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On the differential equations of mechanics
By
A. VOSS in Dresden

Translated by D. H. Delphenich

It is known from the principle of virtual velocitiesatha system of material points is
found in equilibrium when the virtual work that is donetbg given forces vanishes for
any virtual displacement of their points of applicatibat is compatible with the mobility
conditions of that point. In the foregoing, genegralbecialized, way of conceptualizing
the principle of virtual velocities, one cares to assuhat these condition take the form
of equationsg, = 0 between the coordinates of the points of apptinatby whose
variationsdg; = 0, the conditions for the displacemedtwill be obtained. In fact, only
the conditions for the vanishing of those variations will then enter edreatment of
the static problem.However, in that, one recognizes that it is entineBlevant whether
those variations do or do not come about by performipgocessesgg, = 0. One thus
has no basis for restricting the conception of thagple of virtual velocities above by
any particular analytical formulation of it.

In order to give a more precise account of that faw, forst considers say— the
equilibrium of a material point under the influence obitary forces with the
component, Y, Z for which the condition:

P&X+Yd+R&=0

should exist. However, the latter is the expressamafpoint-plane systemand the
structure that is defined by it can be regarded, in justdh@e sense, as a geometrically
well-defined one, such as perhaps an ideal fixed surface oh Wig@goints is compelled
to remain; any point will be associated with a well-defipéghe by it, or even a well-
defined surface in which the displacements must take pliiceAs long as one first
ignores friction reactions, etc., one can thus produndg normal reactions, and one will
then obtain:

X—-AP =0,
Y-AQ=0,
Z-AR=0

or

() For this way of looking at things, cf., my paper in voluk¥Il of these Annalen, pp. 4%t seq.
[Translator: In that article, he introduces the tefmE-system” (P-E Punkt-Ebeng for “point-plane-
system.]
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XK+YH+Z&=0

as the equilibrium conditions. From that point ordyame will rise to the general case in
which a certain number of conditions of the form:

z (Psk K + Qsk Ok + sk ) =0, s=1,2, ...r

k=1

have been prescribed for the coordinate of thg points yfstem, perhaps in that same
way thatLagrange did in Théorie des fonctiong). However, the admissibility of the
condition:

Y XX+YIF+Z ) =0

once more proves to be the criterion for equilibriuinit i1 ).

With that remark, one arrives at a new viewpoint @ s$tatic problem, at least,
formally. However, things seem to be differendynamics There, the assumption that
there areexplicit equationgg; = 0 in the coordinates of the system points proves tinbe
that will have an essential effect on all of thetHer treatment of dynamical
investigations. Indeed, it is practically due to the-esetitained form that analytical
mechanics has taken on sinagrange that the terndifferential equations of mechanics
refers to certain system of second-order differentiabgons that are soluble for the
second differential quotients of the variables with respethe independent varialilen
which a number of relations exist between the independsrdbles explicitly (which
can also include).

Naturally, there can be no question of the overarchimportance of that
aforementioned case. Thus, in what follows, | wolkd to at leasattemptto verify that
there also exists no essential basis in dynamicsxtduding that other extended problem
statement as inconceivable through the usual analyticaleption of things, but that
conditions of a general character can also very wele han entirely conceivable
dynamical content, moreover.

In the formulation of the dynamical differential edions, in the sense of the
customary viewpoint which is, to my knowledge, assumed by all author$ ¢ the
case can already arise in which the relatiops= 0 are not given in the form odtal
variations although they can certainly lead to such things. | steedl discuss that case
somewhat more closely, starting from which, an advaacaore general assumptions
will seem easily possible.

*

() Lagrange, Théorie des fonctionaris, 1813, pp. 356t seq.
(") Moreover, cf., the remark itacobi’s Vorelesungen tiber Dynamisp. 15.

(") Along with the representation iragrange’s analytical mechanics itself, | shall mention only that
of Jacobi, loc. cit, pp. 52-57, and the one ldirchhoff’'s Mechank pp. 21, which probably goes further in
the name of abstraction. The aforementioned assumititself preserved in the case in which one has
been led to assume that the forces are functiotismiefand their differential quotients with respect tarthe

The statements in the tetktat the conditions can also depend upon the velocigesn if one cannot
exclude them, allow one to regard them as belonging to meshand thus amount to explanations for the
analytical processes that come to be employed withiffezential equations of dynamics. Cf., the remark

on pp. 9, moreover.
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Namely, letr linear differential expressions withvariables«, X, ..., X, be given:

n

> py dx,

i=1

1) Z P, dx ,

i pri d)|( !
i=1

in which thepq might contain only thex. One might then ask when they can be
equivalent to just as many total differentials. In oride that to be true, it is requisite
that total differentials should come about by multiplythg pxi by certain multipliersis
and adding; i.e., equations of the form:

: o¢ :
2 A= —, i=1,..,n
() SZ:;,p ox

must exist. Now, if the system of differential exggiens (1) is assumed to lieearly-
independenthen not all partial determinants of degree the correspondingi can
vanish. One can then always substitute the valudstludit are calculated from, say, the
first r equations in (2) into the last — r of them and thus obtain — r linear partial
differential equations for the functioh Now, should the system (1) be equivalent to
total differentials, that system of partial differiahiequations would then have to possess
r mutually independent particular integrals:

o1, @2, ..., &r.

However, the conditions for that to be true have bemwk sinceJacobi andClebsch
In particular, they were put into a very suitable fofon algebraic investigations by
Frobenius (). In view of the present purpose, | will meanwhile ci®ohe following
process for obtaining those conditiong.(

One brings the equations:

() Frobenius, “Ueber das Pfaff'sche Probleme,” JournaBuerchardt LXXXII, pp. 270, et seq.
(") Cf.,Boole Treatise on differential equationsupplementary volume, pp. #t,seq.
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into the form:
0 09 _
0=—"+)> ——a =(A)¢
ox pzzlf% %

The existence of any two of the equations:

(A)¢=0, (Bm¢ =0

will then imply the new equations:

(AnA—AA) ¢=0.

Since eithe0 ¢ / dx or 0¢ / dxn will enter into them, they cannot be a consequence of
the remaining equations; i.e., all of their coeffiteemmust vanish. Moreover, the
conditions that emerge from that are necessary affiicisat for the system of
differential equations (1) to l®mplete(’), or when then — r equationsA4) ¢ = 0 should
possess integrals:

o1, @2, ..., O

that are mutually-independent relative to the variakles., X .
However, under the latter assumption, there will deojust as many systems of
multipliers As (which might be denoted bly, A, ..., As), whose determinant:

() In particular, cf., the proof thd. Mayer gave of this in his treatise in these Annalen, V 450, et
seq. With the terminology that he introduced, when the exgiwas(1) is equal to zero, it will define an
unrestricted integrable systeifrthe integrability conditions above are fulfilled.
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(3) A=

cannot vanish. Namely, if one denotes the functidetdrminant of the relative to the
X1, ..., X% byF then it will follow immediately from the easily-pved relation:

PA=F

that A cannot be zero, either, sinEedoes not vanish, from the assumptions that were
made about the integralg above. However, if the completeness conditionstifier
system are not fulfilled then it can be possibledoe to ascertain a smaller number of
total differential equations by the given process, such-tlsay — the given expressions
(1) can be replaced with the following ones:

dds, dgo, ..., den,
Y P, o D X
i=1 i=1

In this case, however, the possibility of a further réidaccannot be completely
excluded, as long as one is dealing with the expressiongh@n they are set equal to
zero. Then, since in the present examination thetaotssin the integrals:

@1 = const. @, = const., ... ¢, = const.

have entirely specialized values (which might be detezchirom the initial positions of
the system points), it can happen that by eliminakingariables with the help of the
equations of the remaining differential expressions, &durtreatment will once more be
practicable. However, in every case, the aforemerdipnecess will allow one to decide

how the system of equatio% pii d% = 0 can be replaced by explicit equations and other
differential relations.

One then easily recognizes that in the event thadactien (in one sense or the
other), tor explicit equations:

$1=0,¢0.=0, ...,6, =0

is possible at all, the differential equations:

09,
ox

d*x _ f C_
m '[Z—Xi+szz;vS i=1,..,n

d

can be replaced with the ones that are defined diréytly

() For the sake of simplicity, | will denote all of thariablesx, y; z of the system by , while the
indexi goes from 1 ta.
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d?x !
(4) m dtz = m){,zxi + z:uspsi'
s=1

By contrast, the conversion of the equations can ngeloead back to a proper
variational problemand furthermore, the property of syst€hhbeing complete defines a
necessary and sufficient condition for that toroe t

Namely, should the variation of the integral:

[T+u)dt

vanish, under the assumption of the conditions thiahgeto (1), which might be written
in the form:

) > pX =0, 821, ..,

one would obtain in a known way, upon forming:

5.[[T+U +ii)lsps, jdt—

i=1 s=1
the equation:

| oT d 9T d/, VN (s
=V - 4X, - g, [OX + A (SiK) X O %,
;{axk dtoy " ; dt “} % Zl‘;zz Ao%

in which one has set:
(siK) = — (ski) = Py _ 0Py
0%,  0x

Now, in order for that to lead to the equationsnadchanics, in the event that further
relations between the variatiodsre not present, the equations:

o, & s s=1,...
;(Slk)x —ém Py » K=l

must be true as a result of the relations (5),esie A, can be subjected to no further
restrictions. However, that will require the vdmig) of the covariants:

PACLERY
i=1 k=1
by means of the relations:
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zpsi>< =0, zpsiYi' =0, s=1, ...,r.
i=1 i=1

Now, under that assumption, the system of differembtigiressions (1) will be complete
(), but, at the same time, one will have:

or d(oT !

_— | — |+ X - = O,
o, dt(@){J k ;:uspsh

in the event that one sets:

dA, <
== AL
dt ; h:us

Hs =

However, that was to be shown.
One can determine the multipliets in equations (4) in the usual way from the
equations:

(6) ZZ %P ><>i+i‘,>§%+i‘,uh(hs) =0

that one obtains from differentiating themtldyy means of (5), in which we have set:

(Sh) = (hS) :i p:inpsi )

One obtains the values of tje from equations (6). The determinant of thg),(as the
sum of the squares of all partial determinantsegfrder from the system of coefficients
in equations (5), can vanish only when the latrer mot mutually independent, which
contradicts the assumption)( Thus, theus will be functions of thex and even, rational,
entire functions of degree two of tke One can then ignore the relations (5) completely
and consider only the differential equations (&®nf which the integrable equations:

d _
a; psi>< - 0’

and for a suitable determination of the constgpisitself, will follow once more. On the
basis of this convention, it will be possible tatedenine all of the higher differential
guotients of thex, as long as only the initial positions and velesitare assumed [the
latter, according to equations (5)]; i.e., theré generally be equations of the form:

2
(7) Xa=>§0+t><0+%>.<;+---,

() Frobenius, loc. cit.
(") Jacobi, loc. cit, pp. 140.
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in which the index 0 refers to the initial state.
The following theorem is connected with the property efghthat they are even
functions of the velocities:

If, at a well-defined moment, one simultaneously substitutes equal and epposit
velocities to the ones that are present at all points of the sykem under the same
circumstances, all points will traverse exactly the same paths albngh they would
have moved at that moment, but in the opposite driler

Namely, if one is given the equations:

d?x
dt?

=

at all, in which they; are functions ok and even functions of th& , then the third

differential quotients will become odd functions of thgdr, the fourth, will be even, and
so forth with the same alternation of signs. Théedgitial quotients of even order will
remain unchanged under a simultaneous change of sigh &f, but the ones of odd
order will all assume opposite values. If one now assuthat the path from any

moment with the index O onward can be represented in (@) for each point then, one
will get the same motion for negativeas when one simultaneously assigns the opposite
signs to allx , with which, the theorem is proved.

Let us remark in passing only that ghenciples of the motion of the center of mass
and the motion of surfacemre the same as in conventional mechanics, as long as
corresponding assumptions about the coefficients irar@®)made. It seems to be more
interesting that th&aw of vis viva:

T—B:izil:jthidx

() Cf., aremark of.oschmidt in the Abh. der Wiener Akademie LXXIII, v. II, pp. 128.o%ever, the
actual conditions for the possibility of such revelgiobf a system are not stated there.



Voss — On the differential equations of mechanics. 9

remains true’(), especially, thgrinciple of vis vivaas well, as long asfarce function
U that depends upon only the coordinate@n order to stay in the simplest case) exists.
However, that also means that the general theoremmauithammediate consequences of
the latter (e.g., properties of the level surfaces, etg must be true. In particular, one
might care to count thstability criterionamong them, by which stable equilibrium will
exist only when the force function is a maximum foe #quilibrium position of the
system.

Admittedly, the theory of maxima and minima does tmeéat the case in which the
functionU of x is a maximum or minimum relative to the given diffietial relations of

(") This is also true for the differential equations tirége from the variational problem that was tréate
above for any sort of relations (5); more generallwiil be true in the event that their left-hand sides a

replaces with any forms that are homogeneous inxtheOn the basis of this property, one can imagine

that any equations to which one arrives by meanseH#milton’s principle are equivalent to the ones
above, in a certain sense. Howewudamilton’s principle is not at all a proper principle of mecitan
since it has — at least, to begin with — only the atigr of an analytical rule in mechanics talab yields
the differential equations of motion. If one would naswto deviate from the requirement that the surface
element can experience only normal reactions thenwaned, in fact, have to take the position above.
Moreover (let it be said here), the same thing will iyadrom theprinciple of least pressureNamely,
according to it, the sum:
2

o1
S=3| =x"-X

£ ex)

i=1
must be a maximum-minimum relative to all values ef i that satisfy the conditions:

F= s glxxl > p, X =0, s=1,..r.
i=1

b
ik=1

From the equations of condition:

0
(S_ZASFS) = 0’
ox,
however, the equations:
1 r
7X" =X|+ Z:Vs si
m I s=1 p

will emerge immediately. In fact, the single anaBtidifference that exists between problems of this kind
and those of ordinary dynamics consists of the faatiththe former case, the conditions are not known
explicitly at the outset, but they will be determined bynsed the integration of simultaneous second-
order systems and will play precisely the same role in regathigir dynamical effects as in the otherwise
common investigations

If one considers the motion of a material point tsatestricted by one differential relation then the
integration of the equations of motion will yield gath in the form of a curve that is covered with stefa
elements — i.e., atrip, as one can say. If one now constructs a hypersuiffac 0 to which that strip
belongsthen the same motion can also be produced in that way as whénd-added to the equations of
motion as a condition, as long as only the initial state remains unchardedever, a similar argument
will also be true (as far as | know) for an arbitrary point systé such a way that one can also say:

The processes of motion that are expressed by the extended fthm exfuations of motion are
nothing but the ones that can also be described by means of thetlguctestomary way of expressing
them. However, they will produce them in a fundamentally simpfgesentation as long as, e.g.,
completely well-defined differential relations are imluged into the investigation in place of arbitrary
surfaces on which only strips come under considerations.
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the form (5). In fact, such a demand would not genenalke any sense, either.
However, the functiot might very well have that property in regard to all pdtbm an
equilibrium position that can bring the system inteaad with those conditions. If one
then denotes the increase in any coordinate that isateal at the fixed moment (which
might correspond to equilibrium) and given the index 0 by:

t2
txX +—X'+ ...
X, 2><0

then the increas&U in U, under the assumption of equilibrium conditions:

ou ! )
— | + Py =0, i=1,..,n,
[6& j zhs "
will assume the form:
t? & | U N 92U
AU = — — X+ —
2;{% éaxa& M}
However, since:
i ){’+ii[apri j X O
pno - i =Y,
i=1 Er=i AN
one will get:
TR N B & B 6p1
AU = — —+ 4L X + ...
T2 3 o B 14

or:

Do X%,

that appears here has a negative-definite charaicteegard to the relationgs), one can
ascribe to U the maximum property in regard to @iksible motions of the system that
start from the equilibrium position.

In connection with a known argument in theoretic@chanics, the paradox then
seems to appear that, here as well, this defimgzacter is necessary and sufficient for
the stability of equilibrium. Thus, it is easy ¢onvince oneself of the incorrectness of
that statement. A remarkable consideratioDiichlet’s proof (), which must support

() Journal v. Crelle XXXII, pp. 85; cf., alsSchell Mechanik pp. 540. The analysis that was
developed in this article does not seem superfluous to meg,sin fact, in the presentations that are
introduced into the fundamental theorem of mechanics bpriheipal of energy, one simply works with



Voss — On the differential equations of mechanics. 11

that investigation, shows thitassumes not only the maximum property, but additionally
demands that a value can be established that is smaller than certain valuAt)dghat

are defined in that proof, and independently of the existing negative valaésfof the

vis viva in the initial position{which can be envisioned to be the equilibrium position
itself, here, for the same of greater clarity). Hwoer, that is not possible in the present

case, in whiclAU is expressed (up to higher-order terms) in terms of a quadratition

of the initial velocities, multiplied byf.

A closer examination will show that the quadratic fg8nno longer has any decisive
connection to the question of stability at all, as law one drops the customary
assumptions in mechanics (i.e., the relations (5) ngelondefine a complete system).
Rather, one will obtain the true conditions for abktamotion byexamining the small
oscillations of the system

Apropos of that, it will be assumed that the increasm each coordinate = xo + ¢
will be small enough that the second powers of thembeaneglected in comparison to
the first, and that the velocitieshave that order of smallness.

Moreover, when one sets=xo + &, s = 10 + Ui, the differential equations:

'

- _'+z/'lsp3|

s=1
will become:

mé' = [a_)J DATTIRS 3 DM, apS'j i 1Py,

=1 =1 k=1 [ax 0% ‘=1

while from the equations of condition:

n na 1 r
> g Y TP Y s =0,
i=1 k=1 0% = 0X% h=1

in conjunction with the equations of equilibriurhwill follow that one must set:
ﬂg = hS )

up to quantities that have the same smallnegs &towever, with that, the system above
will reduce to the following one:

m ¢’ :zaik5k+zzspsj,’ =1, ..n
k=1 s=1

the concept of the maximum. Cf., e.fhomson andTait, Treatise on natural philosophyol. I, § 292
(1883). This way of looking at things is generally completelgomate, since, in fact, the force function
will be completely independent of the and time will come under scrutiny.
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in which the { are again quantities with the same order of smallnefefase, in the
event that one sets:
6@}
0

which must now be solved in conjunction with the equations

Qi =
{0x6&

Zn:fi' P, =0,s=1,...1
i=1

In order to represent thgby particular integrals of the form:
=€y,

one must solve the determinant equation of degree

all_ml/]z a, a, Pt B
ay azz_m/]z a, P R
anl anz ann_mrﬂz pln prn :O'
Py P, Py 0 -0
Pr1 P> Rn 0 - 0

When the quadratic form (8) msegative-definitethis equation will have roots, about
which we can only assert that thave negative real part@ccording to a well-known
argument that goes back@auchy. In the present case, however, the existence oestabl
oscillations will demand that all roots must be real agglative {). If that condition is
fulfilled then one will obtain expressions fgrand £’ in a known way that continually
remain small and, at the same time, exhibit the equuifito state of the system when one
considers the basic approximation.

Now, as one knows, all roots of the equation abovebgilieal when the determinant
of the ai is symmetric. That will take place only when &ik) vanish. However, that
symmetric arrangement can also be produced in the equativa alnen the differential
relations (5) belong to a complete system. If ormalle the property of the determinant
A that was remarked in regard to (3) one can then asthanthe 12 have the form:

ZAsth’

() Cf., alsoThomsonandTait, loc. cit, § 344, § 345.
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in which the AS are the values of the multipliers of the complgtsem that correspond
to the equilibrium position. However, one now has:

L 0 3 0
z/]hs Pni = aﬁs ; z/]ks P = 6f: ,

h=1 k=1
so one will also have:

ZZV@?(: Pri = j+§r‘,2vs/lhs(huk) = i,k=1,...n

s=1 k=1
or

NP

h=1 s=1 hFl

and as one easily sees, these relations can hawdféloe that the determinant above is
converted into a symmetric one; one has only to plylthe lastr rows of the horizontal
and vertical boundaries with suitable factors and add tbeimeay . However, all roots
will then certainly be real, and the complete criterior stability can thus also be
ascertainechlgebraically from the px and their differential quotients, with no deeper
analysis ().

When theprinciple of Jacobi multiplierss applied to the differential equations (4),
(5), that will demand that one can give a (particulat@gral for the partial differential
equation:

dIOgM +iz 1 a(:uspg

Sam oY%
We will obtain ther equations:
9) 2(sh)a”f+2%+2(skp>g =0, s=1, .1
h=1 OX; dt =

for the differential quotients of the; that enter into it from the partial differentiatiof
(6) that we learn frordacobi.
If one now denotes:
iiﬁ(ﬂspg)
=1 M 0%

by Hi, to abbreviate, then the equation for the deteation of these quantities will
follow:

() For the latter case, the representation above incladfesmally-extended representation of the
theory of small oscillations that seems to haveaghiabeen treated since the timd_afjrange only under
the explicit assumption of independent coordinates.
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A - @) 2%&(19 X,

(10) I n -0
(r1) --- (r) 2%+Z(ki)(l’(

BB —Hm

If one denotes the determinant of tihe py A and its sub-determinants By then
one will obtain from (10):

OH, + ZZ{ . +<hku)%k} Bias=0,

k,h=1 s=1

so when one sums oveand substitutes the value in the multiplier ecqurgtone will get:

dln i d(h$+22(hkl)>( p3|

h,s=1 kbl s1
or:
(11) A dinM dA FA
dt  dt

in which one denotes the four-fold sum on the righA. This will yield Jacobi's result
thatM = A () only when the formA vanishes identically or due to equations (5); i.e.
when either alllfki) are zero or when there arguantitieshs that satisfy theé equations:

> (hki) ps.AhS: > h Py, k=1 ..n.
s=1

i=1 s,h=1

If one multiplies them by the expressions:

X&Au

= M

and sums ovek then what will result is:

=Y Y AL phknzs'(jlk).

k=1s,h, j=1

However, when one switchesand k and thenh and s, the right-hand side will
become:

() Jacobi, loc. cit, pp. 132-141.
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Pr Psi /
%Z(AlhAjS _AIsAjh)nT—n_ll(Jlk)-
When one cancels the factdion both sides, one will then get:

h=1> Y p“kn?(ukm.h

i,k=1h,js=1

by means of a well-known determinant formula, inchi\, ;s now means a second sub-
determinant ofA. One will then have the conditions for the exste of thisJacobi
multiplier in an explicit form when one substitutee value that was found forinto the
n conditions above.

| shall now examine the form of the multipliersden the assumption that relations
(5) define a complete system. Since the determifiames not vanish, one can also set:

(12) Z)l’ a¢h

in which the A, now mean the coefficients of the substitution tisateciprocal to the
substitutiondys, and whose determinant/A$ = 1 /A\. Moreover, one will have:

RN N R 00,99, 1 _ & 5 i
(sh) = — = > AA[NI,
; m Zl hSAJt 6)(, 0>§ m j;l hsﬁjt
such that when one denotes the determinant of:

04,00, 1 oo
Za)g 2% m [hi] = [ih]

i=1

by A, one will haveA = A’ A", If one now introduces the expression (12) it formA
(11) then that will give:

A

>y {(hk)ms gl 1}

ik=1h,js=1 a)ﬂ m

One further finds from (12) that:

(hki) = i{«w 0 _ 04, 04 j

ox 0% 0% 0X

so, since from (12) and (5), the; / dt are all zero:
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" (hii) ¥ = - S99 94,
kzz;(hkl)x_ .Z:;‘ax dt

_ % - hs ! dAlh a¢| a¢
2 2 { A dt dx 6)5}

i=l h,s,jt=1

One then has:

or, when one switcheswith h and sums ovar

r L d(A AL
a3 foun o)
h,s, j,t=1

However, one can easily convert the latter exprassisuch a way that the formula
(11) forM becomes integrable. It will then follow from the etma

A=A /\12

by total differentiation with respect tdhat:

o dA LN dA ! dft < )
N2ZZ 4 N2 = Y AN “]+ S g 20
dt dt h,s, j,t=1 h,s, j,&=1

If one observes that in this equation the first partherright must be equal to the first
part on the left, since differentiating both of theneslimot affect the coefficients of the
substitution at all, then one will have:

A2/\d/\ _ Z Ahs[t]d()l’s)l'h)
dt h,s, j,t=1
or:
dA" A
dt A"
SO
dlogM _ dlogA dlog/’
dt dt dt
and:
M = 4 =ANA
A

will be the multiplier, which clearly assumes a kiedge of the determinamt, which
cannot be ascertained in general without integratingotia¢ gystem.

However, the form of it gives rise to a further rekpavhich | believe can be of use in
the investigation of systems of differential equatidhat have been transformed by
multipliers.
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The system of differential equations:

d2 L9,
(13) m dt§ :xi+z “ox i=1,..,n,

with the conditions:

pr1=¢Cy ..., ¢ =G,

in which thec might also be arbitrary constants, hastaeobi multiplier N = A’, which
follows from the multiplier equation:

dIogN+Z”:Zr: 1 dv, 6¢ _ 0

isam 0
in case the quantitieg and its differential quotients are determined bg equations
2
ddgs = 0. Now, if one introduces the system (5) thagsaivalent to the relatiorgps = 0

in place of them by means of equations (12) thea will obtain the transformed
multiplier equation:

(14) dIOgM,+ii_16(ﬂsp3|) = 0’

under the assumption that the partial differergiadtients of thes are determined from

. d?
the transformed relatlonsd% =0, or:

n

(15) > ZZ dfhgus[smi% A =0,

i=1 |1sl

in the form:

A dlogM :d_A_ZAdlog/\ |
dt dt dt
so one will get:

b —xon

The multiplier then remainsnchangedwhich was to be expected. However, things
will be different when one drops the second ternthenleft in equations (15), which will
vanish due to the equatiodgs = 0. One will then get equations (9), and fromnth as
one can show, the new multiplist = AA. This result, which seems paradoxical on first
glance, is explained by the fact that the diffeidrequations (13), with the conditions
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2 r

ddgs = 0 will not become identical with (4), with the cotiins %z psX = 0, by
i=1

merely a transformation, although they are entirelynadent to them.

In fact, the general theory d&cobi multipliers will imply in any case (and | would
like to thankA Mayer, in a gracious communication, for this knowledge, alortdp tie
investigation that is given relative to it in what éwlis) that both formulas lead to
precisely the same values of the multipliers, by means of wWiectondition equations
will reduce, and then necessarily lead to the mutually-identicatisys$3) and (4).

For this, one employs the well-knowacobi theorem:

If k integrals for then differential equations:

(A) d_xlle_ d_xﬂ:xn

are known, namely:
(B) ¢1:C1,...,¢k:Ck,

such that when one calculates ..., xx from (B) and indicates the substitution of their
values by enclosing things in brackets [ ], the use e$ehintegrals will convert the
system intan — kdifferential equations:

WX _ &
©) b = e,y = (X

then any multiplieM of the systemA) will imply the multiplier:

M
M=
Zi%...%
ox 0%

of the system@), and this theorem will also be unchanged when ongresgertain
constant values to the arbitrary constanfs.g., all of them equal to zero), and thus when
one considers only the solutions of the given syst@ntljat satisfy the particular
integrals:

¢1:0, . ,¢k:0
Now, Jacobrs differential equations (13), or:
(16) d—x:x’, L xi+Z|/Sa¢S , =1, ..,n,
dt d m = 0X

in which thevs are defined as functions of tkeandx' by the equations that emerge from
ther equations:
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2
(16) 99 o  s=1, .r

by the substitutions (16), possess thenBegrals:

d
—S:Cg, ¢S_t ¢S

dt dt — k-

If one sets the and yequal to zero here then it will follow from the them that we
just developed that:

If M is a multiplier of the system (16), and if one hantbetermined — sayx, ...,
X as functions ox.1, ..., X, from ther equations:

¢1: 0,...,¢k: 0,

and in such a way that the system (16) reduces te r second-order differential
equations if, x+1, ..., X, then after substituting the valuesxgf ..., x thus-obtained:

M

(Zﬁf"l .09, jz

0x

a7 M’=

will be a multiplier of that reduced system.
On the other hand, if one choosésarbitrary functionsA, of xi, ..., X, whose

determinant?\’ does not vanish, and sets:

(18) Zr:)l d¢" —thl h=1,..r

k=1

then one can define the differential equations:
d , d 1
(19) =x, R =—{Xi + > psi},
in which theis are determined from threequations that arise from equations:
d r
(19) aZ(phpq) =0, h=1,..r
i=1

by the substitutions (19), and these equations, (&Bjch are not identical to (16), will
possess theintegrals:
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(20) D S

If one denotes the substitution of the valuexaf..., X in these integrals by [ ] then
the system (19) can lead to the-2r differential equations:

dx _
dt =[x], - ,——[>4],

d—— d){— {X } =r+l,..
[x], m Zuspg,f r

s=1

(21)

Therefore, if M is a multiplier of the system (XBgn one will again have:

N = M = M
+%% /\’Z+%...% ,
S ox, 0x S ox, 0x

when one takes adl in (20) to be zero from the outset. However, ilt f@llow, in turn,
from the particular integralt, = 0 thatdgy / dt = 0, and the reduced system (21) will itself
once more take on thie@ntegrals:

(22) P = K

such that it will follows further that:

If M is a multiplier of (19), and one has then solJesrtequationsp; = 0,...,¢, =0 —
perhaps forx, ..., X- — and thus converted the system (19) [or, whatt @o®unt to the
same thing, the system (16)] into— r second-order differential equationstjrnk.s, ...,

Xn, Under these conditions, then by substitutingstiiationsxs, ..., X :

M

[Zﬁf"l .09, jz

0%

(23) M’ =

will become a multiplier of that reduced system

After the substitution of the values xf ..., x that follow from (22), formulas (17)
and (23) will yield any arbitrary multiplier of onend the same system of differential
equations, as long as one sktandM equal to suitable multipliers of the system (16)
and (19). For a givell, that must necessarily give an M for which one has

[MT=[M]
or
[M] = [A" M],
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and this identity will not cease to be true if onesget ¢« in it. Thus, it finally follows
that:

Any multiplier M of theJacobi system(16) belongs to a multiplier of the equivalent
systen(19) that is determined from the formula:

M:M,
A

and conversely.This theorem will agree with the result above indhse wher& = A" =
AN,

| shall point a case in which the multiplier can beegivmmediately. One can also
write equations (9) in the form:

Zr;(sh)a_",k+ii[%+ﬂjx - 0.

h=1 ox =T\ 0% 0%
The multiplier can thus be taken to be equal to unity incasg, as long as one has:

%+%—0

ox, 0%

2
for all values of the indices. One will then ha@%ﬁz 0 andm: 0; i.e., theon must

X ox’

be linear functions of the One will obtain:
Pri = 2 (@i %) + bni,
k=1

in which the constants must satisfy the conditiors + anki = 0, and the equations = 0
will read:

zn:amk(XM—XXHZ h x=0

ik=1
in that case. For the simplest assumption of thaembles, one will have:
(an +bhoxs—bs X)) X + (A2 +bsxa —b1X3) X,+ (Bs + b1 X2 —bo X1) X,= 0,
i.e.,motion in a linear comple).

By the unavoidably abstract character that theadyoal problem assumes when one
decides to extend the assumptions that have beemrtonal up to now regarding the

() Cf., these Annalen XXIlI, pp. 52.
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nature of the conditions of a system that is not, fie¢he previously-defined sens,
one cannot expect to discuss a greater number of examplesch motions more
thoroughly. In what follows, | will then first treanly the motion of a material point in a
P-E-system:

p1dx +p2dxe +psdxe =0,

which is the case that shows the greatest agreemeht that typical examples of
theoretical mechanics.

If no external forces are present then the equatibmsotion of a point that moves
with an arbitrary velocity in the system will have the form:

I

X =Ap,

so the path will be described by the constant velocity ¢, and the ntarnie P-E-system
will always lie in its curvature plane; these curves likengsve the form of a stressed,
completely-flexible, inextensible filament of the systemishitund in equilibrium but
no longer a geodetic curve in the system, which is coedewfth the fact that the
position can no longer be attained naturally by an astuass of the filament that would
exist in a hypersurface.

If its radius of curvature ig then one will obtain the value:

C2

o= ,
A PE+p+ P

op
(pf+p§+p§)A=—Za—i>g>¢:P,

p= :
P

or, when one sets:

the value:

The denominatoP will be equal to zero for the motion in a linear coenpland in fact,
the rays of the complex itself must also be desdribélowever, in general, the path
curve will contain an inflection when the directiontbé velocity coincides with one of
the principle tangentf the system, for whicP will vanish ('). One further obtains
from the equation:

X
= /]2 P

dp,/ dt

P I S

() Cf., the statement in the remark on pp. 9
(") Loc. cit, pp. 49.
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(only the first column of the determinant is suggestda,following expression for the
radius of torsion of the curve:
1 Xl
R+ B+ )

dpl/ dt

The factor that appears here will determine the dwestdf thdines of curvatureof the
P-E-systenwhen it is set equal to zerg,(and those directions must coincide with those
of the velocity, which means that the path will comt@iplane of inflection.

If the point is subjected to the effect of an arbjtdarce with the componend§ and
one denotes the increment in its coordinatesébythen one will find, by a simple
calculation, that:

259 szk 13 egg 2R C3 - &@[ap' aij_

k=1 |k|1 243 ox

If one now denotes the left-hand side lbyhen any curve that can be described at all
must osculate the surfaée= 0, which will be contact of degree three, as longhas
osculating plane of the path includes the direction whumsines are proportional to the
three differences:

o, _9p; 0P _Op, 0P 0P,
ox, 0x,  Ox 0%  Ox, O0X
or
m, az, 4z .

The normal curvatures and the curvature of that surface precisely the same
expressions that | referred to as curvatures in my prewonsideration of P-E-systems
("), and yield an entirely intuitive interpretation fhose quantities.

By contrast, the equations of the geodetic lines atairedal from a proper variational
problem in the form:

y =- pl/l'+/][a'2)(3—0'3)(2] '
(12) X =—pA +tAlaX,—a 4], A= —,
X; == p3/1'+/][0'3)<l—0'1)g ,

and they will also be described with constant veloCity.
If one proposes to examine the motion ilnaar complexthen its equation can be
assumed to have the simplified form:

()  Ibidem pp. 71.
(') Loc. cit, pp. 70.
(™) Cf., pp. 9, remark.
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(13) (%=X %)+ a% =0,

The motion of a gravitating material point for which theection of the acceleration of
gravity is parallel to the axis of the complex willuéfrom the equations:

+ A%,
-AX,
g+tAda

One will then have:
_ ag
X XN

If one denotes + x2 by r? then one will find that:

3,1

r I n
29 % + const. =——+r1'2 +Ir
a

by means of the principle @fs vivg while x; andx, are derived from the two differential
equations:

] ag)& "o ag)&
27 X2_+r2+a2'

The motion in a linear complex under the influenceaoforce R whose line of
direction is perpendicular to the axis and cuts it iemheined from the equations:

g :Rﬁ + A%,
r

X'2' :RL—AX]_,
r

X5 = Aa

A= 0 in this. Thus, helices will arise in the lineamplex, and in particular, proper
complex helices, as well, as longRig& proportional to the radius vector.
The geometric lines of the linear complex are given by

X =-A'% = 24X,
X, =+A'X + 24X,
X, =—A'a

If one denotes arbitrary constantsdayc,, cs then that will imply that:

I

X =C—Aa,



Voss — On the differential equations of mechanics.

XA =
r==

r’+a?

or by the introduction of polar coordinatesp in place ofx; andx; :

1 dp = dt

2 a 2
\/Clzp‘cfaz_[‘%_ %pj P

a
dxs = (cz—g;j dt.

In the special casé=cs3, A" = 0, one will obtain the equations of the comgielices;
for A = 0, one will obtain the lines of the complex ifsak it must be. In generalwill

become an elliptic integral of the second kind, lezhi

do

X3—Ct=-¢C a
2 32

I J -+ p’2cca CA)- ¢ dp

25

will be an elliptic integral of the first kind. Wsghall not go into a closer examination of

these transcendental curves; we emphasize ontyagees; = c; a, in which:

d¢:aczﬂ,
Yo,

SO
X3s=Ct—ag+cy.

Finally, if ¢’ = ¢, in addition, then one will have:

(= 1 .[ dop d¢:£.[ do
2c,a° | p(p-a?) 2° | p(p-a’)
and if one again ses=r? + & then one will have:

2 _ g

a
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t = i[r Jr2+a? +a2¢J +Cg,

2c,a

by which, the equations of the path curves wildeéermined completely.
Finally, |1 shall mention another example. Let &ogiation:

=X)X +Y1=Y2) VY, + (@—-2)z =0

be prescribed for the motion of two material pointsse masses are both equal to unity
(which is, moreover, irrelevant) and whose coordigaarex;, yi, zz and xo, Yz, 2,
respectively. One must then set:

Xo = at, y2 = bt, Z, =Ct,
and for:
f=xy—at, n=yi—-bt, {=zn-ct,
one will have:

§"=A¢
(24) n"=An,

{"=44,
with the condition:
(25) ' +nn'+{{' +aé+bn+cd =0.
It follows from (24) that:

ng' =4n' =c,
(26) &'=4¢" =cy,

én'—né' =cs.

Furthermore, from the principle ois viva one will have:
(27) E2+7%+ ' %+2@f+bn+cd +a’+b%+c? = const. =%,
If one sets, to abbreviate:

EX+P+0% =1, &+ &+ & =B
at+bnp+c{ =p, aq+bc+ca =C,
3.2 +b2 +C2 :AZ,
abc
4=|6 ¢ G|,  =rEB-C)-pF
¢ ng

then from (25) and (26), one will get:

P& =-&p+cl-cn,
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(28) -np+cé—ci{

r’n’ =
P =-{p+an-cs
and from (24), (25), one will get:

AP+ &2+ 2+ ' +aé’ +bry +c’ =0.
One finds from (27), (28) that:

r* (@&’ +bry +¢{’) =q-p,
SO

(29) A+t -p-p=P"9
r

while it will arise from (26) by squaring and adding that:
(30) r? [h?—=A? - 2] = B? + p%

Thus,p is a known function off, as well ag) andA. The integration of equations (24) is
then reduced to the examination of a central motiolne fMotion itself is that of a point
X1, Y1, 1 that is attracted to a moving centery,, z by a certain law. Meanwhile, for the
determination of thef, 77, ¢, it is more convenient for one to appeal to the foitmw
formulas.

One will findt as a function op with no further analysis from the equation:

r=4¢§'+nn'+{{'=-p

dr_d B>+ p’
A= |
dt dtlh*-A-2p

and the equation:

which follows from (30), and thus one will find, as well, from (30), and finally, from
the equation:

dp
=2 +29P.
a=p at

i.e., one can calculatg 7, ¢, linearly from the latter equation (26) and the valueg, of
in which the five constants;, c;, ¢z, h, and the latter integration constant are deduced
from the initial conditions.

| shall conclude with the following remark: Up to nowwias assumed that tipg in
the given differential relations did not include timeplicitly. However, the equations of
motion will keep the same form if that restrictiondi®pped. In the simplest case, one
will have a time-varying P-E-system, and by applying the pie®f virtual velocities,
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one will have to consider it to be at rest in a welbkn way. Moreover, from that point
onward, one can go to the more general case in whichieasiaff the form:

D pydx +T, dt=0

i=1

are given, in which thp; andT, are functions ok and timet. The equations of motions
experience no alteration here, either. At this I@fejenerality, one then has the case in
which a certain number of first integrals that are krniedhe differential quotients’ are

prescribed for the problem in question. On the other hdnad,linear character will be
necessary if any sort of analogy to the equations oharecs is to exist at all.

Dresden beginning of September 1884.



