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On the shortest integral curvesof a Pfaff equation
By
R. von Lilienthal in Minster i. W.

Translated by D. H. Delphenich

In a discussion | of my paper “Grundlagen einer Kriimmungslehre der
Curvenscharen,” Sommerfeld pointed out the differented®n straightest and shortest
paths that Hertz presented)( which | had not considered in that paper. That prompted
me to address the question of the shortest connectingpdimveeen two points that is, at
the same time, an integral curve of a given Pfaff eqoator in other words, an
orthogonal trajectory to a given doubly-infinite famalf/curves.

In what follows, | shall first derive the charactédsquation for that shortest line in
two different ways, the first of which was given by Hart terms of the usual calculus of
variations, while the second one, which is more geocadly intuitive, is better adapted
to the situation.

The integration of the differential equations that evgresented will then be
discussed, and finally two cases will be given in whighihtegration is simplified.

I will refer to the aforementioned paper by the synil@gl, although only the last
paragraph of what follows will assume any knowledge aif paper.

§1.
First derivation of the differential equation of the shortest lines.
Let a doubly-infinite family of curves be establishedtwry equations:
(1) dx:dy:dz=¢:n: ¢,
in which ¢, n, { are functions ox, y, zthat should satisfy the condition:
Erip+dt=1.

The rectangular intersection curves of that familgwives are the integral curves of the
Pfaff equation:

() Géttingische gelehrte Anzeigen (1898), no. 11.
(") Die Principien der Mechanjkpps. 100 and 106.
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(2) &dx+ ndy+ {dz=0.

One now imagines two poini (X0, Yo, 20) andP; (X1, Y1, z1) being connected by one
such integral curve and considers the coordingtgsz of its points to be functions of its
arc-lengths, which might run through the values from Odevhen one goes frof, (X,
Yo, Zo) to P1 (X1, Y1, 21) .

If one now varies the curve in question under the reqent that first of all the
varied curve must still go through the poifs and P, , and furthermore that it must
remain an integral curve of equation (2) then the varigi@of oy, 0z must vanish fos
=0 ands = g, and in addition, they must satisfy the varied equa@jni.¢., the relation:

Fdox+nddy+doz+dy 2 axe 9 a‘(zj

OX+—0y+—90
0x oy 0

0x ay 0z
0 5., 98 5., 9¢ Zj_o_

+dy 6,75 +a,75y+a,752j

+dzl —ox+—90y+—9J

0x oy 0z

If one applies the relations (G, pp. 90) here:

o{ on 0§ _0d on _0¢
26 = ———-——, 2 : 205 ———
- oy o0z 2= 0z 0x = ox ay

then the relation in question will take the form:

fdox+ndoy+{ddoz+ox(dé+ 2e3dy— 26, d2)
+0y(dn + 28 dz— 253 dX)
+0z(d{ + 22 dx—22dy) =0
or, more briefly:

3) fdox+ndoy+{ddoz+A=0.

In order for the curve that is imagined to be the gsouf all of the integral curves of
(2) that connect the poinB andPs, the variation of the integral:

I ds
0
must vanish under the condition (3).
When one introduces a temporarily-undetermined funggiofhs, that will imply the
equation:
T{dxd5x+ dyd y dzd z
0

+¢(Ed5x+/7 do x+{ d x+ A} =0,
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or, after performing a partial integration:
T dx dz
| {¢A—5x[dd—s+ d(¢f)j »{d—+ c(¢r/)j { ot W)j}=
0

Here, the coefficients a¥x, dy, dz under the integral sign must be set equal to zero.
In that way, when one goes from differentials todsives, it will follow that ():

e g0 e Y0
@) ‘;Szy 1% v2p e 50 -
FEatsee ¢(el_d);_%%)3:0'
If one multiplies the foregoing equations I%%( dy g_s in turn, and adds them then

one will obtain the condition (2) that was requwetoirrﬁrthe outset. In order to find the
other two conditions that the system (4) implies geametrically-intuitive form, we set:

1( dz dy) 1 dx

2 =2eé+—|\n——-¢{— |[+—=—,

& =2e¢ Pinds ds) P ds

dx 1 dy

5 2e,=2en+—| {—-&— +——,
) e =2¢en PS(Z s E B ds
dy dx) 1 dz

26,=26{+=| {— +——

=260 PS( ds Ods P ds

and furthermore:

dx_1(, dz_,dy ¢
ds’ Fg(” ds ¢ d * h
dy_1(,dx_d2) n
(6) 2 R[z i
d_zzzi( iy—/7£)3+£
d R ds d h
1 d¢_¢ 1.
(7) &+2£¢ 0, S FS’+Q 0.

() Cf., A. Voss, “Ueber die Differentialgleichungen deedanik,” Math. Ann., Bd25, pp. 282.
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The elimination ofp from those relations will take different forms aatiog to whetheg
is continually zero or does not vanish in general. Since

_ s 94 _0m), (98 _0¢ ), [9n_0¢
25"{@ azjw(az 6xj+z[6x ayj’

in the case of = 0, the curves that are defined by (1) will be the gtimal trajectories
to a family of curves. Here, we will get simply:

(8) =0,

1
R

which makes the second equation in (7) represent only aticondn the functiong,
which is foreign to the problem.

However, wherg is non-zero, in general, eliminatiggwill imply the relation ():

©) i[dlogg+_1j+g_d(1/&)zo_
R{ ds R h ds

S

We would now like to discover the geometric megrofithe quantitie®s, hs, Ps that
appear in this.

If one regards the coordinates of a spatial cass/&nctions of its arc-length then the
equations for the curvature axis that belongs eéqthint &, y, z) will become:

: , d?x [dydzz dzdﬁ

ds ds dé ds ds

=y 28V, [ dzd x dxd
(10 YEYTP e +p|[ds & ds c?sj’
w=z+ 2d_22+ |Q(iy__d)i

P a2 Pl ds & ds ds)

in the event that one denotes the coordinates qfaints by, v, w. Here,p means the
radius of the first curvature of the curve, whibbn has the value:

1
dzxz+ d2y2+ & 2)°
ds’ dg d$

() In that way, my previous assertion in these Annaleh 3B, pp. 555, lines 8, 9, is restricted to the
case ofs= 0.

(11)
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The quantityy means the abscissa of the pounty, w) relative to the center of the first
curvature.
If one takes the spatial curve here to be an orthogoagictory of the family of
curves that is given by (1) then:
dx dy
—+n—=+
g(ds 7 ds ¢

dz _o.
ds

Now, since one also has:
dx dy dz
Uu—-3%—+vV-y—+w-2—=0,
( >9ds ( »ds ( Z)dS
the equations:
u=x+hé, v=y+hp, w=z+h(

will be compatible with each other and will serve ttedmineh andl ; the curvature axis
that belongs to a poift of an orthogonal trajectory will cut the tangenthe tndividual
curve of the family of curves that goes throl®jh The quantityh measures the distance
from the point of intersection in question to the p&int

If one multiplies the latter equations d’x d_zy iz in turn, and adds them then
W% 4 9 |

one will get:

1 _d°x d’y , dfz
12 —= + + ,
(12 e et
so from (6), one will have:

h=hs.

We let 1 /hs denote the normal curvature of the trajectory consdl&rith respect to
the family of curves.
Since, at the same time:

1__dxdé_dygy_dzd

hh dsds dsds dsd

the normal curvatures that we speak of for alettgries of the family of curves that go
through the same point in the same direction valelqual to each other.
As a result of the relation:

LV S
(u >9$+(V »ds+(W 2)OIS 0,

the equations:
dz dy
u=x+R|n—-7—1|,
(,7 ds ¢ dsj

dx _dz

v=y+ R {—-&— |,
Y (st g(dsj
dy dx

w=z+ Rl {——-n—
(5ds ”dsj
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are also compatible with each other; i.e., the curvai® considered will also cut the
tangents to the trajectory of the family of curvest thpo throughP and are perpendicular
to the trajectory considered.

d’x d?y d’z
If one multiplies the foregoing equation in turn, and adds them
P going &g bf 9 a2’
then that will yield:
1 dz  dy) d x
13 —= — —
(13) R Z( ds ¢ e j é
i.e., from (6):
R=Rs.

We call 1 /Rs the geodetic curvatureof the trajectory considered relative to the
family of curves.

From (6) and (11), one gets:
1 1 N 1

pF R R

From that, it is clear that of all orthogonal td@ries of the family of curves that go
through the same poift in the same direction, the ones that possessniadiest first
curvature at the locatioR will be the ones for which the geodetic curvatuamishes at
that location. | have called a trajectory alongahlthat curvature continually vanishes a
geodetic lineof the family of curves (G, pp. 50). Following tgs precedent
(Principien der Mechanikpp. 101), | will refer to such a line as th&aightestone;
however, that terminology is much less felicitora a grammatical standpoint.

Secondly, we apply equations (10) to the individuave of the family that goes
through the poinP.

Here, we have:

dx dy _ dz
ds ¢ ds i ds ¢
d’x o¢& 6(
+
ds’ ax‘( y azZ’
or since:
qu ZZ 0
134
one will have:
d2
=2
e e {-en),
and correspondingly:
d’y d*z
=2 — , - =2 - ,
e @:é-ed e @n-ed

such that:
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A g doe),
One then obtains:
u=x+2f@J{-en+2pl(e—cd,
Vay+2F(esé-ed+2pl (@-cn),
w=z+20 (@ n-ed+2pl(e—€79.

If one now forms the equations:

u:x+P%, v:y+P$/, W:z+Pd—Z
ds ds ds

then, due to the relation:

U-3d+v-yn+w-37=0,

those equations will be compatible with each other, Rnmdeans the distance from the
point P to the intersection point of the curvature axis that sgaken of with the tangent
to the trajectory under consideration.

If one multiplies the equations in question bye2d—es ), 2 & é—-e (), 2 17—
& ¢), in turn, and adds them then that will give:

ST N VR
: 2[ds(ezz am+ P (as- o)+ Lo @5)]

or also:

1 dz dy dx . d dy d
14 —=2 —-7=2|+ — =&+ —Lp—T.
(14) P {e{”ds ¢ dsj %(Z ds ¢ da %( ds” ﬂ
As aresult, from (6), one has:

_1
P,

O+

The family of curves that is given by (1) will besgstem of rays when the quantiti%é,
S

((jj_,]’ ((11_( vanish along every curve of the family; i.e., when
s ds
eieieg=¢:n:4.

In that case, the expression RsMwill be continually zero.

Otherwise 1 /Ps will vanish only when the tangent to the trajegtarnder
consideration at a point is, at the same time bthermal to the individual curve of the
family that goes through that point.

We then have the result that: If the expressigcontinually equal to zero then the
shortest line will coincide with the geodetic liaad will be established by equations (2)
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and (8). Ifeis, in general, non-zero then equations (2) and (8) ch#iracterize the
geodetic lines, while equations (2) and (9) will charactettie shortest lines.

§2.
Second derivation of the differential equations of the shortest lines.

We once more understandy, z to mean the coordinates of one of the orthogonal
trajectories of the give family of curves that conrtéet pointsP, andP; . They will be
assumed to be functions of the arc-lengthvhich might range from the value O to
when one goes from, to P, . We shall now seek to find other trajectories thawise
connect the point$, and P; and lie in the neighborhood of the trajectory that is
envisioned.

If one next takes:

X'=X+5(s-0) Y3,
v=1 VI
[ Z.V

=y+s(s-0 ) b—,
v=1 v
z’=z+s(s—-0) ZCVT—
v=l !

and considers the quantities, b,, ¢, to be functions o§ that make it possible for the
sums that appear to converge for sufficiently-smallies ofr and all values o$ from O
to othenx’, y’, z’will represent the coordinates of a curve thatheaits the point®, and
P, for such ar.

One must now find the conditions under which theves r = const. will also be
orthogonal trajectories of the given family of ceisv

To that end, we set:

s(s-o0a,=ay,, s(s-o0b,=8,, s(s-ocv=py,

to abbreviate. The values of the direction cosifjeg { at the locatiox =X,y =y’ z=

zZ’are:
£= g {gf ,81 j .

, 0
n'=n+ T(G—Zal+—l[;’l+—ylj + ...,

7= z+{6—5a1 9¢ 5+%€ j+

The coefficients of the powers oin the development of the expression:
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dy

+/'——=
dsZ

5_+
ds

must now vanish. If one sets the coefficients efjual to zero then that will imply the
condition for the quantities: , £, )4 in the form:

a(afdx Londy, %dzg '[),1(65 dy, 0 _dy, o¢ di

oxds dxds axd 3 ydsd ydsa y

((%dx 9n dy, 0f dz ve al+,7 d,[)’1+Z dylzO
0z ds 6zdsazd ds (
or:
d(a, &+ + dz dz_
@B rd), Za{ J ﬁl( %_1 { = 0.

Here, it should be emphasized that the quantitiesf: , y refer to the three directions
that are given by the curve of the family, the écapry being considered, and the
trajectory that is perpendicular to both of theesgp., and are set to:

dx dz d
o= nld—s‘*‘nz(ﬂgs_f—dg +1ng ¢,

pi=n% +%(ZQ(EJ o7,

d dx
n= nl_+n2( —y_/7 dJ No .

The quantitiesy , N1 , Ny are proportional to the cosines of the anglesttimatangent to
the curves = const. that goes through the point §, 2z makes with the three
aforementioned directions.

The relation in question now assumes the form:

(15) b %oy =o.
ds

S

The arc-length of the curve= const. between the poirfes andP; will be given by

T e

J=

o —Qq
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That is a function of. We ask what the condition might be under which itldde a
minimum whenr = 0.
One has:

2
Z(%j =1+ Z(%dal_*_ﬂ/dﬁl +£Zdyll+
ds ds ds ds ds ds d

(dxf_ dx da,
z skl (NN R 2 bt RS
ds ds ds
and as a result:
( j I(dx dal+$/d,[>’1+£zdyllds
07 ), 3\ds ds ds ds ds d

_Tldn dx( oz ,d dx é
‘{{E*”ZZES T d}ds

(d_“l_&_& ds.
R h

However, since, is zero at the locatiorss= 0 ands = g, one has:

)l

That integral should vanish, while the condition (15) w#rsist. The latter can be
satisfied by onlyny = 0 whene is continually zero. The functiom under the integral
then remains arbitrary, and in that way we come todbelt that:

However, if& is non-zero, in general, then we infer the expoasfor n, from the
condition (15) and find that:

&) el
or ), |2¢R ds h 22RR

or after partial integration, sineg also vanishes at the locatiosis 0 ands= o':
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gt
(an __ 2R 1. 1
=0

> =

N,
5 ds h 2¢RR

Due to the arbitrariness of the functiof, the factor ohy under the integral sign must
vanish, with which, one will obtain equation (9) 01.8

§3.
On theintegration of the differential equationsthat were found.

Equations (8) and (9) of Bexpress geometric properties of the geodetic and shortest
lines and serve as a means of deciding whether a giveogortal trajectory of the
family of curves is a geodetic line or a shortest lineneither. However, when one
addresses the search for geodetic or shortest lineg, éqoations will mostly be useless,
since the arc-length appears as an independent varialileat kcase, it is better for one to
replace the differentiation with respect to arc-lengtth differentiation with respect to
one of the three coordinatesy, z.

If we take — e.gx —to be the independent variable then we will nextlgetelation:

dy dz
+n—=+—=0.

¢ ,7ds ¢ ds
When we set:

N = \/ 1-p2 + anj—z+ (1-& )[%Q

and preservey/ dx, the direction cosines of the tangent to an owhagtrajectory of the
basic family of curves will then follow from:

dy _s_,dy
dx_ ¢ dy_ S dz_ gy
ds N ds N ' ds N '

Geometrically speaking, the direction cosines ueggion are expressed here by the
angle that the tangent to the projection of thttary onto theXY-plane makes with the
X-axis.

Now, if § is a function ok, y, z, and the first’ derivatives of, namely, of:

dy d?y Dy = d"y
2 sy Vv dx/

then one will have:
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d—g——{ gz+a—gzd—y—a—g(5+nig+z("’_“2y+ o5 dy, 03 d ﬂ}

ds 0x  dy dx 0z d ap dk 0 p dx d ,p 6%
. . dy d*y .
The expression 1 Rs then includes the unknowns'y, z, i ae’ and the geodetic
X

lines will be established by a system of the form:

E+0d +Z———Q
dx ' d¥ '

If one eliminatexz then one will get a third-order ordinary differehtequation iry andx;
i.e.,y, and therefore, as well, will be functions af with three parameters. A doubly-
infinite family of curves then possesses a tripknitude of geodetic lines. The ones that
radiate from one and the same point define a seirfac

The shortest lines will be established by a systéthe form:

5+/7d +Z——0
(16)
dy d’y dy
G(Xyzd w@cﬁj 0

The elimination oz leads to a fourth-order ordinary differential etpia in y andz. For

a doubly-infinite family of curves that is not arnml family (€ # 0), there is then a
fourfold infinitude of shortest lines. Any two s will be connected with each other by
a shortest trajectory. The shortest lines thaiatadrom the same point in the same
direction then define a surface.

The actual calculation of the expressiénandG would then be very laborious, and
hardly allows one to foresee the possibilities wnddich a simplification of the
integration procedure might be achieved.

We shall therefore pursue a different path anthoepthe system (15) and (16) with a
system of first-order differential equations by pm that system to curved coordinate
lines.

One can easily find three functioms uy, U, of X, y, zthat satisfy the two relations:

U+ nuy+ Ju,=0,
ug +ug+u = 1.

In order to do that, if one assumes that one hae thrbitrary functiong , f», f3 of x, y, z
then one needs only to set:
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Uy - Uy: UZ:/7f3—Zf2:Zf1—§(f3Zffz—/]fl.
In addition, we take:

dy _ U, dz _ u,

dx u ' dx u’
on the one hand, and:

dy _ Vv, dz _v,

dx v’ dx v '@

on the other, that will determine two doubly-infinite féies of curves that are
perpendicular to each other, as well as to the givemiyfaof curves. We consider those
three families to be a system of coordinate lines.

The direction cosines of the tangent to an orthabtnajectory of the given family
can be expressed with the help of the angles thatntlagg with the tangents to the those
coordinate lines, whose direction cosines we have ddrimtu, uy, us.

We take:

dx )
—= Uy COSa + V Sina,
ds

dy .
—= Uy CoSa +Vysina,
ds

dz )
—=Uu,Ccosa +V;Sina,
ds

such that for an arbitrary functighof x, y, z, anda, that will give:

d—gzcosa G_Sux+6_3u +6_Suz +sina 6_SVX+6_SV +6_SVZ +6_Sd_a.
ds ox ay ’ 0z ox ay ' 0z da ds

Here, the coefficients of cag and sina are the derivatives & with respect to the
arc-lengths of the coordinate lines under considerafimm.that reason, we set:

43 _ 05, 05, 0%

x+_LI +_uz’
ds, 0x ay ’ o0z

d3_ 03 0% 0%

2v +2v +—2v,
dg, ox * oy = 0z

to abbreviate. One must now calculate the quantitid®;11 /hs, 1 /Ps with the help of
a, and in that way those quantities will become knownhéoextent that they are defined
for the coordinate lines. Their notations in that casellaminated by the equations:
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1
E=2@w+®w+%m,

u

=-2E@UWteu tesuy.

<'U||—\

With the addition of two supplementary expressigrendl, , whose geometric meaning
is established in (G, pp. 47), one will further &éav

x_g dvx__ux_i

du _ v, U
ds, R, I’ ds, R |,

It will now follow that:

_ du, dy, . : du, dy, .
= cosa +sina
ds, dg ds, dg

. da
+ (Vx COSa — Uy Sin Q) o
s

dx
ds’

da cosa sy
= (Vx COSa — Uy SiN Q) d—+ -
s

R R
cos a . 1 1) sida
+g{ h —cosasw{l—ﬂ—j }

h

u \ Vv

However, since:

dz d
——Z—y =V, COSa—UySina,

a comparison of this with the formulas (6) id &ill show that:

1 :d_a cosa sy
R ds R R’
1 _cog . 1 1) sifa
— = —-cosa sing| —+— |+
hS u \ hV
Finally, it follows that:
i: co siny
R R R
We now get the system:
dx _ dy dz _ da

U, COSa +V, Sinr U, Cosa +V, sin  u,cosa+V, siiy Sina _ cox

R R
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for the geodetic lines. The equations of the shortess liake a more complicated form.
One must then introduce the variaple da / ds and when one takes:

M = ﬁ{dlogsgs

L1, sina cosz}+_z_cosad(1/a)+sim d@/R)
R R R

h ds ds
.\ {cosa_ simj(d Iog€+_1j,
R R ds P

one will get the system:

dx dy dz

da
U, cosa +V, siny u, Cosa +V, sinr  u,cosa +v, simy ,3

_4ds
i

§84.
Special cases.

1. The equations of the geodetic lines will possée integralr = const. when one
succeeds in choosing the coordinate lines in sughyathat 1 R, and 1 /R, vanish. In
that case, those curves will be isogonal trajeetoto the coordinate lines that are
likewise geodetic lines, in their own right. Thendition for that situation is discussed in
(G, pp. 70) in such a way that the differentiahfior

8.8 1ok,
R R \20p£

must be a differential.
If one follows [G, (9), pp. 56] and presents tleaditions that are necessary for that
and considers the seventh and eighth equatioriLintgre then one will find that:

(bt
" 20,06 hP Rl20p0f )

oe)™ Wl
gz - +— —-£|.
20,0,€ hB Bl200f£

That raises the question of whether there is asyayem with the property in question,
since 1 /P; and 1 /P, will vanish for one, and therefore the right-hagides of the
foregoing equations, as well. Now, from (G, pp), &@he has, in general:
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1 JHY-0?

20,06 ) f-f

and for the ray system, from (G, pp. 34), the differdneé’is equal tdp - f, , such that

expression in question depends upon gnbndq. The foregoing two conditions then
condense here into the requirement that the expression:

JHY - ®?
f—f

must be const. In order to resolve the possibility thigt requirement can be satisfied,
we take our starting surface to the rays of the systehe XY-plane and therefore set:

X0 =P, Yo=0, =0,

In that way, we will have:
o 0n_0¢
op 0q

T (ﬁa_n_ﬁa_nj

dp dp 0dqap

fo—

Furthermore:

so the expression:
0501 _0¢on
A=__ 9p0p 9qop

[1_52 _,72 (M_agj

op 0q

must be constant. The problem of finding all ray systesitis the property that was
spoken of then depends upon the integration of the tw@lpdifferential equations:

a_'A\: O’ a_'A\:O
op oq

in the two unknown functionéand; .
2. If one takes the curvature lines of the first kindbéothe coordinate lines then it

will follow from the first two equations in [G, (11), pp. 568Yhen one multiplies the first
one by — cosr and the second one by srand adds them, that:

2 -9 (ijcoscH o! (—1j sim+%—[ﬂ—ﬂj[—l——1}
R h h, s { R B b b
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For an isotropic family of curves (G, pp. 24, 96), the gtydti hs is independent of,
and every orthogonal trajectory to the family ofvas can be considered to be a line of
curvature of the first kind. If we denote the commaiugs of 1 h; and 1 /h, by 1 /h
here then we will have:

2¢ _de d@a/h . d@/h

— = —-cosg———+ sipk——=.

R ds ds ds

The known isotropic family of curves, whose normadisfine a non-special linear
complex, has the property that & is continually zero. (G, pp. 24, 25). Inthateas

and equation (9) of & will then simplify to:

§d|ogs_dlog(1/R$): 0
2 ds ds
SO it possesses the integral:

Locen
R,

The further integration must then be done with stesy of three first-order differential
equations.

Minster i. W., 15 January 1899.



