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PREFACE

Vito Volterra was born in Ancona in 3 May 1860, and thespnt year then marks the
centennial anniversary of his birth.’Accademia nazionale dei Linggo which he was
elected in 1888, published his celebrated paper “Sopra le furthierdipendono da altre
funzioni,” in which he founded functional analysis, one ykder, and has planned a
commemorative ceremony for next November that will eurthe representatives of
numerous academies and universities in Rome. The year 486§eln the appearance
of the fourth and penultimate volume of the distinguisheublication of the
Mathematical Works of Vito Volter@).

It is good that the same year 1960 has seen the publicHtithe present volume in
France. We owe that to our friend and colleague Héitiat, who has welcomed the
manuscript into the excellent collection of tiémorial des Sciences mathématiqaed
the present edition can be thus assured to be published hguke of Gauthier-Villars,
just like all of the other books that Vito Volterra pubésl in France.

From the beginning of this Century, profound bonds of dséip were established
between Vito Volterra and the French scholars Efdeel, Paul Painlevé, Jean Perrin,
Aimé Cotton, and Paul Langevin, to cite only the onas ltlave gone. Those bonds were
further reinforced in the years 1914-1919 by converging preoccupatimhsommon
work on the scientific problems of the era.

| was, | believe, in 1912 that Vito Volterra gave a cewsthe Sorbonne for the first
time. He returned to it quite often afterwards and jirecisely the part of his work that
we have thus learned about by his direct teaching. Suhe bonds of affectionate
admiration were thus established whose memory is premous

Vito Volterra presented the theory that was the sulpécChapters | to Il in the
present volume in some conferences that were hele anhstitut Henri Poincaré and that
Abbot P. Costabel has collected and edited with the wieproducing a publication that
the events of 1940 had delayed.

| was particularly happy that Enrico Volterra accepthe task of reviewing the
conference manuscript by his father and adding some desi@bjgements after a very
long delay in publication. He was particularly qualifieddo that by his beautiful work
on the questions of elasticity and plasticity, whictwisk that is both theoretical and
experimental and is driven by practical applications.

In the introduction to the volume, Enrico Volterrashvery precisely specified the
place that the Volterra “distortions” occupy in aisg of studies that extend or generalize
the notions thus-introduced. His presentation leads ubetanost current questions in
the mechanics of solids. In Chapter IV, he has devdlgoene applications to some
practical problems in construction. The discussion tbétke very important role that is
played by elasto-plastic deformation and deformationisateimposea priori in order
for a structure to perform well is especially precise.

Joseph PERES

() Opere matematichéMemorie e Note), published by the Accademia NazionaleLiteei with
support from the national research council.



FOREWORD

In 1938, my father, Vito Volterra, proposed that Codtaded myself should
collaborate on the preparation of the present work. taBes wrote up the conference
talks that my father had previously given at l'Institut HéPoincaré in Paris. At the
same time, | prepared the text that was concernedthstiapplications of distortions in
practical constructions. However, events that tookfohen of the war prevented the
completion of this volume.

The incomplete manuscript was preserved by Professepldd®rés, Member of the
Institute. In 1956, Pérés insisted that | should assummeetsponsibility of revising,
completing, and updating the manuscript.

The successful completion of this volume was alsalenpossible thanks to the
Graduate School of the University of Texas, who providsdbesidy.

On this occasion, | would like to thank Abbot Costabelif@ editing of my father’s
talks. My thanks also go out to the “London InstituteCofil Engineers” and to the
“London Institution of Structural Engineers” for the pesion that they have graciously
given for me to reproduce my drawings that were first puldisiné¢heir journals.

| would also like to thank Professor Henri Villat, Mieen of the Institute, for having
accepted this volume into his Collection and the hous@&anfthier-Villars for having
made this publication appear on the occasion of the cagtenhmy father’s birth.

Finally, | would like to express my gratitude to Profes3oseph Pérés for having
encouraged me to revise the first three chapters ané W rest of this work. |
especially appreciated his Preface, as well as thaasststhat he was so kind as to give
me.

Enrico Volterra

Ariccia, 20 June 1960.
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INTRODUCTION

1. — J. Weingarten is generally considered to be the itiat the theory of elastic
distortions. In a paper that he published in February 19tifeiRendicontiof the Italian
National Academydei Lincei[l], he emphasized that there can exist cases in which
elastic solids are not in a natural state when theyat subject to any external forces (so
they are free from volume or surfaces forces), beisabject to a state of internal stress.

In order to prove that phenomenon, it will sufficectmsider the case of an elastic
ring with a transverse section cut through it, such tih@ttwo sections of the cut have
been reattached. After having been cut, the ring wilhlibe natural state, but after that
operation, it will be in a state of stress that e due to any external forces. One can
arrive at the same conclusion if one imagines thathaseforcibly introduced a rigid
wedge into the cut in that same ring.

2. - Vito Volterra started with Weingarten’s observationd developed his theory of

distortions in multiply-connected elastic bodies isesies of papers that were published
in theRendicontiof the National Academgtei Linceiin the years 1905-190@][ [3], [4],
[5], [6], [7], [8] (). He published that theory, after he had organized itarggstematic
fashion, in 1907 in thé\nnales de I'Ecole Normale Supérieuire a paper that was
entitled “Sur I'équilibre des corps élastiques multipletm@mnexes”9]. Certain results
that were obtained by Cesart0] were also included in that paper.

() In 1905, Vito Volterra wrote the following letter todiigarten while sending the latter a preprint of
Volterra’s first paper on the theory of elastic distms:

Herrn Dr. Prof. J. Weingarten
Dreikonigstr. 38
Freiburg i. B. (Germany)
Rome, 27 February 1905
Via in Lucina, 17
My dear professor,

It is an honor for me to send you a preprint of a nbs# t just published in th&endiconti de
I’Accademia die Lincedn a topic in elasticity.

| started with some considerations that you had develiopgdur note in 1901, and | have tried to
clarify a question that you left hanging: Are there sasavhich the elastic body is simply-connected?

You might remember that | had some doubts about that §8@1. | have now solved the question in
the negative, when the deformation has the property tiadl “regularity.”

Last Sunday, | presented a second note as a contimwgtihe one that | sent you, and | intend to
present a third note on the same subject, as well.

| hope that you will be content that | have continueithe@ of research in which you published a very
interesting work.

...Dear Sir, allow me to express my highest regard anasants of respectful amity for you.

VITO VOLTERRA
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Volterra began his work by posing the following questiorhedthan the rings and
other multiply-connected bodies, do there exist simplyrected bodies that are subject
to a state of internal stress without being subjeatolame or surface forces? With the
aid of a simple analytical observation, he showed $hiah cases cannot exist if one
supposes that the continuity of the deformation alseneld to the first and second
derivatives of the elements that characterize te&drchation.

Upon supposing that the state of an elastic solid iedcdtegular” when the six
components of the deformation are finite, monodromaig] continuous functions with
first and second-order derivatives that are likewis@&efimnd monodromic, Volterra
proved the theorem that if an elastic body occupid@iee, simply-connected (i.e.,
acyclig space and it is subjected to only regular deformatibes it will be in the
natural state if it is free of volume and surface ésrc On the contrary, if the solid body
occupies a multiply-connected (i.eyclic) space then it might also not be in the natural
state; i.e., it might present internal stresses evieen it is not subject to volume and
surface forces, even though its deformation is regular.

One can find the counterpart to that phenomenon in hydesdigs [L1]: If a vessel
with fixed, rigid walls contains an incompressible liquidhano vortices in its interior
then the liquid must be at rest if the volume thaictupies is simply-connected. On the
contrary, motion of the liquid is possible if the spaceupied by the liquid is multiply-
connected. lIrrotational motion in hydrodynamics comesis to regular deformation in
elasticity.

3. — Volterra gave a very complete discussion of therdedtions (which he called
distortiong to which the theory is applicable in the case ofdwltylinders and some

systems of thin beams.
)

&

Distortion of order 1 Distortion of order 2 Distiort of order 3

i
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Distortion of order 4 Distortion of order 5 Distiort of order 6

Figure 1.

The six possible distortions in the case of hollowncdrs are illustrated in Fig. 1
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In each of those six cases, Volterra determined therdafion tensor and the stress
tensor completely, and showed that in some parti@alaes, the distribution of stress in
solids is produced in a fashion that could not have pestiley pure intuition.

4. — One of the particularly important results that Violieobtained consisted of a
reciprocity theorem between two elastic distortiansnultiply-connected elastic bodies.
Another reciprocity theorem was stated in 1912 by ColofE# [13], [14], [15], which
he called hissecond reciprocity theorgnand it established a relation between a state of
elastic coaction and a state of elastic deformattiah is due to the action of external
forces. The two reciprocity theorems above have esomportant applications in
mechanics.

In 1938, Vito Volterra, while preparing the publication in thslume, gave his
reciprocity principle in the most general form thapresented here. Betti's reciprocity
theorem, Colonetti's reciprocity theorem, and the t®oh’'s previous theorem are
particular cases of that more general reciprocityreémad).

5. — Volterra was not content to have simply establisiedniathematical laws of
distortion of multiply-connected elastic bodies. &lso wished to verify his theory with
the aid of experiments.

In 1907, the house of Pirelli in Milan constructed somkothorubber cylinders in
which different types of distortions had been createcbm an examination of the form
that was taken by the bases and surface of the cylinflersapplying the distortion, it
was indeed possible to qualitatively verify some of theulte that had been found
theoretically.

Similarly, in 1907, some hollow gelatin cylinders thatrevesubjected to elastic
distortion were examined by passing polarized light uglo them in the physics
laboratory of the University of Geneva by Doctor Rp1ld].

In 1909, some more precise experiments on transparemelsnof hollow gelatin
cylinders in which some distortions of the type thatt®woé studied had been produced
were conducted by Corbino and Trabacchi in the physicsd#adrgrof the University of
Rome [18], [19], [20]. Those experiments completely confirm the thecaétiesults that
were found by Volterra.

The experiments that were done at the University afe@& and the University of
Rome have historical value because they represent otiee dfrst applications of the
phenomenon of accidental anisotropy to the study ofttte sf stress that exists inside
of an elastic body; i.e., one of the first applicati of photoelasticity (see § 1X).

6. — The distortions that Volterra described, and whicl hear his name, satisfy the
following conditions:

() Those results were communicated by Vito Volterra tdgsor Joseph Pérés in a letter from Ariccia
that was dated 11 October 1938 and were incorporated in page$7874&nd 179 of volume three of
Volterra’s Complete Worksin which his paper “Sur I'équilibre des corps élastiquadtiptement
connexes” was reproducetq].
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a. The deformation tensor (and consequently, the streasott, as well) is
continuous.

b. The first and second derivatives of the deformatiosdeare also continuous.

All of the stress components, which are assumed twbinuous, are represented by
monodromic functions at the cut locations. Meanwhiat thypothesis imposes a
restriction on the displacements, since they areledup the stresses by the equations of
elasticity. The components of the displacement lbanrepresented by polydromic
functions, but the cyclic constants of those funiioust have a certain form. Indeed,
one can show that for monodromic stresses, the desplants that one encounters upon
crossing the cut are defined only up to a displacementediygie that is called a “rigid-
body” motion.

It is obvious that the distortions of the type thatt¥iwa studied do not cover all of
the possible cases in which an elastic solid body, wischot necessarily multiply-
connected, is subjected to an internal stress stateiabsence of volume and surface
forces. Some cases of more general deformationsasesidered by Somigliand) (and
some other author&]], [22], [23], [24], [25], [26], [27].

() The following letter, which Somigliana sent to \ésta in March 1905, shows that Somigliana had
begun to take an interest in elastic distortions aftétevta’s work on the subject.
In effect, Volterra’s theory of distortions had insgifgomigliana’s later work on the subject.

Turin, 25 March 1905
My dearest Volterra,

| read your last two notes on the deformations of ipiylconnected bodies with much interest, and
also with a certain amount of satisfaction, sinsaw that you appealed to my formulas. Navproposof
that, |1 shall communicate an observation to you thatery simple, albeit not strictly connected with the
problem that you studied. Your method for reducing probldms relate to the deformations that are
produced by discontinuities along the surfaces of cuts whepn dhe subjected to rigid relative
displacements to ordinary problems is also valid wherettsplacements are arbitrary. Of course, in that
case, the six deformation components will no longegdreerally continuous. In fact, if one considers the
displacements to be represented by the surface irgetal contain the value af v, w in my formulas
then those integrals will be discontinuous and will hdigeontinuities that are proportionalupv, w (as |
proved in the case whete=1 + qz — ry ...), even wheny, v, w are arbitrary. In addition, they will give
rise to pressures that arentinuousupon crossing the surface. That property was proved inatey“Sulla
rappresentazione dei campi di forza.” It is equivatenthe continuity of the normal derivatives of the
potential function of an inhomogeneous double layer.

It is therefore also possible in that case to detezrairegular deformation that eliminates the surface
pressures by means of a fictitious body, as in your odeth

I do not know if that observation might interest yout §ince it occurred to me spontaneously when |
read your work, | wanted to communicate it to you.

| send you a thousand cordial regards and repeat my comgjiatalto you on your recent nomination
to the Senate.

Your friend,
CARLO SOMIGLIANA

Professor Vito Volterra

Senator of the Kingdom

Via in Lucina, 17, Rome
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The most general distortion can be produced by making antouthe interior of a
(not-necessarily-multiply-connected) elastic body elastically deforming the two faces
of the cut by applying forces to them. The faces ofctiteare then reattached and the
external forces eliminated, which will leave a continusalsition of an arbitrary, elastic
displacement inside the body. A hypothesis that iegaly less restrictive is made for
the stresses: Only the components of the stresdescthan the surface of the cut must be
continuous. The others can be discontinuous, and evegyttdan be represented by
polydromic functions.

Some other common types of distortions are the trasare produced in an elastic
body by non-uniform temperature distributions. For examconsider an elastic solid
that is not necessarily multiply-connected, and suppueteat point of the solid is raised
to a high temperature. That point will dilate morenthle neighboring points, but its
dilatation will be resisted by its neighboring elementée presence of those neighboring
elements, which are now at a much lower temperatutiecavistitute an obstacle for the
elements at a higher temperature and the reciprocahaamong them will be the cause
of a state of stress in the absence of externaldor¢éat stress state can be defined to be
the resultant of two successive and distinct operations

Under the first operation, each element is considerde ideally isolated in such a
fashion that the changes in temperature can freely pratlaasorresponding dilatations
(which are well-defined functions of those variations temperature). That first
operation will produce discontinuities in the materia;, superpositions or voids in the
interior of the material.

Under the second operation, the surfaces of the diffeseements that initially
coincide and have been displaced later must be oncemaate to coincide by producing
a deformation of an exclusively-elastic nature thaetimhich along with the stress state
that accompanies it and justifies it, will be defined cletgly by the fact that it must
recreate the continuity and the connectivity of tbéds which is the continuity and
connectivity that was temporarily destroyed.

If one supposes that the deformations of elastic salidsvery small (i.e., that the
elastic displacement that characterize them arayswegligible in comparison with the
dimensions of the elastic body) then the followingattem of Colonetti will be true2f),
[29], [30], [31:

The tensions that characterize the equilibrium state of a body are théhaegve a
minimum for the function:

=0+ .[V[T11711+T22722+T3§733+T Y FT Y AT KbV

with respect to all values of the same functiont #n@ compatible with the system of
inelastic deformations and applied forces.
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In the equation above&® represents the elastic potential energy in the s¢jidare

the components of the imposed deformation, anare the components of the stress.
Colonetti's theorem is a generalization of a teaorfrom the classical mathematical
theory of elasticity. When one supposes that the isgpaeformationy, is zero, the

theorem above will express the condition that thetfaneb is a minimum.
That is the theorem of minimum work of deformatiamich was first formulated by
Menabrea more than a century ago.

7. — The word “distortion,” which Volterra introduced inder to describe a
discontinuity in the displacement in a multiply-coateal elastic body, was translated by
Love [32] into the English word “dislocation.” Today the Hsf word “dislocation”
was been generally adopted in place of the older teistoftion,” and it includes the
most general types of distortion, as well as the paatidypes of distortions that Volterra
discussed. In general, the word “dislocation” charase a line in an elastic solid
across which the displacement is subject to a suddeondisuity.

The term “dislocation” took on a patrticular significarin modern solid-state physics
in the year 1934, when G. I. Taylor explained the mechaafsplastic deformation in
crystals by his “theory of dislocations33], [34].

According to that theory, when a solid of a crystallnature is deformed, it is highly
unlikely that one layer of atoms will glide over thé@t in such a manner that all of the
atoms shift at the same time. It is much more prolthbkethe deformation will begin at
one extremity and propagate across the glide layerthalf is the case then on no
particular glide layer at each moment during the defdomabne must have a line (viz.,
a dislocation) that separates that part of the layerhich the atoms glide from the part
in which they do not. Taylor proposed a model for thengeeent of the dislocations in
a crystal that is tempered by a plastic deformationd, la& could evaluate the elastic
stresses in crystals by applying Volterra’s theorem.

The theory of “dislocations” in solid-state physicss lgeveloped very rapidly in
recent years. Books and articles have appeared thatwitten by Nabarro (19528F,
Cottrell (1953) B6], Orowan (1953) 37], Read (1953) 38|, Mott (1956) B9, Seeger
(1955) gAQ], J. M. and W. G. Burgers (1956}1], Friedel (1956) 42]. With the “theory
of dislocations,” it is now possible to explain not yorthe phenomena of plastic
deformation, but also the growth of crystals, diffssand precipitation in solids, surface
phenomena, and chemical reactions.

8. — Another field of application of the theory of elastislocations is geophysics.

In relation to that study, one can mention the recentk of the Russian
geophysicists and the work that was done at the Univasgifyoronto by Steketeel§]
and others in which some of the qualitative considaration orogenesis that were
proposed by Wilsordd] and Scheidiggerdb] have been placed upon a more quantitative
basis. That gives one some hope that the theoriglotdtions will shed some light upon
the displacements and the energy of the stresses amdhdgbns that are associated with
fractures, faults, and earthquakes. It is not impostilkesome of the new developments
of solid-state physics can have some importance itréla¢ément of problems such as the
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accumulation of stress that precede earthquakes or thend@dgion and extension of
fractures and faults.

Nonetheless, although in some works on that subjedtave appeared recently,
many authors have called those sorts of dislocationdtékfa dislocations,” those
dislocations do not seem to exhibit the charactesishat are generally associated with
Volterra dislocations and must be considered to be aittins of a more general type
instead.

9. — The classical Volterra theory of the equilibriurnnoultiply-connected elastic
bodies will be presented in the first three chaptethisfvolume, and some applications
of the theory of distortions to practical constructiail be discussed in the fourth
chapter.

After giving the theory of how one traces out linesirdfuence in the statically-
indeterminate systems, which is based upon the secondo@tygheorem, the problems
of the theory of elasto-plastic deformation and systiendaformations will be discussed.

The last two problems are intimately linked to eacleQthnd have taken on great
importance in modern constructiors]. The solution to the first one will permit us to
extend our knowledge of the stress state and the defonsatiostructures when the
elastic limit of the material has been exceeded andntterial is in a condition that we
call “plastic.”

That exceeding of the elastic limit happens much marquéntly than one might
suppose, even in structures that are calculated with tlstegtecase and the highest
precision, and asserts itself by the appearance of penndaformations or deformations
that do not disappear when the external forces that prddbhem cease to act.

The second problem is that of producing internal stredisa&s are favorable to
stability inside of the structure itself with the aiddistortions that are created artificially.

A precise examination of the state of tension andrdetion that exists in a
statically-indeterminate metallic structure, part of vahis in a plastic state, shows that
the effect of the plastic deformation is the saméhaseffect that is produced by a rigid
displacement. That hypothesis seems to be confirmdd/tgthesis. Nonetheless, that
does not imply that the distortion that ensues in thectre must be of the classical
Volterra type, because it can have a more general type.

However, in certain cases, it can actually coineidih the classical distortion. For
example, consider the important case of an archightated at its abutments. In that
particular case, the foundation that is added to the grelhdstablish the ring, and the
distortion that ensues naturally in the structure wifrenelastic limit is attained, or the
artificial distortion that can be produced by force ia thng in order to produce a stress
state that is favorable to the stability of the st will coincide with a distortion of
Volterra type.

In the case of practical applications in which one ndestl with distortions of the
most general type, it is also always possible to atilie methods that are derived from
the classical theory of elastic distortions thabW/olterra gave us.
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GENERAL PRINCIPLES

l. — Review of the elements of the theory of elasticity.

1. — No entirely rigid bodies exist in nature. The bedieat one callsolid will, in
fact, take on noticeable deformations when one appliéisisatly-large forces to them.
Elasticity is the property that they possess of goind ldactheir original forms in a
manner that is more or less perfect when one suppréssesdresses that produced the
deformation. Certain substanga®servethe deformation that was imposed upon them:
They are callegherfectly plastic.

Perfect plasticity is the opposite property to perféasteity. They are two extreme
states that are not realized rigorously by any body.

2. — The study of elastic phenomena can be carried outliyng from molecular or
atomic hypotheses and utilizing the results of the teemf matter. We shall omit any
hypothesis on the constitution of an elastic body foamstudy and consider such a body
to be a continuous medium and rapidly review the priesighat drop out of the
mathematical study of its equilibrium.

Let a body that occupies a certain volugiee bounded by a boundagy which can
be composed of one or more surfaces. The externasfohat act upon it at an instant
can be classified by two categories:

1. The ones that act upon the volume elemd8tandS and which have the form
Fdm =FpdS in whichpis the density of the medium in the eleme&t

2. The ones that act upon the surface elententf gand that are assumed to have
the formT do.

We shall call the vectdf thevolume forcej.e., the force that acts upon the element
dmper unit mass and call the veciiothe surface tension.

On the other hand, one can define a force that refatesch surface elemedt
whose normal is supposed to be oriented inward to thenoons medium and is the
resultant of the actions of the material elemelmé &re contiguous tdo on the negative
side of the normal upon the material elements thatcantiguous to the positive side.
We call it theelementary internal stregbat is exerted on the negative face ofdbeand
denote it byl do.

Assume that there exists a state, which one gatlsral, of the elastic body for which
all of the internal stresses are zero. Upon staftom that natural state, one can deform
the body by applying volume forces and surface tensioraeh RointP of the medium
will then experience a displacement ¥, w), which we shall regard as infinitely small,
and which will take it tdP”.
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3. — Suppose, for the moment, thatv, w are known as functions of the coordinates
X, Y, z of the pointP and direct one’s attention to the geometric transfion that takes
a small volume element arouRdo a homologous element arouad

It is classical that this transformation can be deca®ponto adisplacementand a
pure deformationj.e., a deformation that does not alter three rectian directions of the
medium and which results from the superposition of tireet dilatations that are
performed parallel to those axes.

Recall that the displacement is defined by a transiatihose components augv, w
and a rotation with components e, r :

_1({ow ov _1({0u ow _1(ov ou
(1) p=2l—=-=| a=3|—-—| r=3=-—|
2l dy oz 2\ 0z 0x 2\ ox oy

The deformation of just he elementx(dy, d2 will have the components:

odx= "y, dx+3y;, dyt3y,, dz
(2) Ody=3V,, dx+  y,, dy+4y,, d7
0dz=1yy, dxt+ 3y, dy+ yy, dz
in which one has:

_du _ov _ 0w
yll_&’ y22_6_y1 ys3‘$1
(3) Va2 :y23:@+6_w, Va= 31:a_w @1
0z 0y o0x 0z
_ . _0u ov
Vzl—Vlz—a—y’Lg(-

The quantitiesys are the characteristic functions of the defornmtisince by
definition they are the components of a tensor upbith the new configuration of the
volume element considered will depend (viz., teformation tensQor There will be
displacement without deformation when the charattefunctions are zero.

4. — On the other hand, one knows that the intertrekses at each poift are
characterized by the quantities, ti, tis, to1, t2, ta1, ta1, ta2, tzz, which satisfy the
equalities:

tio =11, tz =132, t31 = 1l13,

and are the components of a tensor (viz. sthess tensQr

The internal stress or unit tensidnthat is exerted upon the negative face of each
element of the surfaas with its center aP will have components that are deduced from
trs by the formulas:
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T, =t,cosnx+ t, cony+ {, cosz
(4) T, =1, cosnx+ t,, cosny+ t, Oz
T, =t cosnx+ t,, cosny+ t,, cosiz

in whichn is the oriented normal to the elemédunt

5. — Finally, if X, Y, Z are the components of the internal force that aas tige point
P per unit mass then j is the density aP then the equations of elastic equilibrium
equations that Cauchy gave are the following ones:

ot,, N ot,, N oty _ PX

ox ody 0z ’

(5) ot,, N ot,, N ot,, - oY,
ox dy 0z

ot,, N ot,, N Oty _ oz,
ox 09y 0z

6. — In order to link the volume forces and the néatesof the body, it remains for us
to establish some relations between the intermats¢s and the characteristic functions
of the deformation.

One is led to suppose that there exists an el&ste potential that relates to each
elementdSof the deformed medium and whose expression is:

(6) E (Ji1, o2, V53, Vo3, Va1, Vi2) S

in which E is a quadratic form in the variables that figumeitj which is a form that is
always negative and will vanish only when all of tjuantitiegss are zero.

If the formE is known then the componenisof the stress tensor can be expressed as
functions of theyts by means of the relations:

oE
(7) trs = W .

s

Recall that the expression that was posed foretastic potential implies Hooke’s
law, which is verified by experiment and is obvianour equations. The internal forces
are linear functions of the deformations that pasdthem.

7. — The preceding considerations immediately give gblution to a first problem:
Find the forces that can produce a known stateedbmination when they are applied to
an elastic solid.
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Indeed, if theys are known then the relations (7) will determinettheand equations
(5) will imply the volume forces. Finally, the suréatensions must be chosen in such a
manner that they will equilibrate the corresponding maktensions.

However, the fundamental problem of the theory ofteldy is the inverse problem
to the preceding on&nowing the forces, find the deformation.

The solution will again depend upon equations (5), in whiehreplaces thgs with
their values in (7). However, this time, the unknowresua v, w, and one will have a
system of second-order partial differential equatioos determining them. Some
simplifications present themselves for homogeneous m@aig ones with constant
densityp) and for isotropic media (i.e., ones whose strucgitbe same in all directions
around each point).

In order to write out those fundamental equationsskal confine ourselves to the
case of a body that is botlomogeneouandisotropic

The potential in this case is equal to:

(8) P=1LO*+K g

upon setting:
©=J1+ oot i3,

Y= y121+ 22+y§3+%“é3+ Vo1t J’i2]2,

in which® is thecubic dilatation. L andK are constant, negative quantities.
One will then infer that:

t11:L®+2Ky11’ t23:Ky23’
(10) t,=LO+2K y,,, t;;=Ky,,
t33:L®+2KV33, t12:Ky12’

and the equations of elastic equilibrium will be written

KA?u+[L+ K]a—esz,
0x

(11) KAV +[L+ K]‘Z—@ = pY,
y

KA*W+[L+ K]a—@ =pZ
0z

2 2 2
in which the symboA? represents the operater7+—2+a— (or Laplacian).
x> o9y> 07

Those partial differential equations are equationsllgptie type. Their integration
will introduce biharmonic functions; i.e., ones that $atise equatio\? (A% = 0.
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In order to obtain the deformation that the body expeers, one will be led to find
some functionay, v, w of x, y, z that verify equations (11) and satisfy the boundary
conditions.

Those conditions are the ones that the functipns w must verify on the surface of
the body. They can take different forms since onekoanv either the displacements on
the surface of the body or the tensions.

8. — A fundamental theorem is the uniqueness theorendéosdlution: Namely, that
the boundary conditions define just one possible defasmgéfor convenient values af
andK.

One sometimes regards that theorem as obvious fremphysical viewpoint, but it is
necessary to prove it rigorously. One arrives at itgbyeralizing the argument for
equations (11) that permits one to treat the analogous quéstithe Laplace equation.

We shall not develop the general methods of integrahagequations of elasticity
here. We shall point out only the elegant method of Abnf7] for the problem of the
elastic sphere.

However, we must insist upon the question of the uniquesfesslutions. We shall
see that the study of that question is closely linketh Wit of the connectivity of the
space that fills the body and the theory of monodr@anat polydromic functions.

As a consequence, the theory of elasticity for multiply-connected hegiessented
in a manner that is different from the theory in simply-connected badiagesult of the
role that the polydromic solutions then play.

Il. — Some theorems on equilibrium.

1. — We rapidly recall some well-known definitions: Ar¢e-dimensional domain
with just one piece is callesimply-connectedr acyclic if any closed line that one can
trace inside of it can be reduced to a point by continuofesrdation without leaving the
domain. If that condition is not satisfied then twemain will bemultiply-connectear
cyclic.

Suppose that a cyclic domain becomes acyclic by makingojssttransverse cut.
One then says that the spacdasibly-connected

If two cuts are necessary in order for the domain toinecacyclic then the domain
will be calledtriply-connectedand so on.

The notion of connectivity can be generalized to theecof a space of more than
three dimensions, moreover. We remark incidentallyiththe case of domains in three-
dimensional space, there is good reason to consideraseypes of connection: e.g., the
surface connectivity and the linear connectivity. Ithe second one that will be of
interest here.

2. — The connectivity of space, which plays such an importae in the study of
elastic equilibrium, also enters into some other guestof mathematical physics. In
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order to give an example, it will suffice to rec&léttheorem of hydrodynamics that says
that whena fluid in which there are no vortices occupies a closed space thauisded
by fixed walls, it will necessarily be at rest if the specsimply-connected, but can be
very well in a state of motion if the space is multiply-conilecte

For a fluid that fills up a ring with ax®z one will then have a possible motion by
taking the function:

@= arctan”
X

to be the velocity potential.

That velocity potential is a polydromic function @me with several determinations).
When the poink, y, z has crossed a closed cycle aroundzthgis, the function will take
on its initial value, increased byz2

The partial derivatives:

Wp__ y 0p_ X

2! Y

x X+ y dy X+y*
as well as the successive derivatives, are finite, momtis, and monodromic, except
along theOzaxis =y = 0).
3. — Before going further, recall the classical thea@hGauss and Stokes:
GAUSS’'S THEOREM. —Let S be a three-dimensional domain whose boundary

o, and let X, Y, Z be three monodromic function #ratfinite and continuous in S, along
with their first derivatives. One will have:

j X aY 9z dsS=- j [ X cosnx+ Y cosny Zcosnz]d,
ax 6y 9z
in which n denotes the normal éathat points into S.

One can further say that the flux of the vecirY, Z) that crossew is equal to the
integral overS of the divergence of the vecto, (Y, 2).

STOKES’'S THEOREM. —If gis a surface with boundary s, and X, Y, Z aredhre
monodromic functions that are finite and continycai®ng with their first derivatives,

then one will have:
a_Y_Q( co dT
o0x 0y

0z oy (ax azj
I — —— |cosnX+| — —— | coqy+
g\ dy 0z dz 0X

= L[x dx+ Y dy Z di.
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If the sense of traversal that is taken around s has the samedairestthe positive
normal to othen one can also say that the rotational fluX,0f, Z acrosso is equal to
the circulation (or the work done) by the vectdrY, Z) alongs.

Those two theorems are valid only in the case whereom&ders functions that are
finite, continuous, anchonodromic

That is the profound reason for the difference betvthe solutions to the problem of
elasticity for different connectivities.

4. — We shall account for it very simply.

Figure 2.

One often states the theorem that saysahatlastic body that is not subject to any
external action (volume forces vanish, along with the tensions or pesssur the
surface) is in the natural state. All of the coefficigmtwill be zero. It will then follow
immediately thathe deformation will be determined in a unique fashion when one is
given the external stresses.

Those statements are exact only in the case ofbaticebody that occupies a simply-
connected volume.

In order to show that they can break down in the atases, it will suffice to imagine
a body that forms a ring (viz., torus) from which one hamoved a very thin radial
wedge and then soldered the two boundaries of thaAZuBB' (Fig. 2).

After soldering, the body will be subject to inters#desses, but it will nonetheless
support no external action.

One might think that one must necessarily find a disgoity or singularity in the
deformation at the location where the soldering was ntfadegne can show that no such
thing is produced and that nothing in the deformation wiliriteone recover the location
where the cut was made.

The solution to that contradiction with the classpraof of the theorem that was just
stated is found in an application of Gauss’s theoremathatutilizes in order to show that
when one starts from equations (4) and (5), the deformatiibbe zero wheiX, Y, Z, T,
Ty, T, are zero.

Now, Gauss’s theorem cannot be applied in the cadeeqgireceding ring, since the
displacements, v, z will be polydromic functions after soldering. Inded¢dp points
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that belong to the sectio®sA" and BB, respectively, and are brought into contact by
soldering will have taken on displacements whoseewifice represents precisely the
corresponding size of the fissure. That is why if stagts from the pointlo on AA" and
continuously follows the displacement ¢, w) along a cycle that is described in the ring
then one will return to the starting point on the oside of the cut with values af v, w
that are different from the initial values.

One might even be tempted to apply the preceding remask tacyclic body and
intuitively consider that upon subtracting a very thigeslfrom such a body and then
bringing the boundaries of the cut back together, onehaulé a state of equilibrium with
no external forces, but with stresses and deformatiorthe body that vary with no
discontinuities.

Such a conclusion would be false. Indeed, we shall shat if one supposes that the
deformation isregular — i.e., thatyia, )2, W3, V3, Vs, Ve are finite, continuous,
monodromic functions, along with their derivatives (of first and second)ordéen the
polydromy of the displacements can be present only if the body has dayulic

5. — In order to do that, we must first look for relagothat will permit us to pass
from deformations to the displacements. We shéithiothe elegant method of Cesaro
[10] in order to establish the formulas that Vito Voleegave on that subject.

Letsbe a curve in the body with extremiti®g A; ; let xo, Yo, zo be the coordinates of
Ao, and letx, yi1, z1 be the coordinates @4 .

The values ofi, v, w at the pointA; are given as functions of their values at the point
Ao by the obvious formula:

_ ou ou Ju
Uy =Up + J’S{&dwa—y dy+6_z dz} :

and the analogous formulas far w; .
In order to transform these formulas, get the valti¢iseofirst partial derivatives af,
v, w from the relations (1) and (3); it will then followait:

Uz = Uo +J.S[y11dX+%y12 dy+%y13 d%'*"[s[ qdz rdy.

Upon denoting the values pfq, r at the pointA, by po, 0o, o, @ Simple integration
by parts will give:

[ladz-rdy =do[z-2z] - lz-2z] + [ [(z -2 da-( y- ¥ dF.
On the other hand, one will have:

99 _0yy 10y, or _10y, Oy,
ox 0z 209z Ox 20x Oy

and analogous formulas for:
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%andﬂ, %andﬂ
oy oy 0z 0z
As a result:
Up = U+ qo (zr —20) — ro (Y1 —Yo) +L(fdx‘*‘f7 dy+{ d3,
with:
_ i aJ/Zl.l 1 aylZ_ _ aJ/ll 1 aJ/ZI.3
= +(v. — — =2y (7 - -—78
$= Vut(n y)_ d 2 0x (z z)_ S o |
10y ., | [1dy,, 10y }
12 =1y +(y—-y)| =228 24z )| =LA77
(12) nN=%Vn+(Y, y)_2 oy ox | (z z)_2 5o
10y, 1ay,,] [ 1oy dy }
=1y +(vy - Z2 R |y (72— =2 ZFs3y
{=3Vut+t(N, y)_2 o 2% (z 2)_262 -

One will get analogous formulas far, wi, so finally:
U=U+ (2= 2~ (Y- W +[ (€ den dyd dz

0 V=Vt (0= X) - Pl am [ (E den dyd 0z
W=+ (Y- W) - G %= )+ (& ey dyd” 0z

in which &, ', ', &%, n”, {” are expressed as functions of gagin a manner that is
analogous to the expressions ), {.

6. — Suppose that the lirsds a closed cycle.

If the elastic body occupies an acyclic regiomtbee can regarslas the contour of a
surfacecothat is situated in the interior of the body arahsform the integrals that enter
into formulas (12) by Stokes’s theorem, and thydaee them with the surface integrals:

L{%ZC —X—;yB} cosnx—[x—;yN (z- 2 % cos ny[;—;z A Gy Y ﬂScos r}z s

L{_ XIZ_XB+(?1— 2 E|cos nx zl_;z C—)l(—gx%cos ny[ (> 3 Glz_;z 3 cos }za_,

Jg{' (.- Y)E+ XlZ_XC cosnx-| (x= X F-%/ % cos ny{%x y_;y G cos r}z al

respectively.A, B, C, E, F, G have the following significance:
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p= 0| 0V 3| 0%
ox| 0y 0z O0x| 0Dy

pe 000, 0y, 0y | 0%y

dy|l 0z ox dy| 0¥z

c= 0| 0¥ | 0%
0z| 0x 09y 0z | 0¥ >

- 62}/32 _62}/23_62}/33
dyoz 07 0y

Fo s 0% 0%
0zox 0X 07

- 62}/21_62}/11_62}/22.
oxdy 0y 0%

One immediately verifies that:
(1 A=B=C=E=F=G=0.

These are well-known formulas, moreover, and they due to Barré de Saint-
Venant. The integrals in the formulas (12) will beozihen, and one will have:

Ui =Uo, Vi=VWo, Wi =Wo .

If the deformation is regular and the body is acyclic then the dispkasmwill
necessarily be monodromic.

However, if the body is cyclic then a closed cy&le not necessarily the contour of a
surface o that belongs to the space that is occupied by the badgne cannot apply
Stokes’s theorem, and the displacements can be polyaromi

7.— We can then state the following propositions:

An elastic body that has an acyclic form and a regular deformation can be btought
the natural state by finite, continuous, and monodromic displacements.

If the elastic body has a cyclic form and the deformation is alwaydaethen in
order to return to the natural state, it can sometimes be necessamake one or more
cuts and remove some parts of the body, and the displacements are not oldigaged
monodromic.
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Finally, if the external forces are known then the regular dedtion of an acyclic
body will be well-defined. That of a cyclic body will not be, exicefite case where one
knows in advance that one can return to the natural state by monodromic eraplats.

The proof of the latter proposition follows from tbhae that one makes in order to
prove that an elastic body that is not subject toreateforces is found in the natural
state, which is a proof that implicitly supposes that th&placements are finite,
continuous, and monodromic, and that the deformatioegislar.

We shall study the case of the cyclic body moresjos

8. — When the body is cyclic, one can make it acyclioriaking some cuts. One
easily infers the discontinuities in the displaceateealong the cuts from formulas ().

We first take a doubly-connected body that can be magdi@aby one cut.

If the values of the displacements at two pomtand S that are contiguous on one
side and the other of the cut are:

Ug, Vo, Wg and ug, Vg, Wg,
respectively, then formulas (1), in which one takes:
Xo =Xy, Yo=VY1, LH=12,

wherexy , y1, z denote the common coordinates of the painésd S, will give:
Ug— Uy = '[(aﬂ)[g(dX'i'/] dy+¢ di,

and the analogous expressions gy \v,), (Wz— W), where @p) is a line of integration
that is situated entirely in the space that is occupigtidoypody.

One can isolate the terms that depend wppn in & 7, ¢, as given by the preceding
equations (12), and upon denoting the remaining ternds by, {o, one will have:

Ug— WU :.[(aﬂ)[go dx+1, dy+{, di+ {[(aﬂ) det (@B)

The calculations that were made in the precedingbeurand the formulas of Barré
de Saint-Venant show immediately that the integral of

[&dx+ o dy + {HdF

will be zero when it is taken along a closed curve simaly-connected space.

One deduces by an argument that is very simple andcabtsat when the integral
of that expression is taken along/) in the case that we are currently dealing with, it
will be independent of the paio( ). The same thing will be true for all pairs of points
a, Pthat are separated by the clVe denote the integral by
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The two integralsj.mﬂ)dq and J.(gﬂ)dr , which we denote by the valugsndr, will be

the same constants, regardless of the paif)Ythat one envisions. It finally follows that:
Up—Ww=1+qza-zwy,

along with analogous formulas fag— v, andwg — w, .

One can easily generalize this to the case of accholdy with a higher order of
connectivity by saying that for each cut the values of discontinuities in the
displacements will have the form:

L, = I+0z—-ry
(1 Vg =V, =m+ Ix- pz

a

W, =W, = N+ py- gx

Uz —u

[, m, n, p, g, r are thecharacteristic constants of each candx, y, z are the coordinates
of the pair @, 0.

That being the case, in bodies that are madeiadyckuts, the displacements will be
finite, continuous, and monodromic, and will satisélations (I11). That is why one can
state the following theorem:

If a cyclic body is deformed regularly then theadefation will be well-defined by the
external forces and the constants of each cut.

That theorem completely specifies the differenedvieen acyclic bodies and cyclic
bodies.




CHAPTER I

DISTORTIONS

lll. — Definition. The corresponding problems of equilibrium.

1. — Formulas (lll) immediately give the physical sigeefince of the six characteristic
constants of each cut.

Indeed, make some cuts in the material along the cheesimons in the deformed
cyclic body and let it return to its natural statef cértain parts of the body get
superimposed by that operation then we shall suppressdhgses parts.

Formulas (lII) will then show thahe material elements that are placed on one side
of the cut and the other and that previously adhered to each other will texhidative
displacement that results from a translation and a rotation that are the fkara# pairs
of adjacent molecules on the same cut.

Upon taking the origin of the coordinates to be thetaseonf reduction of the
displacements, the constants of the cut will bectaponents of the translation and the
rotation around the coordinate axes.

2. — Now consider things from a different viewpoint: Takeyelic body in the natural
state. In order to convert it into a state of tensiow, can perform the operation that is
inverse to the preceding one, i.e.:

1. Section it in order to make it acyclic.

2. Displace the two faces of each euth respect to each other in such a manner that
the relative displacements of all pairs of elements (that adhereactoaher before the
cut separated) result from the same rotation and the same translation.

3. Re-establish the connectivity and continuity along eachbgutremoving or
adding the matter that would be necessary and soldéengairts that are in contact.

We say that the set of those operations constitutdsstartion and that the six
characteristic constants of the cut can be calleccharacteristics of the distortion.

One sees that a distortion will lead to a stateqpfilibrium of the elastic body with
internal deformation, which is a remarkable propertyasfiés with a cyclic form.

3. — The formulas that led us to those results showhemhe hand, that the cuts that
can be deduced from each other by a continuous deformati@ntihe same characteristic
constants. It will then follow that the characsegs of a distortion are not linked with a
well-defined cut, but only depend upon the deformation ofbibdy and its geometric
nature.
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It is natural to call two cutequivalentwhen they transform into each other by a
continuous transformation. A distortion is known whigie characteristics and the
relevant cut or an equivalent one are given.

One can further say in a much more suggestive mannemnthacyclic body whose
deformation is regular and which is subject to a certaimber of distortions, an
inspection of the deformation cannot in any way retieallocations of the cuts and the
ensuing distortions that were performed.

The number of independent distortions to which an ieléstdy can be subjected is
obviously equal to the order of connectivity of the space ithaccupied by the body
minus one.

4. — The problems that pose themselves naturally hereafelkbwing ones:

1. Can one take the characteristics of the distoréitbitrarily and get a regular
deformation of the body while supposing that the exteaoabns are zero?

2. If the distortions are known then what is the stdteeformation for arbitrary
given external forces?

The solution to those problems is facilitated by thefeilhg theorem:

If one takes an arbitrary set of distortions in a multiply-connectatrapic, elastic
body then one can calculate an infinite number of regular deformations thaspond
to those distortions and are equilibrated by external surface forceshwiecdenote by
T) that for a system of vectors that is equivalent to zero & .eero resultant and a zero
moment about a point).

We shall ultimately return to the proof of this theardout we shall first show how it
permits one to study the problems that were posed above.

In order to see that the external forces on amapa body will be zero when it is
given a distortion that corresponds to a state afliegum, from the preceding theorem,
it will suffice to establish that the surface forceshat are applied to the contour of the
body when it is not subject to any distortion will detere a state of regular deformation
that equilibrates those forces.

Indeed, le” be the deformation that relates to the given distorand the force¥
that are found to act upon the boundary of the body, &trid be the deformation that is
determined by the forces ¥ when the body is not subject to any distortion. The
deformation™ that results froni andl™" will then correspond to the given distortion and
zero external forces.

It remains for us to know whethEr exists at all and how one can obtain it. That is a
problem in ordinary elastic equilibrium, since there isdistortion. On the other hand,
the system of force§ is equivalent to zero, by hypothesis. Those forces filéh the
fundamental conditions that are necessary for thdezxis of the deformatioh’, and
one knows that except for certain singularities (whiehpointless to specify here) in the
geometric form of the elastic body, that existenaestablished.
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The first problem that was posed is thus found to have $&lged:

For a cyclic, isotropic body that is not subject to external actiong, can give the
distortionsarbitrarily, and the latter will correspond #b state of equilibrium with no
external forces and a regular deformation.

5. — Now suppose that a distortion is given and that tlag Esubject to given non-
zero external forces.

If the body is always supposed to be isotropic then ahleget the solution to the
problem if one superimposes the deformafiothat is determined by the distortion and
the external force$ with the deformation with no distortions that is detmed by the
given external forces and the external forcds —

Hence, the second question that was posed is solviedaryt

By definition, the theorem that was stated at thgirtseng of the preceding number
will permit one to eliminate the distortions and redueeduestions that are attached to it
to questions of ordinary elastic equilibrium.

6. — The case of an anisotropic body is a bit differéhhe easily sees that the state of
deformationl” is equilibrated by some surface fordeandvolume forces.Even in that
case, it will then be easy to eliminate the distogiand to then reduce it to a problem of
ordinary elastic equilibrium.

7. — It remains for us to prove the fundamental theoretnwha stated in nal. We
shall first imagine a simple special case.

Let o be an area in thezplane that is simply-connected and finite and does not
intersectOz Turn thexzplane aroundz and suppose that the arealeforms without
changing its nature and without intersectdgduring that motion, but in such a way that
it will return to its original configuration after it corigbes a circuit.

We thus generate a doubly-connected annular solid. Supdseighfilled with an
isotropic, homogeneous elastic substance. Impose dsegeneral distortion upon that
body that is obtained means of a cut through a plane#sses througbzand study the
deformation.

The way that one generates the body will suggespribieable form of the solution.
If I, m, n, p, g r are the characteristic constants of the distortiean tthe following
functions:

y

i(I + qz-ry) arctan—=,
2 X

1 (m+rx—p2 arctanz
2 X
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y

1
—(n + py—Qgx) arctan—
2 X

will be biharmonic, and due to the polydromy of argtdr, they will be polydromic and
have the polydromy that corresponds to the distortidin @haracteristics m, n, p, g, r.
However, those functions do not satisfy the equatidmedasticity, namely:

KA?u+(L+ K)a—ezo,
0X

(13) KA*+(L+ K)%—ezo,
y

KA*w+(L+ K)a—@ =0
0z

(in the case of isotropy and zero volume forces).

We shall then add some well-defined monodromic functionthe preceding three
functions in such a fashion that we will obtain thfeections that do verify equations
(13).

We can take those monodromic functions to be funcodtise form:

f, log (€ +y?), f2log (¢ +Y), fslog (¢ +y?),

in whichfy, f,, f3 are polynomials of degree onexny, z. An identifications will easily
give the values of the coefficientsfef f,, f3 as functions of, m, n, p, g, r andL, K.
By definition, one will then get the following expregssscof the desired form:

1 y 1 rK
=—!{(l+gz- ry)arctan=+=| —m+ pz- log( %+
! 277{( =) X 2( P L+2K% o §/}

1 y 1 rK
14 =—(m+ rx— plarctanz+=| H+ gz log( %+ ,
(14) v 277{( X= p3 . 2( q L+2K9 of 9}

:%T{(n+ py— q&arctan%+—;( px- qy log(k+ 9} .

That deformation is indeed regular and answersstheement of the theorem to be
established. One effortlessly calculates the sarfaresses that correspond to them.

8. — We shall now give the general proof of the tkeeomn question.
We start from Somigliana’€lff] fundamental functions:

1 adr a o°r
==+

U = = +——, Vi = — ,
T 2o ! 2 Ox 0y
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a o°r 1 adr _a 0
u2__ ’ V2__+__21 W2__ ’
2 dy ox r 2oy 20yo0z
_a 0r _a or 1 adr
U3 = — ; Vi=— ; W =—+_-—
2 020X 2 0z0y r 2oz

in whichr denotes the distance between two poixtyg, (2 and &, 77, {). Those functions
are symmetric with respect to the pairs of varighile¢ ; vy, n7; z, {; they are singular
only for:

X=¢ y=n z=4

Each term in those functiong, vs, Ws (s = 1, 2, 3) verifies equations (13) or the
equations that one deduces from them by substtfim, ¢ for x, y, z in all of space
(except for the indicated singularity). Whey vs, Ws are considered to be functionsxpf
y, zor ¢ n, ¢, they can then be taken to be the componentseadigplacements of the
points of a homogeneous, isotropic medium with olome forces.

Let do be a surface element around the podntrx ¢) then, and leXs, Ys, Zsbe the
components of the unit stresses that correspomietalisplacementss, vs, wsand are
exerted upon the part of the elastic medium thailased on the positive side of the
normal todo by the part that is placed on the negative sidéhefsame normal. The
calculation ofXs, Ys, Zsis immediate [cf., Chap. I, formulas (4) and (7)].

Now, if ug, Vo, Wp are integrals of equations (13) that are reguldhe domairs that
is bounded by a surfaée and ifXo, Yo, Zo are components of the corresponding tension
then the Somigliana formulas will give:

I(Xu+Yv+Zlv@ds J'()gwg(\f Z W ds [, xYy,
(15) j(Xuo+w+zzv@ds —LOXw Y 2w ods voxy
j(Xu+Yv+ng\ods — (X g Yy zWoes puxy,

in which one supposes that the poixty, 2) is interior to the domai® and thaté, 7, {
represent the coordinates of the pointz pand one takes the normalXao point into
the domairS. When the pointx y, 2) is external td5 the right-hand sides of (15) will be
zero.

Finally, take:

(16) W=I+qz-ry Vo=MmM+ X —pz Wo =N+ py — gx

in the relations (15), in whichm, n, p, g, r are constants; the corresponding stresses will
obviously be zero, and the integrals:
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Uz [[(X U+ Y y+ Z W) @,
47K Iz
1
= WL(XZ W+, b+ 4 W @,

1
W:WIX(X3U0+Y3.\6+ Zw) @
will be equal to:
| +gz—ry m+rx—pz n+py-—agx

respectively, if X, y, 2) is interior toSand zero ifX, y, 2) is exterior toS They will then
be discontinuous upon crossikgwhile the correspondings :

ou ov  oU
Mai=—", 12=—+—

ox ox oy’

will be zero identically in all space.

9. — Divide the surfac& into two partsoand ¢ then and define, v, w, andu’, V', W
by integrals that are analogous to the ones thatldywé W, but are extended over the
open surfacegrandd, respectively.

Upon consideringl, v, w, for example, it is clear that:

1. They are finite, continuous, and monodromic funetiofx, y, z, along with their
derivatives of arbitrary order at any point in space dloats not belong to.

2. They verify equations (13) and thus define the displacés of a homogeneous,
isotropic, elastic medium that is not subject to anunwa forces.

3. Upon crossingg, u, v, w will experience the same discontinuity dsV, W, in
such a way that if one distinguishes the values ofetlimisctions interior and exterior to
the domairS byi ande, resp., then will have:

u —u = I+qz—ry
a7 V. =\, =m+ rx- pz

W —W, =N+ py- gx

4. By contrast, thers (as well as th& ) that are calculated by starting framv, w
will remain continuous upon crossing in such a way that, v, w are regular in all
space, except at most on the contous.of
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Finally, if one substitutes the values (16uafvo, Wo in the integrals that give, v, w
and arrange the right-hand sides with respettrto n, p, g, r then one will arrive at the
following theorem:

o) _ 1 o) — l () = l
ag)| AT aml %@ A =gl Y o K=l 7@

B =0z W e [Cx-Epd B[ ¥

u=API+ AP AD e BY pr ) o B
(19) v=ADIHADmE Ak B) pr B) o B
w= AP+ ADmE A+ BY pr ) o B

in whichl, m, n, p, g, r are arbitrary constants. One can regard u, v,a® the
components of the displacement of an indefinitestielamedium that is isotropic,
homogeneous, and has a deformation that is regualall space, except at most on the
contour of oo That medium is in equilibrium with no volumecks. Finally, the
displacements have discontinuities grthat are given by the preceding equati¢hg).

In the case wherer is an open surface, when one calculates the qesitu, v, w by
means of formulad) of the previous chapter upon starting with the ewéeristics of the
deformation, they will be polydromic, and the linEsseparation (diramation) will be
composed of the contoarand the polydromy will be defined by formulag).

10. — In order to establish the theorem in dpimagine a bodys whose order of
connectivity isn + 1 and render it simply-connected by meansafuts along the

surfacesai, &, ..., dn. Some formulas that are analogous to equatio®y @t in
which the arbitrary constants, m , ni, pi, g, ri, and the functionsA'”, B, that

define a regular transformation @& for each cut appear, will correspond arbitrary
distortions along the cuts. The corresponding meldorces will obviously be zero. On
the contrary, the external forces that act on thenary ofSwill not be zero, in general,
however, sinc&is in equilibrium, they will form a system thataguivalent to zero.

IV. — The energy of deformation in the case of distortions.t&sses.

1. — Recall the essential difference between elasfiglibrium in a simply-connected
body and in a multiply-connected one. In the lat@se, one can determine a state of
stress in the body in the absence of any exteomed¢ foy means of the distortions.

The essential problem of the theory of distortiasimply to determine the stress
states that are due to given distortions, along thé corresponding deformations.

In order to make the solution of that problem egsalong with the ones that will be
posed later, we shall briefly present some gemeraérks on the energy of deformation.
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We have already seen that the internal tensionacit point of an elastic solid are
characterized by the six quantitigsthat are obtained as functions of the charactesistic
of deformationys and by the intermediary of the potential functién(ys), which is
homogeneous and of second degree, by means of the formulas:

OE
(7) ts = —a—yrs ;
one can then write:
(7') E :%Ztrs yrs )

The energy of the system will then be:

= _%'[Sztrs Vis dS’

in which Srepresents the space that is occupied by the body.

The case that is of interest to us in the one in W8is multiply-connected. In that
case, one can transform the preceding integral dirbgtipeans of Gauss’s theorem with
no precautions, because the components, w of the displacement are polydromic
functions. We shall specify them.

2. — Recall a formula from integral calculus that isedity associated with Gauss’s
theorem:

If U and V are two monodromic functions then oréhave:
IV—dS——IU —dS- I UVcos nxar
S

for a volume S that has a boundarywhere n denotes the interior normaldo
On the contrary, in the case where the functionsUolydromic, a very simple
argument will show that one has:

IV—dS— IU —dsS- IVUcosnxd7+I MU- U]coy xa,

upon denoting the cuts that render S simply-comuebly ¢y an area element of those
cuts by dy and the corresponding oriented normal lpyand finally, denoting the values
of U at a point on the positive or negative sidehaf normaly to the cut by Yand Uz,
respectively.
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3. — It is the latter formulas and the analogous formtdashe derivatives af andz
that we shall apply in order to transfoéinsincef is a sum of integrals such as:

ou
-|t.—dS,
.[llax

and the functions, v, w are polydromic in the case envisioned.
Imagine that the cut&a, @, ..., ay that rendelS simply-connected have been made
and letv; denote the oriented normal at a point of theaytlet u?”, v, w®’ denote the

a

values ofu, v, w on the cut on the positive side of the normal, andufgt v§’, wf
denote the values on the other side.
Under the stated transformation&fone will then have:

o, ot, ot
20 E= 3 L+—12+-2L31dS
(20) 2L'Zu(ax oy azj

+1 LZu(tﬂ cosnx+ t, cosny+ t, coz )dr

1
t3

J, 3 - ) 80080 x+ £, cosn 1, com 2 )dy

n
i=1

Letli, m, n, pi, Gi, ri denote the characteristics of the distortion th&tes to the
cut @, and letX;, Yi, Z represent the components of the force of unitie@nthat is
exerted on each area element of that cut.

One first has:

ud —u = li+gz-ny,
V) -V =m+rix-piz
WP - =n+py—g x

Moreover, if the external forces are zero thenfits¢ two integrals in the expression
of (£) will obviously be zero and the expression witluee to:

n

1[I0 -ny+a X +(m+rx p B py, Qx E o

i=1

&

=13 [, X da+m] ¥ o+ nf, Z &

i=1

PR Yz Zydpr d (X 2 ZX@+ [ (Y%, Oy,

N

If one sets:
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Li:J.(qudcq, Mi:J.(indcq, Ni:J.(qudcq,

P=[ Zy-Y2dy, Q=] (Xz-Z¥dy, R=[ (¥x-XYdy
then one will finally have:

(21) E=3) (LI+Mm+Nn+Pp+ Qg+ R).

n
i=1

One can write that formula in a simpler mannefebyng s, , <, S, ..., Ssn denote the
6n characteristics of the distortions, andBgt, E,, Es, ..., Es, denote the coefficients
that correspond to them in the expression (16)vahé¢hen get:

6n
(21) E=1YEs.
i=1

If there exist external forces that are appliedht® elastic body, in addition to the
distortions, then if one lets:
pXdS pYdS pZdS

denote the volume forces and lets:

Xsdo, Y,do, Z,do
denote the surface forces then:

oy Oty Oty Oy, Oy, Oy oy Ny Oy
ox ody 0z ’ ox o0y 0z ’ ox ody 0z ’

X =111 COSNX + t3, cosny + t33 cosnz,
Yo =121 COSNX + to2 cosny + ty3 cosnz,
Z, =131 cOSNX + t3p cosny + t33 cosnz,

and the energy of the system will be obtained dirad

jsp(xU+Yv+ Zvy dSL( Xt Yv Z)Wa

to the right-hand side of the preceding equatidh) (2

4. — We call the distortion that corresponds to cott@rastic quantities that are all
zero, except for one, which is equal to unityeéementary distortion



30 On the Distortions of Elastic Bodies

Suppose that the latter & , and letEj, denote the corresponding values of the
coefficients E; . One sees that in the general case where the @sgrhave
characteristics; , &, Sz, ..., Sn , 0ne will have:

Ei:Zh:EihSh-

(The expressions for the coefficieriEs that were given above indeed show that those
coefficients are linear, homogeneous functions of treracteristics of the cuts.) One
will then have, in turn:

(22) E=32 D E5%.

It is interesting to specify the significance of therquesE; andE;, .

To that effect, observe that, M;, N; are the components of the resultant force and
P, Q, R are the components of the resultant couple of tlessts that act upon the
sectionaw when one takes the origin of the axes to be theecefreduction.

We then let;, M;, Ni , P, Q, R denote the stresses that act in the sectiprand
in general, we will say théf; , E;, Es, ..., Es are thestresses that correspond to the
distortions 8, %, S, ..., Sen, resp. Ei is calledthe stress of order i that is induced by the
distortion of order Hi.e., it is defined bys = 0 ( # h), s, = 1]. Even more simplythe
coefficients ks can be called the stress coefficients.

5. - One can now give a fundamental property of theficosits E; .

Green proved a fundamental proposition in potential rihéy applying Gauss’s
theorem. However, the application of Green’s meti®adot limited to the case of
potentials, since it can be extended to considerable nuafbeases. Vito Volterra
showed that it can be extended to all problems that depgon the calculus of
variations. Now, the problems in elasticity, like @ibblems in mechanics, are attached
to questions in the calculus of variations. Thathywne has a theorem in elasticity that
is analogous to Green’s.

It was given for the first time by Betti, who madere remarkable applications in the
integration of problems in elastic equilibrium.

Now, if the displacements are polydromic then sin@ss’s theorem no longer
applies, Betti's theorem will no longer be applicabiéhex. One sees that even in that
case, upon recalling Green’s fundamental idea, one wiletd to an interesting law of
reciprocity for the stress coefficients.

Suppose that we apply two distortions to an elastic bodsuccession that are
characterized by the valuss, ..., s, ; 5, ..., S;, Of the characteristics.

Let ¥/, and y, be the values ofs that correspond to two deformations ancHéand

E" be the values of the elastic potential. From a wadivkn theorem on homogeneous
functions of degree two, one will have:
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OE' , i _ [ < OE"
jsza—yrsyrs ds = Jsza_yr;ym ds,

and if one transforms those integrals after rendehegvblumeS acyclic by cuts, while
always regarding the faces of the cuts as belongingettdlindary of5 then one will

find that:
6n 6n
z Eins :z Eir sr ,
i=1 i=1

in whichE”andE " are the values of the quantitiéshat correspond to two distortions.
One then deduces that:

(23) zzh:Emgfﬁ’:zzh:Emglzﬁ

One can further say that:

If two systems of distortions in a multiply-conmeelcbody generate two systems of
stresses then the sum of the products of the sgedgthe first system of distortions with
the characteristics of the second system will bgaktp the sum of the products of the
stresses in the second system of distortions hgtlcharacteristics of the first system.

Since the quantities ands’ are arbitrary, one must necessarily have:
(24) Ein = Eni

for all values of the indices and h, and conversely, those equalities will imply the
relation (23) as a consequence. The reciprocity thedraiwe just obtained can then be
stated as follows:

The stress of order i that is induced by the el¢argrdistortion of order h is equal to
the stress of order h that is induced by the eléamgmlistortion of order i,

or more simply:

The values of the stress coefficients do not chamgker a transposition of the
indices.

6. — Given the numerous applications of the reciprocigotém, it would not be
pointless to examine them further from another viewpoint

Take two arbitrary sectiong; and > of the elastic body, which are sections that can
also coincide, and perform a distortion that is cstesit with a relative translatiofy
along the directiorh; of the elements of the two faces af . Then determine the
projectionS, along the directiof, of the resultant of the stresses that act in thacse
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&> . On the contrary, in place of the preceding disiartimagine another distortion that
consists of a translatiofy along the directioh, and determine the projecti& alongh;
of the resultant of the stresses that act in theseo; .

The reciprocity theorem gives:

ST,=5T, or _?

|

2

so the projections of the two stresses along tinections of the two translations are
proportional to the values of the translations tisefhaes.

One will get an analogous theorem by replacing the tramsi& with the rotatiorr;
around a lineh; provided that one replaces the projectnof the resultant of the
stresses that act in the elementapivith the moment of those stresses with respect to
the lineh; .

Finally, one will get a third statement that is analogtmushe first two by similar
substitutions that bear upda andS; .

7. — Finally, we remark that from the expression (22) lfer ¢nergy, the equality of
the coefficientsE, andEp; will imply that:

(25) E=—.

Upon introducing the coefficients, of the adjoint form, the energy will take the
following expression:

(26) E=1>2&EE.

8. — We have already seen that if one is given a defawmaf a multiply-connected
system then the distortions will not be specific lhe tut that was performed, but the
distortions that correspond to equivalent cuts will be equ&/e shall complete that
proposition by showing that the same thing will be trudate stresses that correspond to
two equivalent cuts.

Let g1, & be two equivalent cuts. One passes from one to tlee byha continuous
deformation such thati sweeps out a portio; of the elastic body under that
deformation.

Consider the soli&, . It is in equilibrium under the action of only theesises that
act ingi ando; . The equality of the stresses will indeed result, lé&ke the distortions,
those stresses will depend upon only the geometric nattine space that is occupied by
the body.
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The first problem that one can propose to solve in dadarrive at the solution to the
general problem that was posed at the beginning of thignagfawill then be:

Begin given thén distortions, determine thén stresses when one supposes that the
external forces are zero.

That amounts to the determination of the stress casits.
9. — It is interesting to specify how one can generdheereciprocity theorem in né.
[formula (23)] when volume forces and surface stresges/ene.

Imagine two more cases of equilibrium in a body, omewbich involves the
distortionss, s,, ..., S,, the volume forces:

pX'dS pY' dS pZ'dS

and the surface forces:

X, do, Y, do, Z do,
and the other of which involves the distortios)s S,, ..., S,, and the volume and surface
forces:
,OX”dS leldS ,OZ”dS
X, do, Y 'do, Z,do,
resp.

An easy calculation shows that equation (23) is replaath the following one:

6n
;E"$+Lp(X"U+Y’ i+ 2 W dS‘bL( X'e N'v "Z'Wor

6n
:;E"SJf'J’JSp(X'dJ’YW Z W dS‘bL( X'# Y'v [Z"Wot

When there are only distortions and the forcesadnsent, one will fall back on the
results of the preceding numbers. When only theef® exist, and the distortions are
absent, one will recover Betti's theorem. Finallyhen one considers two states of
equilibrium, one of which has no distortions and tither of which has no applied forces,
one will get Colonetti’s theorem)(

() Colonetti obtained that theorem in 1912]] where he established it directly and independently of
the preceding propositions. In a paper in 19¢J7tiat was published in thAnnales scientifiques de
I'Ecole Normale Superéurand in the Notes that preceded it, Vito Volterra comsilenly the case of
distortions alone (preceding nos. 5-7). Colonettechitiis theorem thgecond reciprocity principleand he
made a large number of applications of it. We shalkneto it in the last chapter.
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V. — Distortions and stresses in a symmetric cyclic body.

1. — We shall not pursue the general study of the probledistortions. We shall
now study the results that one obtains with someacpéat distortions that are performed
on symmetric, cyclic bodies by using the preceding priasiphd results.

We shall achieve that goal without taking recourse tontiegration of the equations
of elasticity, but simply by examining the expressiandoergy.

Here, we shall once more verify that a deeper studquite necessary in this type of
guestions. Upon being guided by our intuition, we will et think, for example, that
in the case of the ring when one removes a very thilalravedge and then solders the
two faces of the cut together, the body will take astade of regular deformation such
that the actions that are exerted on the two soldex$ ardensions. That is not true
and we will see that in the new state of the ringrehs always a tensed part (external
boundary) and a compressed part (internal boundary); merete sum of the forces of
tensions is equal to the sum of the forces of compmessio

2. — Before giving the proof of that interesting propositizve shall make a general
study of the stresses in a symmetric, cyclic body.
Let us first give some definitions: The quantitiEsenter into the expression for

energy (21:
6n
E=1>Es.
i=1

We shall calE; theconjugate stres® the characteristig of the distortion.

We know that the distortion that is applied to eaghis composed of a relative
translation and a rotation of the faces of the cliickvis a translation and a rotation that
have well-defined components when one has chosen thdiicate axes and their origin.
If we use that origin as the center of reduction fer &ctions that are exerted on the
elements of one face of the same cut then we widl & resultant force and a resultant
couple by proceeding as if those actions were exerted upgid aystem.

The preceding definition indicates that the componehtkat resultant force are the
conjugate stresses to the components of the translaimh the components of the
resultant couple are the conjugate stresses to the cemfgoaf the rotation. If the
distortion is elementary then only one of the chamstics will be non-zero. The
components of the force or couple that is conjugate tacttaacteristic will be called the
conjugate stress to the elementary distortion.

3. — A solid of revolution can be generated by the revolutiba connected planar
surface (viz., the generating surface) around an axis iplane. Len be the order of
connectivity of the generating surface: If its axis iseexal then the order of connectivity
of the solid will ben + 1, but if, on the contrary, the axis constitutes om¢ glathe
contour of the generating surface then the order of comitg®f solid will be equal to
n.
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Make the generating surface simply-connected by meams-df linear cuts. Under
rotation, those cuts will generate just as many surftitais can be considered to be
section of the solid. In the second case, thosaosscwill suffice to make the solid
simply-connected, whereas in the first case, it wjhia be necessary to make a
transverse cut that coincides with one of the postimf the generating surface.

The last cut (or any equivalent one) will be said tofoine first kingd while the other
cuts (or their equivalents) will be said todfethe second kind.

For example, take a simply-connected surface thatesret to the axis of revolution
or else a surface that is doubly-connected, but bounded laxighéFig. & and d). In
one and the other case, one will get a solid with derasf connectivity that is equal to 2.

In order to make the body simply-connected, we shall raagetof the first kindin
the former case, and a aftthe second kinoh the latter.

7 4

Figure &. Figure B.

We say that the first body @oubly-connected of the first kirahd that the second
one isdoubly-connected of the second kind.

4. — Consider a symmetric elastic body that is doubly-eoteu of the first kind such
that the symmetry is not limited in form, but also ed®to the constitution of the elastic
matter under the hypothesis of isotropy. We shall stheyenergy of that material
system by supposing that a distortion has been performeg al cuto that is made
along one is the position of the generating surface.

Take the coordinate origi@ to be along the axis of revolution, and take that axis t
beOz

Let:

s =1, S =m, S =n, S =p, S$=q, S=r

be the characteristics of the distortion.
The energy of the system has the preceding expression:

(22) E=41> > E.s5,

i= h=1
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which we shall simplify by some symmetry considenragio

Apply the given distortion to a sectiarithat makes an angwith o. Since the two
sections are equivalent, the energy will be the sdméll then follow that it must not be
modified when one applies the distortion:

S =s1c0sf+s,siné, S, =— s cosf+s,sin g,
S, = C0s@+s5sin 6, S =—-sc0sf+ssing,

- S
I
& &

to the sectiorwy instead of the given distortion.
As a consequence, the expression:

must be independent éf or:

Upon performing the calculations, one will find tkateduces to:

E= $E(S+S)+ E,$+ BEf § 9+ &3
+E UG +92S) + 2Eu(u—5S) tEs s Ss -

The distortion that is due to a unique rotation aroundXthaxis, or a distortion of
order 6, gives a deformation such that the actions teag>@erted upow are normal tar
(in order to see that it will suffice to utilize tegmmetry with respect to).

Upon taking the origin to be the center of reductiothote actions, one will see that

one obtains a resultant force that is normadri@and a couple whose axis is paralleldto
One will then have:

Ei16 = Ezs = Es6 = 0.

Upon envisioning the elementary distortion of order 2 +tie one that is due to a
translation that is parallel ©©y — one will see, by means of an analogous argument, that:

Ei2=Ezx=Es5,=0.

On the other handi4, which is equal tdez4, as the formula that was written above
will show, will also be equal t&s,, namely, zero, and the energy will be written:

E=3[E(S+S)+ E, 8+ B §+ %+ B ¥2 B s3 9k

The coefficientE;; is never zero, because if that were not true theretiergy that
corresponds to a distortion of order 1 or 2 could be zeoweler, that would be absurd.

From the preceding, one easily deduces that the ad¢tiahg is subject to under the
effect of a distortion of order 2 are equivalent ®irgyle force, since the reduction to the
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origin provides a forc&;; that is parallel t®y and a couple of mome&h, and axisOx.
That single force will cuOzat a pointQ.
It is natural to take that point to be the centarediiction; i.e., to displad@ to Q.
One will then have the new system of akes= 0, and as a result:

(27) E=3[E(sS+9)+ B8+ B § 3+ &}

In the case of symmetric bodies that are doubly-cdaadecf the second kind, an
argument that is analogous to the one that was jude mdl show that the enerdy is
expressed in the same fashion as in formula (27).

The privileged point of the axi© will be called thecentral pointof the axis of
revolution.

5. — It is not without interest to point out that wstj repeated some calculations and
arguments that are known in hydrodynamics for this questib elasticity. The
expression (22) for energy can indeed be compared to théoprtke vis viva of an
indefinite liquid with no vortices in whose interior ofieds a symmetric solid body.

6. — If one takes into account the principle of equivaleats then one will
immediately deduce the following theorem from form(@a):

In a symmetric, doubly-connected body, each elementary distortiogendrate just
one stress that is the conjugate stress when one takes the centtabfpibie axis to be
the center of reduction.

That will imply the corollaries:

If the distortion is a relative translation of the elements oftii@ faces of the cut
then the total stress that is generated will be a force that passegh the central point.
If the distortion is a rotation around an axis that passes through the cetiratl then the
total stress will be a couple.

We add one last remark of a general order:

If a symmetric body has a plane of symmetry that is perpendicular aaig then the
central point will be the intersection of that axis with the symnpane.

7. — Recall the case of a symmetric ring that is a douhiyxected body of the first
kind. Apply a distortion of order 6 to it.

From the preceding, the stress will reduce to a couplehtisathe symmetry axis for
its axis; hence, the actions that a face of thescstibbjected to will have a resultant that is
generally zero. Now, one can realize that distortibarder 6 by removing a thin radial
wedge and soldering the two boundaries of the cut that wads. ma
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One will then recover the result that was stated abfOwe part of the soldered joint
is compressed, while the other is tensed, and the stime sfresses of traction is equal to
the sum of the compressive stresses.

One can complete those results in a very unexpecigdowadding that the moment
of the forces of tension exceed that of the fordesompression by the quantifs .
Hence, the tensed part is the external part, whiledhwressed part is the internal one.

8. — Now consider the case of a distortion of order 2e Sthess is then a force that is
normal to the symmetry axis, which meets that axihatcentral point, and there are
once more compressed parts and other ones that ard,tbus¢he tensions will exceed
the pressures by precisely the quantiy, which represents the preceding stress.
Moreover, the moment of the former is equal to themewat of the latter with respect to
the symmetry axis.

One sees here that the internal part is tensed, thieilexternal part is compressed.

9. — The preceding two cases (distortion of order 6 or Bespond to removing a
slice from the ring whose thickness is proportional todiseancex from the symmetry
axis or whose thickness is constant, respectively.

Upon removing a slice whose thickness is given by:

$—-SX

and then soldering the two boundaries of the slicetihegeone will generate a stress that
is normal to the section as a result, and its linectibn will be at a distance of:

h:i&
s B

from the symmetry axis. By a convenient choice obratl/ s, , one can do that in such a
way that the line of action will be at an arbitrargtdnce from the symmetry axis.

Finally, imagine a distortion of order 3 that is ob&al by sliding the two faces of the
cut with respect to each other in the sense of thengtrny axis. From the general
results, it is clear that the corresponding stredk have a line of action that is the
symmetry axis. The elements of one face of the clishifted in the sense of the slide
that was made, while the other one will be shiftechendpposite sense. Moreover, the
moment of the former actions will be equal to the manad¢ithe latter with respect to an
axis that is normal to the section and meets the gtmyraxis.

The other special cases will give rise to some cengithns and conclusions that are
analogous to the ones that we have just developed andl&ted. We shall not dwell
upon that, though.




CHAPTER II1.

SPECIAL CASES AND EXPERIMENTAL VERIFICATION

VI. — Distortions in a hollow cylinder of revolution.

1. — In order to get experimental confirmation of some of rbgults that were
obtained, one can work with solids that are made of rylsdece it is easy to obtain
appreciable deformations with it. The chosen form kel that of a hollow cylinder of
revolution, and in order to compare the results of walon and experiments as
completely as possible, let us summarize the comptetty of the distortions of such a
body.

In such a study, which will complete the results thiate obtained in the preceding
paragraph by using only energetic considerations, one Waixfdhe general method that
was developed in Section Ill (nd). The calculations will simplify in the case of an
elastic body that forms a cylinder, moreover.

The symmetry around the axis indicates that the distsriof order 1 and 2 and the
ones of order 4 and 5 will reduce to each other. It thdéin suffice to study the
distortions of order 2, 3, 5, and 6.

2.— We shall first treat the simplest case, whictha of a distortion of order 6.
Formulas (14) of Section Ill, in which one sets:

l=m=n=0, p=qg=0, r =2rm,

will give the displacements that correspond to a distoof order 6 when the cylinder is
subjected to external actions that are, as one cafy,veniform along the cylindrical
surfaces that form the lateral contour of the bodyadodg its bases.

One can easily eliminate the first of those actiengiz., the lateral tensions — by
composing the displacements (14) with the displacements

u:)liz+,ux, u:)llz+,uy, u=0
r r

and choosing the constamtandy conveniently. In fact, the latter formulas are alii¢
to the displacements that are produced by lateral action
One then arrives at the following displacements:

B y 1 K , L+K _, ,logR*-logR x
u=-a| yarctan——— X logr® +— —
[y X 2L+2K 09 L+2KRP22 R-R r

+§(1+ K Rlog R - Rlog F§H

27 L+ R-R
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B y 1 K , L+K _, ,logR’-logR vy
V=—g| —-xarctan——-— logr- + —=
[ x 2L+2k 7 L+2KRP22 R-R r

+1[1+ K Relog R - Rlog F§H

27 L+ 2K R-R

w =0,

which correspond to a distortion of order 6 (whishdue to a radial fissure of angular
opening 2m), while the cylinder is subjected to only acti@rsits bases that keep those
basesplanar and at their original distance. R; and R, denote the radii of the lateral
cylindrical surfaces.

In order to specify those actions, one calcul#tescharacteristicts of the stresses,
which is immediate. One then obtatas=t;» = 0, which proves that the forces that act
upon the bases are normal to them, and on the loémek:

(28) Po=1t33= c:L;K [1+ logr? - Ry |Og|§;: Elog ng

Figure 4.

One can then state the following proposition:

A hollow cylinder of revolution that is subjectaalistortion of order 6 will preserve
it base planes and their original distance with the of forces that act normally to those
bases and are given (per unit area) by form(2a).

The distribution of those forces, which is easwgtiady, will vanish for just one value
of r, which will have the expression:
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+ 2
,=R*RIL(R-RY|

2 R

when one neglects powers of:
2
R

that are higher than the second.

A simple calculation shows thag can be written:

2aLK r
P,=t3= log—,
o=l =120 g,O

or, upon introducing the modulus of elasticEy the Poisson coefficient, and the
angular openin@ = 27 of the radial fissure that is made:

ik)gl
1-n*2m " p’

Po=133=

sotsz will be positive when is less tham and negative whenis greater thap.

|

|

|

|

|

|

|

|
PR

Figure 5.

Now, by the manner itself by which one calculatgadn the form (28), the action that
t33 represents will point from the exterior of theingler to its interior whetys is positive
and from the interior to the exterior whiggis negative.
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It will then result that on each base, one will dh@acompressed region and a tensed
region that are separated by a circle of ragijiehich is very close toR; + Ry) / 2, In
general], and the compressed region will be the intgraxd) while the tensed region will
be the external part.

Now, suppress the actions on the bases and look fdotimethat the cylinder will
then take by virtue of the single distortion with noeertl forces.

The internal part, which is free of compressions| bel raised; on the contrary, the
external part will be lowered, since it is no longgetched.

Figures 4 and 5 show the form that is taken by the bodytlaen mechanism that
schematizes the flexure of each radial wedge ofyheder.

3. — We shall now study the case of the distortion dieor2, which is obtained by
means of a fissure of uniform size. The deformatiothésr more noticeable and more
singular than before, and the calculations to which isné&d in its study are more
complicated. We shall summarize them.

The general formulas (14), in which one sets:

|:n:p:q:r:0’

give the displacements that correspond to a distorfi@ndzr 2 when the body is subject
to surface actions, namely:

1m 2
u=-=-——Ilog (X +vy9),
557109 € Y)

m
V= —arctanz )
21T X

As in the preceding case, we can first eliminate #teral actions by once more
applying the general method of Section Ill. We indicatly the result: IfR; andR, have
the same significance as above then the displacement

_m] K L+K (, R'R |o’logr
_277{ logr + (r Rf+R§j Py

L+ 2K 2L+ 2K ]
[(BL+5K)y*+ (L+ K)xz]},

1
¥ 2[L+2K][R* + K]

ve M) orctanY+ L+ K 2 R'R |0%logr L+ 3K Xy
2 X 2[L+2K] R+R)oxdy (L2K(R+ B |

w=0
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will correspond to a distortion of order 2 (that is doie fissure of uniform siza) when
the cylinder is subjected to only actions on the basgsatle forces capable of preserving
their planes and the original distance.

One can further calculate the characteristics ®téinsiond,s here. One will have:
=t = 0; the forces that act upon their bases will benahr One also verifies that the
external actions are zero on the lateral surfacéseodylinder.

The study of the distribution of forces that acttloem base is carried out here with the
help of the cubic dilatation:

8:@+6—V+6—V\I:m—KX i—i
ox 9oy 90z mL+2K)|r> R’+R’|

ty

Cut

Figure 6.

Figure 6 represents the compressed and dilated regiahs whe limitation that
involves the circle of radius:

R+’
2

The shaded regions represent the compressed gartd) (@nd the regions that are not
shaded represent the dilated paé&s Q).

Let us now study the form that is taken by the elastimdgt while we always
suppose that its bases are kept planar and at their omigtethce apart.

In order to do that, it will suffice to look for treeformation of the bases in their
planes: Formulas (23) permit one to calculate the gahfi¢he displacements v on the
circumferencei, ¢ of radiiR;, R, that form the original contour of the bases.

One confirms, by means of a simple decomposition,itlaate neglects the second-
order infinitesimals then the displacement of each pafin; will be a translation that is
parallel toOy and proportional to the arc of that is included between the origin of the
arcs that are situated @x and the point itself. The same thing will be true dor.
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Figure 7 represents the original contouis ¢ in fine lines, and the contours that are
obtained by the displacements are represented by thisk line

Figure 7.

Since the boundaries andB are soldered to each other under the operation that was
performed on the cylinder, one will see immediately fdren that will be taken by the
body after the distortion when one keeps its basmsap and at their original distance
apart.

Figure 8.

Figure 8 shows that form, as well as the regions irchvioine must exert normal
actions, which we can express as a function of the msdof elasticityE and the
Poisson coefficienty :

_, __mBEx 1 2
(29) Pets= 2771—/72&2 R12+R22}'

Now suppress those actions. In order to get the foati¢ taken on by the cylinder,
one can study what happens for each very thin radial wbgggpplying the general
method that we gave: There will be flexure from thsingi of the compressed parts and
the lowering of the tensed parts. That will give tbenf of the cylinder (when it is
subject to a distortion of order 2 with no external fprce
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Figure 9.

4. — We shall rapidly pass over the cases of distastiohorder 3 and 5. The
distortions of order 3 are obtained by making a memidection in the cylinder, sliding
the two faces of the cut with respect to each othénhendirection of the axis, and then
soldering.

The state of deformation is easily calculated bytistafrom the general formulas
(14). One will later see the form that the body talteder the influence of only that
distortion (Fig. 9).

Figure 10.

The cases of distortions of order 4 or 5 can be reducdetoase of a distortion of
order 2 by some simple integrations. We shall coraenselves by simply stating that
property. The distortion of order 4 can be obtained bgma of a wedge-shaped fissure,
as is indicated in Fig. 10. After soldering the two fazkthe cut, the body will take on a
form that one can imagine, as in the preceding cases.

5. — All of the results are in perfect accord with experitee Moreover, ironworkers
indeed know about these deformation phenomena and takestkssary precautions
when they have to shrink tubes.
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However, it is appropriate to make some precise vatifins. They were
accomplished thanks to the courtesy of Mr. Jona, ameagin Milan, who prepared
some hollow rubber cylinders at the Pirelli factory thate subject to the various types
of distortion. Those cylinders were cut, and then the boundaries of the cut were
brought back together and soldered in such a manner aalie rihe various types of
distortions. All of the peculiarities that were gicted by the theory were then verified.

Figures 11 through 18)(reproduce some photographs of plaster castings of cydinde
after distortion, which are casts that are presenvelde collection of models at I'Institut
Henri Poincaré. One can compare Figures 16 and 12, whiehthhé casts for the
distortions of order 6 and 2, respectively, with the dng&iin Figures 4 and 8. Figure 14
represents the distortion of order 4 from two differeides. Finally, Figures 11, 13, 15
are concerned with the dislocations of order 1, 3, speetively. All three of them
correspond to an axial cut, and one then displaces thefaees of the cut by either
sliding them normal to the cylinder axis, or by slidingngldhat axis, or by a rotation
around the perpendicular to the two faces that is dthwaugh the center of the cylinder.

VII. — Cyclic system of pliable elastic elements.

1. — We previously posed (8 1V) a fundamental problem in tBerthof distortions of
multiply-connected elastic bodieGiven the distortions in an elastic system, determine
the stresses.In the present paragraph, we shall present the prscgfl the solution to
that problem in a case that presents a special intetes.the case of a system that is
composed of an assemblage of pliable elastic elemeéfts.shall now define what we
mean by that.

2. — First consider a rectilinear rod whose transvergeedsions (i.e., of a cross-
section) are very small with respect to its length.

Let A andB be the material elements that constitute the eities of that rod. When
it is deformed, the relative displacementsfhodndB will generally be very large with
respect to the pure deformation of the particled ahdB themselves, in such a way that
one can imaginé andB approximately as rigid elements whose relative disptent
results from a translation and a rotation.

We shall suppose, moreover, that the relative displ@cits oA andB are such that
one can neglect the powers of the components of #eeging rotations and translations
that are higher than the first.

Now suppose that the external forces reduce to somesftinat are applied at onty
andB and that the system is in equilibrium. Under that kiyesis, imagine a transverse
sectiongthat divides the rod into two pai$s (on the side of) andS, (on the side oB)
and reduce the elastic action taexerts orfy, alongo by taking the center of reduction
to be an arbitrary poir. It is clear that when one keeps the point fixed andgdsthe
sectiong in no particular way then the elements of reductiolhlvei independent of that
section. Furthermore, they will be equal to the rastiland couple, respectively, that

(") Translator: The cited photographs were not availablme at the time of translation, although one
might simply confer the original version of thisiele for those plates.
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give the reduction of the forces that are applie® tand opposite to the resultant and
couple that one obtains by starting from the forcesateapplied a#, while O is always
the center of reduction.

To simplify the calculations, assume that the rogadropic and that in its natural
state it has the form of a cylinder of revolution oigie | and radiu®k. Take the origin
O to be the center of the base that is adjacetita@lemens, while thez-axis is the axis

of the cylinder. Choos® to be the center of reduction, and ¥, X{*, X{ be the
components of the result of the external actionsdhatpplied td, while X{*, X&),
X&) are the components of the resultant couple of thasenac Finally, letx®, x®,

x{® denote the components of the translation ghakperiences when it starts from the
natural state, and lek”, x®, x* denote the components of the rotation of that

element. Letx®, xI?, ..., x” be the analogous quantities for the elenfnt The
relative displacement & with respect téA will be defined by the differences:

(b) _ y(2) (b) — y(a) (b) _ y(2)
X X7 X% X7y e Xy X5 -

It is easy to obtain the relations between the duesitX® and x®-x®. For
example, upon using the Saint-Venant method, one will get

Ve =iﬁ[—xgab> +2 ']

E u
2
(30) X - X =é'_[ X(@ +§ X( '}
7,
K =40 =0

2
X - X9 = L LMo oy ]

Eu
(31) X — & =3E[2 X8 _ x(ay I]
E u 5 1 J
2(1+n) |
(b) _ (@ = 1y
X =% TR

in which E represents the modulus of elasticity,Poisson’s elasticity constant, and=
7R* | 2 is the moment of inertia of the cross-sectiomhefsmall rod with respect to its
center. In those formulas, one supposes that theitiggnX *” have the same order and
that one has suppressed the higher-order infinitesimals.

One sees that one carbitrarily choose the three components of the relative rotation
of B with respect toA, as well as the two components of the relativestedion in the
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direction normal to the rod. One can always fingyatem of external forces that are
capable of generating such a relative displacement. Howthe relative translation in
the direction of the axis has, on the contrary, tineesarder as negligible quantities.

Furthermore, it is easy to modify the conditionghef system slightly in such a way
as to make that translation noticeable.

Suppose, for example, that the external forces ardiedpp two small loops
(coulantg that can slide along the rod in the longitudinal ecticn and are maintained by
agenciesressort$ such as stresseg that have the same order of magnitude as the ones
that produce the flexures and torsions of the rod and ¢eealative displacements of the
loops along the rod that have the same order as thedteaund torsions. If one supposes
that the loops are at the extremities of the rod aatldne calls therA andB then the
preceding relations (30) and (BQvill persist with the single difference that theedr
equations (30) will become:

Xéb) _ Xéa) =m Xéab) ,

in whichm is a positive coefficient with the same order ascthefficients of theX™ in

the other equations.
The elastic energy of the deformed system is:

H= 13 (0 =) X

6
i=1

and upon replacing théx®™ — x®) with their values that one infers from the relasio
ab) .

(30) and (30, one will find a form forH that is quadratic with respect to tbxe

10
E u

1 a a m al al
H {§(><f 1)+ (XX (X

+ (XD +@-m)(XE0) = XX 1+ XD X2

This will be a positive-definite form ifn is non-zero. Iimis zero then it will be a
positive form that can vanish withox{*” having to be zero; however, it cannot be zero
unless theX® (i = 1, 2, 3, 4, 5, 6) are all zero. In any caseill then suffice that just
one of the quantities®™ — x® should be zero in order for H to also be zero.

3. — One can imagine an infinitude of other casewhich bodies of widely-varied
form have properties that are analogous to the tha¢sve just obtained in a very simple
case. In order for us to assume a completely-gérewpoint, we imaginé abstracto
some bodies to which we attribute the propertiaguiestiorabsolutely namely:
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1. There exist two particleS andB in the body, which we caéixtremities whose
deformations are negligible with respect to the redatiianslations and rotations that they
are subjected to.

2. If one supposes that the body is in equilibrium untkeilattion of external forces
that are applied to jusA and B then the components of the relative translation and
rotation ofB with respect toA are linear functions of the components of the rastlt
force and couple of the external actions that areec®nB.

3. The elastic energy in the deformed body, which is ywsositive, can vanish
only if the relative displacement Bfwith respect t\ is zero.

We say that bodies that enjoy those propertieplaable elastic elementsOne can
sort them into two classes:

1. The freely-pliable elastic element$or which the arbitrarily-given relative
displacementR, A) corresponds to external actions that one can deteroompletely
(type: rod with loops).

2. Pliable elements that are subject to constraimes,;, such that the components of
the relative displacemenB(A) are not independent, but are linked by one or more linear
relations (type: simple rod without loops).

We shall always let:
(ab) ye(ab) y(ab) e (ab) y(ab) ¢ (ab)
X X X X X, X

denote the components of the resultant force and cobite external actions dh

By virtue of equilibrium, the quantities X* are the external actions that are
applied atA. We represent them b) .
orderi that acts in the elemeAB.

The characteristicx™ — x® of the relative displacement Bfwith respect toA are
coupled with the stresses by the relations of theviadig form:

(32) )ﬂ(b) — X(a) - z A(ab) X (aB ,

We further say thaX® is the stress of

in which the quantitiesA™ depend upon only the nature of the elastic body and its

initial form.  We call those quantities tlirect constants of the elementhen one
changes the roles of the extremitfeandB, one will obviously have:

b) _— b
A = AP

Finally, we note that theA® define a tensor and that we can establish
transformation relations under a change of axes qatdy.
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If the elements argeely-pliablethen one can invert the preceding formulas (32), so:

(33) x(ab) zq(ab) (ab) _ at)] .

We call the coefficients® theinverse constant the elementB.
The elastic energy of the element will be given by

6 6 6
H= %z X(ab)(x(b) - %ZZAS Xi(ab) Xs(ab) .
i=1 s=1

i=1

The energy will gositive form, and it will bedefinitein the case of freely-pliable
elements; it will not be definite if the pliableeehent is subject to constraints.

A

Figure 17.

4. — We shall now address the question that is ef@st to us. We construct a cyclic
elastic system by forming an assemblage of plialdements that are rigidly connected to
each other by only their extremities, and in suchaaner that they are all in the natural
state. Example: the flexible quadrilatepB8CD in Fig. 17.

We shall study the effect of distortions on sudystem.

Suppose, in general, that we have a cyclic sysihamis composed of elements that
are coupled at their extremities intonodes, and that they are not subject to any eadtern
actions.

Make a cut in any of the elements and perfornstodion after making that cut. We
shall see how the system is deformed and the s¢isat will be induced.

The equations upon which the solution to that foesdepends are immediate.

Consider an elememB of the system and let*”, ai®, af”, a®, al”, a®
denote the characteristics of the distortions Atis subject to (which will be zero if that

element is not subject to distortions).
Upon preserving the notations of 13 we can immediately write out the relations:
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(D) XD XD —g®= Y APX®  (=1,2,...,6)

S

and we will have six analogous equations for each elemen
On the other hand, at a nodeat which it ends and which is coupled rigidly to the
extremities of the elementsB, AC, AD, ..., equilibrium will give the six relations:

(E) X@ 4 X9 4.4 XD 4...= 0 (=12, ..,6),

and one will have six analogous relation for each node.
If we suppose that theonstants A are known for each element, along with the

characteristicsa® of the distortion that relate to it, then we wili\e, by definition, 6

+ 6m linear equationsY) and E) in 6n + 6m unknowns andX; .
However, not all of equation&) are independent, because if one adds corresponding
sides of all the ones that correspond to the same irttiex one will find:

DX+ XM =0,

which is an identity. That proves that six of the equeiE) are consequences of the
other ones, and we will have onlyn 6 6m — 6 equations to determinen6+ 6m
unknowns. That could have been predicted, since it is o®@opriori that one can
choose the displacement at a node arbitrarily.

5. — We can now establish the following fundamental tesul

In any cyclic system of pliable elements, when igngiven the constants of the
various elements and the distortion, that will det@me completely the relative
translations and rotations of all of the nodes, wsll as the stresses that all of the
elements of the system that are freely-pliablesaitgected to.

To simplify, we suppose that the three componentseofrimslation and the rotation
that correspond to an arbitrarily-chosen node are z8uppose that the same system of

values of the characteristiag® and coefficientsA™ correspond to two systems of
values of thex® and the X*”, whose differences are denoted & and
Those latter quantities verify:

=(ab)
=, resp.

6

(34) O _ @ = z A =(@

s=1
and

—(ab —(ab) —(al —
(35) =D =@ =0 4 =0,
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Upon multiplying the two sides of (34) 1&/*” and the two sides of (35) b§f* and

adding the corresponding sides of all the equations tkablaained, the left-hand sides
will vanish, so:

0 B WCELECE

6
ab =1 =1

in which z is the sum oh terms that relate to all of the elastic elemefithe system.
a,b,

Now, each of the forms:

(37)

6

z A(Sab) Ei(ab) E(Sat)

6
i=1 s=1

%]

is positive, and from (36), they must be zero. It finlally follow that:
g(_(b) _gt_(a) =0.

The components of the translations and rotations afddes in the two solutions that
were envisioned cannot differ from each other. If thenel® AB is freely-pliable then

the vanishing of the form (37) will imply the vanishing o€ t&®” . It will then follow

that the stresses that relate to such an eleAf@ntnnot differ between the two solutions
then.
The theorem thus-established then implies the follgworollary:

In a cyclic system of freely-pliable elastic elements forchvione knows the
constants, the stresses are determined by the distortions, and temeides them by
solving a system of first-degree equations.

While always supposing that the elements are freeblalj formula (34) and (35)
will have no solutions other than:

9 =0, ==,

if we assume that théare zero at a given node. It will then follow thguations D)
and €) will be compatible for anyr®”:

One can choose the distortions in an arbitrary fashion in a systemedy-fseable
elements.

If the elements are not freely-pliable then it midpaippen that (34) and (35) are
satisfied for values of the unknowi®® that are not all zero, or on the contrary, that
they further imply that the® are all zero. In the latter case, the distortions loa

taken arbitrarily and the stresses will not be determurequely, while they will be in
the former.
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6. — It is interesting to remark that equatioB3 é&énd €) present some close analogies
with the Kirchhoff equations on the propagation of electurrents in a network of
conductors. The components of the stresses are analdgothe current intensities,
while the components of the displacements are analdgdhs values of the potentials at
the nodes. The characteristics of the distortidag fhe roles of electromotive forces and
the constants of the elements play the roles ofrsevelectrical resistances. Equations
(D) then take the form of Ohm'’s law. The only differermonsists of the fact that we
have six times as many equations) &nd E) as we would have in the case of electric
currents. However, that is no obstacle to using tladogy that we just specified, and we
will then possess a means of study that is quite diwatid practical.

In particular, it is easy to imagine some casesptegent themselves in a fashion that
is analogous to the Wheatstone bridge in the electt@malain and then deduce from it a
simple determination of the constants of elastic el@s

We also indicate that the principle of equivalent auié permit us to replace a
distortion that is performed on a given cut with anothee that is performed on a cut
that is deduced from the first one by a continuous tramsfoon, so that will give us a
means of realizing the distortions in a system ofbiaelements in practice: One
performs distortions at the nodes, which can be aclsimeol by the manner itself by
which one fixes one or the other of the extremitiethefelements.

7. — To conclude this section, we shall establish some atteresting propositions
that are concerned with pliable elements and systeamste composed of them.

The direct constant&® of an element verify the conditions:

A = A
. :

In order to account for that, it will suffice to igiae two systems of stresseg™’

and =® that correspond to the displacemexf, x®, and&®, &®, respectively. By

virtue of Betti's principle, which we shall extend tdaplle extended bodies, the works
that are done by one system of stresses that islagdd for the deformation that is due to
another one will be equal. Hence:

6 6
b —(ab — b b
Z(XI( ) — X(a)):i(a ) — z(gl( ) _Q(i(a)) Xi(a) ,
i=1 i=1
SO
6 6
ZA(Sab) Xéab) E(iat) — ZA(Sab)E(Sab) Xi(at) ,

6 6
i=1 s=1 i=1 s=1

which is the stated result.
The inverse constants obviously enjoy the sampguty.
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8. — When one han pliable elastic elementd;, Ay, As, A4, ..., ONe can obviously
combine themn series;i.e., in such a manner that two consecutive elenf&gnt#\ and
A Aix1 have the common extremitidg . One can also combine them by derivation (in
which they are in parallel) by rigidly coupling all of tletremitiesA; and all of the
extremitiesB; to one part. If one starts from the relations (32)38) then one will verify
that:

The direct constants of an element that is composed in series are diftamethe
sum of the corresponding constants of the components; on the other hand, forlel paral
connection of freely-pliable elements, it will be the inversetaatsthat add together.

Those theorems are close to the well-known theorerti® resistance of conductors
that is arranged in series or by derivation.

VIII. — Cyclic system of pliable planar elements.

1. — In the case of a pliable elemekB that is located in a plane and is subjected to
forces that are located in its plane, if one takespib®@e in question to be the first

coordinate plane then the characteristc$”, X, X will be zero, and similarly
for the differencesd” — X?, x{” = x?, x® - X2

We now change the notations slightly, andXey denote the coordinate axes and
adopt the letter¥@, Y@ M@ in order to denote the characteristi&®, X, X
of the stresses ané®, y@, r® in order to denote the componenf®, x¥, x® of the

displacementd, and finally, X®, y*®, r® in order to denote the components of the
displacemenB. In general, we will have:

x® - X =g X + g, ¥¥+ g M?,
(38) y? - y¥ =2, X+ a,¥" + g, M?,
r® @ =g X 4+q y@4g M,

with as = a5, . Upon changing the origin, we will easily antl coefficients; s, ags,
and by modifying the orientation of the axes, wdl \ikewise annul thea;, . For a
convenient choice of axes, formulas (38) can thereduced to the canonical form:

x® — x(@ = } (@
(39) y® -y = u X,
p®) (@ =y (@)

The new coordinate origin is said to be ttenter of the elastic elementhe
coordinate axes are tpeincipal axes of that elemerdgnd finally the coefficientd and i/
are called theoefficients of tractionwhile v is thecoefficient of flexure.lt is easy to
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verify thatif the element admits two axes of symmitteyr they will behe principal axes
of the element.

Suppose that the formulas are given that express tlstands of an element relative
to some arbitrary axes when one knows the coefficeinttsction andflexure. If £ and
n denote the coordinates of the center with respecbriee sarbitrary axesx(y) and 8
denotes the angle between the two systems of axgsdnd &', y') (the latter being the
principal axes) then one will have immediately:

x®) — X =[Acos’ 8+ u sirf @+vn? X &
+[(A - p)sin@cosB-vén Y@ —ypM@® |
(40) y® — @ =[() - 1) sin@cosh —vén 1X
+[AcoS G+ st @+vn® X E +p EM @
(O _p @ = ) @y £y (@ 4y (2

2. — Let an element be obtained by composinglanar elements in series then. Its
direct constants are obtained by adding those of thep@oemts that are expressed by
relations of the type (40), and it will then follow that

The center of the composed elements will be the center of grathiy centers of the
component elements if one concentrates a mass that is equal to ti@ecdedf flexure
on each of them.

The coefficient of flexure of an element that is composed irsgerthe sum of the
coefficients of flexure of the various components.

If one draws unit segments through the center of the composed elehatraset
normals to the axes of each of the components, and if one concentrates thah&ss
equal to the correspond coefficient of traction at the extremigacth of them, and if one
places a mass that is equal to its coefficient of flexure at eddhe centers of its
components then the axes of inertia of that system of masses thdl fuencipal axes of
the composed element, and the principal moments of inertia will beo#icients of
traction.

3.— Now let a planar elastic body be doubly-connected andcsutgome distortions
that keep it planar. Since tkey axes are situated on that plane, the six charaaterdst
a distortion will reduce to threé; m, r (n, p, q being zero), and similarly, the stress
characteristics will reduce to thrde:M, N, and one will have:

L =Eul +Eiom+Essr,
M=Exl+Exm+Er,
N =Ez;| + Ezom+ Ea3rr.

Here again, by a convenient choice of origin and thectlons of the axes, one can
reduce the preceding equations to the form:
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L:E]_l', M =E,om, N =Es3r.

There then exists a system of axes in the plane such that eaemtalgnaistortion
will produce just one conjugate stress with respect to them.

If the planar system is composed of a series of glialdments whose first and last
extremities are coupled rigidly then the rules of 2wuill give the axes that we spoke of
in the preceding statement. The three stress coetiscae obtained by calculating the
inverses of the coefficients of traction and flexuréhef composed element.

The results that were just obtained cast a new lgign the analogy that was
established above between the theory of distortiorsystems of pliable elements and
Kirchhoff's theory of the propagation of electrical @nts. In the theorem of n@, the
result on the coefficient of flexure of a composeduair corresponds to the proposition
that says that resistances in series are additive wetdsr, the rule that gives the
coefficients of traction is more complicated and hasequivalent in the theory of
electrical conduction. Moreover, there is nothing i lditer theory that corresponds to
the centerand theprincipal axesof pliable elements.

4. — Finally, in conclusion, imagine the caserofreely-pliable elements that are
connected inparallel. Some simple calculations will exhibit the followingebrem,
which we shall be content to state:

If one draws unit segments through an arbitrary point that are paralleth&o
principal axes of the various elements and concentrates a mass thquas to the
inverse of the corresponding coefficient of flexure at the eityreheach segment then
the axes of inertia of that set of masses will be parallel toptirecipal axes of the
composed element and the principal moments of inertia will be theesvefst and1 /
L of its coefficients of traction.

Upon considering those axes of inertia to be coordinate axes, the avesfiof { —
r® in the expressions for® and Y will be the coordinateg and &, respectively, of
the center of the composed element, multiplietl by and1 / i, respectively.
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IX. — Experimental verifications by the use of photoelastity (}).

1. — Nonetheless, these verifications of the extewrahfthat will be taken by a body
after distortion are not sufficient to justify the thgobecause we still lack the
distribution of internal stresses.

The measure of the deformations (i.e., the measurertdin dimensions of the body
before and after) will provide us with a mean of thesgtes along their finite lengths, but
they will not permit us to go any further than that.

In order to penetrate the body and study the stresacht point, it is optics that we
shall turn to, namely, the method that has received thee rid photoelasticity and we
shall review its essentials, due to its present impogtanc

Isotropic, transparent solids can become temporanigo&ropic and birefringent
when one applies sufficient external forces to tlmmvhen they are subject to internal
stresses.

In 1813, Seebeck, and then Brewster in 1816, observed that pheoom layers of
compressed glass. However, it was mostly in thethasy years that the study of those
phenomena and the technique of photoelasticimetry wereogeekland in particular,
thanks to Mesnager and Cokéd], [52], [53], [54].

For the moment, that technique will only apply in thsecof a distribution of planar
stresses. At each point, the stresses are defineccbyshof an ellipse that one calls the
Lamé ellipse. The two axes of that ellipse are determined comigletdeir directions
are called theprincipal directionsat the point considered, and one-half their magnitudes
(or the magnitudes of the semi-axes) constitute whatalhetheprincipal stressesi.e.,
the stresses in the principal directions).

2. — Consider a thin slice of the transparent body, aral light ray fall upon it that is
normal to a point. That ray will be subject to double refraction. Exments permit us
to state the following laws:

— The planes of polarization of the two emerging ragsdefined by the principal
directions.

— The difference between the paths that are followetheywo rays when they pass
through the layer is proportional to:

() Here, as in the rest of the volume, we have comsigteought to present the text in its original form,
whenever possible.

However, it is obvious that the optical analysis of seehas made great progress since Section IX was
written some twenty years ago.

Not only has photoelasticity been extended from twoetisions to three, but it is now possible to study
the state of stress beyond the elastic limit of riegerial by optical analysis, and today we also have
photoplasticity, in addition to photoelasticity. Usingtioal analysis, it is possible to simultaneously study
the stress state inside of an elastic solid thaibgest to not only forces that are applied staticddiy, also
ones that are applied dynamically.

Among the scholars in the United States that haveibated the most to the extraordinary progress in
that field of research, one must mention T. J. DolanCDDrucker, A. J. Durelli, M. M. Frocht, L. E.
Goodman, M. Hetenyi, M. M. Leven, R. D. Mindlin, W. Muktay 49], [50].
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1. The thickness of the layer.
2. The algebraic difference of the principal stresses.

Those laws permit one to experimentally study thessts; i.e., to determine the
direction and magnitude of the principal stresses at jaicih.

A. Principal directions.— If one places a transparent layer that is subjeaed t
tangential stresses between a crossed polarizer aathéyzer that are traversed by white
light then there will be darkness at all points whéeegrincipal directions are parallel to
the planes of polarization of the polarizer and thdyaea

The set of those points forms &ocling viz., a curve whose principal directions
have the same inclination.

— One can plot the isoclines in the laboratory photografijsicwhich will then
permit one to determine the principal directions at epaimt of the layer with a
convenient installation.

B. Differences between principal tensiorsin white light, the loci of points with
equal difference in path length for the emergent raylsdefine colored curves that are
calledisochromes. In order to avoid mixing them with isoclines, one cgerate with
circularly-polarized light. One will then obtain ortlye isochromes, along with a certain
number of dark points that are singular points wher@tineipal stresses are equal.

The isochromes will tell one directly what the dimition of the differences between
principal stresses is.

It is also simple to utilize monochromatic radati in place of white light. One will
then obtain a network of black curves that correspomtio differences of:

A 31 5
2!

5

They form a topographic surface that one can give bycttlireeading off the
differences in principal stresses at each point, by votuke law that was stated above.

In order to get the path difference at each point,camealso utilize the method of
compensation, either by means of a glass rod thatsedesr compressed parallel to one
of the principal directions or with the aid of a Jarar Babinet compensator.

C. Sum of the principal stresseslf the differences in principal stresses are known
then one can try to calculate another very simplection of those quantities, such as
their sum, for example; it will suffice to determine i

The theory shows that this sum is coupled to the nieisk of the layer and the
variation of that thickness by a simple formula.

The method then consists of measuring the variatidheothickness. To that effect,
one can employ all of the resources of optics. Mgenused the modifications of the
interference fringes that were obtained from two planarors, one of which was fixed
on the elastic body.
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Coker used a purely-mechanical apparatus that he calledxtanSometer,” which
was based upon the noticeable displacement of a turningrrtisat was linked with the
body by an amplifying leveiSH].

By definition, one will then get the magnitudes and dioms of the principal
stresses, and one will know the complete distribubicihe stresses.

There exist someurely-optical method$or the experimental solution of the same
problem that are different from the preceding ones andntesdarometers. We shall not
dwell upon those methods. They were studied by Favre dng.F®ne will find them
discussed in thRevue d’Optiquél930), b9, [56], [57], [59].

3. — Although the techniques of photoelasticity have made gregress, they have
not yet reached full maturity.

Here, we shall content ourselves by saying a few wordatabe results that have
been obtained in the study of cylinders that are sutgetistortions.

One must use a substance that is elastic and transpaCorbino and Trabacchi
employed gelatin for their experiments, which gave déaoelimages, but its use
necessitated considerable experimental ingenuity.

|
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They used a hollow gelatin cylinder of rai andR, and a small height, and that
cylinder realized distortions of order 6 and 2, as wes leqplained.

We shall give some indications here about the rethdiswere obtained in regard to
the distribution of stresses by means of lines of edjfferences in principal tensions.

Here is the experimental setup (Fig. 1B)s a bowl! in which one has laid the gelatin
cylinder that is subject to a distortidd,is a black polarizing mirror that emits a vertical
sheaf of polarized light. After having crossed the cylindbe light sheaf will be
reflected horizontally by an ordinary mirr6rand it will be concentrated by a len®nto
a photographic scrednwhile a Nicol analyzer is placed at the point of GrgenceA.

The Nicol analyzer is crossed with the polarizene@vill then get a photograph lat
of black lines of equal differences in principal stresses.

Figure 18.
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In the case of a distortion of order 6, one will get following figure (Fig. 19)},
which will not change when one turns the cylinder aroua &xis. (The arms of the
cross always correspond to the principal sectionseottbssed polarizers.)

Corbino calculated that the radius of the black cwadeld be equal to:

r= RRZ\/IOQEZ:I%QRE.

One then finds some results that coincide withréseilts of the theory to a very high
degree of precision.

In the case of a distortion of order 2, one walt figures that differ with the angle that
the cut forms with a principal section of the p@ar.

One will get Fig. 20 when that angle is zero aigd £1 when that angle is 45In the
former case, calculation will show that the blagkel has the equation in polar

coordinates:
Ncos2 29+ (B 2cos2 ?7 cos®|,

R=R;, 525.
R,

1+£
(2 =

in which:

The qualitative and quantitative comparison of résults of experiments with those
of calculation will show complete accord.

The beautiful photographs that correspond to tleequling figures suffice to give
some clear idea of that accord, and they consttutiee result of photoelasticity.

(") Translator: Once again, Figures 19 through 21 were ghayibs, which were not available to me.



CHAPTER IV

THE APPLICATIONS OF DISTORTIONS TO
CONSTRUCTION PRACTICE

X. — Tracing the lines of influence in statically-indeternmate systems.

1. — The search for lines of influence of hyperstatic unkrovim statically-
indeterminate systems can be based upon the reciproedietm that Colonetti gave.

Consider an elastic body that occupies a volirteaat is in equilibrium under the
action of a given system of external forces.

Imagine that one has made a cut in the body that gimearbitrary section of it.
Subject the two faces of the cut to a displacement iegpect to each other. Introduce a
distortion whose characteristics &yen, n, p, g, r. LetX, Y, Z denote the components of
the unit tension that acts in each element, and, letw be the displacements that define
the configuration that is taken by the solid under th@aaif given external forces with
componentsy, Fy, F; ; Py, Py, P, (volume forces and surface forces). One will thad f
that:

[[Fu+tFyv+FW dv+[[ Ru Pw P A

= [IX(+az= )+ Y(mr e pp+ Zn py Ok E.

If one assumes that the characteristics of thtodisn are constant then one will
have:

y

[[Fu+Fyv+Fwdv+[[ Ru Pw Pl A
(4) =If xdz+m[ ya&+ o zd
+pL(Zy—Y3 a+ qu( Xz ZX T+ jrz( ¥x  Xysd

Upon taking into account the fact that the intégthat relate t& are nothing but the
characteristics of the system of stresses thatlaleven the body under the action of
given external forces (namely, M, N, P, Q, R), one can conclude that:

The sum of the products of the six characteristicthe system of internal stresses
that are developed in one section of an elasticydadequilibrium by the corresponding
characteristics of a distortion is equal to the watone by the external forces that are
applied to the body when it executes the changemfiguration that the distortion gave
rise to.

2. — The particular cases that are obtained whemnetlagive displacement of the two
faces of the cut reduces to a simple translatioa simple rotation are very interesting
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from the standpoint of applications. For a translatbnnit magnitude in the direction
of theX-axis (a direction that is completely arbitrary, moeg, one will havé = 1;m =
n=p=qg=r =0, and equation (41) will become:

(42) J'V[qu+ F,v+ Fvi dV+L[ Pu Pw PWH = LX ds |

which expresses the fact that:

The component along an arbitrary direction of tlyetem of internal stresses that are
developed in an elastic body in equilibrium in a&egi section is measured by the same
number as the work done by the external forces #natapplied to the body under
deformation if, when one cuts the body along theti@e considered, one imposes a
relative translation of unit magnituda the direction considered to the two faces of the
cut.

On the contrary, if one supposes that:

p:]_; |:m:n:q:r:0
then one will have:

(43) [, (Fu+Fv+Fwdv+| (Ru Pw PWE = | (Xy-Y) &;
.e..

The moment with respect to an arbitrary axis ofdpstem of internal stresses that is
developed in an elastic body in equilibrium in a&egi section is measured by the same
number as the work done by the external forcesdbatipon it, when one cuts the body
along the section, one imprints a relative rotat{oh one with respect to the other) on the
two boundaries of the cut that has unit magnitad®ind the axis considered.

3. — The analysis of the changes in configuratiort Hr@ determined by a given
relative displacement of the two faces of a cut ihanade in an elastic body will take on
a very special importance when the problem redteéso dimensions.

One can then show that:

1. If one applies two equal and opposite systemsroé$ato the two faces of the cut
(that are arbitrary, moreover) then under the supsmnt deformation of the system, the
forces on the cut will subject it to a relative plecement around a point that is the
antipole of the line of action of the resultanttioé forces that are applied to each face
with respect to a certain ellipse that takes themmaaof theellipse of relative elastic
displacements.

2. The amplitude of that relative rotation is proporial to the moment of the
resultant when it is taken about the center of #ipse, and the coefficient of
proportionality is a constant of the system thae arontinues to calls the “elastic
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weight,” in analogy with what one generally does for the terminal elenrei@slmann’s
theory of the ellipse of elasticity.

3. If one imagines that the “elastic weight” is distributed over theegiplane in
such a way that it central ellipse of inertia coincides with thips#l of relative elastic
displacements then the relative displacement of two arbitrary pofrtise two faces of
the cut that originally coincided will have a component along an arbitrary timec¢hat
is the product of the magnitude of the aforementioned resultant with ¢bedserder
moment of the elastic weight when it is taken with respect tdngheof action of the
resultant and with respect to the direction onto which one projecishacement.

It is not necessary in practice to repeat the corigiruof the ellipse for every section
that one would like to examine. In most contemporaryesasne ellipse will be
sufficient for every system of sections, which worddult from the following theorem:

If two sections of a planar system are obtained by detaching one portion eblidat
that is not connected with the rest of it and not subject to any ex@chahs then the
same elastic weight and the same ellipse of relative elasptadesmnents will correspond
to both of those sections.

4. — In order to understand the importance of the precedingdesasons, take a
cylindrical beam with a rectilinear axis (viz., theaxis) that is fixed by its two
extremitiesA andO and acted upon by a for&ethat is normal to its axis — for example,
parallel to they-axis (Fig. 22.a).

l P
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Figure 22.

The problem of equilibrium can be considered to haws l3®lved if one succeeds in
obtaining the characteristics of the state of streissas arbitrary cross-sectia@n

The forceP will generally produce a moment of flexuveand a shearing stre$sin
such a section, and one can determine their magnitudesaigyning that one makes the
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usual cut alon@ and constrains the two faces of that cut to a relabvation around the
principal axis of inertia that is parallel ©X and a relative translation in the direction
oY.

One then obtains two deformations of the type thagpsasented by the Figures22.
and 22c (of course, the scale of the ordinates is very diffefi®m that of the abscissa).

If the relative rotation of the two faces of the @iequal to unity then the product of
the magnitude of the applied force with the amplitydef the deformation, when
measured along the line of action of that force, mustsone the moment of flexuhd,
according to formula (43).

In the figure, one sees that the rotation in questianeasured by / b. One will
then havePy’b/ h for the measure d¥l.

Similarly, if the relative translation in the secxbdeformation is measured by unity
then, from formula (42), one will get the shear stiieby multiplying the magnitud® of
the given force times the amplitugé of the deformation, when it is measured to the
right of P. In Fig. 22c, the translation is denoted lwy so the shear streds will
consequently be measured®Py’/ v .

The problem that was posed is then solved for any magnittitlee forceP, and
more generally, for any system of forces such fhatts upon the solid.

If the forceP is constant in magnitude and displaces along the beatepasn itself
then the two deformation curves that we have tracédvdluprovide the values of the
moment of flexure and the shear stress in the chasgiosZ by simply reading off the
ordinates, and those curves will be the influence cuofethe characteristics of the
internal stresses that relate to that section.

Figure 23.

5. — Consider the most general case of an elastic dahis fixed at its two
extremitiesA and B (Fig. 23). Imagine that a cut has been made along latraay
sectionZ and constrain the two parts to take on a relativelatispnent with respect to
each other — for example, a relative unit rotatiayuad a well-defined poir€. In order
to do that, it will suffice to apply two equal and opposistems of forceR to the cut,
such that the line of actianof the resultant of the forces that act upon eadghefaces
will be the antipolar of the poin€C with respect to the ellipse of relative elastic
displacements.
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Since the amplitude of the rotation is measured by th#upt®f the elastic weigw/
with the momenRd of the aforementioned resultant with respect to #reerO of the
ellipse, one will get a unit rotation by the condition:

WR d=1, SO R= i
wd

The construction of the deformation of the geometric axishe arch, when it is
divided into two independent segments, no longer presamtdifiiculty. On the other
hand, the deformation itself can be interpreted immelyias the line of influence of the
moments of the system of internal stresses that aresrtted across the section
considere® with respect to the arbitrary centér

Figure 24.

6. — As G. E. Beggsod], [60], [61] showed, one can utilize mechanical models and
mechanisms in order to the trace out the line of infteenlt will suffice to construct a
model of a suitable scale of the elastic system urdelysand subject it to the desired
distortions and plot the displacements of its varjpaists directly.
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Figure 25.

Some excellent results can be obtained with cetlutnodels. The construction is
then singularly facilitated by the fact that it is m¥en necessary to reproduce the scale
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of the body being studied. It will suffice that the vais sections of the model have their
moments of inertia (with respect to the neutral axi®pprtional to the moments of

inertia of the corresponding sections of the body, i suevay that the model can be
reduced to a simple layer of constant thickness iresks.

Suppose that one would like to study an elastic systemseitéral sections to it; for
example, the one that is represented by Fig. 24, whicliviesdhe determination of nine
hyperstatic unknowns.

In order to study those unknowns, it will sufficepmvide the sections with devices
that permit one to realize the distortions simply anely and in such a fashion that it is
possible to separate an extreme section at will ansubgect the body to a relative
displacement with respect to the fixed reference systemwhich the other supports are
rigidly linked. In order to obtain such a result, ondizgs the device in Fig. 25, which
consists essentially of two sturdy steel beams: Tiverldoeam is fixed, while the other
one, which is coupled to the extremity of the model ta¢ would like to study, is
strongly attracted to the first one by a convenientesysif elastic connectors. The two
beams present two pairs of V-shaped indentationdabateach other, in which one can
slide at will some rods of various forms and dimensionsuch a fashion as to determine
different positions of the moving beam with respechtftixed beam.

If the indentations and rods are carefully calibratkent one can determine a
translation or a rotation of the extremity of the mlpdend the amplitudes of that
translation and rotation will be as small as one desaed they will be known perfectly.

In order to measure the displacements, one appeat&tometric microscopes that
one focuses on the various poiAtsf the axis of the model (Fig. 26).

Figure 26.

One of the wires of the reticule (viz., the onettbaincides with the axis of the
micrometer) is placed in each instrument in such a nmaiaé it will coincide with the
line of action of the forc® that acts upon the point being observed. The otherisvire
moved to the successive positioAsA’ of the image of a point. One reads off the
measurement of the displacements that is produced bydesoltion from the difference
of those two positions, or more precisely, the measent of the projection of the
displacement onto the direction of the force, wlattbws an immediate utilization, since
that projection is necessary when one applies the deeciprocity principle.
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XI. — Fundamentals of the theory of elasto-plastic deformations

1. — In the calculation of hyperstatic structures thatsambject to a given system of
external forces, it will also be necessary to take eccount the deformations that the
resisting material can present when the internal stsegxceed the elastic limit: viz.,
plastic deformations.One knows that their introduction can be favorabléhe stability
of the construction by unloading that part of the consitrm¢hat is overloaded and once
more in the elastic domain, at the expense of some pHnes that were initially less
loaded and in which the stresses can contribute tdabdity of the whole.

The most expert and enterprising engineers have alwagsir@ed for the tendency
that more or less all of the materials that areleggul in construction have of submitting
to plastic adaptations, which is a tendency that has ¢@epared to a natural healing
process in the construction according to some fortuoateulas.

Francois Hennebique, one of the pioneers of reinfocoedrete construction and one
of the best modern engineers whose school of thoughtdéfised the engineering
principles of reinforced concrete since he was firsedyirhas taught that one should
account for the plastic qualities of a material by amgpdimensions for the structure that
are intentionally insufficient from the standpointtbé ordinary theory of elasticity. He
was convinced that one can obtain a better use of therialdby that process, and also
when the material is its ideal state for submittiogptastic deformations without being
damaged, while not delaying too much the removal of the reefoent in the structure
in order to realize the opportune plastic adaptations dunsgtase when the concrete is
setting.

Danusso defined the basis for a theory of plasticrdeftons 2] in a conference
talk that he presented in 1934 to the mathematics sentiritbe &olytechnic School in
Milan, and later Colonetti) [63], [64], [65], [66], [67], [68] developed a theory of
elasto-plastic equilibrium that permits one to submitsgdasubsidence (which is a
condition that is effectively realized in a loadedusture) to a rigorous analysis and to
specify in each case the special importance of theipldsformation that the material
can confidently support without any damage.

2. — In order to schematize the phenomena, and morasg@edhe manner in which
permanent deformations come about, the path to folldirbe the following one: One
must postulate the existence of a limiting stress beyondhathe material passes from
the elastic state to the plastic state, such thiawbthat limit, the deformation is kept
perfectly elastic (conforming to Hooke’s law). On thentcary, above that limit,
perfectly inelastic deformations are produced under constaatl, which are
superimposed with the elastic phenomena without alteramg influencing its
characteristics, moreover, and in particular, itgléecy to vanish when the causes that
produced them cease to act.

Now, that is in the nature of materials; for exameft steel, whose effective
behavior is approached under the aforementioned corslitiona high degree of
approximation that is more than sufficient for the pugsasf engineering.

() One can find a complete bibliography of the work ofdBetti on this subject in his recent book that
is entitledL’équilibre des corps déformableBaris, Dunod, 1955.
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It will then follow that if it so happens that theéamal stresses attain the elastic limit
in some part of the system then one must assume, withesitation, that the internal
stresses in that part will immediately cease to emeeand permanent deformations will
begin to appear, which will stop only when the system at@mequilibrium state that is
compatible with not only the given values of the applit@mmal forces, but also with the
fixed and known values that are taken by the internassgsein the part of the system
considered.

In that problem, we will be led to introduce the imposgedormations as the new
unknowns, but at the same time, just as many of thenafiginknowns will have
disappeared, or better, they will have taken on knowunegathat the corresponding
internal stresses.

Unit stress Unit stress HypothesisA Unit stress HypqthesisB )
O (Ideal plastic material) g (matgnal_wnh I.|neahqrden|ng
! total = Eelastict Enlastic
esic = | — —— (0= 0
a |t gy -2=0 oy | LBTR o
%] ' Oelastic= E Eelastic Oetastic= E Eelastic
Om
E tan’ E tan™ E
i . &
etastic Deformatior total Deformatior bota Deformatior bota
(b) © @)
According to Hypothesia
1 a-yc 1 ) O-yC 1
<> I_)I_i
:“‘“B“":Mzawelastic 7 : _?
T T M :Melastic
Beam A v tz’flsti\(;v | 5 = Oyt Welastic
section : y Pelastic [
' [}
—>ibl< \:,
O, PN PN P
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Figure 27.
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3. — If a metallic beam with a profile that is simitarthe one that is illustrated in Fig.
27a is subjected to a moment of flexuvethat increases from zero to a final value at
which the beam yields then the extreme fibers of tlaenbeill rapidly become deformed
considerably. The section of that beam is referretistprincipal axes of inertiaX( Y)
and is symmetric with respect to the aXisvhich is found in the plane of the moment of
flexure, and in the most general case, it is not sytmengith respect to thX-axis.

The stress-deformation diagram that is obtained whgpeaimen that is taken from
the beam is represented in Fig.l27The proportional limit of the material is represeht
by g, , the maximal elastic limit by, , the minimal elastic limit by, and the final
stress by, .

In order to simplify the stress-deformation diagraon the sake of numerical
applications, one can suppose that Hooke’s law is no loagicable past the elastic
limit and the material will gradually be deformed at ¢ansstress.

However, for some special materials, the phenomeanae described more precisely
by taking into account the effect of curing. In thatecasis convenient to assume that
above the elastic limit, the increase in the deforomagtiis a linear function of the stress
and the material keeps its characteristic property ofetatning to its original state when
the stress is suppressed.

In Fig. 27d, if one takeR to be the new modulus of proportionality then the total
deformation above the elastic limit will be expresbgd

_ o 1 1
Eotal = Eelastic T Eplastic = E _Uy e
the elastic deformation by:
e 7
lastic E )

and the plastic deformation by:
Elastic = (a—a)(l— 1}
plastic y R E .

Melan [69] called those two hypotheses that of the “ideaspt material” f) and the
“material with a linear limit of hardnessBj.

If the moments of flexure of the section of thetale beam considered is increased,
while preserving the greatest stress in the matabave the proportionality limit (i.e.,
above the elastic limitg), then the distribution of the stress across #wien of the
beam will be illustrated by a triangular diagranThose normal stresses will bring
equilibrium to an internal moment of flexure whasdue is:

M = 0 Welastic -

In that expressionWeiasic represents the elastic modulus of the calculagatios,
which is referred to its neutral ax¥X whose position is determined by the well-known
method of applied elasticity. The triangular disition of the stresses remains valid up
to the point that the stress in the most-deformiethent of the section attains the elastic
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limit, whether from tension of compressiosi(, g, resp.). The corresponding moment
of flexure will then be:

Melastic= T Welastic -

When starting from that moment, according to hypothAsif the “ideal plastic
material,” if the moment of external flexure increasigen there will be no more increase
in the stress in the most elongated element. How#werstress in the elements that are
closest to the neutral axis will successively attainsime value, and finally the stress
diagram will be represented as in Fig.l1Rxwvith the entire section then being in a plastic
condition. Upon supposing that the sections remain plauramng the entire deformation,
the maximal moment of flexure to which the sectiosubject in that final state will be:

Moastic = Gy Whiastic -

It must be calculated by referring to a new neutral X¥s(Fig. 27i), and in the
limiting case, that section will divide the sectiarto two areashA; and A; in such a
fashion that:

Gyc AL = Gy Az .

In the case for whickw,. = o, it is possible to express the valWSastic, Wplastic, and

. W s . . .
the ratiow = —22* for the most common sections in a simple form.

elastic

plastic

The ratio , Which is represented by and is referred to as “the coefficient of

elastic
plasticity of the section,” represents a measurenefdapacity of the section to resist a
plastic deformation. The values Wkiasic, Wpiastic, andw are given for eight different
sections in Fig. 28.70].

4. — In the elasto-plastic state of deformation, it issgme to distinguish an elastic
fraction Celastig Of the total curvaturecia) of a section of a bent beam; i.e., the curvature
that the section will take on if it can elasticallysist the moment of flexur#&, and
likewise a fraction that will be called the plastiereature €asid, Which represents the
difference between them.

Hence:
Ciotal = Celastic T Cplastic -
Therefore:
_M
Celastic El .

For a rectangular section (Fig. 29), when one supposeththenaterial has the same
resistance to compression as it has to tensios,veny simple to determine the relation
between the total curvature and the moment of flexd@g [In order to do that, it is
necessary to express the equilibrium condition faseation that is subjected to the
moment of flexureMl.
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One can deduce the following relation between the twmemts of flexuréMyjasic
andM from the diagram of the stresses in the bent gectio

(44) Mpiastic—M = %B d20§/ )
in which d represents the distance from the neutral axis to #reeplhhose fibers have

just reached the elastic limit.
However, from the deformation diagram of that saewtien, one will have:

Uy
Ciotal = E_d .
Stress diagram Deformation diagram
(g, compression vsg, traction)
—| &plastic j«
Uy
e=—2
E
d _
d‘“ tan ! Ctotal
e=y
E
—>| &lastic =
— B —I —B —

f T‘ m h 1 Q
Plastic . \ Plastic \ Zone
Plastic \ Zone oo
| N ] \ 1
H H \Zd H \ 2d n
‘ ' \\i ' %\\‘\‘\‘¢ l
Plastic Plastic \ Zone Plastic_)s‘\ Zone
S\ i X
Figure 29.
Hence:
d= -2
Ectotal
and formula (44) will become:
Moasio—M = 227
plastic - 3E2C§)ta| )

from which, one can deduce the following expressionHeck:, :
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3
Bay

1
45 ==
( ) Ciotal E\/ 3(Mp|asﬁc M )

Formula (45) can be applied with no change to no particae of bent beam that
has a symmetric section with respect to ¥iaxis, and for which the elastic zone of
stress resides entirely within the rectangular poribtine section, whose size Bs(Fig.
29).

One can find the relation between the moment of flexand the total curvature in a
more general fashion by a graphical method that Colonetti G4].

Figures 30 and 31 give the calculated values for the cuhasgive the total
curvature versus the moments of flexure for the twedfft types of beam profiles (viz.,
a beam that has a cruciform section and one that mastangular section), and the
calculated values are compared to the ones that wevedl&om experiments.

As the diagrams show, the experimental curves arayahabove the ones that were
calculated.

The divergence between the two curves will becomeenamd more pronounced
when the moment of flexure increases above the vislue Mejasic, and the curing
phenomena at the boundaries will become increasingdpitant [Q].

5. — As one knows, under elastic conditions, the thedrhe bending of beams is
based upon the possibility of integrating the deflectiowe equation:

2

o

2y: — Celastic= —— -

(46) dx El

When one passes beyond the elastic limit for theeckidin curve of the beam, one
can appeal to equation (46), provided that one substitutetotiddecurvature for the
elastic curvature; hence:

d’y

(47) dx?

= — Ciotal = — (Celastic + Cplastic)-

If one supposes that the moment of flexiteeturns to zero after having attained a
value M > Mgasiic then the elastic curvature will also become zero, thet plastic
curvature will not vanish, and equation (47) will become:

d’y
dx?

(48) = — Cplastic -

One can calculate the permanent deflection of a ikatrhas been bent beyond the
elastic limit with the aid of equation (48).

Under elastic conditions, while considering the deftectturve to be a funicular
curve for an imaginary load that is represented by theatun diagram, one can deduce
a very simple grapho-analytical method for calcutatime deformations of beams.
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Moment of flexure vs. curvature diagram for a beamn the elasto-plastic regime
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100 G
75 -
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50
25 | _
Experimental values
----------- Calculated values
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‘ Celastic ‘ C I:I].CG Cm—l
Figure 30.

One can extend the same method to the case of intenes by considering the total
curvature diagram, instead of the elastic curvature diggaaoh one can then calculate
the deformations of beams under plastic conditi@dk [See 88 of this chapter)

6. — Some considerations that are similar to the oné¢stbanade for metallic beams
that are bent beyond their elastic limit can be redeéel to beams of reinforced concrete
for a limited period of their deformatioi@?®], [73], [74].

Tests involving the compression and traction of cdegpeisms have shown that the
relation between the stress and the deformation carefnesented graphically by a
diagram that is similar to the one that is illustdate Fig. 32 5. The stresses are
represented vertically and the deformations horizontallpositive values represent
tractions, while negative values represent compressions.
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Moment of flexure vs. curvature diagram for a beamn the elasto-plastic regime
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Figure 31.

The deformation due to a compress&, can be expressed to a sufficient degree of
approximation in the stress terms by the following 1&&]:[

&otal = EelasticT & =—+0.1
= ; = — 10—
total lastic plastic E 11 —

compr

E represents the initial value of the modulus oftdaty for concrete; i.e., the inclination
of the tangent with respect to the origin in theest-deformation diagram.dcompr
represents the maximum resistance to compressi@orairete in prismatic form. One
can further express that quantity to a sufficieegrée of approximation as a function of
the prismatic resistance to compression of condrgtée formulaT7):
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Figure 32. — Relations between the unit tensiontbadinit deformations for concrete.
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The branch that represents traction begins at thenavith the same inclinatiok as
the other one, but for a small value of stress, it ahihinge its direction and become
almost parallel to the deformation axis. If the coterie not reinforced then the last
phase of the phenomenon will not exist, so to speakthendpecimen will rapidly break.
However, if the specimen is sufficiently reinforcecknhthe concrete can resist more
appreciable deformations before it fractures, and one eartheit second phase of the
phenomenon very clearly thend.

One can represent this phenomenon to a sufficient dedragproximation by two
straight lines, the first of which starts at the orignd represents positive stresses that are
within certain easily-determined values that corresponthéoelastic phase, and the
second of which, which is parallel to the deformatiors aid consequently represents
deformations that increase to infinite at constamisstrrepresents the plastic phase of the
processT9].

The summit of the angle represents the elasti¢ bireoncrete under traction.

If a reinforced concrete beam is subject to a moméffiexure that increases from
zero up to the value at which the beam ruptures then aondistinguish three different
phases of the deformation of the beai®.|

a. An elastic phase: During this phase, the concrete is subject to a aesamn and
a traction at the same time and behaves like anelzsdly.

Consequently, if the entire section is considered thdmeogeneous then it will resist
the external load.

b. An elasto-plastic phase.When the concrete attains the elastic limit faction, a
second phase will commence. By analogy with the liteteeams that are bent beyond
the elastic limit, we shall call that second phaseelasto-plastic phase.That second
phase has a very short duration in the case of an oydiearforced concrete beam.
Indeed, some cracks will be produced in concrete wheridhgation reaches 0.3 %.

c. A third and final phase- This is the most important phase in the deformatican of
reinforced concrete beam. During that phase, the cenasiich is now broken, offers
no resistance to traction, which is, nonetheless péetely absorbed by the steel frame.

When beginning a project involving reinforced concrete Isgaome ordinarily
neglects the first two phases in order to consider thaythird one. For that reason, we
shall completely neglect even the very limited resistato traction that is offered by
concrete and calculate the reinforcement as if iewesistant to all tractior)(

7. — The fundamental theorem upon which the theory ofeelalastic equilibrium is
based, as it was presented by Colonetti, is the fallgwne:

() In the considerations above, we have not taken $pessing” into account. A complete treatment
of that important problem was given by Colonetti in fésent book.'équilibre des corps déformables
Paris, Dunod.
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The internal stresses (with components, r,, 133, 112, fi3, I23) that characterize
the equilibrium state are the ones that make the expression:

=& +'[V[T111711+T221722+T33733+T T Y 3T ¥ WV

minimal with respect to all of the values that égression can take that are compatible
with plastic deformations (with componerts, Vs, Vs Vio» Visr Ve3) @nd the given
external forces.

® represents the elastic potential energy:

cp:jv¢dv,

in which ¢ is an essentially-positive homogeneous quadratim bf the six special stress
components that were recalled above.

The k equations that give rise to such minimum condg#ioare linear and
inhomogeneous, not only with respect to theparameters of the stress state (viz.,
hyperstatic unknowns), but also with respect toctiracteristics of the state of coaction
(viz., parameters that allow one to express theresged deformations linearly in terms
of them in some patrticular concrete cases).

8. — Consider a continuous beam on four supportsruth@eload conditions that are
illustrated in Fig. 33, casésandB.

When the central span is bent beyond the elasti, Iplastic deformations will be
produced. It will then be easy to extend the thmeenents theorem to those cases, which
expresses the continuity conditions at each suppiint the aid of the grapho-analytic
method [Q].

The angles of rotation at the central supportshei

_ 1MA|1
& 3 ElI °
PIZ M., 1
= +—L=+—|C i dS.
% 16EI  2EI 2J plaste
The continuity condition is this:
6=-6.
Hence:
M P2
(49) EIA (21, +1,) +8?2|+Jcplasncds= 0,
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but the plastic curvature&dasid is a function of the bending moment at the centehef
beam M, and also the unknown hyperstatic momg@si , upon which that bending

moment depends. One can always define the relatiorebatiihe hyperstatic bending
moment and the external forBeby using formula (49).

CaseA Case
Position of the loa Position of the loa
—>] I2 l—
Pl 3lP
l1 l2 I3 — I‘" |1">}-- |2"+" |3"’T

|1:|3 Il:|3

Deformations of the beam Deformations of the beam
Moment of flexure diagram Moment of flexure diagram
Plastic Plastic
zone Ly zone .
7 r W o | /M,?\
IAVAE R ==
Curvature diagram Curvature diagram
Plastic Plastic
zone Z0ne

A\ = N\~

TN T e

Plastic curvature diagre Curvature diagral

N/ _/

Figure 33.
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Colonetti obtained the same result as the onadiggten by formula (49) by utilizing
his minimum-energy theorem.
For caseB in Fig. 33, we get, in its place:

_1MA|1
% 3 El '’

PIZ M, 1
=2+ A2+-|c . dS,
% 9El  2EI 2J plastic
but here again:

6=-6.
Hence:
M 2P12
(50) E_IA(%I1+|2)+ 9E|2 +'[CplasticdS: 0.

If the bending momeri¥l,, in the central beam is less than the limiting valbihe elastic
bending moment (i.eMm < Meiasid for the two casef andB thencpiasic = 0, and that
will imply the well-known Clapeyron equation in éecase:

M P2
49 A(2] +l,)+—2 =0,
(49) = (21,+1,) o

M 2P|2
50 A(51 +l,)+—=% =0.
(50) El (31:+1) 9EI

9. — What are particularly important and interestirgm the engineering viewpoint
are the conclusions that one can deduce from apgptyiese methods to depressed arches
of reinforced concrete. For those arches, thesstrarve that is calculated by ordinary
methods that are based in the theory of elastiiliybe longer than the central curve of
the arch at the summit and at the two abutmenkat @mounts to saying that the stresses
in the concrete at the summit and at the two aboitsneill attain very high values that
are often inadmissible, whereas experience showmi@ satisfactory state of affairs.
Colonetti BO] showed that one can explain the apparent coctiadi between the
theoretical and experimental results by introdudimg plastic factor into the calculation
and applying his general minimum-energy theoremhe Plastic adaptation of the
material will make the stress curve almost coineiwté the central curve of the arch, and
it will reduce the stresses in the sections thatgaeatly deformed to some normal values.

In that manner, one can plainly justify the stdd&havior of some works that were
constructed already, such as for example, the briclge over the Astico in Calvene,
which was established in 1909 by Danusso and isdgé that was found to support
loads that were greater than much of the ones fochwit was constructed in the first
World War.

If one calculates the forces to which that strietwas subjected according to the
usual theory that takes into account only elasgfommnation then they would be so
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intense that the bridge would not have been capable of suqgptirem. One can account
for the effective behavior of the work by applying the nbeory, as the engineer Oberti
did [81]; i.e., by taking the plastic adaptations of the mat@nto account.

XIl. — Systematic deformations.

1. — We have shown the behavior of certain hyperstatictstres in the case in which
the stress in certain sections reaches the elasitcolf the material when those structures
are subjected to external loads. A distortion wilhnti@llow whose effect is to diminish
the stresses in those sections. Consequently, #esasr will increase in the sections of
the structure that is not also strongly-loaded. Tleaiction of the material can be
compared to a natural defense that is organized by thduwtutself. Without that
defense, the structure would be destroyed by the extentast The idea will occur to
us naturally that we must imitate and supplement the attomeaction of the structure
by artificially creating certain distortions. Theylvend to increase the resistance of the
section in question to the external conditions und@ch the latter would be destroyed,
which are conditions such as transient or permaneinls/ode effect of temperature
variations, the contraction of concrete, or theduoeg of the internal or external links.

The problem in any case is to perform a very delicatgiclroperation on the
structure itself when it has just been constructed,esthe distortions that one must
produce and which must remain impressed permanently in thetuse are generally
very small, and one must adjust them very precisebnd would like to avoid, on the
one hand, an insufficient effect, and on the otherura that is worse than the initial

defect B2}, [83, [84].

2. — Those methods have found their most important apiplisain the context of
reinforced concrete bridges and arches.

One hundred and fifty years ago, Perronet sought “trensnthat one might employ
in order to construct large stone arches of 200, 300, 40@patal500 feet long (i.e., 65,
97, 130, and 162 m, resp.) that are destined to span wide vhbeysled by steep
rocks.” Perronet’s predictions have been largely surgasgh the present means.

One can consider the most remarkable advance in tfnigee of modern
construction to be the process that has allowed xtmaerdinary achievements in the
construction of bridges, above all, in France, by tlggneer FreyssineBp|, [86], [87].

The first application of the method was made by Fragsdo the bridge in Voudre
over the Allier in 1913 (three spans of 74, 79, and 74 m). In-1919, Freyssinet
applied that method to the bridge at Villeneuve-sur-spa: 98 m)§g], in 1923, to the
bridge at Saint-Pierre-du-Vauvray (span: 131 89,[and in 1927, to the bridge of the
Caille on the torrent of the Usse in Haute-Savdiée bridge of Plougastel on the Elorn
near Brest was completed in 1930 with the aid of Freyssamek it has three arches of
185 m, which constituted a record for reinforced concrete badgstructions90], [91].

In the United States, the bridge over the Rogue Riv@regon was built using the
Freyssinet method during the years 1931-1932. That structusestsonf a series of
seven symmetric reinforced concrete arches that eaehlbngths of 76 n®p], [93].
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Figure 34a

For the structures of the type above, the predomiefett that one must combat is
the contraction of the concrete, which happens gradaattyconcludes around eighteen
months after the material has solidified.

Figure 34b

A single operation will not be sufficient. That coamgsation process must be
performed at the same time that the contraction iduymed, and if it is to be truly useful,
it must not stop the traffic on the bridge.

That process utilizes a series of Volterra distogtittmt are produced by hydraulic
jacks and maintained by rigid metallic wedges that dredunced into the structure of the
bridge.

In order to avoid traffic congestion, and at the saim@& to permit repeated
operations, the following procedure must be followed fretjyieA concrete pediment is
built on one of the abutments of the bridge during itsstraiction. One leaves special
recesses in that pediment into which one introduces hydrgadks, and they will
produce the desired distortions at regular interval. défermations thus-produced are
measured by delicate instruments that one can easily read.

3. — In practice, the problem is discussed in the simplesiner by means of the
theory of Culmann’s elasticity ellipse of terminalglacementsd4], [95.

We can reduce the problem to a two-dimensional onefeyrirgy it to the symmetry
plane of the arch. For any section of the archyekaltant of the internal stresses will be
a certain forceRs whose intensity and direction can be determined dyredfl one cuts
the arch along an arbitrary sectibrand then displaces the faces of the cut with regpect
each other such that the relative motion is a rotatibnse valueA® is related to the
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elastic weightG of the arch and to the distandéom the elastic barycenter to the line of
actionr of the resultant by the relation:

AP =R;Gd

which is valid around the antipo@ of r with respect to the elasticity ellipse of the arch
(Fig. 34a).

In practice, one can always take the section tcheeohe that contains the poidt
When the arch is cut along that section, one willoithtice a force by means of a rigid
wedge of openind\® that thus annuls the self-strd®s. If that wedge is itself elastic
then one must take its own deformations into accougt @ib).

Figure 35a

Figure 35b

4. — Instead of correcting the effect of self-stressiwist one distortion, one might
sometimes find it preferable to utilize several of theat tollectively annul the effect of
the self-stres®. The process that one agrees to apply in the catbeeaf distortions is
indicated, by way of example, in Figs. 8%and 35b: One of them is at the key, while the
other two are symmetric to the waist. If three ygrad pointsO;, O,, Oz are chosen
then one can determine the antipolats, rs, resp., with respect to the elasticity ellipse
of the arch, and one then decompd®edong those three directions.
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Hence, one will have three ford8s, Oy, O3, resp., that correspond to the rotations:

AD; =R Gy,
AD; =R, Gy,
AD3;=R3G ds,

with respect tdD;, O,, Os, respectively. One introduces wedges into the jointshiinas
openings that are equal to the calculated rotations, aedwdlh then find that the
preceding state of elastic stresses has been destroyed.

The considerations that we just developed for reintbomecrete arched bridges can
obviously be applied to more varied and complex types mdtcactions.
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