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The handful of particular solutions to the problembef motion of a rigid body that
rolls on a given surface that have been investigated opvworefer to mainly two special
cases. One treats either the motion of a rigid thall rolls on an arbitrary surfacg 6r
the motion of an arbitrary rigid body that rolls oplane under the action of gravity)(

In the present work, it shall be shown that moshefresults that have been achieved
by the treatment of the aforementioned two problemsbeagasily extended to the more
general problem of the motion of a rigid body thatsrah a sphere with almost no
restrictions. In that problem, gravity will be reptdcwith a force that points from the
center of mass of the body to the center of the spdued depends upon only the distance
between those points.

The study of that problem will define the content€bapter 1.

In Chapter 1V, the equations of motion of a rigid bakat rolls without slipping on
an arbitrary surface will be developed and some simplicpkar solutions of it will be
given.

The first two chapters () can be regarded as an introduction to the two
aforementioned ones.

Chapter | includes some theorems on the kinematicsolbhg motion. Those
theorems will be employed in order to determine theegt@ns of the instantaneous
angular velocity of the rolling body onto axes that fated in the body by means of C.
Neumann'’s coordinate$)(

()  That problem was discussed quite thoroughly in the melebrated textbooks on dynamics; e.g.,
in Routh (“The advanced part of a treatise on the dycsanf a system of rigid bodies,” Chap. V). Cf.,
also the interesting Dissertation of Fr. Noether, ¢tJdie rollende Bewegung einer Kugel auf
Rotationsflachen,” Munich, 1909.

(")  For the literature on that topic, cf., Enc. math. 8Vi&/ 6 (P. Stackel), “Elementare Dynamik der
Punktsysteme und starren Kdrper,” no. 38.

(") Cf., also my Russian treatises: “On the equatiomsatfon of non-holonomic systems,” Moscow
math. Collection 1902 and “The equations of motion of & figidy that rolls without slipping on a plane at
rest,” Kiev Univ. Reports 1903.

(" C. Neumann, “Grundziige der analytischen Mechanik,” LeipzRgrichte (1899). Cf., also,
Vierkandt, “Uber gleitende und rollende Bewegung,” Monatshféit Math. und Physi (1892).
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In Chapter Il, a method will be given for exhibiting #sguations of motion of non-
holonomic systems (without the Euler-Lagrange multip)iethat is analogous to
Hamilton’s method for holonomic systems as long raes lmas to calculate with only first-
order differential expressions that are functionshefindependent velocities. However,
the number of those expressions will be larger for rmofomic systems. Along with
the expressions for the force functions and ¥iee viva there will also be as many
expressions for the impulses as there are non-hollcrmmdition equations.

CHAPTER |
Kinematical examination of the motion of a rigid body that rolk on a given surface
8 1. — Introductory remarks.

In the present study of the problem of the motion afj@ body that rolls without
slipping on a given surfacg, following C. Neumann '}, one chooses the following
guantities to be the coordinates of the body: The Gaussiardinates: andv of the
point M on the outer surfac®of the body at which the surfaseontacts the surfaca,
the Gaussian coordinatesandv; of the same poiri¥l on the surfac&,, and the anglé?
that the coordinate line = const. makes with the coordinate line= const. at the point
M.

We imagine that an orthogonal system of coordinagés @xyzis fixed in the body,
we let w and w denote the velocity of the coordinate origihand the instantaneous
angular velocity of the rigid body, resp., and we pdse fgroblem of expressing the
projectionsk, |, m; p, g, r of the vectorsv and &y resp., onto the, y, z axes, resp., in
terms of the Neumann coordinatesv, J, u;, vi, and their differential quotients with
respect to timeu, v, &, U, V;, resp. In order to do that, we will need to have som

simple theorems and formulas from the theory of sedahat we would like to derive in
the following paragraphs using the method of Lord Kelvin {bmson) and P. Tait J.

In it, we shall employ the following notations: We dendhe first and second-order
fundamental quantities () of a surfaces, which might be given by the equations:

z=z(uvVv), vy=yUvVv), z=z(u,Vv),

byE, F, G; D, D', D” We think of a system of axdsuvn as being drawn at each point
M of the surfaces whoseu, v, n-axes coincide with the positive directions of theegiu

(v = const.) and/ (u = const.) and the normalto SatM. The positiven-axis might be
laid in relation to thar andv-axes in the same way that thexis lies with respect to the

() Ibid.
(") Thomson and Taiffreatise on Natural Philosophyol. |, part. |, art. 110et seq. In an extended
form, in Sonslov, “On the rolling of one surface amother,” Kiev Univ. Reports 1892, and in my treatise,

“The rolling motion of a rigid body that rolls withoslkipping,” Chap. IV,bid., 1903.

(") Stahl and Kommerelllhe Grundformeln der allgemeiner Flachenthepti893, form. (4), § 1 and
(1), 82
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x andy-axes (). We shall denote the nine cosines of the angleseeettheu, v, n-axes
and thex, y, z-axes bya, a’, ..., y”. We will then have():

_ 1 ox 1 ox (ayaz 6zayj

_ﬁ%’ INCEX Quov oudv
(1) (H=+EG-F?),

§ 2. — Total bending, pure bending, and twisting.

Draw a curve. on the surfac&, and letM andM; be two infinitely-close points oln.
Lay tangent plane$ and T; through the point$1 andMi, resp., and leA¢ denote the
infinitely-small angle betweeh andT:, and letAs denote the lengthM; of the curve..
We carry the length¢ along the line of intersection of the plaffeandT;, andAs points
in a direction such that that line segment liegelation to the normals; andn atM; and
M, resp., in the same way that thaxis lies in relation to the andy-axes. If we now let
the pointM; approach the poirll alongL until they coincide then we will get a vect@r
in that way that we would like to call thetal bendingof the surfacé at the pointM in
the directiorL.

It is clear that the rolling motion of the surfé&@en the contacting plangalong the
curve L means that the vectd® that represents the component of the instantaneous
angular velocity of the surfacgin the plane, if that angular velocity is referteda unit
length, as G. Darboux did ().

If we lety, v, y”andy, y,, ¥4 denote the cosines of the angles that the nommeis

n; make with thex, y, z-coordinate axes, resp., then the projections efvdttorQ onto
thex, y, zaxes will be:

— 1 )
Q= Yy -ny),

If we substitute:

dy ou ayavj
= ——+—"L—|As+ ...,
n=ye (au J0s 0dvos

in this and letAs go to zero then we will get:

()  The positivez-axes should always be drawn in such a way that the wositixis will be made to
coincide with the positivg-axis by means of a clockwise rotation around thetipest-axis through an
angle of7r/ 2.

(') Ibid., form. (22) and (23), § 1.

Hokk

() Darboux,Lecons sur la théorie générale des surface¥.
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ay , oy" \ou (oy , oy jav
==y -y |—+ =V -V |—,
(6uy Jdu Vjas (GVV 6VV 0s

However, as is known)( one has:

HZa—V:(FD'—GD)%ﬂFD—ED)%,
ou ou ov

H2O = FD' -G D)%+(F D -E D')%,
ov ou ov

such that, from (1), one will have:

H My = (D%—D’%jﬂj+(D’%— D"Q(j—d\,
ov ou) ds ov ou ds

(2) e,

From (1), the projections of the vect@ronto the directionsi andv will then be
equal to:

1 [ du dv
Q,=———| (DF -D'E)—+(D'F-D'E)— |,
H«/E_( )ds ( )ds}
(3) )
1 du dv
Q,=———|(DG-D'F)—+(D'G-D'F)— |.
H«/G_( )ds ( )ds}

We now decompose the total bendi@ginto two components€s , which is in the
direction of the curvé, andQ,, which is the directiop that is perpendicular ta We
would like to callQ, the pure bendingand Qs the twisting of the surfaceS at M in the
direction ofL.

Geometrically, it is clear that the pure bendfdgis equal to the curvature of the
normal section to the surfa&at the pointM in the directiorL. In order to interpret the
twisting Qs , we draw a geodetic line through in the directiorL — i.e., a curve whose
curvature plane always goes through the nommtd the surface&s. The linep is the
binormal for that curve, such th@ will be equal to the torsion of the geodetic line that
is drawn througtM in the directiori.

The tangent to the curde defines angles with respect to they, zaxes whose
cosines are equal to:

()  Stahl and Kommerell, formula (6), § 2.
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dx_ ox du, dx v
ds duds dvds
(A) i, ,

such that formulas (2) will imply that:
H s < = (DF — DE) dU? + (DG — D'E) du dv+ (D'G — D'F) dV2.

The lines for which the twisting is equal to zero e curvature lines of the surface
S In general, two such lines will go through any pdmhbn the surfac& then. When
the relations:
D:E=D :F=D":G

are fulfilled at each point of the surfaSeeach line ors will be a line of curvature; i.e.,
the surfaces will be a sphere. If we exclude that case and chtwsénes of curvature
to be theu andv-lines then we will have:

F=0,D'=0

at each point of the surface. The lines of curvatutietlan define an orthogonal net of
coordinate lines'}.

We now go on to the determination of the pure ben@ing

The directiomp is perpendicular to the tangesiio the curvel and the normab to the
surfaceS so one will have:

cos b, %) = y L2y Y- (V%—Va jdu (V— V,a_ﬁ_d\’

ds ds ou odu/ ds ov ds
or, from (1):
Hcos f, X) = (E%— F axj du (F%—Gyj—d\,
ov ou/ ds ov 0U dt
(B)

We imagine the positive direction of theaxis as being laid with respect to thand
n-axes in the same way that thexis lies in relation to the andz-axes.
As a result of (5), formulas (2) will imply that:

Q, < =D dif + 2D’ du dv+ D" dV-.

The lines along which the pure bending is equal to zertharasymptotic lines. In
general, two such lines go through each point of the surfac

()  Stahl and Kommerell, formula (10), § 1.
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8 3. — The spinning of the tangent plane.

We again imagine the tangent plaffieandT; to the surfac& at two infinitely-close
pointsM andMy, resp., of the curvk, and letAs denote the lengtMM; of the curvel..
We draw the tangentsands; to the curvel in the planed andT; at the pointdV and
M. If we now rotate the planEaround the axis of the total bending through the angle
Ag then the pland will coincide with the pland , but in general, the line will not
point along the lines; , and in order to make the linesnds; coincide, we must rotate
the tangent plan& around the normal to S at M through an infinitely-small angl&s.
We lay out the line segmeat; : As along the normat and let the poinil, approach the
point M along the curvé until they coincide. We call the vectbrthat results in this
way thespinning(das Kreiselh of the tangent plan€ at the pointM in the directiorL.

Obviously,N is equal to the magnitude of the geodetic curvature afuheeL at the
pointM ; i.e., the projection of the curvature @ 6f the curveL onto the tangent plarie

N =% —cos [ p).

N

If we givep the direction that is defined by formulas (5) ahdose the lower sign in
the expression foN then the tangent plane will rotate arouneh a counterclockwise
motion.

For a rolling motion of the surfac®along the pland, which is at rest, along the
curve L, N will then be the components of the instantanemgular velocity of the
surfaceS along the normat when that angular velocity is referred to unitgém

N shall now be expressed in terms of the quantjds G.

If we denote:

du dv_ du dv

E—+F—=kq, F—+G— =k,
ds ds ds ds

for brevity, such that we will have)(

® S =1

then (5) will imply that:
0x 0X
Hcos f,X) = k ——-k,—,
0. %) =k v K, U

In addition, we have, as is known:

d?x
cos (o, X) = p—,
(o, X) 'Od52

() Stahl and Kommerell, formula (3), § 1.
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such that:

However, from (6), one has:

ALENNHENE AN T )
ou d< ou dul ds ds | wW v d d

If we substitute that i then, as a result of the obvious formula:

2 2 2
(& ({3
ds ds d
the coefficients ok; andk; will be equal to zero, and we will get:

16(6xdx jdu 1 0 (0dxdx j
= | = 4. - —— ..,

"Hovlouds ) ds Houd vds
or, from (4):
" N=l (e, pdn) 10 du g
Hovl ds ds/ Ho ds d
That is the desired formula.
If the curveL is given by the equation:
f(uv)=0

then we will have:

2 2
ﬂ = _dV = d_s, h2: E(ﬂj —ZFﬂﬂ.{.G(ﬂj ,
ov ovou Jdu

o _of) (ot _of
- —|9%)_ov odu(_9] odv du
H|ov h Ju h

For geodetic lines, the projection of the curvatiir/ o onto the tangent plane is equal
to zero, and thereford|, as well.
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8 4. — Application to the problem of rolling motion.

We would now like to utilize the formulas of the prexsawo paragraphs in order to
solve the problem that we posed 1.8 If wis the instantaneous angular velocity of a
rigid body that rolls on a given surfagthen we will have to determine the projections
p, g, r of winto thex, y, zaxes, resp., which are fixed in the body, in terms of the
coordinatesy, v, 3, uy, v; of the body and the differential quotients v, &, u,, V;.

We introduce the following notations: L&t F, G ; D, D', D" be the fundamental
quantities of the outer surfaBof the body, and Ie;, F1, G1; D1, D;, D/ be the same

qguantities for the surfac® upon which the body rolls. For the sake of simplicity
shall assume that the linesandv on S and the liness; andv; on S are the lines of
curvature of those surfaces:

F=0,D=0,F.=0,D;=0.

n

M u
/ X
|
U Vv

\%1

n

Figure 1.

We imagine two systems of axglsivn andMu,vin; (Fig. 1) being drawn through the
point of contactM between the surfac&andS, whose axes coincide with the tangents
to the linesy, v; u; , vi, resp., through the poinkd and the common normal ®and$,
and consider the instantaneous angular veloaito be the geometric sum of three
vectorsa, ap, & :

(@) = (@) + (ad) + (aa) ,

in which ca means the angular velocity of the system of @®gzthat is fixed in the
body with respect to the systéviuvn «p is the angular velocity of the systéviuvnwith
respect tdvluiving, anday is the angular velocity of the systéiu;vin; with respect to
the system of axe®;x1y1z; that is fixed in the surfacs .

If the point of contacM on the surfacé is shifted along the curve through the
segment\/E duthen, from (3), the component of the angular velockythat lies in the

tangent pland will point along the curver and will be equal t® : E per unit length,

while, from (7), the component along the normatill equal LEG—E also per unit
2/G E ov



Voronets — Rigid body rolling without slipping on an ardmy surface 10

length. If we then shift the contact poikt along the curves through the segment
/G dv then we will easily find that:

n

D
@ COS (@, U) = Gi = ﬁ
N

(8) W CoS@,V)=n=——

(3,008 @, 1) =Ny = 1 (GE G j

“2JEGL0

The angular velocityy points along the normail; and is equal ta$, while the
angular velocityap is determined similarly tan . From Fig. 1, we will then get the
following formulas:

D" D" .
WCOS @ U) = 0= ———V———=-V Sind -—= U coY,
Je Ja ' JE
(9) wWCoS W V) =T7= i Dy D, \, c0s?,

JE e e

1 (JE. 3G, 1 (0E . G,
WCeoS @n) =n=39+ —EG(avu auVjJrz\/E[a\{Ui aq\{j

I'I'I

and that will give the desired expressionsgdog, r :
(10) p=oca+rB+ny, dq=oca’+rpB+ny, r=ocd +1B8’+ny’,

We move on to the determination of the projectikns m of the velocityw of the
coordinate originO onto thex, y, zaxes. To that end, we consider the motion of the

contact pointM. The absolute velocity; of the pointM has the quantitieg/ E, (, and
\J G, Vv, for its components along the curvesandv; , resp. The components of the

relative velocityo of the pointM along the linesi andv are equal tq/Eu and,/Gv,
resp. Finally, the velocity of the point of the rigid body that coincides witie contact

point M at the given moment will have + gz —ry, | + rx — pz m + py — gxfor its
projections onto the, y, z-axes, resp., where y, z are the coordinates of the polvit
and are thus given functions wfindv. However, the vectar; is equal to the geometric

sum of the vectors andtv :

(01) = (0) + (o),

such that, from Fig. 1 and (10), if we project ttdocitiesvy, v, andro onto thex, y, z-
axes then we will get:
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k= (—\/Eulsin79+\/a i/lcosﬁ’—\/_El)a
(11) +( JEucoss+Gysing- GYz

ty(ca”+1p"+ny”)—z(ca’+ ' +ny),

These formulas determine the quantilkigls m as functions of the coordinatesv, J,
us, vy of the rigid body and the differential quotients v, 2, u,, V,.

Should the rolling motion of the body proceed withoupgpshg, then the absolute
velocity v; of the pointM would be geometrically equal to its relative veloaityand

from Fig. 1, we would get:

JE b =-JEusind+,[ G vcos?,
JG v = JEucosd+,[Gusing.

Formulas (11) simplify to the following ones:

(12)

k=ya' -za’)o+(yB'-zB)+ Yy —zy)n

in that case, and we can eliminate two of the quantiiesv, &, u, Vv, from the
expressions (9) fog, r, n with the help of (12).

CHAPTER I
On the equations of motion of non-holonomic systems
8 5. — Eliminating the Lagrange multipliers from the equatiors of motion.

The motion of a rigid body that rolls without slippiog a given surface serves as an
example of the motion of a hon-holonomic system.

Before we go on to the special problems of rolling motwa would like to discuss
the equations of motion of non-holonomic system$iéngeneral case.

We letqs, Op, .., On+k denote the coordinates of a material systenglety,, ..., 4.,

denote the differential quotients of the coordinates wébpect to timet (i.e., the
generalized velocities), lat (t, g, 92, ..., Ok, &, G, .., O, ) denote the kinetic energy
of the system, and |€)s denote the generalized force that corresponds to théinate
Os . The products s then determine the work done by the force that is getnder a
motion of the system when all coordinates are cohsetept for the coordinatg ,
which increases by .

Let the material system be subject to the conditiontemsa
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(14) Gy = D84 +8 (v=1,2, ..K),
i=1

where the coefficients,; anda, denote given functions of time and the coordinates.
We will assume that the integration conditionstfoe differential equations (14) are
not fulfilled, such that the quantities:

da, & 03,;
e o e

0 q H=1 0 q|+;1

(15)

,_(oa, -
A= av +z ﬂaqnmj { +Z%aqwj

,j=2,2,...mv=12,..K

cannot all be simultaneously zero.
When the Lagrange multipliers are denotediphyl,, ..., A, the equations of motion
of material system can be written out thus:

2 -2 -3 =12, ...n),

dt aq aql QI ; k ‘%. (I n)
(16)

40T _ 0T 1o +4 =12, ..K.

Those equations and the conditions (14) define a system -Jof differential
equations that determine thet k coordinatesy and thek quantitiesA as functions of
timet.

The application of the equations of motion in the f¢i®) to special problems — in
particular, to the problem of rolling motion — will encoeminsome difficulties, first of all,
because the multiplierd cannot be eliminated from (16), and secondly, because the
function T is not used in its simplest form with the help of doadition equations (14)

(): i.e., T is a quadratic function af + k argumentsj, while the formulas (14) yield the

possibility of expressing as a quadratic function of only argumentsqg. For that

reason, we would like to seek to obtain the equationsnation of non-holonomic
systems in a form that is more convenient for theieaons ().

() Cf., e.g., Holder, “Uber die Prinzipien von Hamiltamd Maupertuis,” Nachrichten der Kgl.
Gesellschaft der Wissenschaften zu Géttingen (1896) or Hadaritur les mouvements de roulement,”
Mémoires de la Société des science physiques et natudellBordeauX (1895).

(") Cf., also V. Volterra, “Sopra una classe di equazitinamiche,” Torino Atti33 (1898); P. Appel,
“Remarques d'order analytique sur une nouvelle forme desiéasiade la dynamique,” J. de math.
(1901); L. Boltzmann, “Uber die form der Lagrangeschen Gigigen fiir nichtholonome, generalisierte
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If the dependent velocitieq,,,, ¢..,, ..., U, are eliminated from the functioh
with the use of (14):
T=0 (t, i, 02, ...y Onsks ql, qz, vy qn)
then:
0©_ T &

B-Ti3a,

aqi aq v=l aqﬁﬂ/

If we differentiate these equations with respect tetand apply formulas (16) then we
will have:

d(')@ 00
8100, o 5

These equations no longer contain the multipliers
If we then eliminate the derivatives dfwith respect to the coordinatgswith the
help of the obvious formulas:

00 T & oT (& da, aa,j
= + ' g+ (s=1,2,..n+kK

“da, OT :
— =12, ...n).
+Qu 3BT (=12

+V

and denote the generalized impulses that correspond teffgndent velocities b,
Kz, ceey Kk .

oT L .
W =Ky, 01, 92, vy Oy Gy Gy -0 Q) (v=1,2,..K

then after a brief calculation, we will get the edquag of motion of a non-holonomic
system in the form:

d 00 _ 00 K 00 ) v
n G0-Rq. 3[R q k(S e )
(i=12 ..n)

The quantitiesA™” and A" in this have the meanings that were given in (15).

Then + k differential equations (17) and (14) determine nhe k coordinategy in
terms of timet.

Koordinaten,” Sitzungsberichte der Wiener Akaderhid, Abt. lla (1902); G. Hamel, “Die Lagrange-
Eulerschen Gleichungen der Mechanik,” Zeit. Math. P5§41903).
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8 6. The equations of motion in special cases.

As is known (), the motion of a non-holonomic system is stillt metermined
completely when the expressio® for the kinetic energy of the system and the
expression$)s for the generalized forces are given. In fact, the apsof motion (17)
still include the function¥K, , and therefore just as many generalized impulses as non-
holonomic condition equations. Those functioKs are first-order differential
expressions, and their calculation presents no comiplisa at least, in the problem of
rolling motion.

As is easy to see, for the case in which the intelgsalosonditions for (14) are
fulfilled:

A" =0, AY=0 (,j=1,2,..n;v=1,2, ..K,

formulas (17) go over to the Lagrange conditions equations

We shall refer to the following special cases thagjdiently occur in the applications.
The coordinate®j+1 , Q2 , ---, On+k , Which correspond to the eliminated velocities,
might be “cyclic”; i.e., those coordinates might na imcluded in either the kinetic
energy, the expressiod, or ultimately the condition equations (14). The probtEm
the determination of the coordinates in terms of timétivén split into two autonomous
problems that are solved in succession. First ofaadlseek the non-cyclic coordinates
01, 92, ---, 0o . In order to do that, we must integrate theecond-order differential
equations (17), in which we have replaced:

99 _, Aj(v):&_% A0 =93 08

aq,., g, 9q ot dq

J
,j=1,2,...n;v=1 2, ... K.

When that problem has been solved, we determine the cpdrdinateS}n+1 , Gn+2 , ...,
On+k from the condition equations (14) by quadratures.
If we now assume that a force functidrexists:

Q= — s=1,2,..n+K),
aq

S

which also depends upon the finstcoordinates, then one will obviously have the
following theorem, which was first presented by Fer(eds

If the condition equations:

A" =0, AY=0 (=1,2,..n;v=1,2,..K

() Cf., e.g., P. Appell, “Sur une forme générale des tapsde la dynamique et sur le principe der
Gauss,” J. f. reine u. angew. Matl22 (1900), 205-208.
(") Ferrers, “Extension of Lagrange’s equations,” Quadf thath.45 (1878).
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are fulfilled for one of the coordinates — e.g., feghen the corresponding equation of
motion will have the Lagrangian form.

If the timet is not included explicitly in the kinetic enerdythe force functiotd, or
the condition equations (14) then the coefficiemtsay, ..., a, must all be equal to zero
in (14), since otherwise the rest position would not betortge possible positions of the
system, which was not assumed. If the coordingtes gn+2, .., On+k are cyclic, as well,
then the equations of motion (17) will assume the sirfyi@:

k . Oda .
d 00 _ 90 U KV(%_i}j (=12 ..n)

—_——=—+—+
dtog oq dq v (0q 0q

Those equations were given by Chaplygjn (

8 7. — A formula for non-holonomic systems that is analogous to
the Hamilton integral.

The equations of motion for a non-holonomic systenthi& form (17) will be
obtained very easily with the help of the followingdhem:

Letq, O, ..., Gk denote the coordinates of a material system, IbeTts kinetic
energy, and let Qbe the generalized force that corresponds to therdinate . The
system might be subject to the condition equations:

Gy = 2.8, G +ay =12, ..K.

i=1

If we use those equations to express the kinegoggrof the system and the generalized
impulses that corresponds to the dependent vedsaifi,, ¢..,, ..., G,., In terms of time

t, the coordinatesig gz, ..., Onk, and the independent velocitigs, q,, ..., ¢, :

T =00, 1,0, ..., On+k,s G, G, ..., qk)

oT . .
W:Kv(t, quq21 ---,qn+k, QL’ q2’ saay qk) (V: 1, 2, ,k)

then we will have the formula:

() Chaplygin, “On the motion of a heavy body of revolutionaohorizontal plane,” Reports of the
physical section, no. 9, Moscow, 1897.
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n+k

(18) j5@+ZQ 5qs+2 Kvé[qw Z@ q- @ﬂ

t s=1

for all variationsdg: , &, ..., Anthat vanish at the momentisand . An+1, Ds2, - -,
A+ are defined by the equations:

(19) aqu:i‘,avi 3q (v=1,2, ...K),

and the differencedq, —%Jqs are all set equal to zero.

In fact, as a result of (19), (18) can be transformepastial differentiation in such a
way that a linear function of the variatiods; , &, , ..., &, will appear under the
integral sign. If we set the coefficients of thosgiations equal to zero then we will
obtain the equations of motion (17).

We would like to make the following remarks in regard toniala (18) ().

If we consider the conditions (14) for the velocitaaxl the conditions (19) for the
variationssimultaneousland set:

d
o4 -——oq=0 i=1,2,...n
4 -59 ( )

%qu (v=1, 2, ...,K) will be non-zero, in general. If we

then multiply the known d’Alembert formula:

n+k d aT
— o
sl e oaee

by dt and integrate betwednandt, , in whicht; andt, denote two moments at which all
variations vanish, then we will get the formula:

then the difference®q,,, —

(20) j{anikq 505+26q (dtaqw 5'qwﬂ di = 0.

7]

If we replace the functionsand aa_T
qn+|/

differences% oq,,, —9G,., (v=1, 2, ... K) directly from (14) and (19) then we will get

in this with®@ andK, , resp., and calculate the

() On this, cf., my treatise and the treatise of Souisiov 22 of the Moscow Mathematical Collection,
1901.
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the equations of motion (17) from (20) in a manner thainslar to how we got them
from (18).

The reason that we prefer the formula (20) overdhadla (18) is as follows:

When one examines the problem of rolling motion, ones dm¢ usually employ the
generalized velocities, but one introduces linear funsta@frthem into the corresponding
formulas. Hence, e.g., the differential quotiegditsy/, @ of the three Euler angles ¢,

6 with respect to time are ordinarily replace with the projectiops q, r of the
instantaneous angular velocities of the rolling bodie® as central principal axes of
inertia:

p=¢@sind—-y sing co¥,

If we, with Kirchhoff (), consider the quantitigs, , r”:
p' = o¢ sin 8— dY sin ¢ coséb,

along with the quantitiep, g, r, then we must employ formula (18) to ascribe the
meaning to the difference®® —dp / dt, etc., that Kirchhoff () gave to them:

dp '
dP-— =qr-rd,
dt g d

However, if we had chosen formula (20) then theafentioned differences would have
other values that would depend upon the form ohitin@ holonomic condition equations.
For that reason, the investigation would take aesehat more complicated form if we
had started from formula (20), instead of (18).

8 8. — Introducing linear functions of velocity into the equatns of motion.

The equations of motion (17) and the formula @&l now be generalized in such a
way that the velocities] will be replaced with arbitrary linear function§them in the

equations of motion. We denote those functionp:byp., ..., pn and set:

n+k
(21) G =D 0Pt & r=1,2,..n+Kk),

s=1

in which the coefficientsrs anda; depend upon the tinteand the coordinates
We will assume that equations (21) can be soleethk variableg.
Along withp, we also consider + k quantitie’ that satisfy the equations:

() Kirchhoff, Vorlesungen tiber mathematische PhyBik. |, lect. VI.
(") Ibid., formula (9).
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n+k

(22) X = ). a, p, r=1,2,..n+kK).

One can then calculate the differendgs— dp./dt (s= 1, 2, ...,n + k) from the
conditions:

chlr:qur r=1,2,..n+Kk
dt
as linear functions of the’:
dp'S 3 n+k . B
(23) @S_E—zpsr o (s=1,2,..n+kK),
r=1

in which the coefficient®s, are linear functions of the
Let the non-holonomic condition equations be expresséerms of the quantitigs:

(24) Prn+v = iql p+ b, (v=1, 2, ...K),

in which theb,; andb, depend upon timeand the coordinateg .
The equations of motion of the material system these tize form ():

d aT LS oT TXaT .
—— =HNa,|—+Q [+Y—P -, i=1,2,..n),
dt ap rZ:]; (aqr j r:lanr VZ=;|. q

(25)

n+k + k
i aT :Zarnﬂ/ a_T+Qr + a_-I-I:?nJrv-*_Av (V:]" 2’ ’k)
dtop,, = aqr rzlapr Y

Here, T denotes the kinetic energy of the systépn,, the generalized force that
corresponds to the coordinalg andA; , A2, ..., A are Lagrange multipliers. From (21),
T is a function of timé, the coordinateq, and the quantities.

The formulas (25), (24), and (21) define a systemmot 2k first-order differential
equations that determine the + k coordinatesq, the n + k quantitiesp, and the
multipliers A as functions of timé

We can say the same thing in regard to formulas (25)wkaexpressed above in
regard to the equations of motion (16). An applicatio(@8) to the problem of rolling
motion will encounter difficulties firstly, becauseethmultipliers A have not been
eliminated from (25) and secondly, because the fun@ti@included in (25), and it has
not been converted into its simplest form by the ug@4)t

() Cf., e.g., the method by which G. Kirchhdffifl., Lect. V1) derived the differential equations of the
motion of a rigid body. See also the treatise oHEun, “Die Bedeutung des D’Alembertschen Prinzipes
fur starre Systeme und Gelenkmechanismen,” Arch. MRitiss. (3)2 (1902), § 17.
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By eliminating theA from (25) using the method that was applied iB, 8ve will
come to the equations of motion, which can be derived emsly from the following
theorem, which is analogous to the theoremin §

If we express the kinetic energy T and the derivatives of A re@#fpect to the
quantities p:1, pn+2 , ---, Pk as function of time t, the coordinates g, and the quantities
Pi,P2, ...yPn -

T =00 0,92, ---,0n,P1,P2, ---» P),

oT
=Kv({t, 1,9, -.,0n, P, P2, -.pn) (N=1,2,...K

n+y

then the integral expression:

t n+k k n
(26) [|e0+3.Q 5q+2w[ B~ 2. B P pﬂ d
t r=1 v=1 i=1
will vanish for all p;, p,, ..., p, that vanish at the limits. The quantiti@§,,, p.,, .-

p... are eliminated with the help of the formulas:

(27) Ph, = iqi n (v=1,2, ..K,

the variationsdq; , . , ..., An+k are eliminated with the help (22), and the differences
o —dp /dt are calculated fronf21) and(22) and the conditions:

oq, :%qu r=1,2,..n+Kk).

8 9. — Application to the problem of rolling motion.

We shall now move on to the special problem of theanaif a rigid body that rolls
without slipping on a given surfa& under the action of given forces.

We imagine two orthogonal coordinate systebnyzandO; x; y1 1, the former of
which is fixed in the rigid body, and the latter of whisHixed in the surfac§; .

The coordinates of the body are the coordinatds c of its pointO relative to the
system of axe®; x; y1 z1 and the three Euler anglés ¢, 6, which determine the position
of thex, y, z axes relative to the , y;, z; axes.

In place of the generalized velocities, b, ¢, ¢, ¢, 6 we introduce linear
functions of them by way of the formulas:

k=a cos & xi) + b cos & y1) + ¢ cos &, z), p=¢ sin@— ¢ sing cosé,
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| =& cos g, x)+b cosg,yi)+ ¢ cosy,z), g=¢ cos@+ ¢ sing sin g,
M= a cos ¢ x;) + b cos ¢ y1) + ¢ cos ¢ z), r=6 + cosg,

in which the nine cosines are known functions of thielEangles.
As in 81, the quantitiek, I, m; p, g, r denote the projections onto tkey, z axes of

the velocityw of the pointO and the instantaneous angular velocitgf the body, resp.
If we introduce the additional quantitie§|’, m”; p’, q’ r“by way of the formulas:

k’=dacos & x) + dcos & y1) + & cos & z); p’ =3¢ sind—dysing cosh
then we will have’):
dk’ dp’
28 K-——=Ir'=rl’"+gm-mq’; 2P _gr—rg
(29) dt q a; - -=ar-rg

If we letx, y, zdenote the coordinates of the pdihtat which the outer surfacgof
the body contacts the surfaBgrelative to the system of ax@@xyzand express the idea
that the point is momentarily at rest then we wilt gee non-holonomic condition
equations to which the body is subject:

(29) k=yr—zq I|=zp-Xxt m=xg-yp
If the point O coincides with the center of mass of the body amdxthy, z axes

coincide with the principal axes of inertia through thep® then the kinetic energy of
the body will be equal to:

(30) T

IME+IP+m) +L(AF+B+Cr),

in whichM means the mass of the body, @&y, C mean the moments of inertia about
thex, y, zaxes, resp.
In the present case, the functigdsandK that are included in (26) will then have the
values:
O =LIM[(C+y +2) (P° +* +1) —(xp+yq+z)’] +3(A P +B f +C 1),
(31)
Ki=M(yr-zq, Ke=M(@zp-x}, Ks=M(Xxqg-yp,

such that formula (26) will imply that:
b

[[6©+3U +M(tr —20) &(k- yr+ 29 +--] d' = 0.

Y

() Ibid., formulas (8) and (9).
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We assume that a force functiorexists
From the theorem in §, when one transforms this formula, one must consaér
the equations:

(32) k'=yr'—zq, "=z p'—xTr, m=xq-yp,

in addition to (28).
We will then have:

5(k—yr+zq:%(yr’—zq)+l r’-rl’+gm’-maq-o(yr —z9

=yr-zq-(dy—qdy

such that the integral expression (26) will ultimatedguane the form:

(33) [{60+3U +M[ oo pp+ad+ m) ~( xB+ ya+ (X 'ye  3F

Y

~M[pds - xp+yq+zn (pX+qdy+r &} dt=0,

in which one has set:
X2+y2+22:,02, p2+q2+r2:w2,
for brevity.
That formula allows one to derive the equationsodiing motion of a rigid body in
arbitrary coordinates. If we choose the coordmate, J, u;, vi of 81 thenx, y, z will
be given functions of andv. Formulas (10) and (9) determine fhe, r in terms of the

generalized velocities, v, 2, u,, v,. Those velocities must satisfy the non-holonomic
conditions (12). Two of the quantities, v, &, u, Vv, (e.g., u, and V;) can be
eliminated from (9) with the help of those formulas

o=- (% +%’j\/€\‘/+[%f +%j(—\/TE Usind+,/ G Vcos?) co#,
(34)

r= [g+%}/€u+[%—%j( \/—EUCOS§+\/—G'\/Sin9) cog.

We then see that these formulas will assume aacedly simple form when the
surfaceS is a sphere, i.e., when:

D:E = D1" Gy

The examination of that special case shall beapesf with the general examination.
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CHAPTER Il
On the motion of a rigid body that rolls on a sphere
8 10. — The differential equations of motion of a rigid body thiarolls on a sphere.
The problem that defines the topic of the present chaptebe formulated thus:
A given rigid body is constrained to roll without slipping on an immobile gp8er
A force acts upon the body that is applied to the center of mass Oladdhe@nd points
to the center Qof the sphere, and it depends upon only the distance between the points O

and Q . Determine the motion of the body.

If we set:
X; =Ry sinug cosvi, Y1 =Ry sinug sinvy, z =R; cosu;

then we will get:
(35) E, = Rlz, 61:Sil’?ul, Di=-Ry, Dl":—Rlsinzul,

and the formulas (34) and (10) will imply:

g=VV, r=uu,
(36) p=vva+uup+ny,
in which:
=- E—i = 2_i
0 o [G RJJE’ 8 (E RJJE'

We calculate the kinetic energy of the body with the help of formulas (36)
according to (31):

2
20 = M p2(V2V2 + p2u+ n? - MLpa_pﬂ+pa_pﬂ+g n}

ouJE "ov,G

+AWVVa+puB+ )i+ By ' +uyB+ )+ Qua+u g+ )

(38)

In this, p and& denote the distances from the center of niass the contact poiri¥l
and from the tangent planeM(tto the outer surfac®of the body:

pi=xX+y+7Z,  e=xytyy+zy

The kinetic energ® is then a second-degree homogeneous function of thenangsi
u, v, n. The coefficients of those functions depend upon o lgdv.
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As for the force functiorJ, in the present casé] is a function of the distance
between the point® andO, . However, one has:

00 = OM +OM -20MDMcof QM,OM) = R*+ p?+ 2Ri &
So as a result) will include onlyu andv.
If we introduce the quantitiep,; g r’, along with thep, g, r in (36):

(39) p'=avo+fudu+yn’

then the basic formula (33) will yield:

t

1[5@+5U +M pp(V?V v+ i udu+ nr
4
6_,0V_5\/+ a—pﬂ—mj+£n’j(\/7Ev+\/Eﬂ)—M W pdp

"M P TE v Jo

9p Vv ap'u_u+£nj(\/7EV\'/5u+\/7G,uU5\ﬂ dt=0,

M P TE Pav o

in which we have set:
I/Z\'/2+,UZUZ+ n2 - (‘},

for brevity.
In order to get the expression for the equatidmaation from this, we must calculate
d dn

the differencesﬁ]—iéu, ovV——09OV, On—.
dt dt dt

(36) and (39) imply that:
vav=pa+q'a+tria’

vV =pa+tqa’'+ra’
such that, from (28), one will have:

V(dv—%dvj+g—5(v5u— wy=@Qr'-rd)a+..+poa+..-pa -..

If we substitute (36) and (39) in this and remdnkttas a result of the well-known
formulas of kinematics:
By+By+pBYy =0, ya + ...

in which g1, 11, n; have their meaning in (8), then we will get:

=n, af +..=ng,
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d ov  u G \/_
(5v dtcfvj {au 2\/76 j( ou-uwy= (ndu-un).

However, the expression:
6|/ u oG

u 2,/ au

is equal to zero, from (37) and the Mainardi-Codazzi tdang):

2H2(aD aDj:(Za—F a—GJ(FD' GD)+6—G(FD—ED)
ou ov ov 0 ov

- a—E(F D'"-G D)—a—G(F D -ED)
ov ou

such that we will ultimately have:

V(c?\'/—icfvj = E(n5u— un).
dt R

In a similar way, we will find that:

9 5] = Y8 v
,u(cfu dtc?uj = R (nov-vn),

dn DD" 1
n-—=.EG vou- uo
dt [ EG F\fj( i
If we now transform the basic formula with the udehese equations in such a way
that a linear function of the quantitiés, dv, n”will appear under the integral sign and we
set the coefficient of those quantities equal t@ zben we will get the desired equations
of motion in the form:

d 0O 9O@+U) _ DD’ 00 . JE100 op .
——— = = JEG| — n- Mp— rf+ Mgy EV vr,
dt ou du [EG RZJan Rvav Pau

d 00 4(O+U) _ _ DD" 90 . w/ G100
400 —=-2+""' =-TEG -M —rf+ Me/ G ,
(40) dt av av [EG RZJan R ,uau Pav MUt

() Stahl and Kommerell, formula (6),78
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doo -_JE100, JG100 . \\( 3o, 6_p.j
don R VOV R uauVJ’M[pa o) Me({ B e Gu)

These formulas determine the non-cyclic coordinatesdv and the quantity as
functions of time.

Before we go further into the study of the equationsa@tion that we have presented,
we would like to test their validity on the basis of mgeneral laws of dynamics.

8 11. — Developing the equations of motion from the law of
the moments of the quantity of motion.

From (36), the non-holonomic condition equations to Wwiife rigid body is subject
will take the form:

(41) k=ya"-za')vv+(yp"-z8) uu +yy'=zy)n

for the problem that we spoke of, such that we will have

100 0T oT
42 ———=—(ya'"-za')+...+—a+ ..,
(42) vov ok ¥ ) ap

from (30), using (36). Now, sinc%%, , ... are equal to the projections onto the

"

X, Y, zaxes of the resulting vector and the resultant monienitahe center of mas3of

the quantity of motion of the material points from whiwe imagine our rigid body is

composed, we will see from (42) th%ta—(?, 16—@ LS mean the projections of the
Vov puou on

aforementioned moments about the contact pdionto theu, v, n axes, resp.

Now, it is known () that the geometric derivativid, of the system of vectof3, that
consists of the quantities of motion of the matgr@nts is equivalent to the system of
vectorsll, of the applied forces on the bodies and theirti@as. If the poleM (x, y, 2)
relative to which we calculate the resultant momantf the systenfil; is an immobile

point then the resultant momeft of the systemrl, will be equal to the geometric
derivativel", of 'y :
(M) =) .

However, if the polé/ (x, y, 2) is mobile, as in the present case, then:

(43) (M) =) +K),

() Sousloff,Foundations of analytical mechanjas 1, § 192, Kiev, 1900 (in Russian).
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in whichK denotes the moment of the resultant vector of thies)s; when that vector
acts upon the “derived” pol& (%, y, z2) about the coordinate origin.

If we further remark that ther-axis rotates with an angular velocity whose
components along they, z axes are equal to the quantitigs- ga" —ra’', etc, then when

we project the vector along the directigrwe will get:

d(100) (0T 0T 0T), . " 0T 0T
— == || =tz -y @+ ). | Yy——Z— |a+ ..
dt\v ov op adl am om 4l

=l,cos (2,u),

in whichT; is the resultant moment of the systBmabout the contact poi.

If one neglects the moments of the rolling andsting friction then the only moments
of the applied forces will enter InfG, , since neither the force of friction nor the natm
reaction moment will produce moments about theammointM. If a force functiorl
exists and we imagine that the differential qudtigh of U with respect to time is
expressed as a linear function of the quantities, p, ... then:

2cos (2,u) = £+z£—yﬁ a+
2 2 op ol om
If U goes to(U) when we eliminate the quantiti&s..., p, ... using (36) and (41)
then:

M2cos (2,u) =—

100)
v oov

If U is a function ofi andv then we will have:

2cos (2,u) = ia_U.
vV ov
We ultimately get:
Ea—e=a—TP(yva"—zva’)+ w(xa+ y'+ o")-va( xg ya& 2)ﬂ+~-
dt ov ok | dt

(44)

+a—T[E(Vquva"—rya’}+~~-+a—u.
op | dt ov

It can be established by some truly-complicateldudations that this equation is
identical with the second of the formulas (40).

If we project the vectoF; onto the directions andn then we will get the other two
equations of motion (40) in a similar way.
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Formula (44) can also be derived directly from the gdreguations of motion of a
rigid body that is not subject to the non-holonomioditions (29):

doT_ aT _ aT _au

———=r—-g—+—+ A,
gtok o Jom ok ™

ia_T: ra_T—qa_Tﬁ-ﬂ-{-yA -z A
dtap  oq ‘or op - %

by eliminating the multiplierg;, A2, As.
In order to do that, we must use that formula to diffidate formula (42) with respect
to timet, after we have multiplied it by :

ia_G:a_TE( Va'"—zva")+...+( a'"—zva") ra_T— aT+a_U+A
dtov ok dt" » o Ym ok
oT d 0T 0T oU
+...+——Va)+---+tva|lr——qg—+—+VA. - ZA, |+---
op (aq Tor Tap Vs Zj
or
Ea—e=a—TP(yva”—zva’)+ w(m+ @'+ o')-va (xpr yo z)r}m
dt ov ok | dt
+6—T[E(Vd)+qva"—rya’}+~-+a—u.
op | dt ov
However, from (29) and (30):
oT = 0T 0T _ 0T = 0T  _oT _
p—+q—+r— =0, X—+y—+z2— =0,
ok ol om ok ol dm

so that equation will be identical with formula §44

8 12. — Testing the equations of motion with Poinsot’s interptation
of the motion of a force-free rigid body.

The validity of formulas (40) can be confirmed kzdst, in one special case) with the
use of the known interpretation of the equationa ofjid body that has no forces acting
upon it that Poinsot gave. As a result of thag¢rtetation, the center of mass of such a
body will move uniformly along a line, and the aatiellipsoid of inertia of the body:

A¢+ByY +CZ=1
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will roll without slipping on a plane that has a trahskaal motion such that its distance
from the center of mass of the body remains const@ihe contact point of the ellipsoid
and the plane will describe a polhode on the outer curte the ellipsoid and a
herpolhode on the plane. The projection of the moangrangular velocity of the body
onto the normal at the contact point to the ineztiipsoid will remain constant during the
motion.

If the center of mass is at rest at the initial matrthen it will remain at rest during
the motion of the body, and the inertia ellipsoid wolll on a plane at rest.

We now transform the inertia ellipsoid and the pléyereciprocal radii ). The
ellipsoid will go over to the fourth-degree surface:

A% +BY +CZ = (¢ +y + )

and the plane will go to a sphere.

As a result of what was said, when no forces ach @pbody and the body is bounded
by the aforementioned fourth-degree surface, the equatiomst®mn (40) must admit a
particular solution for which the quantity remains constant and the contact pdmt
describes a curve on the outer surface of the bodydlaitained from the polhode by
transformation through reciprocal radii.

In fact, if we set:
« a Jai-u/a-v

= k—u—\/\/aZ_bZ\/ aZ_CZ’

A:iz, B:b—lz, C:iz, k=&’ +b*+¢
a C
then we can show that in the case of:
Uu=>0

equations (40) will admit the particular solution:

n=const., u[v=_const.

8 13. — Solving the equations of motion for the differential quants of the unknown
functions. Integrals of motion. Determining the cyclic coatinates.

We now go on to a detailed examination of the equationshation (40) that
determine the variablag v, n as functions of tim¢. The equations fou andv are of
second order, while the one fors of first order. If we add the equations:

du_ . dv

—=u
dt dt

() Routh,The advanced part of a treatise on the dynamics, atc.147, ex. 4, 1884.
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to formulas (40) then we will get five first-order difégtial equations that determine the
five functionsu, v, n, u, v in terms oft. Should those equations be solved for the
differential quotients of the unknown functions, thea would have to introduce new
unknown functiong;, p2, ps in place of thai, v, n:

a_G:p a—GIp 6_®:p
ou T av on

From a theorem of Donkin)( we will then have:

) . 90 )
u=———, V=—-1, n=

op, o8

ol

©__ B w0
ou ou’' ov ov '’

Y
L

in which © denotes the kinetic energy of the body when it ipressed as a

homogeneous function of degree two of the argument®,, ps. If we introduce the
notation:

© -U=H

then (40) will yield the following five first-order differéial equations:

d _

dt

oM, eGP L)oH | JELOH |\ dp(oH )\ e 0H OH
ou EG R?agpz I@V@Qp2 0 Uop 0 po §

dn, _

dt

oM, fEg[DD_L)oH [ VG 1aH | ap(aH ) e oW oH
ov EG I‘}"aaplo3 Ryagg o \Op 0 £

(45)

dn,_

dt

_JG1oH _JE1oH _( 9pdH  9poH |oH _ oH oH
,— M PS5 9+p6v6 SER ME(\/TEV+\/6,U)6 5 p

du_oH  dv_ oH

dt odp, = dt op,

() Phil. Trans. 1854.
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which determing, pz, ps, U, vin terms ot .
Timet can be eliminated from these equations or equations (#@)he use of the
vis vivaintegral:
H=0-U=h,

in which h denotes an arbitrary constant. If we choose, a.{p, be the independent
variable then we will get three first-order differehtequations that determine the
quantitiespz, ps, vV (v, v, n, resp.) in terms ad.

In order to obtain a second integral of motion,dditon to thevis viva we make the
following special assumptions: The relative veloaityk, ¥, 2) of the contact poin at
any moment of the motion might lie in the same @las the velocityv (k, I, m) of the
center of mas® of the body. The vectd that is included in (43) will then vanish.
When the resultant momeht aboutM of the force that acts upon the body is equal to
zero, in addition, from the theorem in1§, the resultant momerit; aboutM of the
guantity of motion of the material point of the laalill also be constant. In that special
case, we will then have the integral:

2 2 2
(46) iz(a—ej +i2(6_®j +(6_@j = const.
M-\ ou v\ ov on

The conditions that were cited above are obviofisliflled when the rigid body is
either partially or completely bounded by a splarsurface whose center coincide with
the center of mass of the body: (

We shall now return to the general case.

If the equations of motion (40) or (45) have beaegrated then we will have to
determine the cyclic coordinaté® ui, vi . In order to do that, we appeal to the last of
formulas (9) and the non-holonomic condition equadi(12). For the present case, from
(35), those formulas simplify to the following ones

R 4 =-./Eusind+./ G vcos?,

(47) R Y sinu =,/E ucosd +./ G vsing,
9 :—n+;[a—Eu—a—ij—\'4cosq.
2JEGlov  du

If u, v, n are expressed in terms of timen, from (36) and (41), the quantities..,
p, ... will be known functions of time, and as a redqul), the determination of all
remaining coordinates must come down to the integraf a Riccati equation.

In fact, if we set:

() Chaplygin, “On a possible generalization of the surfaeerem, with an application to the problem
of the rolling of the sphere,” Moscow Math. CA0 (1897).
(") Cf., e.g., Darboux,econs sur la théorie générale des surfases, chap. Il.
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—%u:flcosﬂl, %\‘/:flsinﬂl, ! (aE '—a_G\'/j—n+,9l =f,

—Uu
2J EGlov  du
thenfy, f2, &4 will be known functions of. Formulas (47) imply that:
u, =fisin (Z+ &), A sinu; =—f1 cos ¢ + &), 19+191 =f, +fycotu (F+ &) .

If we now introduce new variableg and ¢, , in place ofu; and g, by way of the
formulas:

G =-i COti (@ O+) , & =i tani @@+ ,
2 2
then a brief calculation will show thgt and; are integrals of the Riccati equation:
d .
R SIACE A0

When (s and &> (and thereforei; and g, as well) are determined in terms of titne¢he
last coordinate;, will be obtained from (47) by quadrature.

8 14. — Motion of a body of revolution that rolls on a sphere. Redirgy the problem
to the integration of two Riccati equations. Motion of a cylindcal rod on a sphere.

The equations of motion (40) will simplify significantiyhen the rigid body is a body
of revolution in the dynamical sense, so:
A =B,

and the outer surface of the body is a surface ofugga around the symmetry axas
If we set:
X=ucosv, y=usinv, z=z(u),

and denote the differential quotientszafith respect ta by z’, z” ... then we will get:

E=1+z2 G=U a’= %, B=0, y= = :
J1+7°2 1+ 72

(48)
D=_ 2 D”= uz | P2z + 2 . z—uZ,

}1+212 1+ZIZ 1+ZIZ

such that, from (38), we will have:
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2
20 =M p?*+A) V2V + 0%+ nd) - M{pa—pﬂ+gnJ +(C- AV 0"+ ')
ou JE

(49)
= PU+QV+2Lvr+ JA,

in which the coefficient®, Q, L, J are functions of the argumeunt In addition, we will
obviously have:

U = funct Q).

We then see that in the present case, the coordmatealso cyclic, so when we
eliminate timet from the equations of motion (45) or (40) with the helghafvis viva
integral, that will yield two first-order differentialgeations that determine the variables
p2 andps (v andn, resp.) as functions of

If the integral (46) exists, or if any other integraltioé aforementioned equations is
known, then those equations can be solved by quadraturdactlit is not difficult to
prove that in the present case the form of the asbvhl multiplierM can be given in
advance.

As is known, the multiplieM of the system:

Xl— XZ — — =
dx _ dx _ __d}%, X1, Xo, ..., Xn=funct. &, %2, ..., %n
X, X, X, b " s :

satisfies the formula:

dinM 1[axl X, axnj_
+— + +..04+ =0.
dx X\ 0x 0% 0x

If we apply that formula to the system (45) then wit geit:

dinM dp( 0H 0°H oH 0d°H
tMp—| ————————

dt ou{op opy 9podpoRp
0p(0H 0°H oH 9°H
ov|dp, 0pf dp,dpdp

[GH 0°H oH 92H j
+ MeJEv| — -0
op, 0p,0p, dpdpdp

+|V|£\/E a_H 0°H _aH 0°H -0
“\ap, op.op, op,opap

However, from (48) and (49pis a function of only, andu will be included in®, and
as a resultp; will be included inH only in the second power.
From (45), we then have:
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2
dInM+M[p6_p6I-2I_£\/E 9°H jdu o

dt ou op, opop

such that:

2 2
M= gdowe ow=m| %M _, e, 9H |
© W =M P auap SV E apan,

One then solves, e.g., the problem of the motion &bdy of revolution that is
partially or completely bounded by a spherical surfaw ahich rolls without slipping
on an immobile sphere under the action of forces @kihd that were mentioned at the
beginning of the chapter by quadraturgs (

We would now like to actually exhibit the two first-orddifferential equations by
whose integration the variablasv, n can be obtained by quadratures.

From (48) and (49), the last two equations of motion (@#@)y that:

49__ «/EG[DD ja@u +NCP Me,/ Gu nt,

EG R)on R u

doo__JGp, JE1O a 98 i Me({ B+ Gu) Vi

dton R ,u R vov
The equations admit the particular solution:
u =0, Uu=up, nN=ng, V =V, V=V, t+v,

in which up, no, V,, Vo denote constants, and the first of the equatidnaation (40)

gives the condition that those constants mustfgatisorder for such a motion of the
body to be possible. The determination of the irimg coordinates?, u;, vi by means

of formulas (47) presents no difficulties in thigse, and we easily convince ourselves
that the contact poirll will describe a great circle or a minor circle the outer surface

. R /S
of the sphere according to whether the expressjen—- is equal to zero or non-zero,

JE,
resp.

If we exclude that particular solution then welwt the equations to be exhibited
when we choosato be the independent variable in them:

i"_@_-r[DD" j"’@ VP M,

dt ov EG R)on R u

() Cf., the treatise of Chaplygin that was cited above.
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deo__GpP.  JE100 . dp _ .
dton R ,UV R v6v+Mp6un MS(\/TEV+\/E'LI)V'

If v andn are determined as functionswby those equations then we will get the
viva integralu as a function of time by quadrature. A second quadrature will then
determinev in terms oft.

The equations that were presented define a system dirstvorder linear differential
equations. If we eliminate, e.qy, from them then we will get a second-order linear
differential equation that will determing:

d?v dv
—+—f (u+vf(u =0.

Such an equation will be brought into Riccati fdsynthe substitution:

v=d
in which £ denotes a new variable.
As we saw above, the determination of the cyadiordinatesd, u;, v; will also lead
to the integration of a Riccati equation. We mitjtgn state the following theorem:

The problem of the motion of a rigid body of retolu that rolls on a sphere under
the action of a force that points from the centemass O of the body to the centgrdd
the sphere and depends upon only the mutual distbatween the points O and €an
be reduced to the integration of two Riccati equagiand quadratures when the motion
of the body is rolling without slipping.

Let the rigid body be, e.g., a cylindrical rod:

x=Rcosv, y=Rsiny, z=u.
We then have:

such that, from (49), the kinetic energy of the valll be given by the formula:
20

:i2 (A + MR + MU 1P+ (C + MRz)[B—lj 2+ ZMR(B—lju nv+ (A +Mud) n?.
R R R
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The two linear differential equations that determineandn in terms ofu have the
form:

d/[ R J.J_., R,
E_|\/|Run+(c+ Mﬁ)(ﬁ—lj %-M E(UV RN,
d (A+ MU?) n+ MF{—R—lj u\%

du| R

:{EZ(A+ MR + Mu?)—i(—R—lj(C+ MR)- MR’]V 7\{—R—1j u.
R RUR R

If we eliminaten from those equations then we will have:

AC+|\/|R2+uz d2v+3u£v+_R3R+Fg_A__ _Rollv=o
MC du? du | R R R R

We then see that is a hypergeometric function of

8 15. — Equations of motion for a rigid body in whose interior onéinds a gyroscope.
Motion of a gyroscopic ball that rolls on a sphere.

Most of the results of the foregoing paragraphs loa easily generalized to the case
in which the interior of the rigid body (which weowld like to think of as hollow)
contains a gyroscope that rotates about its a®ie. will assume that the center of mass
of the gyroscope coincides with the center of mafsshe rigid body and that the
symmetry axis of the gyroscope coincides withzais.

The friction in the points of the inside of thefaige of the body that support the axis
of the gyroscope shall be neglected.

If the quantitiedvl, A, andB in the equations of motion (40) mean the massthed
moments of inertia about theandy axes, resp., of the total system that consisthef
rigid body and the gyroscope then we will havedd anly one more force-coupld ¢o
the forces that act upon the body in the case@jfrascopic body. The moment of that
couple is equal toCawwsin(ww), where C denotes the moment of inertia of the

gyroscope about theaxis, w denotes its constant angular velocity, andlenotes the
instantaneous angular velocity of the rigid bodiyhe axes of that moment is normal to
the rotational axis of the rigid body and thaxis and lies in relation to those two axes in
the same way that tlzaxis lies in relation to the andy axes.

If we introduce the notation:

() The so-called “deviation resistance.” F. Klein a@dSommerfeld Uber die Theorie des Kreisels
vol. I, Chap. III.
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Cw =«

and recall the method that was applied ihl8n order to present the equations of motion
(40) then it will be clear that we have to add the esgioms:

uk(vvy' -na"),  vk(ng'-uuy’), kuua"-vvpg’)

to the right-hand sides of equations (40) in theeaaf a gyroscopic body.

If we make the same assumptions about the masbdi®n of the body and its form
that we did in the foregoing paragraphs then, f(d8), u will once more be included as
a common factor in the right-hand sides of thetlastequations of motion (40). We will
then come once more to two first-order linear ddfeial equations that determine the
variablesv andn as functions ofi, except that those linear equations will no longer
homogeneous now. As a result, when we elimindtem those equations, we will get a
second-order differential equation of the form:

d?v dv
—+—f (U +vf(u =f3(U).

If one more integral is known, in addition to tvie vivaintegral, then the equations
of motion can be solved by quadratures.

Let the rigid body be, e.g., a hollow sphere irogé interior one finds a gyroscope.
The integral (46) will then be valid, and as a lgshe variablesl, v, n in the problem of
the motion of a gyroscopic sphere that rolls oplaesical surface can be determined by
guadratures. As was shown irl§ the remaining coordinaté® ui, v» will be obtained
by integrating a Riccati equation.

The problem that was posed here can be regardedyeseralization of the problem
that D. K. Bobylev () solved of the motion of a heavy gyroscopic splera horizontal
plane. N. E. Joukovski | proposed to bring a material ring whose symmeiane
coincided with thexy-plane into the interior of a sphere in his ownmetric examination
of the Bobylev problem. The dimensions of the rang chosen in such a way that the
ellipsoid of inertia of the entire material systesra sphere relative to the center of mass.
The motion of the sphere on the horizontal plamebsadetermined much more simply in
that case.

If we also assume that the hollow sphere is pexvidith such a ring in our general
problem then we can prove that the cyclic coor@is& u;, vi can also be obtained by
guadratures. We shall not go further into thatbfgm here, which should probably
define the subject of its own treatise. Let ug/arimark that the quadratures that appear
in the problem have elliptic form, such that a ctatgpdiscussion of the motion of such a
sphere on a spherical surface will not encountedéficulties in its own right.

() Bobylev, “On the gyroscopic sphere that rolls withelipping on a horizontal plane,” Moscow
Math. Coll. 1891.
(") Joukovski, “On D. K. Bobylev's gyroscopic sphere,” Répof the physical section, 1893.
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CHAPTER IV

Differential equations for the motion of a rigid body
that rolls on an arbitrary surface.

8 16. — Exhibiting the equations of motion.

In the foregoing chapter, the equations of motion ofyal body that rolls without
slipping on a sphere were derived from formula (33).orher to apply the other basic
formula of Chapter Il — namely, formula (18) — the equetiof the motion of a rigid
body that rolls on an arbitrary surface shall nowdeseloped with the use of that
formula.

We shall base that upon the notations and assummtidgfs4 and9 and choose the
dependent velocities to be the quantitiesand v;, as in (12). We must then determine
the generalized impulsés andKs that correspond to the velociti€s and v,, resp., by
using (18).

It we substitute the expressions (11) and (10kférm; p, g, r in the kinetic energy
T (30) of the body then, from (9), we will get:

2T=M (I +P>+m) + AP +Bf +CrP=2T (u, v, &, Uy, v1, U, v, 3,1, ),

and as a result, from (11), (10), and (9), we will have:

Kl———M\/_[ (ka+ ...)sind+ KB+ ...) cosd]

1 ogjoT oT ...
2\/—6[ (yW-z/)+ +aky+}

Dl

F{{—(ya )+'~'+(’;—-:;0’+“1C0519
23y 4+ e s
+{&(yﬁ zZB') + +apﬁ+ }Slnﬁ},

and a similar expression 6k, which is the derivative of with respect tov, .

Should the body roll without slipping on the sed&, thenk, I, m would have the
values (13), and we would get from (10) and (14j:th

2
o o oo T
2T:M,02(02+r2+n2)—M£ ——+ J
ou . E av,/

(50) +A(ca+1B8+n Y +B(ca’+ B8 +ny )Y +C(od + 18 +ny)?
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=20 (y,v, g, 1, n),
in which we have once more set:
X +y+Z=p%  xytyy+zy =e
With the help of this expressio® for the kinetic energy of the body and formulas

(13), which imply that:

Jdp n
ka+la” +ma” =- r+,0—’0—

av\/E

Jdp n
+18+mB” = &o-
kB+15" +mp P JE

from (1), the quantitiek; andK, can be put into the simpler form:

Ki =M \/EKSU_'OZ_IS%} cos? {sr —p%%} sim}

(51) 1 0500 09 (6@ cos:9+a—® sin9j,

2ﬂ/ G, 0V on \/_ do or

From (12), the coefficients of the quantiti€s and K, in formula (18) have the
values:

5((}_— EUSinz9+\/_GVCOS9J 5(v_\/E0cosq9+\/_GvSin9j
il \/E ) 1 \/El ;

which are calculated with the use of the formulas:

JE du=-[E dusingd +./ GAvcosd

JG, ov= JEducosd+,[Gdvsind,
as a result of §.

If we once more introduce the quantity:

, 1 (0E . 0G 1 E 5, -9G 5
©9 " zF(av”“ u‘”j*m[aq 4oy “j

along with the quantityn (9), for brevity, then we will easily get the foling
expressions for the desired coefficients:

(52)
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T[f(ndu ur)cosd +/ G(m v vh)sing ],

\/15 [VE(Su- ursing -/ G(m v vicos?],
1
such that formula (18) (18) will assume the form:
t
(54) j[5@+5u +K;JE(ndu-un)+ K./ G o v vh c=0
Y

for the problem in question, in which we have set:

(55) ——COSJ +—= ——=sing -

f F f T

We assume that a force functibhexists. We express the kinetic ene@wf the body
as a second-degree homogeneous function of thgendent velocities, v, 4. In
order to do that, eliminate the dependent veleikieand v, from the functionsg; 7, n

(9) with the use of the condition equations (12):
o=-NJEu-A"JGV, 1=AJEu+A[GY,

n=-39+A,JEU-1,/GV,

A:2+&sin2,9+& cog 9, AN :[&—&jsin J Ccosd,
E G G E
(56)
pr =P P B o2 9,
G 3

_ 1 0lnE sinddinE cos?oinG

\/76v JG oy JE dy

_ 1 dInG smﬂalnG1 cos? dIn E;

\/76u \/76ul JG 0y

and substitute the values that are obtainedsfor, n in the function® (50). We will
then have:

© =0V, u,v, U, Vv, I).
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If we now eliminate the quantity from formula (54) with the help of (53) and the
dependent variationsu; and dv; with the help of (52) and set the coefficients of the

independent variationdu, ov, o4 equal to zero then we will get the equations for the
motion of a rigid body that rolls on an arbitrary swed:

d 00 _9(©@+U) _ d(©@+U)sing d@+U)cosd _ ¢
E|l- + - K
dtou  du =JE o, JE oy /G 1}
- (8,K;+AK)JEGY,
(57) d 00 _9(©+U)

Gy v - VC

0(®+U) coss 6@+U)S|n9_K,79
ou, JE oy |G
+ (AK +AK)JEG U,
d00_0(©+U)_ 1 .
Eu+K, GV,
dtos 0 u+ K Gy

in which, from (55) and (51), we have:

, dp n , D'"\oO 00 1 0InG)|oO
K/=M|eo-pE— |-| A" —— |—+AN—-|A,- ,
! 6u«/Ej ( Gjaa or { 2JE au jan

o n 00 00 1 9InE)ad
K!=M|er-p-L— |[+AN—=-|A- A-—— had
2 /G J ( jar {1 2/G avjan

Since only the expressio® for the kinetic energy of the body is included et
equations of motion (57), it might be preferabletso express the function§] and K,

in terms of the derivative®. In order to do that, we have to determine thévdgves of
© with respect tag; 7, andn from the equations:

(58)

©__0® 100__ )90 ,,0,, %
99 on \/76u dc or ‘on
100 __ 00,00 , 9
\/76v oo or on

which are obvious, from (56), and substitute ther(cB):

Kl,:M{w papnj 100, 1D{A 90 Aaej

uJG) JGov RG|JEou JGav
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L[DAA+AD, 1 9InG)o©
G R 2JE ou )od’

< =m[eg-pP | 100,104 00_& 00
’ ov /G \fau RE(JEOU [JGaV
L[DA'A+AA, 1 9INE)0O

E R 2JE v )od’

in which:

R=an —n 2= 22 BB (DD, D Dioge s, [DD:, D Dy gigg
EG EG (EE GG EG GE

is assumed to be non-zero.

The equations of motidh7) and the non-holonomic condition equati¢tg):

JE u =-JEusind+,[ G vcos?,
JG v = JEucosd+,[Gusind

define a system of five differential equations thetermine the coordinateswy 9, ui, i
of the rigid body as functions of time t.

(59)

If the force functiorld does not include the tinteexplicitly then equations (57) will
admit thevis vivaintegral:
©=U+h,

in whichh denotes an arbitrary constant.

If we eliminate time from the equations of motion (57) and the condgi¢59) with
the use of that integral (in which we choose, ¢hg,coordinate? to be the independent
variable) then we will get four differential equats for the determination @f v, us, v1
in terms of# that will be of order two relative to andv and of order one relative tq,
vi. If those equations are integrated thenuisevivaintegral will yield the timet as a
function of by quadratures.

8 17. — The equations of motion in special cases.
Particular solutions of the equations of motion.

If the surfaces, upon which the body rolls without slipping is éepe [formula (35)]
and the force functiobd depends upon only the variableandv then the coordinate$,
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u;, va will be cyclic when we introduce the quantity(9) into the equations of motion

(57) in place o, and equations (57) will coincide with formulas (40).
Another simpler case will present itself when tiggdrbody is a body of revolution:

A =B, X=ucosv, y=usinvy, z=funct. ()
and the surfacg, is a surface of revolution:
X1 = U COSVy , Y1 =Up Sinvy , z = funct. (n) .

If the force functionU includes only the variables, &, u;, in addition, then the
coordinatew andv; will be cyclic. That condition for the force funeti will be fulfilled,
e.g., when the applied forces have a resultant thatadthe center of masy is parallel
to thez-axis, and has a constant magnitude, or when that respdants from the center
of massO to a pointO; on the symmetry axis of the surfégeand depends upon only the

distanceOQ .

In that case, it will be preferable to introduce tledowity v, into the equations of
motion (57), in place of/, with the help of the first of the condition equati¢b8). If
we then eliminaté from the equations that arise in that way by makingofisieevis viva
integral:

O g u,u,d,u)=U(, 3 u) + const.

then we will get two second-order differential equatitinat determine two of the
coordinatesl, J, u; as a function of the third one. If those equationsraegrated then
we can get the cyclic coordinateandv; and timet by quadratures.

We would not like to go further into the developmehthose equations, which is
very complicated, and present only two particular sahstiof the equations of motion
(57) for the special case that we speak of.

If we set:

u=0, u=up, 9 =0, ==, V=V, V=Vt +Vo,

u= 0, U1 = Ugo, v, = Vg, Vi =Vt +vip,

in whichug, Vv, ... denote constants, then the first of the condigumations (59) and the
last two of the equations of motion (57) will be fulfdlevhen:

ou 7
(60) & =0 (,9_ j

In the examples of the applied forces that wetedcabove, as was easy to Sde,
included the anglé? only in the form sing, such thatJ actually satisfied condition (60).
The remaining formulas (57) and (59) imply twat&ns:
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'_Gl\'/1=\/6\'/, 1 9©+U) 1 90+U) = A K GV
JE ou JE oy
that the constantsy, V,, ... must fulfill in order for the motion of the bodyathis thus

defined to be possible.

As a result of the formulas that were presentedctheact pointM will describe
parallel circles with constant velocity on the outefate of the body and the surfaSe.
The motion will be stationary.

The other particular solution will be given by the fatas:

v=0, v=vw, &=0 &=

N Y

, V=0, u=w, wvi=v,,

in whichvy andvip mean arbitrary constants.

WhenU satisfies the condition (60), the last two of the ¢égua of motion (57) and
the second of the condition equations (59) will be felfii The remaining two formulas
(57) and (59) serve to determine the coordinatasdu; in terms of timd. If we replace
formula (57) with thevis vivaintegral in that way then we will get the two equations

JEUu=JEu,  (Mp?+A) r?=2U + const,

from which the variables andu; can be determined by quadratures.

The contact poinyl describes meridians on the surfaBesdS; .

In order to get a particular solution of equations (57)rwiene of the coordinates of
the body is cyclic, we consider the motion of a rigatly that is bounded by the outer
surface of an ellipsoi&:
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that rolls on an immobile ellipsoffwith the same semi-axes:
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under the action of a force that points from the cevftenassO of the body to the center
O, of the immobile ellipsoid and depends upon only the dist&Cg between the two

pointsO andO; . The force functiot is a function of0Q, then, in which:

00 =2@+bP+P) —u—v-ut -V
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If we assume that the mass distribution in the bedych that the moments of inertia
A andC about the largest and smallest of the axes of lips@d S resp., are equal to
each other, such that, from (50):

2@:('\/'[12+A)(02+r2+n2)—'\/'£ 99 ,,0P 1T
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then it will be clear that a motion of the body twe ellipsoidS, must be possible for
which the contact poiril describes central circular segments on the swgfaaadsS :

U = U, Vi =V, u+v=a’+c.

Since the projections of the instantaneous angudéocity w of the body onto the
middle axis of the ellipsoi® and the directio®©®M will be equal to zero for that motion,

we can obviously start by replacing the simplenfaf O
20 =M A +A)(d?+ 1%+
in (57). It will not be difficult then to convinceurselves that equations (57) and (59)

actually admit the cited particular solution, inielhthe angle? and the time are given
by the formulas:

1 Db*@@®+c®)-2uv (u-v)du
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v=a’+c?—u,

tan 9=

+ const.

in which ap denotes the constant angular velocity of the body.
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