW?2 + M) ds {M :E(_H'_j, Mo=—1(—l—'—ﬂ-
2\R T 2lR T
b. Let:
U= Au, + B’ V:AV0+B
Cu,+D Cy,+D

(up = const. M = const.)

be two arbitrary solutions to that Ricatti equation. &lioat the pointsr, a’, a”; S, 5,
B”; v v, vy’ that correspond to the values:

=1 v=1, Uo:i, Vo:—i; UQZO,VQZOO

provide a solution to the problem, and show how one can ddtiecenost general
solution from it. — Conclude from this that there isi@imitude of curves €) that meet
the requirements of this problem and that they are alesuthat can be superimposed on
each other.
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c. What would make the ratR/ T const? Do the calculations while supposing that
R andT are constant.

d. Remark.— Upon consideringr, a’, a” to be the direction cosines of a given
direction with respect to three rectangular coordinaés,aany change of coordinates, or
(what amounts to the same thing) any rotation around tgenowill translate into the
same projective transformation that is performedi@mdv. The point at infinity in the
direction considered will then be subjected to the rgeskral projective transformation
in the plane at infinity that leaves the imaginarglei at infinity invariant.

CHAPTER I

7. — Consider the surfa&that is the locus of diametral circular sectiongdamily
of homofocal ellipsoids. Determine the orthogonalectories onS of the circular
sections that generate it.

8. — Determine all of the conformal representations ggleere on the plane. Find all
of the ones that give the known systems of cartograpbijegiions (e.g., stereographic
projection, Mercator projection).

9. — Suppose that the coordinate curves of a suBace rectangular. Lé¥lU and
MV be their tangents, and lgg be the angleMU, MT). Calculate the expressionsand
r; in formula (9) [page 35]:

sind d¢ _ du dv
— = —tr,—.
R ds ds ds

Generalize that, while supposing that the coordinasezdv are arbitrary.

10. — Establish the fundamental formulas that gg%sg, SI—;H by deducing the first

terms in the series developments [Chap. |, 8 5, ppf tHeocoordinates of a point of the
curve when referred to the trinedrdvh -TPB [Chap. Il, 8§ 4, pp. 28], and the series
developments [that are deduced frans f (u, v), y =g (u, v), z = h (u, v)] of the

coordinates of a point on the curve when it is referoethé¢ trihedrorM - TN’ N [Chap.
I, 8 4, pp. 29]. — It will suffice to calculate the tes up to degree two ois

11. — A surface9) is assumed to be defined to be the envelope of a faingdyrfaces
(%) that are given by an equation of the fdfrfx, y, z, u, v) = 0, in such a way that v
are the curvilinear coordinates of a running pdnbn (§. Any curve C) that is traced
on (S will then correspond to a family o6* surfaces .,), each of which cuts the
infinitely-close surface along a characteristic. (€t be those of the characteristics that
pass through the poiM of (C). Show that there is reciprocity between the dioes of
the tangents toQ) and K) at M. — Examine the case in which the surfaceg)(are
planes.
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CHAPTER IlI

12. — Consider the surface:

X:cz—bz[_lﬂ y:\/cz—bZDv\/bz—uz, Z:\/CZC—bZDu\/vz—czl

bc u-v b u+v u+v

Determine its lines of curvature and calculate the @dirincipal curvature.
13. — Show that the surfaces:
e™*®) = cosm (x — %) cosm (Y — )
are surfaces of translation whose two families of gepes are plane curves that are
situated in rectangular planes (parallelztox and zOy), and are such that the planar
generators that pass through an arbitrary point of tHacguare tangents to the conjugate
diameters that are equal to the indicatrix there. +fix@ the lines of curvature of those

surfaces.

14. — Consider the surface:

1 , 1
X = Ej(l—u ) f () du+—2j(1— V)g (V) ah,

= %j(1+u2)f(u) du—i—zj(1+ Vg (V) dy,

z= [uf(u)dut [ wp(y

Calculate the radii of principal curvature and dm®rdinates of the centers of principal
curvatures. Construct the differential equatiom tbe lines of curvature and the
asymptotic lines. Study the lines of curvaturddking:

ﬁ, ¢(V):L

t = (ME+P)?

and introducing new coordinates by means of thenfidas:

A+iu

u=mtan 5 v:mtan)l_l’u.

15. — In rectangular coordinates, suppose thahasdhe equations:

x=1e"cos —a) +ie" cos ¢+ a),
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y=1€"sin{v—a) +ie"sin (v + a),
Z=ucosa+vsina.

a. For each value of, those formulas will define a surfag . Indicate a way of
generating that surface. What &eandS;,, in particular?

b. Consider two of those surfacgs andSz , and make them correspond point-by-
point in such a manner that the tangent planes to thespmnding points will be parallel.
Prove that the tangents to the two corresponding cuthat are drawn at two
homologous points will define a constant angle.

c. Find the lines of curvature and the asymptotic lineS,adnd find a geometric
property of the curves to which they correspond &n under the preceding
transformation. What will happen far= 7/ 2?

16. — Study the surfaces whose lines of curvature of oskerayare situated on
concentric spheres. What can one say about thediheurvature of the other system?

17. -

a. If the coordinate curvas= const.v = const. on a surfac&)(are asymptotic lines
of that surface, and #, y, v are the direction cosines of the normal$pdt an arbitrary
point of (§) then show that there exists a funct@such that one will have:

dx=46 ,u(a—udu—ﬂ dvj—u(a—’u du—a—’u d\a :
ou ov oJu ov

dy=86 v(%du—%dvj—)l(a—u du—a—u d\a ,
| \du ov ou ov

dz=6 )l(a—’udu—a—’u dvj—,u(% du—% da :
| \du ov ou ov

b. Find theds’ of the surface, the equations of the lines of curvaame the equation
for the radii of principal curvature when one starts wiibse formulas. Calculate the
torsion of the asymptotic lines and show that it is esggd by means of only the radii of
principal curvature.

c. If one sets:

=26, m=u/8, n=uv8
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then one will get théelieuvre formulas.Show that, m, n are three particular solutions
2

of the same patrtial differential equations of the fegmgi =Ka
uov
CHAPTER IV

18. — Establish the integrability conditions that couple findamental invariants
while supposing that the surface is referred to its lofesirvature.

19. — Same question, but while supposing that the surfacéeiseteto a family of
geodesics and their orthogonal trajectories. Express ttal curvature and the
differential formds/ Ry — d¢o [Chap. Il, pp. 34; Chap. Ill, pp. 55] as functions of the
guantityH, and then recover the formula of Ossian Bonnet [Chgpp. 75].

20. — Find the integrability conditions that give the espien for the total curvature
while supposing that the coordinates are arbitrary.

21. — Discuss the form of the meridian of the surfaafesonstant total curvature
when that curvature is either positive or negative.

22. —

a. The equations of the pseudo-sphere are [Chap. IV, pp. 81]:
X =Rcosfdcos¢g, y=Rcosfsing, z=R {In tan(g+gj— sine} Q<6< ml2).

One will get one conformal representation of that serfan a half-plane by setting:

X =mg, y=—"1_ (m positive constant, thué> 0).
cosd

On the other hand, upon setting:
u=X+iY, v=X-1Y,
one will reducals’ to a form of type:

d52:—4|2 dudv
u-v°

b. Upon appealing to the coordinatey, find all of the transformations of the points
of the surface that preserve the arc length. ¢f imterprets this on the plan¥, (Y) then
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one will find that leave thé&-axis invariant, and that they change every circle ato
circle.

c. With that same conformal representation, the geodiesis of the pseudo-sphere
are represented by the semi-circles that have theferseon theX-axis and are situated
in the half-plane that is bounded by that axis and estenthe direction of positiv¥.

d. Up to the factol, the distance between two points isMy (Mo, A1, A2), if M1, M>
denote the homologues of the points in Xéplane, andA;, A; denote the points where
the X-axis is cut by the circle that is the image of the gsizddat joins the two points. —
The points of theX-axis play the role of points at infinity. — Two pairspmints whose
separation distance is the same can be made to comcaelisplacement of the surface
onto itself that is defined by the transformations thatesfound.

CHAPTER V

23. — Find the contact points of the isotropic plarted &are drawn through an
arbitrary generator of a ruled surface. What relatigndo they have to the central point
and the distribution parameter?

24. — Find the ruled surfaces whose asymptotic lines eteegjual segments on the
generators.

25. — Find the ruled surfaces whose lines of curvatureseteequal segments on the
generators.

26. — Find the lines of curvature and the geodesic lines aeWelopable that is the
helicoid.

27. — Show that the lines of an arbitrary surfeégef@r whichds— Ry dgo = 0 (with
the same notations as in exercise 9) are charastebiz the property that if one draws a
tangent to the curve = constant through each of the points of one of ttiean the ruled
surface that one obtains will have the line in quedboiits line of striction.

28. — Given a surfac&) and a curve@) on that surface, consider the ruled surface
(G) that is generated by the normB$l that are drawn to§ at the various points! of
(C). The central point oMN is called themetacenteof (S), which corresponds to the
point (M) and to the tangeMT of (C).

a. Determine that metacenter, the asymptotic plane tlandlistribution parameter.
Discuss the variation of the metacenter when theec(@y varies while always passing
throughM.
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b. Show that the metacenter is the center of curgabf the cross-section of the
cylinder that is circumscribed byS)( and whose generators are perpendicular to the
asymptotic plane o&.

c. Suppose that one has several surfagsa(d that one has endowed each of them
with a numerical coefficierd. Consider the point8l on those various surfaces (which
are taken on each surface) to be homologous when the tarigaas to those various
surfaces are parallel. L&, be the center of the proportional distances of ameh s
system of homologous poinks, and relative to the system of coefficieatsLet (&) be
the surface that is the locus of pai§ . Show that it corresponds to each of the surfaces
(S by parallel tangent planes, and thakyifs the metacenter o&{) that corresponds to
the various metacentetsof the surfacesSj that are found to be associated under the
correspondence considered then one will have:

(Xa) -Molo=2 (a- Ml).

29. — Suppose that one is given a skew cuRJehat is an edge of regression of a
developable ). Each of the generator&)X of such a surface is perpendicular to a
tangent planeR) to (&), and the point at whichd) and @) meet is the central point of
(G). Therefore, letX) be one of its ruled surfaces, so each of the isotqlpices that
pass through one if its generators will envelop a devblepaShow that the locus of the
midpoints of the segments whose extremities deschibeetiges of regression of those
two developables, independently of each other, is a mirsoddce that is inscribed in

().
30. -

a. Construct the equations for the radii of principal atuve of a skew ruled surface
(S with the expressions fats’ and the form that were employed in § 11 of Chapter V.

b. One then deduces the relation:

KM = [¢(v) —PT] /KT —K'T \J1-KT,
in which:

M—i+_1 T:;

"R R’ J-RR

Conclude from this that if the radii of principalreatureR;, R, are functions of each
other [Cf., Chap. XIII, § 8] theR, K, and¢ (v) will be constants.

c. Show that if that were true then the surfé@enfould be a ruled helicoid or a skew
surface of revolution.
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CHAPTER VI

31. — Consider the congruence of tangents that are coranbe two surfaces:
2+ = 2az, X +y =-2az

Determine the developables of that congruence. Studydtiges of regression, their
contact curves, and their traces on the pan®.

32. — If the two focal multiplicities of a congruence @otropic developables (viz.,
an isotropic congruence) then all of the ruled surfttaispass through the same line of
the congruence will have the same central point andatime distribution parameter. The
plane that is perpendicular to each line its of thegngence that is drawn at an equal
distance to the two focal points will envelope a minisalface. One can then obtain the
most general minimal surface.

33. — Suppose that the ray3)(@and O’) of two congruences correspond in such a
manner that two corresponding rays will be parallei.thé developables of the two
congruences correspond then the focal plane®pill be parallel to those ofY").

The lines Q), (A') that join the corresponding focal points will cutaapointM. The
locus of that point admitd] and @Q\') for conjugate tangents, and the conjugate curves
that are enveloped by those lines will correspond to déreelopables of the two
congruences.

CHAPTER VII

34. — Study the congruences that are composed of linearthéingent to a sphere
and normals to the same surface. Study the surfaaearthnormal to the lines of such a
congruence and their lines of curvature.

35. — Study the congruence that is composed of linesréhabamal to a surface, one
of whose families of lines of curvature is situated omcemtric spheres.

36. — Show that in the case where one of the shé#ie developable is a cylinder or
a cone, milling surfaces can be defined by the motion foéile plane of invariable
form whose plane remains constantly normal to andghi or a cone. Specify the motion
of that profile. Determine whether one can say shimgtanalogous for the general
milling surfaces.

37. — Show that the lines tangent to two homofocal quadmmnstitute a normal
congruence. If one makes all of those lines (when comsid® be light rays) reflect
from another quadric that is homofocal to the firsb tthhen what will be the focal
multiplicities of that second congruence?
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38. — Suppose that one is given two homofocal surfaceegree two and a plane
(P). If one draws tangent planes to the two surfacesigh the linesd’) of the plane
(P) then the linesd) that join the corresponding contact points willnaemal to a family
of parallel surfaces. Letd[ be the line that contains the poles of the plaP)ewith
respect to the two homofocal quadrics, and d&t) (be the line of the planeP) that
corresponds to a lined) of the congruence of normals considered. The plaakish
drawn through §) perpendicular tod”) will cut (d) at a pointm. The locus of the point
m will be one of the desired surfaces; it is a cyclidée developables of the congruence
will cut out conjugate nets on the homofocal nets.

39. — Consider the congruence of lines in space on whiek ffilanes define a tri-
rectangular trinedron that determines invariable segmefive that it is a normal
congruence and determine the normal surfaces to theolitke congruence. Determine
the focal points on any of those lines. Determinalifector cones of the developable of
the congruence.

40. — Prove that there exist (isogonal) congruences satthehfocal planes define a
constant dihedron. What is the property of the edgesgréssion of the developables of
the congruence with respect to the sheets of the $octdce that contain them? Find the
differential equation of those curves on the focalasef which is assumed to be given.
What can one say in the cases where one of thessbéehe focal multiplicity is a
developable, a curve, or a sphere?

41. — Consider a family of spheres whose locus of centés a plane curveQ) and
whose radii are proportional to the distances fronctmerswto a fixed line Q) in the
plane of the curve@). Show that all of the lines of curvature in the eopel of those
spheres will be planar. What can one say about theplainthose lines of curvature? —
Conversely, how can one get all canal surfaces whose dif curvature are all planar?

CHAPTER VI

42. — Suppose that one is given two curn@s (C,). Find all of the surfacess(on
which the contact curves of the cones that are circubel by § and have their
summits on C) and C,) will form a conjugate net. Upon definin@)(and Ci) by the
equations:

x=f(A), y=9), z=h (), t=k(A),
x=¢W), y=¢@W, z=x@, t=6(),

the most general surface that meets the requiremelhtsevdefined by the equations:
x=[AM T dA +[BW oW du

y=lAWgWdi+IBW wwdpy
z=AWhdA +[BWxWdu



Exercises 351

t=[A Kk dA +]BwW o du

Geometrically interpret the formulas that were ot&d in such a fashion that one can
find a geometric definition of these surfaces. Tramsftre results obtained by duality.

43. — Let E) be a sphere whose center i©aand whose radius is equal to unity. Let
(S be any sphere and Ie8’() be its polar reciprocal with respect ©).( LetM be any
point of (§ and let P) be the tangent plane at that point. Metand @) be the point
and the tangent plane t&’() that correspond taPj andM, resp., as polar reciprocals.
Now, consider the congruenc&)(of lines MM’ and the congruenceK( ) of the
intersections of the planeR)(and @”). Show that their developables correspond, and
that the developables oK) cut out conjugate nets orp(and & ). How do the
developables ofK) cut &)? — Determine Q) in such a manner thaK) is a normal
congruence. What can one then say about the developéigd®sand the surfaces?

44. — Suppose thaCj is a skew curve through a fixed pofdtand draw segments
OM that are equipollent to the various chords@f ( The locus of pointM is a surface
(S). Through each poi¥ of that surface, draw the parall@)(to the intersection of the
osculating planes taCj that is drawn through the poirfesandP; of (C) such thaPP; is
equipollent toOM. Let &) and &) be two sheets of the focal surface of the congruence
of lines Q).

a. Determine &) and &), theirds’, and theirY | d ?x. Show that the asymptotes
will correspond on%) and &). What are the curves d&j that they correspond to?

b. Find a necessary and sufficient condition ti@t rust satisfy in order for the
congruence of linegy) to be a normal congruence, and then find a normalcirf&8how
that the radii of curvature okEf are functions of each other.

c. While remaining in that case, refer di& of (S) to the geodesics that are tangent
to the lines #) and to their orthogonal trajectories. Concluderfithis that &) can be
mapped to a paraboloid of revolution.

N. B. — The last two parts of this exercise are h#dc¢o the end of Chapter XiIII.

CHAPTER IX

45. — Consider two rectangular planes and all of the $nek that the segment that is
intersected on each of them by the preceding planesah@onstant length. Find the
normal congruences of the complex of those lines.

46. — Consider three planes that define a tri-rectangutteadron and the lines that
are such that the ratio of the segments that arendieied by those three planes on each
of them are constant. Find the surfaces whose notmedédsig to the complex of those
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lines. Among those surfaces, there is an infinitudeesbnd-order surfaces that admit
the three given planes as symmetry planes. The pngcedmplex is that of the normals
to a family of homofocal quadrics, or to a family of dues that are homothetic with

respect to their center (vihasles complgx

CHAPTER X

47. — Study the asymptotes of third-order ruled surfaces. $awn the general
case, they will be fourth-order unicursals, and that gacierator will meet an asymptote
at two harmonic conjugate points with respect to the powitere the generator is
supported by the double line and the singular line.

Examine the case in which the surface is a Cayleyuriih a unique direction.

N. B. — As one knows, the equation of a skew ruledasartan reduce to either the
form:
X¥z-y't=0 (general ruled surface)
or the form:
X+ Xyz—y?t=0 (Cayley surface)

by a convenient choice of reference tetrahedron.

48. — Determine the asymptotes of tB&einer surface. For which curves is it
represented in the parametric representation of thacaif

N. B. — One knows that the equations of a Steiner suffage the form:

= f(u,v)’ y= g(u,v)’ S = h(u,v)’
k(u, v) k(u, v) k(u, V)

in which f, g, h, k are four arbitrary second-degree polynomials. rJp&cluding the
special cases, one can reduce it to the form:

2u 2v UtV

X= ———, y= 55—, 7= ——
u>+v:i+2 u>+v:+2 u>+v:i+2

by a projective transformation and a convenienicehof parameters. Any section of the
surface by a tangent plane will decompose intodamics. Upon interpreting, v as the
rectangular coordinates in a plane, the precedingulas will realize the representation
of the surface on a plane.

49. — Determine the most general canal surfacesavlimes of curvature are all
spherical. Show that those lines of curvaturelbmadetermined without integration.

50. — What can one say about the determinatiatheofines of curvature of a canal
surface that is envelope ®f spheres that cut a fixed sphere at a constant2ng|
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51. — Determine the ruled surfaces of a linear complxatimits a given line for its
asymptotic line. Show that all of their asymptotes caddvermined without integration,
and that they will be algebraic if the given curve gealaic.

CHAPTER XI
52. — Study the congruence of lines that are defined bygtieiens:
A/]+B,U+C:0, A1/1+Bl,Ll+Cl:0,

in which A, B, C, Ay, By, C; are linear functions of the coordinates and: are arbitrary
parameters. In particular, discuss the questions dirée that pass through a point, the
lines that meet a fixed line, the lines that are sithate plane, and focal multiplicities.

53. — Prove the results that were stated at the e®@ aff this Chapter.

54. — Prove, by calculation, the properties of the taagformation that were stated at
the end of § 4 of this chapter.

CHAPTER XIlI

55. — Consider a family ob® paraboloids ) that have the same principal planes.
How must one choose those paraboloids in order for dmgraence of rectilinear
generators of the same system to be a normal congré@ned of those paraboloids?
Show that the paraboloid®)( will then constitute one of the three familiesaofriply-
orthogonal system and find the other two families. ohhat one can choose the
paraboloids P), more especially, in such a manner that one of tlotiser families is
again composed of paraboloids and give the geometric isgmie of the two families of
paraboloids in that case.

CHAPTER Xl

56. — Let § be an arbitrary surface, and |€t)(be an arbitrary plane. Consider all of
the spheresl) that have their centers 08) (and cut the pland) at a constant anglg
such that one will have cas= 1 /k. Let (§") be the surface that is deduced fré@®nlly

reducing the ordinates o$) perpendicular tol{) by the ratio,/1-k*/ 1. The spheres

(V) envelope a surface with two sheets. Show theit tmes of curvature correspond
point-wise with the ones 01%(). Examine the case in whic§) (has degree two.

57. — Describe a circlK] in the tangent plane to a surfa& ét each poinM whose
radius is equal to a given constant.
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a. Determine the families ob’ circles K) that generate a surface on which those
circles are lines of curvature. Find the loci of tkaters of the spheres that have such a
surface for their envelope.

b. Find the necessary and sufficient condition far tircles K) to define a cyclic
system. |If that condition is assumed to be satisfieen let §) be one of the normal
surfaces to the circle&). Show that the lines of curvature &) will correspond to the
ones on § when one makes each poit of (S correspond to the poir¥l; of the
corresponding circle wher&y is normal to K).

c. Show that &) has constant total curvature, and that the line congeutnat has
(9, () for its focal surfaces is a normal congruence.

d. LetC be one of the centers of principal curvatureQfgt M, and letC; be the
center of principal curvature 0% atM,, which corresponds tG. Study the congruence
of linesCGC, .

58. — Given a surfaces), let (C) denote any of the lines of curvature of one of the
family, and let C”) denote any of the lines of curvature of the other farmlguch a way
that a curve @) and a curve@’) cross at a poitl of (S). Let w ' be the centers of
principal curvature that correspond to those two curves,letG, G be the centers of
geodesic curvature of those two curves.

a. What can one say about the congruences that areddfy the four linedMG,
MG’, G G'w', respectively?

b. Let ()) be the osculating circle t€) atM. Prove that )) generates a canal surface
whenM describes a curve&E(). Find the spheres whose envelope is that canal surfac

c. Show that if § belongs to one of the families of a triply-orthogbsystem then
the osculating circles to the orthogonal trajec®oéthe surfaces of that family that are
constructed at the various points 8f (ill define a cyclic system.

59. — LetO be a fixed point, and leS| be an arbitrary surface. Draw the tangent
plane P) to (S at an arbitrary point, and drop a perpendiculaPoffom O; let H be its
foot.

a. Find the curves offj that admitMH for their normal at each of their poiris

b. Let HI be the midpoint of the triang@HM. The congruence of linddl is a
normal congruence. Find the surfaces that are normall tf those lines. Show that
their lines of curvature will correspond to a net of agage curves that are described by
M on §).
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c. LetK be the point at which the plane perpendiculav{® meetsMH, and let ()
be the circle with its center &tthat passes through and is situated in the plandOK.
Show that the circleg)(form a cyclic system.

60. — Describe a spherg)(that is tangent to the plax®y at each poinM of the
paraboloid:
(P) xy —az= 0.

Let A be the contact point ok} with that plane, and I& be the second contact point of
(%) with its envelope.

a. What sort of curve onPj must M describe in order foAB to generate a
developable? Those curves will form a conjugate nePpnafnd their tangents at each
point M will be perpendicular to the focal planes of the congecaethat is generated by
AB.

b. Determine the lines of curvature of the envelope9f (The normals that are
drawn to the envelope along each line of curvature wilbatita conjugate net oR)

c. Consider the circleQ) that is normal toX) at A andB. Show that there is an
infinitude of surfaces that are normal to all of tireles (C) and determine them.

d. Show that those surfaces form one of the famdiea triply-orthogonal system
and succeed in determining that system.



