
“Ueber kürzeste Integral curven einer Pfaff’schen Gleichung,” Math. Ann. 52 (1899), 417-432. 

 
 

On the shortest integral curves of a Pfaff equation 
 

By 
 

R. von Lilienthal in Münster i. W. 
 

Translated by D. H. Delphenich 
__________ 

 
 

 In a discussion (*) of my paper “Grundlagen einer Krümmungslehre der 
Curvenscharen,” Sommerfeld pointed out the difference between straightest and shortest 
paths that Hertz presented (** ), which I had not considered in that paper.  That prompted 
me to address the question of the shortest connecting line between two points that is, at 
the same time, an integral curve of a given Pfaff equation, or in other words, an 
orthogonal trajectory to a given doubly-infinite family of curves. 
 In what follows, I shall first derive the characteristic equation for that shortest line in 
two different ways, the first of which was given by Hertz in terms of the usual calculus of 
variations, while the second one, which is more geometrically intuitive, is better adapted 
to the situation. 
 The integration of the differential equations that were presented will then be 
discussed, and finally two cases will be given in which the integration is simplified. 
 I will refer to the aforementioned paper by the symbol “G”, although only the last 
paragraph of what follows will assume any knowledge of that paper. 
 
 

§ 1. 
 

First derivation of the differential equation of the shortest lines. 
 

 Let a doubly-infinite family of curves be established by the equations: 
 
(1)      dx : dy : dz = ξ : η : ζ , 
 
in which ξ, η, ζ are functions of x, y, z that should satisfy the condition: 
 

ξ 2 + η2 + ζ 2 = 1. 
 
The rectangular intersection curves of that family of curves are the integral curves of the 
Pfaff equation: 

                                                
 (*) Göttingische gelehrte Anzeigen (1898), no. 11.  
 (** ) Die Principien der Mechanik,  pps. 100 and 106. 
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(2)     ξ dx + η dy + ζ dz = 0. 
 
One now imagines two points P0 (x0 , y0 , z0) and P1 (x1 , y1 , z1) being connected by one 
such integral curve and considers the coordinates x, y, z of its points to be functions of its 
arc-length s, which might run through the values from 0 to σ when one goes from P0 (x0 , 
y0 , z0) to P1 (x1 , y1 , z1) . 
 If one now varies the curve in question under the requirement that first of all the 
varied curve must still go through the points P0 and P1 , and furthermore that it must 
remain an integral curve of equation (2) then the variations δ x, δ y, δ z must vanish for s 
= 0 and s = σ, and in addition, they must satisfy the varied equation (2); i.e., the relation: 
 

 ξ d δ x + η d δ y + ζ d δ z +dx x y z
x y z

ξ ξ ξδ δ δ ∂ ∂ ∂+ + ∂ ∂ ∂ 
 

 +dy x y z
x y z

η η ηδ δ δ ∂ ∂ ∂+ + ∂ ∂ ∂ 
 

 +dz x y z
x y z

ζ ζ ζδ δ δ ∂ ∂ ∂+ + ∂ ∂ ∂ 
 = 0. 

 
If one applies the relations (G, pp. 90) here: 
 

2e1 = 
y z

ζ η∂ ∂−
∂ ∂

, 2e2 = 
z x

ξ ζ∂ ∂−
∂ ∂

, 2e3 = 
x y

η ξ∂ ∂−
∂ ∂

 

 
then the relation in question will take the form: 
 
 ξ d δ x + η d δ y + ζ d δ z + δ x (dξ + 2e3 dy – 2e2 dz) 
  + δ y (dη + 2e1 dz – 2e3 dx) 
  + δ z (dζ  + 2e2 dx – 2e1 dy) = 0, 
or, more briefly: 
 
(3)   ξ d δ x + η d δ y + ζ d δ z + A = 0. 
 
 In order for the curve that is imagined to be the shortest of all of the integral curves of 
(2) that connect the points P0 and P1, the variation of the integral: 
 

0

ds
σ

∫  

must vanish under the condition (3). 
 When one introduces a temporarily-undetermined function ϕ of s, that will imply the 
equation: 

0

( )
dx d x dy d y dz d z

d x d x d x A
ds

σ δ δ δ ϕ ξ δ η δ ζ δ+ + + + + + 
 
∫  = 0, 
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or, after performing a partial integration: 
 

0

( ) ( ) ( )
dx dy dz

A x d d y d d z d d
ds ds ds

σ

ϕ δ ϕ ξ δ ϕη δ ϕ ζ      − + − + − +      
      

∫ = 0. 

 
 Here, the coefficients of δ x, δ y, δ z under the integral sign must be set equal to zero.  
In that way, when one goes from differentials to derivatives, it will follow that (*): 
 

(4)    

2

2 32

2

3 12

2

1 22

2 0,

2 0,

2 0.

d x d dz dy
e e

ds ds ds ds

d y d dx dz
e e

ds ds ds ds

d z d dy dx
e e

ds ds ds ds

ϕξ ϕ

ϕη ϕ

ϕζ ϕ

  + + − = 
 

  + + − =  
 

  + + − =  
  

 

 

If one multiplies the foregoing equations by 
dx

ds
, 

dy

ds
, 

dz

ds
, in turn, and adds them then 

one will obtain the condition (2) that was required from the outset.  In order to find the 
other two conditions that the system (4) implies in a geometrically-intuitive form, we set: 
 

(5)    

1

2

3

1 1
2 2 ,

1 1
2 2 ,

1 1
2 2 ,

s s

s s

s s

dz dy dx
e

P ds ds P ds

dx dz dy
e

P ds ds P ds

dy dx dz
e

P ds ds P ds

ε ξ η ζ

εη ζ ξ

ε ζ ξ η

  = + − +   ′ 
  = + − +   ′ 
  = + − +   ′ 

 

and furthermore: 

(6)     

2

2

2

2

2

2

1
,

1
,

1
.

s s

s s

s s

d x dz dy

ds R ds ds h

d y dx dz

ds R ds ds h

d z dy dx

ds R ds ds h

ξη ζ

ηζ ξ

ζξ η

  = − +  
 

  = − +  
 

  
 = − + 

 

 

 

(7)    
1

sR
 + 2 ε ϕ = 0, 

1

s s

d

ds P h

ϕ ϕ− + = 0. 

 

                                                
 (*) Cf., A. Voss, “Ueber die Differentialgleichungen der Mechanik,” Math. Ann., Bd. 25, pp. 282. 
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The elimination of ϕ from those relations will take different forms according to whether ε 
is continually zero or does not vanish in general.  Since: 
 

2ε = 
y z z x x y

ζ η ξ ζ η ξξ η ζ   ∂ ∂ ∂ ∂ ∂ ∂ − + − + −    ∂ ∂ ∂ ∂ ∂ ∂    
, 

 
in the case of ε = 0, the curves that are defined by (1) will be the orthogonal trajectories 
to a family of curves.  Here, we will get simply: 
 

(8)      
1

sR
 = 0, 

 
which makes the second equation in (7) represent only a condition on the function ϕ, 
which is foreign to the problem. 
 However, when ε is non-zero, in general, eliminating ϕ will imply the relation (*): 
 

(9)    
(1/ )1 log 1 2 s

s s s

d Rd

R ds P h ds

ε ε 
+ + − 

 
= 0. 

 
 We would now like to discover the geometric meaning of the quantities Rs , hs , Ps that 
appear in this. 
 If one regards the coordinates of a spatial curve as functions of its arc-length then the 
equations for the curvature axis that belongs to the point (x, y, z) will become: 
 

(10)   

2 2 2
2

2 2 2

2 2 2
2

2 2 2

2 2 2
2

2 2 2

,

,

,

d x dy d z dz d y
u x l

ds ds ds ds ds

d y dz d x dx d z
v y l

ds ds ds ds ds

d z dx d y dy d z
w z l

ds ds ds ds ds

ρ ρ

ρ ρ

ρ ρ

  
= + + −  

 
   = + + −  

 
  
 = + + − 
  

 

 
in the event that one denotes the coordinates of its points by u, v, w.  Here, ρ means the 
radius of the first curvature of the curve, which then has the value: 
 

(11)    
2 2 22 2 2

2 2 2

1

d x d y d z

ds ds ds

     
+ +     

     

. 

 

                                                
 (*) In that way, my previous assertion in these Annalen, Bd. 32, pp. 555, lines 8, 9, is restricted to the 
case of ε = 0.  
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The quantity l means the abscissa of the point (u, v, w) relative to the center of the first 
curvature. 
 If one takes the spatial curve here to be an orthogonal trajectory of the family of 
curves that is given by (1) then: 

dx dy dz

ds ds ds
ξ η ζ+ +  = 0. 

Now, since one also has: 

(u – x)
dx

ds
+ (v – y)

dy

ds
+ (w – z)

dz

ds
= 0, 

the equations: 
u = x + h ξ , v = y + h η , w = z + h ζ 

 
will be compatible with each other and will serve to determine h and l ; the curvature axis 
that belongs to a point P of an orthogonal trajectory will cut the tangent to the individual 
curve of the family of curves that goes through P.  The quantity h measures the distance 
from the point of intersection in question to the point P. 

 If one multiplies the latter equations by 
2

2

d x

ds
, 

2

2

d y

ds
, 

2

2

d z

ds
, in turn, and adds them then 

one will get: 

(12)    
1

h
= 

2 2 2

2 2 2

d x d y d z

ds ds ds
ξ η ζ+ + , 

 so from (6), one will have: 
h = hs . 

 
 We let 1 / hs denote the normal curvature of the trajectory considered with respect to 
the family of curves. 
 Since, at the same time: 

1

sh
= − dx d dy d dz d

ds ds ds ds ds ds

ξ η ζ− − , 

 
the normal curvatures that we speak of for all trajectories of the family of curves that go 
through the same point in the same direction will be equal to each other. 
 As a result of the relation: 
 

(u – x)
dx

ds
+ (v – y)

dy

ds
+ (w – z)

dz

ds
= 0, 

the equations: 

 u = x + 
dz dy

R
ds ds

η ζ − 
 

, 

 v = y + 
dx dz

R
ds ds

ζ ξ − 
 

, 

 w = z + 
dy dx

R
ds ds

ξ η − 
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are also compatible with each other; i.e., the curvature axis considered will also cut the 
tangents to the trajectory of the family of curves that go through P and are perpendicular 
to the trajectory considered. 

 If one multiplies the foregoing equation by 
2

2

d x

ds
, 

2

2

d y

ds
, 

2

2

d z

ds
, in turn, and adds them 

then that will yield: 

(13)    
1

R
= 

2

2

dz dy d x

ds ds ds
η ζ − 
 

∑ ; 

i.e., from (6): 
R = Rs . 

 
 We call 1 / Rs the geodetic curvature of the trajectory considered relative to the 
family of curves. 
 From (6) and (11), one gets: 

2

1

ρ
= 

2 2

1 1

s sR h
+ . 

 
From that, it is clear that of all orthogonal trajectories of the family of curves that go 
through the same point P in the same direction, the ones that possess the smallest first 
curvature at the location P will be the ones for which the geodetic curvature vanishes at 
that location.  I have called a trajectory along which that curvature continually vanishes a 
geodetic line of the family of curves (G, pp. 50).  Following Hertz’s precedent 
(Principien der Mechanik, pp. 101), I will refer to such a line as the straightest one; 
however, that terminology is much less felicitous from a grammatical standpoint. 
 Secondly, we apply equations (10) to the individual curve of the family that goes 
through the point P. 
 Here, we have: 

dx

ds
 = ξ, 

dy

ds
 = η, 

dz

ds
 = ζ 

 
2

2

d x

ds
 = 

x y z

ξ η ζξ η ζ∂ ∂ ∂+ +
∂ ∂ ∂

, 

or since: 

x x x

ξ η ζξ η ζ∂ ∂ ∂+ +
∂ ∂ ∂

= 0, 

one will have: 
2

2

d x

ds
 = 2 (e2 ζ – e3 η), 

and correspondingly: 
 

2

2

d y

ds
 = 2 (e3 ξ – e1 ζ),  

2

2

d z

ds
 = 2 (e1 η – e2 ξ), 

such that: 
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2

1

ρ
= 2 2 2 2

1 2 34( )e e e ε+ + − . 

One then obtains: 
 u  = x + 2ρ2 (e2 ζ – e3 η) + 2 ρ l (e1 – ε ξ) , 
 v  = y + 2ρ2 (e3 ξ – e1 ζ) + 2 ρ l (e2 – ε η) , 
 w = z + 2ρ2 (e1 η – e2 ξ) + 2 ρ l (e3 – ε ζ) . 
 
 If one now forms the equations: 
 

u = x + P
dx

ds
, v = y + P

dy

ds
, w = z + P

dz

ds
 

then, due to the relation: 
(u – x) ξ + (v – y) η + (w – z) ζ = 0, 

 
those equations will be compatible with each other, and P means the distance from the 
point P to the intersection point of the curvature axis that was spoken of with the tangent 
to the trajectory under consideration. 
 If one multiplies the equations in question by 2 (e2 ζ – e3 η), 2 (e3 ξ – e1 ζ), 2 (e1 η – 
e2 ξ), in turn, and adds them then that will give: 
 

1

P
= 2 3 3 1 1 22 ( ) ( ) ( )

dx dy dz
e e e e e e

ds ds ds
ζ η ξ ζ η ξ − + − + −  

, 

or also: 

(14)  
1

P
= 1 2 32

dz dy dx dz dy dx
e e e

ds ds ds ds ds ds
η ζ ζ ξ ξ η      − + − + −      
      

. 

 
As a result, from (6), one has: 

1

P
=

1

sP
. 

 

The family of curves that is given by (1) will be a system of rays when the quantities 
d

ds

ξ
, 

d

ds

η
, 

d

ds

ζ
 vanish along every curve of the family; i.e., when: 

e1 : e2 : e3 = ξ : η : ζ . 
 

In that case, the expression 1 / Ps will be continually zero. 
 Otherwise 1 / Ps will vanish only when the tangent to the trajectory under 
consideration at a point is, at the same time, the binormal to the individual curve of the 
family that goes through that point. 
 We then have the result that: If the expression ε is continually equal to zero then the 
shortest line will coincide with the geodetic line and will be established by equations (2) 
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and (8).  If e is, in general, non-zero then equations (2) and (8) will characterize the 
geodetic lines, while equations (2) and (9) will characterize the shortest lines. 
 
 

§ 2. 
 

Second derivation of the differential equations of the shortest lines. 
 

 We once more understand x, y, z to mean the coordinates of one of the orthogonal 
trajectories of the give family of curves that connect the points P0 and P1 .  They will be 
assumed to be functions of the arc-length s, which might range from the value 0 to σ 
when one goes from P0 to P1 .  We shall now seek to find other trajectories that likewise 
connect the points P0 and P1 and lie in the neighborhood of the trajectory that is 
envisioned. 
 If one next takes: 

 x′ = x + s (s – σ) 
1 !
a

ν

ν
ν

τ
ν

∞

=
∑ , 

 y′ = y + s (s – σ) 
1 !
b

ν

ν
ν

τ
ν

∞

=
∑ , 

 z′ = z + s (s – σ) 
1 !
c

ν

ν
ν

τ
ν

∞

=
∑  

 
and considers the quantities aν , bν , cν to be functions of s that make it possible for the 
sums that appear to converge for sufficiently-small values of τ and all values of s from 0 
to σ then x′, y′, z′ will represent the coordinates of a curve that connects the points P0 and 
P1 for such a τ. 
 One must now find the conditions under which the curves τ = const. will also be 
orthogonal trajectories of the given family of curves. 
 To that end, we set: 
 

s (s – σ) aν = αν , s (s – σ) bν = βν , s (s – σ) cν = γν , 
 
to abbreviate.  The values of the direction cosines ξ, η, ζ at the location x = x′, y = y′, z = 
z′ are: 

 ξ′ = ξ + 1 1 1x y z

ξ ξ ξτ α β γ ∂ ∂ ∂+ + ∂ ∂ ∂ 
 + …, 

 η′ = η + 1 1 1x y z

η η ητ α β γ ∂ ∂ ∂+ + ∂ ∂ ∂ 
 + …, 

 ζ′ = ζ + 1 1 1x y z

ζ ζ ζτ α β γ ∂ ∂ ∂+ + ∂ ∂ ∂ 
 + … 

 
The coefficients of the powers of τ in the development of the expression: 
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dx dy dz

ds ds ds
ξ η ζ′ ′ ′′ ′ ′+ + = 0 

 
must now vanish.  If one sets the coefficients of τ equal to zero then that will imply the 
condition for the quantities α1 , β1 , γ1 in the form: 
 

1 1

dx dy dz dy dy dz

x ds x ds x ds y ds y ds y ds

ξ η ζ ξ η ζα β  ∂ ∂ ∂ ∂ ∂ ∂ + + + + +  ∂ ∂ ∂ ∂ ∂ ∂   
 

 

+ 1 1 1
1

d d ddx dy dz

z ds z ds z ds ds ds ds

α β γξ η ζγ ξ η ζ∂ ∂ ∂ + + + + + ∂ ∂ ∂ 
= 0 

or: 
 

1 1 1
1 3 2 1 1 3 1 2 1

( )
2 2 2

d dy dz dz dx dx dy
e e e e e e

ds ds ds ds ds ds ds

α ξ β η γ ζ α β γ+ +      + − + − + −     
     

 = 0. 

 
Here, it should be emphasized that the quantities α1 , β1 , γ1 refer to the three directions 
that are given by the curve of the family, the trajectory being considered, and the 
trajectory that is perpendicular to both of them, resp., and are set to: 
 

 α1 = 1 2

dx dz dy
n n

ds ds ds
η ζ + − 
 

 + n0 ξ , 

 

 β1 = 1 2

dy dx dz
n n

ds ds ds
ζ ξ + − 
 

 + n0 η , 

 

 γ1 = 1 2

dz dy dx
n n

ds ds ds
ξ η + − 
 

 + n0 ζ . 

 
The quantities n0 , n1 , n2 are proportional to the cosines of the angles that the tangent to 
the curve s = const. that goes through the point (x, y, z) makes with the three 
aforementioned directions. 
 The relation in question now assumes the form: 
 

(15)    0 0

s

dn n

ds P
+ − 2ε n2 = 0. 

 
 The arc-length of the curve τ = const. between the points P0 and P1 will be given by 
the integral: 

J = 
2 2 2

0

dx dy dz
ds

ds ds ds

σ ′ ′ ′     + +     
     

∫ . 
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That is a function of τ.  We ask what the condition might be under which it would be a 
minimum when τ = 0. 
 One has: 

 
2

dx

ds

′ 
 
 

∑ = 1 + 2τ 1 1 1d d ddx dy dz

ds ds ds ds ds ds

α β γ + + 
 

 + …, 

 

 
2

dx

ds

′ 
 
 

∑ = 1 + 1ddx

ds ds

ατ∑ + …, 

and as a result: 

 
0

J

ττ =

∂ 
 ∂ 

 = 1 1 1

0

d d ddx dy dz
ds

ds ds ds ds ds ds

σ α β γ + + 
 
∫  

 

 = 
2 2

1
2 02 2

0

dn dx d z d y dx d
n n ds

ds ds ds ds ds ds

σ ξη ζ
   + − +  
   

∑ ∑∫  

 

 = 01 2

0 s s

ndn n
ds

ds R h

σ  
− − 

 
∫ . 

 
However, since n1 is zero at the locations s = 0 and s = σ, one has: 
 

0

J

ττ =

∂ 
 ∂ 

= − 02

0 s s

nn
ds

R h

σ  
+ 

 
∫ . 

 
That integral should vanish, while the condition (15) will persist.  The latter can be 
satisfied by only n0 = 0 when ε is continually zero.  The function n2 under the integral 
then remains arbitrary, and in that way we come to the result that: 
 

1

sR
= 0. 

 
 However, if ε is non-zero, in general, then we infer the expression for n2 from the 
condition (15) and find that: 
 

0

J

ττ =

∂ 
 ∂ 

= − 0
0

0

1 1 1

2 2s s s s

dn
n ds

R ds h P R

σ

ε ε
   + +  
   
∫ , 

 
or after partial integration, since n0 also vanishes at the locations s = 0 and s = σ : 
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0

J

ττ =

∂ 
 ∂ 

= − 0

0

1
2 1 1

2
s

s s s

d
R

n ds
ds h P R

σ ε
ε

 
 
 − + +
 
 
 

∫ . 

 
Due to the arbitrariness of the function n0 , the factor of n0 under the integral sign must 
vanish, with which, one will obtain equation (9) of § 1. 
 
 

§ 3. 
 

On the integration of the differential equations that were found. 
 

 Equations (8) and (9) of § 1 express geometric properties of the geodetic and shortest 
lines and serve as a means of deciding whether a given orthogonal trajectory of the 
family of curves is a geodetic line or a shortest line or neither.  However, when one 
addresses the search for geodetic or shortest lines, those equations will mostly be useless, 
since the arc-length appears as an independent variable.  In that case, it is better for one to 
replace the differentiation with respect to arc-length with differentiation with respect to 
one of the three coordinates x, y, z. 
 If we take – e.g., x – to be the independent variable then we will next get the relation: 
 

ξ + 
dy dz

ds ds
η ζ+ = 0. 

When we set: 

N = 
2

2 21 2 (1 )
dy dy

dx dx
η ξ η ξ  − + + −  

 
 

 
and preserve dy / dx, the direction cosines of the tangent to an orthogonal trajectory of the 
basic family of curves will then follow from: 
 

dx

ds
 = 

N

ζ
, 

dy

ds
 = 

dy

dx
N

ζ
, 

dz

ds
 = 

dy

dx
N

ξ η− −
. 

 
 Geometrically speaking, the direction cosines in question are expressed here by the 
angle that the tangent to the projection of the trajectory onto the XY-plane makes with the 
X-axis. 
 Now, if F is a function of x, y, z, and the first ν derivatives of y, namely, of: 

 

p1 = 
dy

dx
, p2 = 

2

2

d y

dx
, …, pν = 

d y

dx

ν

ν , 

then one will have: 
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d

ds

F
= 

2 3 1

2 3 1
1 2

1 dy dy d y d y d y

N x y dx z dx p dx p dx p dx

ν

ν
ν

ζ ζ ξ η ζ
+

+

  ∂ ∂ ∂ ∂ ∂ ∂  + − + + + + +   ∂ ∂ ∂ ∂ ∂ ∂    
⋯

F F F F F F
. 

 

The expression 1 / Rs then includes the unknowns x, y, z, 
dy

dx
, 

2

2

d y

dx
, and the geodetic 

lines will be established by a system of the form: 
 

(15)    2

2

0,

, , , , 0.

dy dz

dx dx

dy d y
F x y z

dx dx

ξ η ζ + + =

   =   

 

 
If one eliminates z then one will get a third-order ordinary differential equation in y and x; 
i.e., y, and therefore z, as well, will be functions of x with three parameters.  A doubly-
infinite family of curves then possesses a triple infinitude of geodetic lines.  The ones that 
radiate from one and the same point define a surface. 
 The shortest lines will be established by a system of the form: 
 

(16)    2 3

2 3

0,

, , , , , 0.

dy dz

dx dx

dy d y d y
G x y z

dx dx dx

ξ η ζ + + =

   =   

 

 
The elimination of z leads to a fourth-order ordinary differential equation in y and z.  For 
a doubly-infinite family of curves that is not a normal family (ε ≠ 0), there is then a 
fourfold infinitude of shortest lines.  Any two points will be connected with each other by 
a shortest trajectory.  The shortest lines that radiate from the same point in the same 
direction then define a surface. 
 The actual calculation of the expressions F and G would then be very laborious, and 
hardly allows one to foresee the possibilities under which a simplification of the 
integration procedure might be achieved. 
 We shall therefore pursue a different path and replace the system (15) and (16) with a 
system of first-order differential equations by applying that system to curved coordinate 
lines. 
 One can easily find three functions ux , uy , uz of x, y, z that satisfy the two relations: 
 
 ξ ux + η uy + ζ uz = 0, 
 
 2 2 2

x y zu u u+ +  = 1. 

 
In order to do that, if one assumes that one has three arbitrary functions f1 , f2 , f3 of x, y, z 
then one needs only to set: 
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ux : uy : uz = η f3 – ζ f2 : ζ f1 – ξ f3 : ξ f2 – η f1 . 
In addition, we take: 

dy

dx
 = y

x

u

u
, 

dz

dx
 = z

x

u

u
, 

on the one hand, and: 
dy

dx
 = y

x

v

v
, 

dz

dx
 = z

x

v

v
, 

 
on the other, that will determine two doubly-infinite families of curves that are 
perpendicular to each other, as well as to the given family of curves.  We consider those 
three families to be a system of coordinate lines. 
 The direction cosines of the tangent to an orthogonal trajectory of the given family 
can be expressed with the help of the angles that they make with the tangents to the those 
coordinate lines, whose direction cosines we have denoted by ux , uy , uz . 
 We take: 

 
dx

ds
= ux cos α + vx sin α, 

 
dy

ds
= uy cos α + vy sin α, 

 
dz

ds
= uz cos α + vz sin α, 

 
such that for an arbitrary function F of x, y, z, and α, that will give: 

 
d

ds

F
= cos α x y zu u u

x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 

F F F
+ sin α x y zv v v

x y z

 ∂ ∂ ∂+ + ∂ ∂ ∂ 

F F F
+ 

d

ds

α
α

∂
∂
F

. 

 
 Here, the coefficients of cos α and sin α are the derivatives of F with respect to the 

arc-lengths of the coordinate lines under consideration.  For that reason, we set: 
 

 
u

d

ds

F
= x y zu u u

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
F F F

, 

 

 
v

d

ds

F
= x y zv v v

x y z

∂ ∂ ∂+ +
∂ ∂ ∂
F F F

, 

 
to abbreviate.  One must now calculate the quantities 1 / Rs , 1 / hs , 1 / Ps with the help of 
α, and in that way those quantities will become known, to the extent that they are defined 
for the coordinate lines.  Their notations in that case are illuminated by the equations: 
 

 
2

2
u

d x

ds
 = x

u

du

ds
= 

1
x

u u

v
R h

ξ+ , 
2

2
v

d x

ds
 = x

v

dv

ds
= 

1
xu

R hν ν

ξ+ , 
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1

uP
= 2 (e1 vx + e2 vy + e3 vz), 

1

vP
= − 2 (e1 ux + e2 uy + e3 uz) . 

 
With the addition of two supplementary expressions lu and lv , whose geometric meaning 
is established in (G, pp. 47), one will further have: 
 

x

v

du

ds
= − x

v v

v

R l

ξ− , x

u

dv

ds
= − x

u u

u

R l

ξ− . 

It will now follow that: 
 

 
2

2

d x

ds
 = cos α cos sinx x

u u

du dv

ds ds
α α

 
+ 

 
 + sin α cos sinx x

v v

du dv

ds ds
α α

 
+ 

 
  

 + (vx cos α – ux sin α) 
d

ds

α
 

 

 = (vx cos α – ux sin α)
cos sin

u v

d

ds R R

α α α 
+ − 

 
 

 +
2 2cos 1 1 sin

cos sin
u u v vh l l h

α αξ α α
  

− + +  
  

. 

 
However, since: 

dz dy

ds ds
η ζ−  = vx cos α – ux sin α , 

 
a comparison of this with the formulas (6) in § 1 will show that: 
 

 
1

sR
 = 

cos sin

u v

d

ds R R

α α α+ − , 

 

 
1

sh
 = 

2 2cos 1 1 sin
cos sin

u u v vh l l h

α αα α
 

− + + 
 

. 

 
Finally, it follows that: 

1

sP
= 

cos sin

u vP P

α α+ . 

We now get the system: 
 

cos sinx x

dx

u vα α+
= 

cos siny y

dy

u vα α+
=

cos sinz z

dz

u vα α+
= 

sin cos

v u

d

R R

α
α α−
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for the geodetic lines.  The equations of the shortest lines take a more complicated form.  
One must then introduce the variable β = dα / ds, and when one takes: 
 

M = 
(1/ ) (1/ )log 1 sin cos 2

cos sinu v

s u v s

d R d Rd

ds P R R h ds ds

ε α α εβ α α
 

+ + + + − + 
 

 

 

+ 
cos sin log 1

u v s

d

R R ds P

α α ε  
− +  

  
, 

one will get the system: 
 

cos sinx x

dx

u vα α+
= 

cos siny y

dy

u vα α+
=

cos sinz z

dz

u vα α+
= 

dα
β

= 
d

M

β
. 

 
 

§ 4. 
 

Special cases. 
 

 1. The equations of the geodetic lines will possess the integral α = const. when one 
succeeds in choosing the coordinate lines in such a way that 1 / Ru and 1 / Rv vanish.  In 
that case, those curves will be isogonal trajectories to the coordinate lines that are 
likewise geodetic lines, in their own right.  The condition for that situation is discussed in 
(G, pp. 70) in such a way that the differential form: 
 

1 2
0

1 2 1 2

1

2
T

R R
ϑ

ρ ρ ε
 

− + + 
 

S S
 

must be a differential. 
 If one follows [G, (9), pp. 56] and presents the conditions that are necessary for that 
and considers the seventh and eighth equation in (11) there then one will find that: 
 

 1
1 2

1

2
g

ρ ρ ε
 
 
 

= − 
1 2 1 1 2

1 1 1

2h P P
ε

ρ ρ ε
 

+ − 
 

, 

 

 2
1 2

1

2
g

ρ ρ ε
 
 
 

=    
2 1 2 1 2

1 1 1

2h P P
ε

ρ ρ ε
 

+ − 
 

. 

 
That raises the question of whether there is a ray system with the property in question, 
since 1 / P1 and 1 / P2 will vanish for one, and therefore the right-hand sides of the 
foregoing equations, as well.  Now, from (G, pp. 30), one has, in general: 
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1 2

1

2ρ ρ ε
= 

2

f f

Ψ − Φ
′−

H
, 

 
and for the ray system, from (G, pp. 34), the difference f – f′ is equal to f0 − 0f ′ , such that 

expression in question depends upon only p and q.  The foregoing two conditions then 
condense here into the requirement that the expression: 
 

2

f f

Ψ − Φ
′−

H
 

 
must be const.  In order to resolve the possibility that this requirement can be satisfied, 
we take our starting surface to the rays of the system in the XY-plane and therefore set: 

x0 = p, y0 = q, z0 = 0. 

In that way, we will have: 

f0 − 0f ′  = 
p q

η ξ∂ ∂−
∂ ∂

. 

 Furthermore: 

2Ψ − ΦH = 
p p q p

ξ η ξ η ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
, 

so the expression: 

A = 
2 21

p p q p

p q

ξ η ξ η

η ξξ η

∂ ∂ ∂ ∂−
∂ ∂ ∂ ∂

 ∂ ∂− − − ∂ ∂ 

 

 
must be constant.  The problem of finding all ray systems with the property that was 
spoken of then depends upon the integration of the two partial differential equations: 
 

A

p

∂
∂

= 0, 
A

q

∂
∂

= 0 

 
in the two unknown functions ξ and η . 
 
 2. If one takes the curvature lines of the first kind to be the coordinate lines then it 
will follow from the first two equations in [G, (11), pp. 56], when one multiplies the first 
one by – cos α and the second one by sin α and adds them, that: 
 

2

sP

ε
= − 2 1

1 2 1 2 1 2

1 1 cos sin 1 1
cos sin

d
g g

h h ds R R h h

ε α αα α
      

+ + − − −      
      

. 
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For an isotropic family of curves (G, pp. 24, 96), the quantity 1 / hs is independent of α, 
and every orthogonal trajectory to the family of curves can be considered to be a line of 
curvature of the first kind.  If we denote the common values of 1 / h1 and 1 / h2 by 1 / h 
here then we will have: 

2

sP

ε
 = 

(1/ ) (1/ )
cos sin

v u

d d h d h

ds ds ds

ε α α− + . 

 
The known isotropic family of curves, whose normals define a non-special linear 
complex, has the property that 1 / h is continually zero. (G, pp. 24, 25).  In that case: 
 

1

sP
= 

1 log

2

d

ds

ε
, 

 
and equation (9) of § 1 will then simplify to: 
 

log (1/ )3 log

2
sd Rd

ds ds

ε − = 0, 

so it possesses the integral: 
1

sR
= c e3/2. 

 
The further integration must then be done with a system of three first-order differential 
equations. 
 
 Münster i. W., 15 January 1899. 
 

__________ 
 


