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1. In some preceding publicationy,(I was led, in the study of the propagation of a
disturbance as a wave according to the law of envelopawgs (Huygens’s principle), to
restate two general problems in the calculus of vanatio

a. The study of the minimum of a definite integraltbé given (homogeneous)
form:

1) I= F(a, oo X d, .., dX),

taken along an arc of a variable curve with given extresn

b. The study of the minimum value that is taken bpr@ablet at the extremity of an
arc of a variable curve with a given origin and extrejvatyd whose value is given at the
origin of this same arc and satisfies a given diffea¢equation:

(2) dt=F(t | g, ..., Xo | dX, ..., dXy).

These two functionals represent, in fact, the duratiotihe propagation along the arc of
the curve considered, from its origin to its extremitya regime that is permanent in the
former case and variable in the latter.

The essential fact that one confirms is that theimmim is given by the arcs of the
trajectories of propagation, at least for sufficiemtéighboring extremities, when the arc
considered pierces the elementary waves that iseueifs successive points (and in the
sense that the disturbance is propagated along that)catveéhe points in whose
neighborhood these waves are concave towards taréispiective origins.

In the first of the two articles recalled, | deduced ti@isult from a consideration of
the second variation; in the second one, | also ermagdl@ydirect method that was more
rigorous, and which is equivalent to the methods of Weaas and Hilbert, and from
which, the study of the propagation of waves follows alnnatuitively.

() Sur linterprétation mécanique des transformations de contact infimisdss (Bulletin de la Soc.
math. de France, XXXIV, 1906); Essai sur la propagation par ondes (Annales de I'Ec. Normale 3fip.,
series, t. XXVI, 1909).
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In his thesis, and later on, in his memoir on themgfrmaxima and minima‘)(
Carathéodory has made use of a geometric representatidrich one is involved, in the
casen = 2, and for the first of these two problems, with Weeve curves that are called
indicatrices. In hisLecons sur le Calcul des variatio(f$, which we shall refer to often
in this article, Hadamard used an analogous geometrical egpagsn: It is what one
calls thefigurative of the problem. Moreover, he introduced its polar reagl, the
figuratrix. He did that in the general problems to which he gavedhees of.agrange
problem and Mayer problem and which differ from the preceding ones in that the
variablesy, ..., X, are linked by some given differential relations:

3) Fr(X1, ..., Xn | OX, ...,dX%,) =0 th=1,2 ...0),
in the case of the integral (1) (the Lagrange problend); a
(4) Fr(t | X1, ..oy X | OXg, ..., dX) =0 h=12, ..,0),

in the case of equation (2) (the Mayer problem).

However, for these two authors, the purpose was onijugirate some analytical
results, whereas from our viewpoint, the elementaryesa- or the wave multiplicities
that are their homothetic transformsare at the root of the problem and completely
dominate it. For example, it is what one finds imposesblabely at the introduction of
the partial differential equation of Hamilton-Jacobattliefines, for us, the families of
waves that issue from the disturbance simultaneousiy the various points of that
multiplicity, as well as the introduction of the cammal system, which is the complete
translation of the general motion of propagation whosentaseharacter is to be a
displacement of the contact elements of the waves.

2. In the following pages, we treat tlh@grange problenfrom the same point of
view. The elementary waves and the wave multipéisithat correspond to them are
1-dimensional multiplicities here, whose point-like suppoontains "~ ? points.
However, if one wishes to have true propagation them ienled to assume that the
tangential supportof these multiplicities- i.e., the system of planes of their contact
elements- contains»""* planes b Now, this amounts to assuming that the problem of
the calculus of variations is amdinary problem(*), a hypothesis that is also imposed in
the calculus of variations for different reasons.

In our preceding articles, we have shown the impoetariche tangential viewpoint
in the problem considered; it is equivalent to the camatibn of Hadamard’s figuratrix.
Here again, it is the representation of the wave pliglily by its tangential support that

() Ueber die discontinuerlichen Lésungen der Variations-Rech(@igingen,1904);

Ueber die starken Maxima und Minima bei einfachen IntegréMath. Annalen, v. LXIl, 1906).
Carathéodory said that hirdicatriceswere no different from theave surfacethat one uses in optics, but
he made no use of this analogy. Moreover, the merobi@arathéodory were not available to me at the
moment when | published my preceding articles.

() Paris, 1910. Hadamard taught at the Collége de Franite @alculus of variation starting in 1902.

() Without this, the disturbances produced at an arbitpaigit would not propagate, if a definite
orientation is chosen for the contact elements atpibiat. | will return to this point in a later work.

(%) Cf., Hadamardoc. cit, pp. 239, 267, 268.
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is fundamental to our method. It is quite remarkab& thpermits one to avoid the
objection of du Bois-Reymond on the premature introductioth® second derivative
into any question in which one does not assume its egestarpriori. Indeed, it is the

canonical system of Hamilton that first presentdfiigseorder to define the extremals of
the problem.

One also avoids any very delicate discussions tleatezessary in order to justify the
use of Lagrange multipliers, because here they presemtselves in order to define the
choice that one has to make between the various ¢aieameents that are associated with
each point on the successive elementary waves thaheogintered by an extremal, and
one sees, in addition, the true significance of thaskpliers.

As far as the conditions for a minimum are conedrnwe limit ourselves to
establishing sufficient conditions by generalizing thehmédtthat was already employed
in our article in theAnnales de I'Ecole Normalel909. It again translates into the
condition for the concavity of the wave multipliesi towards their origins, which does
not seem to have been stated for that problem previously.

In order to facilitate our presentation, we have ltedan part one the principles of
the geometry of multiplicities that will employ. @ie, one will find, in addition to the
double representation by means of the point-like support amgemntial support, the
definition and study of the concavity, whether at a acihelement or in the domain of
such an element. In order to discuss this concavig,i®ted to consider the quadratic
form:

w= Zn:dpdq,

i=1

wherep;, ..., pn are the coordinates of a point of a contact elemathtya ..., g, are the
direction coefficients’j of its plane. The study of this quadratic form comewn to
that of another quadratic form in which the givens efrdpresentation — whether point-
like or tangential — of the multiplicity come into playThe notions of “osculating
element” and “asymptotic variation” for the most genenaltiplicities depend upon that
same fornw. The fact that they vanish identically charactertheslinear multiplicities.

3. The consideration of waves, where the integratepresents a duration of
propagation, demands that the differential element beéiy®m As one knows, one comes
to this case- viz., the one in which that element changes signgatbe arc of the curve
considered- upon adding a conveniently chosen total differentigf:td his amounts to
performing a projective transformation that is the dulbdranslation on the wave
multiplicity (which may always be defined). From thewp®int of the statement of
these results, it is more natural when one restoctsself to the consideration of
elementary waves: The minimum comes about if theigavity wher is positive
and convexity whek is negative.

() In order to better exhibit the dualistic charactealbof the considerations that come into play, we

n

have imposed the conditioR pg = 1 on theser2coordinates. However, nothing essential will change if
i=1

one employs homogeneous coordinates.
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The process of representing wave multiplicities, whiwé have systematically
employed, uses the tangential equation in the form thablved with respect to the
homogeneous coordinates. In reality, this entails sergéml restriction, because the
condition of possibility that comes about is the dhat also presents itself in the
application of the existence theorems for integrala dffferential system in differential
equations for the extremals, when it is written infdren that was given by Lagrange.

Nevertheless, we reserve the demonstration that octnochef defining equations for
the problem in the calculus of variations is not relatedthe particular mode of
representation, but only to the sign of the diffemnélement, for another work. That
demonstration may also be extended to the case of fauittpgrals.

In conclusion, we remark that the analytical chimaof the differential equations of
the problem that result from our argument consistshefdne that expresses that the
variation of the curvilinear integral:

(5) | Z o dx

is null, the variableg, ..., Xn; qu, ..., g, being coupled by just one relation:

(6) G(Xl, ...,anql, ...,qn):0.

One may, in turn, attach the study of the Lagrange prohbtethe reduction of a Pfaff
expression. Here, we limit ourselves to the indmatof that new method that is
susceptible to being extended to non-ordinary problemsMinger problem, and also
problems of the extrema of multiple integrals.



|. - REMARKS ON THE GEOMETRY OF MULTIPLICITIES.

1. In ann-dimensional space, we denote the Cartesian coordio&tas arbitrary
point byps, ..., pn, and agree to reduce the equation of an arbitrary plathe form:

1) >ax=1

X1, ..., Xy being the current point-like coordinates. The giveardmates of acontact
elementwill then be 2 numbersy, ..., pn; g, ..., g that are linked by the relation:

(2) 2. pa=0.

One finds that the contact elements whose plane pdssegh the origin and the ones
whose point is at infinity are excludet).(

An n — 1 dimensionamultiplicity (M) will be defined by a systen of n + 1
equations between the coordinates of a current contawemeiethis system is subject to
the double condition of having equation (2) as a consequé&wcere or the other of the
following two Pfaff equations’:

© >adp=0,
@ 3 pdg=0,

i=1

which are equivalent when one takes equation (2) intouatco

Now, one may eliminatey, ..., g, between the equations of the syst&n One thus
obtains a certain number of thet 1 equations iy, ..., pnthat are independent of them.
Likewise, one eliminateg, ..., p» and obtainsG + 1 equations i, ..., g, that are
independent of them. The two partial systems thus obtained:

0,12 ..09
0,12 ..09,

(5) Fn(P1, ..., pn) =0 h
(6) Gu(d, -+, Gn) =0 (

() If one has to consider one of them then one may eettuthe normal case, respectively, by one of
the following transformations (translation and catieke translation):

[ ) " — G P = .
(RURETI R (i=1,2,..0);
I — A (- Pi P —
o=0q+h, P i=1,2,..n).

| #Xhp

() One generally speaks only of equation (3). Our exposhias the goal of making appear the
absolutely symmetric role of two groups of coordingtes.., p, andq, ..., gy -



E. Vessiot: The theory of multiplicities 6

define what one may call thgoint-like supportand thetangential supportrespectively,
of the multiplicity, namely, the locus of points an@ flamily of planes, respectively, that
define part of the contact elements of that multipfici

The one or the other of these supports defines thepiuily entirely. We recall the
reason for the point-like support, for example.

To say that equations (5) express the result of thanaliran ofqy, ..., g, between
the equations of the syste®) (s equivalent to saying that the equatidhs =0 (=0, 1,

2, ..., a) express all of the independent relationsgdp, ..., dp, that result from the
differentiation of the equations of the syste8). ( Equation (3) may only then be a
consequence of equatiods, =0 h =0, 1, 2, ...,a). Upon expressing this fact, one
obtainsn — a — 1 homogeneous linear equationsyin ..., g, that are independent and,
along with (2), which is not homogeneous, constitute stesy &) of n — a linear
equations that are independengin..., g .

Having said this, letpg, ..., pn) be a point of the support (5). From the definition of
support, there is at least one contact elemen¥dtifat is associated with this point, and
the coordinatesy;, ..., g that succeed in defining such an element satisfy ittear
system k), by virtue of the definition of multiplicities and theggeding explanations. If
we would therefore like to determine all of the contdements of) that are associated
with the point considered, we may deduce fraxh the expressions fan — a of the
unknowngg; as functions of the other onesjy ..., g4, for example — which will amount
to calculating them in such a manner as to satisfy qoat®ns obtained by substituting
these expressions in equatioiss. ( These equations i, ..., gesare not incompatible,
and, moreover, they might only be identities, becatberwise the systeng) will be
equivalent to a system that is formed from more thanl independent equations, and
the multiplicity (M) will have dimension at least— 1.

The contact elements d¥1j are therefore defined entirely by equations (5) and the
system E) (). As for systemY), it is formed from equation (2) and the equations
obtained upon eliminating the auxiliary unknowhs(h = 0, 1, 2, ...,a) between the
equations:

(7) q = Iy (i=1,2 ..n),
op,

wheref denotes the function:

(8) fO = ZAh Fh

of the independent variables ..., pn; Ao, A1, ..., Aa.

It is, in general, preferable to maintain equations (7) $hahthe general contact
element of i) is thus found to be expressed by means ofithel parameterd, and the
n — a — 1 parameters that the current point of the pointdikegport depend upon. The
parameters are coupled by the relation:

() The following theorem results from thiall of the planes that are associated with the same point
and define contact elements(bf) define a linear systenand, in turn, correlativelyAll of the points of the
same plane that define contact elemen{8/4)f along with that plane, constitute a linear variety.
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: 6f0_

9) Z Py =L

which results from (2).

One remarks that this relation excludes the case whHaee system (5) is
homogeneous, because the left-hand side of (9) is tirarlled for any point of support.
Indeed, in this case all of the contact elementdifgre found exclusively by condition
(2).

All of these reasons and results apply to the targjesutpport. One thus has another
form for the equations of the multiplicity by associgtequations (6) with the equations:

(10) pi = (i=1,2 ..n),
ag
where one has set:
B
(11) go = zluka ,
k=0
and the equation of condition:
n ag
12 90 —
(12) Zq, o

It finally results from this that equations (6) reduitm the elimination oy, ..., pn;
Ao, A1, ..., Ao between the equations (5), (7), (9), and that equation®¢g)t from the
elimination ofqy, ..., On; Lo, t4, ..., 4p between the equations (6), (10), (12).

2. The preceding formulas are simplified if one gives aiq@dar form to the
equations of support that is equivalent to the use of polardmates. For example, we
occupy ourselves with the point-like support and supposedirsil thata = 0. Any
point of this support is found on a certain ray that is$t@m the origin, whose direction
parameters we denote by, ..., an, and whose length we denote Ay It is found to be
defined by the equation:

(13) Fo(oay, ..., oan) = 0

One may consider it as definingoltb be a function ody, ..., a, in a neighborhood of the
point in question, because, by excluding the contact elesméhose plane passes through
the origin we have excluded the hypothesis that0. One thus obtains, for this domain,
an equation of the form:

(14) L Fa .. a)
0

The functionF remains positive in this domain. One may obsemereover, that it
remains definite for the valuesa, ..., ma,, wherem is sufficiently close to 1, because
they are also as close as one desires to thel valizes, and, from the form of (13), one
sees that the value pfthat is deduced by continuity from the first oaehereforeg/m.
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Therefore, the value of a/is n/p; i.e., the functiorF is (positively homogeneous of
degreeone(}); one may apply the Euler identity to it and its padierivatives will have
the known positivg homogeneities.

All of this remains true if one considers, more generaly ..., a,, p to be
coordinates that are linked to the coordingtes.., p, by just the relations:

(15) =08 (i=1,2 ..n),

without imposing any restriction am, ..., a,other than that they have the same sign as
the oy, ..., an, respectively. One may likewise assume #iat.., a, have values that are
close as one desirespg ..., pn, and as a result, one will deduce from equation (14), the

equation:
(16) = F(&”&j: EF(pl’ ”_’pn)’
e p) p

since 1p will be as close toneas one desires.
As a consequence, the equation of support wikkapm the form:

(17) 0 =Fo=F(py, ..., pn) — 1,

whereF has the indicated property of homogeneity. tlésr that this equation, from the
manner by which we arrived at it, might represenly @ portion of the point-like support
that is encountered at a point by at most onerarlgitay that issues from the origin.
Here, this ray is subject only to at most the dtoowl that it sweep out only am
dimensional) portion of the space considered.
If, on the contrary, one now supposes that O then its direction must satisty
conditions that one may write in the form:

(18) Fn(P1, ...,Pn) =0 h=1,2 ...0).
The functiond=, F4, ..., F; having been chosen, one immediately sees thaitmond

(9) is equivalent todp = 1. The multiplicity M) is thus defined, for the portion in
guestion of the point-like support, by the equation

(19) F(pi, .., pn) = 1,
(20) Fn(p1, ...,pn) =0 h=1, 2, ..,0),
(21) Qi:%, f=F+> AF, (i=1,2 ..n).

One might remark thdtis homogeneous of degreaewith respect to all of the variables
P1i, .-y Po; A1, ..., Ao, @nd always from the positive viewpoint. It thesults that the

() If it happens that it is not initially defined for aif the values oMma, ..., ma, (m > 0) then the
property of homogeneity will permit us poolongit to all of these values. However, the negative vatiies
mremain excluded.
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tangential support will be deduced from only the equations §80)(21); i.e., without
involving equation (19).

One will remark that one may replace equation (19)duagon (2), in the preceding
system, due to the homogeneity of the functieradFy, .

The tangential support will be susceptible, in turn, toreogous representation that
will be applied to a portion of that support such thabittains only a plane that meets an
arbitrary ray that issues from the origin orthogonallyhe equations of that support will
then be of the form:

(22) G(a, -, 0n) = 1,
(23) Gk(ai, ..-,0n) =0 k=12, ..0,

G and G beingpositivelyhomogeneous has degree one and tBg have degree zero

(). Moreover, in order to have the multipliciti), or at least the part of it that

corresponds to that portion of the tangential suppod,uast add to equations (22) and
(28), the equations:

0 B
(24) =3
oq; k=1

Sinceg is positivelyhomogeneous of degree oneqify ..., On; £4, ..., U, the point-like
support here is defined by just equations (23) and (24). Fif2By,may be replaced by
equation (2).

3. Suppose that the multiplicityM) considered depends upon one or more
parameters, and letbe one of them; this parameter will figure in the fiold F, Fy, G,
Gk . The derivatives of these functions are then caupleone simple relation that one
obtains by differentiating the identity (2) totally witkespect to all of the variables in
guestion, including the parameter Equations (3) and (4) are no longer verified, and one
obtains only:

(25) Y.qdp+) pdg=0;
i=1 i=1
i.e., due to the formulas (21) and (26):

. of " 3g
(26) O ap+5 % g4g=o.
2op BT L5, 90

On the other hand, due to (19), (20), (22), (23), one hadehéties:

(27) f=1, g=1,

() The following results subsist, as far as their esalenare concerned, and the arguments are
modified only slightly, when one supposes that the degf&é®mogeneity of th&, and theGy is equal to
one. This hypothesis is often more convenient in appboat
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which one may differentiate. Since one has:

(28) Mk =12 .0, Beoc k=12 ...
04, Ot

the terms irdA, anddi do not enter in, and what remains is:

of
29 —da+ ) —dp =0,
(29) - éan R

dg - 09
30 —~da+ ) —<dq =0.
(30) a éaq q

(31) T 498

4. Here is another remark that we will make use of:

Suppose that the tangential suppom is 1-dimensional, which, for us, will be the
most important case; equations (23) do not exist thergaeduces td&s. Due to their
homogeneity, equations (24) thus give a parametric repetgaen for the point-like
support by means of the parameters..., g, where it is only the ratios that come into
play. Due to this circumstance, we may likewise supplsethese parameters verify
equation (22).

One then has thapy ..., pn; 01, ..., On) IS @ contact element of the multipliciti}
that is associated with the poimt,( ..., pn) of the point-like support. However, it is not
necessarily the only one. In order to find all of theme must search for all of the
systemsy, ..., pn; V1, ..., Yn) that satisfy the conditions:

(32) 2 ViR=1, >, vidp=0.
i=1 i=1

The pi are given by equations (24), and among their different@le may considelt,

., dg, to be independent, because it now only comes down to tsngarametric
representation for the point-like support, for which onkk have make an abstraction of
(22), due to the homogeneity of formulas (24). The equatibtiee problem are then:

(33) Zy, 6q, 1,

(34) Yy,
Z aqaq,
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In order to solve them, one first determines the gemsetation to equations (34) and one
disposes of the arbitrary factor that appears in it ichsa manner as to satisfy the
condition (33).

Therefore, if the Hessian &, which is identically null, due to the homogeneity&f
is only of rank one then the system (33), (34) has onlysoh#ion, which is:

(35) Yi =G (i=1,2 ..n),

and the contact elememyf ..., pn; Q1, --., On) IS the only one that contains the point of
support py, ..., pn). This is the case when equations (24) give just dadae between
Pi1, -.., Pn; I.€., the point-like support is itsaif- 1-dimensional.

If, on the contrary, the Hessian Gfis of ranka + 1 (@ > 0) — i.e., if the point-like
support isn — a — 1-dimensional — then this support is represented by gtemsy(19),
(20), and the result that is expressed by formulas (2lysihat the general solution of
equations (33), (34) is written, witharbitraryus, ..., U :

(36) Yi:i, f=F+> uF (i=1,2 ..n).

Now, equations (19), (20), (21), in turn, have, as a consequequations (22) and
(24). Therefore, equations (19), (20), and (36), which diffely dy a change of
notations, will first have, as a consequence:

(37) G=G(y1, ... Yn) = 1,

in which, to abbreviate, we writ€ for the functionG, when it is written in terms of the
lettersys, .., Yn, in place of they,, ..,q,; moreover:

(38) pi = G (i=1,2 ..n).
oy,

As a result, any solution of the system (33), (34) sasishe system that is defined by
equation (37) and the equations:

(39) 9G_06 (=12 ..n).

gy, 0g

Suppose, moreover, that the multiplicity)(depends upon a paramegeas in no. 3.
Due to formulas (36) and (24), thkemay be considered to be well-defined functions:

(40) B = QG ) + iuhqh(q,---, Q) (=12 .0
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of the variablesy, .., g ; Ui, .., Uy, Which constitute the general solution of the system
(33), (34), and these functions turn, not only these equatohslso equations (37) and
(39), into identities. In the present case, these iesitare also valid ah, which
likewise enters as a parameter into the coefficientd formula (40). One thus obtains
equations (33) and (37) by differentiation with respeet to

(41) Zy, 6q, 21_ dy=0,
(42) da+z— dy=0;

thus, upon taking equations (39) into account, one has timeier

(43) By 22

which is a new consequence of equations (33) and (34).

5. In the application of the study of multiplicities tiee calculus of variations, the
multiplicity (M) will be given for us by equations (19), (20), which define itsphie
support, and we then make use of the representation (22),(223) which is based on
the tangential support. We must therefore examine untiat sort of condition this
second mode of representation is legitimate in the domhia contact element of a
multiplicity.

More generally, take a point-like support that has a— 1 = ydimensions and is
represented by the arbitrary parametric equations:

(44) pi = @ity ..., t) (i=1,2 ..n).

The contact elementg( ..., pn; Qu, ..., On) that are associated with an arbitrary point of
this support are defined by the equations:

n 00
(45) zqiﬁ:o (=1,2 ...
Y
which is equivalent to the condition (3), and by equat®)nwhich is written here as:
(46) zqi¢i =1
i=1

In order to arrive at the representation of the tanglesiipport in the form (22), (23), we
give direction coefficientshy, ..., by) to the normal to the plane of the contact element
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and we seek to determine that element (cf., no. 2revapalogous considerations are
applied to the point-like support). We must then pose:

(47) g=bo (i=1,2 ..n),

and seek to obtain &/as a function ob;, ..., b, by eliminating the parametets ..., t,.
To that effect, we have made use of the equationsatieabbtained by substituting the
values (47) in equations (45) and (46). If, to abbreviate, tyevbde considerindp, ...,

b, to be given constants:

(48) Btt,)= Y04
then this gives the equations:
09 _ _
(49) a_t, =0 (=12, ..
and:
(50) 1=¢
o

and we may replace the latter with the combination:

4

(51) __¢ zt|_— h -

Since one then has the identity:

9
(52) dgo + Zt 6? =

one sees thap, is a function of those derivative®p / ot that are independent. As a
result, everything depends uniquely on the functional detentmiofathese derivatives —
i.e., on the Hessian of the functigh. Then again, if one studies what happens in the

domain of a contact elemenpy( ..., pn; Qu, ..., On) Of the multiplicity then, from the
nature of the Hessian of the functiontof...,t,, one has:

(53) ¢ =>aé,

wherequ, ..., g, are considered to be constarls (

() One arrives at this same result more quickly by corirfignthat equations (45) determine the points
of the support where a tangent plane is parallel tpldree:

n
2gX =0.

i=1
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For a general contact element of the multiplick4) (this Hessian will be of a certain
rank 5 (£ = 0), and in the domain of that element one will haverdmgesentation (22),
(23), (24) of M). Furthermore, such a representation will cease tapiplicable only for
the contact elements that raise the rank of theiadessnsidered.

6. One arrives at a more geometric statement if oserebs that this Hessian is the
discriminant of the quadratic form idt;, ..., dt, that one obtains by calculating the

differential expressiorw Ede dq corresponding to an arbitrary displacement of the
i=1

multiplicity when starting with one of its elementdeed, one has:

(54) Zdndq quZ 'dt ‘ZanM' dg.

1=1 i=1

However, the differentiation of the identities (45)shyives:

(55) Zn:%f' dq+2qd f 0 (=1,2,..);

in such a way that one has:

(56) w= Zdn dq=- ZQ.ZZ

i=1 I1=1m= 1atatm

and the Hessian considered is precisely the discrimioanbhe quadratic form thus
obtained.

Since the multiplicity i) is n — 1-dimensional, this quadratic forEdp dq will be
i=1

written in the most general form by meansef 1 independent differentials, and must be
considered to be a quadratic forrmir- 1 variables. By the mode of representation that
we employed, we will have thus obtained that form indagea = 0 (y=n - 1); i.e., in
the case where the point-like support has the maximunb@&uaf dimensions. One sees,
moreover, that if5 = 0 — i.e., if the tangential support also has the maximumber of
dimensions — then the rank of its determinant is auallf that quadratic form is of general
class.

In the general case, the rank of its discriminamthile always considering it to be a
quadratic form im — 1 variables- is a + S, and the form is the sum ai ¢ 1 —a - )
independent squares. Of course, this supposes that oneing deth a variation dp;,

., dpy; day, ..., dq,) that is performed by starting with a contact elenodiiM).

The representation(22), (23), (24) &nd then also, by reason of symmetry, the
representation19), (20), (21)]may cease to be valid only in the domain of theamin
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elements that raise the rank of the discriminant of the fmnenz dpdg. We say that
i=1

such elements atleXCEPTIONAL.

7. This statement, which summarizes the preceding discyssieasy to apply to all
of the modes of representation of the multiplicity. order to solve the question that was
posed at the beginning of this paragraph, we apply it toabe where the multiplicity is
given in the form (19), (20), (21). The quadratic form toseder is then:

n n n aZf
(57) w= ) dpdq=
izzl: = ;apiapj

2 9F
dpdp +;hz:la—n: dpdi ;

however, one must suppose that the variadyes..., dp, are coupled by the equations of
condition that are obtained by differentiating equatid® and (20), namely:

(58) Zn:ﬁdp =0 h=1,2 ..0),
iz 0P,

°, F
(59) 9F 4o =0,
29p P

which reduces the number of variabths, ..., dp,; dAy, ..., dA,ton — 1. Indeed, one
must observe that we pass oversiagular, the points of the point-like support for which
these equations (58), (59) cease to be independent dpthe., dp,, because for such
points the normal condition of solubility for the sy® (19), (20) ceases to apply.

As for the quadratic form (57), it reduces, upon taking (5#) account, to the form:

(60) anzn: 9 f'dpdq,

and we have to determine the rank of its discriminang .+ the difference between the
number of variables (which is— 1, here) and the number of independent equations that
are obtained by equating to zero the partial derivativabeoform with respect to these
variables.

We recall how one resolves questions of this typeé:Q.ée a canonical form im
variablesXy, ..., Xm that are coupled by independent linear relations O, ...,L, = 0.
One may make a linear change of variables such thatam®lenticallyL, = Xy, ..., Lp =
X = 0, and since the equations of condition are ¥en0, ...,X, = 0 it then remains for
us to consider the form:

(61) Q =Q(0, ..., 0,Xp+1, .., Xm),
which gives the system:
(62) a—Q:O (=p+1,..m),

oX,



E. Vessiot: The theory of multiplicities 16

which is equivalent to the system:

a_Q: (i:p+]_,...,m),

(63) X,
X,=0 (h=12;-,p).

Now, if one considers the quadratic fornmnt+ p variables:
p p

(64) S=Q+Y Y, L=Q+Y VX,
h=1 h=1

and if one equates its partial derivatives to zero therobtans the system:

Q- —19..,

6Xi +Y, =0 (h=1,2;--,p),
(65) §—§= (=p+1.-.m)

xh:O (h:]_,z’...,p)’

which obviously containp independent equations more than the system (63), intdvwhic
the variablesry, ..., Y, do not enter. The rank of the discriminantQ®fis thus the same

as the tank of the discriminant §fin which them + p are independent.
We apply this result to the form (60). Upon settimgabbreviate the notatiodp =
P (i=1, 2, ...,n), we will have to consider the quadratic form:

(66) > Y TRR Y >R Py +Y S P,

which gives the system:

" §%f  &OF, .,  OF
(67) — P+ —"Y+—Y=0 (=1,2,...n),
;apiapj ! ;69 " op
(68) ﬁP,. =0 h=1,2 ...0),
=1 0P,
", OF
(69) & p-=o
;6pj ’

Multiply the equations (67) and (68) pyandAy, respectively, and add them. Sirice
is homogeneous of degree one with respept &md A, and since one has:
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oF, _ 0
op, 0A0p,’

we obtain, upon also taking into account the homogenditlfrcand F, and finally
equation (19), the simple combination:

(70) Y=0.

The system considered is therefore equivalent to thetlmteone obtains by adding
equations (69) and (70) to the system:

(71) $ 0T pusFyog (=12 .0

j:lapiapj | h:1ap h y y saayll),

(72) ?Pj =0 0=12 ..0)
i=1 0P,

Equations (69) and (70) are obviously independent of each offguation (70) might
not be a consequence of equations (71) and (72), and theissémne for equation (69),
because it does not admit the solution:

PJ:pJ (i:]-! 21 ...,n), Yh:Ah (h:]., 2, ...,0’),

which satisfies the system (71) and (72) for the reasbih®mogeneity that were used
before.

The system (67), (68), (69) thus has a number of indepeadeaations that is higher
than both of the independent equations of the system (72),combined. Now, this
latter system is, up to notation, the one that onaidtby equating to zero the partial
derivatives of the quadratic form that constitutes thket+thand side of the identity (57).
Since that form containg + 1 variables less than) the form (66), we conclude theite

rank of the discriminant of the fOI’mEde dq is greater bya — 1 units than the rank
i=1

of the Hessian of the function f. It will likewige greater by3 — 1 than the rank of the
Hessian of the function g

Therefore,the exceptional elements of the multipliciiy), which are defined by
equations(19), (20), (21)for which the correlative mode of representati@2), (23),
(24) might no longer be valid, are the ones that raise tank of the Hessian of the
function f.

() One must recall that (66) must be considered as dependinghepuariable® =dp (i = 1, 2, ...,
n,dA, (h=1, 2, ...,0), Yo (h=1, 2, ...,0) andY. Thus, if the system (71), (72) contains exactly a —
(8 + 1) independent equations then the rank of the Hessifais ¢f + 1), and the rank of discriminant of
(66)isn+20+1-q+a-L+1)=a+ [
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n
8. The study of the fornw Ede dqis equivalent to that of the second order
i=1
projective properties of multiplicities. It will pertmone to classify, in a more precise
manner, the exceptional elements that we just consideyemeans of the number of
units by which they elevate the rank of that famm

For examplen = 3 in the case of ordinary space. For non-develomabfacesa =
0, 5= 0, andwis a general form in two variables. The exceptiot&ahents, for whichw
is a perfect square, correspond to the parabolic poirdspfort; the ones for whidris
identically null correspond to tangent planes for whieé distance of a neighboring
point of contact of such a plane is an infinitesinfagreater than second order.

For the developable surfaces 0, 5= 1, andwreduces, in general, to a form in just
one variable; it becomes identically null for the epiional points where the order of
contact of the tangent plane with the surface is daise

For only one plane, one has:

a=0, f=a,
and the form is identically null.

For a curve, one has= 1, and the case af= 1, 5= 1 comes about only if the curve
is a line. One thus has, in gene@k 0, andw is a form that is reducible to just one
square; it is identically null for the exceptional cmitelements that are formed from a
point of the curve and its osculating plane.

For aline,a=1,4=1, andwis identically null.

Finally, for a pointewis again identically null.

In the case wherm is arbitrary, the rankd + f) of the discriminant is necessarily
equal to at mosh — 1. This is obviousa priori, because thea(+ 1) equations of the
point-like support and the5(+ 1) equations of tangential support are independent, and the
total number of equations between ..., pn; 0, ..., g, that define am — 1-dimensional
multiplicity is n + 1. We remark that this is equivalent to saying that sum of the
numbers of dimensions of the two supports is equal to sttrieal.

One may show that if the preceding inequalities areggwmto equalities — i.eif,
the formais identically null- then the multiplicity is linear.

Indeed, refer to formula (66). We may suppose that omel@sen the coordinatgs
to be the parametets, ..., t,, y; for examplepsy, p2, ..., py. Theqi O, ..., gy then
disappear from the form (56), while the equations of d¢@mwi(45) can be solved
precisely with respect to these coordinates. In ordeexpress the idea that (56) is
identically null, one does not therefore need to takeetpeations of condition into
account, and one obtains the result that all of ¢sersd derivatives of the functiong,{,
@2, ..., ¢n) are identically null. These functions are linead,aass a consequence, the
same is true for the equations of point-like support aisd, a8 a consequence, that of the
tangential support, from the duality of all of our consadiens.

One verifies, moreover, that if the point-like suppsrt

(73) o= ana =12, . ¢+1)



E. Vessiot: The theory of multiplicities 19

then the tangential support is given by equations (45), veneh

a+l

(74) Q + zahlqy+h =0,
h=1

and by equation (46), which reduces to:

a+l

(75) zahqy+h =1
h=1

We remark that, from the remarks that were made aloowemay state the result thus
obtained:The only multiplicities for which the sum of thembers of dimensions of the
two supports is equal to # 1 are the linear multiplicities; the two supports af
multiplicity are linear at the same time if that ltiplicity is n — 1-dimensional

On a nonlinear multiplicity, the forrmr may thus be annulled identically only for the
exceptional elements, which one might call dseulating elements.

9. Consider a contact element for the multiplicitM)(for which the formw =

n

de dq is neither identically null nor reducible to just one squd). There are then
i=1
variations @pi, ..., dp,; dai, ..., dg,) that one performs by starting with an element that
annuls the formw. They are what one might calsymptotic variationshowever, it is
intended that one will rule out the ones for whicho&llhedp or all of thedg are null.

If one considers, more especially, the point-like supf@n an asymptotic variation
will correspond to armasymptotic directioron that support. However, & is non-null
then that asymptotic direction will inversely correspaadan infinitude of asymptotic
variations, because tlg are expressed by formulas (21), tlgp depend upon thdp ,
and thedAy, and thedA, remain arbitrary here, since they disappear from thauta (57)
when one takes (59) into account. On the contraryaslgenptotic variation is entirely
determined by the asymptotic direction when the tangent@dort isn — 1-dimensional.

If one considers the tangential support then an asymptoiation will correspond to
an asymptotic characteristicnamely, then — 2-dimensional linear multiplicity that is
defined by two equations:

(76) >ax=1 > dax=0.

One then sees immediately that an asymptotic vaniasi defined by the association
of a direction in the point-like support and a characiergdtthe tangential support such
that the characteristic contains the direction. &beoer, one sees the reciprocal in the
same equations at the same time. It is, of coursendetkthat the direction and the
characteristic considered are supposed to be furnished bgrtigevariation and contact

() The case of a one-dimensional point-like or tangentippaii is excluded by thiss¢e equation
(56)].
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element considered on the multiplicity. We again mdnthat anyn — 2-dimensional
linear multiplicity that is contained in the planetbé contact element and passes through
the point of that element may be considered to beweacteristic of that element.

n
10. The formw = de dq intervenes once more in the notions of thacavityand
i=1
convexityof a multiplicity, which play an essential role imetcalculus of variations. In
order to define that notion, one may adopt either of taeretative viewpoints: Letp,

.evy Pr; O1, ..., Qn) e a contact elemeri) of the multiplicity and let(p;, ..., p,; 4, ..,
g,) be a neighboring contact elemer’)(of the same multiplicity, which will be
arbitrary in the domain oH)).

From the first viewpoint, the multiplicity will beoncave a(E) towards the originf
the point of E') is constantly on the same side as the origin vefipect to the plane of
(E). From the second viewpoint, the multiplicity wile concave atH) towards the
origin if the point of E) is always on the same side as the origin with regpdtie plane

of (E'). This will therefore translate, according to the addgefinition, into one or the
other inequality:

(77) Zn: pg -1<0,

i=1

(78) Zn:p,q’—1<0.

i=1

The two definitions are, moreover, equivalent if onesabars theconcavity in a
region of the multiplicity: The elementE}, (E') are then two arbitrary elements that are
different, but sufficiently close to that domain, gldy a symmetric role in the question.

The concavity in a region, no matter what the suppoint-like or tangential — is
thus expressed by inequalities of the same nature asdbdl@t define the multiplicity.

We return to the concavity at an element and consfderexample, the inequality
(77). Thep are then deduced from theupon given arbitrary infinitely small increases

to the parameters that define the particular elen®ntdnsidered. If we order the left-

hand side of (77) in increasing powers then the term okdexgro, which isz pg-1,

i=1

is null, due to the condition (2), and the set of teodnBrst degree, which isz pdq, is

i=1
null due to equation (3); finally, the set of terms afs® degree is, as would result from
the differentiation of the equation (3):

i=1

(79) Y.qd’p=->.dpdg=-a@
i=1

One obtains the same result for the left-hand siqég)f
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As a consequenctje one or the other concavity is realized if the feotakes only
positive values for any variation performed on the contact element coidéVe
intend this to means that the variation neither anallilsf thedp nor all of thedg . The
one or the other concavity may be realized only if the fartakes on only positive or
null values.

One naturally passes from concavitycomvexityupon changing the signs in all of the
preceding.

If one of the two supports of the multiplicity is edenensional then one sees from
formula (56) that at an element that is neither sgngobr osculating the multiplicity is
either convex or concave towards the origin. On twrary, if the two supports are at
most one-dimensional then the concavity and the cotywerust be considered as
exceptional casesThere is concavity or convexity if all of the asymptotic variatemes
imaginary, because then the formr may not be annulled or change its sign, and the
preceding stated sufficient condition is found to besBadl.

11. That same sufficient condition demands that in ofdeft to be verified, at least
one of the supports must be- 1-dimensional. Indeed, refer to formula (56) and the
considerations of no. 6. If the tangential support ismetl-dimensional then the right-
hand side of (56) decomposes into at lgastn — a — 1 squares; upon equating these
squares to zero, one defines one or more real asymptgpiackments on the point-like
support. Now, if the point-like support is also less thar 1-dimensional then, in
addition to thedt , some arbitrary quantitiedd, (h = 1, 2, ..., @) enter into the
expressions for thdg , as we remarked in no. 9. The real asymptotic displants
obtained thus correspond to real asymptotic variationshinhathedq , not just thedp,
are not all null; i.e., the asymptotic variation iseefive.

We suppose first of all that the tangential suppor is 1-dimensional, and limit
ourselves to considering only exceptional contact element® sufficient condition is
found to be equivalent to the following one: The fogrs the sumoh -1 -a =y
independent positive squares. When expressed by the fofs@)land considered as a
formindt, ..., dt,, wis thus a positive definite form.

Next, consideww in the form (57) or, more precisely, consider the f@omn then +
a independent variabledy,, ..., dp,; dAy, ..., dA, that constitute that expression. We
know, from no. 7, that in order favto be the sum af — 1 —a = yindependent squares,
it is necessary and sufficient that the fomm be the sumoh + a - 1 =y + 2o
independent squares; in other words, the Hessiars afull, but not of all of its minors of
rank one.

In order to express the second part of the condiperform the reduction afo into
squares. Upon setting:

(80) Un = Z?dp (h=1,2 ....0),

n
i=1 I

and lettingVy, ..., Vhn—, denote some other linear formsdp,, ..., dp, that define, along
with the formsUs, ..., U, , a system o independent forms, one may write the quadratic
form & as:
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(81) za: +Za:UhU’h +Q(V4, ..., Vioa),

whereQ is a quadratic form and where thg, are linear forms iUy, ..., Ug; V4, ...,
Vih-o. Thus, upon setting:

(82) Wh = dAn + U] (h=1,2, ....0),
we will have:
(83) @ =Y UW,+Q(Vy, ..., Va-a).

h=1

Since@ reduces tg/+ 2a independent squared,will be the sum of only squares =
n—a— 1), in such a way that one finally has:

a )4
(84) @ =Y UW,+ > &T?,
h=1 1=1

where thdJ,, , Wy, T; are independent real forms and thare equal to (+1) or(Q).
If one takes into account conditions (58), (59) thenTiheill become new linear
forms T in only thedp,, ..., dp, , and since th&Jy will null, and we will obtainy

independent squares fav, theseT' will be independent forms, in such a way that the
reduced form otwis:

/4
(85) @ =Y &T".
1=1

The sufficient condition for the concavity thus damds that thes are all equal to
(+1), and if one refers to formula (84) then one shastthis is equivalent to saying that
& decomposes into:

a+y=n-1

positive squares and negative squares. We thus arrive at the following ceruiu

The sufficient condition for the concavity is expressed, in theofgse 0, by the fact
that the quadratic form in s ¢ variables:

- 0= 350 anon +3:5 % o

= jzlapap,

decomposes into a sum(af+ a — 1)independent real squares, wheref them have the
(=) sign and(n — 1) of them have thet) sign.
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We pass to the case where the tangential supportig3(~ 1)-dimensional £ > 0),
but where, as a consequence, the point-like suppartdid f-dimensional. The functidn
reduces td~, and thedA, disappear of the forrw, which is simply:

L& 0°F
(87) @ = dpdp .
2.2 500p WA

Since the rank of the discriminant @fis theng, the Hessian of is, from no. 7, of rank
L— (al— 1) =4+ 1, and decomposes into+{ S — 1) independent squares, like the faom
itself ().

Thus, if one has put into the form:

(88) @ =) T, (0=n-4-1),

one sees that, when one takes into account (59].tbecome linear forms in onty— 1
independent variables, and one will have:

[}
(89) o= T2
=

The sufficient condition for concavity in the case 0O is therefore that the fornw
contains only positive squares.

We add that the same mode of reasoning will prove, mareragiy, thatthe form
@ has 2a independent squares more than the faomwith a positive squares and
negative squaresThus,in order for @wto have only positive squares, it is necessary and
sufficient thatw have only a negative squares.

Finally, a necessary condition for the concavity is that then @ contains only
positive squares and, in turn, that the fo@rcontain onlya negative squares.

One naturally obtains results that are entirelyilamby starting with the tangential
representation (22), (23), (24) of the multiplicity. Them & will be replaced by the
form:

(90) @=33%-29 dqdg +Z

n B
i=1 j=1 ap|ap]

3G,
—xd ,
1og °%

and the numbeg by the numbep.

() In a general manner, one concludes from no. 7ithany casel contains2a independent squares
more tharnwo. Here,a = 0, so the number of squares is the same in théotws.



Il. - THE LAGRANGE PROBLEM. FORMULATION IN EQUATIOIS.

12. The problem in question is that of the study of thedgé@mms for an extremum for
a curvilinear integral im-dimensional space:

1) | Fow oo Xa | O, .., dX),

that is taken along an arc of the curve whose extegniniight be subjected to given
conditions of a diverse nature, which themselves may bé restricted to satisfying a
first-order system of differential equations:

(2) Fr(X1, ..., Xn | OX, ...,dX%,) =0 h=1, 2, ....0).

We suppose that the arc of the curve is given paramigrity means of a variable
that varies from 0 to 1, for example, and alwayseases.

TheF(Xy, ..., % | Y1, ..., ¥n) is, as one knows a (ositively homogeneous function
of the argumenty,, ..., yn. We suppose, moreover, thgiki, ..., X, | dx, ..., dX,) takes
on only positive values?), at least for the curves that we will consider, ahd t
differentialsdx, ..., dx,correspond to an arbitrary positive incredse Fn(x1, ..., Xn | Y1,
..., Yn) are homogeneous of degree zero, and at least positiviely,respect to the
argumentys, ..., Yyn. We then set:

(3) F(X1, ..., X | dX, ..., dX) = wdu;

wwill be a positive variable that is defined by that equataoxd we will have to study
the extremum conditions for the integral:

(4) 3= [Lwdu.

Furthermore, we replace the equations of conditionr{@)(a) with the following system,
which is equivalent to it, due to the conditions of homeggrthat we assumed:

5) dx = wp du i=1,2,..n),
(6) F(Xl, ...,anpl, ...,pn): 1,
(7 Fr(Xt, «+s X | P1, ..y Pn) =0, h=1, 2, ..3).

In other words, we introduce, along with the varialalewhich corresponds to an
integral element, the variablgs, ..., pn, which correspond to a curve element, and we
see that the problem is characterized by the naturkeomultiplicity (6), (7), which is

() Cf., HADAMARD, Lecons sur le Calcul des variatigris|, pp. 80.
(®) This restriction, as we will show later on (no. 2@y be raised. Cf., HADAMARDpc. cit, pp.
384.
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found to be associated with each poxit (.., X,) of space. Due to formulas (5), we must
interpretps, ..., pn @s the coordinates of a point of the same space véipfeceto a new
system of axes that are parallel to the original coatd axes, and have the poxat ...,

Xn for its origin: This amounts to saying that in théegmal system of coordinates, this
same point will have the coordinatas+ pi, ..., X, + pn . The point-like multiplicity ¥)
thus introduced will be called tiveave multiplicity which has the poink{, ..., x,) for its
origin.

Consider the points of space as being affected by maddits or disturbances,
which then propagate, step by step, according to the follolaimgThe disturbance that
IS present at a point and a certain instant is presegt an infinitesimal timelt at all
points of theelementary wavéhat one obtains by constructing the homothety owéree
multiplicity that has the point in question for itsgn, which is also the pole of the
homothety, and the homothety ratiods This amounts to saying that the possible
displacements of the disturbance by starting with @aatt (i, ..., X,) during the timedt
are given by the general formulas:

(8) dx =pi dt (i=1,2,..n),

wherepy, ..., pn must satisfy the equations (6) and (7).

One then sees from formulas (5) that the differéerglament of the integral
represents the time that the disturbance takes in prapgdetm a point of the curve
considered to an infinitely close point that followsraj the same curve. As a result, the
integral itself represents the duration of propagatiomefdisturbance from the origin to
the extremity of that curve, when one supposes thapmigbits any propagation of that
disturbance outside of the points of the curve itsé&his is then what we shall call the
duration of propagation of the disturbance along the curve.

If, for example, the problem posed is a problem of findinginimum then it comes
down to the determination of the curves along which theagation considered moves
the fastest.

13. The method that we shall present consists of consgléne wave multiplicity to
be a multiplicity of contact elements and employing fitnenulas that were obtained in
the first part of this article in order to transform gystem (5), (6), (7): The variablgs

.., Xn must be considered to be simple parameters that appéarformulas in question,
such as the parametgrconsidered in nos. 3 and 4.
We may thus introduce the new variablgs..., A, , and the formulas:

9) q=— (i=1,2 ..n),
wheref is the function:

(9) f=F+> AF,;

() If a > 0 then it is a multiplicity that is just — o — 1-dimensional from the point-like viewpoint,
which is the only one that we will consider at thenmeat.
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in such a way thatp(, ..., pn; Qi, ..., 0n) are the coordinates of an arbitrary contact
element of the wave multiplicity (cf., nos. 1 and 2).

Since the Hessian 6fs of rank 1 here, if one suppose that the problesndimary (*)
then the tangential supportris- 1-dimensional. One may thus, under the conditiéns (
that were discussed in nos. 6 and 7, employ formuldsedbrm:

(10) G(Xl, ...,anql, ...,qn):].,

_0G

(11) pi = a_q,

(=12 ..

to represent the wave multiplicity, where the firaeaesults from simply the elimination
of thep; and thed,, between the equations (7) and (8) (cf., nos. 1 and 2).
We are then reduced to the followiognonical problem:

PROBLEM A. —Find 2n + 1functions ¥, ..., Xa; Q1, ..., 0n; wOf one variable u that
satisfy the equations of condition:

(20) G, oy X |01y -y Q) = 1,
(11) dx = wg—Gdu i=1,2..n),
G

and such that one has an extremum for the integral:
1
(4) J= [ wdu.

The functions ..., X, are, moreover, subject to certain conditions & kimits(u =
0, u = 1) of the integration interval, and the functiammay be positive in that interval.

A necessary condition for the extremum is, as omaws, thatdd be null for any
system of variationgx, ..., &, ; A, ..., &, wthat satisfies equations of condition that
are obtained by taking the variations of the two sidemgoftions (10) and (12), and are,
moreover, such thak;, ..., I, is annulled at the limits of the interval of integwat

It is this condition that we shall first seek to eegs.

14. In order to avoiding having to introduce the conditd = 0, we introduce an
unknown function by setting:

(13) ¥=0 ) (i=1,2 ..n).

() Cf., HADAMARD, loc. cit, pp. 239, 267, 268.
() In fact, the restrictions that they impose onphablem are in the nature of the question itself, as we
will confirm later on (no. 20).
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Due to the homogeneity @, since the functioryis assumed to be positive the system
(10), (12) will be replaced by the system:

(14) W =G(X1, ..., X0 | s -o» ) =G,
(15) dx = waﬁdu =12, ..n).
oy

Equation (14) then has no other effect than determigintdpne equation that one deduces
by taking the variations has no other utility than dateing d, and none of these
guantitiesys, oy enter into the relations betweeén, ..., XK, ; I, ..., On; W X1, ..., Xn;

W, .- Vn; @ U. In order to express the idea tlddtis null, we will then have to take into
account only equations (4), (15), and the ones that oaneliiy taking the variations of
the two sides of each of these equations — i.e.:

(16) &= [ awdu,

dox & 0°%G' 092G G .
17) —=w oX. +w oy, +——w i=1,2,..n).
an du ;ayiaxj J ;ayiayj V) ay ( )

In order to express that tldg are annulled fou = 0,u = 1, we shall seek to calculate
them upon considering, ..., &,; dwto be known; i.e., to integrate the system (17).

According to the most elementary method, we considex torresponding
homogeneous system:

dz . 9°G' :
18 — = w Z =12, ...n).
(18) du ;ayiaxj J ( )
Let:
(29) Z = Z k=1,2,..ni=1,2,...n

ben independent solutions of that system. Applying the mktiwvariation of constants,
we may then set:

(20) ¢x:i@% (=12 .0,

which gives the system:
n dgk _

21 — i=1,2, ..n),
(21) g;a.du ( )
upon setting, to abbreviate:
n 21 ’
(22) A;:a)Z 0°G oy, +aGJa) (i=1,2,..n).

= 0)0), oy
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Now, it is obvious from formulas (20) that tbe are annulled simultaneously when they
are based upon th& , and only in this case. The condition that is imposether;
then amounts to the following one: The functidaswhich are solutions of (21) that are
annulled foru = 0, are also annullad=1.

In order to calculate these functiofis we put the system (21) into the solved form:

(23) d‘(k = kal (k=1,2, ...n.

The functionsy; are defined by the equations:

n 0 fork# j
24 L =

i=1

They constitute what one calls thdjoint systento the system of tha; and the
formulas:
(25) Vi = Vi (=212 ..nk=12, ..n

definen independent solutions of tlagljoint linear systeno the system (18), namely:

dv . & 0°G
26 —tw
(26) du ;ay@g

v.=0 i=1,2,..n.

J

One then has, for the desired functidps
(27) &=["> vAdu k=1,2, ...1),
i=1

and the conditions that they are subjected to are obthieegarding formulas (22):

(28) szk'{wiaya V, gf&u}duzo k=1,2,..n).

Moreover, all that remains for us to do is only fortausvrite that the integral (16) is null
for any choice of function®y, ..., o ; ow that satisfy the conditions (28). The
condition {) is thus that there existconstantss, ..., ¢, such that one has the identity:

(29) ow= Zc{z (wiacz/?y %, L9G &UH _

i=1 =1 oy

() This condition is well-known, at least, in an equével form. We shall return later on to its
statement and proo$éeno. 23).
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This decomposes into:

o, 0G'
(30) Yim—=1,

2 o
(31) Y, (=12 ..n),

Z ayay]
when one sets:
(32) Yi = D GV (=12, ..n).
k=1
Now, whenc,, ..., ¢, are arbitrary constants, the right-hand sides of #teerl

formulas are the general solution to the system (28)e condition found is then that
there exist a solution =y, (i = 1, 2, ...,n) of the system (26) that satisfies equations (30)
and (31).

If one now recalls the variableg, ..., d,, by means of equations (13), since @&/
dq and 0°G / 0q; 0x, are homogeneous of degree zero and od@ / 0q; 0g; are
homogeneous, then one obtains the desired condititwe ifollowing form:

In order for the variation of the integral J to loeill under the conditions that were
assumed, it is necessary and sufficient that terigt n auxiliary functions;y ..., y» that
satisfy the equations:

(33) i a); 2q0% Y, (i=1,2, ...n),
(34) Zy. oq b
(35) Zl) 6q|6q] = (=12 ..n).

15. However, this result can be transformed if one takesaccount the remarks of
no. 4. We first examine the simplest case: thahefree extremunt'). The point-like
support of the wave multiplicity is — 1-dimensional, since there are no equations of
condition. Equations (34) and (35) then adwit g (i = 1, 2, ...,n) as their only
solution, and since one has identically:

0G _ & 9°G
>

(36) =204
ox Z  0x0q;

() Cf., HADAMARD, loc. cit, pp. 41.
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the condition obtained is that the functions X., X, ; qi, ..., 0n; @ Which, by hypothesis,
satisfy equation§10) and(12), alsosatisfy the equations:

(37 dg =—-w— du (i=1,2,..n).
0%

One remarks that it results from this that the fumgiqg are themselves
differentiable, since they are identical to the fuontsy; that are, by their definition itself,
derivatives. By virtue of the relations (8), (11), (1B)stis equivalent to saying ths,

..., Xpare derivatives of second ordemhe hypotheses that are implicitly necessitated by
our reasoning are only those of the continuity ofdbavatives of first order, as well as
the existence and continuity of the partial derivatiwéthe functionG that appeared in
our calculations.

Equations (12) and (37) leave arbitrary the choice ofuhetion «j which one must
address, due to the indeterminacy of the parametric repatisa that was adoptedne
will thus have to integrate the canonical system:

dnggdt(hLZpgm,

(38) ag
do =gl at (i=1.2:.n)

when one takes initial values that sati¢fy)). Since equations (38) admit the first
integralG = const., equation (10) will then be verified for anytegs of functionsx, q;
that is thus determined. Whewaries by increasing, the point( ..., X,) will describe a
curve that is called aextremalin a definite sense namely, the sense of propagation
and thepositivevariation oft from one point to another of the curves is the duradibn
the propagation of a disturbance along the arc of theeaomsidered. This amounts to
saying that:

(39 dt= wduy,

as one sees by comparing the two systems (38) and (12)a87)o saying thawdu is
the differential element of the integrdl(cf., no. 12). The variation of that duration of
propagation between two arbitrary points of an extresnalill when one replaces the arc
of the extemal that goes from one point to the otlethe sense of propagation, by
another arc of the curve that is infinitely close &ad the same origin and extremity.

16. One must observe that if an extremal curve is knowith the sense of
propagation along that curve, then the valueg:pf.., g, at each point of that curve are
determined completely, with no new integration, andviliéablet, which corresponds to
the duration of the propagation from one point to therdm that curve, is obtained by a
guadrature.

Geometrically, this amounts to saying that at eachtpdithe curve the direction of
the tangent that corresponds to it, in the sense of propagatierces the wave
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multiplicity that has that point for its origin at ailkdefined point, and thus determines a
contact elementp(, ..., pn; Qi, -.-, On). Moreover, the corresponding elementary wave
must pass through the infinitely close point on the cualeg taken in the positive
direction of the tangent, while the homothety rattoof that elementary wave and the
wave multiplicity is also known.

Analytically, this fact results from formulas (39), (8), and (8), which give:

(40) dt=F(Xq, ..., % | X, ..., dX,),
_:d_)ﬂ i =
(41) P= (i=12,...n),
(42) qw:aF(‘“"’ggd‘“"’d‘) (=12 ..n).

This leads one to search for a differential systemch defines the extremal curves
without passing to the auxiliary variablgs ..., g, .

The solution results immediately from the compari®f the equations (38), (41),
(42), and the equation (31) of no. 3, which gives:

(43) —+— =0 (=12, ..n).

One thus obtains the well-knowlifferential system of the extremals:

qOF 0% %o, dx) 0 F(x-, X [ dxi-, d¥)_,
(44) odx adx
(i=1,2;--n).

17. We now pass to the general case oftcthestrained extremal

The point-like support of the wave multiplicity tkenn — a — 1-dimensional since
one must account for equations (2). Each poinhaf support correspond to” contact
elements, whose coordinatgs, (..., pn ; V1 -., Yn) are defined precisely as functions of
them and one of theyq, ..., pn; &1 .., 0y) by equation (34) and (35) [equations (33) and
(34) of no. 4].

Upon taking into account equations (37), (39), &) of no. 4, one sees that if one
sets, for the sake of neatness:

(45) G =G(X, «vvy Xa| Y1u -s V),

then one may add to the system thus found, whidefsed by equations (10), (12),
(33), (34), (35), the equations:
(46) G =1,
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(47) G _36 (=12, ..n),

dy, 0g

which are consequences of them, and that one may reptaeations (33) by the
following ones:

(48) dy =— w—du (i=1,2 ..n).

Equations (47) then permit us to write equations (12) india:f

(49) dx = 2 du (i=1,2,..n).
oy;

Finally, equations (34), (35) express only th@t (.., pn; 01 .., and 1, ..., Pn; Y1
.., Yn) are two contact elements that are associatedthatipoint p,, ..., pn) of the wave
multiplicity, and due to equations (47) the coordinateshf point may be written as
eitherpy = 90G /dq (i = 1, 2, ...,n)orp = dG/dy (i =1, 2, .,n. One may,
consequently, further replace these equations by thetlvetesne deduces by exchanging
they; and they; i.e., with the equations:

L 0G
(50) q-— =1
29%
N 9°G
(51) g—— =0 (=1,2,..n),
le oy.0y,

and the ones that they entail, in turn, as consequehegsiations (10) and (47).

Eventually, what remains is the system that is coegbos$ equations (46), (48), (49),
(50), (51), and one may further, as in no. 15, and with hbeefit of the same
observations, substitute for equations (48) and (49), thenaal system that one
deduces by introducing the variabley means of equation (39).

Equations (50) and (51) are verified by the functignsy, (i = 1, 2, ...,n), because
the first one reduces to (46), and the other ones anéitids forg = vy (i = 1, 2, ...,n).
From this, it results that ¥k, ..., y, is a system of auxiliary functions that correspond to a
solution &z ..., Xn; 01, ..., On; @) Of the problem of the null variation dfthen §&; ..., X;

Y1, ---, Yn; @) IS also a solution to the same problem. One thes agarticular class of
solutions to the problem appear that we may cafionical solutionssince they are
defined by the canonical system (38), and any extremal @migrs into at least one
canonical solution. From this, one finds, as in no. th®, existence of the second
derivatives of xwith respect to any extremal.

18. Imagine an extremal curve and a canonical solutionitichides it. The tangent
to the extremal at a poiM that points in the direction of propagation determm@®int



E. Vessiot: The theory of multiplicities 33

(P) of the wave multiplicity that hadW) for its origin. The canonical solution serves to
fix one of thew? contact elements of the wave multiplicity at thismoi Finally,
equations (50), (51) signify only that in any solution — catadror not — that includes the
same extremal the values qf, ..., g, correspond to any of the contact elements in
guestion. For an arbitrary solution that includes a-defined extremal, the functiows,
..., On are thus coupled to the functioxs ..., X, by just the condition that at each point
of the extremal they provide the plane of one of theamirelements that we just defined.
On the contrary, a particular of these contact efesenter into the canonical solutions.

In order to exhibit this choice, one may, by meanfoahulas (8), introduce the
indeterminates;, ..., A, that the contact elements in question depend upon. One thus
has to write that these values:

9) G =— [f :F+Z)thhj (=12, ..n),
h=1
where one supposes [no. 16, equation (41)]:

dx ,
41 = — i=1, 2, ...,n),
(41) P ( )
satisfy the canonical system (38). Taking into accogoa#ons (31) of no. 3, one thus

obtains theLagrange systemwhere theA, are nothing but théagrange multipliers
namely:

(51) 2% =0 (=12 ..n).

In order to define the extremals, one must add to thiemyshe equations of
condition (2); i.e., with the present notations:

(52) Fn(Xt, ..., Xn | P2y .-y Pr) =0 h=12,..,0).

A question suggests itself naturally: How many canonidatisas correspond to the
same extremal? The defining formulas of the precediogoseshow that the auxiliary
functionsys, ..., y» are the same for all systems of functiogs..., g, that correspond to
the same extremal, since all of these systems atiinsq;, ..., g, satisfy equations (50),
(51), as long as thg, ..., y» correspond to one of them. One may thus discussetireh
for functionsys, ..., y» by means of equations (33), (34), (36) (no. 14) upon consgleri
thexy, ..., % ; Qi, ..., On, wto be functions of the knowns. The linear form of these
equations shows that the general solution will be ofdha:

(53) Yi = Yoi + Zﬁ‘,p,-(yj,i = Vo) (=12 ..n),

in which theg are arbitrary and thg; (j =0, 1, 2, ...,)) are (/+ 1) particular solutions.
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One also concludes this from equations (51), and natyrallgt most equal ta.
Suppose that the general equations of the extremalrthabtained by integration of
(38):

(54) X = Gilt—to | X, .o, X% @, ...y O°) (=12 ...n),

in which the initial values satisfy equation (10), dependalistraction from the constant
to, on 2 — &— 1 arbitrary essential constants; equations (52), argeqaantly, the set of
solutions of the system (38), depend upor-5— 1 constants. One thus has20+ y—
1=20-1;ie.,,y=0 One remarks that under the same conditions the eattocemves
depend uponi2— d— 2 = 2 — y— 2 essential arbitrary constants. In order thatroag
make an extremal curve pass through any two arbitrarilgezh@oints, it is necessary
that y= 0, and this is sufficient if one limits oneself taa@venient domain. In that case,
and only in that case, only one canonical solution cpomds to each extremal.
We summarize the results obtained in the followiagesnent:

The systems of functiong X.., X. ; 01, ..., On; w Of the variable u that satisfy the
equations of conditio10) and (12), and annul the variation of the integréd) may be
divided into two classes: First, there are the systems of amsc{canonical solutions)
that are obtained by takingv to be an arbitrary positive function of u and then
determining X, ..., X ; Qu, ..., Gn by means of the canonical systé38), combined with
equation(39). These solutions are the only ones in the problem of a free extremeun —
the Hessian of G, considered to be a functign. g, g, , is of rankl. Moreover, in this
case there is only one canonical solution that provides each ¢imarighx, ..., X,) or
extremal that solves the problem.

On the contrary, if the Hessian of G is of ramk- 1 (o > 0) then to each canonical
solution(Xy, ..., Xn ; O, ..., On; &) correspond tax? other solutions that furnish the same

extremal: They are obtalned by replacing qg., g, with any of the solutiong,, ..., g, of
the system:
55 ,
(55) anq
(56) ot (=12 ..n)
Z &wq

In the general case, for which there as&" 2 extremals, each of them is furnished by
just one canonical solution. If, on the contraifyere areco® Y2 extremals(y > 0) then
«” canonical solutions define a subset of #fesolutions that correspond to any of them
by means of equatiorfs4) and(55) ().

() ltis clear, from the initial form (1) of the intesd J, that it depends only upon the arc of the extremal,
and not on those of the” solutions afj, ..., g, that one may associate with them in the latter casgs
also results from the fact thal is constantly null when, leaving the arc of the extieirad, one varies
the system of functiong, ..., g,, provided that it always represents one of the%solutions.
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19. Suppose that the integrals taken along an extremal arc and makes that arc vary
without leaving its extremities fixeddJ is then non-null, in general, and it is given, as
one knows, by a fundamental formula that is calledahaula at the limitg®). It is easy
to deduce the calculations of no. 14 from this.

Indeed, formula (29) is true, by hypothesis. With thetrata (22) and taking into
account equations (23), it may be written:

n n n d
(57) ow= zckzvkiA: zckd_gk
k=1 i=1 k=1 u

From this, one deduces, by integration, if one letsrtiex zero denote the values that
correspond to the origin of the arc of the curve casid and lets the indedone denote
the ones that correspond to the extremity, that:

(58) @=3 e (&),

Now, one infers from equations (20), upon solvingn, that:

(59) &= kaicfx k=1,2,..n),

and one has, as a result, upon taking into acdoumulas (32), that:
(60) > 6= 2 0%

Therefore, if we replace the letters ..., yn with the lettersys, ..., gn, which must
correspond to one of the particular solutions ® d¢anonical system that was at issue in
the final statements of no. 18, then we obtairfoheula at the limits in the fornf)

(61) BE {iqm} .

We remark that the integrais itself written in the analogous form:

() Cf., HADAMARD, loc. cit, pp. 246.
() If there are onlyo® 2 extremal curves then formula (61) is furnished by eacth@fsystems of

n 1
functions (53), and one hadndependent relations of the forﬁzqu} = 0 between variations af,
i=1 0
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(62) 3= "> qdx,

because one has, from equations (12):

(63) dgdx=>q Z—Ga}duz G wduy,
= = q

and, as a consequence, due to (10):
(64) wdu= > qgdyx.
i=1

One may likewise consider formula (62) to be an appta of formula (61). It
suffices to vary the extremity of the arc of thérewnal past the origin of that arc, which
one keeps fixed, up to the point of the extremal thatroust take to be the defining
extremity of the arc considered by making it describeofithe arc in question at that
point. Formula (61) is then constantly:

(65) &= qdx,

i=1

and formula (62) results by integration.
We return later on to the circumstances that gae to formula (62)9eenos. 25 et

seq).

20. We now discuss the restrictions that we imposed ofutietionF in nos. 12 and
13.

We first address the legitimacy of the representatibnhe wave multiplicity by
means of equations of form (10) and (11). From the concigsif the discussion that
was made in nos. 6 and 7, one must overlook the contamneasts in the neighborhoods
where the rank of the Hessianfdbr of F, in that caser = 0) is raised.

Now, as far as the system (44) is concerned, whitlfei®ne that one comes to mind
in the case of a free extremumr € 0), when one reverts to the viewpoint of just the
variablesx,, ..., X5, one sees that this Hessian is nothing but the detammofathe
coefficients of the second differentials in equatiof¥)( One will thus be led to make
the same hypothesis in order to affirm the existencete@jals to that system under non-
singular conditions. We thus have every right to sagking note of no. 20) that the
restriction thus introduced is not artificial, but igle nature of the question itself.

The same is true for the more general case Q) of a constrained extremum, which
leads us to the system (55), (56). Upon seeking to sbivesystem with respect to the
second derivatives of the and the first derivatives of thé, , one will be led to
differentiate equations (56), and the determinant thatd#ifines, like the determinant of
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the homogeneous linear system one obtains, will beléissian of. One will thus arrive
at the same conclusion on the nature of that primestyiction.

The other restriction is the condition that we isg@d onF(xy, ..., X, dx, ..., d%,) —
viz., that it be positive. Suppose, on the contramgt the functionF is not constantly
positive along the curve on which one proposes to exawinather the variation (1) is
null. One may then always find an auxiliary functiéfx,, ..., x,) that is defined at all of
the points of the curve considered, and in the domairesttpoints — i.e., at all points of
a certain domainL) that contains the curve in its interieradmits continuous partial
derivatives in that domain, and where the value on tingecis an increasing function of
the parameteu that serves to represent the curve. One may likegnge an arbitrary
value to that function at various points of the curveggitample, it might be the value of

the parameteu itself. 6_Hd_>g then has the value 1 on this curve. On the other hand,

i 0x du
dx dx, | . , - :
F Xlx“ﬁ Ty is supposed to be continuous and finite on thesesuits
absolute value is then less than a fixed nunvbelf one then sets:

(66) F =F(Xy, ..., % | dXq, ..., dX) + Mig—zdx
i=1 1

then the quotient= / du will be, on the curve considered, greater thaixedf positive
number, and will remain positive on the curves tha deduces by continuous variations
that relate to the points and tangents. Now, & evishes to obtain the necessary
conditions for the variation to be null then it Steés to consider such variations of the
integration curve.

To abbreviate the notation, set:

(67) Ma—H =Hi,

ox

in such a way that the function (66) is:

(68) F =F(x, ..., X |dXg, ..., dX) + D H, d,
i=1
and consider’] the integral:

(69) = [[F 23+ M[H(x,%)]3 = [ @du.

() This transformation is, at its basis, the one e utilized by Carathéodory, and which also served
for Hadamard (cf.loc. cit, pp. 385). However, these authors introduced the hypsttined the functiore
of Weierstrass had a constant sign, while that hypatltess not enter in here. Also, he examined only
the caser=0,n= 2.
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It is clear thatdJ = & when the extremities of the integration arc renfixied. We

thus have to express thal is null, and all of the preceding reasons and restilkstill
apply for this. What remains is for us to see what ¢fines relative to the original
givens.

21. For this, compare the wave multiplicity in both caséghe same point of the
curve considered, while the origin of the coordinate®isequently placed at that point.
The coordinates of the new point of the curve thatespond to a positive increade of
the parameter ag, ..., dx, , and, in the former case they satisfy the equations:

(70) {F(&,---,mdx,--udmw du
Fo (X, X, [ dx,-e,dx)=0 (FL12 @)

and, in the latter case, analogous equations:

(72) {ﬁ()ﬁ"""ld%v-wdm)m dy
Fo (%o %, [dx -, dX)= 0 (F 1,2 a)

To abbreviate the notation, set:
(72) X;i du = dx (i=1,2,..n),

and cease writing the lettexs ..., X, in the functions considered, since they are constant
parameters. By virtue of formulas (5), the wave mlidtily is defined, forJ , by the
equations:

E(xl,...,xn):@,

(73) F. (X, X,)=0, (h=212;-- o)
Xi:@ﬁ (i:l’z,...’n)’
in which p, ..., p, are the coordinate of the point that correspoadfé pointdx, ...,

dx, of the elementary wave. Moreover,dfis positive then one will have completely
similar formulas forJ:

F(xl,...,xn):a)’
(74) Fo(Xp o, %,)=0, (h=1,2; @)
X, =wn (i=1,2,--,n).

These formulas show that whewis annulled the corresponding point of the wave
multiplicity goes to infinity. We may consider theas the definition of the wave
multiplicity in any case whereis positive or negative.
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The two wave multiplicities correspond to each otbeint by point by means of
formulas (73) and (74). We seek the formulas for thaespondence. Due to (68), (72),
(74), one has:

(75) @ = w+ ZHiXi=w[1+ZHipj,
i=1 i=1
which gives the formulas:

(76) p=—P =12 ..n
1+) Hip
i=1
We seek the coordinatgs ...,0n; G, ..., g, for the corresponding contact elements.
For (74), wbeing a constant, we have to write tlﬁtqidx Is a linear and homogeneous

i=1
combination of thelF anddF, . Therefore:

(77) q=A a—F+Z)lhﬁ (i=1,2 ..n.

The conditioani p =1 giveslo = 1. One thus has, upon once more setting, as in
i=1

no. 1:
(78) f=F+> AF,,
h=1
the formulas:
of )
79 | = — i=1,2,...n).
(79) q X ( )

For the quantitieg] , one will have analogous formulas:

_ o
ox,

(80) q ., f=F+XAF (=12 ..n).
h=1

Since theAn, A are entirely arbitrary, one may impose the conditioat they be
equal:
A=A, th=1, 2, ..,0),

respectively, which then gives the law of correspondencthécontact elements of the
two wave multiplicities. It is expressed by equations &) the equations:
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(81) q =qg+H i=1,2,..n.

) One sees that it is nothing but theal transformation to a translatidef., no. 1, note
Ol

Before returning to the differential equations for thegrange problem, we again
indicate how one generalizes the formulas that wétairmed in nos. 2 and 3 for the
multiplicity that was defined by equations (74). As we gev, the tangential support is
defined by equations (79). Here, we suppose, as in no. 13hé¢hdessian dfis of rank
1; i.e., the elimination oX;, ..., X,, A1, ..., A, between equations (79) and the equations
of conditionF, =0 (=1, 2, ...,a), furnishes just one equation, which is reducible to the
form:
(82) G(Xl, ...,anql, ...,qn):]..

On the one hand, one has:

(83) daX = > qdX =0;
i=1 i=1

thus, one further has:

(84) 2. X dg = 0.

One concludes that th¢ are proportional to theéG / 0qg; , and one confirms, due to (83)
and (82), that the ratio of proportionalityas One thus has:

(85) Xi = a)a—G i=1,2,..n),

dq
and as a result, one again has formulas (11):

_0G

(86) pi = a_q,

(=12 ..n).

Upon recalling the calculations of no. 3, but while introdgithe X; in place of the
pi, one finally verifies that equation (31) of no. 3 wil teplaced by the following one:

87) af(xl,,)z;)('lxl’,xn)_*_waG()&,a)ilq, ’q):o (i:]_, 2 )

22. Now let:

(88) —L ==, —=-—, dé=wdu (=12, ..n),

so the canonical system is obtained by equatingdHation of J to zero. The equation:
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(89) FO X G 0)=1

is the tangential equation of the corresponding wavéiptaity.
We have to make the change of variables that is delfipdormulas (76) and (81), in
such a way thab is defined by the equation:

(90) r(X]_, ...,anql+HlG, ...,qn+HnG):G,
because in order to obtain equation (82), one must solweitlit respect to the
homogeneity variable in the equation of the original wawdtiplicity, which results

from (89) by the change of coordinates (81) (cf., no. 2).
If one next differentiates the identity relation (9@@n one obtains:

or ,&-or,, 9G _ 3G

(92) —H — = i=1,2,...n),
o &g 'oq  oq
oH, n
(92) oy or Z H, n 96 - %G (i=1,2, ..n.
a)ﬂ =1 aq] 6X =0 a?( aCIi
We remark that one further has:
_ _or ,
(93) p=— (=12 ..n),
aq;
and as a result, upon taking into account (76) and (75)
(94) 1—2Hj§Tr:1—Zijj=+:‘—f.
. = 1+ Hp
i=1
. . . _ OH,  0H,
Equations (91) and (92) may, in turn, be written, by observmg—ghi 6_ and that
% X
wp; =dx /du:
(95) w0 =,%C (=12 ..n)
og 6q
n d
(96) 2 ZaH % = 98 (=12, ..n).

6 = 0 6>g

Finally, if one takes into account equations (88), theatwdimains is:
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97) dx = a)g—;;du i=1,2,..n),
(98) - dg +dH = wg—idu (i=1,2,..n).
Due to (81), the latter reduce to:

(99) dg =- wg—idu (i=1,2,..n).

One thus recovers the canonical system that was dedocee@duation (82).

It is convenient to observe that due to formulas (83P@é 0g; will be infinite, in
general, forw= 0; however, the canonical system may, in the saanener that we just
obtained, be transformed in such a way that this appdifintlty disappears.

As for the systems (44) or (41), (51), (52), one will agdeéduce them from the
canonical system upon referring to formulas (87). @ik also obtain them more
immediately by starting with the analogous systeméiates to the integral . Indeed,
one has, with the variables ..., % ; p1, .., Pn:

F n, 9H, " OH.
(100) O _of  &OH; _of oM,

“ip =243y p (i=1,2, ...0).
ox 0x Fox ' ox {Zox

Thus, due to (41):

izi an (i=12,--n),
(101) ox 0x dt
O ih (=12 n),
op. on
and, in turn:

(102) dot _of _dot_of (=12, ..0)

dtop dx dtap ox
which shows clearly that one comes down to the systaquestion.
23. The theorem that permits us to express, as in nadha#qJ is null for any system

of variationsdy, ..., o , dwthat satisfy the conditions (28) is, at its basis,ttiemrem
that serves to found the classical method of mudtiplin the isoperimetric problems.
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However, since it is presented in a particular forroun method, it will not be pointless
to give the corresponding precise statement, with itsfg§tno
It refers to definite integrals of the form:

1
(103) 1 :jo Ldu,

wherelL is a linear form with respect to indeterminate fumesiwvi, ..., W, of u, in which
the coefficients of that form are given functionsiof
Considem integrals of that form:

(104) In = jOth du th=1,2, ..m,

and associate the functiomswith m arbitrarily chosen systems of determinations:

(105) W = Wi i=12 ..nk=1,2,..m).

The integrals considered — vidy, ..., I — take on the corresponding numerical
values:
(106) Ih =1lkn (h:]., 2, ...,m;k: 1, 2,...,m).

Consider the determinant formed from these numlpgend examine the case where
it is null for all of the systems of determination (10%here will then be grincipal
minor determinant that is not zero, while the minoedeatnants of higher degree are all
null. One may suppose that this principal determinarteiohe that correspondska
1,2 ...,5h=1, 2, ...s Allofthe determinants:

(107) (=12 ..m-9

are then null, no matter what the functiomsare. One thus has some equations with
constant coefficients of the form:

(108) lea = > 6l =12, ..m-9,
le.: )
(109) E[Lw -y, Lthuz 0 (=12 ..m-9.

() Cf., the analogous proof that was given by Hadamiad ¢it, pp. 196). However, the restriction
that relates tsingular fieldsdoes not apply here.
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Since they are true for ay and the expressions under thsign are linear forms
with respect tav one concludes from this the identity relationsvin ..., w, (andu):

(110) Lo = DGl (=12 ..m-s).

h=1
It results, in particular, thdt.,, ..., Im are null for any choice of functiong, ..., W,
which annuldy, I, ..., ls.

24. Having said this, we propose to express the fact thahtégral (103) is annulled
for any choice of functionsgs, ..., W, that makes the integrals (104) null, and suppose
first of all that the determinant of the quantities (186&)ot null.

Furthermore, consider am@ 1)-fold system of determinations in tive

(111) W = Woj i=1,2,..n),

and the corresponding valuks, ..., lom Of the integrals (104). One may determine the
numbersu by the equations:

(112) > Ul n=lon=0 h=1,2, ..m).
k=1
If one then takes th& to be the functions:
(113) W= W — W (=12 ..n
k=1

then the values of thig , being equal to the left-hand side of equations (112)naie
and, by hypothesis, that bfs then also null.

If we denote the values bthat correspond to the choices (105) and (111) by...,
Imo, lo,o then one thus has the numerical equality:

(114) > o= loo=0.
k=1

If one compares this with the equalities (112) that & @rified by thes then one sees
that the determinant:

I0,o I1,0 Im,o

(115) I0,1 |1,1 Im,l
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is null, while the minor of the first element is noull, and that is true for any choice of
m + 1 systems of determination for thvethat are introduced. From the result of no. 23,
one concludes from this an identity with constant coieffits of the same nature as (110):

(116) L=l

If the determinant of the quantities (106) is null thex® anay consider only the
integralsly, ..., ls as giving the principal minor of that determinant. Becaduse ..., Im
are null whenever the preceding ones are null, itsuitfice to express the notion tHas
annulled whenevdy, ..., lsare null. One thus again obtains an identity of tnenf(116)
as a necessary condition, with:

Cst1 =Csi2= ... =Cm = 0.

Since one has the identities (110) in this case, iteardhat one likewise has an
infinitude of identities of the form (116), where the mgseneral of them can be written,
by means of one of them:

(117) L:ichl-h'*'isp{l-sﬂ_zsc%kl-kj’

in which theg are arbitrary.

Finally, in any case, the existence of an identityhefform (116) is sufficient folr to
be null when thes, ..., 1, are annulled simultaneously.

We thus obtain the stated theoreh [n order for the integra{104)to be annulled
for any choice of functions;what simultaneously annul the integral$05), it is
necessary and sufficient that the linear formshefindeterminates;what are denoted by
L, Ls, ..., Lmare linked by a relation of the for(d16), which is an identity in wy ..., Wy,
and y and the letters ..., ¢, denote numerical constants

In the application of this theorem that was madeoinld, thedy, ..., oy, dwplay
the role of functionsvy, ..., Ww,. The integral is the integral (16) and the integralsare
the integrals (28). There exigrelations that are analogous to the—s) relations (110)
in the case where the canonical system (38) furnishesedfil§® extremal curves (cf.,
the note in no. 19).

() Since this theorem is deduced from the fundamentainkerof the calculus of variations (cf.,
HADAMARD, loc. cit, pp. 64), it persists, like that lemma, if one impose®rde restrictions on the
functionsw, ..., w, that relate to either their values at the limitshair analytical character.



lll. = SUFFICIENT CONDITIONS FOR A WEAK EXTREMUM.

25. The preceding results that we found and summarized istédbement of no. 18
may be stated in a remarkable form, on the conditiah $hould the need arise, one
limits oneself to canonical solutions. This restrictis, moreover, of little importance,
since it does not prevent us from obtaining all of the esithat annul the variation &f
It permits us to suppose that the functipn..., g, that one considers are differentiable.

Consider the integral:

(1) H =j:i‘,qidx,

where one supposes that the functiens.., X, ; q1, ..., g, 0f the variable of integration
are linked by just one equation of condition:

(2) G(X1, -y Xn| Oy ---, On) = 1,

and demands that the variatiod be null. With what we have learned from the remark
made above, we apply the classical procedure, which iies gs:

3) 5H=[iqi5xJ +ﬂi(5qu—5xdﬁ)-

We further suppose that the extremities of thegrdtion arc are fixed. The quantity
that remains under thesign thus reproduceds up to a factor, and one finds the
canonical system:

dx _ dq _ -
(4) E—E =dt (I =1, 2, ...,n),
ag 00X

which entails the formula:

(%) dt= iqi dx,

when one takes into account (2), and one recallsGlis homogeneous of degree 1gin
ey On-

The extremals of the problefnare thus obtained by writing that the variationtbé
integral H is null, by means of just the equatidrcondition(2), when one supposes that
the extremities of the integration arc are fixed.

One sees, moreover, that if one varies only thetionsq, ..., g, while leaving the
integration arc fixed then one finds immediatelypdaconsequently without any
hypotheses on the differentiability of the functmn ..., g., the formula:

(6) FH = j:iéqidx.
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The condition for the variatiodyH to be null will thus be:

) dx = 28t (=12 ..n),

Jq
since the variations of theg will then be linked by just the equation:

(8) 0=4G = ig_Gaqi |

and one will again have formula (5).
Thereforethe systems of formulas considered in the stateofgmtoblemA are the
ones that one obtains by writing the condition wif mariation in the following problem:

PROBLEM B. —-Being given an arc of the curve that is represetgformulas:
(9) X = @i(u), O<ux<l (=12 ..n),
determine functions:q..., g, of u that satisfy the equation:

(2) G(X1, -y Xn| Oy ---, On) = 1,

and are such that they give an extremum for thegna:
1 n
(1) H= [ qdx.
i=1

One sees, moreover, upon referring to formula (62)0of1lA, which is the origin of
the present remarks thtte integral J considered in problef are the integral H of
problemB, which corresponds to the case of the null variafion the same problem B.).

Meanwhile, in order to satisfy the conditiam> O of problem A, it is necessary that
problem B admit only functiong,, ..., g, that verify the conditions:

(10) Zn:qi dx > 0.
i=1

If one interpretsy, ..., 0, as the components of a vector that has the print.(, x»)
for its origin and which describes the arc in questionnahearies from 0 to 1 then this
condition is equivalent to saying that this vector mussibeated on the positive side of

the tangent with respect to the normal pIaEe(Xi —x)dx= 0, or that it must make an
i=1
acute angle with the positive direction of the &mtg
One must also observe that if the HessiaG a$ of rank @ + 1), with a > 0, then
equations (7) have the same consequences as egu@jmf no. 12, namely:
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(11) Fr(Xa, ...y Xn | X, ..., dX) =0 h=1,2,..,09);

problem B is therefore possible in this case only if tkiergcurve (9) is an integral curve
of the Monge system.

26. In all of these cases, the preceding remarks introcarge,in the most natural
manner, the Jacobi-Hamilton partial differential ecprati

ox, ox,

Indeed, they show that one will obtain the extrismaf problem A upon first
determining functionsy, ..., 0, 0f X1, ..., X, that satisfy (2) and annul the variation of the
integralH, and then, upon determining, ..., X, by means of equations (7), where one
has substituted the functionsxaf ..., X, that were thus found for thg, ..., g,. Because
the variation ofH is then null, either when one varies the curvelavpbreserving the
functions we found for theg, or when one keeps the curves fixed and variesjthe is
therefore again null when one varies the curvetaed) at the same time, because any
variation of that general type is obtained by sppsing two variations that belong to the
two special categories considered, respectively.

Now, this calculation amounts to first taking thexivatives:

(12) G(Xp"'%

(13) q = ot (i=1,2 ..n

0x
of an integral of equation (12), namely:
(14) t=V(Xa, ..., %),

and then determining theansversalsof the family of surfaces depending upon the
parametet, which are represented by equation (14); i.e.ctheges that are defined by a
property that shall recall.

Each point oM on any of the surfaces (14) is the origin of a evawltiplicity (cf.,
no. 12), and on that wave multiplicity there exstgointP whose coordinates are:

(15) Xi=X%+— i=12, ..n),
Jq

in which theq, have the values (13). This point is entirely dedi by the fact that there
exists, at each point, a plane that is tangereomave multiplicity and has the direction
coefficientsAqu, ..., A0, ; i.e., it is parallel to the tangent planeMatof the surface (14)
considered. The directiorMP, whose direction coefficients are:

() This point must be on the side of increasihgith respect to the tangent plane\aito the surface
considered.
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c

(16) pi = a_q,

(=12 ..n),

is calledtransversalto the contact elementy( ..., X,; Ath, ..., AQ,) of the pointM and is,
in turn, transversal to the surface considered.at

Having said this, the transversals of a one-parametelyfafrsurfaces (to simplify,
we are supposing that one and only surface of the famigepakrough each point of the
space considered) are the curves whose direction, labédaeir points, is transversal to
the surface of the family that passes through this point

n
One will remark that in the present case, due to treliton Zqidx > 0, the
i=1
transversals to the family of surfaces (14) must be asdum point in the direction of
increasingV.

27. Reciprocally, the preceding construction gives all efeéktremals. Indeed, start

with an initial surface %) and each of its contact eleme®s, ..., X°; o, ..., @),

whose coordinates may be assumed to satisfy condiBgnafd then associate the
integral of the system (4), which satisfies the initahditionsx = x°; g = ¢°(i = 1, 2,

..., N). It will satisfy condition (2). At each poiM, of (S), one will find it associated
with the extremal curve that issues friia , and which is the locus that is described by
the pointM, whose coordinates arg( ..., X,), whent varies by starting with the valde

= 0. These curves, at least in the neighborhoo&nfWill be such that one and only one
of them passes through each pdihtof the space’]. Each point Xy, ..., X, will be

associated with the value of the integjaz gdx , which is taken fronMy to M along
i=1

the arc of the extremal that passes throMglsince equations (4) entail equation (5
therefore a functioW(xy, ..., X).

In order to find its total differential, it is necesgand sufficient to varyM in an
arbitrary manner; it follows with its corresponding rertal, whose fooMy describes
(S). If one applies? formula (3), upon remarking that one has:

then what remains is:

(17) &= Zqi ox% .

) This will break down whenS,) satisfies the (partial differential) equati@{ o | o .,
Ko Xy 10

q?]) = 0, which is the singular case that we have impligidssed over.

() This method, which based on the formula at the dinit employed by Hadamardd. cit, pp. 169).
The principle is due to DarbouXtféorie des surfaces Il, pp. 536).
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The functiont that we have constructed thus satisfies equations (13)hangiattial
differential equation (12). Moreover, when equations (&)werified the extremals that
have served to define that function are the transigetsahe family of surfaces (14) that
they correspond to.

Finally, it is clear that each extremal will bertsgersal to an infinitude of families of
surfaces of the indicated type, because it correspondsi@st. 16 and 18) to at least one
canonical solution, and it will suffice that one oé tsurfaces of the family include one of
the elementsx(, ..., X, ; th, .., On) that is furnished by that solution in order that althedf
other ones enter into the other surfaces of the faily

We further remark that one may attempt to replacestintace &) with ann — 1-
dimensional multiplicity whose point-like support hassléhan — 1) dimensions. The
construction will further involvee"™ canonical solutions, but if equation (12) has only
0?7 characteristic curves (extremals of problem A) themnity happen that one
obtains less tham™* extremals, and that consequently they do not fill epsipace that
neighbors &). The definition of the functioW will then break down. This will certainly
happen, always upon supposing that O, if (S) is replaced by a point of space, and,
more generally, if the support employed has less plthmensions.

Similarly, upon supposing that= 0, buta > 0, and upon starting at a point\d$ that
is taken on the initial multiplicity, the extremalsnployed indeed sweep out amn
dimensional space, but that space will terminate atpthiet considered in a singular
form, since the extremals that issue from that poinhalopoint in all directions: It will
not contain all of the points of a domaind§, nor, for that matter, those of the points
that are on the same side of a surface that passegkiivl, and has a tangent plane at
that point.

28. The families of surfaces that we just introduced arepased of successive states
of the same wave (i.e., it is a locus of points Hratdisturbed at the same instant) when
one considers the mode of propagation that was defineal ib2. One must assume only
that the state of a wave at tirne dt can be deduced from the state of that wave attfime
up to infinitesimals of higher order, by taking the envelopthe elementary waves that
issue from the various points of the multiplicity thatludes the state of the wave at time
t.

On this point, we refer to our article in tAenales de I'Ecole Normal&“ series, t.
XXVI, 1909, pp. 405, because the interpretation in question gersequence of the
results in no. 5 of that article, and the reasoninglétbup to it is based on the tangential
representation of the elementary waves and does neé ¢eabe applicable when the
point-like support of the wave multiplicity has less tlmn 1 dimensions, provided that
the tangential support has exactly 1 dimensions.

Here again, one may conceive of extremals [whichcaggacteristics of equation
(12)] as the trajectories of propagation of the varicugact elements.

() The singular case that was pointed out in our preceditegmay not present itself here, since all of
the elements of a canonical solution satisfy equagpn (

However, in general, one must limit the extremal arcsioered in order to obtain a family of surfaces
(and transversals) such that one and only one of these@through each point of the domain considered.

We would not like to reproduce that well-known argumen¢ he

Cf., HADAMARD, loc. cit, pp. 360, et seq.
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Observe, moreover, that when one considets..(, % ; Ji, .., On) to be the
homogeneous coordinates of a contact element, equatiordefide a one-parameter
family group of contact transformations and, from theceding discussion, provide the
successive states of the same wave by the applicatiotheske various contact
transformations to one of them. This was the viewpoirdgur article in thiBulletin (t.
XXXIV, 1906), but there we supposed that the HessiaG afas of rank 1, while we
make no such restriction here in that regard.

The finite contact transformations of that group arenddf by the correspondence
that was established between each point of the spaté¢he wave that resulted from a
disturbance that is produced at that point after a defimtet.

In the case where equation (12) has omf) > characteristic curves, there are
0?7 of them passing through each point, in such a way tieaparticular point-like
multiplicities that enter in here have omy- 1 —ydimensions. One is then involved with
the contact transformations that are all defined jo# 1 equations between the
coordinates, .., X, and X, ..., X, of the points of the two mutually transformed spaces.

29. The remarks of the preceding numbers, independentlyeafdhalytical interest,
lead very simply to sufficient conditions for the exttemin problem A, by reducing it to
the extremum of problem B. As we shall seee will have a minimum f@k if one has a
maximum foiB.

Indeed, imagine an extremal of A and two fixed poMgsandM; on that extremal.
Assume that these points are as close as one neeri¥einto associate the avyM; of
the extremal with a family of surfaces (14) that $@ssthe conditions that were
enumerated in no. 27, namely: There existahimensional portion of space that is
continuous and all in one piece, such that through eath pbints there passes one and
only one surface (14). The awyM; is completely interior to that space, meets each of
the surfaces at no more than one point, and is tressve each of them.

We let€ denote the arc of the extremal considered, and t&note another aré)(

that goes fronMg to M; in the same portion of space, and differ fr6roy its points and
tangents as little as one desires.
Since one may take tleg to be derivative®V / dx; (no. 26), the integral, is the

integral ofdV taken fromMy to M1, and does not change if one takes it along th&.arc
One thus has:

(18) J5=Jc=—[jciqidx‘fci%dxj = - (H.—H}),

and one perceives in the right-hand side the differbat@een two integrals that relate to
the curveC and have the same nature as the ones that entéhenstatement of problem

B, where the first of them corresponds, by hypothésis, system of functiong, ..., gn
that annuls the variation of that integral. Moregvke values ofy, .., g, will also be as
close as one pleases to the values:

() Of course, in the cage> 0 one must verify the Monge equation (II). (Cf., 26).
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ql:a_ q’:a_v
X T ox,

at any point ofC, provided thatC is sufficiently close taf (in terms of its points and
tangents).
The arc& will therefore furnish a weak minimum for J if tegstem(qy, ..., On)

furnishes a maximum fét taken along’.

30. Now, the discussion for the maximum in problem B isngdiate, because one
has:

1 n
(19) He=H; = [ (a - q) dx.
i=1
Upon setting, as in no. 12:
(20) dx = wpi du i=12,..n),

with [equation (64), no. 19)]:

(21) wdu= Y qgdyx,
i=1
one then has:
1 n
(20) He-H. ==[ > (d'p -Dwdx.
i=1

Since the elemenbduis, by hypothesis, essentially positive, not ony&p but also

on the curves that are sufficiently close, one sleatsin order for the left-hand side to be
positive, it is necessary and sufficient that tbedition:

(21) Y qp-1<0
i=1

be verified on each of the wave multiplicities thas their origin at the various points of
C, and has the contact eleme} (p1, ..., pn; 1, ..., On) that enters into the integnd]. .

If one refers to no. 10 then one sees that eatliege multiplicities must be concave
towards its origin atk).

Thereforejn order for the integral H to have a maximum fosystem of functions,q
..., On When it is taken along an arc of the cuwehat satisfies the Monge equations
(11), it is necessary and sufficient that the followamditions be satisfied:
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1. The positive direction of the tangent at each péwat ..., x,) of C pierces the
wave multiplicity that has that point for its origin at a point to whilclre corresponds a

n
contact element whose plane has the equanq()Q -x)=1.
i=1
2. At that contact element, the wave multiplicityosicave towards its origin, in the
sense that the point of that element is on the sadeeas the origin with respect to the
planes of the neighboring contact elements.

31. This condition will be satisfied fof if it is satisfied for€ in the domainof the
contact elements of the wave multiplicities, whiebults from the preceding construction
when it is applied t& because then one may vary the curve infinitesimaihout which

the condition ceasing to be realized. It is alwayended that the variation alters the
curves and tangents infinitely little.
We thus arrive at the following conclusion:

An arc of the extremal in probles furnishes a minimum for the integral(ih the
case where the extremities of the arc of integmtiemain fixedl if it satisfies the
following conditions:

1. Atleast one of the wave families that is cut tvansally by this extremal fills up a
portion of the space that surrounds all sides efahc considered in a regular mann@y
and satisfies, in addition, the following criterion

2. Letting M be an arbitrary point of the extremal aft, the tangent plane at the
point M to the wave considered that passes throitigthe positive direction of the
tangent to the extremal at M pierces the wave plidily that has M for its origin at a
point P, and it results from transversality thatstipoint P, along with a plane that is
parallel to the plandl, forms a contact elemefE) of that wave multiplicity. In the
domain of that contact eleme(f) the wave multiplicity must be concave towards its
origin.

The developments of nos. 10 and 11 give one thansnéo verify analytically
whether this criterion is found to be verified inetextended case. One may further
involve the functiorG uniquely then.

We remark that in the case of the minimum thatjust explained, the elementary
waves that issue from the points of a wave of #milfy considered are convex towards
their envelope, which constitutes the consecutieeenof that same family. The word
“envelope” here thus has its etymological sense,hed, in a way, its physical one, too,
and the picture that emerges is completely in agee¢ with the idea itself of
propagation, that an arbitrary wave must beftbat of the elementary waves that one
considers to have produced it when one appliepttheiple of enveloping waves.

32. In the preceding remark, we have substituted tmsideration of the elementary
wave for that of the wave multiplicity. Since tketsvo multiplicities are homothetic with
respect to their common origin, this substitutisnlagitimate because they are, at the

() This must say that one and only one surface of thyfpasses through each point.
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same time, either convex or concave. It seems hieaglementary wave makes the best
image to envision, because it is more immediatelyo@sted with the differential
element of the integral considered.

This is especially true in the case where the diffiggeelementwdu is susceptible to
a change of sign on the arc of the curve consideredsaabout which it remains for us
to say a few words in conclusion.

For that, we refer to the transformations thatewvemployed in nos. 20 and 21.
Formulas (76) and (81) of no. 21, when applied simultanecwsliywvo neighboring
contact elements, give:

n n ] iﬂq’-i_l

(22) Spg-1=Yy U o T
. =1+> Hp 1+ Hp,

= i=1

Upon further taking into account formula (75) of 24, what remains is:

i=1

(23) @(iﬁ,d—l} = @[Z:‘p'q'_lj'

If the sufficient condition for the minimum is sdited for the transformed integral
with a positive differential eIemerﬁcT)du then the left-hand side of that identity (33) is

negative. The same is then true for the right-tsade.

As a consequence, the second sufficient condfborthe minimum translates into
concavity or convexity of the wave multiplicity aoding to whetherw is positive or
negative, respectively. However, the point thatees in here is, moreover, on the
prositive or negative direction of the tangent adocw to whetherw is positive or
negative, respectively. One may say that thecemnvexity towards the positive direction
of the tangent.

It seems simplest to restrict oneself to the etearg wave:

(24) {F(Xv“'ﬂ%lxﬂ'wxn):wdu,
R % [ X X)=0 (=120 @)

for which the point to consider is always (in tlystem of coordinates that has the origin
(x4, .., Xn) of that wave for its origin):

(25) X; = dx (=12 ...n).

The values ofy, ..., g, that one must associate at that point are alwafmseatl by the
canonical solution considered, or furthermore,lg/family of surfaces that is defined by
equation (14), which corresponds to solutions eflaicobi-Hamilton equation (12).

However, a fact that is worthy of note presensglithere when one applies the
construction of no. 27 to find one of the solutidhst corresponds to the extremal
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considered. When one passes a point of the extremalhfich w du is annulled upon
changing sign, the value df ceases to increase (for example) in order to begin
decreasing. Past such a pditit then repeats the values that it took on beforee T
surfaces that are obtained no longer cut the extremoataeach of its points. A, the

n
corresponding surface is tangent to the arc of thesienett; sinceZqi dx is then null,
i=1
and in the neighborhood of that particular surface tless dimat cut the extremal cut it at
two points: one on each sideNf

33. At such a pointN, one does not need to preserve the latter side @dation (=
dt) in the canonical equations (4) for the definitionlite¢ the extremal. Above all, as
we remarked in no. 22, this canonical system is useletizafipoint in the form (4)
because the derivatives Gf will be, in general, infinite. However, this diffitty will
disappear if one introduces the Jacobi-Hamilton equatianl@ss restrictive form than
the form (12), which we have specialized only insofathagheory is concerned.

Indeed, recall that this equation in the original foR)) @efines the tangential support
of the wave multiplicity, and, from the argument in 24, this support is obtained by
eliminating the ratios aXy, ..., Xn ; A4, ..., A, between the equationy:(

_OF(X[X) &, OR(XIX)
(26) q T +hzzl‘)|“—a>§ (i=1,2,..n

and the equations of condition:
(27) 0 =Fn(X | X) = Fn(X1, .., X0 | X1, ..., Xn) (h=1, 2, .., a).
If the result of that elimination is obtained im arbitrary form:
(28) G(X1, oy % [Ga, - On) = O,
thendG, anddG will be linked by an identity of the form:
(29) dG=M(Xy, ..., X | O, ..., On) dGo
for all of the elementsx{, ..., X, | 01, ..., On) that satisfy equation (2) or equation (28),

which are assumed to be equivalent. The canosysaém (4) and the equation (2) will
then be replaced by equation (18), and the mosirgeoanonical system:

dx _ _dx, _ dgq _ _ dq
(30) G, =TG- 06, T oG,
oq, aq, 0% ox,

(l) The lettersX; denote the differentialdx here, instead of the derivativds; / du; however, this
changes nothing in the reasoning of no. 21, which, for tyteve shall not repeat.
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The canonical solutions will then be determined, andl always depend upon the
guadrature of the differential:

(31) dt= Zn:qi dx .

i=1

That differential, from equations (30), is annulled atgame time as the expression:

0, 3G
(32) D=2 a—=,
AET

and that expression intervenes precisely when one seekedticeG from Gy, since it
amounts to solving the equation:

(33) GO[&,...%%,...&j -0

for G.
If one takes into account the fact tl@&atmust have the value 1 on the multiplicity
considered then one deduces from that equation, by tdeeitiation:

_[~ . 0G
(34) dGo = [;qi 2

Jee

which shows thatD is the inverse of the coefficieml of the formula (29). This
coefficientM must then be infinite for the exceptional contact el@s¢hat define the
object of our discussiorf)(

From another point of view, these elements are faonde exceptional under the
same conditions as the elements that were omittad.id, because the planes that figure
in them pass through the origin of the coordinates dtiggn of the elementary wave).
However, the difficulty disappears here because timtaco elements of the elementary
wave have coordinateg( ..., X, ; qi, .., On), Which, from formulas (26) and (24), are
now linked by the relation:

(35) Zn:qi X = wduy,

() It is easy to study these peculiarities in the examplAs a very simple case, one may take the
following one:wdu = \/dx?+dy’ — 2y dy. One considers the extrenyek x and the neighboring extremals
y =X + ¢, which gives the family of parabolic wavexér?y - y? = const. The elementary waves are then

conics that are simple to discuss.
By the process in no. 20, the intedrabdu comes down tq@du, where@ du= \dx®+dy .

The exceptional poiritl of the extremal ix =y =+/2/2, here.
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which is equivalent to establishing the homogeneity ottw@dinatesy, ..., ¢,, which
we refrained from doing in no.1, in order to better inthcdne duality between the two
viewpoints — viz., point-like and tangential.

In summationThe extremals of the Lagrange problem are given, without imposing
the condition on the sign of the differential element of integrgtlgrn(no. 12),by the
solutions of the canonical systef80) that satisfy equatior{28). It is the tangential
equation of the elementary wa{@t), where the coordinates(y, ..., Xn; 0, ..., gn) Of @
contact element of that wave are linked by the cond{8h An arc of the extremal thus
obtained furnishes a minimum for the problem considered if the follo{suffjcient)
conditions are satisfied:

1. By means of that extremal and™" conveniently chosen neighboring extremals,
construct a family of surfacéfamily of waves)by the procedure of n@7 that fills up,
in a regular manner, a portion of the space that contains it and surrounds tloé tre
extremal considered on all sides.

2. The elementary wave that has each p@mt..., x,) of that arc for its origin and
passes through the infinitely close consecutive point of that arc iw®rar convex
towards its origin[in the domain of the contact element of that elementary wave that
contains that point and whose plane has the quantites..., g, that are associated
with (xi, ..., X)) for its direction coefficients in the solution of the sys(28), (30)that
one considefsaccording to whether the differential elemeiixif..., X, | dx, ..., dx,) =
wduis positive or negative, respectively.




