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I. – On the energetic foundation of mechanics. 
 

 From the extraordinary importance of the energy principle in all questions of physical 
mechanics, it is no wonder that one might seek to also derive it from the foundations of 
theoretical mechanics themselves.  In all of those attempts, one deals with the problem of 
arriving at d’Alembert ’s principle, or any form of the equations of motion that is 
equivalent to it, from the energy principle. 
 For the conception of mechanics that knows of only conservative forces that depend 
upon the coordinates of points, but are completely devoid of conditions, as, e.g., 
Boussinesq (1) developed in his lectures, that poses no difficulty.  By differentiating the 
equation: 

E = T + V = C 
 
with respect to time t, in which V is the potential energy, which depends upon only the 
coordinates x, y, z, and T is the kinetic energy, one will get: 
 

(1)   ( )
V V V

m x x y y z z x y z
x y z

 ∂ ∂ ∂′ ′′ ′ ′′ ′ ′′ ′ ′ ′+ + + + + ∂ ∂ ∂ 
∑ ∑  = 0. 

 
 If it were now assumed that the accelerations, multiplied by the masses, are 
completely independent of the velocities and the constant C then it would follow from (1) 
that: 

i
i

V
m x

x

∂′′+
∂

= 0,  i
i

V
m y

y

∂′′+
∂

= 0,  i
i

V
m z

z

∂′′+
∂

= 0. 

 
 However, the conclusion can no longer be applied when conditions between the 
coordinates are assumed, since in that case, the m x″, etc., actually depend upon the 

                                                
 (1) J. Boussinesq, “Recherches sur les principes de la mécanique,” J. de Math. (2) 18 (1873), pp. 315; 
Leçons synthétiques de mécanique générale, Paris, 1889, pp. 23. 
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velocities (1).  Helm (2) then sought the assistance of variational procedures and gave the 
basic principle of energetics the form: The variation of the energy E = T + V is equal to 
zero in any possible direction.  However, at the same time, one must demand that the 
concept of variation is introduced in a consistent way into both types of energy.  Now, if 
E were varied in a direction then one would have to replace x, y, z with the quantities x + 
ε ξ, y + ε η, z + ε ζ, in which ξ, η, ζ are arbitrary functions of t and ε is a constant that 
converges to zero.  One understands the variation δA of an expression A to mean the 
coefficient of ε in the development of A in powers of ε. 
 In fact, one then has: 

δV = 
V V V

x y z
ξ η ζ∂ ∂ ∂+ +

∂ ∂ ∂∑ , 

 
but one finds the following value for δ T : 
 

δ T = ( ) ( )
d

m x y z m x y z
dt

ξ η ζ ξ η ζ′ ′ ′ ′′ ′′ ′′+ + − + +∑ ∑ , 

 
and that expression is in no way equal to: 
 

( )m x y zξ η ζ′′ ′′ ′′+ +∑ , 

 
which would be necessary if one were to assert the identity of this principle with that of 
d’Alembert .  Since the discussion between Boltzmann and Helm on the derivation of 
the equations of motion has not led to any completely-conclusive result (3), it would 
nonetheless not be superfluous to summarize those simple relationships, and all the more 
so since Helm emphasized his viewpoint with particular vigor in his Energetik, and it has 
also been assumed by others since then (4). 
 I do not believe that I should go into the principle of the superposition of energy that 
was expressed by Planck (5) and Boltzmann with a similar purpose.  In fact, it is nothing 
but an arbitrarily-chosen representation that forces the identity with d’Alembert ’s 
principle.  By contrast, Schütz (6) presented a principle of absolute conservation of 
energy in order to avoid Helm’s variational process.  It will generally achieve the desired 
                                                
 (1) See the remark of R. Lipschitz on Helmholtz’s conservation of force, Ostwald’s Klassiker-
Bibliothek, no. 1, pp. 55, and likewise, L. Boltzmann, “Ein Wort der Mathematik an die Energetik,”  
Wiedem. Ann. 57 (1896), pp. 39. 
 (2) Namely, cf., G. Helm, Die Energetik in ihrer geschichtlichen Entwicklung, Leipzig, 1898, pp. 220, 
et seq. 
 (3) Cf., G. Helm, “Zur Energetik,” Wiedemann’s Ann. 57, pp. 646; L. Boltzmann, ibid. 58 (1896), pp. 
595. 
 (4) Cf., P. Gruner, “Die neueren Ansichten über Materie und Energie,” Mitt. d. naturforsch. Ges. zu 
Bern, 1897. 
 (5) M. Planck, “Das Prinzip der Erhaltung der Energie,” Leipzig, 1887, pp. 148; L. Boltzmann, Wied. 
Ann. 57, pp. 39 et seq.  Cf., also the note by C. Neumann in Helm’s Energetik, pp. 229. 
 (6) J. Schütz, “Das Princip der absoluten Erhaltung der Energie,” Gött. Nachr. (1897), pp. 110.  I do not 
quite understand a derivation of the equations of motion from the law of energy that E. Padova carried out 
[“Sulle equazioni della dinamica,” Atti Ist. Veneto (7) 5 (1893), pp. 1641], due to the assumptions that 
were made in it. 
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purpose for one material point, but it does not admit an extension to a system and might 
not be compatible, in and of itself, with the representation of the relativity of all states of 
motion, either. 
 However, one can avoid the incorrectness that was just pointed out by a more general 
variational process.  Namely, if one also varies time, along with the coordinates x, y, z 
such that x, y, z, t go to x + ε ξ, y + ε η, z + + ε ζ, t + + ε τ, in which ξ, η, ζ, τ are 
arbitrary functions of t then x′ will go to: 
 

1

x ε ξ
ε τ

′ ′+
′+

= x′ + ε (x′ – τ′ x′) + …, 

and that will imply that: 
 

 δ (V + T) = 
V V V

m x m y m z
x y z

ξ η ζ ∂ ∂ ∂   ′′ ′′ ′′+ + + + +    ∂ ∂ ∂    
∑  

 

 + ( ) 2 ( ) 2
d

m x y z m x y z T
dt

ξ η ζ ξ η ζ τ′ ′ ′ ′′ ′′ ′′ ′+ + − + + −∑ ∑ . 

 
 One is now free to choose τ′ in such a way that the right-hand side reduces to 
d’Alembert ’s formula, and that is always possible, since T does not vanish.  The desired 
result will be achieved in that way.  However, one can hardly see anything but an abstract 
formalism in such an arbitrary representation.  Since one also has that Ostwald’s 
principle of the maximum of energy exchange can be used only for the case of relative 
rest, but in general it must be replaced with an entirely different consideration (1), it 
would seem that the attempts that have been made up to now do not suggest the 
possibility of an unforced derivation of d’Alembert ’s principle, or that of Gauss, from 
the law of energy. 
 
 

II. – On Hamilton’s principle.  
 

 It was proved in no. 1 that one can give rise to any arbitrary relation for the varied 
quantities by a suitably-generalized variational process.  Hölder (2) employed such 
general variations in order to prove that the principles of Hamilton  and Maupertuis are 
completely equivalent to d’Alembert ’s principle.  However, that viewpoint can be 
expressed in a much more general form by the following theorem: 
 
 Under the assumption of a suitable variational process, the variation of the integral: 
 

J = 
1

0

( )
t

t
T U dtα β+∫ , 

                                                
 (1) Cf., A. Voss, “Ueber ein energetisches Grundsetz der Mechanik,” these Situngsber. (1901), pp. 53. 
 (2) O. Hölder, “Ueber die Principien von Hamilton und Maupertuis,” Gött. Nachrichten (1896), issue 
2. 
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in which α, β are two generally completely-arbitrary constants, will be equal to zero 
because of the differential equations of motion, and conversely, the requirement that δJ 
should vanish for all allowable displacements will lead to the differential equations of 
motion (1). 
 
 Ordinarily, one adds the condition that the variations of the coordinates x, y, z should 
vanish at the limits of the integral.  That can generally be in the best interests of a 
mechanical interpretation, but in itself that further condition is generally superfluous and 
inessential. 
 Therefore, one might next understand δU to mean the virtual work done by the forces 
x, y, z under the displacement that corresponds to ξ, η, ζ, so one sets: 
 

δU = ( )X Y Zξ η ζ+ +∑ . 

 
 Now, in order to vary the integral (2): 
 

I′ = 
1

0

( , , )
t

t
F x x t dt′∫ , 

one can, by the substitution (3): 
t = k u + k0 , 

where 

k = 1 0

01

t t

t

−
−

, k0 = 1

0

1

1

t

t

−
−

, 

 
reduce that to the integral between constant limits 0 and 1: 
 

I′ = 
1

00

1
( , , )

dx
F x ku k k dt

k du
+∫ . 

 
If one then lets x, y, z, u go to x + ε ξ, y + ε η, z + ε ζ, u + ε v, then k v will be the 

arbitrary function that was denoted by τ in no. 1.  At the same time, 
1 dx

k du
 will go to (4): 

 

x′ + 
[( ) ( )( )]x v

k

ξε ′ ′ ′−
 + … 

                                                
 (1) Obviously, one can also substitute any arbitrary function of x, y, z;  x′, y′, z′ for the function under 
the integral sign.  However, the linear function of U and T will lead to the forms that are essential from the 
mechanical standpoint.   
 (2) For the sake of brevity, all differential quotients with respect to t are denoted with a prime, such that 

x′ = 
dx

dt
, x″ = 

2

2

d x

dt
. 

 (3) If t0 = 1 then one switches t1 with t0 or sets: 
t = u (1 – t1) + t1 . 

 (4) The symbols x′, ξ′, v′ in brackets mean the differential quotients with respect to u here.  
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 One will then get: 
 

δ I′ = 
1

0

( ) ( )( )
( )

F F x v F
kv F v k du

x x k t

ξξ
′ ′ ′∂ ∂ − ∂   ′+ + +  ′∂ ∂ ∂  

∫ , 

 
which, by means of the identities: 
 

 
( )

k

ξ ′
= 

1 d

k du

ξ
 = 

d

dt

ξ
 = ξ′, 

 

 
( )x

k

′
= 

1 dx

k du
 = 

d

dt

ξ
 = x′, 

 

 (v′) = 
dv

du
 = 

k dv

k du
 = 

d

dt

τ
 = τ′, 

will once more go to: 
 

(A)    δ I′ = 
1

0
( )

F F F
x F du

x x t
ξ ξ τ τ τ∂ ∂ ∂ ′ ′ ′ ′+ − + + ′∂ ∂ ∂ 

∫ . 

 
 Obviously, one can also deduce this formula immediately from the concept of a 
variation (1).  In view of the misunderstanding that arises in presenting the variation by 
the use of the δ sign, it seems to me that the above consideration, which is also 
cumbersome, does not seem preferable for entirely elementary purposes.  If formula (A) 
were addressed by the method of partial integration in the well-known way then that 
would produce the useful formula (2): 
 

δ I′ = 
1

1

0
0

( ) ( )
t

t

t
t

F F d F
x F x du

x x dt x
ξ τ τ ξ τ∂ ∂ ∂ ′ ′ ′ ′ ′− + + − − ′ ′∂ ∂ ∂ 

∫ . 

  
 I shall now consider the integral: 
 

J =
1

0

( )
t

t
T U dtα β+∫  

and set: 
V = ( )X Y Zξ η ζ+ +∑ , 

 
to abbreviate, which it is equal to the virtual work done by the given forces, and: 
 

                                                
 (1) See Hölder, loc. cit., § 2, remark.  
 (2) It was assumed in that form in, e.g., Routh, Dynamik starrer Körper, transl. by A. Schepp, v. 2, pp. 
327. 
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S = ( )m x y zξ η ζ′ ′ ′+ +∑ , 

 
which is equal to the virtual moment of the quantities of motion, and: 
 

W = ( )m x y zξ η ζ′′ ′′ ′′+ +∑ , 

 
which is equal to the virtual moment of the accelerations times the masses.  That will 
then yield: 

δJ = 
1

0

[( ) ]
t

t
U T S W V dtβ α τ α α β′ ′− + − +∫  

or 
 

(I)   δJ =
1 1

0 0

( ) [( ) ( ) ]
t t

t t
V W dt U T W S dtβ β α τ β α α′ ′− + − + − +∫ ∫ , 

 

(II)   δJ =
1 1

0 0

( ) [( ) ( ) ]
t t

t t
V W dt U T V S dtα β α τ β α α′ ′− + − + − +∫ ∫ . 

 
 If one then chooses the arbitrary function t in such a way that the second partial 
integral in formulas (I), (II) vanishes then one will have: 
 

δJ =
1

0

( )
t

t
V W dtβ −∫ , 

 

δJ =
1

0

( )
t

t
V W dtα −∫ ; 

 
i.e., the demand that δ J = 0 will be completely equivalent to d’Alembert’s principle.  
Depending upon the choice of constants α, β, there can be various special forms for the 
general variational principle. 
 
 First: If one sets α = β then, from (I), that will demand the condition: 
 

(U – T) τ′ + S′ = 0 ; 
 
i.e., when the part S′ is dropped by integration, as usual, and the variations of the x, y, z 
are equal to zero at the limits then τ = const. or 0, resp. (1)  In particular, if U – T = const. 
= h then one can also set τ h + S = 0.  That is Hamilton’s principle. 
 
 Secondly: If one takes β = 0 and one now sets, from (II): 
 

T τ′ + V + S′ = 0 

                                                
 (1) When one adds the variations at the limits, one will find that the principle is true without exception; 
it is applicable even when U – T vanishes between the limits of integration. 
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then one will have the extended form of the principle of least action (1). Since T is not 
zero, that way of determining τ is always possible, which should be emphasized here 
especially. 
 
 Third:  By contrast, if one takes α = 0 then, from (I), one sets: 
 

U τ′ + W = 0, 
 

which means that a possible addition to the variations at the limits would be entirely 
superfluous to further simplification.  However, it must be assumed here that U does not 
vanish between the limits of the integral (2).  Under those circumstances, the expression: 
 

1

0

t

t
U dtδ ∫ = 0 

 
will also lead to the differential equation of motion. 
 
 Fourth: Finally, one will get: 

1

0

t

t
E dtδ ∫ = 0 

 
for β = − α, with the condition (T + U) τ′ + 2V – S′  = 0. 
 
 A generally useful form for the principle will arise only in the first two cases.  In the 
last two, as well as in the general case, the appearance of the symbolic expression U will 
already be a hindrance, even when one overlooks the fact that α T – β U cannot vanish 
insider the limits on the integral, which is generally not possible for arbitrary values of α, 
β.  One can, however, avoid the symbolic expression U completely in a variational 
concept that is this general. 
 Namely, if one varies the expression: 
 

A = 
1

0

( )
t

t
X x Y y Z z dt′ ′ ′+ +∑∫ , 

 
which represents the total work that is done by the effective forces from t0 to the variable 
time t, so from formula (A), that will yield: 
 

(B)     δ A = V – V0 + 
1

0

( )
t

t
Z dt∑∫ , 

in which: 

                                                
 (1) Cf., Hölder, loc. cit., § 2.  
 (2) Naturally, a similar assumption must always be made when one takes an arbitrary function under the 
integral sign (cf., remark 1 on pp. 4).  It will be fulfilled by itself from the principle of least action and 
Hamilton ’s principle.  
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 Z = ( )
Y X Z X X

y z x
x y x z t

ξ τ
  ∂ ∂ ∂ ∂ ∂ ′ ′ ′− + − − −    ∂ ∂ ∂ ∂ ∂   

 

 

 + ( )
Z Y X Y Y

z x y
y z y x t

η τ
    ∂ ∂ ∂ ∂ ∂′ ′ ′− + − − −    ∂ ∂ ∂ ∂ ∂    

 

 

 + ( )
X Z Y Z Z

x y z
z x z y t

ζ τ
  ∂ ∂ ∂ ∂ ∂ ′ ′ ′− + − − −   ∂ ∂ ∂ ∂ ∂    

, 

 
and one only has to show that the arbitrary function t is subjected to the conditions that 
arise when one employs the non-symbolic equation (B) in the variation of the integral: 
 

1

0

( )
t

t
T A dtα β+∫ , 

 
in place of the previous equation δ U = V. 
 If one considers that d’Alembert ’s principle can be expressed in the forms: 
 

( )T A dtδ +∫ = 0, T dtδ ∫ = 0, U dtδ ∫ = 0, E dtδ ∫ = 0, 

 

( )T A dtδ α β+∫ = 0 

 
then this variational principle, in its general form, will prove to be a completely 
conventional rule that no longer has anything to do with special representations that 
belong to the actual realm of mechanical intuitions, but are solely conceived for the sake 
of expressing the differential equations of motion in the most condensed form possible.  I 
do not consider it trivial to once more repeat that remark (which is obvious by itself), 
which I already made on a previous occasion (1), since very differing opinions seem to be 
circulating at present in the conception of Hamilton ’s principle, in principle.  From the 
abstract standpoint, one can even see how the special form of the principle that employs 
the energy integral  ∫ E dt can have an advantage.  However, there seems to be no doubt 
that the actual Hamilton integral is likewise recommended for its simplicity and general 
validity.  Therefore, it was also used by v. Helmholtz in all of his investigations (under 
the name of the principle of least action). 
 

 
III. – On the principle of least constraint. 

 
 If one denotes the coordinates of the points of a material system indifferently by xi (

2) 
then the vis viva will be: 

                                                
 (1) A. Voss, “Ueber die Differentialgleichungen der Mechanik,” Math. Ann. 25 (1884), pp. 267.  
 (2) For the notation, see H. Hertz, Ges. Werke, III, pp. 62.  
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T = 21
2 i im x∑ . 

 
 Now, if one introduces just as many new variables yi , which are mutually-
independent functions of the xi that can include time t, as well, in place of the xi , then, by 
assumption, the functional determinant: 
 

∆ = 

1 1

1

1

n

n n

n

x x

y y

x x

y y

∂ ∂
∂ ∂

∂ ∂
∂ ∂

⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯ ⋯ ⋯

⋯ ⋯

 

will be non-zero, so: 
m1 … mn ∆2 = A 

 
will also vanish, in which A is the determinant of the elements (1): 
 

(1)      asσ = i i
i

s

x x
m

y yσ

∂ ∂
∂ ∂∑  

 
of the positive-definite quadratic form: 

s sa u uσ σ∑ = 
2

i
i s

s

x
m u

y

 ∂
 ∂ 

∑ . 

 
If one denotes the sub-determinant of the elements (1), divided by A, but Asσ then: 
 

s sA aτ σ∑ = (σ τ), 

 
in which (σ τ) means the known sign.  However, since one also has: 
 

i

i

y x

x y
τ

σ

∂ ∂
∂ ∂∑ = (σ τ), 

it will follow that: 

i i
s i

s i

x y x
A m

y x y
τ

τ
σ

 ∂ ∂ ∂− ∂ ∂ ∂ 
∑ = 0, 

or, since ∆ ≠ 0 (2): 
 

                                                
 (1) In all cases in which nothing further is said about a summation, it will be extended over all indices s, 
σ, τ, … that appear more than once from 1 to 3. 
 (2) In formula (2), the summation over i is obviously not performed.  
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(2)  i
s i

s

x
A m

yτ
∂
∂∑ = 

i

y

x
τ∂

∂
. 

 
 If one now introduces the equations: 
 

ix′  = i i
s

s

x x
y

y t

∂ ∂′ +
∂ ∂∑  

 
into the expression T then it will follow that: 
 

T = 1
2 s s s sa y y a yσ σ′ ′ ′+∑ ∑ + a, 

if one sets: 

(3)     
2

1
2

,

.

i i
s i

s

i
i

x x
a m

y t

x
a m

t

∂ ∂ = ∂ ∂


∂  =   ∂ 

∑

∑
 

 
T is then a function of second order in the sy′  that is not generally homogeneous.  At the 

same time, one will have: 
 

(4)    ix′′  = 
2 2 2

22i i i i
s s s

s s s

x x x x
y y y y

y y y t y tσ
σ

∂ ∂ ∂ ∂′ ′ ′ ′+ + +
∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ . 

 
 We employ the value (4) in order to calculate the constraint Z: 
 

(5)      Z = 
2

i
i i

i

X
m x

m

 ′′− 
 

∑ , 

 
in which we understand the Xi to mean the components of the effective forces.  From a 
very simple calculation, we find from (4) that: 
 

Z = 2
i i s s s s

s s

d T T d T T
m A Y Y A Q Q

dt y y dt y yσ σ σ σ
σ σ

      ∂ ∂ ∂ ∂Ξ + − − − − −      ′ ′∂ ∂ ∂ ∂      
∑ ∑ ∑ , 

 
in which we have set: 
 

 Ys = i
i

s

x
X

y

∂
∂∑ , 
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 Ξs = 
2 2 2

22i i i i
s s

s s i

x x x X
y y y

y y y t t mσ
σ

 ∂ ∂ ∂′ ′ ′+ + − ∂ ∂ ∂ ∂ ∂ 
∑ , 

 

 Qs = 
2 2 2

22i i i i i i
i r i i s

s r s s

x x x x x x
m y y m y m Y

y y y y t y y tσ σ
σ σ

∂ ∂ ∂ ∂ ∂ ∂′ ′ ′+ + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ , 

 
to abbreviate, while we have: 
 

s s

d T T

dt y y

 ∂ ∂− ′∂ ∂ 
=

2 2 2

22i i i i i i
sr r i r i i

s r s s

x x x x x x
a y m y y m y m

y y y y t y y tσ σ
σ σ

∂ ∂ ∂ ∂ ∂ ∂′′ ′ ′ ′+ + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ . 

 
 One now sees immediately that the first sum in Z will cancel the last one.  In order to 
do that, one needs only to replace the Qs with their values again in: 
 

W = s sA Q Qσ σ∑ . 

 
If one also expresses Ys in terms of the Xi again then that will imply that: 
 

W = ji
i j ss i j

s s

xx
m m A

y y
′

′

∂∂ Ξ Ξ
∂ ∂∑ , 

which will go to: 
W = ( )j i jm i j Ξ Ξ∑  = 2

j im Ξ∑ , 

from (2). 
 It follows further by differentiation that: 
 

 
2

2 ji
i

s r

xx
m

y y yσ

∂∂
∂ ∂ ∂∑ = 2

r

s

σ 
 
 

 = s sr r

r s

a a a

y y y
σ σ

σ

∂ ∂ ∂+ −
∂ ∂ ∂

, 

 

 
2

2 i i
i

s

x x
m

y t yσ

∂ ∂
∂ ∂ ∂∑  =    [ ]sσ   = s s

s

a a a

t y y
σ σ

σ

∂ ∂ ∂+ −
∂ ∂ ∂

, 

 

 
2

2
i i

i
s

x x
m

y t

∂ ∂
∂ ∂∑  =      [ ]s   = s

s

a a

t y

∂ ∂−
∂ ∂

, 

such that: 

s s

d T T

dt y y

 ∂ ∂− ′∂ ∂ 
= [ ] [ ]s r

r
a y y y s y s

sσ σ σ σ
σ

σ ′′ ′ ′ ′+ + + 
 

∑ ∑ . 

 
With that, the following theorem is proved: 
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 If one replaces the variables x with just as many new variables y by means of the 
equations: 
 
(6)    xi = fi (y1, y2, …, y3n, t), yi = ϕi (x1, x2, …, x3n, t), 
 
which are mutually-independent relative to the y, then the Gaussian constraint Z will be 
expressed by the function: 
 

Z = s s
s s

d T T d T T
A Y Y

dt y y dt y yσ σ
σ σ

      ∂ ∂ ∂ ∂− − − −      ′ ′∂ ∂ ∂ ∂      
∑ , 

 
which is covariant in the vis viva T. 
 
 That is a generalization of result that Lipschitz (1) derived in the case where the 
functions f do not include time as a result of his general investigations into the 
transformation of homogeneous differential expressions.  However, it is in the nature of 
things that it cannot be restricted to the case of a homogeneous form T.  In that case, it 
would probably be simpler to derive the transformation result directly. 
 An essential condition for that is, however, that the number of variables y must be 
just as large as that of the x, because only under that assumption the identity (2), upon 
which the entire calculation is based, can be applied (2). 
 Now one can choose the variables y in such a way (3) that for a mechanical problem 
with k condition equations: 
 

ϕl (x1, …, xn, t) = 0, l = 1, 2, …, k, 
 
when the first k functions y are set equal to zero, they will represent just those conditions, 
i.e.: 

yl = ϕl , 
 

while the last h = 3n – k of them can be regarded as general coordinates qm , m = 1, …, h.  
Under that assumption, one will then have: 
 
                                                
 (1) R. Lipschitz, “Bemerkungen zu dem Prinzip des kleinsten Zwamges,” J. f. Math. 82 (1877), pp. 
328.  
 (2) A. Wassmuth has [“Ueber die Anwendung des Princips des kleinsten Zwanges auf die 
Elektrodynamik,” these Sitzungsber. (1894), pp. 219] taken advantage of Lipschitz’s formula for Z for the 
case in which the number of variables y is also smaller than that of the x.  The fact that this is not 
permissible could already be seen from the fact that under those circumstances, the constraint that he also 
denoted by Z would be equal to zero, which only happens for free motions of a system, while condition 
equations were nonetheless assumed on pp. 220.  The formulas that are developed in the further course of 
the paper must also be replaced with the ones that are derived later in the text, insofar as they do not refer to 
free motions. 
  Incidentally, in Lipschitz, the fact that the number of variables cannot change is made an 
assumption expressly (loc. cit., pp. 316 and 328). 
 (3)  Obviously, one can also drop some of the conditions just as simply by introducing general 
coordinates. 
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ly′  = 0,  ly′′ = 0  for l = 1, 2, …, k. 

 
 Now, should the constraint Z be a minimum, one would get the equations: 
 

 s s sl
s s

d T T
A Y a

dt y yσ

  ∂ ∂− −  ′∂ ∂  
∑  = λs , 

 

 s s sm k
s s

d T T
A Y a

dt y yσ +

  ∂ ∂− −  ′∂ ∂  
∑  = 0 

 
in the known way by means of the method of Lagrange multipliers, or: 
 

(a)   s
s s

d T T
Y

dt y y

 ∂ ∂− − ′∂ ∂ 
= λl ,  l = 1, …, k, 

 

(b)   m k
m k m k

d T T
Y

dt y y +
+ +

 ∂ ∂− − ′∂ ∂ 
= 0,  m = 1, …, h . 

 
 One can drop equations (a) entirely, since they only serve to determine the multipliers 
λ.  Equations (b) imply the equations of motion, as long as one sets: 
 
 yl = 0  for  l = 1, …, k, 
 
 ym+k = qm  for  m = 1, …, h 
 
in them, and that will imply the value: 
 
  Z = ij i jA λ λ∑ , i, j = 1, …, k 

for the constraint Z . 
 

____________ 
 
 


