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 It is known from the principle of virtual velocities that a system of material points is 
found in equilibrium when the virtual work that is done by the given forces vanishes for 
any virtual displacement of their points of application that is compatible with the mobility 
conditions of that point.  In the foregoing, generally-specialized, way of conceptualizing 
the principle of virtual velocities, one cares to assume that these condition take the form 
of equations ϕi = 0 between the coordinates of the points of application, by whose 
variations δϕi = 0, the conditions for the displacements δ will be obtained.  In fact, only 
the conditions for the vanishing of those variations will then enter into the treatment of 
the static problem.  However, in that, one recognizes that it is entirely irrelevant whether 
those variations do or do not come about by performing δ processes, δϕi = 0.  One thus 
has no basis for restricting the conception of the principle of virtual velocities above by 
any particular analytical formulation of it. 
 In order to give a more precise account of that fact, one first considers − say − the 
equilibrium of a material point under the influence of arbitrary forces with the 
components X, Y, Z for which the condition: 
 

P δx + Y δy + R δz = 0 
 
should exist.  However, the latter is the expression for a point-plane system, and the 
structure that is defined by it can be regarded, in just the same sense, as a geometrically 
well-defined one, such as perhaps an ideal fixed surface on which the points is compelled 
to remain; any point will be associated with a well-defined plane by it, or even a well-
defined surface in which the displacements must take place (*).  As long as one first 
ignores friction reactions, etc., one can thus produce only normal reactions, and one will 
then obtain: 
 X – λ P = 0, 
 Y – λ Q = 0, 
 Z – λ R = 0 
or 

                                                
 (*) For this way of looking at things, cf., my paper in volume XXIII of these Annalen, pp. 45, et seq. 
[Translator: In that article, he introduces the term “P-E-system” (P-E = Punkt-Ebene) for “point-plane-
system.] 
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X δx + Y δy + Z δz = 0 
 
as the equilibrium conditions.  From that point onward, one will rise to the general case in 
which a certain number of conditions of the form: 
 

1

n

k=
∑ (psk δxk + qsk δyk + rsk δzk) = 0, s = 1, 2, …, r 

 
have been prescribed for the coordinate of the points of a system, perhaps in that same 
way that Lagrange did in Théorie des fonctions (*).  However, the admissibility of the 
condition: 

∑ (X δx + Y δy + Z δz) = 0 
 

once more proves to be the criterion for equilibriuim in it (** ). 
 With that remark, one arrives at a new viewpoint on the static problem, at least, 
formally.  However, things seem to be different in dynamics.  There, the assumption that 
there are explicit equations ϕi = 0 in the coordinates of the system points proves to be one 
that will have an essential effect on all of the further treatment of dynamical 
investigations.  Indeed, it is practically due to the self-contained form that analytical 
mechanics has taken on since Lagrange that the term differential equations of mechanics 
refers to certain system of second-order differential equations that are soluble for the 
second differential quotients of the variables with respect to the independent variable t, in 
which a number of relations exist between the independent variables explicitly (which 
can also include t). 
 Naturally, there can be no question of the overarching importance of that 
aforementioned case.  Thus, in what follows, I would like to at least attempt to verify that 
there also exists no essential basis in dynamics for excluding that other extended problem 
statement as inconceivable through the usual analytical conception of things, but that 
conditions of a general character can also very well have an entirely conceivable 
dynamical content, moreover. 
 In the formulation of the dynamical differential equations, in the sense of the 
customary viewpoint − which is, to my knowledge, assumed by all authors (*** ) − the 
case can already arise in which the relations δϕ = 0 are not given in the form of total 
variations, although they can certainly lead to such things.  I shall next discuss that case 
somewhat more closely, starting from which, an advance to more general assumptions 
will seem easily possible. 

                                                
 (*) Lagrange, Théorie des fonctions, Paris, 1813, pp. 350, et seq.  
 (** ) Moreover, cf., the remark in Jacobi’s Vorelesungen über Dynamik, pp. 15.  
 (*** )  Along with the representation in Lagrange’s analytical mechanics itself, I shall mention only that 
of Jacobi, loc. cit., pp. 52-57, and the one in Kirchhoff’s  Mechank, pp. 21, which probably goes further in 
the name of abstraction.  The aforementioned assumption is itself preserved in the case in which one has 
been led to assume that the forces are functions of time and their differential quotients with respect to them. 
 The statements in the text that the conditions can also depend upon the velocities, even if one cannot 
exclude them, allow one to regard them as belonging to mechanics, and thus amount to explanations for the 
analytical processes that come to be employed with the differential equations of dynamics.  Cf., the remark 
on pp. 9, moreover. 
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 Namely, let r linear differential expressions with n variables x1, x2, …, xn be given: 
 

 1
1

n

i i
i

p dx
=
∑ , 

 

(1) 2
1

n

i i
i

p dx
=
∑ , 

 …. 

 
1

n

ri i
i

p dx
=
∑ , 

 
in which the pki might contain only the x.  One might then ask when they can be 
equivalent to just as many total differentials.  In order for that to be true, it is requisite 
that total differentials should come about by multiplying the pki by certain multipliers λs 
and adding; i.e., equations of the form: 
 

(2)    
1

r

si s
s

p λ
=
∑ = 

ix

ϕ∂
∂

, i = 1, …, n 

 
must exist.  Now, if the system of differential expressions (1) is assumed to be linearly-
independent then not all partial determinants of degree r in the corresponding pik can 
vanish.  One can then always substitute the values of λ that are calculated from, say, the 
first r equations in (2) into the last n – r of them and thus obtain n – r linear partial 
differential equations for the function ϕ.  Now, should the system (1) be equivalent to r 
total differentials, that system of partial differential equations would then have to possess 
r mutually independent particular integrals: 
 

ϕ1, ϕ2, …, ϕr . 
 

However, the conditions for that to be true have been known since Jacobi and Clebsch.  
In particular, they were put into a very suitable form for algebraic investigations by 
Frobenius (*).  In view of the present purpose, I will meanwhile choose the following 
process for obtaining those conditions (** ). 
 One brings the equations: 
 

                                                
 (*) Frobenius, “Ueber das Pfaff’sche Probleme,” Journal v. Borchardt  LXXXII, pp. 270, et seq. 
 (** ) Cf., Boole, Treatise on differential equations, supplementary volume, pp. 74, et seq.  
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by means of the ever-possible division by the non-vanishing determinant: 
 

P = 
11 1

1

r

r rr

p p

p p

⋯

⋯ ⋯ ⋯

⋯

, 

into the form: 

0 = 
1

n

lp
pl p

a
x x

ϕ ϕ
=

∂ ∂+
∂ ∂∑  = (Al) ϕ. 

 
The existence of any two of the equations: 
 

(Al) ϕ = 0, (Am) ϕ  = 0 
 
will then imply the new equations: 
 

(Am Al – Al Am) ϕ = 0. 
 

Since either ∂ϕ  / ∂xi or ∂ϕ  / ∂xm will enter into them, they cannot be a consequence of 
the remaining equations; i.e., all of their coefficients must vanish.  Moreover, the 
conditions that emerge from that are necessary and sufficient for the system of 
differential equations (1) to be complete (*), or when the n – r equations (Al) ϕ = 0 should 
possess r integrals: 

ϕ1, ϕ2, …, ϕr 
 
that are mutually-independent relative to the variables x1, …, xr . 
 However, under the latter assumption, there will also be just as many systems of 
multipliers λs (which might be denoted by λs1, λs2, …, λsr), whose determinant: 

                                                
 (*) In particular, cf., the proof that A. Mayer gave of this in his treatise in these Annalen, V, pp. 450, et 
seq.  With the terminology that he introduced, when the expression (1) is equal to zero, it will define an 
unrestricted integrable system if the integrability conditions above are fulfilled. 
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(3)     Λ = 
11 1

1

r

r rr

λ λ

λ λ

⋯

⋮ ⋯ ⋮

⋯

 

 
cannot vanish.  Namely, if one denotes the functional determinant of the ϕ relative to the 
x1, …, xr  by F then it will follow immediately from the easily-proved relation: 
 

P Λ = F 
 
that Λ cannot be zero, either, since F does not vanish, from the assumptions that were 
made about the integrals ϕ above.  However, if the completeness conditions for the 
system are not fulfilled then it can be possible for one to ascertain a smaller number of 
total differential equations by the given process, such that – say – the given expressions 
(1) can be replaced with the following ones: 
 

dϕ1,  dϕ2 , …, dϕh , 

1,
1

n

k i i
i

p dx+
=
∑ , …, 

1

n

ri i
i

p dx
=
∑ . 

 
In this case, however, the possibility of a further reduction cannot be completely 
excluded, as long as one is dealing with the expressions (1) when they are set equal to 
zero.  Then, since in the present examination the constants in the integrals: 
 

ϕ1 = const., ϕ2 = const., …, ϕr = const. 
 
have entirely specialized values (which might be determined from the initial positions of 
the system points), it can happen that by eliminating h variables with the help of the 
equations of the remaining differential expressions, a further treatment will once more be 
practicable.  However, in every case, the aforementioned process will allow one to decide 

how the system of equations ∑ pri dxi = 0 can be replaced by explicit equations and other 
differential relations. 
 One then easily recognizes that in the event that a reduction (in one sense or the 
other), to r explicit equations: 

ϕ1 = 0, ϕ2 = 0, …, ϕr = 0 
 
is possible at all, the differential equations: 
 

mi 
2

2
id x

dt
= Xi + 

1

r
s

s
s i

v
x

ϕ
=

∂
∂∑ , i = 1, …, n 

 
can be replaced with the ones that are defined directly (*): 

                                                
 (*) For the sake of simplicity, I will denote all of the variables xi  yi  zi of the system by xi , while the 
index i goes from 1 to n.  
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(4)     mi 
2

2
id x

dt
= i im x′′ = Xi + 

1

r

s si
s

pµ
=
∑ . 

 
By contrast, the conversion of the equations can no longer lead back to a proper 
variational problem, and furthermore, the property of system (1) being complete defines a 
necessary and sufficient condition for that to be true. 
 Namely, should the variation of the integral: 
 

∫ (T + U) dt 
 

vanish, under the assumption of the conditions that belong to (1), which might be written 
in the form: 

(5)     
1

n

si i
i

p x
=

′∑  = 0, s = 1, …, r, 

 
one would obtain in a known way, upon forming: 
 

1 1

n n

s si i
i s

T U p x dtδ λ
= =

 ′+ + 
 

∑∑∫ = 0, 

the equation: 
 

0 = 
1 1

n r
s

k sh k
k sk k

dT d T
X p x

x dt x dt

λ δ
= =

 ∂ ∂− + − ′∂ ∂ 
∑ ∑ + 

1, 1

( )
n r

s i k
i k s

sik x xλ δ
= =

′∑∑ , 

 
in which one has set: 

(sik) = − (ski) = si sk

k i

p p

x x

∂ ∂−
∂ ∂

. 

 
Now, in order for that to lead to the equations of mechanics, in the event that further 
relations between the variations δ are not present, the equations: 
 

1

( )
n

i
i

sik x
=

′∑  = 
1

r
s
l lk

l

pµ
=
∑  , 

1, , ,

1, ,

s r

k n

=
=
…

…
 

 
must be true as a result of the relations (5), since the λr can be subjected to no further 
restrictions.  However, that will require the vanishing of the covariants: 
 

1 1

( )
n n

i k
i k

sik x y
= =

′ ′∑∑  

by means of the relations: 
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1

n

si i
i

p x
=

′∑  = 0, 
1

n

si i
i

p y
=

′∑  = 0, s = 1, …, r . 

 
Now, under that assumption, the system of differential expressions (1) will be complete 
(*), but, at the same time, one will have: 
 

1

r

k s sh
sh h

T d T
X p

x dt x
µ

=

 ∂ ∂− + − ′∂ ∂ 
∑ = 0, 

in the event that one sets: 

µs = 
1

r
hs

h s
h

d

dt

λ λ µ
=

−∑ . 

However, that was to be shown. 
 One can determine the multipliers µs in equations (4) in the usual way from the 
equations: 

(6)    
1 1 1 1

( )
n n n r

si si
i k i h

i k i hk k

p p
x x X hs

x m
µ

= = = =

∂ ′ ′ + +
∂∑∑ ∑ ∑  = 0 

 
that one obtains from differentiating them by t by means of (5), in which we have set: 
 

(sh) = (hs) =
1

n
hi si

i i

p p

m=
∑ . 

 
One obtains the values of the µs from equations (6).  The determinant of the (hs), as the 
sum of the squares of all partial determinants of degree r from the system of coefficients 
in equations (5), can vanish only when the latter are not mutually independent, which 
contradicts the assumption (** ).  Thus, the µs will be functions of the x and even, rational, 
entire functions of degree two of the x′.  One can then ignore the relations (5) completely, 
and consider only the differential equations (4), from which the r integrable equations: 
 

1

n

si i
i

d
p x

dt =

′∑  = 0, 

 
and for a suitable determination of the constants, (5) itself, will follow once more.  On the 
basis of this convention, it will be possible to determine all of the higher differential 
quotients of the x, as long as only the initial positions and velocities are assumed [the 
latter, according to equations (5)]; i.e., there will generally be equations of the form: 
 

(7)     xi = 
0 0 0

2

2i i i

t
x tx x′ ′′+ +  + …, 

 

                                                
 (*) Frobenius, loc. cit.  
 (** ) Jacobi, loc. cit., pp. 140.  
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in which the index 0 refers to the initial state. 
 The following theorem is connected with the property of the µs that they are even 
functions of the velocities: 
 
 If, at a well-defined moment, one simultaneously substitutes equal and opposite 
velocities to the ones that are present at all points of the system then, under the same 
circumstances, all points will traverse exactly the same paths along which they would 
have moved at that moment, but in the opposite order (*). 
 
 Namely, if one is given the equations: 
 

2

2
id x

dt
 = ψi 

 
at all, in which the ψi are functions of xi and even functions of the ix′ , then the third 

differential quotients will become odd functions of the latter, the fourth, will be even, and 
so forth with the same alternation of signs.  The differential quotients of even order will 
remain unchanged under a simultaneous change of sign of all ix′ , but the ones of odd 

order will all assume opposite values.  If one now assumes that the path from any 
moment with the index 0 onward can be represented in form (7) for each point then, one 
will get the same motion for negative t as when one simultaneously assigns the opposite 
signs to all ix′ , with which, the theorem is proved. 

 Let us remark in passing only that the principles of the motion of the center of mass 
and the motion of surfaces are the same as in conventional mechanics, as long as 
corresponding assumptions about the coefficients in (5) are made.  It seems to be more 
interesting that the law of vis viva: 

T – T0 = 
01

n t

i it
i

X dx
=
∑ ∫  

 

                                                
 (*) Cf., a remark of Loschmidt in the Abh. der Wiener Akademie LXXIII, v. II, pp. 128.  However, the 
actual conditions for the possibility of such reversibility of a system are not stated there. 
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remains true (** ), especially, the principle of vis viva, as well, as long as a force function 
U that depends upon only the coordinates xi (in order to stay in the simplest case) exists.  
However, that also means that the general theorems that are immediate consequences of 
the latter (e.g., properties of the level surfaces, etc., …) must be true.  In particular, one 
might care to count the stability criterion among them, by which stable equilibrium will 
exist only when the force function is a maximum for the equilibrium position of the 
system. 
 Admittedly, the theory of maxima and minima does not treat the case in which the 
function U of x is a maximum or minimum relative to the given differential relations of 
                                                
 (** )  This is also true for the differential equations that arise from the variational problem that was treated 
above for any sort of relations (5); more generally, it will be true in the event that their left-hand sides are 

replaces with any forms that are homogeneous in the 
i

x′ .  On the basis of this property, one can imagine 

that any equations to which one arrives by means of the Hamilton’s  principle are equivalent to the ones 
above, in a certain sense.  However, Hamilton ’s principle is not at all a proper principle of mechanics, 
since it has – at least, to begin with – only the character of an analytical rule in mechanics that also yields 
the differential equations of motion.  If one would not wish to deviate from the requirement that the surface 
element can experience only normal reactions then one would, in fact, have to take the position above.  
Moreover (let it be said here), the same thing will emerge from the principle of least pressure.  Namely, 
according to it, the sum: 

S = 
2

1

1
i i

i

n

i m
x X

=

 
∑  
 

′′−  

 

must be a maximum-minimum relative to all values of the 
i

x′′  that satisfy the conditions: 

Fi = 
, 1 1

si
sii k i

k

n n

i k i

p
p

x
x x x

= =

∂
∑ ∑

∂
′ ′ ′′+  = 0, s = 1, …, r. 

 
From the equations of condition: 

( )s s

k

S F
x

λ−∑
∂

′′∂
 = 0, 

however, the equations: 

1
i

im
x′′  = Xi + 

1
s si

r

s

pν
=

∑  

 
will emerge immediately.  In fact, the single analytical difference that exists between problems of this kind 
and those of ordinary dynamics consists of the fact that in the former case, the conditions are not known 
explicitly at the outset, but they will be determined by means of the integration of simultaneous second-
order systems and will play precisely the same role in regard to their dynamical effects as in the otherwise 
common investigations. 
 If one considers the motion of a material point that is restricted by one differential relation then the 
integration of the equations of motion will yield its path in the form of a curve that is covered with surface 
elements – i.e., a strip, as one can say.  If one now constructs a hypersurface F = 0 to which that strip 
belongs then the same motion can also be produced in that way as when F = 0 is added to the equations of 
motion as a condition, as long as only the initial state remains unchanged.  However, a  similar argument 
will also be true (as far as I know) for an arbitrary point system, in such a way that one can also say: 
 The processes of motion that are expressed by the extended form of the equations of motion are 
nothing but the ones that can also be described by means of the currently-customary way of expressing 
them.  However, they will produce them in a fundamentally simpler representation, as long as, e.g., 
completely well-defined differential relations are introduced into the investigation in place of arbitrary 
surfaces on which only strips come under considerations. 
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the form (5).  In fact, such a demand would not generally make any sense, either.  
However, the function U might very well have that property in regard to all paths from an 
equilibrium position that can bring the system into accord with those conditions.  If one 
then denotes the increase in any coordinate that is evaluated at the fixed moment (which 
might correspond to equilibrium) and given the index 0 by: 
 

0 0

2

2i i

t
t x x′ ′′+ + … 

 
then the increase ∆U in U, under the assumption of equilibrium conditions: 
 

0
10

r

s si
si

U
h p

x =

 ∂ + ∂ 
∑ = 0,  i = 1, …, n, 

will assume the form: 

∆U = 
2 2

1 12

n n

i i k
i ki i k

t U U
x x x

x x x= =

 ∂ ∂′′ ′ ′+ ∂ ∂ ∂ 
∑ ∑  + … 

However, since: 

0

0
1 1 1 0

n n n
ri

ri i i k
i i k k

p
p x x x

x= = =

∂ 
′′ ′ ′+  ∂ 

∑ ∑∑ = 0, 

one will get: 

∆U = 
0 0

2 2

1 1 1 0
2

n n r
si

s i k
i k si k k

pt U
h x x

x x x= = =

 ∂∂ ′ ′+ ∂ ∂ ∂ 
∑∑ ∑  + … 

 
Now, provided that the quadratic form: 
 

2

1 1 1 0

n n r
si

s i k
i k si k k

pU
h x x

x x x= = =

 ∂∂ ′ ′+ ∂ ∂ ∂ 
∑∑ ∑  

or: 

ik i kx xα ′ ′∑  

 
that appears here has a negative-definite character in regard to the relations (5), one can 
ascribe to U the maximum property in regard to all possible motions of the system that 
start from the equilibrium position. 
 
 In connection with a known argument in theoretical mechanics, the paradox then 
seems to appear that, here as well, this definite character is necessary and sufficient for 
the stability of equilibrium.  Thus, it is easy to convince oneself of the incorrectness of 
that statement.  A remarkable consideration of Dirichlet ’s proof (*), which must support 

                                                
 (*) Journal v. Crelle XXXII, pp. 85; cf., also Schell, Mechanik, pp. 540.  The analysis that was 
developed in this article does not seem superfluous to me, since, in fact, in the presentations that are 
introduced into the fundamental theorem of mechanics by the principal of energy, one simply works with 
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that investigation, shows that it assumes not only the maximum property, but additionally 
demands that a value can be established that is smaller than certain values of – ∆U that 
are defined in that proof, and independently of the existing negative values of ∆U for the 
vis viva in the initial position (which can be envisioned to be the equilibrium position 
itself, here, for the same of greater clarity).  However, that is not possible in the present 
case, in which ∆U is expressed (up to higher-order terms) in terms of a quadratic function 
of the initial velocities, multiplied by t2. 
 A closer examination will show that the quadratic form (8) no longer has any decisive 
connection to the question of stability at all, as long as one drops the customary 
assumptions in mechanics (i.e., the relations (5) no longer define a complete system).  
Rather, one will obtain the true conditions for a stable motion by examining the small 
oscillations of the system. 
 Apropos of that, it will be assumed that the increases ξ in each coordinate x = x0 + ξ 
will be small enough that the second powers of them can be neglected in comparison to 
the first, and that the velocities x′ have that order of smallness. 
 Moreover, when one sets x = x0 + ξ , µs = 0

sµ  + µs, the differential equations: 

 

i im x′′  = 
1

r

s si
si

U
p

x
µ

=

∂ +
∂ ∑  

will become: 
 

i im ξ ′′  = 
2

0
1 1 1 10 0

( )
r n n r

si
s si s i

s i k si i k k

pU U
p

x x x x
µ µ ξ

= = = =

   ∂∂ ∂+ + +   ∂ ∂ ∂ ∂   
∑ ∑∑ ∑ + 

0
1

r

s si
s

pη
=
∑ , 

 
while from the equations of condition: 
 

1 1 1 1

1
( )

n n n r
si

i k si s
i k i hk i i

p U
p sh

x m x
ξ ξ µ

= = = =

∂ ∂′ ′ + +
∂ ∂∑∑ ∑ ∑  = 0, 

 
in conjunction with the equations of equilibrium, it will follow that one must set: 
 

0
sµ  = hs , 

 
up to quantities that have the same smallness as ξ.  However, with that, the system above 
will reduce to the following one: 
 

i im ξ ′′  = 
0

1 1

n r

ik k s si
k s

pα ξ ζ
= =

+∑ ∑ ,  i = 1, …, n, 

 

                                                                                                                                            
the concept of the maximum.  Cf., e.g., Thomson and Tait , Treatise on natural philosophy, vol. I, § 292 
(1883).  This way of looking at things is generally completely adequate, since, in fact, the force function 
will be completely independent of the x′, and time will come under scrutiny.  
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in which the ζ are again quantities with the same order of smallness as before, in the 
event that one sets: 

αik = 
2

0

si
s

i k k

pU
h

x x x

 ∂∂ + ∂ ∂ ∂ 
∑ , 

 
which must now be solved in conjunction with the equations: 
 

0
1

n

i si
i

pξ
=

′∑  = 0, s = 1, …, r. 

 
In order to represent the ξ by particular integrals of the form: 
 

ξi = eλ t yi , 
 

one must solve the determinant equation of degree n – r: 
 

2
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2
1 2 1

11 12 1

1 2

0 0

0 0

n r

n r

n n nn n n rn

n

r r rn

m p p

m p p

m p p

p p p

p p p

α λ α α
α α λ α

α α α λ

−
−

−

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

⋯ ⋯

= 0. 

 
When the quadratic form (8) is negative-definite, this equation will have roots, about 
which we can only assert that the have negative real parts, according to a well-known 
argument that goes back to Cauchy.  In the present case, however, the existence of stable 
oscillations will demand that all roots must be real and negative (*).  If that condition is 
fulfilled then one will obtain expressions for ξ and ξ′ in a known way that continually 
remain small and, at the same time, exhibit the equilibrium state of the system when one 
considers the basic approximation. 
 Now, as one knows, all roots of the equation above will be real when the determinant 
of the αik is symmetric.  That will take place only when all (sik) vanish.  However, that 
symmetric arrangement can also be produced in the equation above when the differential 
relations (5) belong to a complete system.  If one recalls the property of the determinant 
Λ that was remarked in regard to (3) one can then assume that the 0

sµ  have the form: 

 

0
sµ  = 0

1

r

sh h
h

λ ν
=
∑ , 

                                                
 (*) Cf., also Thomson and Tait , loc. cit., § 344, § 345. 
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in which the 0
shλ  are the values of the multipliers of the complete system that correspond 

to the equilibrium position.  However, one now has: 
 

1

r

hs hi
h

pλ
=
∑  = s

ix

ϕ∂
∂

, 
1

r

ks hk
k

pλ
=
∑  = s

kx

ϕ∂
∂

, 

so one will also have: 
 

1 1 1 1

( )
r r r r

hs hs
s hi hk s hs

s h s hk i

p p hik
x x

λ λν ν λ
= = = =

 ∂ ∂− + ∂ ∂ 
∑∑ ∑∑  = 0,  i, k = 1, …, n 

or 

0

1 1 10 0

r r r
hi hs

h s hi
h s hk k

p
p

x x

λµ ν
= = =

   ∂ ∂+   ∂ ∂   
∑ ∑∑ = 0

1 1 10 0

r r r
hk hs

h s hk
h s hi i

p
p

x x

λµ ν
= = =

   ∂ ∂+   ∂ ∂   
∑ ∑∑ , 

 
and as one easily sees, these relations can have the effect that the determinant above is 
converted into a symmetric one; one has only to multiply the last r rows of the horizontal 
and vertical boundaries with suitable factors and add them to the αik .  However, all roots 
will then certainly be real, and the complete criterion for stability can thus also be 
ascertained algebraically from the pik and their differential quotients, with no deeper 
analysis (*). 
 When the principle of Jacobi multipliers is applied to the differential equations (4), 
(5), that will demand that one can give a (particular) integral for the partial differential 
equation: 

1 1

( )log 1r n
s si

s i i i

pd M

dt m x

µ
= =

∂+
′∂∑∑  = 0. 

 
We will obtain the r equations: 
 

(9)   
1 1

( ) 2 ( )
r n

s si
k

h ki

dp
sh ski x

x dt

µ
= =

∂ ′+ +
′∂∑ ∑  = 0,  s = 1, …, r 

 
for the differential quotients of the µs that enter into it from the partial differentiation of 
(6) that we learn from Jacobi. 
 If one now denotes: 

1

( )1r
s si

s i i

p

m x

µ
=

∂⋅
′∂∑  

 
by Hi, to abbreviate, then the equation for the determination of these quantities will 
follow: 

                                                
 (*) For the latter case, the representation above includes a formally-extended representation of the 
theory of small oscillations that seems to have always been treated since the time of Lagrange only under 
the explicit assumption of independent coordinates. 
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(10)   

1

1

1

1

(11) (1 ) 2 (1 )

( 1) ( ) 2 ( )

n
i

k
k

n
ri

k
k

i ri i i

dp
r ki x

dt

dp
r rr rki x

dt

p p m

=

=

′+

′+

−

∑

∑

⋯

⋮ ⋮ ⋮ ⋮

⋯

⋯ H

 = 0. 

 
 If one denotes the determinant of the (rs) by ∆ and its sub-determinants by ∆rs then 
one will obtain from (10): 
 

∆Hi + 
, 1 1

2 ( )
n r

hi si
k

k h s i

dp p
hki x

dt m= =

 ′+ 
 

∑∑ ∆rs = 0, 

 
so when one sums over i and substitutes the value in the multiplier equation, one will get: 
 

∆ lnd

dt

M
 = 

, 1 , 1 1

( )
( )

r n r
si

hs k
h s k h s i

pd hs
hki x

dt m= = =

′∆ +∑ ∑∑  

or: 

(11)     ∆ lnd

dt

M
 = 

d

dt

∆
+ A, 

 
in which one denotes the four-fold sum on the right by A.  This will yield Jacobi’s result 
that M = ∆ (*) only when the form A vanishes identically or due to equations (5); i.e., 
when either all (hki) are zero or when there are r quantities hs that satisfy the n equations: 
 

1 , 1

( )
n r

si
hs

i s h i

p
hki

m= =

∆∑∑ = 
1

r

s sk
s

h p
=
∑ , k = 1, …, n. 

 
If one multiplies them by the expressions: 
 

1

r
jk

lj
j k

p

m=
∆∑  

 
and sums over k then what will result is: 
 

hi ∆ = 
, 1 , , 1

( )
n r

hk si
lh js

i k s h j i k

p p
jik

m m= =

∆ ∆∑ ∑ . 

 
 However, when one switches i and k and then h and s, the right-hand side will 
become: 
                                                
 (*) Jacobi, loc. cit., pp. 132-141.  
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1
2 ( ) ( )hk si

lh js ls jh
i k

p p
jik

m m
∆ ∆ − ∆ ∆∑ . 

 
When one cancels the factor ∆ on both sides, one will then get: 
 

hl = 1
,2

, 1 , , 1

( )
n r

hk si
lh js

i k h j s i k

p p
jik

m m= =

∆∑ ∑ , 

 
by means of a well-known determinant formula, in which ∆lh,js now means a second sub-
determinant of ∆.  One will then have the conditions for the existence of this Jacobi 
multiplier in an explicit form when one substitutes the value that was found for hl into the 
n conditions above. 
 I shall now examine the form of the multipliers under the assumption that relations 
(5) define a complete system.  Since the determinant Λ does not vanish, one can also set: 
 

(12)     psi = 
1

r
h

hs
h ix

ϕλ
=

∂′
∂∑ , 

 
in which the hsλ′  now mean the coefficients of the substitution that is reciprocal to the 

substitution λhs, and whose determinant is Λ′ = 1 / Λ.  Moreover, one will have: 
 

(st) = 
1

n
si ti

i i

p p

m=
∑ = 

1

1n
jh

hs jt
j i i ix x m

ϕϕλ λ
=

∂∂′ ′
∂ ∂∑  = 

, 1

[ ]
n

hs jt
j h

hjλ λ
=

′ ′∑ , 

 
such that when one denotes the determinant of: 
 

1

1n
jh

i i i ix x m

ϕϕ
=

∂∂
∂ ∂∑  = [hj] = [jh] 

 
by ∆, one will have ∆ = ∆′ Λ′2.  If one now introduces the expression (12) into the form A 
(11) then that will give: 

A = 
, 1 , , 1

1
( )

n r
j

i hs js
i k h j s i i

hki x
x m

ϕ
λ

= =

∂ 
′ ′∆ ∂ 

∑ ∑ . 

 
 One further finds from (12) that: 
 

(hki) = 
1

r
lh l lh l

l i k k ix x x x

λ ϕ λ ϕ
=

 ′ ′∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 
∑ , 

 
so, since from (12) and (5), the dϕi / dt are all zero: 
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1

( )
n

i
k

hki x
=

′∑  = − 
1

r
l lh

l i

d

x dt

ϕ λ
=

′∂
∂∑ . 

 One then has: 

A = − 
1 , , , 1

n r
jhs lh l

js
i h s j t i i i

d

m dt x x

ϕλ ϕλ
= =

∂ ′∆ ∂′ ∂ ∂ 
∑ ∑ , 

 
or, when one switches s with h and sums over i: 
 

A = − 1
2

, , , 1

( )
[ ]

r
js lh

hs
h s j t

d
tj

dt

λ λ
=

′ ′ 
∆ 
 

∑ . 

 
 However, one can easily convert the latter expression in such a way that the formula 
(11) for M becomes integrable.  It will then follow from the equation: 
 

∆ = ∆′ Λ′2 
 
by total differentiation with respect to t that: 
 

2 2
d d

dt dt

′ ′ ′∆ Λ Λ′ ′Λ + ∆  = 
, , , 1 , , , 1

( )[ ]
[ ]

r r
js lh

hs js lh hs
h s j t h s j t

dd tj
tj

dt dt

λ λ
λ λ

= =

′ ′
′ ′∆ + ∆∑ ∑ . 

 
 If one observes that in this equation the first part on the right must be equal to the first 
part on the left, since differentiating both of them does not affect the coefficients of the 
substitution at all, then one will have: 
 

2
d

dt

′ ′Λ Λ′∆ = 
, , , 1

( )
[ ]

r
js lh

hs
h s j t

d
tj

dt

λ λ
=

′ ′
∆∑  

or: 

A = − d

dt

′Λ ∆
′Λ
, 

so 
logd

dt

M
 = 

log logd d

dt dt

′∆ Λ− , 

and: 

M = 
∆

′Λ
 = ∆ Λ 

 
will be the multiplier, which clearly assumes a knowledge of the determinant Λ, which 
cannot be ascertained in general without integrating the total system. 
 However, the form of it gives rise to a further remark, which I believe can be of use in 
the investigation of systems of differential equations that have been transformed by 
multipliers. 
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 The system of differential equations: 
 

(13)   
2

2
i

i

d x
m

dt
 = Xi + 

1

r
s

s
s ix

ϕν
=

∂
∂∑ , i = 1, …, n, 

with the conditions: 
ϕ1 = c1, …, ϕr = cr, 

 
in which the c might also be arbitrary constants, has the Jacobi multiplier N = ∆′, which 
follows from the multiplier equation: 
 

1 1

log 1n r
s s

i s s i i

d N

dt m x x

ν ϕ
= =

∂ ∂+
′∂ ∂∑∑  = 0, 

 
in case the quantities vs and its differential quotients are determined by the equations 

2

2
sd

dt

ϕ
= 0.  Now, if one introduces the system (5) that is equivalent to the relations dϕs = 0 

in place of them by means of equations (12) then one will obtain the transformed 
multiplier equation: 

(14)    
1 1

( )log 1n r
s si

i s i i

pd

dt m x

µ
= =

′ ∂+
′∂∑∑

M
 = 0, 

 
under the assumption that the partial differential quotients of the µs are determined from 

the transformed relations 
2

2
hd

dt

ϕ
= 0, or: 

 

(15)  
1 1 1 1 1

[ ]
n n r r n

hi s sh i
i i s hi

i i s s ii i

dp d X
x x sh p

dt x dt m

ϕ λ µ
= = = = =

′∂′ ′− + +
∂∑ ∑∑ ∑ ∑  = 0, 

 
in the form: 

∆ 
logd

dt

M
 = 

log
2

d d

dt dt

′∆ Λ− ∆ , 

so one will get: 

M′ = 
2

∆
′Λ

 = ∆′ = N. 

 
 The multiplier then remains unchanged, which was to be expected.  However, things 
will be different when one drops the second term on the left in equations (15), which will 
vanish due to the equations dϕs = 0.  One will then get equations (9), and from them, as 
one can show, the new multiplier M = ∆Λ.  This result, which seems paradoxical on first 
glance, is explained by the fact that the differential equations (13), with the conditions 
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2

2
sd

dt

ϕ
= 0 will not become identical with (4), with the conditions 

1

r

si i
i

d
p x

dt =

′∑  = 0, by 

merely a transformation, although they are entirely equivalent to them. 
 In fact, the general theory of Jacobi multipliers will imply in any case (and I would 
like to thank A Mayer, in a gracious communication, for this knowledge, along with the 
investigation that is given relative to it in what follows) that both formulas lead to 
precisely the same values of the multipliers, by means of which the condition equations 
will reduce, and then necessarily lead to the mutually-identical systems (13) and (4). 
 For this, one employs the well-known Jacobi theorem: 
 If k integrals for the n differential equations: 
 

(A)     1dx

dt
 = X1, …, ndx

dt
 = Xn 

are known, namely: 
(B)     ϕ1 = c1 , …, ϕk = ck , 
 
such that when one calculates x1, …, xk from (B) and indicates the substitution of their 
values by enclosing things in brackets [ ], the use of these integrals will convert the 
system into n – k differential equations: 
 

(C)     1kdx

dt
+  = [Xk+1],…, ndx

dt
 = [Xn], 

 
then any multiplier M of the system (A) will imply the multiplier: 
 

M′ = 
1

1

k

k

M

x x

ϕϕ

 
 
 

∂∂ ±
 ∂ ∂ 
∑ ⋯

 

 
of the system (C), and this theorem will also be unchanged when one assigns certain 
constant values to the arbitrary constants c (e.g., all of them equal to zero), and thus when 
one considers only the solutions of the given system (A) that satisfy the particular 
integrals: 

ϕ1 = 0, …, ϕk = 0. 
 

 Now, Jacobi’s differential equations (13), or: 
 

(16)  idx

dt
 = ix′ , idx

dt

′
 = 

1

1 r
s

i s
si i

X
m x

ϕν
=

 ∂+ ∂ 
∑ , i = 1, …, n, 

 
in which the vs are defined as functions of the x and x′ by the equations that emerge from 
the r equations: 
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(16′)    
2

2
sd

dt

ϕ
 = 0, s = 1, …, r 

 
by the substitutions (16), possess the 2r integrals: 
 

sd

dt

ϕ
= cs, ϕs – t sd

dt

ϕ
 = γs . 

 
 If one sets the c and γ equal to zero here then it will follow from the theorem that we 
just developed that: 
 If M is a multiplier of the system (16), and if one has then determined – say – x1, …, 
xr as functions of xr+1, …, xn from the r equations: 
 

ϕ1 = 0,…, ϕk = 0, 
 
and in such a way that the system (16) reduces to n – r second-order differential 
equations in t, xr+1, …, xn, then after substituting the values of x1, …, xr thus-obtained: 
 

(17)    M′ = 2

1

1

r

r

M

x x

ϕ ϕ ∂ ∂± ∂ ∂ 
∑ ⋯

 

 
will be a multiplier of that reduced system. 
 On the other hand, if one chooses r2 arbitrary functions hkλ′  of x1, …, xn whose 

determinant Λ′ does not vanish, and sets: 
 

(18)   
1

r
k

hk
k

d

dt

ϕλ
=

′∑  = 
1

n

hi i
i

p x
=

′∑ , h = 1, …, r 

 
then one can define the differential equations: 
 

(19)   idx

dt
 = ix′ , idx

dt

′
 = 

1

1 r

i s si
si

X p
m

µ
=

 + 
 

∑ , 

 
in which the µs are determined from the r equations that arise from equations: 
 

(19′)   
1

( )
r

hi i
i

d
p x

dt =

′∑  = 0, h = 1, …, r 

 
by the substitutions (19), and these equations (19), which are not identical to (16), will 
possess the r integrals: 



Voss – On the differential equations of mechanics. 20 

(20)    ψh = 
1

r
k

hk
k

d

dt

ϕλ
=

′∑  = ch . 

 
 If one denotes the substitution of the values of 1x′ , …, rx′  in these integrals by [ ] then 

the system (19) can lead to the 2n – r differential equations: 
 

(21) 

1
1

1

1

[ ], , [ ],

1
[ ], , 1, , .

r
r

r

s s
s

dx dx
x x

dt dt

dx dx
x X p r n

dt dt m
τ

τ τ τ
τ

µ τ
=

 ′ ′= =

 ′   ′= = + = +   

∑

⋯

…

 

 
 Therefore, if M is a multiplier of the system (19) then one will again have: 
 

N = 
1

1

r

rx x

ψ ψ

 
 
 

∂ ∂ ±
 ∂ ∂ 
∑ ⋯

M
 = 

1

1

r

rx x

ϕ ϕ

 
 
 

∂ ∂ ′Λ ±
 ∂ ∂ 
∑ ⋯

M
, 

 
when one takes all c in (20) to be zero from the outset.  However, it will follow, in turn, 
from the particular integral ψh = 0 that dϕk / dt = 0, and the reduced system (21) will itself 
once more take on the r integrals: 
(22)     ϕk = γk, 
such that it will follows further that: 
 If M is a multiplier of (19), and one has then solved the r equations ϕ1 = 0,…, ϕr = 0 – 
perhaps for x1, …, xr – and thus converted the system (19) [or, what must amount to the 
same thing, the system (16)] into n – r second-order differential equations in t, xr+1, …, 
xn, under these conditions, then by substituting the solutions x1, …, xr : 
 

(23)    M′ = 2

1

1

r

rx x

ϕ ϕ ∂ ∂′Λ ± ∂ ∂ 
∑ ⋯

M
 

 
will become a multiplier of that reduced system 
 After the substitution of the values of x1, …, xr that follow from (22), formulas (17) 
and (23) will yield any arbitrary multiplier of one and the same system of differential 
equations, as long as one sets M and M equal to suitable multipliers of the system (16) 
and (19).  For a given M, that must necessarily give an M for which one has: 
 

[M′] = [M′] 
or 

[M] = [Λ′ M], 
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and this identity will not cease to be true if one sets γk = ϕk in it.  Thus, it finally follows 
that: 
 Any multiplier M of the Jacobi system (16) belongs to a multiplier of the equivalent 
system (19) that is determined from the formula: 
 

M = 
M

Λ
, 

 
and conversely.  This theorem will agree with the result above in the case where M = ∆′ = 
∆Λ2. 
 I shall point a case in which the multiplier can be given immediately.  One can also 
write equations (9) in the form: 
 

1 1 1

( )
r r n

k hi hk
i

h h ii k i

p p
sh x

x x x

µ
= = =

 ∂ ∂ ∂ ′+ + ′∂ ∂ ∂ 
∑ ∑∑  = 0. 

 
The multiplier can thus be taken to be equal to unity in any case, as long as one has: 
 

hi hk

k i

p p

x x

∂ ∂+
∂ ∂

 = 0 

 

for all values of the indices.  One will then have hk

i

p

x

∂
∂

= 0 and 
2

2
hk

i

p

x

∂
∂

= 0; i.e., the phi must 

be linear functions of the x.  One will obtain: 
 

phi = 
1

( )
n

hik k
k

a x
=
∑ + bhi , 

 
in which the constants a must satisfy the conditions ahik + ahki = 0, and the equations = 0 
will read: 

, 1 1

( )
n n

hik k i i k hi i
i k i

a x x x x b x
= =

′ ′ ′− +∑ ∑  = 0 

 
in that case.  For the simplest assumption of three variables, one will have: 
 

(a1 + b2 x3 – b3 x2) 1x′ + (a2 + b3 x1 – b1 x3) 2x′ + (a3 + b1 x2 – b2 x1) 3x′ = 0, 

 
i.e., motion in a linear complex (*). 
 By the unavoidably abstract character that the dynamical problem assumes when one 
decides to extend the assumptions that have been conventional up to now regarding the 

                                                
 (*) Cf., these Annalen XXIII, pp. 52.  
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nature of the conditions of a system that is not free, in the previously-defined sense (*), 
one cannot expect to discuss a greater number of examples of such motions more 
thoroughly.  In what follows, I will then first treat only the motion of a material point in a 
P-E-system: 

p1 dx1 + p2 dx2 + p3 dx3 = 0, 
 
which is the case that shows the greatest agreement with the typical examples of 
theoretical mechanics. 
 If no external forces are present then the equations of motion of a point that moves 
with an arbitrary velocity c in the system will have the form: 
 

ix′′  = λ pi , 

 
so the path will be described by the constant velocity c, and the normal to the P-E-system 
will always lie in its curvature plane; these curves likewise give the form of a stressed, 
completely-flexible, inextensible filament of the system that is found in equilibrium, but 
no longer a geodetic curve in the system, which is connected with the fact that the 
position can no longer be attained naturally by an actual stress of the filament that would 
exist in a hypersurface. 
 If its radius of curvature is ρ then one will obtain the value: 
 

ρ = 
2

2 2 2
1 2 3

c

p p pλ + +
, 

or, when one sets: 

2 2 2
1 2 3( )p p p λ+ +  = − i

i k
k

p
x x

x

∂ ′ ′
∂∑  = P, 

the value: 

ρ = 
2 2 2 2

1 2 3c p p p

P

+ +
. 

 
The denominator P will be equal to zero for the motion in a linear complex, and in fact, 
the rays of the complex itself must also be described.  However, in general, the path 
curve will contain an inflection when the direction of the velocity coincides with one of 
the principle tangents of the system, for which P will vanish (** ).  One further obtains 
from the equation: 

1

1

1

x

x

x

′
′′
′′′

 = λ2 
1

1

1 /

x

p

dp dt

′
 

 

                                                
 (*) Cf., the statement in the remark on pp. 9 
 (** ) Loc. cit., pp. 49.  
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(only the first column of the determinant is suggested), the following expression for the 
radius of torsion of the curve: 

1

12 2 2 2
1 2 3

1

1

( )
/

x

p
c p p p

dp dt

′

+ +
. 

 
The factor that appears here will determine the directions of the lines of curvature of the 
P-E-system when it is set equal to zero (*), and those directions must coincide with those 
of the velocity, which means that the path will contain a plane of inflection. 
 If the point is subjected to the effect of an arbitrary force with the components X, and 
one denotes the increment in its coordinates by ξi, then one will find, by a simple 
calculation, that: 
 

23 3 3
1 1
2 6

1 , 1 , , 1

i i
i i i k i k l

i i k i k lk k l

p p
p

x x x
ξ ξ ξ ξ ξ ξ

= = =

∂ ∂+ +
∂ ∂ ∂∑ ∑ ∑  = 

2 3

, 1

( )
12

i k
i k k i

i k k i

p pt
x x x x

x x=

 ∂ ∂′ ′′ ′ ′′− − ∂ ∂ 
∑ . 

 
If one now denotes the left-hand side by F then any curve that can be described at all 
must osculate the surface F = 0, which will be contact of degree three, as long as the 
osculating plane of the path includes the direction whose cosines are proportional to the 
three differences: 
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2 1

p p

x x

∂ ∂−
∂ ∂

 

or 
α1, α2, α3 . 

 
The normal curvatures and the curvature of that surface give precisely the same 
expressions that I referred to as curvatures in my previous consideration of P-E-systems 
(** ), and yield an entirely intuitive interpretation for those quantities. 
 By contrast, the equations of the geodetic lines are obtained from a proper variational 
problem in the form: 
 1x′′  = − 1 2 3 3 2[ ]p x xλ λ α α′ ′ ′+ − , 

(12) 2x′′  = − 2 1 3 3 1[ ]p x xλ λ α α′ ′ ′+ − ,  λ′ = 
d

dt

λ
, 

 3x′′  = − 3 3 1 1 3[ ]p x xλ λ α α′ ′ ′+ − , 

 
and they will also be described with constant velocity (*** ). 
 If one proposes to examine the motion in a linear complex then its equation can be 
assumed to have the simplified form: 
 

                                                
 (*) Ibidem, pp. 71.  
 (** ) Loc. cit., pp. 70. 
 (*** )  Cf., pp. 9, remark. 
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(13)      2 1 1 2 3( )x x x x a x′ ′ ′− +  = 0. 

 
The motion of a gravitating material point for which the direction of the acceleration of 
gravity is parallel to the axis of the complex will result from the equations: 
 
 1x′′  = + λ x2 , 

 2x′′  = − λ x1 , 

 3x′′  = g + λ a. 

One will then have: 

λ = −
2 2 2
1 2 3

ag

x x x+ +
. 

 
If one denotes 2 2

1 2x x+  by r2 then one will find that: 

 

2g x3 + const. = 
3

2
2

r r
r rr

a

′′ ′ ′′+ +  

 
by means of the principle of vis viva, while x1 and x2 are derived from the two differential 
equations: 

1x′′  = − 2
2 2

a g x

r a+
, 2x′′  = + 1

2 2

a g x

r a+
. 

 
 The motion in a linear complex under the influence of a force R whose line of 
direction is perpendicular to the axis and cuts it is determined from the equations: 
 

 1x′′  = R 1x

r
 + λ x2 , 

 2x′′  = R 2x

r
 − λ x1 , 

 3x′′  =        λ a. 

  
λ = 0 in this.  Thus, helices will arise in the linear complex, and in particular, proper 
complex helices, as well, as long as R is proportional to the radius vector. 
 The geometric lines of the linear complex are given by: 
 
 1x′′  = −λ′x2 − 2λ 2x′ , 

 2x′′  = +λ′x1 + 2λ 1x′ , 

 3x′′  = − λ′ a. 

  
If one denotes arbitrary constants by c1, c2, c3 then that will imply that: 
 

3x′′  = c2 – λ a, 
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2 2 2
1 2 3x x x′ ′ ′+ +  = 2

1c , 

λ = 3
2 2

c

r a+
 

 
or by the introduction of polar coordinates r, ϕ in place of x1 and x2 : 
 

2

2 2 2
1 1 2 3

1

2

d

a
c c a c c

ρ

ρ ρ
ρ

 − − − 
 

= dt, 

 

 dϕ = 2 32

a a
c c dt

aρ ρ
 − −  

, 

 

 dx3 =            2 3

a
c c dt

ρ
 − 
 

. 

 
 In the special case λ = c3, λ′ = 0, one will obtain the equations of the complex helices; 
for λ = 0, one will obtain the lines of the complex itself, as it must be.  In general, t will 
become an elliptic integral of the second kind, while: 
 

x3 – c2 t = − c3 
3 2 2 2 2 2 2 2

1 2 2 3 2 3
2 ( ) (2 )

a d

c c c c a c a c a

ρ
ρ ρ ρ− + − −∫  

 
will be an elliptic integral of the first kind.  We shall not go into a closer examination of 
these transcendental curves; we emphasize only the case c3 = c2 a, in which: 
 

dϕ = a c2 
dt

ρ
, 

so 
x3 = c2 t – a ϕ + c4 . 

 
Finally, if 2

1c  = 2
2c , in addition, then one will have: 

 

t = 
2

2

1

2 ( )

d

c a a

ρ ρ
ρ ρ −∫ , dϕ = 

2

1

2 ( )

d

a

ρ
ρ ρ −∫ , 

 
and if one again sets ρ = r2 + a2 then one will have: 
 

 
2r

a
 = eϕ+c − e−ϕ+c, 
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    t  = 2 2 2

2

1

2
r r a a

c a
ϕ + +

 
 + c3, 

 
by which, the equations of the path curves will be determined completely. 
 Finally, I shall mention another example.  Let the equation: 
 

(x1 – x2) 1x′  + (y1 – y2) 1y′  + (z1 – z2) 1z′  = 0 

 
be prescribed for the motion of two material points whose masses are both equal to unity 
(which is, moreover, irrelevant) and whose coordinates are x1, y1, z1 and x2, y2, z2, 
respectively.  One must then set: 
 

x2 = at,  y2 = bt,  z2 = ct, 
and for: 

ξ = x1 − at, η = y1 − bt, ζ = z1 − ct, 
one will have: 
 ξ ″ = λ ξ, 
(24) η ″ = λ η, 
 ζ ″ = λ ζ, 
with the condition: 
(25)   ξξ ′ + ηη ′ + ζζ ′ + aξ + bη + cζ  = 0. 
 
It follows from (24) that: 
 ηζ ′ − ζη ′ = c1, 
(26) ζξ ′ − ξζ ′  = c2, 
 ξη ′ − ηξ ′  = c3 . 
 
Furthermore, from the principle of vis viva, one will have: 
 
(27)  ξ ′ 2 + η′ 2 + ζ ′ 2 + 2 (aξ + bη + cζ) + a2 + b2 + c2 = const. = h2. 
 
If one sets, to abbreviate: 
 
 ξ 2 + η2 + ζ 2  = r2, 2 2 2

1 2 3c c c+ +   = B2, 

 aξ + bη + cζ  = p, ac1 + bc2 + cc3 = C, 
 a2  + b2  + c2  = A2, 
 

 q = 1 2 3

a b c

c c c

ξ η ζ
, q2 = r2 (A2 B2 – C2) – p2 B2 

 
then from (25) and (26), one will get: 
 
 r2 ξ′ = − ξ p + c2 ζ – c3 η, 
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(28) r2 η′ = − η p + c3 ξ – c1 ζ, 
 r2 ζ′ = − ζ p + c1 η – c2 ξ, 
 
and from (24), (25), one will get: 
 

λ r2 + ξ′ 2 + η′2 + ζ ′2 + aξ′ + bη′ + cζ′  = 0. 
 
One finds from (27), (28) that: 
 
 r2 (aξ′ + bη′ + cζ′ ) = q – p2, 
      ξ′ 2 + η′2  + ζ ′2 = h2 – A2 – 2p, 
so 

(29) λ r2 + h2 – A2 – 2p = 
2

2

p q

r

−
, 

 
while it will arise from (26) by squaring and adding that: 
 
(30) r2 [h2 – A2 – 2p] = B2 + p2. 
 
Thus, p is a known function of r, as well as q and λ.  The integration of equations (24) is 
then reduced to the examination of a central motion.  The motion itself is that of a point 
x1, y1, z1 that is attracted to a moving center x2, y2, z2 by a certain law.  Meanwhile, for the 
determination of the ξ, η, ζ, it is more convenient for one to appeal to the following 
formulas. 
 One will find t as a function of p with no further analysis from the equation: 
 

r = ξξ ′ + ηη ′ + ζζ ′ = − p 
and the equation: 

2r
dr

dt
= 

2 2

2 2 2

d B p

dt h A p

 +
 − − 

, 

 
which follows from (30), and thus one will find r2, as well, from (30), and finally, q, from 
the equation: 

q = p2 + r2 dp

dt
; 

 
i.e., one can calculate ξ, η, ζ, linearly from the latter equation (26) and the values of p, q, 
in which the five constants c1, c2, c3, h, and the latter integration constant are deduced 
from the initial conditions. 
 I shall conclude with the following remark: Up to now, it was assumed that the pik in 
the given differential relations did not include time explicitly.  However, the equations of 
motion will keep the same form if that restriction is dropped.  In the simplest case, one 
will have a time-varying P-E-system, and by applying the principle of virtual velocities, 
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one will have to consider it to be at rest in a well-known way.  Moreover, from that point 
onward, one can go to the more general case in which equations of the form: 
 

1

n

ri i
i

p dx
=
∑  + Tr dt = 0 

 
are given, in which the pri and Tr are functions of x and time t.  The equations of motions 
experience no alteration here, either.  At this level of generality, one then has the case in 
which a certain number of first integrals that are linear in the differential quotients ix′  are 

prescribed for the problem in question.  On the other hand, that linear character will be 
necessary if any sort of analogy to the equations of mechanics is to exist at all. 
 
 Dresden, beginning of September 1884. 
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