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 The handful of particular solutions to the problem of the motion of a rigid body that 
rolls on a given surface that have been investigated up to now refer to mainly two special 
cases.  One treats either the motion of a rigid ball that rolls on an arbitrary surface (*) or 
the motion of an arbitrary rigid body that rolls on a plane under the action of gravity (** ). 
 In the present work, it shall be shown that most of the results that have been achieved 
by the treatment of the aforementioned two problems can be easily extended to the more 
general problem of the motion of a rigid body that rolls on a sphere with almost no 
restrictions.  In that problem, gravity will be replaced with a force that points from the 
center of mass of the body to the center of the sphere and depends upon only the distance 
between those points. 
 The study of that problem will define the contents of Chapter III. 
 In Chapter IV, the equations of motion of a rigid body that rolls without slipping on 
an arbitrary surface will be developed and some simple particular solutions of it will be 
given. 
 The first two chapters (*** ) can be regarded as an introduction to the two 
aforementioned ones. 
 Chapter I includes some theorems on the kinematics of rolling motion.  Those 
theorems will be employed in order to determine the projections of the instantaneous 
angular velocity of the rolling body onto axes that are fixed in the body by means of C. 
Neumann’s coordinates (†). 

                                                
 (*) That problem was discussed quite thoroughly in the more celebrated textbooks on dynamics; e.g., 
in Routh (“The advanced part of a treatise on the dynamics of a system of rigid bodies,” Chap. V).  Cf., 
also the interesting Dissertation of Fr. Noether, “Über die rollende Bewegung einer Kugel auf 
Rotationsflächen,” Munich, 1909. 
 (** ) For the literature on that topic, cf., Enc. math. Wiss. IV 6 (P. Stäckel), “Elementare Dynamik der 
Punktsysteme und starren Körper,” no. 38. 
 (*** )  Cf., also my Russian treatises: “On the equations of motion of non-holonomic systems,” Moscow 
math. Collection 1902 and “The equations of motion of a rigid body that rolls without slipping on a plane at 
rest,” Kiev Univ. Reports 1903. 
 (†) C. Neumann, “Grundzüge der analytischen Mechanik,” Leipziger Berichte (1899).  Cf., also, 
Vierkandt, “Über gleitende und rollende Bewegung,” Monatshefte für Math. und Physik 3 (1892). 
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 In Chapter II, a method will be given for exhibiting the equations of motion of non-
holonomic systems (without the Euler-Lagrange multipliers) that is analogous to 
Hamilton’s method for holonomic systems as long as one has to calculate with only first-
order differential expressions that are functions of the independent velocities.  However, 
the number of those expressions will be larger for non-holonomic systems.  Along with 
the expressions for the force functions and the vis viva, there will also be as many 
expressions for the impulses as there are non-holonomic condition equations. 
 
 

CHAPTER I 
 

Kinematical examination of the motion of a rigid body that rolls on a given surface  
 

§ 1. – Introductory remarks. 
 

 In the present study of the problem of the motion of a rigid body that rolls without 
slipping on a given surface S1, following C. Neumann (*), one chooses the following 
quantities to be the coordinates of the body: The Gaussian coordinates u and v of the 
point M on the outer surface S of the body at which the surface S contacts the surface S1, 
the Gaussian coordinates u1 and v1 of the same point M on the surface S1, and the angle ϑ 
that the coordinate line v = const. makes with the coordinate line u1 = const. at the point 
M. 
 We imagine that an orthogonal system of coordinate axes Oxyz is fixed in the body, 
we let w and ω denote the velocity of the coordinate origin O and the instantaneous 
angular velocity of the rigid body, resp., and we pose the problem of expressing the 
projections k, l, m; p, q, r of the vectors w and ω, resp., onto the x, y, z axes, resp., in 
terms of the Neumann coordinates u, v, ϑ, u1, v1, and their differential quotients with 
respect to time uɺ , vɺ , ϑɺ , 1uɺ , 1vɺ , resp.  In order to do that, we will need to have some 

simple theorems and formulas from the theory of surfaces that we would like to derive in 
the following paragraphs using the method of Lord Kelvin (W. Thomson) and P. Tait (** ).  
In it, we shall employ the following notations: We denote the first and second-order 
fundamental quantities (*** ) of a surface S, which might be given by the equations: 
 

z = z (u, v), y = y (u, v), z = z (u, v), 
 
by E, F, G; D, D′, D″.  We think of a system of axes Muvn as being drawn at each point 
M of the surface S whose u, v, n-axes coincide with the positive directions of the lines u 
(v = const.) and v (u = const.) and the normal n to S at M.  The positive n-axis might be 
laid in relation to the u and v-axes in the same way that the z-axis lies with respect to the 

                                                
 (*) Ibid. 
 (** ) Thomson and Tait, Treatise on Natural Philosophy, vol. I, part. I, art. 110, et seq.  In an extended 
form, in Sonslov, “On the rolling of one surface on another,” Kiev Univ. Reports 1892, and in my treatise, 
“The rolling motion of a rigid body that rolls without slipping,” Chap. IV, ibid., 1903. 
 (*** ) Stahl and Kommerell, The Grundformeln der allgemeiner Flächentheorie, 1893, form. (4), § 1 and 
(1), § 2. 
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x and y-axes (*).  We shall denote the nine cosines of the angles between the u, v, n-axes 
and the x, y, z-axes by α, α′, …, γ″.  We will then have (** ): 
 

   α =
1 x

uE

∂
∂

, β =
1 x

vG

∂
∂

, γ =
1 y z z y

H u v u v

∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ 
, 

(1)  (H = + 2EG F− ), 

 ……………………………………………………….. 
 
 

§ 2. – Total bending, pure bending, and twisting. 
 

 Draw a curve L on the surface S, and let M and M1 be two infinitely-close points on L.  
Lay tangent planes T and T1 through the points M and M1, resp., and let ∆ε denote the 
infinitely-small angle between T and T1 , and let ∆s denote the length MM1 of the curve L.  
We carry the length ∆ε along the line of intersection of the planes T and T1 , and ∆s points 
in a direction such that that line segment lies in relation to the normals n1 and n at M1 and 
M, resp., in the same way that the z-axis lies in relation to the x and y-axes.  If we now let 
the point M1 approach the point M along L until they coincide then we will get a vector Ω 
in that way that we would like to call the total bending of the surface S at the point M in 
the direction L. 
 It is clear that the rolling motion of the surface S on the contacting plane T along the 
curve L means that the vector Ω that represents the component of the instantaneous 
angular velocity of the surface S in the plane, if that angular velocity is referred to a unit 
length, as G. Darboux did (*** ). 
 If we let γ, γ′, γ″ and γ1, 1γ ′ , 1γ ′′  denote the cosines of the angles that the normals n and 

n1 make with the x, y, z-coordinate axes, resp., then the projections of the vector Ω onto 
the x, y, z-axes will be: 

Ωx = 1 1

1
( )

s
γ γ γ γ′ ′′ ′′ ′−

∆
, 

………………………. 
If we substitute: 

γ1 = γ + 
u v

u s v s

γ γ∂ ∂ ∂ ∂ + ∂ ∂ ∂ ∂ 
∆s + …, 

…………………………………… 
 

in this and let ∆s go to zero then we will get: 
 

                                                
 (*) The positive z-axes should always be drawn in such a way that the positive x-axis will be made to 
coincide with the positive y-axis by means of a clockwise rotation around the positive z-axis through an 
angle of π / 2. 
 (** ) Ibid., form. (22) and (23), § 1. 
 (*** ) Darboux, Leçons sur la théorie générale des surfaces, v. V. 
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Ωx = 
u v

u u s v v s

γ γ γ γγ γ γ γ
′′ ′′∂ ∂ ∂ ∂ ∂ ∂   ′′ ′ ′′ ′− + −   ∂ ∂ ∂ ∂ ∂ ∂   

, 

………………………………………………….. 
 

However, as is known (*), one has: 
 

  H 2
u

γ∂
∂

 = (F D′ – G D)
x

u

∂
∂

+ (F D – E D′) x

v

∂
∂

, 

 

  H 2
v

γ∂
∂

 = (F D″ – G D′) x

u

∂
∂

+ (F D′ – E D″) x

v

∂
∂

, 

 
…………………………………………………, 

 
such that, from (1), one will have: 
 

  H ⋅⋅⋅⋅ Ωx = 
x x du x x dv

D D D D
v u ds v u ds

∂ ∂ ∂ ∂   ′ ′ ′′− + −   ∂ ∂ ∂ ∂   
, 

(2)  ……………………………………………………. 
 
 From (1), the projections of the vector Ω onto the directions u and v will then be 
equal to: 

  Ωu = 
1

( ) ( )
du dv

DF D E D F D E
ds dsH E

 ′ ′ ′′− + −  
, 

(3) 

  Ωv = 
1

( ) ( )
du dv

DG D F D G D F
ds dsH G

 ′ ′ ′′− + −  
. 

 
We now decompose the total bending Ω into two components: Ωs , which is in the 
direction of the curve L, and Ωp , which is the direction p that is perpendicular to s.  We 
would like to call Ωp the pure bending and Ωs the twisting of the surface S at M in the 
direction of L. 
 Geometrically, it is clear that the pure bending Ωp is equal to the curvature of the 
normal section to the surface S at the point M in the direction L.  In order to interpret the 
twisting Ωs , we draw a geodetic line through M in the direction L – i.e., a curve whose 
curvature plane always goes through the normal n to the surface S.  The line p is the 
binormal for that curve, such that Ωs will be equal to the torsion of the geodetic line that 
is drawn through M in the direction L. 
 The tangent to the curve L defines angles with respect to the x, y, z-axes whose 
cosines are equal to: 

                                                
 (*) Stahl and Kommerell, formula (6), § 2. 
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dx

ds
= 

x du x dv

u ds v ds

∂ ∂+
∂ ∂

, 

(4)  …………………….., 
 
such that formulas (2) will imply that: 
 

H ⋅⋅⋅⋅ Ωs ⋅⋅⋅⋅ ds2 = (DF – D′E) du2 + (DG – D″E) du dv + (D′G – D″F) dv2. 
 
 The lines for which the twisting is equal to zero are the curvature lines of the surface 
S.  In general, two such lines will go through any point M on the surface S then.  When 
the relations: 

D : E = D′ : F = D″ : G 
 
are fulfilled at each point of the surface S, each line on S will be a line of curvature; i.e., 
the surface S will be a sphere.  If we exclude that case and choose the lines of curvature 
to be the u and v-lines then we will have: 
 

F = 0, D′ = 0 
 
at each point of the surface.  The lines of curvature will then define an orthogonal net of 
coordinate lines (*). 
 We now go on to the determination of the pure bending Ωp . 
 The direction p is perpendicular to the tangent s to the curve L and the normal n to the 
surface S, so one will have: 
 

cos (p, x) = 
dz dy

ds ds
γ γ′ ′′− = 

z y du z y dv

u u ds v v ds
γ γ γ γ∂ ∂ ∂ ∂   ′ ′′ ′ ′′− + −   ∂ ∂ ∂ ∂   

, 

…………………………………………………………………….., 
 
or, from (1): 

 H cos (p, x) = 
x x du x x dv

E F F G
v u ds v u ds

∂ ∂ ∂ ∂   − + −   ∂ ∂ ∂ ∂   
, 

(5)  ………………………………………………………. 
 
 We imagine the positive direction of the p-axis as being laid with respect to the s and 
n-axes in the same way that the y-axis lies in relation to the x and z-axes. 
 As a result of (5), formulas (2) will imply that: 
 

Ωp ⋅⋅⋅⋅ ds2 = D du2 + 2D′ du dv + D″ dv2. 
 

 The lines along which the pure bending is equal to zero are the asymptotic lines.  In 
general, two such lines go through each point of the surface. 
 

                                                
 (*) Stahl and Kommerell, formula (10), § 1. 
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§ 3. – The spinning of the tangent plane. 
 

 We again imagine the tangent planes T and T1 to the surface S at two infinitely-close 
points M and M1, resp., of the curve L, and let ∆s denote the length MM1 of the curve L.  
We draw the tangents s and s1 to the curve L in the planes T and T1 at the points M and 
M1 .  If we now rotate the plane T around the axis of the total bending through the angle 
∆ε then the plane T will coincide with the plane T1 , but in general, the line s will not 
point along the line s1 , and in order to make the lines s and s1 coincide, we must rotate 
the tangent plane T around the normal n to S at M through an infinitely-small angle ∆η.  
We lay out the line segment ∆η : ∆s along the normal n and let the point M1 approach the 
point M along the curve L until they coincide.  We call the vector N that results in this 
way the spinning (das Kreiseln) of the tangent plane T at the point M in the direction L. 
 Obviously, N is equal to the magnitude of the geodetic curvature of the curve L at the 
point M ; i.e., the projection of the curvature 1 / ρ of the curve L onto the tangent plane T: 
 

N = ± 
1

ρ
cos (ρ, p). 

 
 If we give p the direction that is defined by formulas (5) and choose the lower sign in 
the expression for N then the tangent plane will rotate around n in a counterclockwise 
motion. 
 For a rolling motion of the surface S along the plane T, which is at rest, along the 
curve L, N will then be the components of the instantaneous angular velocity of the 
surface S along the normal n when that angular velocity is referred to unit length. 
 N shall now be expressed in terms of the quantities E, F, G. 
 If we denote: 

du dv
E F

ds ds
+ = k1 , 

du dv
F G

ds ds
+  = k2 , 

 
for brevity, such that we will have (*): 
 

(5)  1 2

du dv
k k

ds ds
+  = 1 

then (5) will imply that: 

     H cos (p, x) = 1 2

x x
k k

v u

∂ ∂−
∂ ∂

, 

     ……………………………. 
  
 In addition, we have, as is known: 
 

cos (ρ, x) = 
2

2

d x

ds
ρ , 

…………………… 

                                                
 (*) Stahl and Kommerell, formula (3), § 1. 
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such that: 

N = − cos( , )pρ
ρ

 = 
2 2

2 1
2 2

k kx d x x d x

H u ds H v ds

   ∂ ∂+ − +   ∂ ∂   
⋯ ⋯ . 

 
However, from (6), one has: 
 

2

2 2

x d x
k

u ds

 ∂ + ∂ 
⋯ = 2 11

x dx du x dx du
k k

u u ds ds u v ds ds

 ∂ ∂  ∂ ∂      + + + −        ∂ ∂ ∂ ∂        
⋯ ⋯ , 

……………………………………………………………………………….. 
 

 If we substitute that in N then, as a result of the obvious formula: 
 

2 2 2
dx dy dz

ds ds ds
     + +     
     

= 1, 

 
the coefficients of k1 and k2 will be equal to zero, and we will get: 
 

    N =
1 1x dx du x dx

H v u ds ds H u v ds

∂ ∂ ∂ ∂   + − +   ∂ ∂ ∂ ∂   
⋯ ⋯ , 

or, from (4): 

(7)    N =
1 1du dv du dv

E F F G
H v ds ds H u ds ds

∂ ∂   + − +   ∂ ∂   
. 

 
That is the desired formula. 
 If the curve L is given by the equation: 
 

f (u, v) = 0 
then we will have: 
 

du
f

v

∂
∂

 = 
dv

f

u

∂−
∂

 = 
ds

h
, h2 = 

2 2

2
f f f f

E F G
v v u u

∂ ∂ ∂ ∂   − +   ∂ ∂ ∂ ∂   
, 

 
and (7) will go to the known formula of Bonnet: 
 

N = 
1

f f f f
E F F G

v u v u
H v h u h

 ∂ ∂ ∂ ∂    − −    ∂ ∂∂ ∂ ∂ ∂−    ∂ ∂    
     

. 

 
 For geodetic lines, the projection of the curvature 1 / ρ onto the tangent plane is equal 
to zero, and therefore, N, as well. 
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§ 4. – Application to the problem of rolling motion. 
 

 We would now like to utilize the formulas of the previous two paragraphs in order to 
solve the problem that we posed in § 1.  If ω is the instantaneous angular velocity of a 
rigid body that rolls on a given surface S1 then we will have to determine the projections 
p, q, r of ω into the x, y, z-axes, resp., which are fixed in the body, in terms of the 
coordinates u, v, ϑ, u1, v1 of the body and the differential quotients uɺ , vɺ , ϑɺ , 1uɺ , 1vɺ . 

 We introduce the following notations: Let E, F, G ; D, D′, D″ be the fundamental 
quantities of the outer surface S of the body, and let E1 , F1 , G1 ; D1 , 1D′ , 1D′′  be the same 

quantities for the surface S1 upon which the body rolls.  For the sake of simplicity, we 
shall assume that the lines u and v on S and the lines u1 and v1 on S1 are the lines of 
curvature of those surfaces: 

F = 0, D = 0, F1 = 0, 1D′ = 0. 

 
 n 

n1 

u2 v v1 

u 
ϑ 

M 

 
Figure 1. 

 
 We imagine two systems of axes Muvn and Mu1v1n1 (Fig. 1) being drawn through the 
point of contact M between the surfaces S and S1 whose axes coincide with the tangents 
to the lines u, v; u1 , v1, resp., through the points M and the common normal to S and S1, 
and consider the instantaneous angular velocity ω to be the geometric sum of three 
vectors ω1, ω2, ω3 : 

(ω) = (ω1) + (ω2) + (ω3) , 
 
in which ω1 means the angular velocity of the system of axes Oxyz that is fixed in the 
body with respect to the system Muvn, ω2 is the angular velocity of the system Muvn with 
respect to M1u1v1n1, and ω3 is the angular velocity of the system M1u1v1n1 with respect to 
the system of axes O1x1y1z1 that is fixed in the surface S1 . 
 If the point of contact M on the surface S is shifted along the curve u through the 

segment E duthen, from (3), the component of the angular velocity ω1 that lies in the 

tangent plane T will point along the curve v and will be equal to D : E per unit length, 

while, from (7), the component along the normal n will equal 
1 1

2

E

E vG

∂
∂

, also per unit 
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length.  If we then shift the contact point M along the curve v through the segment 

G dv then we will easily find that: 

 

  ω1 cos (ω1 , u) = σ1 = − D
v

G

′′
ɺ , 

(8)  ω1 cos (ω1 , v) = τ1 =
D

u
E
ɺ , 

  ω1 cos (ω1 , n) = n1 =
1

2

E G
u v

v uEG

∂ ∂ − ∂ ∂ 
ɺ ɺ . 

 
 The angular velocity ω2 points along the normal n1 and is equal to ϑɺ , while the 
angular velocity ω2 is determined similarly to ω1 .  From Fig. 1, we will then get the 
following formulas: 
 

  ω cos (ω, u) = σ = − 1 1
1 1

1 1

sin cos
D DD

v v u
G G E

ϑ ϑ′′′′
− −ɺ ɺ ɺ , 

(9)  ω cos (ω, v) = τ =    1 1
1 1

1 1

sin cos
D DD

u u v
E E G

ϑ ϑ′′
− +ɺ ɺ , 

  ω cos (ω, n) = n = 1 1
1 1

1 11 1

1 1

2 2

E GE G
u v u v

v u v uEG E G
ϑ

 ∂ ∂∂ ∂ + − + −  ∂ ∂ ∂ ∂   

ɺ ɺ ɺ ɺ ɺ  

 
and that will give the desired expressions for p, q, r : 
 
(10) p = σ α + τ β + n γ ,      q = σ α′ + τ β′ + n γ′ ,      r = σ α″ + τ β″ + n γ″ , 
 
 We move on to the determination of the projections k, l, m of the velocity w of the 
coordinate origin O onto the x, y, z-axes.  To that end, we consider the motion of the 

contact point M.  The absolute velocity v1 of the point M has the quantities 1 1E uɺ  and  

1 1G vɺ  for its components along the curves u1 and v1 , resp.  The components of the 

relative velocity v of the point M along the lines u and v are equal to E uɺ  and G vɺ , 

resp.  Finally, the velocity w of the point of the rigid body that coincides with the contact 

point M at the given moment will have k + qz − ry, l + rx – pz, m + py – qx for its 
projections onto the x, y, z-axes, resp., where x, y, z are the coordinates of the point M, 
and are thus given functions of u and v.  However, the vector v1 is equal to the geometric 

sum of the vectors v and w : 

(v1) = (v) + (w), 

 
such that, from Fig. 1 and (10), if we project the velocities v1, v, and w onto the x, y, z-

axes then we will get: 
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 k = ( )1 1 1 1sin cosE u G v E uϑ ϑ α− + −ɺ ɺ ɺ  

(11) + ( )1 1 1 1cos sinE u G v G vϑ ϑ β+ −ɺ ɺ ɺ  

  + y (σ α″ + τ β″ + n γ″ ) – z (σ α′ + τ β′ + n γ′ ), 
  …………………………………………………. 
 
 These formulas determine the quantities k, l, m as functions of the coordinates u, v, ϑ, 
u1, v1 of the rigid body and the differential quotients uɺ , vɺ , ϑɺ , 1uɺ , 1vɺ . 

 Should the rolling motion of the body proceed without slipping, then the absolute 
velocity v1 of the point M would be geometrically equal to its relative velocity v, and 

from Fig. 1, we would get: 

 1 1E uɺ  = − sin cosE u G vϑ ϑ+ɺ ɺ , 

(12) 

 1 1G vɺ  =   cos sinE u G vϑ ϑ+ɺ ɺ . 

 
 Formulas (11) simplify to the following ones: 
 
 k = (y α″ – z α′ ) σ + (y β″ – z β′ ) + (y γ″ – z γ′ ) n, 
(13) ……………………………………………………. 
 
in that case, and we can eliminate two of the quantities uɺ , vɺ , ϑɺ , 1uɺ , 1vɺ  from the 

expressions (9) for σ, τ, n with the help of (12). 
 
 

CHAPTER II 
 

On the equations of motion of non-holonomic systems 
 

§ 5. – Eliminating the Lagrange multipliers from the equations of motion. 
 

 The motion of a rigid body that rolls without slipping on a given surface serves as an 
example of the motion of a non-holonomic system. 
 Before we go on to the special problems of rolling motion, we would like to discuss 
the equations of motion of non-holonomic systems in the general case. 
 We let q1, q2, …, qn+k denote the coordinates of a material system, let 1qɺ , 2qɺ , …, n kq +ɺ  

denote the differential quotients of the coordinates with respect to time t (i.e., the 
generalized velocities), let T (t, q1, q2, …, qn+k, 1qɺ , 2qɺ , …, n kq +ɺ ) denote the kinetic energy 

of the system, and let Qs denote the generalized force that corresponds to the coordinate 
qs .  The product Qs δqs then determine the work done by the force that is acting under a 
motion of the system when all coordinates are constant, except for the coordinate qs , 
which increases by δqs . 
 Let the material system be subject to the condition equations: 
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(14)    nq ν+ɺ = 
1

n

i i
i

a q aν ν
=

+∑ ɺ   (ν = 1, 2, …, k), 

 
where the coefficients aνi and aν denote given functions of time and the coordinates. 
 We will assume that the integration conditions for the differential equations (14) are 
not fulfilled, such that the quantities: 
 

  ( )
ijA ν = 

1 1

k k
j ji i

j i
j n i n

a aa a
a a

q q q q
ν νν ν

µ µ
µ µµ µ= =+ +

   ∂ ∂∂ ∂+ − +     ∂ ∂ ∂ ∂  
∑ ∑ , 

(15) 

  ( )
iA ν = 

1 1

k k
i i

i
n i n

a a a a
a a

t q q q
ν ν ν ν

µ µ
µ µµ µ= =+ +

   ∂ ∂ ∂ ∂+ − +      ∂ ∂ ∂ ∂   
∑ ∑ , 

 
(i, j = 1, 2, …, n; ν = 1, 2, …, k) 

 
cannot all be simultaneously zero. 
 When the Lagrange multipliers are denoted by λ1, λ2, …, λk , the equations of motion 
of material system can be written out thus: 
 

  
i

d T

dt q

∂
∂ ɺ

= 
1

k

i k i
i

T
Q a

q ν
ν

λ
=

∂ + −
∂ ∑   (i = 1, 2, …, n), 

(16) 

  
n

d T

dt q ν+

∂
∂ ɺ

= n
n

T
Q

q ν ν
ν

λ+
+

∂ + +
∂

  (ν = 1, 2, …, k). 

   
 Those equations and the conditions (14) define a system of n + 2k differential 
equations that determine the n + k coordinates q and the k quantities λ as functions of 
time t. 
 The application of the equations of motion in the form (16) to special problems – in 
particular, to the problem of rolling motion – will encounter some difficulties, first of all, 
because the multipliers λ cannot be eliminated from (16), and secondly, because the 
function T is not used in its simplest form with the help of the condition equations (14) 
(*); i.e., T is a quadratic function of n + k arguments qɺ , while the formulas (14) yield the 
possibility of expressing T as a quadratic function of only n arguments qɺ .  For that 
reason, we would like to seek to obtain the equations of motion of non-holonomic 
systems in a form that is more convenient for the applications (** ). 

                                                
 (*) Cf., e.g., Hölder, “Über die Prinzipien von Hamilton und Maupertuis,” Nachrichten der Kgl. 
Gesellschaft der Wissenschaften zu Göttingen (1896) or Hadamard, “Sur les mouvements de roulement,” 
Mémoires de la Société des science physiques et naturelles de Bordeaux 5 (1895). 
 (** ) Cf., also V. Volterra, “Sopra una classe di equazioni dinamiche,” Torino Atti 33 (1898); P. Appel, 
“Remarques d’order analytique sur une nouvelle forme des équations de la dynamique,” J. de math. 7 
(1901); L. Boltzmann, “Über die form der Lagrangeschen Gleichungen für nichtholonome, generalisierte 
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 If the dependent velocities 1nq +ɺ , 2nq +ɺ , …, n kq +ɺ  are eliminated from the function T 

with the use of (14): 
T = Θ (t, q1 , q2 , …, qn+k , 1qɺ , 2qɺ , …, nqɺ ) 

then: 

iq

∂Θ
∂ ɺ

= 
1

k

i
i n

T T
a

q qν
ν ν= +

∂ ∂+
∂ ∂∑
ɺ ɺ

 (i = 1, 2, …, n). 

 
If we differentiate these equations with respect to time and apply formulas (16) then we 
will have: 
 

i

d

dt q

∂Θ
∂ ɺ

= 
1 1

k k
i

i i n
i n n

daT T
Q a Q

q q dt q
ν

ν ν
ν νν ν

+
= =+ +

 ∂Θ ∂ ∂+ + + + ∂ ∂ ∂ 
∑ ∑

ɺ
 (i = 1, 2, …, n). 

 
These equations no longer contain the multipliers λ. 
 If we then eliminate the derivatives of T with respect to the coordinates qs with the 
help of the obvious formulas: 

 

sq

∂Θ
∂

= 
1 1

k n
i

i
is n n s

a aT T
q

q q q q
ν ν

ν ν= =+

 ∂ ∂∂ ∂+ + ∂ ∂ ∂ ∂ 
∑ ∑
ɺ

 (s = 1, 2, …, n + k) 

 
and denote the generalized impulses that correspond to the dependent velocities by K1, 
K2, …, Kk : 
 

n

T

q ν+

∂
∂ ɺ

 = Kν (t, q1 , q2 , …, qn+k , 1qɺ , 2qɺ , …, nqɺ ) (ν = 1, 2, …, k) 

 
then after a brief calculation, we will get the equations of motion of a non-holonomic 
system in the form: 
 

(17)  
i

d

dt q

∂Θ
∂ ɺ

= ( ) ( )

1 1 1

k k n

i i n ij j i
ji n

Q a Q K A q A
q q

ν ν
ν ν ν

ν νν
+

= = =+

  ∂Θ ∂Θ+ + + + +  ∂ ∂   
∑ ∑ ∑ ɺ   

 
(i = 1, 2, …, n). 

 
 The quantities ( )

ijA ν  and ( )
iA ν  in this have the meanings that were given in (15). 

 The n + k differential equations (17) and (14) determine the n + k coordinates q in 
terms of time t. 
 
 

                                                                                                                                            
Koordinaten,” Sitzungsberichte der Wiener Akademie 111, Abt. IIa (1902); G. Hamel, “Die Lagrange-
Eulerschen Gleichungen der Mechanik,” Zeit. Math. Phys. 50 (1903). 
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§ 6. The equations of motion in special cases. 
 

 As is known (*), the motion of a non-holonomic system is still not determined 
completely when the expression Θ for the kinetic energy of the system and the 
expressions Qs for the generalized forces are given.  In fact, the equations of motion (17) 
still include the functions Kν , and therefore just as many generalized impulses as non-
holonomic condition equations.  Those functions Kν are first-order differential 
expressions, and their calculation presents no complications, at least, in the problem of 
rolling motion. 
 As is easy to see, for the case in which the integrability conditions for (14) are 
fulfilled: 

( )
ijA ν = 0, ( )

iA ν = 0 (i, j = 1, 2, …, n ; ν = 1, 2, …, k), 

 
formulas (17) go over to the Lagrange conditions equations. 
 We shall refer to the following special cases that frequently occur in the applications.  
The coordinates qn+1 , qn+2 , …, qn+k , which correspond to the eliminated velocities, 
might be “cyclic”; i.e., those coordinates might not be included in either the kinetic 
energy, the expressions Qs , or ultimately the condition equations (14).  The problem of 
the determination of the coordinates in terms of time will then split into two autonomous 
problems that are solved in succession.  First of all, we seek the non-cyclic coordinates 
q1, q2, …, qn .  In order to do that, we must integrate the n second-order differential 
equations (17), in which we have replaced: 
 

nq ν+

∂Θ
∂

= 0, ( )
ijA ν = ji

j i

aa

q q
νν ∂∂ −

∂ ∂
, ( )

iA ν = i

i

a a

t q
ν ν∂ ∂−

∂ ∂
 

 
(i, j = 1, 2, …, n ; ν = 1, 2, …, k). 

 
When that problem has been solved, we determine the cyclic coordinates qn+1 , qn+2 , …, 
qn+k from the condition equations (14) by quadratures. 
 If we now assume that a force function U exists: 
 

Qs = 
s

U

q

∂
∂

  (s = 1, 2, …, n + k), 

 
which also depends upon the first n coordinates, then one will obviously have the 
following theorem, which was first presented by Ferrers (** ): 
 
 If the condition equations: 
 

( )
1, jA ν = 0, ( )

1A ν = 0 (j = 1, 2, …, n ; ν = 1, 2, …, k) 

                                                
 (*) Cf., e.g., P. Appell, “Sur une forme générale des équations de la dynamique et sur le principe der 
Gauss,” J. f. reine u. angew. Math. 122 (1900), 205-208. 
 (** ) Ferrers, “Extension of Lagrange’s equations,” Quart. J. of math. 45 (1878).  
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are fulfilled for one of the coordinates – e.g., for q1 – then the corresponding equation of 
motion will have the Lagrangian form. 
 
 If the time t is not included explicitly in the kinetic energy T, the force function U, or 
the condition equations (14) then the coefficients a1 , a2 , …, an must all be equal to zero 
in (14), since otherwise the rest position would not belong to the possible positions of the 
system, which was not assumed.  If the coordinates qn+1 , qn+2 , …, qn+k are cyclic, as well, 
then the equations of motion (17) will assume the simple form: 
 

i

d

dt q

∂Θ
∂ ɺ

= 
1

k
ji

j
i i j i

aaU
K q

q q q q
νν

ν
ν =

 ∂∂∂Θ ∂+ + −  ∂ ∂ ∂ ∂ 
∑ ɺ   (i = 1, 2, …, n). 

 
 Those equations were given by Chaplygin (*). 
 
 

§ 7. – A formula for non-holonomic systems that is analogous to 
the Hamilton integral. 

 
 The equations of motion for a non-holonomic system in the form (17) will be 
obtained very easily with the help of the following theorem: 
 
 Let q1 , q2 , …, qn+k denote the coordinates of a material system, let T be its kinetic 
energy, and let Qs be the generalized force that corresponds to the coordinate qs .  The 
system might be subject to the condition equations: 
 

nq ν+ɺ  = 
1

n

i i
i

a qν
=
∑ ɺ  + aν  (ν = 1, 2, …, k). 

 
If we use those equations to express the kinetic energy of the system and the generalized 
impulses that corresponds to the dependent velocities 1nq +ɺ , 2nq +ɺ , …, n kq +ɺ in terms of time 

t, the coordinates q1 , q2 , …, qn+k , and the independent velocities 1qɺ , 2qɺ , …, kqɺ : 

 
 T  = Θ (t, q1 , q2 , …, qn+k , 1qɺ , 2qɺ , …, kqɺ ) 

 

 
n

T

q ν+

∂
∂ ɺ

 = Kν (t, q1 , q2 , …, qn+k , 1qɺ , 2qɺ , …, kqɺ ) (ν = 1, 2, …, k) 

 
then we will have the formula: 
 

                                                
 (*) Chaplygin, “On the motion of a heavy body of revolution on a horizontal plane,” Reports of the 
physical section, no. 9, Moscow, 1897. 
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(18)  
2

1
1 1 1

t n k k n

s s n i i
s it

Q q K q a q a dtν ν ν ν
ν

δ δ δ
+

+
= = =

  Θ + + − −  
  

∑ ∑ ∑∫ ɺ ɺ  = 0 

 
for all variations δq1 , δq2 , …, δqn that vanish at the moments t1 and t2 .  δqn+1 , δqn+2 , …, 
δqn+k are defined by the equations: 

(19)     δqn+ν = 
1

n

i i
i

a qν δ
=
∑   (ν = 1, 2, …, k), 

 

and the differences s s

d
q q

dt
δ δ−ɺ  are all set equal to zero. 

 
 In fact, as a result of (19), (18) can be transformed by partial differentiation in such a 
way that a linear function of the variations δq1 , δq2 , …, δqn will appear under the 
integral sign.  If we set the coefficients of those variations equal to zero then we will 
obtain the equations of motion (17). 
 We would like to make the following remarks in regard to formula (18) (*). 
 If we consider the conditions (14) for the velocities and the conditions (19) for the 
variations simultaneously and set: 
 

i i

d
q q

dt
δ δ−ɺ = 0  (i = 1, 2, …, n) 

 

then the differences n n

d
q q

dtν νδ δ+ +−ɺ  (ν = 1, 2, …, k) will be non-zero, in general.  If we 

then multiply the known d’Alembert formula: 
 

1

n k

s s
s s s

d T T
Q q

dt q q
δ

+

=

  ∂ ∂− + +  ∂ ∂  
∑

ɺ
= 0 

 
by dt and integrate between t1 and t2 , in which t1 and t2 denote two moments at which all 
variations vanish, then we will get the formula: 
 

(20)  
2

1
1 1

t n k k

s s n n
s nt

T d
T Q q q q dt

q dt ν ν
ν ν

δ δ δ δ
+

+ +
= = +

 ∂  + + −  ∂   
∑ ∑∫ ɺ

ɺ
 = 0. 

 

 If we replace the functions T and 
n

T

q ν+

∂
∂ ɺ

 in this with Θ and Kν , resp., and calculate the 

differences n n

d
q q

dt ν νδ δ+ +− ɺ  (ν = 1, 2, …, k) directly from (14) and (19) then we will get 

                                                
 (*) On this, cf., my treatise and the treatise of Souslov in v. 22 of the Moscow Mathematical Collection, 
1901. 
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the equations of motion (17) from (20) in a manner that is similar to how we got them 
from (18). 
 The reason that we prefer the formula (20) over the formula (18) is as follows: 
 When one examines the problem of rolling motion, one does not usually employ the 
generalized velocities, but one introduces linear functions of them into the corresponding 
formulas.  Hence, e.g., the differential quotients ϕɺ , ψɺ , θɺ  of the three Euler angles ϕ, ψ, 

θ with respect to time t are ordinarily replace with the projections p, q, r of the 
instantaneous angular velocities of the rolling bodies onto its central principal axes of 
inertia: 

p = sin sin cosϕ θ ψ ϕ θ−ɺ ɺ , 
………………………….. 

 
 If we, with Kirchhoff (*), consider the quantities p′, q′, r′ : 
 

p′ = δϕ sin θ – δψ sin ϕ cos θ, 
………………………………., 

 
along with the quantities p, q, r, then we must employ formula (18) to ascribe the 
meaning to the differences δp – dp′ / dt , etc., that Kirchhoff (** ) gave to them: 
 

δp − 
dp

dt

′
 = q r′ – r q′, 

……………………… 
 

However, if we had chosen formula (20) then the aforementioned differences would have 
other values that would depend upon the form of the non-holonomic condition equations.  
For that reason, the investigation would take a somewhat more complicated form if we 
had started from formula (20), instead of (18). 
 
 

§ 8. – Introducing linear functions of velocity into the equations of motion. 
 

 The equations of motion (17) and the formula (18) shall now be generalized in such a 
way that the velocities qɺ  will be replaced with arbitrary linear functions of them in the 
equations of motion.  We denote those functions by p1 , p2 , …, pn+k  and set: 
 

(21)    rqɺ  = 
1

n k

rs s
s

pα
+

=
∑ + αr  (r = 1, 2, …, n + k), 

 
in which the coefficients αrs and αr depend upon the time t and the coordinates q. 
 We will assume that equations (21) can be solved for the variables p. 
 Along with p, we also consider n + k quantities p′ that satisfy the equations: 

                                                
 (*) Kirchhoff, Vorlesungen über mathematische Physik, Bd. I, lect. VI.  
 (** ) Ibid., formula (9).  
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(22)   δqr = 
1

n k

rs s
s

pα
+

=

′∑   (r = 1, 2, …, n + k). 

 
 One can then calculate the differences δqs – /sdp dt′  (s = 1, 2, …, n + k) from the 

conditions: 

  rqδ ɺ = r

d
q

dt
δ    (r = 1, 2, …, n + k) 

 
as linear functions of the p′ : 
 

(23)   δps − sdp

dt

′
= 

1

n k

sr r
r

P p
+

=

′∑   (s = 1, 2, …, n + k), 

 
in which the coefficients Psr are linear functions of the p. 
 Let the non-holonomic condition equations be expressed in terms of the quantities p : 
 

(24)   pn+ν = 
1

n

i i
i

b pν
=
∑ + bν  (ν = 1, 2, …, k), 

 
in which the bνi and bν depend upon time t and the coordinates q. 
 The equations of motion of the material system then have the form (*): 
 

 
i

d T

dt p

∂
∂

 = 
1 1 1

n k n k k

ri r ri i
r rr r

T T
Q P b

q p ν ν
ν

α λ
+ +

= = =

 ∂ ∂+ + − ∂ ∂ 
∑ ∑ ∑   (i = 1, 2, …, n), 

(25) 

 
n

d T

dt p ν+

∂
∂

= , ,
1 1

n k n k

r n r r n
r rr r

T T
Q P

q pν ν να λ
+ +

+ +
= =

 ∂ ∂+ + + ∂ ∂ 
∑ ∑   (ν = 1, 2, …, k) . 

 
 Here, T denotes the kinetic energy of the system, Qs , the generalized force that 
corresponds to the coordinate qs , and λ1 , λ2 , …, λk are Lagrange multipliers.  From (21), 
T is a function of time t, the coordinates q, and the quantities p. 
 The formulas (25), (24), and (21) define a system of 2n + 3k first-order differential 
equations that determine the n + k coordinates q, the n + k quantities p, and the 
multipliers λ as functions of time t. 
 We can say the same thing in regard to formulas (25) that we expressed above in 
regard to the equations of motion (16).  An application of (25) to the problem of rolling 
motion will encounter difficulties firstly, because the multipliers λ have not been 
eliminated from (25) and secondly, because the function T is included in (25), and it has 
not been converted into its simplest form by the use of (24). 

                                                
 (*) Cf., e.g., the method by which G. Kirchhoff (ibid., Lect. VI) derived the differential equations of the 
motion of a rigid body.  See also the treatise of K. Heun, “Die Bedeutung des D’Alembertschen Prinzipes 
für starre Systeme und Gelenkmechanismen,” Arch. Math. Phys. (3) 2 (1902), § 17. 
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 By eliminating the λ from (25) using the method that was applied in § 5, we will 
come to the equations of motion, which can be derived most easily from the following 
theorem, which is analogous to the theorem in § 7: 
 
 If we express the kinetic energy T and the derivatives of T with respect to the 
quantities pn+1 , pn+2 , …, pn+k  as function of time t, the coordinates q, and the quantities 
p1 , p2 , …, pn  : 
 T  = Θ (t, q1 , q2 , …, qn , p1 , p2 , …, pn), 
 

 
n

T

p ν+

∂
∂

 = Kν (t, q1 , q2 , …, qn , p1 , p2 , …, pn) (n = 1, 2, …, k) 

 
then the integral expression: 
 

(26)   
2

1
1 1 1

t n k k n

r r n i i
r it

Q q K p b p b dtν ν ν ν
ν

δ δ δ
+

+
= = =

  Θ + + − −  
  

∑ ∑ ∑∫  

 
will vanish for all 1p′ , 2p′ , …, np′  that vanish at the limits.  The quantities 1np +′ , 2np +′ , …, 

n kp +′  are eliminated with the help of the formulas: 

 

(27)     np ν+′  = 
1

n

i i
i

b pν
=

′∑    (ν = 1, 2, …, k), 

 
the variations δq1 , δq2 , …, δqn+k are eliminated with the help of (22), and the differences 
δp – dp′ / dt  are calculated from (21) and (22) and the conditions: 
 

  rqδ ɺ  = r

d
q

dt
δ    (r = 1, 2, …, n + k). 

 
 

§ 9. – Application to the problem of rolling motion. 
 

 We shall now move on to the special problem of the motion of a rigid body that rolls 
without slipping on a given surface S1 under the action of given forces. 
 We imagine two orthogonal coordinate systems Oxyz and O1 x1 y1 z1 , the former of 
which is fixed in the rigid body, and the latter of which is fixed in the surface S1 . 
 The coordinates of the body are the coordinates a, b, c of its point O relative to the 
system of axes O1 x1 y1 z1 and the three Euler angles ϕ, ψ, θ, which determine the position 
of the x, y, z axes relative to the x1 , y1 , z1 axes. 

 In place of the generalized velocities aɺ , bɺ , cɺ , ϕɺ , ψɺ , θɺ  we introduce linear 
functions of them by way of the formulas: 
 

 k = aɺ  cos (x, x1) + bɺ  cos (x, y1) + cɺ  cos (x, z1),  p = ϕɺ  sin θ – ψɺ  sin ϕ cos θ, 
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 l  = aɺ  cos (y, x1) + bɺ  cos (y, y1) + cɺ  cos (y, z1),  q = ϕɺ  cos θ + ψɺ  sin ϕ sin θ, 

 m = aɺ  cos (z, x1) + bɺ  cos (z, y1) + cɺ  cos (z, z1),  r = θɺ  + ψɺ  cos ϕ, 
 

in which the nine cosines are known functions of the Euler angles. 
 As in § 1, the quantities k, l, m ; p, q, r denote the projections onto the x, y, z axes of 
the velocity w of the point O and the instantaneous angular velocity ω of the body, resp. 
 If we introduce the additional quantities k′, l′, m′ ; p′, q′, r′ by way of the formulas: 
 

k′ = δa cos (x, x1) + δb cos (x, y1) + δc cos (x, z1);  p′  = δϕ sin θ – δψ sin ϕ cos θ, 
……………………………………………………………………………………….. 

 
then we will have (*): 
 

(28)  δk − dk

dt

′
= l r ′ – r l′ + q m′ – m q′ ; δp − 

dp

dt

′
= q r′ – r q′ ; 

  ……………………………………………………………… 
 
 If we let x, y, z denote the coordinates of the point M at which the outer surface S of 
the body contacts the surface S1 relative to the system of axis Oxyz and express the idea 
that the point is momentarily at rest then we will get the non-holonomic condition 
equations to which the body is subject: 
 
(29)   k = yr – zq, l = zp – xr, m = xq – yp. 
 
 If the point O coincides with the center of mass of the body and the x, y, z axes 
coincide with the principal axes of inertia through the point O then the kinetic energy T of 
the body will be equal to: 
 
(30)   T = 1

2 M (k2 + l2 + m2) + 1
2 (A p2 + B q2 + C r2) , 

 
in which M means the mass of the body, and A, B, C mean the moments of inertia about 
the x, y, z axes, resp. 
 In the present case, the functions Θ and K that are included in (26) will then have the 
values: 
 Θ = 1

2 M [(x2 + y2 + z2) (p2 + q2 + r2) − (xp + yq + zr)2] + 1
2 (A p2 + B q2 + C r2), 

(31) 
 K1 = M (y r – z q), K2 = M (z p – x r), K3 = M (x q – y p), 
 
such that formula (26) will imply that: 
 

2

1

[ ( ) ( ) ]
t

t

U M tr zq k yr zq dtδ δ δΘ + + − − + +∫ ⋯  = 0. 

                                                
 (*) Ibid., formulas (8) and (9).  
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 We assume that a force function U exists 
 From the theorem in § 8, when one transforms this formula, one must consider only 
the equations: 
 
(32) k′ = y r′ – z q′, l′ = z p′ – x r′, m′ = x q′ – y p′, 
 
in addition to (28). 
 We will then have: 
 

 δ (k − y r + z q) = 
d

dt
(y r′ – z q′ ) + l r ′ – r l ′ + q m′ – m q′ – δ (yr − zq) 

 
 = y r z q′ ′−ɺ ɺ − (r dy – q dz), 
 
such that the integral expression (26) will ultimately assume the form: 
 

(33) 
2

1

{ [ ( ) ( )( )]
t

t

U M pp qq rr xp yq zr x p y q z rδ δ ρρ ′ ′ ′ ′ ′ ′Θ + + + + − + + + +∫ ɺ ɺ ɺ ɺ  

  − M [ρ δρ ⋅⋅⋅⋅ ω2 – (x p + y q + z r) (p δx + q δy + r δz)]} dt = 0, 
 
in which one has set: 

x2 + y2 + z2 = ρ 2, p2 + q2 + r2 = ω 2, 
for brevity. 
 That formula allows one to derive the equations of rolling motion of a rigid body in 
arbitrary coordinates.  If we choose the coordinates u, v, ϑ, u1, v1 of § 1 then x, y, z will 
be given functions of u and v.  Formulas (10) and (9) determine the p, q, r in terms of the 
generalized velocities uɺ , vɺ , ϑɺ , 1uɺ , 1vɺ .  Those velocities must satisfy the non-holonomic 

conditions (12).  Two of the quantities uɺ , vɺ , ϑɺ , 1uɺ , 1vɺ  (e.g., 1uɺ  and 1vɺ ) can be 

eliminated from (9) with the help of those formulas: 
 

 σ = − ( )1 1 1

1 1 1

sin cos cos
D D DD

G v E u G v
G G G E

ϑ ϑ ϑ
   ′′ ′′′′

+ + + − +   
   

ɺ ɺ ɺ , 

(34) 

 τ =     ( )1 1 1

1 1 1

cos sin cos
D D DD

E u E u G v
E E G E

ϑ ϑ ϑ
   ′′

+ + − +   
   

ɺ ɺ ɺ . 

 
 We then see that these formulas will assume an especially simple form when the 
surface S1 is a sphere, i.e., when: 
 

D1 : E1 = 1D′′  : G1 . 

 
 The examination of that special case shall be prefaced with the general examination. 
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CHAPTER III 
 

On the motion of a rigid body that rolls on a sphere 
 

§ 10. – The differential equations of motion of a rigid body that rolls on a sphere. 
 

 The problem that defines the topic of the present chapter can be formulated thus: 
 
 A given rigid body is constrained to roll without slipping on an immobile sphere S1 .  
A force acts upon the body that is applied to the center of mass O of the body and points 
to the center O1 of the sphere, and it depends upon only the distance between the points O 
and O1 .  Determine the motion of the body. 
 
 If we set: 

x1 = R1 sin u1 cos v1 , y1 = R1 sin u1 sin v1 , z1 = R1 cos u1 
 
then we will get: 
 
(35)  E1 = 2

1R , G1 = sin2 u1 , D1 = − R1 , 1D′′  = − R1 sin2 u1 , 

 
and the formulas (34) and (10) will imply: 
 
 σ = vν ɺ , τ = uµ ɺ , 
(36) p = v u nν α µ β γ+ +ɺ ɺ , 
  ………………………, 
in which: 

(37) ν = − 
1

1D
G

G R

 ′′
− 

 
,  µ = 

1

1D
E

E R

 
− 

 
. 

 
 We calculate the kinetic energy Θ of the body with the help of formulas (36) 
according to (31): 

 2Θ = 

2

2 2 2 2 2 2( )
v u

M v u n M n
u vE G

ρ ν ρ µρ ν µ ρ ρ ε
 ∂ ∂+ + − + +  ∂ ∂ 

ɺ ɺ
ɺ ɺ  

(38) 
 + 2 2 2( ) ( ) ( )A v u n B v u n C v u nν α µ β γ ν α µ β γ ν α µ β γ′ ′ ′ ′′ ′′ ′′+ + + + + + + +ɺ ɺ ɺ ɺ ɺ ɺ . 
 
 In this, ρ and ε denote the distances from the center of mass O to the contact point M 
and from the tangent plane at M to the outer surface S of the body: 
 

ρ 2 = x2 + y2 + z2, ε = x γ + y γ′ + z γ″. 
 

 The kinetic energy Θ is then a second-degree homogeneous function of the arguments 
uɺ , vɺ , n.  The coefficients of those functions depend upon only u and v. 
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 As for the force function U, in the present case, U is a function of the distance 
between the points O and O1 .  However, one has: 
 

2

1O O = ( )2 2

1 1 12 cos ,O M OM O M OM O M OM+ − ⋅  = 2
1R + ρ 2 + 2 R1 ε, 

 
so as a result, U will include only u and v. 
 If we introduce the quantities, p′, q′, r′, along with the p, q, r in (36): 
 
(39)    p′ = α ν δv + β µ δu + γ n′ 
 
then the basic formula (33) will yield: 
 

 
2

1

2 2[ ( )
t

t

U M v v u u nnδ δ ρρ ν δ µ δ ′Θ + + + +∫ ɺ ɺ ɺ  

 − M ( )v u
n E G

u vE G

ρ ν δ ρ µ δρ ρ ε ν µ
 ∂ ∂ ′+ + +  ∂ ∂ 

– M ω2 ρ δρ 

 

 + M ( )v u
n E v u G u v

u vE G

ρ ν ρ µρ ρ ε ν δ µ δ
 ∂ ∂ + + +   ∂ ∂ 

ɺ ɺ
ɺ ɺ  dt = 0, 

 
in which we have set: 

2 2 2 2v uν µ+ɺ ɺ + n2 = ω2, 
for brevity. 
 In order to get the expression for the equations of motion from this, we must calculate 

the differences 
d

u u
dt

δ δ−ɺ , 
d

v v
dt

δ δ−ɺ , 
dn

n
dt

δ ′
− . 

 (36) and (39) imply that: 
 

vν ɺ  = p α + q α′ + r α″, ν δv = p′ α + q′ α′ + r′ α″, 
 
such that, from (28), one will have: 
 

( )
d

v v v u u v
dt u

νν δ δ δ δ∂ − + −  ∂ 
ɺ ɺ ɺ = (q r′ – r q′) α + … + p δα + … − p α′ ɺ  − … 

 
If we substitute (36) and (39) in this and remark that as a result of the well-known 
formulas of kinematics: 
 

β γ β γ β γ′ ′ ′′ ′′+ +ɺ ɺ ɺ = σ1 , γ αɺ  + … = τ1 ,  α βɺ  + … = n1 , 
 
in which σ1 , τ1 , n1 have their meaning in (8), then we will get: 
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( )
2

d G
v v v u u v

dt u uEG

ν µν δ δ δ δ
 ∂ ∂ − + + −    ∂ ∂   

ɺ ɺ ɺ = 
1

( )
E

n u u n
R

δ ′− ɺ . 

 
 However, the expression: 

2

G

u uEG

ν µ∂ ∂+
∂ ∂

 

 
is equal to zero, from (37) and the Mainardi-Codazzi formula (*): 
 

 22
D D

H
u v

′′ ′∂ ∂ − ∂ ∂ 
 = 2

F G

v u

∂ ∂ − ∂ ∂ 
(F D′ – G D) +

G

v

∂
∂

(F D – E D′) 

 

  − 
E

v

∂
∂

(F D″ – G D′) – 
G

u

∂
∂

(F D′ – E D″) 

 
such that we will ultimately have: 
 

  
d

v v
dt

ν δ δ − 
 
ɺ   = 

1

( )
E

n u u n
R

δ ′− ɺ . 

 
 In a similar way, we will find that: 
 

  
d

u u
dt

µ δ δ − 
 
ɺ   = 

1

( )
G

n v v n
R

δ ′− ɺ , 

 

  δn − 
dn

dt

′
 = 

2
1

1
( )

DD
EG v u u v

EG R
δ δ

 ′′
− − 

 
ɺ ɺ . 

 
 If we now transform the basic formula with the use of these equations in such a way 
that a linear function of the quantities δu, δv, n′ will appear under the integral sign and we 
set the coefficient of those quantities equal to zero then we will get the desired equations 
of motion in the form: 
 

 ( )d U

dt u u

∂Θ ∂ Θ +−
∂ ∂ɺ

 =   2
2
1 1

1 1EDD
EG v n M n M E vn

EG R n R v u

ρρ ε ν
ν

 ′′ ∂Θ ∂Θ ∂− + − +  ∂ ∂ ∂ 
ɺ ɺ

ɺ

, 

 

(40) ( )d U

dt v v

∂Θ ∂ Θ +−
∂ ∂ɺ

 = − 2
2
1 1

1 1GDD
EG u n M n M G u n

EG R n R u v

ρρ ε µ
µ

 ′′ ∂Θ ∂Θ ∂− + − +  ∂ ∂ ∂ 
ɺ ɺ

ɺ

, 

 

                                                
 (*) Stahl and Kommerell, formula (6), § 7. 
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 d

dt n

∂Θ
∂

 = − ( )
1 1

1 1E G
u v M u v n M E G u v

R v R u u v

ρ ρρ ρ ε ν µ
ν µ

∂Θ ∂Θ ∂ ∂ − + + − + ∂ ∂ ∂ ∂ 
ɺ ɺ ɺ ɺ ɺ ɺ

ɺ ɺ

. 

 
 These formulas determine the non-cyclic coordinates u and v and the quantity n as 
functions of time t. 
 Before we go further into the study of the equations of motion that we have presented, 
we would like to test their validity on the basis of more general laws of dynamics. 
 
 

§ 11. – Developing the equations of motion from the law of  
the moments of the quantity of motion. 

 
 From (36), the non-holonomic condition equations to which the rigid body is subject 
will take the form: 
 
(41)  k = (y α″ – z α′ ) vν ɺ  + (y β″ – z β′ ) uµ ɺ  + (y γ″ – z γ′ ) n, 
   …………………………………………………………… 
 
for the problem that we spoke of, such that we will have: 
 

(42)   
1

vν
∂Θ
∂ ɺ

= 
T

k

∂
∂

(y α″ – z α′ ) + … + 
T

p

∂
∂

α + …, 

 

from (30), using (36).  Now, since 
T

k

∂
∂

, …, 
T

p

∂
∂

, … are equal to the projections onto the 

x, y, z axes of the resulting vector and the resultant moment about the center of mass O of 
the quantity of motion of the material points from which we imagine our rigid body is 

composed, we will see from (42) that 
1

vν
∂Θ
∂ ɺ

, 
1

uµ
∂Θ
∂ ɺ

, 
n

∂Θ
∂

 mean the projections of the 

aforementioned moments about the contact point M onto the u, v, n axes, resp. 
 Now, it is known (*) that the geometric derivative 1Πɺ  of the system of vectors Π1 that 

consists of the quantities of motion of the material points is equivalent to the system of 
vectors Π2 of the applied forces on the bodies and their reactions.  If the pole M (x, y, z) 
relative to which we calculate the resultant moment Γ1 of the system Π1 is an immobile 
point then the resultant moment 1′Γ  of the system 1Πɺ  will be equal to the geometric 

derivative 1Γɺ  of Γ1 : 

1( )′Γ  = (Γ1) . 

 
 However, if the pole M (x, y, z) is mobile, as in the present case, then: 
 
(43)     1( )′Γ  = 1( )Γɺ  + (K), 

                                                
 (*) Sousloff, Foundations of analytical mechanics, v. 1, § 192, Kiev, 1900 (in Russian). 
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in which K denotes the moment of the resultant vector of the system Γ1 when that vector 
acts upon the “derived” pole ( , , )M x y z′ ɺ ɺ ɺ  about the coordinate origin. 
 If we further remark that the u-axis rotates with an angular velocity whose 
components along the x, y, z axes are equal to the quantities q rα α α′′ ′+ −ɺ , etc, then when 
we project the vector along the direction u, we will get: 
 

1
( )

d T T T
z y q r

dt v p l m
α α α

ν
 ∂Θ ∂ ∂ ∂  ′′ ′− + − + −  ∂ ∂ ∂ ∂   

ɺ

ɺ
− … + 

T T
y z

m l
α∂ ∂ − ∂ ∂ 

ɺ ɺ + … 

 
= Γ2 cos (Γ2 , u), 

 
in which Γ2 is the resultant moment of the system Π2 about the contact point M. 
 If one neglects the moments of the rolling and twisting friction then the only moments 
of the applied forces will enter into Γ2 , since neither the force of friction nor the normal 
reaction moment will produce moments about the contact point M.  If a force function U 
exists and we imagine that the differential quotient Uɺ  of U with respect to time t is 
expressed as a linear function of the quantities k, …, p, … then: 
 

Γ2 cos (Γ2 , u) = 
U U U

z y
p l m

α ∂ ∂ ∂+ − ∂ ∂ ∂ 

ɺ ɺ ɺ

+ … 

 
 If Uɺ  goes to ( )Uɺ  when we eliminate the quantities k, …, p, … using (36) and (41) 
then: 

Γ2 cos (Γ2 , u) = 
1 ( )U

vν
∂

∂

ɺ

ɺ
. 

 
 If U is a function of u and v then we will have: 
 

Γ2 cos (Γ2 , u) = 
1 U

vν
∂
∂

. 

We ultimately get: 
 

 
d

dt v

∂Θ
∂ ɺ

= ( ) ( ) ( )
T d

y z p x y z xp yq zr
k dt

ν α ν α ν α α α ν α∂  ′′ ′ ′ ′′− + + + − + + + ∂  
⋯  

(44) 

   + ( )
T d U

q r y
p dt v

ν α ν α α∂ ∂ ′′ ′+ − + + ∂ ∂ 
⋯ . 

 
 It can be established by some truly-complicated calculations that this equation is 
identical with the second of the formulas (40). 
 If we project the vector 1′Γ  onto the directions v and n then we will get the other two 

equations of motion (40) in a similar way. 
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 Formula (44) can also be derived directly from the general equations of motion of a 
rigid body that is not subject to the non-holonomic conditions (29): 
 

 
d T

dt k

∂
∂

= 
T T U

r q
l m k

∂ ∂ ∂− +
∂ ∂ ∂

ɺ

+ λ1 , 

 …………………………………. 

 
d T

dt p

∂
∂

= 
T T U

r q
q r p

∂ ∂ ∂− +
∂ ∂ ∂

ɺ

+ y λ3 – z λ2 , 

 …………………………………………. 
 
by eliminating the multipliers λ1 , λ2 , λ3 . 
 In order to do that, we must use that formula to differentiate formula (42) with respect 
to time t, after we have multiplied it by ν : 
 

 
d

dt v

∂Θ
∂ ɺ

= 1( ) ( )
T d T T U

y z y z r q
k dt l m k

ν α ν α ν α ν α λ ∂ ∂ ∂ ∂′′ ′ ′′ ′− + + − − + + ∂ ∂ ∂ ∂ 

ɺ

⋯  

   + 3 2( )
T d T T U

r q y z
p dt q r p

ν α ν α λ λ ∂ ∂ ∂ ∂+ + + − + + − + ∂ ∂ ∂ ∂ 

ɺ

⋯ ⋯ ⋯ 

or 

 
d

dt v

∂Θ
∂ ɺ

= ( ) ( ) ( )
T d

y z x p q r xp yq zr
k dt

ν α ν α ν α α α ν α∂  ′′ ′ ′ ′′− + + + − + + + ∂  
⋯ 

   ( )
T d U

q r y
p dt v

ν α ν α α∂ ∂ ′′ ′+ + − + + ∂ ∂ 
⋯ ⋯ . 

 
However, from (29) and (30): 
 

T T T
p q r

k l m

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 
T T T

x y z
k l m

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 

 
so that equation will be identical with formula (44). 
  
 

§ 12. – Testing the equations of motion with Poinsot’s interpretation 
of the motion of a force-free rigid body. 

 
 The validity of formulas (40) can be confirmed (at least, in one special case) with the 
use of the known interpretation of the equations of a rigid body that has no forces acting 
upon it that Poinsot gave.  As a result of that interpretation, the center of mass of such a 
body will move uniformly along a line, and the central ellipsoid of inertia of the body: 
 

Ax2 + By2 + Cz2 = 1 
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will roll without slipping on a plane that has a translational motion such that its distance 
from the center of mass of the body remains constant.  The contact point of the ellipsoid 
and the plane will describe a polhode on the outer surface of the ellipsoid and a 
herpolhode on the plane.  The projection of the momentary angular velocity of the body 
onto the normal at the contact point to the inertia ellipsoid will remain constant during the 
motion. 
 If the center of mass is at rest at the initial moment then it will remain at rest during 
the motion of the body, and the inertia ellipsoid will roll on a plane at rest. 
 We now transform the inertia ellipsoid and the plane by reciprocal radii (*).  The 
ellipsoid will go over to the fourth-degree surface: 
 

Ax2 + By2 + Cz2 = (x2 + y2 + z2)2, 
 
and the plane will go to a sphere. 
 As a result of what was said, when no forces act upon a body and the body is bounded 
by the aforementioned fourth-degree surface, the equations of motion (40) must admit a 
particular solution for which the quantity n remains constant and the contact point M 
describes a curve on the outer surface of the body that is obtained from the polhode by 
transformation through reciprocal radii. 
 In fact, if we set: 

x = 
2 2

2 2 2 2

a u a va

k u v a b a c

− −
− − − −

, … 

 

A = 
2

1

a
, B = 

2

1

b
, C = 

2

1

c
, k = a2 + b2 + c2 

 
then we can show that in the case of: 

U = 0 
 
equations (40) will admit the particular solution: 
 

n = const., u ⋅⋅⋅⋅ v = const. 
 
 
§ 13. – Solving the equations of motion for the differential quotients of the unknown 

functions. Integrals of motion.  Determining the cyclic coordinates. 
 

 We now go on to a detailed examination of the equations of motion (40) that 
determine the variables u, v, n as functions of time t.  The equations for u and v are of 
second order, while the one for n is of first order.  If we add the equations: 
 

du

dt
= uɺ , 

dv

dt
= vɺ  

                                                
 (*) Routh, The advanced part of a treatise on the dynamics, etc., art. 147, ex. 4, 1884.  
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to formulas (40) then we will get five first-order differential equations that determine the 
five functions u, v, n, uɺ , vɺ  in terms of t.  Should those equations be solved for the 
differential quotients of the unknown functions, then we would have to introduce new 
unknown functions p1 , p2 , p3 in place of the uɺ , vɺ , n : 
 

u

∂Θ
∂ ɺ

 = p1 ,  
v

∂Θ
∂ ɺ

= p2 ,  
n

∂Θ
∂

 = p3 . 

 
From a theorem of Donkin (*), we will then have: 
 

uɺ  =
1p

∂Θ
∂

, vɺ  = 
2p

∂Θ
∂

, n = 
3p

∂Θ
∂

, 
u

∂Θ
∂

= − 
u

∂Θ
∂

, 
v

∂Θ
∂

= − 
v

∂Θ
∂

, 

 
in which Θ  denotes the kinetic energy of the body when it is expressed as a 
homogeneous function of degree two of the arguments p1 , p2 , p3 .  If we introduce the 
notation: 

Θ  − U = H 
 

then (40) will yield the following five first-order differential equations: 
 

1dp

dt
= 

−
2

2 22
1 2 1 3 3 2 3

1 1EH DD H H H H H
EG p p M M E

u EG R p R p u p p p

ρρ ε ν
ν

  ′′∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
, 

 

2dp

dt
= 

−
2

3 12
1 1 1 3 3 1 3

1 1GH DD H H H H H
EG p p M M G

v EG R p R p v p p p

ρρ ε ν
µ

  ′′∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + − +  ∂ ∂ ∂ ∂ ∂ ∂ ∂   
, 

 
(45) 
 

3dp

dt
= 

− ( )1 2
1 2 1 1 1 2 3 1 2

1 1G EH H H H H H H
p p M M E G

R p R p u p v p p p p

ρ ρρ ρ ε ν µ
µ ν

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− − + − + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
, 

 
du

dt
= 

1

H

p

∂
∂

, 
dv

dt
= 

2

H

p

∂
∂

, 

 

                                                
 (*) Phil. Trans. 1854.  
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which determine p1 , p2 , p3 , u, v in terms of t . 
 Time t can be eliminated from these equations or equations (40) with the use of the 
vis viva integral: 

H = Θ – U = h, 
 

in which h denotes an arbitrary constant.  If we choose, e.g., u to be the independent 
variable then we will get three first-order differential equations that determine the 
quantities p2 , p3 , v (v, vɺ , n, resp.) in terms of u. 
 In order to obtain a second integral of motion, in addition to the vis viva, we make the 
following special assumptions: The relative velocity ( , , )x y zɺ ɺ ɺv  of the contact point M at 
any moment of the motion might lie in the same plane as the velocity w (k, l, m) of the 
center of mass O of the body.  The vector K that is included in (43) will then vanish.  
When the resultant moment Γ2 about M of the force that acts upon the body is equal to 
zero, in addition, from the theorem in § 11, the resultant moment Γ1 about M of the 
quantity of motion of the material point of the body will also be constant.  In that special 
case, we will then have the integral: 

(46)    
2 2 2

2 2

1 1

u v nµ ν
∂Θ ∂Θ ∂Θ     + +     ∂ ∂ ∂     ɺ ɺ

 = const. 

 
 The conditions that were cited above are obviously fulfilled when the rigid body is 
either partially or completely bounded by a spherical surface whose center coincide with 
the center of mass of the body (*). 
 We shall now return to the general case. 
 If the equations of motion (40) or (45) have been integrated then we will have to 
determine the cyclic coordinates ϑ, u1, v1 .  In order to do that, we appeal to the last of 
formulas (9) and the non-holonomic condition equations (12).  For the present case, from 
(35), those formulas simplify to the following ones: 
 

 1 1R uɺ  = − sin cosE u G vϑ ϑ+ɺ ɺ , 
 

(47) 1 1R vɺ  sin u1 = cos sinE u G vϑ ϑ+ɺ ɺ , 
 

 ϑɺ  = − n + 1 1

1
cos

2

E G
u v v u

v uEG

∂ ∂ − − ∂ ∂ 
ɺ ɺ ɺ . 

 
 If u, v, n are expressed in terms of time t then, from (36) and (41), the quantities k, …, 
p, … will be known functions of time, and as a result (** ), the determination of all 
remaining coordinates must come down to the integration of a Riccati equation. 
 In fact, if we set: 
 

                                                
 (*) Chaplygin, “On a possible generalization of the surface theorem, with an application to the problem 
of the rolling of the sphere,” Moscow Math. Coll. 20 (1897). 
 (** ) Cf., e.g., Darboux, Leçons sur la théorie générale des surfaces, v. I, chap. II. 
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− 
1

E
u

R
ɺ = f1 cos ϑ1 ,  

1

G
v

R
ɺ = f1 sin ϑ1 , 1

1

2

E G
u v n

v uEG
ϑ∂ ∂ − − + ∂ ∂ 
ɺɺ ɺ  = f2 

 
then f1 , f2 , ϑ1 will be known functions of t.  Formulas (47) imply that: 
 

1uɺ  = f1 sin (ϑ + ϑ1), 1vɺ  sin u1 = − f1 cos (ϑ + ϑ1), 1ϑ ϑ+ɺ ɺ  = f2 + f1 cot u1 (ϑ + ϑ1) . 

 
 If we now introduce new variables ζ1 and ζ2 , in place of u1 and ϑ, by way of the 
formulas: 

ζ1 = − i cot 1( )1

2
iu

e ϑ ϑ− +⋅ ,  ζ2 = i tan 1( )1

2
iu

e ϑ ϑ− +⋅ , 

 
then a brief calculation will show that ζ1 and ζ2 are integrals of the Riccati equation: 
 

d

dt

ζ
= (1 + ζ 2) f1 (t) – i ζ f2 (t) . 

 
When ζ1 and ζ2  (and therefore u1 and ϑ, as well) are determined in terms of time t, the 
last coordinate v1 will be obtained from (47) by quadrature. 
 
 
§ 14. – Motion of a body of revolution that rolls on a sphere. Reducing the problem 
to the integration of two Riccati equations.  Motion of a cylindrical rod on a sphere. 

 
 The equations of motion (40) will simplify significantly when the rigid body is a body 
of revolution in the dynamical sense, so: 

A = B, 
 
and the outer surface of the body is a surface of revolution around the symmetry axis z. 
 If we set: 

x = u cos v, y = u sin v, z = z (u), 
 
and denote the differential quotients of z with respect to u by z′, z″, … then we will get: 
 

E = 1 + z′ 2, G = u2,  α″ = 
21

z

z

′
′+

, β = 0,  γ = 
2

1

1 z′+
, 

(48) 

D = 
21

z

z

′′
′+

,  D″ =
21

u z

z

′
′+

,  ρ 2 = u2 + z2,  ε = 
21

z u z

z

′−
′+

, 

 
such that, from (38), we will have: 
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 2Θ = (M ρ 2 + A) 

2

2 2 2 2 2 2( ) ( )( )
v

v u n M n C A v n
u E

ρ νν µ ρ ε ν α γ
 ∂ ′′ ′′+ + − + + − +  ∂ 

ɺ
ɺ ɺ ɺ  

(49) 
= 2 2 22Pu Qv Lv n J n+ + +ɺ ɺ ɺ , 

 
in which the coefficients P, Q, L, J are functions of the argument u.  In addition, we will 
obviously have: 

U = funct (u). 
 

 We then see that in the present case, the coordinate v is also cyclic, so when we 
eliminate time t from the equations of motion (45) or (40) with the help of the vis viva 
integral, that will yield two first-order differential equations that determine the variables 
p2 and p3 (v and n, resp.) as functions of u. 
 If the integral (46) exists, or if any other integral of the aforementioned equations is 
known, then those equations can be solved by quadratures.  In fact, it is not difficult to 
prove that in the present case the form of the last Jacobi multiplier M can be given in 
advance. 
 As is known, the multiplier M of the system: 
 

1

1

dx

X
= 2

2

dx

X
 = … = n

n

dx

X
, X1 , X2 , …, Xn = funct. (x1 , x2 , …, xn) 

 
satisfies the formula: 

1 2

1 1 1 2

ln 1 n

n

XX Xd

dx X x x x

 ∂∂ ∂+ + + + ∂ ∂ ∂ 
⋯

M
 = 0. 

 
If we apply that formula to the system (45) then we will get: 
 

 
2 2

2
1 3 3 1 3

lnd H H H H
M

dt u p p p p p

ρρ
 ∂ ∂ ∂ ∂ ∂+ − ∂ ∂ ∂ ∂ ∂ ∂ 

M
 

 + 
2 2

2
2 3 3 2 3

H H H H
M

v p p p p p

ρρ
 ∂ ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ ∂ ∂ 

 

 + 
2 2

3 1 2 1 2 3

H H H H
M E

p p p p p p
ε ν

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ ∂ ∂ 
 

 + 
2 2

3 1 2 2 1 3

H H H H
M G

p p p p p p
ε µ

 ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ ∂ ∂ 
 = 0. 

 
However, from (48) and (49), ρ is a function of only u, and uɺ  will be included in Θ, and 
as a result, p1 will be included in H only in the second power. 
 From (45), we then have: 
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2 2

2
3 2 3

lnd H H du
M E

dt u p p p dt

ρρ ε ν
 ∂ ∂ ∂+ − ∂ ∂ ∂ ∂ 

M
= 0, 

such that: 

M = 
( )u du

e
− Φ∫ ,  Φ (u) = 

2 2

2
3 2 3

H H
M E

u p p p

ρρ ε ν
 ∂ ∂ ∂− ∂ ∂ ∂ ∂ 

. 

 
 One then solves, e.g., the problem of the motion of a body of revolution that is 
partially or completely bounded by a spherical surface and which rolls without slipping 
on an immobile sphere under the action of forces of the kind that were mentioned at the 
beginning of the chapter by quadratures (*). 
 We would now like to actually exhibit the two first-order differential equations by 
whose integration the variables u, v, n can be obtained by quadratures. 
 From (48) and (49), the last two equations of motion (40) imply that: 
 

 
d

dt v

∂Θ
∂ ɺ

= − 
2
1 1

1 GDD P
EG u nu M G nu

EG R n R
ε µ

µ
 ′′ ∂Θ− + +  ∂ 

ɺ ɺ ɺ , 

 

 
d

dt n

∂Θ
∂

= − ( )
1 1

1G EP
vu u M nu M E G vu

R R u

ρρ ε ν µ
µ ν ν

∂Θ ∂− + − +
∂ ∂

ɺ ɺ ɺ ɺ ɺ ɺ . 

 
 The equations admit the particular solution: 
 

uɺ  = 0,  u = u0 ,  n = n0 ,  vɺ  = 0vɺ , v = 0v tɺ + v0 , 

 
in which u0 , n0 , 0vɺ , v0 denote constants, and the first of the equations of motion (40) 

gives the condition that those constants must satisfy in order for such a motion of the 
body to be possible.  The determination of the remaining coordinates ϑ, u1, v1 by means 
of formulas (47) presents no difficulties in this case, and we easily convince ourselves 
that the contact point M will describe a great circle or a minor circle on the outer surface 

of the sphere according to whether the expression n0 + 0

0

v

E

ɺ
 is equal to zero or non-zero, 

resp. 
 If we exclude that particular solution then we will get the equations to be exhibited 
when we choose u to be the independent variable in them: 
 

 
d

dt v

∂Θ
∂ ɺ

= − 
2
1 1

1 GDD P
EG n M G n

EG R n R
ε µ

µ
 ′′ ∂Θ− + +  ∂ 

, 

 

                                                
 (*) Cf., the treatise of Chaplygin that was cited above. 
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d

dt n

∂Θ
∂

= − ( )
1 1

1G EP
v M n M E G v

R R u

ρρ ε ν µ
µ ν ν

∂Θ ∂− + − +
∂ ∂

ɺ ɺ . 

 
 If vɺ  and n are determined as functions of u by those equations then we will get the vis 
viva integral u as a function of time t by quadrature.  A second quadrature will then 
determine v in terms of t. 
 The equations that were presented define a system of two first-order linear differential 
equations.  If we eliminate, e.g., n, from them then we will get a second-order linear 
differential equation that will determine vɺ : 
 

2

1 22
( ) ( )

d v dv
f u v f u

du du
+ +
ɺ ɺ

ɺ  = 0. 

 
 Such an equation will be brought into Riccati form by the substitution: 
 

vɺ  = 
du

e
ξ∫ , 

in which ξ denotes a new variable. 
 As we saw above, the determination of the cyclic coordinates ϑ, u1, v1 will also lead 
to the integration of a Riccati equation.  We might then state the following theorem: 
 
 The problem of the motion of a rigid body of revolution that rolls on a sphere under 
the action of a force that points from the center of mass O of the body to the center O1 of 
the sphere and depends upon only the mutual distance between the points O and O1 can 
be reduced to the integration of two Riccati equations and quadratures when the motion 
of the body is rolling without slipping. 
 
 Let the rigid body be, e.g., a cylindrical rod: 
 

x = R cos v, y = R sin v, z = u. 
We then have: 
 

 E = 1, G = R2, α″ = 1, β″ = 0, γ″ = 0, µ″ = − 
1

1

R
, 

 

 D = 0, D″ = R, ρ2 = R2 + u2, ε = − R, n = 
1

R

R
− 1, 

 
such that, from (49), the kinetic energy of the rod will be given by the formula: 
 
2Θ  

=
2
1

1

R
(A + MR2 + Mu2) 2uɺ + (C + MR2)

2

2

1

1
R

v
R

 
− 

 
ɺ + 2MR

1

1
R

u n v
R

 
− 

 
ɺ + (A + Mu2) n2 . 
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 The two linear differential equations that determine vɺ  and n in terms of u have the 
form: 

 2

1

( ) 1
d R

MRu n C MR v
du R

  
+ + −  

  
ɺ =

2

12
1

( )
R

M u v R n
R

−ɺ , 

 

 2

1

( ) 1
d R

A Mu n MR u v
du R

  
+ + −  

  
ɺ  

 

 = 2 2 2
2

1 1 1 1

1
( ) 1 ( ) 1

R R R
A MR Mu C MR MR v M un

R R R R

    
+ + − − + − − −    

    
ɺ . 

 
 If we eliminate n from those equations then we will have: 
 

2 2 2
2 1

2 2
1 1 1 1

3 2
R RC MR d v dv R A R R

A u u v
MC du du R R R C R R

    ++ + + + − +    −    

ɺ ɺ
ɺ  = 0. 

 
We then see that vɺ  is a hypergeometric function of u. 
  
 
§ 15. – Equations of motion for a rigid body in whose interior one finds a gyroscope. 

Motion of a gyroscopic ball that rolls on a sphere. 
 

 Most of the results of the foregoing paragraphs can be easily generalized to the case 
in which the interior of the rigid body (which we would like to think of as hollow) 
contains a gyroscope that rotates about its axis.  We will assume that the center of mass 
of the gyroscope coincides with the center of mass of the rigid body and that the 
symmetry axis of the gyroscope coincides with the z-axis. 
 The friction in the points of the inside of the surface of the body that support the axis 
of the gyroscope shall be neglected. 
 If the quantities M, A, and B in the equations of motion (40) mean the mass and the 
moments of inertia about the x and y axes, resp., of the total system that consists of the 
rigid body and the gyroscope then we will have to add only one more force-couple (*) to 
the forces that act upon the body in the case of a gyroscopic body.  The moment of that 
couple is equal to sin ( )Cωϖ ωϖ , where C  denotes the moment of inertia of the 

gyroscope about the z-axis, ϖ denotes its constant angular velocity, and ω denotes the 
instantaneous angular velocity of the rigid body.  The axes of that moment is normal to 
the rotational axis of the rigid body and the z-axis and lies in relation to those two axes in 
the same way that the z-axis lies in relation to the x and y axes. 
 If we introduce the notation: 

                                                
 (*) The so-called “deviation resistance.”  F. Klein and A. Sommerfeld, Über die Theorie des Kreisels, 
vol. I, Chap. III. 
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Cϖ  = κ 
 
and recall the method that was applied in § 11 in order to present the equations of motion 
(40) then it will be clear that we have to add the expressions: 
 

( )v nµκ ν γ α′′ ′′−ɺ , ( )n uν κ β µ γ′′ ′′− ɺ , ( )u vκ µ α ν β′′ ′′−ɺ ɺ  
 
to the right-hand sides of equations (40) in the case of a gyroscopic body. 
 If we make the same assumptions about the mass distribution of the body and its form 
that we did in the foregoing paragraphs then, from (48), uɺ  will once more be included as 
a common factor in the right-hand sides of the last two equations of motion (40).  We will 
then come once more to two first-order linear differential equations that determine the 
variables vɺ  and n as functions of u, except that those linear equations will no longer be 
homogeneous now.  As a result, when we eliminate n from those equations, we will get a 
second-order differential equation of the form: 
 

2

1 22
( ) ( )

d v dv
f u v f u

du du
+ +
ɺ ɺ

ɺ  = f3 (u) . 

 
 If one more integral is known, in addition to the vis viva integral, then the equations 
of motion can be solved by quadratures. 
 Let the rigid body be, e.g., a hollow sphere in whose interior one finds a gyroscope.  
The integral (46) will then be valid, and as a result, the variables u, v, n in the problem of 
the motion of a gyroscopic sphere that rolls on a spherical surface can be determined by 
quadratures.  As was shown in § 13, the remaining coordinates ϑ, u1, v1 will be obtained 
by integrating a Riccati equation. 
 The problem that was posed here can be regarded as a generalization of the problem 
that D. K. Bobylev (*) solved of the motion of a heavy gyroscopic sphere on a horizontal 
plane.  N. E. Joukovski (** ) proposed to bring a material ring whose symmetry plane 
coincided with the xy-plane into the interior of a sphere in his own geometric examination 
of the Bobylev problem.  The dimensions of the ring are chosen in such a way that the 
ellipsoid of inertia of the entire material system is a sphere relative to the center of mass.  
The motion of the sphere on the horizontal plane can be determined much more simply in 
that case. 
 If we also assume that the hollow sphere is provided with such a ring in our general 
problem then we can prove that the cyclic coordinates ϑ, u1, v1 can also be obtained by 
quadratures.  We shall not go further into that problem here, which should probably 
define the subject of its own treatise.  Let us only remark that the quadratures that appear 
in the problem have elliptic form, such that a complete discussion of the motion of such a 
sphere on a spherical surface will not encounter any difficulties in its own right. 
 
 

                                                
 (*) Bobylev, “On the gyroscopic sphere that rolls without slipping on a horizontal plane,” Moscow 
Math. Coll. 1891. 
 (** ) Joukovski, “On D. K. Bobylev’s gyroscopic sphere,”  Reports of the physical section, 1893. 
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CHAPTER IV 
 

Differential equations for the motion of a rigid body  
that rolls on an arbitrary surface. 

 
§ 16. – Exhibiting the equations of motion. 

 
 In the foregoing chapter, the equations of motion of a rigid body that rolls without 
slipping on a sphere were derived from formula (33).  In order to apply the other basic 
formula of Chapter II – namely, formula (18) – the equations of the motion of a rigid 
body that rolls on an arbitrary surface shall now be developed with the use of that 
formula. 
 We shall base that upon the notations and assumptions of §§ 4 and 9 and choose the 
dependent velocities to be the quantities 1uɺ  and 1vɺ , as in (12).  We must then determine 

the generalized impulses K1 and K2 that correspond to the velocities 1uɺ  and 1vɺ , resp., by 

using (18). 
 It we substitute the expressions (11) and (10) for k, l, m ; p, q, r in the kinetic energy 
T (30) of the body then, from (9), we will get: 
 

2T = M (k2 + l2 + m2) + Ap2 + Bq2 + Cr2 = 2T (u, v, ϑ, u1 , v1 , 1 1, , , , )u v u vϑɺɺ ɺ ɺ ɺ , 

 
and as a result, from (11), (10), and (9), we will have: 
 

K1 = 
1

T

u

∂
∂ ɺ

= M E [− (kα + …) sin ϑ + (kβ + …) cos ϑ] 

 + 1

11 1

1
( )

2

E T T
y z

v k kE G
γ γ γ∂ ∂ ∂ ′′ ′− + + + ∂ ∂ ∂ 

⋯ ⋯  

 

  − 1

1

( )
2

D T T
y z

k pE
α α α

 ∂ ∂′′ ′− + + + ∂ ∂ 
⋯ ⋯ cos ϑ 

 + ( ) sin
T T

y z
k p

β β β ϑ
 ∂ ∂′′ ′− + + +  ∂ ∂  

⋯ ⋯ , 

 
and a similar expression for K2, which is the derivative of T with respect to 1vɺ . 

 Should the body roll without slipping on the surface S1 then k, l, m would have the 
values (13), and we would get from (10) and (11) that: 
 

 2T = M ρ 2 (σ2 + τ 2 + n2) − 

2

M n
u vE G

ρ σ ρ τρ ρ ε
 ∂ ∂+ +  ∂ ∂ 

 

(50) + A (σ α + τ β + n γ)2 + B (σ α′ + τ β′ + n γ′ )2 + C (σ α″ + τ β″ + n γ″)2 
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 = 2Θ (u, v, σ, τ, n), 
 
in which we have once more set: 
 

x2 + y2 + z2 = ρ 2,  x γ + y γ′ + z γ″  = ε. 
 
 With the help of this expression Θ  for the kinetic energy of the body and formulas 
(13), which imply that: 

 kα + lα′  + mα″  = − ετ +
n

v G

ρρ ∂
∂

, 

 

 kβ + lβ′  + mβ″  =     εσ − n

u E

ρρ ∂
∂

, 

 
from (1), the quantities K1 and K2 can be put into the simpler form: 
 

 K1  = 1 cos sin
n n

M E
u vE G

ρ ρε σ ρ ϑ ε τ ρ ϑ
    ∂ ∂− + −       ∂ ∂     

 

(51)  + 1 1

11 1 1

1
cos sin

2

E D

v nE G E
ϑ ϑ

σ τ
 ∂ ∂Θ ∂Θ ∂Θ− + ∂ ∂ ∂ ∂ 

, 

  …………………………………………………… 
 
 From (12), the coefficients of the quantities K1 and K2 in formula (18) have the 
values: 

1

1

sin cosE u G v
u

E

ϑ ϑδ
 − +

−  
 

ɺ ɺ
ɺ , 1

1

cos sinE u G v
v

G

ϑ ϑδ
 +

−  
 

ɺ ɺ
ɺ , 

 
which are calculated with the use of the formulas: 
 

 1 1E uδ = − sin cosE u G vδ ϑ δ ϑ+  

(52) 

 1 1G vδ =    cos sinE u G vδ ϑ δ ϑ+ , 

as a result of § 7. 
 If we once more introduce the quantity: 
 

(53)  n′ = − δϑ + 1 1
1 1

1 11 1

1 1

2 2

E GE G
u v u v

v u v uEG E G
δ δ δ δ

 ∂ ∂∂ ∂ − + −  ∂ ∂ ∂ ∂   
, 

 
along with the quantity n (9), for brevity, then we will easily get the following 
expressions for the desired coefficients: 
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1

1
( )cos ( )sinE n u u n G n v v n

E
δ ϑ δ ϑ ′ ′− + − 

ɺ ɺ , 

 

 
1

1
( )sin ( )cosE n u u n G n v v n

G
δ ϑ δ ϑ ′ ′− − − 

ɺ ɺ , 

 
such that formula (18) (18) will assume the form: 
 

(54)  
2

1

1 2[ ( ) ( )]
t

t

U K E n u u n K G n v v n dtδ δ δ δ′ ′ ′ ′Θ + + − + −∫ ɺ ɺ = 0 

 
for the problem in question, in which we have set: 
 

(55)  1K ′= 1 2

1 1

cos sin
K K

E G
ϑ ϑ+ ,  2K ′= 1 2

1 1

sin cos
K K

E G
ϑ ϑ− . 

 
We assume that a force function U exists.  We express the kinetic energy Θ of the body 
as a second-degree homogeneous function of the independent velocities u, vɺ , ϑɺ .  In 
order to do that, eliminate the dependent velocities 1uɺ  and 1vɺ  from the functions σ, τ, n 

(9) with the use of the condition equations (12): 
 

 σ = − E u G v′ ′′∆ − ∆ɺ ɺ , τ = E u G v′∆ + ∆ɺ ɺ , 

 

 n = − 1 2E u G vϑ + ∆ − ∆ɺ ɺ ɺ , 

 

 ∆ = 21 1

1 1

sin
D DD

E E G
ϑ ′′

+ +  cos2 ϑ, ∆′ = 1 1

1 1

D D

G E

 ′′
− 

 
sin ϑ cos ϑ, 

(56) 

 ∆″ = 21 1

1 1

sin
D DD

G G E
ϑ′′′′

+ +  cos2 ϑ, 

 

 2∆1 = 1 1

1 11 1

ln ln1 ln sin cosE GE

v v uG G E

ϑ ϑ∂ ∂∂ − −
∂ ∂ ∂

, 

 

 2∆2 = 1 1

1 11 1

ln ln1 ln sin cosG EG

u u vE E G

ϑ ϑ∂ ∂∂ + −
∂ ∂ ∂

, 

 
and substitute the values that are obtained for σ, τ, n in the function Θ  (50).  We will 
then have: 

Θ  = Θ (u, v, ϑ, u1, v1, uɺ , vɺ , ϑɺ ). 
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 If we now eliminate the quantity n from formula (54) with the help of (53) and the 
dependent variations δu1 and δv1 with the help of (52) and set the coefficients of the 
independent variations δu, δv, δϑ equal to zero then we will get the equations for the 
motion of a rigid body that rolls on an arbitrary surface: 
 

 
( )d U

dt u u

∂Θ ∂ Θ +−
∂ ∂ɺ

 = 1
1 11 1

( ) sin ( ) cosU U
E K

u vE G

ϑ ϑ ϑ
 ∂ Θ + ∂ Θ + ′− + − 

∂ ∂  

ɺ  

 − 2 1 1 2( )K K EG v′ ′∆ + ∆ ɺ , 

 

(57) 
( )d U

dt v v

∂Θ ∂ Θ +−
∂ ∂ɺ

= 2
1 11 1

( ) cos ( ) sinU U
G K

u vE G

ϑ ϑ ϑ
 ∂ Θ + ∂ Θ + ′+ − 

∂ ∂  

ɺ  

 + 2 1 1 2( )K K EG u′ ′∆ + ∆ ɺ , 

 

 
( )d U

dt ϑ ϑ
∂Θ ∂ Θ +−
∂ ∂ɺ

= 1K E u K G v′ ′+ɺ ɺ , 

 
in which, from (55) and (51), we have: 
 

 1K ′  = 2

1 ln

2

n D G
M

u G u nE E

ρε σ ρ
σ τ

   ′′∂ ∂Θ ∂Θ ∂ ∂Θ ′′ ′− − ∆ − + ∆ − ∆ −       ∂ ∂ ∂ ∂ ∂    
, 

(58) 

 2K ′  = 1

1 ln

2

n D E
M

u E v nG G

ρε τ ρ
σ τ

   ∂ ∂Θ ∂Θ ∂ ∂Θ ′− + ∆ − ∆ − − ∆ −       ∂ ∂ ∂ ∂ ∂    
. 

 
 Since only the expression Θ for the kinetic energy of the body is included in the 
equations of motion (57), it might be preferable to also express the functions 1K ′  and 2K ′  
in terms of the derivatives Θ.  In order to do that, we have to determine the derivatives of 
Θ  with respect to σ, τ, and n from the equations: 
 

 
ϑ

∂Θ
∂ ɺ

= − 
n

∂Θ
∂

, 
1

uE

∂Θ
∂ ɺ

= − 1 nσ τ
∂Θ ∂Θ ∂Θ′∆ + ∆ + ∆
∂ ∂ ∂

,  

 
1

vG

∂Θ
∂ ɺ

= − 2 nσ τ
∂Θ ∂Θ ∂Θ′′ ′∆ + ∆ − ∆
∂ ∂ ∂

, 

 
which are obvious, from (56), and substitute them in (58): 
 

 1K ′  = 
1 1n D

M
u v R G u vG G E G

ρε σ ρ
   ′′ ′∂ ∂Θ ∆ ∂Θ ∆ ∂Θ− + + −      ∂ ∂ ∂ ∂   ɺ ɺ ɺ
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 + 1 2 1 ln

2

D G

G R uE ϑ
 ′′′ ∆ ∆ + ∆ ∆ ∂ ∂Θ−  ∂ ∂ 

ɺ
, 

 

 2K ′  = 
1 1n D

M
v u R E u vG E E G

ρε σ ρ
   ′′ ′∂ ∂Θ ∆ ∂Θ ∆ ∂Θ− − + −      ∂ ∂ ∂ ∂   ɺ ɺ ɺ

 

 + 1 2 1 ln

2

D E

E R vE ϑ
 ′′ ′∆ ∆ + ∆ ∆ ∂ ∂Θ−  ∂ ∂ 

ɺ
, 

in which: 
 

R = ∆∆″ – ∆′ 2 = 2 21 1 1 1 1 1

1 1 1 1 1 1

cos sin
D D D D D DDD D D D D

EG E G E E G G E G G E
ϑ ϑ

   ′′ ′′ ′′′′ ′′ ′′
+ + + + +   

   
 

 
is assumed to be non-zero. 
 
 The equations of motion (57) and the non-holonomic condition equations (12): 
 

 1 1E uɺ  = − sin cosE u G vϑ ϑ+ɺ ɺ , 

(59) 

 1 1G vɺ  =    cos sinE u G vϑ ϑ+ɺ ɺ  

 
define a system of five differential equations that determine the coordinates u, v, ϑ, u1, v1 
of the rigid body as functions of time t. 
 
 If the force function U does not include the time t explicitly then equations (57) will 
admit the vis viva integral: 

Θ = U + h, 
 

in which h denotes an arbitrary constant. 
 If we eliminate time t from the equations of motion (57) and the conditions (59) with 
the use of that integral (in which we choose, e.g., the coordinate ϑ to be the independent 
variable) then we will get four differential equations for the determination of u, v, u1, v1 
in terms of ϑ that will be of order two relative to u and v and of order one relative to u1, 
v1 .  If those equations are integrated then the vis viva integral will yield the time t as a 
function of ϑ by quadratures. 
 
 

§ 17. – The equations of motion in special cases. 
Particular solutions of the equations of motion. 

 
 If the surface S1 upon which the body rolls without slipping is a sphere [formula (35)] 
and the force function U depends upon only the variables u and v then the coordinates ϑ, 
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u1, v1 will be cyclic when we introduce the quantity n (9) into the equations of motion 
(57) in place of ϑɺ , and equations (57) will coincide with formulas (40). 
 Another simpler case will present itself when the rigid body is a body of revolution: 
 

A = B,  x = u cos v, y = u sin v, z = funct. (u) 
 
and the surface S1 is a surface of revolution: 
 

x1 = u1 cos v1 ,  y1 = u1 sin v1 ,  z1 = funct. (u1) . 
 
If the force function U includes only the variables u, ϑ, u1, in addition, then the 
coordinates v and v1 will be cyclic.  That condition for the force function will be fulfilled, 
e.g., when the applied forces have a resultant that acts at the center of mass O, is parallel 
to the z1-axis, and has a constant magnitude, or when that resultant points from the center 
of mass O to a point O1 on the symmetry axis of the surface S1 and depends upon only the 

distance 1OO . 

 In that case, it will be preferable to introduce the velocity 1uɺ  into the equations of 

motion (57), in place of vɺ , with the help of the first of the condition equations (59).  If 
we then eliminate t from the equations that arise in that way by making use of the vis viva 
integral: 

Θ (u, ϑ, u1, uɺ , ϑɺ , 1uɺ ) = U (u, ϑ, u1) + const. 

 
 then we will get two second-order differential equations that determine two of the 
coordinates u, ϑ, u1 as a function of the third one.  If those equations are integrated then 
we can get the cyclic coordinates v and v1 and time t by quadratures. 
 We would not like to go further into the development of those equations, which is 
very complicated, and present only two particular solutions of the equations of motion 
(57) for the special case that we speak of. 
 If we set: 

uɺ  = 0,  u = u0 ,  ϑɺ  = 0,  ϑ = 
2

π
, vɺ= 0vɺ ,  v = 0v tɺ  + v0 , 

 

1uɺ = 0,  u1 = u10 , 1vɺ  = 10vɺ , v1 = 10v tɺ  + v10 , 

 
in which u0 , 0vɺ , … denote constants, then the first of the condition equations (59) and the 

last two of the equations of motion (57) will be fulfilled when: 
 

(60)     
U

ϑ
∂
∂

= 0   
2

πϑ = 
 

. 

 
 In the examples of the applied forces that were cited above, as was easy to see, U 
included the angle ϑ only in the form sin ϑ, such that U actually satisfied condition (60). 
 The remaining formulas (57) and (59) imply two relations: 
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1 1G vɺ = G vɺ , 
11

1 ( ) 1 ( )U U

u uE E

∂ Θ + ∂ Θ +−
∂ ∂

 = 2 1K G v′∆ ɺ  

 
that the constants u0, 0vɺ , … must fulfill in order for the motion of the body that is thus 

defined to be possible. 
 As a result of the formulas that were presented, the contact point M will describe 
parallel circles with constant velocity on the outer surface of the body and the surface S1 .  
The motion will be stationary. 
 The other particular solution will be given by the formulas: 
 

vɺ= 0,      v = v0 ,      ϑɺ  = 0,      ϑ = 
2

π
,      1vɺ = 0,      u = u0 ,      v1 = 10v , 

 
in which v0 and v10 mean arbitrary constants. 
 When U satisfies the condition (60), the last two of the equations of motion (57) and 
the second of the condition equations (59) will be fulfilled.  The remaining two formulas 
(57) and (59) serve to determine the coordinates u and u1 in terms of time t.  If we replace 
formula (57) with the vis viva integral in that way then we will get the two equations: 
 

1 1E uɺ  = E uɺ , (M ρ 2 + A) τ 2 = 2U + const., 

 
from which the variables u and u1 can be determined by quadratures. 
 The contact point M describes meridians on the surfaces S and S1 . 
 In order to get a particular solution of equations (57) when none of the coordinates of 
the body is cyclic, we consider the motion of a rigid body that is bounded by the outer 
surface of an ellipsoid S: 

x = 
2 2

2 2 2 2

a u a v
a

a b a c

− −

− −
, … (a2 ≤ u ≤ b2 ≤ v ≤ c2) 

 
that rolls on an immobile ellipsoid S with the same semi-axes: 
 

x1 = 
2 2

1 1

2 2 2 2

a u a v
a

a b a c

− −

− −
, … (a2 ≤ u1 ≤ b2 ≤ v1 ≤ c2) 

 
under the action of a force that points from the center of mass O of the body to the center 

O1 of the immobile ellipsoid and depends upon only the distance 1OO  between the two 

points O and O1 .  The force function U is a function of 1OO  then, in which: 

 

 
2

1OO  = 2 (a2 + b2 + c2) – u – v – u1 – v1  
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+ 
2 2 2

1 1 1 1 1 1

1 sin cos 1 cos sin
2

2 2

a b c

uv u v E E G G E G

ϑ ϑ ϑ ϑ   
+ − − −      

   
. 

 
 If we assume that the mass distribution in the body is such that the moments of inertia 
A and C about the largest and smallest of the axes of the ellipsoid S, resp., are equal to 
each other, such that, from (50): 

2Θ  = (M ρ2 + A)(σ 2 + τ 2 + n2) −
2

M n
u vE G

ρ σ ρ τρ ρ ε
 ∂ ∂+ +  ∂ ∂ 

 

+ (B – A)(σ α′ + τ β′ + n γ′ )2, 
 

then it will be clear that a motion of the body on the ellipsoid S1 must be possible for 
which the contact point M describes central circular segments on the surfaces S and S1 : 
 

u1 = u,  v1 = v,  u + v = a2 + c2. 
 
 Since the projections of the instantaneous angular velocity ω of the body onto the 
middle axis of the ellipsoid S and the direction OM will be equal to zero for that motion, 
we can obviously start by replacing the simpler form of Θ : 
 

2Θ  = (M ρ2 + A)(σ 2 + τ 2 + n2) 
 
in (57).  It will not be difficult then to convince ourselves that equations (57) and (59) 
actually admit the cited particular solution, in which the angle ϑ and the time t are given 
by the formulas: 
 

tan ϑ = 
2 2 2

2 2

1 ( ) 2

2

b a c uv

uv u b b v

+ −
− −

, t = 
2 2 2 2

0

1 ( )u v du

b v u b a u u cω
−

− − − −∫  + const. 

 
v = a2 + c2 – u, 

 
in which ω0 denotes the constant angular velocity of the body. 
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