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I. – CONCEPT AND PROBLEM OF MECHANICS. 
 

 1. Introduction. – The fact that the results of a mathematical doctrine of fundamental 

importance have often accelerated progress for a long time now due to their rigorous scientific 

foundations has manifested itself repeatedly to a great degree in mechanics, just as it has in 

arithmetic or the infinitesimal calculus. One can compare the standpoint that the systematic 

development of mechanics assumes in its present form with, say, Cauchy’s view of the 

infinitesimal calculus, which one can apply almost verbatim to the remarks of Hertz (1) in his 

introduction to mechanics. The following presentation, which endeavors to explain the principles 

of mechanics, as they were developed in the course of the Nineteenth Century, makes no claim to 

the elimination of the logical difficulties that exist everywhere, but rather, it wishes only to 

contribute to them by asserting that a satisfactory union of those principles (which is an 

inescapable requirement) can be gradually achieved (2). 

 

 

 2. Principle and principles of mechanics. – The expression “principle or principles” is 

applied in many different ways in mechanics. In any science (and mechanics, in particular, here), 

 
 (1) See the remarks of Hertz, Mechanik, pp. 8, on the frequently-emphasized ambition in the exposition of the 

foundations of mechanics to get away from the complications and inconveniences as soon as possible and deal with 

concrete examples. 

 The fact that we possess various excellent representations of mechanics in more recent times shall not by any 

means be underestimated here. Above all, this entire treatise shall go to great lengths to avoid any polemic tendencies. 

Meanwhile, a glimpse into the present state of the works on mechanics, to the extent that they are not purely-

mathematical treatments of it but relate to the development of the actual mechanical models, should show that a great 

variety exists among them in regard to the principles as long as one is not dealing with the repetition of certain 

stereotyped phrases. In order to arrive at an examination of them that is as objective as possible in this treatise, an 

overview of the, in part, completely-differing opinions shall also be given in the footnotes.  

 (2) The requirement of a single general binding philosophical doctrine shall therefore not be raised unconditionally. 

Whether it can be satisfied at all might seem all the more doubtful since presently, even in pure mathematics, there 

exist various theoretical approaches to the fundamental questions. 

 The vast literature on the critical analysis of mechanics that has arisen in the last thirty years has still been 

relatively unnoticed up to now. Dühring’s critical history of mechanics include many interesting remarks about the 

older periods, some of which one can also find presented already in a clear and appropriate fashion in Whewell’s 

History of the Inductive Sciences. Meanwhile, Dühring did not actually aspire to a critique in that book. The author 

also completely failed to understand the development of mechanics that began with the work of Lagrange. Maxwell’s 

Matter and Motion does not seem to be free from contradictions that are hard to reconcile and prefers to deal with the 

usual topics of physical mechanics. One can probably regard Mach’s Mechanik, which attempts to achieve a unified 

basic picture by means of a subtle understanding of the creation of mechanical principles, as fundamental in many 

respects. However, here as well (generally when one considers the whole plan of the book), the construction of 

mechanics in the Nineteenth Century shall be touched upon only in a few places, especially its connection with the 

simultaneous advancement of the mathematical methods, while the present article attempts only to shift that epoch to 

the foreground and bring one closer to a general historical and critical understanding of it with the help of the 

accumulated literature. However, Hertz’s critical introduction (even when one overlooks the isolated 

misunderstandings) seems, on the whole, too one-sided in its intention of deducing everything from a single basic 

principle, whose detailed implementation remains unfortunately incomplete. M. Cantor considered the development 

of mechanics only up to the time of Galilei in his history of mathematics. Almost all of the topics in mechanics and 

mathematical physics that are discussed by C. Neumann are distinguished by their clarity and analytical presentation. 

The comprehensive viewpoint of Duhem in his Commentaire sur les principes de la thermodynamique seems to be 

quite definitive for the recent development of physical mechanics. The entirely-modern spirit of Th. Young’s Lectures 

on Natural Philosophy is also especially noteworthy. We believe that we shall not go into a deeper discussion of the 

preliminaries for any critical examination of the principles of mechanics. 



2 The Principles of Rational Mechanics 

 

one understands principles to mean, first of all, statements that do not reduce to other statements 

from the same scientific domain but can be regarded as the implications of other results of what 

one knows (3), e.g., axioms or postulates (4), and which can be partly logical or methodological in 

character and partly metaphysical or physical. Secondly, they are generally laws that are obtained 

from the basic concepts of mechanics that, despite the fact that they were previously deduced in 

some simpler cases, they no longer actually seem to be completely provable in their broadest scope 

(e.g., the principle of virtual velocities, d’Alembert’s or Gauss’s principle). Thirdly (5), the 

generally purely-mathematical methods for the treatment of mechanical problems that are initially 

provable completely on the basis of principles of the second type and are sufficient for a purely-

deductive treatment of an extensive part of mechanics will generally again take on a heuristic 

character in the broadest extension (e.g., Hamilton’s principle, principle of least action). Finally, 

one can arrive at integral equations for the differential equations of dynamics using C. G. J. 

Jacobi’s (6) analytical methods. In regard to principles of the latter type, we refer to IV 11.a. An 

overview of the influence of mathematical methodology on the current representation and 

treatment of mechanical problems generally belongs to the study of the principles of mechanics, 

in essence. Meanwhile, we shall not go into such a discussion here, since the specialized 

mathematical methods will find a thorough presentation in the following articles in the current 

volume of this Encyklopädie, for the most part. 

 

 

 3. Concept and problem of mechanics. – Mechanics (7) is the foundation for all of the 

physical sciences, i.e., the sciences that describe the processes of nature by numerical values that 

are associated with well-defined laws (8) whose dependency is represented by the mathematical 

picture of a function (9). Since the time of Aristotle (10), based upon the metaphysical concept of 

identity, the opinion has become more or less definitive that such an explanation can only be the 

result of reducing all phenomena to processes of motion for spatially-unvarying substances (11). 

 
 (3) Hertz, Mechanik, pp. 4.  

 (4) For the difference between axioms and postulates in the context of physics, cf., P. Volkmann, Theor. Physik, 

pp. 11.  

 (5) The methodological relationship of the principles of the second and third kind to each other can be assessed in 

very ways. Even when one regards both of them (as seems to happen many times) as something like incantations in 

which a lengthy process of inductive reasoning finds its expression, nonetheless, a very essential difference exists in 

the degree of abstraction that enters in the two cases. Above all, the distinction between the principles of different 

kinds that one encounters in this treatise can only be a general one. The point at which each individual statement of 

the multiplicity of “principles” will be chosen in the course of time will depend upon the oft-fluctuating representations 

that will be given to the expression “principle.” 

 (6) Jacobi, Dynamik, 1842, ed., by A. Clebsch, pp. 2. Included in it is the analytical use of the law of vis viva, the 

center-of-mass integral, the principle of areas, the last multiplier, Hamilton’s principle of varied action, Poisson-

Jacobi’s principle, and many transformations and equivalence principles, etc. 

 (7) The work “mechanics” was initially attributed to Aristotle in ά ή (while explaining a 

series of useful discoveries), transl. by F. Th. Poselger, Berlin, Abhandlungen der Akademie (1829), pp. 56. 

 (8) Cf., J. C. Maxwell, “On Faraday’s lines of forces,” 1855, Scientific Papaers 1, pp. 155; also Ostwald, K. B., 

no. 69.  

 (9) E. du Bois-Reymond, Reden, second edition, 1848, pp. 6, Leipzig, 1887.  

 (10) Cf., W. Wundt, Physikalische Axiome, pp. 6, et seq.; K. Lasswitz, Atomistik 1, pp. 89; ibid. 2, pp. 1.  

 (11) Wundt that in his Logik, 2, pp. 225, et seq.; likewise, H. Petrini, “Kritische Studien über die grundlegenden 

Prinzipien der Mechanik,” Archiv für system. Philosophie 1 (1895), pp. 204. 
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However, that opinion can possibly be regarded as too narrow-minded (12). Despite the perhaps 

opposing philosophical misgivings in regard to the concept of a substance, the modern physical 

intuition also finds no difficulty in speaking of various states of a substance (13), which is not 

explained further, whose functional relationship, which also varies in time, is determined merely 

from a problem in mathematical representation. Here, let us recall only the whole direction of 

research that Maxwell initiated into the construction of a theory of chemical statics and dynamics, 

which determined, e.g., the rates of solution and reaction with the help of formulas. 

 In the purely-physical sciences, if one overlooks this very-essential extension of the viewpoint 

then one deals first and foremost with the consideration of those processes that are made 

understandable by the representation of motion. To that extent, mechanics is then the study of 

motion, and its basic problem is to derive all of the consequences that follow from a given state of 

motion. 

 Since one is merely dealing with numerical values, mechanics is applied mathematics, just like 

analytic geometry. Like geometry, it is coupled with certain assumptions. However, whereas in 

geometry they were previously sought in the conceptual formulation of certain a priori statements, 

in mechanics, they have a completely-different character from the outset. The naïve opinion of 

earlier times wished to grasp and explain the true evolution of phenomena by the action of things 

on each other: Thus, the purely-mathematical elements of the study of motion were combined with 

metaphysical speculations from the outset. The action of things then consists of the forces that they 

exert upon each other, i.e., the sources of acceleration with respect to each other (14). 

 Certainly, many still cleave to that concept of causality even now that wishes to “explain” all 

processes by the relationship of cause to effect. However, the concept of the necessity and 

uniqueness (15) of natural phenomena is increasingly being validated: The single truth that one can 

actually ascertain is derived from the fact that certain classes of phenomena that can be 

quantitatively determined completely are coupled with each other in a unique and indissoluble 

bond such that one of them appears to be a temporal consequence of the other (16). 

 
 (12) E. Mach, Geschichte der Satzes von der Erhaltung der Arbeit, Prague, 1872, remarked on pp. 23 that there is 

no necessity for representing everything that one imagines in a merely-spatial way, so, e.g., the conception of five-

atom isomeric molecules that differ only by their relationship to two points is impossible in three-dimensional space, 

ibid., pp. 29; likewise, Mach, Mechanik, pp. 486: “We regard the idea that all physical processes can be explained 

mechanically to be a prejudice.” Cf., also P. Beck, “Die Substanzbegriff in der Naturwissenschaften” Diss., Leipzig, 

1896, pp. 59. 

 (13) P. Drude, Physik der Äthers, Stuttgart, 1894, pp. 10; for W. Thomson, those ideas already appeared in 1847 

(Papers 1, pp. 76); cf., also P. Duhem, Traité élementaire de mécanique chimique, 4 vols., Paris, 1897/99, t., pp. 29.   

 (14) That definition of mechanics was known already to P. Varignon, Nouvelle mécanique (1687), 1725, t. 1, pp. 

1: “Mechanics, in general, is the science of motion, its causes, and its effects.” 

 (15) J. Petzoldt, “Das Gesetz der Eindeutigkeit,” Vierteljahrsschrift für wiss. Philosophie 19 (1895), pp. 257, in 

agreement with H. von Helmholtz, Wiss. Abh., pps. 13 and 68: “It was only later that I first clarified that the principle 

of causality is nothing but the assumption of legitimacy.” Also, P. Volkmann, Erkenntnistheor. Grundzüge der 

Naturwiss., Leipzig, 1896, likewise, Theoretische Physik, pp. 39, borrowed from the idea of causality at a fundamental 

level. According to E. Mach, Die Prinzipien der Wärmelehre, Leipzig, 1896, pp. 433, the concept of causality is 

nothing but fetishism; cf., also Mach, Das Prinzip der Vergleichung in der Physik, Leipzig, 1894, pp. 12: “I hope that 

the future natural sciences will abandon the concepts of cause and effect, due to their formal ambiguity.” 

 (16) H. Weber, Über Kausalität in den Naturwissenschaften, Leipzig, 1881, generally wished to establish the 

philosophical concept of causality, but combined with the idea that the necessary evolution of phenomena is no 

different from the actual one.  
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 If one drops the assumption of a metaphysical causality (17) then what will remain as the 

problem of pure mechanics is solely the problem of determining (describing, resp.) the legitimate 

evolution of motion (18). That concept, which was becoming definitive to a larger community due 

to Kirchhoff’s authority, might require further epistemological explanation, but in any event, it is 

generally sufficient to also adapt the general conceptual determination of mechanics above to an 

extended form. 

 If one ignores the naïve concept that Kant abandoned once and for all that one can recognize 

something intrinsic in the effect of things on each other then it will follow that the metaphysical 

explanation for natural processes is, above all, not a problem in natural science (19), but that 

mechanics, just like geometry, operates with ideals by posing axioms in regard to the spatial 

pictures that are defined by the intuition, so it seeks to draw a picture of reality (20) that is based 

upon certain facts of experience that are formulated in axioms and postulates, and whose 

usefulness remains to be confirmed (further tested, resp.) by experiment. Obviously, the problem 

of drawing such a picture can be solved only to the extent that the mutual relationships between 

the processes in question can already be assumed to be sufficiently well-known. We cannot 

investigate the question of whether that already holds true in regard to the phenomena of organic 

life here (20.a). 

 In that way, mechanics initially starts with material things that make an impression on our 

senses. However, from time immemorial, even the simplest processes have led us to go beyond 

that purely-sensual realm of experience and speak of atoms, molecules, and material points, and 

introduce imponderable substances, along with the ponderable ones. However, many people 

currently see the complete picture of natural science as a study that would like to subsume all 

processes as changes of state in the ether. 

 
 (17) However, just as the advancement of the mathematical sciences is almost independent of the general 

investigations into basic concept of number in epistemology, the course of history also shows that the most-successful 

extensions of our knowledge of natural phenomena start from precisely those men (e.g., Poncelet, Faraday, R. Mayer, 

as well as Maxwell and Helmholtz in their initial papers) that were concerned with the especially living and concrete 

ideas of causality. It would seem that the main constraint on them would also rob the research physicist of a large part 

of the vital intuition that was missing from, e.g., Kirchhoff’s abstract presentations. The ideal of science, in its 

complete form, can probably be summarized then in a way that seems to correspond better to the respective standpoint 

of epistemology. However, one must always note that our abstract concepts must find an ongoing adaptation and 

improvement as a result of intuition and observation. 

 (18) G. Kirchhoff, Mechanik, pp. III and 1-5; for the description and explanation, cf., Wundt, Logik, 2, pp. 282; 

Mach, Wärmelehre, pp. 430, et seq.; C. Neumann, Prinzipien der Galilei’schen Theorie, pp. 13 and 22. 

 (19) Cf., H. Burkhardt, “Mathematisches und naturwissenschaftliches Denken,” Beilage Münch. Allg. Zeitung, 

1897, no. 264. 

 (20) This is essentially the representation that Maxwell introduced in “On Faraday’s lines of force,” Papers, 1, 

pp. 155 and in “On the mathematical classification of physical quantities,” Proc. Math. Soc. London 3 (1871) = 

Scientific Papers, 2, pp. 257. Cf., also Maxwell, pp. 68 in Ostwald’s K. B., no. 69. Cf., also L. Boltzmann, “Über 

die Entwicklung der theoretische Physik in neuerer Zeit,” Deutsche Math.-Ver. 8 (1900), pp. 71. Similarly, C. 

Neumann, Prinzip. d. Galil. Theorie, 1870. One can, in turn, conclude the existence of Green’s, and similar, functions 

and the uniqueness of certain solutions to other problems from the fact that the state that those functions refer to must 

exist in reality. That metaphysical basis will become untenable when one regards the theories of mechanics as only 

pictures whose agreement with experiments is in no way established a priori. Naturally, that should not diminish the 

heuristic value of such representations. 

 (20.a) Cf., J. Larmor, Aether and Matter, pp. 288, Hertz, Mechanik, pp. 165. In contrast to the entirely-abstract 

conception of modern theories, we might refer here to the fact that investigations of G. G. Stokes and Helmholtz, and 

W. Thomson, in particular, generally started from the assumption of the introduction of general coordinates that are 

based in a mechanical construction, and that Maxwell was the first to strip away the last vestiges of that in his 

derivation of the motion of electricity from Lagrange’s equations.  
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 As a viewpoint from which one could assess the value of the representation of a physical 

theory, Hertz (20.b) indicated: “This picture must be arranged such that the necessary consequences 

of the conceptual picture must always again be images of the necessary consequences of the natural 

situation that is being depicted.” They must be logically acceptable, simple, and convenient, and 

as comprehensive as possible. 

 At the same time, that conception of things frees us from the obligation of developing the 

psychological origin of that picture in mechanics itself, no matter how important that might be, 

e.g., in a pedagogical treatment of it (21). That is because that picture does not at all possess an 

intrinsic truth that could be verified by psychological analysis; its only justification lies in its 

convenience. Here, we then believe that the question of from whence arise those special forms for 

the basic representations of mechanics should be left to the realm of philosophical analysis, in the 

same spirit by which in the teaching of elementary arithmetic, we can skip over the psychological 

justification for the primitive laws of combination of numbers themselves. 

 

 

 4. The different branches of mechanics (21.a). – One cares to distinguish theoretical, pure, 

rational, general (mécanique générale, rationelle) mechanics from applied mechanics and to 

characterize the latter as astronomical mechanics, mathematical physics, and applied mechanics 

(mécanique appliquée). 

 One cannot draw a completely-sharp boundary between those disciplines (21.b). Since antiquity, 

the individual parts of astronomical mechanics (e.g., planetary motion) and mathematical physics 

(e.g, hydrodynamics, the theory of elasticity) have been treated in the purely-theoretical books on 

mechanics. If one regards the problem of mechanics as being that of producing a perfectly-clear 

image of phenomena in terms of a mathematical representation then the character of rational 

mechanics, in particular, will be determined by the demand that this picture should be based 

exclusively upon the representation of the behavior of pure motions. Of course, that corresponds 

to astronomical mechanics to a high degree. However, whereas pure mechanics selects its 

problems on the basis of whether their mathematical implementation by means of analysis can be 

carried out completely, at least in principle (by which, obtaining the final numerical result often 

seems to be incidental), one confronts certain problems in astronomy that can only be solved with 

the help of approximation processes whose limits will always shift by the refinement of the art of 

observation. Things are different in mathematical physics. There, one prefers to use specialized 

mathematical methods that lend their special character to the investigations, beginning with 

potential theory, by means of Green’s theorem, as well as completely expressing the renunciation 

of the explanation for physical phenomena in the older sense. 

 
 (20.b) H. Hertz, Mechanik, Einleitung, pp. I; cf., also H. Kleinpeter, “Entwicklung des Raum- und Zeitbegriffs in 

der neueren Mathematik und Mechanik und seine Bedeutung für die Erkenntistheorie,” Archiv für system. Philosophie 

4 (1898), pp. 32. 

 (21) In regard to this, one might cf., Mach, Beiträge zur Analyse der Empfindungen, Jena, 1886; Wärmelehre, pp. 

422, et seq.; Föppl, MEchanik, 1, pp. 21; Klein and Sommerfeld, Theorie des Kreisels, pp. 70, Leipzig, 1897; Budde, 

Mechanik, 1, pp. 111; Lasswitz, Atomistik, 2, pp. 23. 

 (21.a) Cf., Newton, Principia, praefatio ad lectorem: “Mechanicam vero duplicem veteres constituerunt: rationale, 

quae per demostrationes accurate procedit, et practicum. Quo sensu mechanica rationalis erit scientia motuum qui ex 

viribus quibusconque resultant.” (However, the ancients established a twofold mechanism: the rational, which 

proceeds accurately through demonstrations, and the practical. In this sense, rational mechanics will be the science of 

the motions that result from each of the forces.) Meanwhile, Newton’s mechanica practica is engineering. 

 (21.b) The following discussion should also be considered as only an attempt to delimit those domains from each 

other in an appropriate way. 
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 Finally, the problem of applied mechanics, in its broadest sense, is the examination of the 

statics and dynamics of buildings and machines (see IV 8 and 23), as well as the study of the 

mechanical theories of those physical processes that come under consideration when performing 

precision measurements in physics (IV 7 and 25). Since the assumptions that one infers from 

experiment are already preferably expressed by mean values here, which is required by the 

variable nature of materials, the purely-mathematical processes that one applies to them (even 

when they are possible) no longer have any purpose at all and must be replaced with special mean-

value estimates that are always controlled by experiment if it is to even be likewise possible for 

one to overcome the mathematical difficulties at all. Furthermore, the problems of applied 

mechanics almost always demand that one must consider phenomena in which changes of energy 

occur in the dissipative sense as a result of the unknown nature of the forces (in particular, those 

of friction, hardening, and incomplete elasticity), and for them, rational mechanics tends to develop 

only a general schema (see IV 8). Obviously, the general Ansatz for those problems must also be 

addressed in spirit of a purely-mathematical treatment. 

 In consideration of those discussions, in what follows, we shall include in rational mechanics 

all investigations that strive to reduce natural processes to motions by employing nothing but 

pictures that are sharply defined mathematically, with no regard to an immediately-practicable 

application of the solution of the problem, but with all of the precision that the current state of 

mathematical analysis permits. 

 

 

 5. Historical remarks. – Galilei’s investigations in Discorsi and Scienza meccanica include 

not only the dynamics of falling bodies, but also the theory of simple machines, the beginnings of 

solid mechanics, etc. Varignon regarded mechanics as statics in his Nouvelle mécanique, while 

Euler regarded it exclusively as dynamics in his Mechanica sive motus scientia. One can regard 

Newton as the founder and Laplace as the completion of the classical epoch in astronomical 

mechanics that began with Clairaut, d’Alembert, Lagrange, and others. Lagrange gave rational 

mechanics its characteristic form in Mécanique analytique. Along with that, the Bernoulli’s also 

developed engineering mechanics, in the form of mathematical physics, as well as hydrostatics 

and hydrodynamics. The truly productive era of engineering mechanics began with Poncelet and 

Coriolis, and generally with a predominantly-dynamical coloration. Later, it was built up by 

Culmann, in particular, in regard to its static questions, while the development of mathematical 

physics resulted mainly from the work of Fourier, Cauchy, Poisson, Green, Gauss, Lamé, B. de 

Saint-Venant, F. E. Neumann, Stokes, Maxwell, W. Thomson, Kirchhoff, von Helmholtz, and 

others. 

 

_________ 

 



 

II. – THE GENERAL PRINCIPLES OF MECHANICS. 
 

 

A) Philosophical principles. 

 

 6. The causality principle and the law of sufficient grounds. – One can subdivide the general 

(i.e., not arising from the specialized realm of mathematical analysis) principles of mechanics into 

philosophical, purely-mathematical, and physical-mechanical ones. 

 Of the philosophical principles, along with the causality principle that was already mentioned 

above, one must emphasize the law of sufficient grounds. One concludes from the latter that the 

motion of a material point that is represented independently of all other things cannot change in 

direction (22), while it will first become possible to say the same thing about the magnitude of the 

velocity when one makes a dialectical distinction between cause and effect that shifts the cause 

outside of the moving body (23). That law also plays a historical role in the development of the 

concept of a force, the proof of the parallelogram law of forces, the consideration of action-at-a- 

distance between two material points, etc. (24). 

 The fact that one can make no decision regarding real relationships from mere logical premises 

is probably not in doubt nowadays (25). However, things will be different when the law of sufficient 

grounds appears in the form of a logical conclusion whose premises are assumed to be known 

completely from experience. For example, if one assumes that the resultant of the forces that act 

upon a material point is determined uniquely and completely by the position and magnitude of the 

latter then it will follow that the resultant of two equal and opposite forces or three equal forces 

with equal angles of 120o between them will be equal to zero. Under the assumption that only the 

relative position of the forces is crucial for the equilibrium of a lever, it will follow that the 

persistence of the rest state is the only one possible for the uniformly-loaded lever with equal arms 

in its “rest configuration.” 

 

 

 7. Teleological principles. – Teleological principles have had a very essential influence on the 

development of mechanics. Euler (25.a) derived the principle of least action from essentially that 

viewpoint. Gauss’s principle of least constraint, as well as certain principles of the theory of 

elasticity (25.b), are likewise connected with such conceptions. Meanwhile, we do not need to touch 

upon the question of whether actual situations exist in nature that confirm the idea that the greatest 

 
 (22) Euler, Mechanica, § 56, Theoria motus, §83, also “Recherches sur l’origine des forces,” Berlin, Mém. de 

l’Acad. (1750), pp. 419; Laplace, Mém. céleste (Œuvres 1, pp. 15); likewise, S. D. Poisson, Mécanique, 2nd ed. (transl. 

by Stern), pp. 167. See also footnote 142. 

 (23) Thus, e.g., Wundt, Axiome, pp. 121.  

 (24) Wundt employed this argument (Axiome, pp. 115, et seq.) in order to systematically deduce the axioms of 

physics. 

 (25) Quite aptly, Mach remarked in Mechanik, pp. 135 that the law of “cessante causa cessat effectus” (if the 

cause ceases then so will the effect) is just as correct as its converse, according to whether one applies it to the concept 

of velocity or acceleration. Similarly, Helmholtz, Erhaltung der Kraft, Ostwald, K. B., pp. 58: “What many regard 

as the pinnacle of Mayer’s achievements, namely, the metaphysical fallacy of the a priori necessity for this law, 

would seem to be the weakest aspect of his viewpoint to any natural scientist that is accustomed to rigorous scientific 

methodology.” 

 (25.a) See footnote 257. 

 (25.b) See no. 39 and footnote 224. 
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effect will be achieved with the smallest expenditure of resources here. In arguments of that type, 

neither the expended resources nor the effect achieved must usually be based upon a certain 

measurement, such that the assertion will possess no clear meaning at all. However, as far as its 

application to mechanics is concerned, that teleological viewpoint is, in a real sense, already 

completely inapplicable (26) due to the fact that by no means (neither for the principle of least 

action nor Gauss’s principle) is the actual motion distinguished from all other possible motions 

by a minimum principle, but only from certain motions that are purely-fictitious, in general, but 

also impossible. In fact, that teleological viewpoint has generally proved to be very necessary for 

the advancement of science, and in many respects, it would seem interesting to seek the general 

basis for that fact (27). 

 

 

 8. Mach’s formal principles. – By contrast, Mach (28) drew attention to some other principles 

that should lie at the basis of all natural concepts, namely, economy and simplicity. For him, the 

goal of all science is to replace the realm of individual phenomena with a comprehensive 

description that can encompass the same scope with the least mental labor. Naturally, that is 

possible only when one seeks the basic elements for the individual phenomena and by their 

legitimate construction, provides an explanation for the processes for whose continuing 

development purely-formal principles will once more prove to be definitive, such as continuity 

and constancy [which are comparable to Hankel’s (29) principle of the permanence of formal 

laws], but above all, the principle of analogy (30), i.e., the adaptation of certain trains of thought 

that have been developed completely in one domain to a new domain. 

 

 

B) Mathematical principles. 

 

 9. Mathematical assumptions about the nature of functions. – In particular, the principle 

of simplicity implies certain general viewpoints of a purely-mathematical kind. Such things will 

 
 (26) Cf., O. Hölder, “Die Prinzipien von Hamilton und Maupertuis,” Gött. Nachr. (1896). According to J. 

Petzoldt, “Maxima, Minima und Ökonomie” (Diss. Göttingen, Altenburg, 1891), that mechanical maximum-

minimum principle eliminates exactly that teleological prejudice. Cf., also R. Henke, “Über den Zusammenhang der 

Naturerscheinungen mit der Methode der kleinsten Quadrate, (Dresden 1868, 2nd ed., Leipzig 1894). 

 (27) See Mach, Mechanik, pp. 443, et seq. Petzoldt (loc. cit., pp. 11) also sought a logical basis for the frequent 

appearance of invoking max.-min. laws. Cf., the principle of the distinguished case, that W. Ostwald [Leipziger Ber. 

45 (1893), pp. 599; ibid. 47 (1895), pp. 37] expressed later, which nonetheless seemed to be expressed unclearly at 

his level of generality. 

 (28) E. Mach, Almanach der Wiener Akad. (1882), pp. 293, Mechanik, pp. 471, 481, Wärmelehre, pp. 372, 494; 

cf., Petzold, “Max., min. u. Ökonomie,” pp. 54; likewise, Mach, Populär-wiss. Vorlesungen, Leipzig, 1896, pp. 203, 

et seq. Obviously, one must draw upon many considerations here, e.g., Newton’s regulae philosophandi. One already 

finds those ideas expressed most clearly by Galilei. Cf., Wundt, Axiome, pp. 38; P. Natorp, “Galilei als Philosph,” 

Phil. Monatshefte 18 (1882), pp. 193. Similar viewpoints are also frequently assumed in the spirit of metaphysics, 

e.g., P. de Fermat, Opera 1, Paris, 1891, pp. 173 (1662). “Naturam operari per modos faciliores et expeditores…, 

non ut plerique: naturam per lineas brevissimas operari.” (Nature operates in the easiest and most expedient 

way…unlike most people: Nature takes the shortest path.) 

 (29) H. Hankel, Theorie der komplexen Zahlensysteme, Leipzig, 1867, pp. 11.  

 (30) For the principle of analogy, cf., Mach, Mechanik, pp. 131, P. Volkmann, Theoretische Physik, pp. 32. An 

enumeration of the most remarkable analogies is in L. Boltzmann, “Über Faraday’s Kraftlinien,” Ostwald, K. B., no. 

69; cf., also W. Dyck, “Über die wechselseitigen Beziehungen zwischen der reinen und angewandten Mathematik,” 

München, 1897, pp. 25. 
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come about when we regard the space of motion as Euclidian, with its infinite divisibility (31), and 

regard the coordinates of the paths of points as continuous functions of time (32) that are 

differentiable arbitrarily often (at least when we ignore isolated singular locations), and when we 

accordingly speak of the limiting values s , s  (33), i.e., the velocities and accelerations (34) and 

when we assume that the ratio of mass to volume for continuously-filled spaces will approach a 

well-defined limiting value that is once more differentiable, viz., the density, as the latter two 

quantities decrease continually. Of course, mathematics has presently been developed to such an 

extent that even when one defines the general concept of a continuous function, certain statements 

are still possible, but up to now there has been no need to incorporate those abstractions into 

mechanics, since they lie far from the intuitive form of the processes of motion (34.a). One further 

considers it to be a general principle that a motion that is defined by forces is determined 

completely by its initial state (35). For that to be true, it is sufficient that the forces are assumed to 

be single-valued and differentiable arbitrarily often, and in particular, as regular functions of the 

coordinates and velocities. 

 The modern development of mathematics that touches upon that concept from the critical 

viewpoint, which F. Klein referred to as the arithmeticization of mathematics (35.a), insofar as the 

single foundation for it seems to be the rigorous concept of a number, has influenced mechanics 

only to a lesser degree up to now. Indeed, one can presently note, here and there, a lesser degree 

 
 (31) Cf., H. Hertz, pp. 53. The non-Euclidian conception of things has already been introduced extensively in 

numerous works on kinematics, statics, and dynamics. We shall not go into the details of that here, since up to now, 

the phenomena of non-Euclidian mechanics have given no reason to think that a non-zero curvature is possible. Cf., 

also the remark of O. Heaviside (Electromagnetic Theory, 2 vols., London, 1883/99, v. 1, pp. 2): “Now the real object 

of true naturalists, when they employ mathematics to assist them, is not to make mathematical exercises (though that 

may be necessary), but to find out the connection of the phenomena.” 

 (32) That assumption was made in Helmholtz, Dynamik, pp. 7. In more detail, it is in Boltzmann, Mechanik, pp. 

10.  

 (33) For the sake of brevity, and with regard to the historical character of this article, the differential quotients 

with respect to time shall be denoted as in Newton’s [Tractatus de quadratura curvarum (1706), Opuscula, Lausannae 

1744, v. 1, pp. 203], namely, the notation that is used by the English writers (e.g., Thomson and Tait), x  = 
dx

dt
, x  

= 

2

2
,

d x

dt
 etc. 

 (34) F. A. Müller, “Das Problem der Kontinuität in der Mathematik und Mechanik,” Diss. Marburg, 1886, 

attributed the principle of continuity of velocities and accelerations to Leibniz (Mathem. Schriften, 3rd ed., Gerhardt, 

pp. 538, et seq.).  

 (34.a) P. Appell and Jannaud, “Remarques sur l’introduction de fonctions continues n’ayant pas de dérivée dans 

les éléments de la dynamique,” C. R. Acad. Sci. Paris 93 (1881), pp. 1005; also Archiv f. Math. u. Physik 67 (1882), 

pp. 160. – For the applications of continuous functions to potential theory, cf., O. Hölder, Potentialtheorie, Diss. 

Tübingen, 1882. 

 (35)  Under different assumptions, the motion can very likely become multi-valued, cf., Poisson, J. éc. polyt., cah. 

13 (1808), pps. 63 and 105. P. Painlevé, Leçons, pp. 549, et seq. Poisson’s example x  = 
2 1/3

k x , which has the 

solutions x = 0 and x = 
3

ct , for t = 0, x = 0, x  = 0, can be combined with a whole series of more complicated ones. 

We would not like to go into the details here of the considerations of J. Boussinesq [C. R. Acad. Sci. Paris 74 (1877), 

pp. 362], who proved the necessity of a principe directeur (guiding principle) that would include mechanical 

indeterminacy in the laws of freedom, and in that way avoid absolute determinism in an otherwise rigorously-

mechanistic world-view (cf., J. Boussinesq, Conciliation du véritable déterminisme mécanique avec l’existence de la 

vie et la liberté morale, Paris, 1878). For the mathematical investigation of such singular configurations of a system, 

see Painlevé, Leçons, pp. 562. 

 (35.a) F. Klein, “Über Arithmetisierung der Mathematik,” Gött. Nachr. (1895), pp. 82. 
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of rigor and systematics than was previously customary. Nevertheless, one cannot doubt that the 

arithmeticized mathematics will establish at least a starting point for all questions of its 

application. Initially, the careless use of infinitely-small quantities was at least mostly eliminated, 

as, e.g., Maggi (35.b) sought to do recently. Here, it would seem meaningful to further turn to the 

investigations of Poincaré (35.c) on how to exactly establish the convergence of series in the 

problems of astronomy, as well as the whole circle of questions that revolve around the existence 

of solutions of differential equations, namely, in relation to the Dirichlet’s principle. However, 

other questions will appear along with those that relate to their practical use, and especially the 

simplification of the mathematical methods, but whose ultimate goal here is not the abstract 

formulation of numerical quantities, but only demands estimates for them that possess a 

sufficiently-bounded precision (35.d) in regard to the imprecision of a process that can be controlled 

by experiment. Questions that are important enough to deserve special treatment do not seem to 

have been discussed thoroughly up to now, given the present inclination of mathematical analysis 

towards achieving the most abstract generalizations possible. 

 

 

 10. The homogeneity principle. – The homogeneity principle also belongs to that. The 

concepts of mechanics require that one must establish a series of fundamental units (e.g., for 

length, time, mass in pure kinetics), from which, further concepts (such as, e.g., velocity, 

acceleration, force, etc.) can be derived. Now, it is in the nature of things that for many 

considerations relationships between those concepts must be independent of the choice of those 

basic units. Such equations will then remain invariant when the fundamental units of measurement 

are replaced with any other mutually-independent ones. The principle of homogeneity (36) amounts 

to that character of invariance. It will attribute a formal character to those equations of mechanics 

that should serve to describe processes that are independent of the choice of units that proves to be 

useful in testing those laws (37); see the article on Units and Measurement in Volume V. The 

principle is used in a somewhat-different form in the examination of dynamical relationships as 

the principle of similarity (principe de similitude) (37.a). – Finally, one might recall the principle of 

superposition, which is an immediate consequence of the properties of the solutions of linear 

homogeneous differential equations. 

 

 

 

 

 
 (35.b) G. A. Maggi, in Principii der movimento. In regard to kinematics, one might cf., J. Tannery, “Deux leçons 

de cinématique,” Ann. Éc. normal (3) 3 (1886), pp. 43. 

 (35.c) H. Poincaré, Méthodes Nouvelles de la mécanique celeste, 2 vols., Paris, 1892/93; “Sur les équations aux 

dérivées partielles de la physique mathématique,” Amer. J. of Math. 12 (1890), pp. 220. 

 (35.d) One might cf., the documents of the philosophical faculty at Göttingen on the attainment of the Beneke Prize 

for work that was submitted in 1898, Gött. Nachr. (1901) and Math. Ann. 55 (1901), pp. 143. 

 (36) The study of dimensions, which goes back to J. B. Fourier, 1822 (Œuvres, 1, pp. 137), was first taken up by 

Poisson in his Traité (Mechanik, 1, pp. 23). One should also see Maxwell, Elektrizität und Magnetismus, 1, § 3; there 

is an especially thorough physical discussion of that topic in W. Voigt’s Kompendium. 

 (37) There also presently seem to exist some ambiguities in the employment of the principle in a methodological 

context, cf., e.g., the article of F. Pietzker and others, Unterrichtsblätter f. Mathem. u. Naturwiss. 4 (1898), pp. 64, et 

seq.; ibid. 5 (1899), pp. 31. 

 (37.a) That was first posed by Newton in his Principia, pp. 294; one might cf., J. Bertrand, J. Éc. polyt. cah. 32 

(1848), as well as F. Reech, Cours de mécanique, pp. 265. 
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C) Physical-mechanical principles. 

 

 11. The continuity principle. – The physical-mechanical principles are closely related to 

mathematical principles, and in particular, the continuity hypothesis for moving substances that 

one makes for matter (38). It seems inappropriate here to discuss the question of whether mechanics 

should have any interest in preserving the concept of matter, along with the only one that is 

definitive for it, namely, mass. Mechanics initially starts from the concept of a material point (39), 

i.e., a geometric point that is nonetheless accessible to observation due to its mass, and then goes 

on to a system of n such points, and one will then be inclined to assign an arbitrarily-large n to the 

process, at least to the extent that it comes into question in the general theorem. However, it is easy 

to see that one cannot arrive directly at the representation of the motion of a space that filled 

continuously with mass (40). 

 Moreover, for the mechanical picture, it is inessential to know how one represents the 

continuity of masses that fill up spaces, as in the naïve picture of a fluid, since it is only necessary 

to know that all of the characteristics that determine the motion are continuous functions of 

position, whereby empty space can also still remain at arbitrarily-many places (41). Continuum 

mechanics (42), as opposed to the mechanics of n-component systems, is then based upon much-

narrower mathematical assumptions, which comes to light, e.g., when one compares the study of 

the n-body problem with that of hydrodynamics. It is expressed essentially by Euler’s continuity 

equation and by the transition from ordinary to partial differential equations. 

 
 (38) According to K. Pearson, Grammar, pp. 251, this concept, which is entirely-useless for the natural sciences, 

was introduced by Descartes (cf., P. Beck, Substanz, etc., footnote 12, pp. 25). For various approaches to the concept 

of matter, cf., e.g., P. G. Tait, Properties of Matter, Edinburgh, 1885, Ger. transl. by G. Siebert, Vienna, 1888, pp. 

13 and 288. 

 (39) Lagrange still did not know of the term “material point,” but, like Euler, in his Mechanica, which was the 

first textbook on analytical mechanics, he introduced the point as the element of all dynamical considerations, and 

d’Alembert introduced the term (petit) corps, which was recalled in the corpuscular theories of the Eighteenth Century 

(Hobbes). Laplace began his Mécanique céleste with the équilibre du point matériel, but without explanation. É. 

Bour (Mécanique, 2, pp. 6) had every reason to remark that the main statements in mechanics take on a clear meaning 

only for points that are geometrically endowed with mass, which he called its raison d’être, and then Th. Despeyrous, 

Mécanique, 1, pp. 5. Naturally, along with that, one would like to establish that small systems (i.e., bodies) can also 

be regarded as material points when one considers mean values, as long as one does not treat rotational phenomena 

(such as, e.g., F. Reech, Cours de mécanique, pp. 39; A. Föppl, Mechanik, 1, pp. 17). Boltzmann understood material 

points to mean “individual points that are selected from a body” (Mechanik, pp. 7). For Poisson (Mechanik, 1, § 1) 

and Kirchhoff (Mechanik, pp. 2), the material point had infinitely-small dimensions [see also C. Neumann, Leipz. 

Ber. 39 (1887), pp. 135], which is a terminology that seems to make sense only when one regards infinitely-small 

things as actually existing, although that is a purely-mathematical construction. For H. Resal (Mécanique générale, 

2nd ed., 1, pp. 71), that means “One regards a molecule as a geometric point that one calls material. Since matter is 

indestructible, so it cannot be divided indefinitely, its final state of subdivision will be a molecule.” The viewpoint of 

Maggi (Principii, pp. 149), which is based upon the concept of figura materiale, is free of any objections, and which 

is also included in Love (Mechanics, pp. 85). 

 (40) Weierstrass rigorously developed the concept of a continuum in mathematics; cf., G. Cantor, Math. Ann. 

21 (1883), pp. 575, cf., also I A 5, pp. 201. 

 (41) For the question of whether the representation of the indefinite divisibility of ideal space must necessarily 

imply the properties of observable continua, cf., Mach, Wärmelehre, pp. 71. 

 (42) For the representation of a continuum, cf., Pearson, Grammar, pp. 171. H. Poincaré showed [Am. J. Math. 

12 (1890), pp. 283] how ordinary differential equations are converted into partial ones under the transition from a 

molecular medium to a continuous one: “It is by a true passage to the limit that one, in turn, passes from the molecular 

hypothesis to that of continuous matter.: 

 Discontinuous functions then appear only by means of the initial state and boundary conditions; cf., Cauchy, 

“Mémoires sur les fonctions discontinues,” C. R. Acad. Sci. Paris 28 (1849); pp. 27 = Œuvres (1) 9, pp. 120. 
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 Those questions of continuity also play an essential role in the development of the theory of 

elasticity (43) and capillarity. The older theory of Navier represented the components of pressure 

by six-fold sums that Navier determined by integration (44), but in so doing, it was also assumed 

that the effect of immediately-neighboring particles would vanish, just like an (improper) integral 

over an infinitely-small region, which is an assumption cannot be justified completely, at least up 

to now (45). 

 

 

 12. Action-at-a-distance and field action. – Starting from Galilei’s simpler description of 

falling motion, Newton extended the problem in his Principia by means of the accelerating forces 

that implied the law of gravitation and explained the motions of celestial bodies as a necessary 

consequence of general mechanics. The mechanics of distant forces, which, in turn, posed the 

problem in Laplace’s Mécanique céleste of reducing all natural processes to the action of material 

points on each other in a manner that would follow from the model of the law of gravitation (46), 

and whose mathematical form took on a unified characteristic as a result of Lagrange that hardly 

seemed to require any further completion, enjoyed its greatest success in the theoretical results 

that, it would seem, assume the evolution of celestial bodies into the distant past, and indeed their 

discovery itself, which was unknown up till then. 

 The mechanics of distant forces took on a new impetus by its successful application to the 

theories of magnetism and electricity, which began with Laplace and Poisson, and ultimately 

culminated in Weber’s law (47), which desired to include all phenomena in that domain within a 

single fundamental formula.  

 It is interesting to pursue the evolution that the representation of distant forces has experienced 

in the course of time. Galilei’s viewpoint was based firmly upon the ground of Maxwell’s 

epistemology, which did not at all wish to present physical theories, but only a description of the 

processes on the basis of the necessary relations (48). The theory of distant forces initially provoked 

 
 (43) Poincaré, Am. J. of Math. 12 (1896), pp. 290.  

 (44) C. L. Navier, (1821), Paris, Mém. de l’Acad. 7 (1827), pp. 381. 

 (45) See Cauchy, Exerc., 1828 = Œuvres (2), 8, pp. 236; Boltzmann raised that objection against Gauss’s 

molecular theory of capillarity, Ann. Phys. Chem. 141 (1870), pp. 582. 

 (46) Laplace, Méc. cél, 1, pp. 1: “I propose to present, from a unified viewpoint, some theories that, when taken 

together, will embrace all of the results of universal gravitation concerning the equilibrium and motion of bodies…that 

define celestial mechanics. It is extremely important to banish everything that is empirical from them…” 

 (47) W. Weber, Elektrodynamische Maassbestimmungen, Leipzig, 1846. Werke, 6 vols., Berlin, 1891/94, Bd. 3, 

pp. 132. 

 (48) Galilei, Il saggiatore (Opere, 6, pp. 232): “Philosophy is written in that great book that continually reveals 

itself to our eyes (I call it the universe), but cannot be understood, since one must first learn its language and understand 

the characters in which it is written. It is written in the language of mathematics, and its characters are triangles, 

circles, and other mathematical figures.” 
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a lively debate (49). It was only the success of astronomical mechanics that made its ideas take on 

a familiarity that became a dogma that prevailed up to the middle of the Nineteenth Century (50). 

 Meanwhile, that also implies that the theory of point-like distant forces is by no means always 

necessary for the study of the behavior of continuously-extended bodies. The theories of the 

equilibrium and motion of fluids would hardly be affected by such representations. They show that 

notions of that kind are entirely irrelevant to them, and that one deals with only differential 

equations that characterize the changes in position of immediately-neighboring particles. In 

general, the theory of fluids employs the concept of internal pressure, about which, there has 

probably been much speculation, but it had already appeared in Lagrange in the form of the factor 

 that was applied analytically in the variational problem, and which was a completely-abstract 

element of the description. The phenomena of capillarity, which Laplace and Gauss (51) explained 

using the principle of the action of distant forces, can also be represented more simply by such 

differential formulas. 

 However, it is the theory of elasticity that has a definitive significance. Of course, Navier (51.a) 

also obtained the equations of elastic media on the basis of molecular pictures, but Cauchy’s work 

showed that one only dealt with field actions, in the Faraday sense, by which the processes in the 

vicinity of each point would be described completely independently of such hypotheses. Thus, 

Cauchy arrived at not only the stress components, which were actually coupled with only the 

presence of a pressure that is directed transverse to the separation surface (52), and which is 

presently referred to as stress, by means of the deformation ellipsoid of the components of 

deformation, namely, the strain or elastic deformation. Thus, the mechanics of physical bodies 

become the analysis of stress and strain (53) (the relationship between the two systems of 

quantities, resp.). In that way, one also succeeds in eliminating the erroneous consequences of the 

 
 (49) Leibniz, Mathem. Schriften, ed., Gerhardt, 3, pp. 964: “Ita quiquid ex naturis rerum inexplicable est, 

quemadmodum attractio generalis materiae Neutoniana aliaque hujus modi vel miraculosum est vel absurdum.” (Thus, 

whatever is inexplicable from the nature of things, such as the general attraction of Newtonian matter and others of 

this kind, is either miraculous or absurd.) Moreover, Newton himself said in a well-known letter to Bentley: “The fact 

that a body can influence a body… at a distance through a vacuum is, for me, such a great absurdity that I believe that 

no one that possesses a sufficient capacity for philosophical thinking can ever fall for it.” (Fourth letter to R. Bentley, 

25 Feb. 1693, cf., F. Rosenberger, Newton, pp. 267). For the historical context of the study of action-at-a-distance, 

cf., also J. C. F. Zöllner, Wissenschaftliche Abhandlungen, 4 vols., Leipzig, 1878, esp., Bd. 1, pp. 16; ibid., 2, pp. 1 

and 181. 

 (50) E. du Bois-Reymond, “Über die Grenzen des Naturerkennens,” Reden, 1, pp. 105, in 1872, referred to the 

understanding of nature as the resolution of all processes into atoms that are endowed with central forces, which was 

first taught systematically in R. G. Boscovich, Theoria philosophiae naturalis, Venice, 1758 (cf., also G. Th. 

Fechner, Die physikalische und philosophische Atomlehre, Leipzig, 1864, pp. 153 and 239). We are presently much 

further from that ideal in the spirit of Laplace (“Essai philosophique sur les probabilités,” 1814 = Œuvres, 7, pp. VI) 

than we were before. Cf., J. Larmor, Aether and Matter, pp. 272. 

 (51) Laplace, Théorie de l’action capillaire, Méc. celeste, 4; Gauss, Principia generalia theoriae figurae 

fluidorum, 1829 = Werke, 5, pp. 29. Cf., Volkmann, Theoret. Physik, pp. 240; likewise, footnote, 45.  

 (51.a) See footnote 44, and then the Historical Introduction to the Theory of Elasticity by Love, 1, pp. 1-34; 2, pp. 

1-24. 

 (52) Cauchy had already done this in 1823 in Paris Soc. Philom. Bull. = Œuvres (2), 3 (still unpublished); cf., 

Exercises, 1827 = Œuvres (2), 7, pp. 61. 

 (53)  This terminology goes back to Rankine [Cambr. and Dubl. Math. J. (1851) = Misc. Scientific Papers, 

London, 1881, pp. 68; Proc. Roy. Soc. London (1855), pp. 119). 
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older Navier-Poisson theory and arrives at a much more general and suitable insight into the 

essence of the elastic constants (54). 

 Of course, the mathematical-physical finesse that is obviously required for the implementation 

of field action must be learned from the guiding principles of molecular theories and seems to take 

much more advantage of Maxwell’s theories, which were based upon Faraday’s ideas, and which 

have, in the last thirty years, conferred upon the study of field action (55) the definitive position 

that it currently assumes. That representation was expressed fruitfully in the mechanics of 

deformable bodies in the treatise of Thomson and Tait, as well as in Hertz’s (56) development of 

Maxwell’s fundamental equations. 

 The general ideas about the epistemological value of the atomistic picture, which assumes that 

material points are coupled by distant forces, and the phenomenological conception of the 

continuum will also be affected only indirectly in that way at present. This is not the place to go 

into those questions, which depend, in part, upon the idiosyncrasies of the individual researchers 

(57). The definitive ideas will be the ones that prove to have the greatest success. The physicist will 

have no doubt as to where they can be found. However, it should be pointed out that it is precisely 

in the classic example of a distant force, namely gravitation, that no generally satisfactory 

derivation of it from a representation of continuously-distributed matter has emerged up to now. 

None even dare to say whether the phenomenological picture cannot be reshaped into a 

psychological one that replaces apparently-continuous processes with mean values of 

discontinuous processes. Such representations have already been built up considerably in the 

mechanical theory of gases and also in other general ideas that presently seem to be widespread. 

In order to pursue them exactly, investigations into the theory of probability take on a preeminent 

significance that also comes under consideration in the main concepts of rational mechanics. 

Meanwhile, we shall not go into that theory here, since it has not been addressed systematically in 

the latter topic so far, and we shall refer to IV 26, as well as Band V. 

 It is not our intention to actually go into the details of energetic phenomenology here. Whereas 

the older theory of action-at-a-distance sought to study the motion of the smallest particles of 

 
 (54) Poisson, Paris, Mém. de l’Acad. 18 (1842), pp. 3, had, of course, made more general assumptions that were 

supposed to eliminate that flaw; In general, that was achieved by W. Voigt’s assumption of molecular rotational 

moments, Gött. Abh. 34 (1887), pp. 11.  

 (55) That is what Maxwell did since 1864 in his Dynamical Theory of the Electromagnetic Field = Papers, 1, pp. 

256. W. Thomson, Phil. Mag. (4) 1 (1851), pp. 179. 

 (56) H. Hertz, Gött. Nachr. (1890), pp. 106. 

 (57) H. Poincaré, Électricité et optique, Introd., pp. VI: “The old theories of physics gave us complete 

satisfaction. It seems that we would like to give the same precision to each of the branches of physics that belongs to 

celestial mechanics.” According to Boltzmann (Verhandl. deutscher Naturf., Leipzig, 1900, pp. 112), the “old” 

mechanics is the only one that included clear presentations. He also validated the argument [“Über die 

Unentbehrlichkeit der Atomistik in der Naturwissenschaft,” Ann. Phys. Chem. (2) 60 (1897), pp. 231] that the 

description of a continuous medium by differential equations would make sense only by means of a passage to the 

limit of the atomistic picture. 

 Volkmann said the opposite [“Über die notwendige und nicht notwendige Verwertung der Atomistik in der 

Naturwiss.,” Ann. Phys. Chem. (2) 61 (1897), pp. 195], although (Theor. Physik, pp. 242) atomistic pictures still do 

not seem essential for certain physical processes at present. 

 According to Mach, Wärmelehre, pp. 428, atomism is the attempt to make the representation of substance in its 

crudest and most naïve form into a foundation for physics. For the current physical theories that many times fluctuate 

between atomistic representations and the assumption of a continuum, cf., the Beneke prize submissions of the 

Göttingen philosophy faculty, Gött. Nachr. (1901) and Math. Ann. 55 (1901), pp. 143. 
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matter (58) on the basis of explicit formulas for the forces that were mostly obtained with the help 

of triple integrals, the theory of field action replaced that with relations between differential 

expressions that governed the relationships between neighboring particles without needing to 

know anything about the other parts of space. It is possible to assume yet a third standpoint: 

Namely, that one can express the well-defined relationships between whole systems with each 

other with the help of integral formulas without needing to observe the intermediate states that 

each system has gone through in so doing. That is the direction along which the energetic way of 

treating mechanics (58.a) has developed, at least in its methodological form. 

 

_________ 

 
 (58) H. Hertz, Mechanik, pp. 15, very clearly described the character of this picture, which is not just 

mathematically complicated. 

 (58.a) See no. 47. 



 

III. – THE BASIC CONCEPTS OF MECHANICS 
 

A) Basic phoronomic concepts. 

 

 13. The concepts of space and time. – The basic concepts of mechanics are initially of a 

purely-phoronomic type, insofar as they are merely concerned with processes of motion (59) in 

space and time. One can regard it as an axiom that every change of position occurs only in time 

(60). The fact that all motions are continuous changes of position that correspond to continuously-

changing time values seems to belong to our most fundamental intuitions (60.a). In that way, time 

initially seems to be a continuously-increasing variable, but the consideration of negative time 

values is finding continuing application, especially in the mechanics of reversible processes (60.b). 

Naturally, one can imagine a theory of pure motion that moves geometry completely off to one 

side and operates with abstract space as the substrate for all geometric constructions and abstract 

time values that will then play the role of a fourth variable (61). However, the main connection 

between mechanics and reality will then be lacking, in which, however, the time evolution of the 

motions should be known (61.a). 

 Newton then saw it as permissible to attribute a general transcendent reality to space, as well 

as time (62). Newton’s absolute space is an immaterial medium that is intrinsically immobile and 

 
 (59) For what follows, cf., in particular, L. Lange, Bewegungsbegriff, Leipzig, 1886.  

 (60) As Jak. Hermann did before in his Phoronomia, Amstelod., 1716, pp. 1, which addressed the dynamics of 

solid and fluid bodies in connection with Newton’s Principia. 

 (60.a) W. K. Clifford (Lectures and Essays, 1, pp. 112) occasionally developed the viewpoint that time consists of 

discrete moments that likewise corresponds to discrete positions of the “moving” body on the basis of known optical-

physiological phenomena. 

 (60.b) Moreover, the application of imaginary time values, as a special case of projective transformations, can also 

be useful, cf., e.g., P. Appell, “Sur une interprétation des valeurs imaginaires du temps en mécanique,” C. R. Acad. 

Sci. Paris 87 (1878), pp. 1074, and also L. Lecornu, ibid., 110, pp. 1244; P. Painlevé, Leçons sur l’intégrat., pp. 226. 

The introduction of imaginary times will already become necessary from a purely-mathematical standpoint in very-

simple problems when one wishes to represent the coordinates as single-valued analytical functions, in general. Cf., 

e.g., F. Klein, The Mathematical Theory of the Top, Princeton Lectures, New York, 1897, pp. 33, 52. 

 (61) The idea of such a theory of motion (phoronomy, kinematics), which one often attributes to A. M. Ampére, 

“Essai sur la classification des sciences,” 2 vols., Paris, 1834-43; 1, pp. 50, was already expressed in Kant’s 

metaphysical prolegomena, 1786. From the standpoint of the pure analyst, e.g., Lagrange stated in Théorie des 

fonctions, ed. 2, 1813), pp. 311: “Therefore, one can regard mechanics as geometry in four dimensions and mechanical 

analysis as an extension of geometric analysis.” Such opinions are still popular, cf., e.g., O. Rausenberger, Analyt. 

Mechanik, pp. 1, Naturally, one can also go down the path of first developing a consistent, completely-abstract picture 

of phenomena by means of fundamental geometric-mechanical concepts and then introducing further ways of 

determining things, while the latter must be subject to the constraint that it must be possible to relate them to reality. 

With that classification, the theory of pure motion would take on, e.g., a different systematization. That is the view 

that Hertz sharply established in Mechanik, pps. 53 and 157. 

 (61.a) Naturally, the proofs in the discipline of kinematics, cf., IV, 4, can be supported by that abstract concept of 

time as a methodological tool. It defines an important part of descriptive mechanics, which has developed the graphical 

representation of velocities and accelerations (in regard to the latter, see R. Proell, Versuch einer graphischer 

Dynamik, Leipzig, 1874) since the time of Poncelet’s lectures (1836) and then the idea of graphical dynamics, whose 

general objective was, of course, first sketched out recently by K. Heun [K. Heun, “Die kinetische Probleme der 

wissenschaftlichen Technik,” Deutsche Math.-Ver. 9 (1900), pp. 112]. A. Schoenflies developed a synthetic 

representation of the concept of a pure geometry of motion, Leipzig, 1886, that avoided the concepts of velocity and 

acceleration in its proofs. 

 (62) Newton, Principia, pp. 5-7; cf., Lange, pp. 47-72. Laplace began his Mécanique cél., pp. 4, with the words: 

“One imagines a space with no boundaries that is immobile and penetrable by matter. It is the parts of that space that 

are real or ideal that we shall associate with the thought of the position of the body.” 
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unknowable (63) and that should likewise provide a fixed reference system for all motions, and 

absolute time is comparable to an ordinary clock that carries along all processes with each swing 

of its pendulum. The difficulties that lie in this representation were already expressed very clearly 

by Euler, whereas later on, one became accustomed to overlooking them as unavoidable. Thus, 

with the current figure of speech in mechanics (64) “one defines neither time nor space.” At best, 

one regards it as necessary to discuss the concept of equal times. 

 However, since the time of Kant (64.a), the idea has become pervasive that space and time are 

forms in our imagination that possess only a transcendental reality, and from that standpoint, 

nothing will change in all deeper psychological-physiological understanding of the process of the 

creation and further development of those imaginary forms (65). However, at the same time, that 

also says that one can speak of motion in a mechanical-mathematical sense only when one gives a 

coordinate system relative to which the position of a moving point is defined (66).  

 Euler (67) already expressed the idea very clearly that all motion, i.e., change of position, is 

only relative, but of course without adding that one must nonetheless establish the absolute motion 

(68). Kant (69) said, more precisely: “Absolute space is, in itself, nothing, and not at all an 

object…but means only an individual relative space…that I shall highlight in any given one. To 

make it into an actual thing…is to misunderstand the reason for the idea,” but at the same time 

preferred to regard rotational motion as something real. Although from the standpoint of 

mathematics, the study of relative motion (70) has been built up to the highest degree of 

completeness, nonetheless in mechanics there still exists the assumption of an absolute fixed 

 
 (63) Newton, Princ., pp. 7: “Verum quoniam hae spatii partes videri nequent.” (Because those parts of space 

cannot be seen.) 

 (64) Newton, Princ., pp. 5: “Nam tempus spatium locum et motum ut omnibus notissima non definio.” (For I do 

not define time, space, place, and motion as well known to all.) Poisson, Mécanique, 1, § 112, Duhamel, Mécanique, 

1, pp. 3: “The notion of time is one of those notions that is not susceptible to definition, but what can be defined is the 

equality of times.” 

 Generally, it is naïve and ignorant of the way that science works for one to wish to define everything [Boltzmann, 

Wien. Ber. 106 (1897), pp. 83]. However, although it is not the problem of the individual sciences to define their 

concepts by psychological analysis, nonetheless, they must indicate their particular character precisely in any event. 

 (64.a) Naturally, the opinion that space and time possess no objective reality is much older than Kant’s Critique of 

Pure Reason (1781). Euler had already polemicized [“Reflexions sur l’espace et le temps,” Berlin, Mém. de l’Acad. 

(1748), pp. 324] against the “metaphysicist,” which he felt was an unacceptable viewpoint for mechanics. With the 

use of the terminology that goes back to Kant, one says that transcendent facts are ones that lie beyond the limits of 

experience, and therefore statements that refer to such facts, as well. By contrast, investigations are called 

transcendental, i.e., concerned with the assumptions of knowledge, when they refer to such assumptions, as well as 

the latter themselves. The study of the existence of an absolute space and an absolute time is therefore transcendent. 

The study of the ideal nature of time and space is transcendental. 

 (65) By contrast, along with eliminating Kant’s study of the a priori nature of space and time in the sense that 

Kant himself wished to give them, the dogma that the only things in mechanics that can be regarded as objectively 

true are things that are regarded as temporal and spatial also fell by the wayside; cf., P. Beck, Diss., pp. 37. 

 (66) Cf., Pearson, Grammar, pp. 233. We shall not touch upon the question of the transcendental character of 

motion at all (cf., e.g., A. Höfler, Studien, pps. 127, 133). It does not belong to mechanics.  

 (67) Euler, Theoria motus, 1765. Likewise, “Reflexions sur l’espace et le temps,” Berlin, Mém. de l’Acad. (1748), 

pp. 324. For Euler’s viewpoint, cf., Lange, Bewegungsbegriff, pp. 87-97. 

 (68) Theoria motus, § 81. 

 (69) Kant, Metaph. Anfangsgründe, Wiener Ausgabe, pp. 16; in Lange, pp. 97-108.  

 (70) G. Coriolis, J. Éc. polyt. cah. 24 (1835), pp. 142.  
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coordinate system (71) (as well as that of absolute time, into which astronomical discussions of the 

measurement of time get mixed in an ambiguous way). 

  Duhamel and C. Neumann (72) have once more emphatically drawn attention to that flaw. 

According to Neumann, the principle of inertia is impossible to understand (73) unless nothing 

further is added to it in regard to which coordinate system the “material point left to itself” moves 

rectilinearly and what one means by uniform motion. In order to be able to understand that 

statement, one must assume the existence of a hypostasized immobile space (74), namely, “the rigid 

body A,” whose three principle axes of inertia provide the coordinate axes. By contrast, to him, it 

seemed that one had achieved a new approach to the measurement of time in connection with this 

concept: Any two material points that are left to themselves move in such a way that equal path 

segments on one of them will always correspond to equal path segments on the other (75). If one 

refers to the time intervals during which the equal segments are traversed as equal then the law of 

inertia expresses the statement that any point that is left to itself will advance uniformly and 

rectilinearly (76). 

 

 

 14. The measurement of time. – D’Alembert (77) sought to arrive at a metaphysical definition 

of equal times: Equal times are ones during which identical bodies will exhibit identical processes 

of motion under identical circumstances. No matter how intuitive that definition might be (one 

might imagine a mathematical pendulum that swings to equal elongations), one must still assume 

that the identity of the effects is knowable. 

 That difficulty is closely connected with the assumption of unaffected reference systems, which 

is based upon Neumann’s viewpoint, as well as later ones (e.g., Lange, Streinz) on material 

points, resp. One might perhaps say that a point is unaffected when it experiences no changes in 

 
 (71) E.g., in F. Minding, Mechanik, pp. 1: “It is clear that one associates every body with an absolute motion.” 

By contrast, from the remark of R. Hoppe [Archiv f. Math. (2) 16 (1898), pp. 8], one can always agree to explain the 

concept of motion as absolute as a constraint on knowledge, even when one admits to the relativity of motion. 

 (72) J. M. C. Duhamel, “Sur les principes de la science des forces,” C. R. Acad. Sci. Paris 69 (1869), pp. 773, 

and he said, more thoroughly, in Méthodes 4 (1870), pp. 454: “Up to now, absolute motion has generally been assumed 

to be a pure chimera that is based upon another chimera, which is that of a space that is eternal and absolute. We must 

once more do battle with a concept that is just as chimerical as that of space and makes time into a real entity that is 

necessarily independent of how it was created.” Cf., loc. cit., pp. 224 and XVI in the Foreword. Duhamel’s opinions 

seem to have attracted little attention. F. Reech, Cours de mécanique, Paris, 1852, had already expressed that idea as 

follows: “That law of inertia will no longer be a principle nor a fact of experience, but only a pure convention that one 

would like to base statics upon, since without it, one would never need to invoke either a hypothesis on the rigidity of 

the body, nor that of an absolute state of rest, nor that of an absolute state of uniform rectilinear motion in space.” 

Moreover, Th. Young, thoroughly developed a viewpoint in his Lectures, 1, pps. 1 and 2, pp. 27 that was entirely 

similar to that of Duhamel. C. Neumann, Die Prinzipien der Galilei-Newton’schen Theorie, Leipziz, 1870. 

 (73) Neumann, Prinzipien, pp. 14. 

 (74) Neumann, Prinzipien, pp. 15. 

 (75) Neumann, Prinzipien, pp. 18. 

 (76) Neumann’s representation of time is also found in Maxwell, Substanz und Bewegung, pp. 35.    

 (77) D’Alembert’s Traité, 2nd ed., 1758, which is not found in the transl. of A. Korn in Ostwald, K. B., no. 106. 

Similarly, it is also found in Poisson, Mécanique, 2, § 111, and that viewpoint was explained satisfactorily by H. 

Streinz (Grundlagen, pp. 85). Euler said simply in Theoria motus, § 18: “Everyone can see what the same times are, 

even when perhaps equal changes never occur in both from which one can conclude that equality.” D’Alembert’s 

idea was already developed much more completely by J. Locke (1690). 
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its state of motion as a result of changes in the position of the bodies that exist outside of it (78). 

However, the latter can be concluded only from the lack of differences between the coordinates 

and velocities, i.e., it can be known from determinations of times, so it already assumes a unit of 

time. 

 That is, in fact, how one gets lost in ever more unresolvable contradictions. A way around that 

seems possible here only when one either starts from the entirely-abstract concept of assuming 

absolute determinism, in which all variable quantities that determine the nature of the body depend 

upon only one basic variable, which will now be called t (79), or what seems to correspond more 

to a return to a natural viewpoint, by satisfactorily explaining it by means of a practical reference 

that is given by the period of Earth rotation (the best chronometer that can be made, resp.) (80).  

 Thus, it is inessential whether the time unit in a perfect chronometer, which is corrupted by the 

non-uniformity of the Earth rotation over a long time interval, is replaced with, say, the period of 

oscillation of light of a certain color – say, one of the sodium lines (81) – or by the orbital period 

of an ideal planet around a central body, which was proposed by Maxwell, Helmholtz, and others. 

 

 

 15. Philosophical opinions of the current era. – One sees from this that a general unification 

of those questions that belong to the boundary between philosophy and mechanics has still not 

been achieved to date, despite many attempts. Even the philosophical viewpoints are still 

diametrically opposing each other. Volkmann referred to the existence of an absolute uniformly-

flowing time as a necessary postulate (82), and the same idea was expressed by Liebmann (83). 

Others agreed wholeheartedly with the relativity of time and space. All of those difficulties were 

previously highlighted in detail by Locke (84), but they were also resolved in more recent works. 

 J. Epstein (85), in analogy with the Helmholtz axioms for geometry, preferred to regard it as 

an axiom for the measurement of time that the duration of a process should be independent of the 

point in time and the location where it takes place (86). The question of whether or not one might 

attribute a clear meaning to that statement might remain open. In any event, a difference exists 

between the concepts of space and time that makes such an analogous treatment impossible. 

 The fact that we possess the means in our conception of space to make completely-defined 

constructions on the basis of axiomatic statements, in particular, the means for defining the 

equality of two line segments by “superposition,” seems beyond any doubt, just like the fact that 

those constructions can be applied to our spatial picture of reality. However, there is a fundamental 

 
 (78) P. Duhem (Commentaire, 1892, pp. 274) spoke of the concept of independent systems in the case where the 

parameter of the one system is independent of the parameter of the other, which one cannot object to from the abstract 

standpoint. 

 (79) One will then come back to Lagrange’s viewpoint (footnote 61) by means of that concept.  

 (80) Thus, Hertz, Mechanik, pp. 158; Boltzmann, Mechanik, pp. 8; Love, Mechanics, pp. 3, et seq. 

 (81) Thomson and Tait, Treatise, 1, part 1, pp. 226. For the unit of length in such investigations, see A. A. 

Michelson, “Les méthodes interférentielles en métrologie,” J. de phys. (3) 3 (1894), pp. 1. The determination of time 

that is based upon the present period of Earth rotation does not contradict the picture in which the period that is 

measured in one and the same ideal chronometer can vary in the course of time. 

 (82) Volkmann, Theor. Physik, pps. 51 and 71.  

 (83) O. Liebmann, Zur Analysis der Wirklichkeit, pp. 70, et seq., 87, 93-95. Wundt, Logik, 1, pp. 430, seemed 

to be of the opposite opinion. 

 (84) J. Locke, An Essay Concerning Human Understanding, Book 2, Chap. 14, § 3, 1690. Cf., the Oxford edition, 

1894, vol. 1, pp. 249; see footnote 77. 

 (85) J. Epstein, “Die logischen Prinzipien der Zeitmessung,” Diss., Leipzig, 1887 (Berlin, 1887).  

 (86) See also Maxwell, Substanz und Bewegung, pp. 15.  
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difference between that dogma and the other one that would like to assert similar statements for 

the representation of time. We initially only encounter the representation of succession, and then 

duration, which should not allow us to compare simultaneous events, but only events where one 

of them ends before the other one, although they are based upon the ill-defined sensations of 

fatigue and relaxation (87). However, in no way can we compare the durations of events that take 

place at different times by using our inner intuition, which would be necessary if one, with Epstein, 

would like to introduce a measurement of time that is based upon the axioms of one’s intuition in 

a manner that is analogous to the processes of geometry (88). 

 

 

 16. The reference system of mechanics. – If C. Neumann had indicated the lack of a 

reference system that is based upon the demand that a body A must exist then Streintz (89) sought 

to produce one. Absolute translation was obviously something unknowable to him. He then 

replaced the statement that the reference system can possess no absolute translational acceleration 

with the requirement that it should be unaffected. By contrast, Streintz preserved the possibility 

of an absolute rotational motion (90). Naturally, one can see that in apparent proper motion of a 

gyroscopic compass, i.e., a suspension of a rotating body around a freely-moving axis, using 

Cardani’s method, viz., a gyroscope, and one can also understand that when one knows the 

relevant lemmas of mechanics. From a practical standpoint, one must concede that in the 

gyroscopic compass, one has a means for defining a reference body relative to which the Galilean 

principle (91). However, one can still complain about the assumption of absolute rotation, which is 

hardly compatible with the current fundamental laws of epistemology, as well as methodology, 

since one has introduced a complicated experiment as a precondition for any advanced knowledge 

whose understanding can first be achieved only after many dynamical preliminaries have been 

established. 

 L. Lange has sought to fill in that gap by giving a system that possesses at least no logical 

(methodological, resp.) flaws, and at the same time, is not a transcendent real one, like Neumann’s 

body A, but only an ideal one (92). It is the following one: 

 
 (87) By contrast, O. Lodge stated in Phil. Mag. (5) 36 (1893), pp. 8: “The conception of uniform motion is based 

on a simple primary muscular sensation.”  

 (88)  It also remains incomprehensible then that Hertz (Mechanik, pp. 53) simply defined time to be the time of 

“our inner intuition”; similarly, when one would like to regard capabilities that are obviously physiologically acquired, 

such as counting beats, et al., as primary concepts. 

 (89) H. Streintz, Die physical. Grundlagen der Mechanik, Leipzig, 1883. Similar ideas were already expressed, 

in part, by Mach in his Mechanik of 1883; see his critique of Streintz’s argument in Mechanik, pp. 232. 

 (90) Maxwell also assumed that directional state of rest in Substanz und Bewegung, pp. 95. B. and J. Friedländer, 

Absolute und relative Bewugung (Berlin, 1896), in turn, attempted to resolve that question. A general agreement on 

that question (cf., also Kant, metaphys. Anfangsgründe, pp. 96) has not been reached up to now. Cf., the critique of 

the various viewpoints in Mach, Mechanik, pp. 221-240. L. Lange (Bewegungsbegriff, pp. 63) aptly pointed out that 

one can arrive at no clarification of the absolute nature of motion from forces, which include only statements about 

perceived motions, as Newton wished to do in his rotation experiment, Principia, pp. 9. 

 (91)  The gyroscope determines a body that does not rotate relative to a Streinzian fundamental system, but by no 

means a body for which one say that an absolute rotation does not exist. According to Mach, Mechanik, pp. 218, the 

latter is an entirely-irrelevant metaphysical picture. 

 (92) L. Lange, “Über das Beharrungsgesetz,” Leipz. Ber. 37 (1885), pp. 353; “Die wissenschaftl. Fassung des 

Galilei’schen Beharrungsgesetz,” Phil. Studium 2, pp. 266, 539; cf., also the references in H. Seeliger, 

Vierteljahrsschr. d. astronomischen Gesellsch, 22 (1887), pp. 252. 
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 W. Thomson (93) had proposed that one might regard a configuration of four material points 

that are simultaneously thrown from a location as a reference system. According to Lange, any 

coordinate system, say, Descartes’s, whose axes are continually represented by three points that 

are thrown out from a point (in various spatial directions) like rigid wires through that point on 

which along which the points can slide like smooth balls, is a Galilean reference system. It will 

then be easy to show that every such system will again have the character of such a system relative 

to another such system. Now, the path of a point left to itself relative to such a system will be 

defined to a line. If one then introduces the concept of time, like Neumann, then one can make 

the further statement that every point moves uniformly and rectilinearly relative to an inertial 

system and an inertial scale of time. 

 A general convention regarding those question has still not been achieved up to now, and one 

should probably conclude from the fact that even recently the old doubts about absolute and 

relative motion and the meaning of Newton’s theory have been discussed thoroughly that those 

fundamental questions have still not been completely clarified and thought through (93.a). 

 Meanwhile, it should be pointed out that James Thomson (94) had already referred to the 

necessity for a “frame of reference” (95), in a similar way to Lange, such as, say, a Thomson-Tait 

coordinate tetrahedron. Muirhead sought to sketch out the viewpoint that lay at the foundation for 

the Newton-Galilei system in a more logical way when he said (96): 

 

“It is possible to choose the masses of the solar system, the axes, the 

chronometry…, so that the masses shall correspond with those of astronomy and 

the forces shall be resolvable into such as will be expressed by the law of universal 

gravitation… Then true time, absolute velocity and mass-measurement being 

defined from this system, there would be a further law of physics that the forces of 

the various particles composing the members of the solar system and others are 

expressed by our various physical laws or theories.” 

 

 Meanwhile, one might obviously choose a less-abstract standpoint in order to overcome the 

present difficulties. If one considers the acceleration relative to any coordinate system that is at 

our disposal to be a measure of the force that “produces” that motion then when the latter is zero, 

it will create a uniform rectilinear motion for the material point in question. Based upon that 

assumption, one will arrive at certain statements that either do or do not agree with reality to a 

satisfactory degree. In the latter case, one will discard the reference system as unsuitable (97). 

 
 (93) Thomson and Tait, Treatise, 1, Part 1, pp. 242. J. Tilly had already considered a similar coordinate system 

that established the representation of absolute motion, moreover [Brux. Bull. de l’Acad. Roy. (3) 14 (1887)], in 1878 

in his “Essai sur les principes fondamentaux de la géométrie et de la mécanique,” Bordeaux, Mém. (2) 3 (1878), pp. 

1. 

 (93.a) Cf., the reference to a discussion that took place in various English journals between Love, MacGregor, A. 

Basset, E. Dixon, McAulay, A. Gray, O. Lodge on absolute and relative motion by E. Lampe, Forthschritte d. 

Mathem. 25 (1897), pp. 1318, as well as a series of notes by E. Goedseels, P. Mansion, Pasquier, É. Vicaire in in 

the Bruxelles, Ann. Soc. Scientif. 16-21 (1890-1897). 

 (94) J. Thomson, “On the law of inertia,” Proc. Roy. Soc. Edinburgh 12 (1882/84), pp. 568, 730. 

 (95) J. Thomson, loc. cit.; P. G. Tait, Proc. Roy. Soc. Edinburgh 12, pp. 743. 

 (96) F. Muirhead, “The laws of motion,” Phil. Mag. (5) 23 (1887), pp. 473. Similarly, see Petrini, footnote 11, 

pp. 231, et seq.; likewise, Love, Mechanics, pp. 92, as well as J. Hadamard, “Sur les principes fondamentaux de la 

mécanique,” Bordeaux, Ann. Soc. Phys. (1897).  

 (97) The choice of “frame of reference” is at our discretion. However, the description of the motions will prove 

to vary according to that choice, cf., Love, Mechanics, pp. 8. That also seems to be the standpoint of Hertz, Mechanik, 
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However, at the same time, the fact that it has always been successful up to now (at least in the 

mechanics of ponderable bodies) implies that another one should be introduced that is suited to 

the phenomena of reality to a sufficient approximation. Thus, one goes from the phenomena of the 

case in which one refers everything to a reference system on the Earth to a geocentric system that 

does not participate in the rotation of the Earth. For the advanced question about a system whose 

origin is the center of the Sun, whose Z-axis is the normal to the invariable plane (to a system 

whose axes are determined by the directions to the fixed stars, resp.). In that case, there remains 

some doubt as to whether there actually is a fundamental reference system, but the expectation is 

justified that upon advancing to deeper questions, one will always succeed in seeing how to test 

the applicability of such a thing. 

 

 

 17. New theories. – This standpoint, which has been taken many times in recent years, since 

it is also very popular, to the extent that it concerns the mechanics of ponderable bodies, has been 

temporarily allowed to offer some advantage over those considerations that would like to introduce 

Newton’s absolute space again (but generally only in a certain sense) by way of the assumption of 

a medium that fills up space, namely, the ether. That alteration is generally impossible in the older 

conception of things that described the phenomena of light and heat by the behavior of motions of 

the ether. However, things will be different when the ether in the advanced Maxwell theory is 

regarded as an existing medium with certain well-defined properties whose geometric 

configuration is unvarying (98). In so doing, one must only recall that the electric and magnetic 

processes are no longer regarded as motions, but as states of polarization, etc., that one can further 

represent with the picture of a perturbation. As opposed to such an ether, which then defines the 

absolute reference system [but of course, nothing can or should be said about its state of absolute 

rest (99), and whose states are definable by observable processes in a field], one can also imagine 

relative motions (100) of “ponderable” bodies then as long as one still does not succeed in ascribing 

all phenomena to states of the ether, first and foremost. Perhaps, the latter is the tendency of an 

electric world-view that is presently popular with many physicists. Above all, to the extent that 

one can decide by experiments, that will depend upon whether the actual phenomena are consistent 

with the assumption of an ether at rest, for which the aberration of light defines a well-known 

support. The formal foundations of mechanics would then be able to assume an entirely-different 

character than before. However, it would seem premature to go further into that. 

 
pp. 158 and A. Föppl, Mechanik, 1, pp. 1. Cf., also P. Duhamel, Commentaire, 1892, pp. 271: “If we regard a 

hypothesis as exact when the consideration of absolute motion is involved, and if the application of that hypothesis to 

motions relative to a certain trihedron leads to inexact results then we will declare that the trihedron is not absolutely 

fixed.” Likewise, Mach, Mechanik, pp. 236: “The most natural standpoint is still the one that considers the law of 

inertia to initially be a sufficient approximation and refers to the fixed stars spatially and the rotation of the Earth 

temporally, and which one would expect to be corrected by extended experiments.” 

 (98) Cf., the presentation in W. Wien, “Über die Fragen, welche die translatorische Bewegung des Lichtäthers 

betreffen,” Beibl. Ann. Phys. Chem. (2) 65 (1898). 

 (99) H. A. Lorentz, Versuch einer Theorie der elektrischen und optischen Erscheinungen in bewegten Körpern, 

Leiden, 1895, pp. 4; likewise, J. Larmor, Aether and Matter, including a discussion of the influence of the Earth’s 

motion on optical phenomena, Cambridge, 1900. That had already been done before in J. J. Thomson, Anwendungen, 

pp. 40. 

 (100) Cf., e.g., Volkmann, Theor. Physik, pp. 54; E. Budde, Mechanik, 1, pps. 112, 135; likewise, Mach, 

Mechanik, pp. 225. W. Wien made an attempt to sketch out a theory of mechanics in this sense, “Über die Möglichkeit 

einer elektromagnetischen Begründung der Mechanik,” Livre Jubilaire dedié à H. A. Lorentz, La Haye 1901, pp. 96, 

also Ann. Phys. Chem. (3) 5 (1901), pp. 501. 
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 In connection with the ideas of F. Reech, in Cours de mécanique, 1852, Andrade (101) recently 

made a novel attempt to base a formal theory of mechanics without having to resolve the principle 

of inertia from the outset. For him, forces were static and measured by stresses. He then 

distinguished a final acceleration j (accélération finissante) for every material particle from its 

initial acceleration (acc. commençante) J (102), whose vectorial difference relative to any relative 

coordinate system is independent of the properties of the latter, from the Coriolis formulas (103) 

for relative motion, and assumed that the quantity T in the formula for the relative force: 

 

F = m (J – j) T 

 

is a factor that depends upon only the unit of time. Since one will have: 

 
2( )J j dt−  = 2( )J j dt  −  

 

under a transition to a new unit of time t  that is coupled with the old t by the equation t  = f (t), 

it will follow that: 

F = 

2

( )
dt

m J j T
dt

 
 −  

 
. 

 

One can then always introduce an absolute time-scale, for which: 

 
2

dt
T

dt

 
 
 

 = 1 . 

 

In general, either the accélération finissante or the course of the natural motion must be known if 

those formulas are to find any practical employment. 

 

 

B) The basic concepts of statics. 

 

 18. Forces in statics. – We shall now go further into the basic concepts of mechanics. 

Mechanics developed from the study of the simplest machines and then by the geometric teachings 

of Archimedes about the center of mass. It initially appeared as statics, in which forces are 

regarded as tensions and compressions, as might be due to human hands or weights acting on 

tensed cables, so in an entirely anthropomorphic way (104). It is not in doubt that these static forces 

 
 (101) F. Reech, Cours de mécanique, Paris, 1852, pp. 21; J. Andrade, Leçons de mécanique physique, Paris, 1898.  

 (102) Andrade, Leçons, pp. 51, et seq.  

 (103) G. Coriolis, “Mémoire sur les équations du movement relatif des systèmes de corps,” J. Éc. polyt. cah. 24 

(tome 15) (1835), pp. 142.  

 (104) E.g., Galilei in Scienza della meccanica (1592), Opere 2, Varignon, in Mécanique nouvelle, etc. Those 

manual illustrations gradually disappeared and gave way to the now-customary vectorial pictures by directed line 

segments (i.e., vectors). C. Neumann also spoke of commands that are imposed on bodies, Prinzipien, pp. 5, and also 

Math. Ann. 1 (1869), pp. 317. Incisive expressions of that sort are certainly not worthless. The fact that abstract 

scientific representations then strive to eliminate anthropomorphic pictures is probably self-explanatory. However, 

even in a general context, it can seem only premature to regard those representations as definitive of all phenomena 

when they were inferred from an entirely-restricted domain of sensations. In relation to that, one should also note the 
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are measured in well-defined units of weight and can be expressed in numbers as spatial vectors. 

In that way, the statics of rigid bodies was, in fact, developed under Varignon’s influence, and its 

completion seems to have been achieved in Poinsot’s theory of force-pairs (couples), and with 

complete rigor as soon as one accepts more or less sharply expressed axiomatic foundations that 

will lead to the equilibrium considerations for rigid bodies. 

 Two forces will then be equal if they preserve equilibrium when they act in opposite directions. 

If one further assumes that forces, whether acting in the same or opposite directions, can be 

combined by algebraic summation then all that will remain is the problem of composing forces 

with different directions at the same mathematical point by means of the parallelogram rule. 

 The concept of a rigid body that one encounters is a concept that is derived from statics itself, 

which originally includes only the representation of a substance whose geometric configuration is 

unvarying, and for whose points the possibility of relocating forces along direction of their line of 

action is defined as an axiom, namely, the principle of relocation of the point of application along 

their own direction. E. Budde (Mechanik 2, pp. 537) aptly called such vectors sliding vectors, as 

opposed to free ones (e.g., force-couples). 

 The historical character of those investigations, whose further evolution (namely, to the extent 

that one deals with the action of various rigid bodies on each other by collisions and related 

questions) also drew upon the representation of a mass that is particular to any rigid body [and 

thus, the entire study of the geometry of masses (see IV 3), when it is carried out with the help of 

infinitesimal methods, which go far beyond the barycentric studies of Archimedes], is connected 

with actual dynamics, in addition. It is juxtaposed with the dynamical representation of the rigid 

body, which regards it as an aggregate of mass-particles from the outset that are constrained into a 

system by forces that obstruct any change of the configuration (104.a). That seems to lead one, in a 

much more unforced way, to the idea of a general material system, in which the singular cases of 

static indeterminacy (see IV 5 and 22) do not appear. Moreover, the fundamental value of statics 

is based, not so much on the reality of a suitable invariability of the configuration (but only to a 

very restricted degree), but only on the development of the study of the equivalence of forces, 

which also continually emerges from the dynamical pictures later on. Here, we can only refer to 

the worthwhile methodological content of statics, namely, as it appears in the theory of moments, 

and the important duality between statics and the study of motion that is shown by the theory of 

vectors and screws. 

 

 

 19. The parallelogram of forces. – Newton and Varignon (105) had deduced that fundamental 

theorem directly from the study of the composition of motions, which Stevins, according to Cantor 

(Vorlesungen, 2, pp. 449) had not referred to in exactly those words. However, for the strictly 

static concept of force that one must have mind here, the recursion to a motion that does not at all 

 
remark of Th. Young, Lectures 1, pp. 28: “We must not imagine that the idea of force is naturally connected with that 

of labour or difficulty; this association is only derived from habit.” 

 (104.a) One ordinarily replaces the abstract conception of things that was chosen in this treatise with the picture in 

which very large opposing forces appear under small changes in the configuration. Equilibrium then refers to that state 

of deformation, which is actually unknown, however. 

 (105) Newton, Principia, pp. 13: “Corpus viribus compenetis diagonalem parallelogramme eaoden tempore 

describere quo latera separatis.” (The body is composed of forces that describe a diagonal parallelogram whose sides 

are, at the same time, separated.) Varignon, Nouvelle mécanique, 1 (1725). One finds the well-known rule for the 

equilibrium of three forces that act upon a point there. 
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come about (106) does not seem immediately permissible. That viewpoint gave rise to many 

attempts to prove the parallelogram of forces on the basis of axioms that were easier to overlook, 

i.e., special cases of the theorem. It also does not seem to be worthless at present, although Mach 

remarked (107) that many of those proofs are based upon an induction about the essence of the 

phenomena that one might expect would be difficult to acquire. 

 Dan. Bernoulli (108) was the first, and later d’Alembert (109), and others, to determine the 

resultant of two forces from the purely-static concept of force. The functional equation that the 

latter found appeared in a somewhat-different form in Poisson (110). For its proof, one reverts to 

the composition of two forces with the same direction by algebraic addition, under the assumption 

that the uniquely-determined resultant R bisects the inner angle 2x into two equal forces P, and its 

magnitude is given by the continuous function: 

 

R = P   (x) . 

 

In that way, one then has R = 2P for x = 0, and for x = 60o, one has R = P, by the symmetry 

principle. If one replaces each of the forces P with two equal forces Q that define the angle z with 

P and assumes that the resultant will not change in that way then  must satisfy the equation (111): 

 

 
 (106) Joh. Bernoulli, Opera 4, pp. 256: “Peccant, qui compositionem virium cum compositione motuum 

confundunt.” (They sin who confuse the composition of forces with the composition of motions.) Likewise, H. 

Lambert, Beiträge zum Gebrauche der Mathematik, 2, Berlin 1779, pp. 451. F. Reech, Cours de mécanique, pp. 61: 

“We reject absolutely all of the putative proofs of the theorem of the parallelogram of forces by means of the obvious 

rule of the parallelogram of velocities in geometry.” E. Bour, Mécanique, 2, pp. 16; cf., also R. Heger, Schul-

Programm Dresden, no. 398 (1887), pp. XVII. Thomson and Tait, Treatise, 1, Part 1, pp. 244, have a different 

opinion. 

 (107) E. Mach, Mechanik, pp. 45. – It should be emphasized that the way that things are implemented in the book 

deals with only the static conception of force.  

 (108) D. Bernoulli, Comm. Ac. Sc. imp. Petrop. (1726), 1 (1728), pp. 126.  

 (109) D’Alembert, Opusc. math. 1, Paris, 1761, pp. 269. Cf., also D. de Foncenex, Mélanges de philosophie et 

mathématiques, Turin, 1760/61, pp. 305. Moreover, d’Alembert, Berlin, Mém. de l’Acad. (1750), pp. 350. It is found 

in a simplified form in Aimé, J. de math. 1 (1836), pp. 335. For the older literature, cf., C. Jacobi, “Praeciporum inde 

a Newtone conatuum compositionem virium demonstrandi recensio,” Diss. Gottingae, 1817. The critical discussion 

of the proof of the parallelogram law by A. H. C. Westphal (Diss. Göttingen, 1868) is neither complete nor clear, 

with its all-too-abstract schematization of it. A thorough presentation of that generally more methodological-

mathematical question that extends to the most recent times would probably not be trivial, despite Mach’s disparaging 

judgment of it (Mechanik, pp. 48). Proofs of the parallelogram law no longer appear at all in recent presentations of 

mechanics. O. Heaviside (Electromagnetic Forces, 1, pp. 147, London, 1883) remarked: “Is it not sufficient to 

recognize that a quantity is a vector, to know that it follows the laws of the geometrical vector?” A. E. H. Love 

(Mechanics, pp. 89) said, more precisely: “We define the force exerted upon the particle m to be a vector localised at 

a point.” On that subject, one should confer the remark in footnote 61. 

 (110) Poisson, “Du parallélogramme des forces,” Corresp. de l’éc., polyt. 1 (1804/8), pp. 357. Mécanique, 1, pp. 6 

in the edition by Stern.  

 (111) That was done before by d’Alembert, Paris, Mém. de l’Acad. (1769), pp. 278. Another functional equation 

is in d’Alembert, Opusc. math. 6 (1773), pp. 360. A simpler one is in O. Schlömilch, Zeit. Math. Phys. 2 (1857), pp. 

85. – P. S. Laplace, Méc. céléste, pp. 3-8 gave a proof that first determined the magnitude of the resultant in 

rectangular components but found its direction by infinitesimal considerations that were not as clear. Cauchy did 

something similar (Exerc. de math., 1826, pp. 29), but he found the direction only by a functional equation. Similar 

things were also in W. G. Imschenetzky, Kharkow Ges. (2) 2, pp. 108. Other proofs are in E. Brassienne, Nouv. ann. 

de math. (3) 1 (1882), pp. 320. Delèque, ibid. (2) 12 (1873), pp. 495. The presentation by Möbius, Statik, pp. 22-39 

[cf., also J. f. Math. 42 (1851), pp. 170] is distinguished by the careful implementation of its assumptions, as well as 

Poinsot, Élémens de statique, 11th ed., pp. 11-25. 
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 (x + z) +  (x – z) =  (x)   (z) . 

 

Since  (0) = 2 cos 0,  ( / 3) = 2 cos  / 3, it will then follow that for all rational value of a: 

 

3

a


 
 
 

 = 2cos
3

a 
 
 

 , 

 

so when one extends to the irrational domain, one will have: 

 

 (x) = 2 cos x . 

 

One can then go on to the case of two equal forces by means of the transition from rectangular 

forces to the general case (112) by Bernoulli’s elementary considerations. 

 Boltzmann sought to avoid the objection that Bour (113) and Mach (114) made that the 

resultants must be assumed to be intrinsically angle bisectors, in addition to the constraints of 

single-valuedness, continuity, and differentiability, by a somewhat-different arrangement of 

Poisson’s representation (115). 

 A certain resolution of the whole question was achieved by Darboux (116), who deviated from 

the considerations of most of the earlier authors (117) by drawing upon spatial ones, and thus 

avoided d’Alembert’s functional equation. Under the assumptions that the resultant of n vectors 

P1, P2, …, Pn , is first of all, single-valued, secondly, it does not change when one replaces 

arbitrarily many of the P with their resultants, and thirdly, it is independent of the position of the 

vectors relative to the coordinates system, that will imply that according to the parallelogram rule, 

that resultant is the vector that is defined by: 

 

 (P1),  (P2), …,  (Pn) , 

 

in the event that  means an arbitrary function, and every  (Pi) will be carried by the direction of 

Pi for positive values. Under the assumption that equally-directed vectors can be added, it will 

then follow that: 

 (P + Q) =  (P) +  (Q) , 

 

from which it will follow that  (x) = A  x when one assumes, fourthly, that either  (x) is 

continuous or that  (x) is positive (118). 

 

 
 (112) D. Bernoulli’s, footnote 108, pp. 134, prop. III.  

 (113) Bour, Mécanique, 2, pp. 45.  

 (114) Mach, Mechanik, pp. 48. 

 (115) Boltzmann, Mechanik, pp. 31. 

 (116) G. Darboux, Bull. sci. math. 9 (1875), pp. 281; it also appeared as Note 1 in vol. 1 of Despeyrous’s 

Mécanique, pp. 371. 

 (117) Such a thing is already found, in part, in the proof that Andrade attributed to A. Morin in Mécanique, pp. 

357, which F. Sciacci once more adopted in Napoli, Rend. Accad. reale (1899). 

 (118) More generally, Darboux showed in Math. Ann. 17 (1880), pp. 56, that the equation  (x) = A  x will already 

follow when one replaces assumptions (4) in this treatise with just the assumption that  (x) assumes only positive or 

negative values whose absolute values lie below a finite limit in any finite interval. 
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C) The basic concepts of dynamics. 

 

 20. Galilei and Newton’s Principia. – Galilei recognized the possibility of giving a simple 

description of natural phenomena in the concept of acceleration (119). It is very remarkable that 

the concept of velocity will not suffice for that (120), but would bring about the greatest 

complications, and that on the other hand, it has not been necessary up to now to go on to the 

concept of higher-order accelerations, which would, however, characterize the process of motion 

in a much more general way. Based upon Galilei’s ideas, one erects the edifice of Newton’s 

doctrine, which defines the acceleration to be  = K : m as the effect of the force K with the help 

of the concept of the mass m. 

 Newton placed four definitiones and three axiomata sive leges motus (or laws of motion) at 

the pinnacle of his Principia: 

1) Definitiones (121). 

 

 1) Quantitas materiae est mensura ejusdem orta ex illius densitate et magnitudine conjunctim. 

(The quantity of matter is the measure of a thing that arises from its density and size, when taken 

together.) 

 

 2) Quantitas motus est mensura ejusdem orta ex velocitate et quantitate materiae conjunctim. 

(The quantity of motion is the measure of a thing that arises from its velocity and quantity of 

matter, when taken together.) 

 

 3) Materiae vis insita est potential resistendi, qua corpus unum quodque quantum in se est, 

perseverat in statu suo vel quiescendi vel movendi uniformiter in directum. (The inherent force of 

matter is its resistive potential, by which each and every quantity that is intrinsic to a body persists 

in its state of rest or uniform motion in a direction.) 

 

 4) Vis impressa est action in corpus exercita, as mutatum ejus statum vel quiescendi vel 

movendi uniformiter in directum. (Impressed force is the action exerted on a body that changes 

either its state of rest or of moving uniformly in a direction.) 

 

2) Axiomata sive leges motus (122). 

 

 1) Corpus omne perseverare in statu quo quiescendi vel movendi uniformiter in directum, nisi 

quaternus a viribus impressis cogitur statum illum mutare. (The whole body must remain in a state 

of rest or of moving uniformly in a straight direction unless the body is forced to change that state 

by the forces exerted upon it.) 

 

 
 (119) Galilei, Opere 2, cf., in particular, pp. 261, de motu acceleratio for the definition of acceleration.  

 (120) Naturally, that is understood to mean when one looks back upon the actual development of mechanics, which 

defined motions by differential equations for the trajectories of points. The energetic pictures, which (perhaps 

rightfully so) dispense with such detailed pictures, would generally allow a different description of processes to still 

be conceivable. 

 (121) Principia, pp. 1.  

 (122) Principia, pp. 12. 
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 2) Mutationem motus proportionalem esse viri motrici impressae et fieri secundum lineam 

rectam, qua vis illa imprimatur. (The change of motion is proportional to the motive force 

impressed upon it, and it takes place along the straight line by which the force is impressed.) 

 

 3) Actioni contrariam semper et aequalem esse reactionem, sive corporum duorum actiones 

in se mutuo semper esse aequales et in partes contrarias dirigi. (There is always an opposite and 

equal reaction to an action, or the actions of two bodies on each other are always equal and directed 

in opposite directions.) 

 

 

 21. The dynamical study of motion. – Based upon the foregoing general principles, the 

system of classical mechanics in the Nineteenth Century gradually developed in conjunction with 

a well-made phoronomy, but we shall not go further into a discussion of the questions connected 

with the representation of space and time. 

 The pure study of motion, which describes the position of a point by its three coordinates x, y, 

z, which are given as functions of time t, starts from the idea that under a motion along an arbitrary 

path, the: 

lim
s

t




 for t = t0 

 

will represent a well-defined limiting value relative to the path length s – s0 = s that was traversed 

and the associated time interval t – t0 = t, namely, the speed v of the point. If the motion is 

projected onto an axis X, say by parallel projection, then the speed of the projected motion will be 

equal to the projection of v. The motion will be determined completely by its projections onto three 

coordinate axes x, y, z, which are most conveniently mutually rectangular, and: 

 

  x  = 
dx

dt
 = f1 (x, y, z, t) , 

  y  = 
dy

dt
 = f2 (x, y, z, t) , 

  z  = 
dz

dt
 = f3 (x, y, z, t) 

 

are three first-order differential equations that determine the coordinates x, y, z as single-valued 

functions of t for a given initial position (x0, y0, z0, t0). 

 One calls the autonomous location that each of the velocities possesses, e.g., x , for an observer 

that participates in the projected motion in the YZ-plane, its components; their resultant is the vector 

v. By that consideration, which associates every motion with its orthogonal or also general parallel 

projections onto any axes, one will avoid the irrelevant examination of the composition and 

decomposition of velocities, while at the same time, the representation that simultaneously 

attributes several motions to a point, as a purely-logical abstraction that is generally mediated by 

one’s imagination, will not at all correspond to any real process. 

 For constant x , y , z , the path will be a straight line that is traversed uniformly. In every other 

case, the vector v is combined with an infinitely-small vector dv over the time dt, which is regarded 

as a measure of the change in velocity. Here, as well, we shall consider that acceleration to be a 
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limiting value whose direction and magnitude are determined completely. From that standpoint, it 

is obvious that the accelerations are composed by the parallelogram law in any event. In particular, 

that is brought to light by Hamilton’s concept of the hodograph (122.a). Conversely, for a given 

initial state 0 0 0 0 0 0 0( , , , , , , )x y z x y z t , the equations: 

 

x  = 1 ( , , , , , , )f x y z x y z t , 

y  = 2 ( , , , , , , )f x y z x y z t , 

  z  = 3 ( , , , , , , )f x y z x y z t  

 

will once more define the motion completely, with suitable restrictions on the functions. The 

process of phoronomic concept building that is introduced in that way is therefore not excluded, 

but dynamics has no reason to make use of higher-order accelerations (122.b). 

 

 

 22. The system of classical dynamics (123). – One achieves the transition to the dynamics of 

material points in the customary representations by the following basic laws (124), which can be 

regarded as abstractions from experience: 

 

 1. Whenever a material point does not move uniformly and rectilinearly, other bodies will 

always be present whose positions and state of motion seem to be the conditions that determine 

that deviation from the inertial path. One says that active forces are present that assign the 

acceleration in question (125). 

 

 2. Mass is the property of material points to take on accelerations under the same conditions 

of that type whose scalars have different magnitudes. The unit of mass can be chosen arbitrarily. 

 

 
 (122.a) W. R. Hamilton, Dublin, Trans. 3 (1846), pp. 345. Elements of Quaternions, London, 1866, pp. 100, 718, 

2nd ed., 2 vols., London, 1899/1901. Meanwhile, the concept of a hodograph already appeared in 1843 in Möbius, 

Mechanik des Himmels = Werke 4, Leipzig, 1887, pp. 35 and 47. 

 (122.b) C. G. J. Jacobi already referred to the theory of higher-order accelerations in 1825 (Werke 3, pp. 44), whose 

general concept had been employed by Möbius, J. f. Math. 36 (1838), pp. 91. A. Transon, “Note sur les principes de 

la mécanique,” J. de math. (1) 20 (1843), pp. 320, introduced mx , in turn, as the virtualité motrice, along with mx , 

while H. Resal (Traité de cinématique pure, Paris, 1862) produced a systematic theory of first and second order 

accelerations that was developed much further by others since then. 

 (123) We understand this to mean, say, the lessons that seem to have achieved general validity under the influence 

of the French mathematicians in the first half of the Nineteenth Century.   

 (124) These foundations of dynamics mostly seem to be coupled with metaphysical ideas about inertia, causes, etc. 

(cf., e.g., the presentation by E. Bour, Mechanik, 2, pp. 6, Duhamel, and others). The presentation here intends to 

adapt them to the newer presentations as much as possible. Cf., e.g., Streinz, Grundlagen, pp. 99, et seq. The principle 

of inertia is then replaced with statement no. 1. The connection between those basis axiomatic laws and experiment 

will not infrequently be represented by calling upon entirely-uncontrollable observations excessively. For example, 

Coriolis said in Mécanique, pp. 5: “If the force F varies during the duration of motion then observation will show that 

the ratio  (acceleration) varies in the same way, i.e., the values of  will remain proportional to the values of F.” 

 (125) Even Kirchhoff and Mach spoke of active forces. According to A. Höfler, Studien, pp. 56, action is a special 

type of relation, namely, a relationship of necessity between realities of a certain type whose representation does not 

include any anthropomorphic elements at all. 
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 3. The unit of force is the one that assigns an acceleration of unity to a unit of mass. Any mass 

that obtains a unit acceleration “by means of” a unit force represents a unit mass. 

 

 4. If a unit mass is acted on by several unit forces at the same time then each of those forces 

will act precisely as if the remaining ones were not present at all. One thus arrives at the 

representation of the force n that assigns the acceleration n to a unit mass. 

 

 5. A material point that takes on a unit acceleration under the influence of force n possesses 

a mass of n. A material point of mass m will then take on the acceleration  = n by the force F = 

mn. Thus: 

F = m  . 

 

 6. The proportionality of mass and weight, in its simplest form, can be confirmed by 

experiments for ponderable material points, e.g., by Atwood’s machine (126). 

 

 

 23. Critical remarks about the system of dynamics. – The fact that Newton’s definitiones 

were, in part, chosen quite carelessly, e.g., quantitas materiae was explained in terms of densitas, 

vis was explained in terms of actio, has often been remarked (127). It seems much less appropriate 

to speak of a vis inertiae (128). This is not the place to treat those formal questions. However, a 

brief factual discussion of the axioms would seem imperative. 

 

 1. The independence of the axioms. The difficulties that oppose one’s understanding of 

Newton’s axioms are much greater. They have produced an extensive body of literature, only the 

most essential of which can be cited here. We shall first mention the questions that relate to the 

mutual independence of the statements. For example, the fact that the first law is included in the 

 
 (126) F. Bessel’s papers “Versuche über die Kraft, mit welcher die Erde Körper von verschiedener Beschaffenheit 

anzieht,” Berlin, Anhandl. d. Akad. (1830), pp. 41 and Ann. Phys. Chem. 23 (1832), pp. 401 belong to that category. 

Bessel’s investigations were recently taken up again, with more precise tools, by R. v. Eötvös, “Über die Anziehung 

der Erde auf verschiedene Substanzen,” Mathematische und naturwissenschaftliche Berichte aus Ungarn 8 (1891), pp. 

65; cf., also Ann. Phys. Chem. (2) 50 (1896), pp. 354. 

 (127) That opinion was not shared by all. Thomson and Tait said [Treatise (1) 1, pp. 279]: “The introduction to 

the Principia contains in a most lucid form the general foundations of dynamics.”  Volkmann made a similar statement 

in Theor. Physik, pp. 70. It is customary in England, in particular, to read into Newton’s brief laws much more far-

reaching conceptions, e.g., d’Alembert’s principle, the conservation of energy, etc. We shall leave those issues 

unresolved (which are by no means generally maintained even in England). Meanwhile, if one observes that despite 

its flawed superficial form, all of dynamics has been developed from Newton’s principles without one finding it 

inadmissible up to recent times to increase the number axiomatic statements then one will be just as inclined to guard 

against assigning too little to Newton’s ideas. Moreover, the fact that Newton’s leges, which are suitable for the 

demands of astronomical mechanics, are not sufficient for deducing the mechanics of constrained material systems, 

can hardly be doubted at present. 

 (128) The vis inertiae, viz., the so-called power of persistence (Beharrungsvermögen, i.e., inertia) can seem to be 

an entirely-irrelevant scholastic concept. Euler had already rejected it in the strongest terms in his Reflexions sur 

l’espace. On the occasion of his quite-useful concept of the deviation of the motion of a material point, A. M. Ampère 

developed, in turn, the picture that the force d’inertie was always equal and opposite to the active force [J. de math. 1 

(1836), pp. 211]. Discriminating between forces of motion and accelerating forces or forces d’inertie (which currently 

appear in d’Alembert’s principle as − mx , − my , − mz ) does not seem to be very fortunate, in any event. That is also 

the basis for the false conceptions about the centrifugal force, in which Hertz, in turn, believed he glimpsed an 

essential flaw in conventional mechanics (Mechanik, pp. 8). On this, one might cf., Boltzmann, Mechanik, pp. 45. 
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second one is probably generally recognized. Obviously, those questions can be resolved only by 

a purely logical-mathematical examination, which we shall not go into here. It also still seems 

doubtful whether the attempts to do that, which appear in the English literature, in particular (129), 

have already arrived at an actual conclusive result. One might recall the difficulties that analogous 

investigations have indicated in the much-clearer realm of geometry, and which have been 

advanced decisively by Hilbert in recent times (130). 

 

 2. The concept of mass. Newton and Poisson explained mass as the quantity of matter (131). 

Hertz (132) referred to a mass-particle as a feature by which one can distinguish one geometric 

point from another and arriving at a purely-phoronomic concept of mass comes down to 

enumerating hypothetical atoms in a certain unit of volume, while he made the “ponderable” 

masses of dynamics proportional to weight. French mathematicians (133) define mass by the ratio 

of force to acceleration. Obviously, one must first define force, which can be defined by weight 

only in the static sense. For Kirchhoff (134), mass simply seemed to be a numerical coefficient that 

is introduced in the differential equations of motion of systems that does not eliminate the 

possibility of a unique description of motion, so it remains completely undefined. According to 

Andrade (135), the phenomenon of the collision of two material points is constructed from a 

concept of mass that is entirely independent of the assumption of a certain coordinate system and 

a previously-chosen unit of time. Others are content with mere nominal definitions, such as, e.g., 

when mass is referred to as the acceleration capacity (136). 

 
 (129) Cf., in particular, J. MacGregor, “On the fundamental hypotheses of abstract dynamics,”  Trans. Roy. Soc. 

Canada 3 (1892). Likewise, Phil. Mag. (5) 35 (1892), pp. 134; ibid. 36 (1893), pp. 243, as well as Trans. Roy. Soc. 

Canada 6 (1895), pp. 95. 

 (130) D. Hilbert, “Über die Grundlagen der Geometrie,” Festschrift zur Enthüllung des Gauss-Weber-Denkmals 

zu Göttingen, Leipzig, 1899; also in French, Les principes fondamentaux de la géométrie, transl. L. Laugel, Paris, 

1900. 

 (131) One also finds that in Kant’s Metaphysische Anfangsgründe, pp. 95. That expression is also presently used 

by physicists, such as W. Voigt, Kompendium, 1, pp. 14. It makes sense only when one speaks of an abstract material 

that is capable of superposition, and assumes states of different density in that way. L. M. N. Carnot (Principes, 1803) 

did not define mass at all. 

 (132) Hertz, Mechanik, pp. 54. Similar statements are also in Schell, Mechanik, 1, pp. 2, 72. 

 (133) E.g., Duhamel, Mécanique, 1, pp. 132.  

 (134) Kirchhoff, Mechanik, pp. 13-21. Similarly, C. Neumann, Grundzüge der analytischen Mechanik, Leipziger 

Ber. 39 (1887), pp. 155. The fact that Kirchhoff’s introductory considerations are in striking contrast to the careful 

analytical representation of the later parts of the book, which raise objections only in a few places, is probably not in 

doubt nowadays. 

 (135) Andrade, Mécanique, pp. 54. Naturally, the phenomena of collisions, in and of themselves, were already 

called upon much earlier. For experimental tests, one might cf., e.g., W. M. Hicks, Elementary Dynamics of Solids 

and Fluids, London, 1890. 

 (136) For example, A. Höfler, Studien, pp. 70. Ch. Freycinet (Essais sur la philosophie des sciences, Paris, 1896, 

pp. 177) compared mass with the specific heat, as the capacité dynamique. For Euler, mass was the quantity of inertia 

(Theoria motus, § 153). Volkmann, Theoret. Physik, referred to the concept of mass as quantity that prevents change 

in phenomena, so as a postulate. Naturally, one would have to keep that in mind in any discussion of the subject. One 

can initially regard the mechanics of points with variable masses that Jacobi (Dynamik, ed. by A. Clebsch, pp. 57) 

alluded to as an entirely-abstract extension of the differential equations of dynamics. Meanwhile, it can find 

application to certain questions (e.g., the gradual changes of mass of a celestial body by the absorption of cosmic 

mass). However, one is not actually dealing with that abstraction, but with an investigation of collision phenomena. 

One might cf., J. Mesterchesky, “Dynamik des Punktes mit verändlicher Masse,” article in the Fortschr. d. 

Mathematik 28 (1897), pp. 645. 
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 Mach (137) treated the concept of mass most thoroughly. According to him, bodies of equal 

mass are ones that impart equal and opposite accelerations to each other when they act upon each 

other. Naturally, that statement includes the assumption, which agrees with experiment and was 

based upon still-further ones by Mach (138), that two bodies A1 and A2 that have equal masses 

relative to a unit body A will also behave that way relative to any other reference body B. That 

concept, which is based upon the most-recent presentations (139) and comes close to what Andrade 

proposed, seems to recommend itself to the same degree as the latter. A general unification of them 

has not resulted up to now. 

 Furthermore, there seems to exist no obstacle to assuming the very-popular standpoint and 

simply initially making the mass of a ponderable body proportional to its weight (140), while calling 

upon certain facts of experience regarding its dependency upon position, time, and other physical 

states, and then introducing other masses in order to preserve the analogy that would have to enter 

into the consideration of hidden masses, as Hertz did. Moreover, in that sense, one must always 

introduce non-gravitating (e.g., electric, magnetic, etc., …, positive and negative) masses (141), in 

which one reduces their units to the unit of force that was obtained already. That will also be 

necessary if the concept of work is to take on a general sense. 

 

 3. The principle of inertia. Newton’s first axiom is known by the name of the Galilean 

principle of inertia: A point that is represented as independent of all other bodies will move 

uniformly and rectilinearly when left to itself (142). Along with the aforementioned difficulties that 

relate to the representation of unaffected points, this axiom seems entirely superfluous. Moreover, 

it is delusional (143) for one to believe that one can verify it by experiment. one can generally see 

that the deviations from the inertial part will become smaller and smaller the more one eliminates 

certain “circumstances” that affect the motion. However, the fact that when the point moves 

uniformly and rectilinearly, such circumstances will no longer be present is already assumed and 

lies beyond the reach of any possible experiment (144). The principle of inertia will have an actual 

 
 (137) Mach, Mechanik, pp. 210.  

 (138) Mach, Mechanik, pp. 213. In conjunction with that conception of mass and the fact of experience that the 

accelerations that several bodies A1, A2, A3 impart upon a body A are independent of each other (see the fourth indented 

line in the book), Mach (Mechanik, pp. 242) arrived at a system of statements that seems suitable to replace the one 

in no. 22. 

 (139) See Love, Mechanics, pp. 87. Maggi, Principii, pp. 150. Boltzmann, Mechanik, pp. 22. 

 (140) The objections to that opinion are well-known, cf., e.g., G. A. Greenhill, “On weight,” Nature 46 (1892), 

pp. 247; ibid., 51 (1894), pp. 105. However, on closer inspection, they ultimately seem to be no greater than the 

difficulties that exist in the definition of a physical unit of length. 

 (141) A. Coulomb, Paris, Mém. de l’Acad. (1745), pp. 569, Ostwald, K. B., no. 13; C. F. Gauss, Intensitas vis 

magneticae terrestris, etc., 1833 = Werke, 5, pp. 79. 

 (142) Galilei, Discorsi, third and fourth day, Ostwald, K. B., no. 24, pp. 57, 81. According to E. Wohlwill, Zeit. 

f. Völkerpsychologie u. Sprachwissenschaft 15 (1883/84), pp. 101, Galilei, who did not at all seem to find an a priori 

basis for the principle of inertia in the sense of footnote 22, restricted his statement to the processes on the surface of 

the Earth, moreover. Its extension to celestial mechanics goes back to Newton. 

 (143) On the logical difficulties that are inherent to the law of inertia, and are, for the most part, created by 

misunderstandings, cf., F. Poske, “Der empirischer Ursprung von der Allgemeingültigkeit Beharrungsgesetzes,” 

Vierteljahrsschr. f. wiss. Philosophie 8 (1884), pp. 385, with an addendum by W. Wundt, pp. 405; likewise, L. 

Weber, Über das Galile’sche Prinzip, Kiel, 1891; P. Johannesson, “Über das Beharrungsgesetz,” Schul-Programm, 

Berlin, 1896, no. 98. 

 (144) One might probably imagine a theory of mechanics in which the motion of the unaffected points is completely 

different from this, as e.g., F. Reech did in Cours de mécanique, cf., footnote 72; then see J. Andrade, Mécanique 
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sense, but also only a metaphysical one, only when one also assumes a real absolute unit of time, 

along with Newton’s real space in which the motion of the isolated points can be considered. 

 

 4. The concept of force. The purely-dynamical definition of force as merely an abbreviated 

way of saying that a mass-particle possesses a certain component of acceleration generally has no 

connection with the static concept of force. However, one will be all the more inclined to abandon 

the latter, and thus to abandon the duality between statics and dynamics that Gauss (145) had 

already criticized as a satisfactory representation of static processes as ones for which the 

acceleration is zero, as not successful by itself, but at the same time, further assumptions seem to 

be dispensable. The principle of independence (146), which is included in Newton’s lex secunda, 

in the opinion of many English authors, and is based upon the parallelogram law, was emphasized 

only later in the French school with especial vigor. It will seem to become irrelevant when one 

adopts the study of the composition of accelerations as simply a requirement for the description of 

phenomena by the concept of force (147). As an expression for the basic representation of dynamics, 

one now has the equations of motion of a free material point: 

 

m x  = X , 

m y  = Y , 

m z  = Z , 

 

in which X, Y, Z should be regarded as the values of the force components that one obtains by 

observing the accelerations and masses (the static effects, resp), according the concept of force 

that one uses as a basis (148). 

 
physique; similar statements were also expressed by H. Poincaré and P. Painlevé [Revue de métaphys. (8) 5 (1900), 

pp. 557]; Jacobi had already gone much further in his Vorlesungen, 1847/48, pp. 1. 

 (145) Gauss, J. f. Math. 4 (1829), pp. 233; “However, that is what the spirit of the inverse process demands, in 

which all of statics appears to be a special case of dynamics.” Laplace, Méc. cél., pp. 16, would still like to prove the 

proportionality of force and acceleration, as well as Poisson, Mécanique, 2nd ed., 1, § 116. 

 A general union of those two conceptions of force has not been achieved up to now. Whereas abstract dynamics, 

of which statics is only a limiting case, considers the concept of m  to be sufficient, the representations of mechanics 

that are directed towards applications initially start from static phenomena (as the apparently simpler ones), i.e., from 

the measurement of forces by weight or the deformations of elastic systems (e.g., spring scale, dynamometer), resp. 

Cf., the detailed explanation in Ch. Freycinet, Essais sur la philosophie, Paris, 1896, pp. 153, et seq. A. Ritter, 

Lehrbuch der analytischen Mechanik, 2nd ed., Leipzig, 1883, pp. 66, whose view was certainly shared by many, indeed 

defined force by m , but be preferred to measure mass itself only by forces. “Rather, one must assume that there is 

yet another experimentally-accessible criterion for recognizing the equality of two forces,” namely, the identity of the 

deformations in the dynamometer. Similar statements are in A. Ritter, Lehrbuch der technischen Mechanik, 7th ed., 

Leipzig, 1896, pp. 42; cf., also, E. Budde, Mechanik, 1, pp. 111. 

 (146)  See the version of it in Duhamel, Mechanik, 1, pp. 338; E. Bour, Mécanique, 2, pp. 7. D. Bernoulli [Comm. 

Ac. Petrop. (1728), pp. 126] was the first to express it. Poisson based his mechanics in 1811 upon it (pp. 277). In the 

2nd ed., 1, pp. 172, he sought to abandon it by a consideration whose untenability had already been pointed out by the 

translator M. A. Stern. The arbitrary character of the independence principle, which is still suitable for a convenient 

description of the processes of motion, has probably been rarely in doubt. Poincaré (cf., footnote 144) recently 

remarked that the conservation of magnetic masses is not directly consistent with the law. On that topic, cf., Painlevé’s 

remark “The principles of mechanics are conventions that experiments can never contradict.” 

 (147) As is, e.g., Tait, Encycl. Brit. 9th ed. (1881), article “Mechanics,” pp. 701; MacGregor, “On the 

hypotheses…,” footnote 129. F. Muirhead, “On the laws of motion,” (5) 23 (1887), pp. 489. 

 (148) There exists no obstacle to regarding those values of X, Y, Z as depending upon the state of motion, i.e., x, y, 

z, x , y , z . If they also include the x , y , z  then that will imply an analogous problem when one solves for them. 
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 5. The law of action and reaction, or Newton’s lex tertia, which was not taken up in no. 22 

in the study of classical dynamics, is not required for the academic example of the motion of a free 

point, but it contains exactly the most important part of Newton’s mechanics for the consideration 

of material systems. According to Hertz, who proved that it is a consequence of his basic law for 

the actions between subsystems (149), when that law is extended beyond the former case, it will 

become an unprovable, perhaps even incorrect, statement. More general forms of the law appear 

in electrodynamics and the theory of elasticity, moreover (150). It does not seem incorrect that 

Petrini (151) saw in the law a method for establishing suitable limits on the investigations that is 

useful in the interests of simplicity. 

 

 

 24. Instantaneous forces, impacts, or impulses (152). – Since every force K will produce the 

rectilinear deflection or deviation (153) in direction: 

 

21

2

K
dt

m
 

 

in the time interval dt, while it produces the infinitely-small velocity: 

 

K
dt

m
, 

 

abstract mechanics is not initially in a position to explain the apparently sudden changes in the 

state of motion that one believes to be perceived during collisions. Without going into the earlier 

treatment of that question by Huygens (154) and others, let it only be remarked that it does not seem 

possible to object to the presentation (154.a), since one treats continuous processes with it that 

evolve over such a short time interval (155) that an apparent discontinuity arises. When X is 

regarded as very large in the formula: 

m x  = X 

or 

 
However, things will be completely different when the forces depend upon even higher derivatives, since the initial 

state (in the usual sense) would no longer suffice to determine it then. That fact has not always been emphasized 

enough. 

 (149) Hertz, Mechanik, pp. 215. 

 (150) One extension of it is in Volkmann, Theoretische Physik, pp. 131. Another in a different direction is in 

Voigt, Kompendium, 1, pp. 79. 

 (151) H. Petrini, footnote 11, pp. 221.  

 (152) Naturally, the choice of terminology makes no difference. The expression impulse [which was chosen by 

Thomson and Tait, Treatise (1) 1, pp. 282, although it also meant nothing but impact] in E. Budde, Mechanik, 1, pp. 

411, seems to be in more general usage. Cf., Klein and Sommerfeld, Theorie des Kreisels, pp. 69, et seq. 

 (153) That formula was first used by Euler, “Découverte d’un nouveau principe de mécanique,” Berlin, Mém. de 

l’Acad. 1750 (1752), pp. 185; Theoria motus, § 169. 

 (154) On the subject of Huygens and his predecessors, cf., e.g., Mach, Mechanik, pp. 300-325; likewise, Galilei’s 

investigations of collisions in Ostwald, K. B. no. 25, pp. 37. 

 (154.a) In the mechanics of Hertz, pp. 288, the presentation is just the opposite. He dealt with true discontinuities in 

the motion that would be described by means of the existing time integrals of the accelerations. 

 (155) That is the time of impact for the English authors, cf., Thomson and Tait, Treatise (1) 1, pp. 274. 
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0( )m x x−  = 

0

t

t

X dt  = P 

 

in an extremely-small time interval t – t0, the right-hand side can even assume a value P that lies 

below a finite limit with an order of magnitude that is comparable to the usual one that one refers 

to as the intensity of the impact or impulse; on the left-hand side is the increase in the quantity of 

motion (quantité de movement, momentum). The instantaneous forces of impulse will then 

measure the quantity of motion that is created in an extremely-small time interval. Since one has, 

at the same time: 

x – x0 = 

0

t

t

x dt , 

 

the material point m will experience an increase in velocity of 0x x−  over a change in position of 

order t – t0 (156). In the first approximation, a sudden change in velocity with an unchanging 

position of the point is allowed, and one can speak of the value of the interval as t – t0 converges 

to zero. Although that conception of things, whose absurdity is concealed only formally by the 

integral sign that is employed (157), is so unsatisfactory in many respects, no contradiction has 

emerged in that presentation to date since it seems to be in satisfactory agreement with 

observations and has been subsequently built up by the French school especially. 

 The equivalence of the representation of the quantity of motion of a material point or mass m 

by m v and an impulse P = m v that suddenly communicates a velocity of v to a point at rest is not 

just incidental, moreover. In particular, it is indicated when one considers the generalized impulse 

ps = / sT q   (cf., no. 26) to be one that assigns the velocities sq  to the generalized coordinates qs. 

It enters, in turn, as something that is on an equal footing with the continuous forces from the 

outset. Moreover, in that way, one does not actually deal with a discontinuous conception of things 

since the impulse itself is once more regarded as continuously varying, in general. D’Alembert 

seems to have arrived at his principle originally by considering impulses (157.a). Lagrange also 

considered both representations equally in his Mécanique, which emerged later on in Poinsot’s 

synthetic-dynamics theory of motion of rigid bodies especially (157.b). 

 That generalized conception of the notion of impulse, upon which Maxwell based his 

generally-disputed derivation of the differential equations of dynamics, as well as the rich content 

of the various theorems that Thomson and Tait developed by pursuing the theorems of Carnot 

 
 (156) Naturally, completely-different cases are theoretically conceivable since one is dealing with limiting values 

to which the integral should converge. For example, there is the one where a finite displacement results in a time 

interval that converges to zero with no change in velocity. Examples of that kind are in G. Darboux, Bull. sciences 

math. (2) 4 (1880), pp. 128. 

 (157) That integral from Poisson’s Mécanique is found in Duhamel, Mechanik, 2, pp. 81. In particular, one might 

cf., G. Darboux, “Étude géométrique sur la percussion et le choc les corps,” C. R. Acad. Sci. Paris 78 (1874) and 

Bull. sciences math. (2) 4 (1880), pp. 126; one will also find instantaneous frictional impulse there. 

 (157.a) See d’Alembert’s dynamics in Ostwald, K. B., no. 106, pp. 138. 

 (157.b) L. Poinsot, Théorie nouvelle de la rotation, Paris, 1834, and then J. de math. (1) 6 (1851), pps. 9 and 289; 

“Sur la percussion des corps,” ibid. (2) 2 (1857), pp. 281 and (2) 4 (1859), pp. 421; cf., also Schell, Theorie der 

Bewegung, 2, pp. 352, et seq.. 
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and Bertrand (157.c), recently came into play in the German literature in a methodically-developed 

form in Klein and Sommerfeld’s Theorie des Kreisels (157.d). 

 

 

 25. Pressures and surface forces. Generalized concept of force. – Under the assumption of 

a continuous distribution of mass, one will see that it is necessary to introduce surface forces and 

pressures, along with the forces that are given directly, which are ordinarily denoted by X, Y, Z 

(per unit mass), so for a mass of  dt they will be equal to X  dt, Y  dt, Z  dt. Dynamically, the 

representation of a force of pressure that is spread over a surface creates certain difficulties since 

those forces are no longer attached to the mass-particles, but appear only as static resultants that 

appear between rigid massless separation surfaces according to the laws of equilibrium. Cauchy 

(158), in particular, based his representation of an internal pressure in a continuous mass distribution 

in that way. Many statements by other authors suggest that he did not develop it completely by 

any means (159). 

 We shall conclude with a brief reference to further generalizations of the concept of force. The 

fact that mechanics seems to be inclined to treat not only moving forces, but ultimately state-

varying ones that are fully general, was already pointed out in no. 3. However, the laws that are 

grasped in the sense of the former were also extended in many ways. Weber’s law already led to 

forces that depend upon accelerations, which C. Neumann (159.a) once more subordinated to the 

distinction between an emissive potential and a receptive one, i.e., to a temporal propagation of 

the action at a distance of the ordinary assumptions. The many speculations on the law of distant 

force that is connected with the study of gravitation suitably delimits it by the demand that a stable 

state of equilibrium can produce electric masses. However, the extensive investigations that 

Koenigsberger (159.b) has carried out since 1896 on the analogies that emerge from the assumption 

of a kinetic potential of the most general type in the use of Hamilton’s principle are of a purely 

mathematical nature, but still important for the methodology of dynamics. 

 

 

 

 

 

 
 (157.c) Cf., Thomson and Tait, Treatise (1) 1, pp. 284; E. J. Routh, Dynamik, 1, pps. 335, 350, as well as the 

literature that is given there. The consideration of initial motions, which is peculiar to the English literature, also 

belong to this, cf., e.g., Routh, Dynamik, 1, pp. 420. 

 (157.d) F. Klein and A. Sommerfeld, Theorie des Kreisels, Leipzig, 1897, pp. 69, et seq., 93, etc. 

 (158) Cauchy, Exerc. de math., 1827 = Œuvres (2) 7, pp. 60; 1828; Œuvres (2) 8, pp. 253, et seq.; Œuvres (2) 9, 

pp. 41. Likewise, cf., Poisson, “Sur les équations générales de l’équilibre…des corps solides élastiques et fluids,” J. 

Éc. polyt. 20 (1831), pp. 1. The presentation in Kirchhoff, Mechanik, pp. 110, is entirely abstract, in which he arrived 

at a determination of the concept of internal pressure by means of Green’s partial integration. 

 (159) Duhem, Le potentiel thermodynamique, Ann. Éc. norm. (3) 10 (1893), pps.186, 213. Cf., also, J. Larmor, 

Aether and Matter, pp. 270. 

 (159.a) C. Neumann, Die Prinzipien der Elektrodynamik, Tübingen, 1868; The picture of a temporal propagation 

appeared already in 1845 in Gauss (letter to Weber), Werke 5, pp. 269. – C. Neumann, Allgemeine Untersuchungen 

über das Newton’schen Potential, Leipzig, 1896, pp. 227; cf., H. Seeliger, “Über das Newton’schen 

Gravitationsgesetz,” Münch. Ber. 28 (1896), pp. 373. 

 (159.b) L. Koenigsberger, Die Prinzipien der Mechanik, Leipzig, 1901. On pp. 127, the Neumann representation 

that was mentioned in footnote 159.a was once more subordinated to the usual one in an entirely-different way, 

namely, by contracting hidden motions. 
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D) The purely-kinetic theories. 

 

 26. The elimination of force in the kinetics of W. Thomson (Lord Kelvin). – Finally, we 

shall move on to some of the recent advances in mechanics. From the Lagrange differential 

equations of motion (160) in general coordinates (cf., no. 37): 

 

s s

d T T

dt q q

 
−

 
 = Qs , 

 

one has the right to refer to the Qs as a generalized force, since it is the force component with 

respect to the qs, which also finds its basis in the expression for the work: 

 

s sQ dq , 

 

which is invariant under arbitrary transformations of qs into other independent variables rs . A 

similar generalization will appear in relation to the generalized impulse coordinates: 

 

s

T

q




, 

 

which takes on an especially intuitive meaning in many problems (161). 

 However, what seems more important is the train of thought that aims to completely eliminate 

the concept of force as the only one that is hard to get rid of since it comes from our accustomed 

way of expressing metaphysical ideas about the action of things on each other. 

 In particular, W. Thomson always preferred to maintain the opinion that it is possible for one 

to develop a purely-kinetic theory of dynamics by developing detailed pictures and models whose 

consequences are already known in the specialized domain of the kinetic theory of gases. 

 A first attempt at that was made by Thomson in 1876 with the help of the properties of vortex 

motion (162) that Helmholtz discovered in 1858 (in regard to that, we might refer to volume IV 16, 

3.b here), which was based upon the behavior of vortex rings, as structures in an ideal fluid that 

are indestructible (163) in a certain sense, and the apparent forces that they exert upon each other. 

Thomson, in turn, referred to them as the atoms of the “beings” (Seienden) (164). Meanwhile, he 

gave just as little of an actual general implementation of that daring aperçu (165) as he did of the 

 
 (160) Here, we must assume some prior knowledge of the Lagrange equations of dynamics that will be derived in 

no. 37. 

 (161) Cf., in particular, F. Klein and A. Sommerfeld, Theorie der Kreisels.  

 (162) Helmholtz, “Integrale der hydrodynamischen Gleichungen,” J. f. Math. 55 (1858), pp. 25; Cauchy already 

discovered this in 1815 [Œuvres (1), 1, pp. 39]. 

 (163) In particular, the connection between closed vortex rings, in the sense of analysis situs, remains invariant. 

 (164) W. Thomson, “On vortex atoms,” Phil. Mag. (4) 34 (1867), pp. 15; Proc. Roy. Soc. Edinburgh 6 (1869), pp. 

44; Trans. Roy. Soc. Edinburgh 25 (1869), pp. 217. The latter began with: “This work was undertaken in order to 

show that all material phenomena can be explained by the hypothesis that space is filled with an incompressible fluid 

that is acted on by no external forces.” Moreover, Proc. Roy. Soc. Edinburgh 7 (1872), pp. 576, cf., also, A. E. H. 

Love, “On recent English researches in Vortex motion,” Math. Ann. 30 (1887), pp. 326. 

 (165) “The possibility of forming a theory of elastic solids and liquids may be anticipated,” Phil. Mag. (4) 34 

(1867), pp. 15. Meanwhile, Maxwell remarked in regard to that theory (Encycl. Brit., 9th ed., pp. 45): “The difficulties 
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theory of gyrostats that he founded somewhat later, and was further addressed by his students, 

which essentially intended to explain the effects of force in elastic matter. Such a gyrostat, in its 

simplest form, consists of a rotating body that rotates around an axis (i.e., a flywheel). Once 

Thomson had first examined the equilibrium of a system of that type that consisted of an 

arrangement of massless, rigidly-coupled gyrostats (166), he also extended that representation to 

the elastic oscillations of a system about its equilibrium configuration (167). 

 

 

 27. The kinetic theory of force by J. J. Thomson. – It is only one more step from this kinetic 

theory of force that is based upon the theory of gyrostats to the entirely-abstract and completely-

new twist that J. J. Thomson had proposed (168). Namely, when the equations of a force-free 

material system (no. 26): 

(1)      
s s

d T T

dt q q

  
− 

  
 = 0 , 

 

in which the vis viva T includes certain generalized coordinates qj only by way of their 
jq , also 

include no products, in the event that the remaining coordinates are denoted by qi, one will have 

from (1) that: 

(2)      
i i

d T T

dt q q

  
− 

  
 = 0 

for s = i and: 

(3)  
j

T

q




 = cj 

for s = j. 

 If one now goes from T to (T) by eliminating 
jq  (169) using (3) then one will have: 

 

( ) ( )

i i

d T T

dt q q

  
− 

  
 = ( )j j

j

c q
q




  , 

 

in which everything on the right-hand side can now be represented as functions of qi using (3). If 

one regards the right-hand side as a force function U then one will have the possibility that J. J. 

 
of this method are enormous, but the glory of surmounting them would be unique.” Cf., also: W. Thomson, “On 

vortex statics,” Phil. Mag. (5) 10 (1880), pp. 97; J. J. Thomson, On the motion of vortex rings, London, 1883. 

 (166) “On oscillations and waves in an adynamic gyrostatic system,” Proc. Roy. Soc. Edinburgh 12 (1883). 

 (167) “Steps towards a kinetic theory of matter,” Brit. Assoc. Rep. (Montreal, 1884), pp. 613, London, 1885; 

likewise, “On a gyrostatic adynamic constitution for ether,” (1889); Math. and Phys. Papers, 3, pp. 366; J. Larmor, 

“On the propagation of a disturbance in a gyrostatically loaded medium” Proc. London Math. Soc. 23 (1891), pp. 127. 

 (168) J. J. Thomson, Trans. London Phil. Soc. 176 (1885), pp. 307; On some applications of dynamical principles 

to physical phenomena, London, 1888; also in German: Anwendungen der Dynamik auf Physik und Chemie, Leipzig, 

1890. 

 (169) That important step was first taken by E. J. Routh, Essay on the stability of motion, (1877), pp. 61. J. J. 

Thomson called those coordinates qj kinetosthenic, while Thomson and Tait [Treatise (1), 1, pp. 318] called them 

ignored coordinates. Those processes were later referred to by Helmholtz as hidden motions [J. f. Math. 100 (1887), 

pp. 147]. 
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Thomson (170), in particular, developed in the sense of Maxwell’s general theory of dynamics 

with the help of the kinosthenic coordinates qi of interpreting the appearance of force functions in 

a purely-kinetic way, and thus reducing the potential energy to the kinetic energy of “ignored” 

masses. 

 

 

 28. The mechanics of H. Hertz. – This conception of things was built up by Hertz in his 

Mechanik into the ideal of a completely-forceless dynamics. Hertz knew of only systems of 

material points that are bound by constraints, and whose motion is governed by Gauss’s principle 

of least constraint, which he referred to by an expression that recalls Newton’s lex prima, namely, 

the fundamental law of motion along the straightest path (171). With this way of looking at things, 

the material point, as an isolated object is an irrelevant fiction, a certain sense, such that at the 

same time, the purely-mathematical example of the motion of isolated points that analytical 

mechanics had preferred in previous times, and also could not do without as a means of developing 

and extending the analytical theory, will be distinguished from the actual mechanical ones. 

 In general, Hertz also spoke of forces that actually consist of only values of acceleration that 

each part of a system exerts upon every other one. One main service that Hertz’s mechanics has 

performed is to implement that systematic construction of forces on the basis of a purely-kinetic 

theory (172) in complete detail (173), which was sketched only in very general strokes by J. J. 

Thomson. That is because the introduction of the fundamental law to which the development of 

his theory of dynamics reduces was already expressed by J. J. Thomson (174) in a form that was 

entirely similar to the representation of brachistichrone motion in an n-fold manifold. In general, 

Hertz was then required to regard every system as a subsystem of another, i.e., to assume that 

along with the visible masses, there were hidden ones that were coupled with the latter by 

constraints. A further implementation of those general ideas to the treatment of specific questions  

 
 (170) J. J. Thomson, Anwendungen (footnote 169), pp. 16, 23-97.  

 (171) Hertz, Mechanik, pp. 162; “Systema omne liberum perseverate in statu sue quiesceni vel movendi 

uniformiter in directissimam.” (Every free system remains in its state of rest or of moving uniformly in the straightest 

direction.) On the subject of Hertz, cf., Mach, Mechanik, 4th ed., pp. 269; J. Larmor, Report of the Brit. Assoc., 

London, 1900, pp. 620. 

 (172) Hertz, Mechanik, pp. 207-235.  

 (173) Another one consists of the exceptionally intuitive form in which Hertz had interpreted the geometry of n-

dimensional manifolds for his own special purposes, as well as the system of concepts that he consistently introduced. 

A characteristic of it is the concept of the quantity s of the shift of the mass-particle mi from the position with the 

coordinates xi to the position 
i

x : 

2
M s  = 

2
( )i im x x − , 3 M = 

im , 

 

as well as the angle (s ) between two shifts of a system: 

 

M s  cos (s ) = ( )( )i i i im x x y y  − −  

 

that correspond to the coordinates that are denoted by xi, i
x ; yi , i

y . Moreover, Duhem had already defined force and 

work in precisely the same sense as Hertz in his Commentaire, 1892, pp. 269. 

 (174) J. J. Thomson, Anwendungen, pp. 17; Jacobi had already considered the dynamical problem to be that of 

the brachistochrone in 1847. R. Liouville, “Sur les équations de la dynamique,” C. R. Acad. Sci. Paris 114 (1892), 

pp. 1171, showed, in a different way, how every dynamical problem, in the older sense, can be reduced to that of 

geodetic lines. 
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still does not exist, and the scattered remarks about various aspects of them that have been added 

along those lines (175) do not lead one to expect that Hertz’s line of reasoning would find an 

essential completion along those lines in the following years. 

 A special difficulty arises here due to the fact that no sort of prescriptions exist for a suitably-

limited treatment of the question, such as adding other hidden masses to a given system, but rather 

there can be infinitely-many solutions to the problem (176). 

 Thus, mechanics, starting from the constraint-less theory of action-at-a-distance, gradually 

developed into the force-less dynamics of Lord Kelvin, J. J. Thomson, and Hertz. The system of 

classical mechanics always stood at the center of them, which operated with forces and constraints, 

and which was also probably one that was initially given the top priority in the pedagogical 

literature. In Germany, one can presently regard Boltzmann and C. Neumann as proponents of 

constraint-less mechanics, while in France, that would be J. Boussinesq. However, the mounting 

demands of mathematical physics and the peculiarities of its problems seem to have gradually 

compelled one to believe that the picture of purely distant forces that depend upon distance must 

also be replaced with more general pictures in theoretical mechanics for being two narrow in scope. 

 

__________ 

 
 (175) According to Mach, Mechanik, pp. 253, the uniform motion of a material point on a circle r can be replaced 

by coupling it with a hidden mass at a distance of 2r. See also A. Brill, “Über die Mechanik von Hertz,” Mitth. d. 

math. Vereins in Württemberg, Stuttgart, 1899; likewise: “Über ein Beispiel des Herrn Boltzmann zur Mechanik von 

Hertz,” Deutsche Math. 8 (1900), pp. 200. 

 (176) This, Poincaré remarked (Electricité et optique, préface, pp. XII) that, according to Maxwell, all physical 

explanations are based upon two things T and V, which express the energy by a system of 4n quantities to be satisfied 

in any parameters q for a dynamical problem [with P. Stäckel’s terminology, J. f. Math. 107 (1891), pp. 319] that 

consists of n masses and 3n coordinates, where n can be arbitrarily large. 



 

IV. – THE SPECIAL PRINCIPLES OF RATIONAL 

MECHANICS. 
 

A) Elementary variational or differential principles. 

 

. Statics. 

 

 29. The concept of equilibrium. – Very early on, for the case of simple machines, elementary 

statics sought to determine when a material system at rest under the influence of given forces 

would produce no motion, which is the case of equilibrium. However, Varignon (177) was the first 

to reduce all equilibrium problems to the combination of forces at individual material points. 

Nevertheless, in so doing, one does not deal with the question of the rest relative to a coordinate 

system, but only the case in which the action of forces produces no change in the state of motion, 

i.e., no acceleration. In general, it is only in statics that it suffices to assume just the case of rest 

relative to the reference system. However, for the applications to dynamics, it is necessary to 

extend the concept of equilibrium in the suggested way. 

 In light of that consideration, one can also define the concept of equilibrium for a material 

system, i.e., a union of arbitrarily-many material points that are coupled with each other, in part by 

geometric constraints on the configuration, and in part by the action of internal forces: Under the 

axiomatic assumption (178) that the constraints can likewise be replaced by forces, equilibrium will 

exist when the acceleration of any point, which is now considered to be completely free, is zero. 

Of course, with Boltzmann (179), one can also extend that definition to the case in which 

equilibrium exists in a system that is found to be in accelerated motion under the action of any 

group of forces when that group produces no change in that state of motion. 

 Meanwhile, if one wishes to extend the concept of equilibrium from the outset, and in 

particular, in order to apply d’Alembert’s principle, then one can pose the following axiom (or 

something similar): 

 If a material system A is found in any state of motion at time t then one can always combine it 

with a second system B that coincides with it at the moment t whose points all move with the same 

velocities as those of A during the time interval from t to t + dt under the same geometric 

constraints, and then combine that with a third system C at the moment t that is similarly arranged 

and remains in a state of rest relative to the coordinate system during that time interval (179.a). The 

system A will be in equilibrium under the action of the applied force if and only if that is true for 

 
 (177) P. Varignon, Preface to volume 1 of his Nouvelle mécanique: “At last, I shall apply myself to the search for 

the source of equilibrium itself, or better yet, how it is generated.” 

 (178) If one assumes that every acceleration can also be obstructed by suitable forces then that assumption can also 

be pursued further. Cf., A. L. Cauchy, Exerc. de math., 1826 [Œuvres (2), 7, pp. 11]. Of course, one must appeal to 

a further axiom in order to do that. 

 (179) Boltzmann, Mechanik, pp. 233; cf., also Deutsche Math.-V.6 (1898), pp. 142.  

 (179.a) The system C, which coincides with B at the moment t and whose points are at rest during the time interval 

from t to t + dt (which is not the case for B) might seem somewhat superfluous. The introduction of such an axiom 

(whose conception in this book might be regarded as a first attempt) is nonetheless necessary, since a clear 

development of the equilibrium conditions seems to succeed only when the system in question is found to be in a state 

of (relative) rest with respect to the coordinate system or “frame of reference” (which is now the case for C). As soon 

as that is no longer relevant, because the points of the system are found to be in an arbitrary state of motion, the 

question of when a new group of forces that are introduced at the moment in question will produce no change in that 

state can no longer be reduced to the previous footnote directly; cf., footnote 208. 
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the system C under the influence of the reactions that exist in A as a result of the constraints and 

the applied forces. 

 

 

 30. The principle of virtual velocities. – The fact that equilibrium does not just relate to 

special cases of applicable constraints, but to any of them, was already recognized for simple 

machines by Stevin, Galilei, and others (180). It appeared without proof in Joh. Bernoulli (181) by 

means of a brilliant induction on the general rule that is known by the name of the principle of 

virtual velocities or virtual displacements. However, it was Lagrange who first deduced the 

fundamental analytical principle for mechanics from that, which he then raised to a principle of 

analysis. 

 We shall initially consider only systems whose material points are coupled to each other by 

constraint equations and are subject to any sort of given forces P. 

 If Pi is the force that acts upon the point with the coordinates xi, yi, zi, whose infinitely-small 

displacements  si have the projections  xi,  yi,  zi, then in order to have equilibrium, it is 

necessary and sufficient that one has: 

 

cos( , )i i i iP P s s   = ( )i i i i i iX x Y y Z z  + +  = 0 , 

 

in the event that  xi,  yi,  zi mean admissible, virtual, but arbitrary (182), displacements, i.e., ones 

that satisfy the mobility constraints on the system: 

 

(1)     ( )ik i ik i ik ia x b y c z  + +  = 0   (k = 1, 2, …, r). 

 

Briefly: The sum of the virtual works (183) must vanish for all admissible displacements. 

 
 (180) As S. Stevin (Hypomnemata mathematica 4, lib. 3, pp. 172, Leiden 1608) said: “Ut spatium agentis ad 

spatium patientis, sic potentia patientis ad potentiam patientis.” (As the space of the agent is to the space of the patient, 

so is the power of the patient to the power of the patient.) Galilei (Opere 2, pp. 183, et seq.) said: “Quanto si guadagna 

di forza, tanto perdersi in velocità” (pp. 172) [“What you gain from force, you lose from velocity”]. The first 

beginnings of that rule were already recognized by G. Ubaldo (Cantor, Geschichte der Mathem., 2, pp. 524). 

Meanwhile, according to Cantor, such ideas could already be seen in Aristotle’s mechanics (ibidem 1, pp. 219). 

Whewell (Hist. of induct. sciences, 2, pp. 31) attributed the first definitive conception of it to the Tractatus de motu 

by Varro (1584). Galilei had already applied the principle to the equilibrium of fluids in Discorso intorno alle cose 

he stanno in acqua (Opere 4, pp. 3), and then in Scienza meccanica (ed., Mersenne, Leiden, 1634, Opere 2, pp. 152). 

It was also in B. Pascal; cf., Mach, Mechanik, pps. 52, 86, 96, as well as F. Montucla, Histoire 3, pp. 609. 

 (181) Varignon, Nouv. méc. 2, pp. 174, letter by Joh. Bernoulli, v. 26, Jan. 1717: “For every arbitrary equilibrium 

of forces, no matter how they are applied, whether directly or indirectly, the sum of the positive energies will be equal 

to the negative energies, when taken positively.” That energy is P p cos (p, P), and p cos (p, P) is call the virtual 

velocity there. 

 (182) As Gauss said to Möbius in a letter in 1837 [C. Neumann, Leipz. Ber. 31 (1879), pp. 61]. 

 (183) For this expression, which was introduced by G. Coriolis, cf.: “Mém. sur la manière d’établir les différents 

principes de la mécanique,” J. éc. polyt. 15 (1834), pp. 34. Nowadays, one almost always speaks of infinitely-small 

displacements in mechanics as if they can refer to very-small well-defined line segments. The older conception of 

them sought to avoid that by means of the concept of virtual velocities, which is derived from Newton’s fluxions. One 

can establish the concept of differential calculus rigorously in mechanics (as in geometry) when one starts from virtual 

finite motions and introduce their velocities. Naturally, the virtual work must be regarded as a change in intensity, so 

not as  (X  x + Y  y + Z  z), but as: 
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 31. The proof of the principle of virtual velocities. – Here, we now raise the question of how 

to prove that principle, and from the discussion in no. 29, it will suffice to carry out that proof 

under the assumption of rest relative to the coordinate system. If one agrees that any system of 

constraints [(1), no. 30] can be replaced with suitable reaction forces with the components i, i, 

i then the following equations: 

  Xi + i = 0 , 

(1)  Yi + i = 0 , 

  Zi + i = 0 

 

must be true for every point. If one multiplies the by the arbitrary variations  xi,  yi,  zi then it 

will follow that: 

( ) ( )X x Y y Z z x y z     + + +  +  +    = 0 , 

or 

 

(2)   A +   = 0 . 

 

If (2) vanishes for all variations then one will get (1) again: Equilibrium is certainly present then. 

However, instead of that, it is also already necessary and sufficient that (2) should vanish for all 

admissible displacements. If that were not the case then one would be able to counteract the 

acceleration i that arises at any point, which is considered to be completely free, by a suitable 

force – mi i . Thus, from (2), one will now have: 

 

(3)      A +   − cos( , )i i i i im s s    = 0 , 

 

which is an equation that requires that all i = 0, from (2), since that part of it includes only positive 

terms in the sum for a  si that points in the direction of the i (
184). 

 Up to now, the proof has been based upon a purely-logical basis, but the principle will first 

become useful when one shows that   vanishes for all admissible displacements. That essential 

part of the proof, which Laplace (185) seems to have regarded as unnecessary, requires a more 

detailed look into the nature of the reactions (stresses) that are produced by the conditions. 

 If one considers rigid systems to be ones that are composed of points that are separated by 

unchanging distances and are acted on by equal and opposite forces that act along the connecting 

lines between each pair of points, so that work will obviously be zero, then the same thing will 

also be true when points of the systems are, in addition, constrained to remain on completely-flat 

 

x y z
X Y Z

dt dt dt

  
+ +

 
 
 

 . 

 

In this book, it already seems necessary to preserve the terminology that is still customary today, for the sake of brevity 

(but also on other grounds). 

 (184) That conclusion was already found in Laplace, Méc. cél. 1, pp. 46; see also Fourier, footnote 186; cf., 

Poisson, Mécanique, § 336. 

 (185)  Méc. cél. 1, pp. 43; L. Poinsot, “Sur une certaine demonstration du principe des vitesses virtuelles,” J. de 

math. 3 (1838), pp. 244, drew attention to the fact that with   = 0, one can also prove that  A = 0, eo ipso. For a 

theory of mechanics that excludes constraints, the further argument does not come under considerations, such as, e.g., 

Boltzmann’s mechanics. 
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curves or surfaces (185.a) or parts of such systems with completely-flat boundaries in contact, etc. 

Without a doubt, one can go further into the description of such relationships. The principle can 

then be proved in all such cases then. Naturally, a more general proof cannot be produced in the 

way that Fourier had first proposed (186), and one will then be required to regard the principle as 

a rule whose consequences actually agree with experiments for the case of constraint equations 

that are left completely undetermined. 

 

 

 32. The proofs of Lagrange, Poinsot, and others. – Other proofs seek to partially eliminate 

that indeterminacy. Lagrange himself produced two proofs of the principe des poulies or pulley, 

both of which were based upon an axiomatic presentation of inextensible strings (187) in which the 

same tension prevailed everywhere. 

 In Lagrange’s first proof (188), the forces were assumed to be commensurable, i.e., whole-

number multiples m  of a force 2p (189). 

 If one associates every point Ai of the system with a fixed point Bi by drawing a string from B1 

to A1 and back again with m1 repetitions (190) and then proceeding in the same way with A2, B2, …, 

An, Bn then one can represent the entire system of forces by a single force that acts at the free end 

of the string, say, a weight p. In the case of equilibrium, that weight will certainly not drop, and 

for a virtual displacement of the points of the system, the virtual work done by all forces will be 

equal to the total elongation of the string, multiplied by p. However, it in no way follows from this 

that the work done must be zero for every admissible displacement of the system, since (191) “If 

that work done were not zero then that would produce a corresponding elongation of the string by 

the weight, which always has a tendency to drop.” That is because in equilibrium, the weight will 

not drop at all, and the virtual displacement, which exists only in the representation, has no 

connection with that fact. Therefore, one cannot assume that the weight drops either: Jacobi (192) 

had already criticized that formally-inadmissible argument, which is nonetheless based upon the 

celebrated evidence of Lagrange’s pulley proof in recent times. By contrast, others (193) have 

 
 (185.a) A curve (surface) is called completely flat when the mobility within it is restricted just as little as its 

coordinates are restricted by the equations that represent it. The reactions are always normal to the curve (surface) 

then. 

 (186) J. B. Fourier, J. éc. polyt., cah. 5 (1798), pp. 20 (Œuvres 2, pp. 477, esp., pp. 489). The same thing was also 

proved for the pulley by Lagrange (pp. 115), as well as in a proof by R. Prony (pp. 191). 

 (187) Simultaneously, but before Lagrange, a similar viewpoint was developed by J. B. Fourier (Œuvres 2, pp. 

500), which L. N. M. Carnot referred to [Essai sur les machines en générale (1783)] with the remark: “It is natural 

to think that Jean Bernoulli knew of an analogous construction.” 

 (188) See footnote 187; then in his Mécanique analytique of 1811 (Œuvres complètes 11, pp. 23) with the remark: 

“As for the nature of the principle of virtual velocities (which was used as an axiom in the 1788 edition), one must 

agree that it is not sufficiently obvious in its own right to be raised to the status of a first principle.” A similar statement 

was also made by É. Mathieu, Dynamique analytique (1878), pp. 2. 

 (189) Dropping that assumption should then result from the Euclidian methods in the theory of ratios. However, 

strictly speaking, that process can only carried out with only ideal geometric constructions, so with an ideal mechanical 

system, only when one ascribes the properties of such a thing to it, in every sense. 

 (190) In order to do that, one has to imagine a completely-smooth ring (a pulley, resp.) of arbitrarily-small 

dimensions at each of the points A, B that the strings is led through. 

 (191) Méc. anal. = Œuvres complètes 11, pp. 24. 

 (192) Jacobi, in a booklet by Scheibner, pp. 17, et seq., esp. pp. 21. Cf., the following footnote about Fourier.  

 (193)  See the note by J. Bertrand, Méc. anal. 1; pp. 24. Jacobi, footnote 192, pp. 21. Mach, Mechanik, pp. 64. 

Boltzmann, Mechanik, pp. 133. E. J. Routh, Treatise on analytical statics, v. 1, 2nd ed., Cambridge 1896, pp. 182. 
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pointed out that the flaw in that method of proof is that the weight cannot therefore drop by only 

an infinitely-small quantity of first order, as well as the representation that is based upon the 

introduction of tensed strings and pulleys. 

 Lagrange’s second (194), much-less-known, proof is free of those flaws, which replaced the 

forces that arise from the constraints with a similar string construction. It will suffice to explain 

that idea for points P1, …, Pn, between which one constraint equation exists (195): 

 

(1)     f (x1, y1, z1 ; x2, y2, z2 ; … ; xn, yn, zn) = 0 . 

 

If one assumes that: 

  

2 2 2

i i i

f f f

x y z

       
+ +     

       
 = 2mi p   (i = 1, …, n), 

 

in which mi are once more positive numbers, then one can set: 

 

i

f

x




= 2mi p cos i , 

i

f

y




= 2mi p cos i , 

i

f

z




= 2mi p cos i , 

 

and associate the point Pi with the direction cos i , cos i , cos i  that goes through it, which 

includes a fixed point Qi whose coordinates are ai, bi, ci and is at a distance of li from Pi . If one 

now leads a string from Q1 to P1 and back mi times, as before, and so forth, until one arrives at the 

last point Qn, where the string is once more attached, then the only possible motions that will still 

exist are the ones for which: 

2m1 l1 + 2m2 l2 + … + 2mn ln = const. 

or 

2 (cos cos cos )i i i i i i im dx dy dz  + +  = 0 , 

i.e.: 

1
df

p
 = 0 . 

 

If one makes the assumption (which was not generally stated explicitly by Lagrange) that the 

influence of the constraint equations depends upon only the first differential quotients of the 

constraint equation (1), or that constraint equations that admit the same admissible displacements 

 
  In Fourier’s “Mémoire sur la statique” (Œuvres 2, pp. 500), it was quite correctly stated that: When the sum 

of the moments is zero for a displacement, that displacement cannot arise from the applied forces, regardless of 

whether equilibrium is or is not present. 

 (194) Lagrange, Théorie des fonctions, 2nd ed., Paris 1813, pp. 350. 

 (195) This equation can be replaced with the more general one [no. 30, (1)] with no essential changes; cf., A. Voss, 

“Über die Differentialgleichungen der Mechanik,” Math. Ann. 25 (1885), pp. 258. 
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are mechanically equivalent, then one can replace them here with the constraint of the invariability 

of the length of the string, for which the tension that arises in the string will, in fact, do no work 

under any admissible displacement. That proof likewise shows that the influence of every arbitrary 

constraint equation can be replaced with the system of forces: 

 
2 2 2

i i i

f f f

x y z

       
+ +     

       
 

 

with the direction cosines cos i , cos i , cos i . 

 Other proofs sought to replace the Lagrange assumptions by partially less-abstract ones. In 

any event, equilibrium in a system that is subject to constraints is based upon the fact that 

accelerations can be provoked by them in all possible directions of motion. One will then arrive at 

the axiomatic assumption that equilibrium will not be perturbed when one adds arbitrarily-many 

new constraints to the existing ones that do not contradict the old ones (196). One can now add 

enough of them that the displacement of one individual point determines the displacements of all 

others uniquely, as in an ideal machine, or that the system becomes deterministic. That 

displacement will then represent an entirely-arbitrary virtual displacement of the original system. 

Duhamel employed an especially lucid proof of the validity of that path, which Ampère was the 

first to go down in that degree of generality (197). Moreover, similar presentations are also found 

in Poinsot (198), whose proof reproduces that of Minding (199) almost unaltered. 

 In any event, under the given assumptions, one can arrive at a proof of the principle for a 

system of discrete points. That proof will still be applicable in the case of strings with continuous 

mass distributions, since the representation of the internal stresses that preserve equilibrium with 

the external forces still remain completely determinate. By contrast, the application of the principle 

that starts with that assumption that Lagrange made to two or three-dimensional systems with 

continuous mass distributions (surfaces and elastic systems) obviously no longer supports the 

possibility of establishing the geometric construction of the pulley or any other. Here as well, one 

will be compelled to make the demand that one must regard the sufficient validity of the principle 

in the previously-mentioned cases is an axiom whose consequences agree with experiments. In 

particular, that viewpoint will become necessary by the argument that all proofs must still start 

from the assumption of discrete systems with a finite number of degrees of freedom, while the 

theorem itself can also be applied to systems with infinitely-many degrees of mobility, and 

Lagrange already employed it in that form in his derivation of the equilibrium conditions for 

fluids. 

 

 
 (196) As Poinsot did: “De l’équilibre et du movement des systèmes,” J. éc. polyt., cah. 12, an 12, pp. 206. Poinsot 

nonetheless applied a special principle: “One of the primary elements of the general theory of equilibrium is the axiom 

that if the forces are presently in equilibrium in an arbitrarily-variable system then equilibrium will not cease when 

one supposes that the system is made invariable all at once.” Cf., also C. Neumann, “Über eine einfache Methode zur 

Begründung des Prinzipes der virtuellen Geschwindigkeiten,” Leipz. Ber. 38 (1886), pp. 70.  

 (197) A. M. Ampère, “Démonstration générale du principe des vitesses virtuelles,” J. éc. polyt., cah. 13 (1806), 

pp. 247. Ch. Duhamel, Mécanique, 3rd ed., 1862, German translation by H. Eggers, v. 1, Leipzig, 1853), pps. 114, 

119. That proof is also in Th. Despeyrons, Mécanique, 2, pp. 305. Cf., also F. Moigno, Leçons de mécanique, Paris, 

1868, pp. 281, et seq. 

 (198) Poinsot, “Théorie générale de l’équilibre,” J. éc. polyt., cah. 13 (1806), pp. 208. 

 (199) F. Minding, Handbuch 2 (1838), pp. 165.  
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 33. Summary. – The detailed proofs do not seem entirely worthless. From whence does one’s 

confidence in the unrestricted validity of that principle derive then? In part, it comes from the 

innumerable tests of its agreement with experiments and the possibility of also being able to 

resolve the question under more general assumptions by further detailing of the constructive 

method of proof, as well as the uniformity of the results under completely-different Ansätze (200). 

However, on the other hand, that confidence is probably based upon the energetic concepts that 

are employed in conjunction with the principle of the preservation of equilibrium under the 

introduction of new constraints, namely, that when the forces provoke a well-defined displacement 

with a certain velocity, that will correspond to an increase in the energy without any work being 

done in the event that the virtual moment of the forces is zero. Thomson and Tait also based their 

presentation of the principle of virtual velocities upon that standpoint (201). 

 

 

 34. Fourier’s principle. Material systems of a more general type. – The foregoing 

consideration always started from the entirely-abstract assumption that the constraints are 

expressed by equations (whether explicit equations between the coordinates or total differential 

equations between their differentials). Such things would satisfy the requirement that along with 

any virtual displacement, the opposite one would also be admissible. Meanwhile, Fourier (202) 

had also appealed to completely-general one-sided constraints, which are expressed by inequalities 

between those elements, in his investigation, and gave the principle of virtual velocities the form 

that the necessary and sufficient condition for equilibrium is: 

 

( )X x Y y Z z  + +   0 . 

 

First Gauss (203), and then Ostrogradsky (204) had referred to that case, which Lagrange had not 

considered, and independently of Fourier. 

 The lever construction that Fourier envisioned in his “Mémoire sur la statique” (205) was 

employed by C. Neumann (206) in a very intuitive way for this case. An inextensible string that 

does not intersect itself, which can be displaced along itself in one (positive) direction, is obviously 

in equilibrium when the force components Xi that act in the direction of the string satisfy the 

condition that for all virtual displacements  s, one must have: 

 

 
 (200) A critical overview of the proofs of the principle of virtual velocities still fails to be complete up to now.  

 (201) Thomson and Tait, Treatise (1) 1, pp. 265. In that book, they likewise recalled Stevin’s famous remark 

about the equilibrium of a homogeneous chain on the skew plane: “If it does not exist then that motion will have no 

end, which is absurd.” Werke (ed., A. Giraud, Leiden, 1634), 2, pp. 448. 

 (202) Fourier, Œuvres 2, pp. 488. Meanwhile, Fourier defined the moment of the virtual work as a fluxion, i.e., 

with the opposite sign to the one that is now customary, pp. 479. The constraints that were the only kind that Lagrange 

considered (more generally, the ones in no. 30, 1) are also called double-sided or conditions bilatérales, as P. Duhem 

called them in his Commentaire. 

 (203) Gauss, 1829, Werke 5, pp. 27.  

 (204) M. Ostrogradsky, “Considérations générales sur les momens,” 1834, Petersb. Mém. de l’Acad. (6) 1 (1838), 

pp. 129. Fourier’s principle did not remain quite so unnoticed in France. A. A. Cournot also developed 

Ostrogradsky’s equations in 1827. See his “Extension du principle des vitesses virtuelles au cas où les conditions de 

liaison du systèmes sont exprimées par des inégalités,” Bull. sciences math. de Ferussac 8 (1827), pp. 165. 

 (205) Fourier, Œuvres 2, pp. 495. 

 (206) C. Neumann, “Über das Prinzip der virtuellen oder fakultativen Verrückungen,” Leipz. Ber. 31 (1879), pp. 

53.  
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is X    0 , 

 

because  X will then be either zero or negative. If one now imagines that the system is made one-

sided determinate then one can arrange, by means of a system of levers, that in place of each actual 

point Pk of the system whose virtual displacement is  sk, another one kP   enters, in such a way that 

all kP   will possess the same displacement magnitude s   with an unchanged direction. If one 

denotes the components of Pk that acts in the direction of the determinate displacement by Xk and 

the corresponding component of kP   that is equivalent to it under the lever rule by kX   then the 

necessary and sufficient condition will be: 

 

k

k

X

X 
 = 

k

s

s






 , 

so 

kX s   = 
k kX s   0 . 

 

 Previously, only the traditionally-introduced cases of constraints were treated. In and of itself, 

there are no grounds for not assuming that homogeneous quadratic (higher-degree, resp.) equations 

will also exist for virtual displacements. We shall not go into that, since except for special simple 

cases, constraints of that singular type have hardly been examined in general up to now. 

 The following extension is much more essential: The constraints on the mobility of a system 

cannot be restricted to the assumption that relations exist between the virtual displacements, in 

general. That will already be an issue when frictional processes must be considered. In a still-

broader context (although one can also start from other viewpoints here, as well), the system might 

be considered to be in a state that is a deformation (strain) of its original state in which it is found 

to be in equilibrium under the action of given (external) forces. In all of those cases, one must 

obviously add the forces that account for the influence of friction, stress, etc., to the forces P that 

were the only ones that were considered in no. 30 if one would like to apply the principle of virtual 

velocities. 

 With Painlevé, one can characterize material systems with finite degrees of freedom, i.e., ones 

whose virtual displacements are determined by a finite number of independent parameters, as 

being, above all, systems with and without friction (frottement). That is because no matter how 

one might represent the nature of the reaction forces R that act upon the points of the system, one 

will always be able to decompose the group R into two groups R1, R2 in a single way such that the 

virtual work done by the reactions R is equal to the work done by the group R2 under all admissible 

displacements, and likewise the vector system in R2 will correspond to a virtual displacement 

(205.a). The group R1 then represents the “reactions that arise from the constraint equations,” while 

the group R2 represents the frictional resistance. 

 

 

 
 (205.a) P. Painlevé, Leçons sur l’intégration, pp. 54, et seq. For similar decompositions, cf., also J. König: “Über 

eine neue Interpretation der Fundamentalgleichungen der Dynamik,” Math. Ann. 31 (1888), pp. 1. 
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 35. Equilibrium conditions. – Since equations (1) in no. 30 must be mutually independent, so 

not all r-rowed determinants of the aik, bik, cik can vanish, one will obtain the equilibrium conditions 

in the form (207): 

Xi = 
k ika , 

(1)  Yi = 
k ikb , 

  Zi = 
k ikc  

 

by Lagrange’s method of multipliers. By contrast, when one is given inequalities (208), such as: 

 

  ( )ik i ik i ik ia x b y c z  + +  = k   (k = 1, 2, …, r), 

in which: 

k  0 , 

 

one will again get equations (1) in any event when the constraints include the case of k = 0. Now, 

since it will follow from them that: 

 

( )i i i i i iX x Y y Z z  + +  = k k  , 

 

that will imply that all of the coefficients k must be positive when the moment can never become 

positive for negative values of any arbitrarily-small k . Its sign will then remain arbitrary only 

when the associated k is restricted to the value zero exclusively. Obviously, constraints for which 

the case of k = 0 is not included at all are then dropped. 

 The right-hand sides of equations (1) represent the reactions that arise from the constraints. 

One now sees how every constraint corresponds to a certain component of that kind that is 

associated with k . One will get the constraints for the given forces Xi, Yi, Zi when one substitutes 

the values of  that are calculated from r suitably-chosen equations in (1) in the remaining 

equations. 

 

. Dynamics. 

 

 36. D’Alembert’s principle (207.a). – Once one has agreed upon the concept of the principle of 

virtual velocities, there will be no further obstacle to arriving at d’Alembert’s fundamental 

consideration of the general equations of dynamics (209). 

 
 (207) Which was first done by Lagrange in his Méc. anal. of 1788.  

 (208) As Cournot and Ostrogradsky did, footnote 203. There are also examples in the latter (e.g., funicular 

polygon, incompressible fluids, etc.). In addition to the usual textbooks, cf., also L. Henneberg, J. f. Math. 113 (1894), 

pp. 179. 

 (207.a) According to F. Montucla, Histoire 3, pp. 44 and 627, A. Fontaine had already expressed a similar principle 

in 1739. 

 (209) In the opinion of many people, d’Alembert’s principle is based upon a new axiom, insofar as the equations 

of equilibrium are adapted to the case of a system that is already found to be in motion (e.g., Jacobi, Dynamik, ed., 

Clebsch, pp. 63, et seq.). C. Neumann, [Leipz. Ber. 31 (1879), pp. 61]. I can see only a narrow conception of 

equilibrium in it, such that the difficulty that is present here (cf., no. 29) already occurs in the principle of virtual 

velocities itself. 
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 A system of material points with masses mi is found to be in an arbitrary state of motion at 

time t under the influence of the force components Xi, Yi, Zi that are applied to mi. Let its 

coordinates be xi, yi, zi . If they are subject to arbitrary constraint equations: 

 

f1 = 0 , f2 = 0 , …, fk = 0 , 

 

in addition, which might not include t initially, then the accelerations ix , iy , iz  that result from 

those constraints will be arranged, in general, such that: 

 

i i iX m x− , i i iY m y− , i i iZ m z−  

 

do not vanish. Those forces will then be produced by the constraints, so they will be in equilibrium 

“relative to the latter.” If that were not the case then they would communicate accelerations to the 

system, in addition to the assumed ones ix , ,iy  iz  , which would contradict the assumption. In 

that form, d’Alembert’s principle (210) is a purely-logical argument that one must couple with only 

the principle of virtual velocities, according to Lagrange, in order to arrive at the basic formula of 

dynamics: 

[( ) ( ) ( ) ]X m x x Y m y y Z m z z  − + − + −  = 0 , 

 

which one can also express more concisely as: The virtual work done by the lost forces must 

vanish. 

 Of course, the phrase “relative to the constraints” that is used almost everywhere must be made 

more precise. An entirely-clear understanding of it that is supported by the foundations of 

mechanics can come about only when one again converts every point of the system into a 

completely-free one by adding the reactions i, i, i . The latter are the ones that keep the system 

 
 (210) J. d’Alembert’s original argument (Traité de dynamique, Paris, 1743 is not essentially different from the 

one here (cf., Poisson, Mécanique, § 350). In d’Alembert’s own words: “Let A, B, C, … be the bodies that comprise 

the system, and suppose that one has compelled the motions a, b, c, … that they are forced to exhibit to change into 

the motions , , , … due to their mutual action. It is clear that one can regard the motion a that is imposed upon the 

body A as composed of the motion  that it takes on and another motion  . One can likewise regard the motions b, 

c, … as composed of the motions ,  ; ,   ; …, so it will follow that the motion of the bodies A, B, C, … between 

themselves will have been the same if, instead of giving them impulses a, b, c, one gives them the double impulses , 

 ; ,  , … at once. Now, by hypothesis, the bodies A, B, C have taken on the motions , , , … by themselves. 

Thus, the motions  ,  ,   , … must be such that they do not disturb anything in the motions , , , …, i.e., that 

if the bodies received only the motions  ,  ,   , … then those motions would have to mutually cancel, and the 

system would remain at rest. That implies the following principle: Decompose each of the motions a, b, c, … into two 

other ones ,  ; ,  , … that are such that if one imposes only the motions , , , … upon the bodies then they 

can preserve the motions without harming them reciprocally, and if one imposes only the motions  ,  ,   , …  

upon them then the system must remain at rest. It is clear that , , , … are the motions that the bodies will take on 

by virtue of their action. That is what we were looking for.” 

  Other authors have not made any essential change to the expression of the principle. The terminologies of lost 

forces, forces d’inertie, effets dynamiques (Ostrogradsky) seem somewhat redundant. The terminology of G. B. Airy 

is by no means clearer (E. J. Routh, Dynamics, 1, pp. 52). Just as in many other places, mechanics shows an inclination 

towards stereotypical expressions in the literature, here as well. 



IV. – The special principles of rational mechanics. 51 
 

in equilibrium, according to the argument that was just presented. In so doing, one can also 

introduce constraints that vary in time in place of equations that are independent of t, in the event 

that those changes happen continuously. By means of the axioms in no. 29 regarding the extension 

of the equilibrium state to moving systems, that will, in fact, imply immediately that the 

equilibrium will now apply to the limiting form of the constraint equations at time t, or as one 

ordinarily says, to the virtual displacements independently of time t. Naturally, for the more general 

material systems that are considered in no. 34, the forces X, Y, Z must be added to the reactions 

that arise from the other kinds of constraints. 

 

 

 37. The Lagrange equations. – The introduction of differential equations: 

 

(1)     ( )ik i ik i ik ia dx b dy c dz+ +  = 0 , 

 

or more generally: 

 

(2)  ( )ik i ik i ik i ka dx b dy c dz c dt+ + +  = 0 , 

 

in which the coefficients can be functions of x, y, z, t, in place of finite equations of constraint was 

first presented thoroughly in connection with the principles of mechanics by Voss (211). However, 

such cases had already appeared occasionally in problems of rolling motion much earlier and were 

also assumed in general by others (212). Hertz, who regarded the assumption of non-integrable 

differential relations as essentially different from the case of explicit equations of constraint, as a 

result of a special conception of Hamilton’s principle (213), had then distinguished between non-

holonomic and holonomic constraints (214). 

 One obtains the equations of motion from d’Alembert’s principle directly by Lagrange’s 

method of multipliers in the form (215): 

 

  i im x  = 
i k ikX a+ , 

(3)  i im y  = 
i k ikY b+ , 

  i im z  = 
i k ikZ c+ , 

 

which Lagrange first gave them, since d’Alembert only employed his principle synthetically (216) 

in order to solve some individual problems. Moreover, d’Alembert did not consider it to be 

 
 (211) A. Voss, Math. Ann. 25 (1884), pp. 258.  

 (212) Such as M. Ostrogradsky, Petersb. Mém. de l’Acad. (6) 1 (1858), pp. 565; N. M. Ferrers, Quart. J. of math. 

12 (1873), pp. 1; also F. Minding, Dorpater Gratulationsschr. 1864 [cf., A. Kneser, Zeit. math. Phys. 45 (1900), 

literar. history., Abt., pp. 118] 

 (213) Hertz, Mechanik, pp. 23. On that topic, cf., O. Hölder, Gött. Nachr. (1896), pp. 122.  

 (214) Hertz, Mechanik, pp. 91. The exact distinction between holonomic and non-holonomic constraints is made 

precise on pp. 96. 

 (215) Naturally, for explicit equations of constraint fk = 0, the aik, bik, cik are replaced by the differential quotients 

of the fk with respect to xi, yi, zi . 

 (216) The equations of dynamics relative to three rectangular axes in the form that is customary today were first 

introduced by C. Maclaurin (A complete treatise on fluxions, Edinburgh, 1742).  
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necessary to prove that the equations that d’Alembert’s principle produced are also sufficient for 

the complete determination of x, y, z. That proof, which is based upon the independence of the 

equations of constraint, was given by Jacobi (217) in regard to equations (3). For Lagrange, it first 

seemed to be a consequence of the introduction of independent coordinates. Furthermore, the 

determination of the components of the reaction [the sum of the quantities in equations (3)] results 

from incorporating the expressions for the accelerations in (3) in equations (2) after differentiating 

them with respect to the independent variable t and calculating their values that arise from the 

linear relations for , which will then be functions of degree two in the velocity components. One 

will always get equations of constraint that express the second differential quotients as functions 

of degree two in the first. One will succeed in exhibiting those equations in a much-clearer way by 

Lagrange’s introduction of independent coordinates, which we shall now go into. 

 If only k equations of constraint: 

 

f1 = 0, f2 = 0, …, fk = 0 

 

between the 3n coordinates are now given in explicit form then one can regard the latter as 

functions of t and 3n – k independent parameters: 

 

  q1, q2, …, qr   (r = 3n – k) 

 

[the Lagrange, or more generally, generalized coordinates (218)], and in infinitely-many ways. 

From the identities that now exist: 

 

(a)     k i k i k i

i s i s i s

f x f y f z

x q y q z q

      
+ + 

      
  = 0 , 

one will get from (3) that: 

i i i
i i i i

s s s

x y z
m x y z

q q q

   
+ + 

   
  = Qs , 

as long as one sets: 

i i i
i i i

s s s

x y z
X Y Z

q q q

   
+ + 

   
  = Qs . 

If one further sets: 

 ix  = 
i i

s

s

x x
q

q t

 
+

 
 , 

(b)  iy  = 
i i

s

s

y y
q

q t

 
+

 
 , 

 iz  = 
i i

s

s

z z
q

q t

 
+

 
 , 

and 

 

 
 (217) Jacobi, Dynamik, ed., Clebsch, pp. 133.  

 (218) According to Thomson and Tait, Treatise (1) 1, pp. 286, they are generalized co-ordinates.  
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(c)  T = 
2 2 21

2
( )i i i im x y z+ +  

then from (b), one will have: 

 

s

T

q




 = i i i

i i i i

s s s

x y z
m x y z

q q q

   
+ + 

   
  , 

s

d T

dt q

 
 

 
 = 

2 2 2

i i i
s i i i i

s s s

x y z
Q m x y z

q t q t q t

   
+ + + 

      
  , 

so since: 

s

T

q




 = 

2 2 2

i i i
i i i i

s s s

x y z
m x y z

q t q t q t

   
+ + 

      
  , 

one will have (219): 

(4)   
s s

d T T

dt q q

  
− 

  
 = Qs . 

 

In these general fundamental equations of dynamics, T means the vis viva or kinetic energy (218.a) 

of the system, which is a constantly-positive entire rational function of degree two of the 

generalized velocities sq , which will be a homogeneous positive-definite form of degree two in 

the sq  for the case in which the constraint equations are independent of t, which is the case that 

Lagrange treated exclusively (220). 

 The importance of those equations is based upon the fact that: The only quantities that appear 

upon which the dynamical problem now depends are T and Qs, in which, at the same time, the 

number of variables has been reduced to the smallest number (a smaller number that is suited to 

the form of the problem, resp.) (221). 

 
 (219) In more detail for fixed constraints, i.e., ones that do not depend upon t explicitly, those equations read: 

 

is i irs i r
a q q q+   = Qs , 

in which: 

2 irs = 
is rs ir

r i s

a a a

q q q
−

  
+

  
 

denotes the Christoffel symbol. 

 (218.a) The conventional terms in Germany and France lebendige Kraft, force vive (cf., footnote 295) will be 

preserved here, no matter unsuitable they might also be. 

 (220) The formulas were first derived by J. Vielle, J. de math. 14 (1849), pp. 201, under the extended assumption. 

They are not considered in the German textbooks, so they are presented in detail in this treatise. 

 (221) In Germany, and also more recently in Italy, it has become customary to distinguish between equations (3) 

and (4) as Lagrange’s equations of the first and second kind. Lagrange himself did not make that distinction, and 

that left him free, moreover, to also prefer a partial introduction of independent parameters (Mécanique, Œuvres 11, 

pp. 325 and 336), which is an idea that Routh developed further sometime later (“Stability of Motion,” Dynamics, 

v.1., pp. 375). Jacobi (issue by Scheibner, pp. 166) generally spoke of a first form of the Lagrange equations in his 

1847 lecture. That term seems to have first been printed in a problem of dynamics that Clebsch addressed (Dynamik, 

pp. 63 and 141, also in the Table of Contents), which had perhaps been popularized by Jacobi and his school before. 

In and of itself, the distinction is not inappropriate. 
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 The set of equations (4) is invariant under arbitrary transformation of the q into just as many 

new variables k by means of the equation: 

 

s

s s

d T T
dq

dt q q

   
−  

   
  = s

ss

d T T
dk

dt kk

   
−  

   
 . 

 

 When generalized coordinates are introduced (mostly in purely-theoretical works), the 

determination of the reactions is often no longer considered any further. Moreover, that would be 

simplest if one were to again revert to rectangular coordinates. In some situations, the 

determination of those forces is just as important as determining the motion itself for the 

applications. Moreover, that is already the case when the constraints have a one-sided character, 

so the quantities  in equations (3) (cf., no. 35) must have well-defined signs, and the whole Ansatz 

that there is a location at which the  change sign when they go through zero loses its meaning. 

One might confer the known examples of the motion of massive points in vertical circles, on the 

surface of a sphere, the motion of a massive rod whose ends remain on given surfaces or curves, 

etc. 

 

 

 38. Non-holonomic systems. – By contrast, the transformation is restricted to the case of 

holonomic constraints. In order to be able to perform a formal transformation for non-holonomic 

ones, Appell (222) considered the quantity: 

 

S = 
2 2 21

2
( )i i i im x y z+ + , 

 

instead of T, which will imply the equations of mechanics in the form: 

 

s

S

q




 = Qs 

 

when one differentiates it with respect to the quantities q . However, it should be remarked that it 

is precisely the advantage that one gains by introducing T, which depends upon only the first 

differential quotients, is lost in that way for the most part. Furthermore, the form of the dynamical 

equations in the non-holonomic case is the following: 

 If one has introduced any new parameters q1, …, qk in place of the variables x, y, z, between 

which the l constraints exist: 

ki iq   = 0  

 

then one can make all  x,  y,  z depend upon k – l independent variations  qs (s = 1, 2, …, k – 

l) such that: 

 xi = is sa q , 

 
 (222) P. Appell, C. R. Acad. Sci. Paris 129 (1899), pp. 317, 423, 549; J. f. Math. 121 (1900), pp. 1; J. de math. (5) 

6 (1900), pp. 5; ibid. (5) 7 (1901), pp. 5.  
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 yi = is sb q , 

 zi = is sc q . 

When one sets: 

i is i is i isX a Y b Z c+ +  = Qs , 

 

the equations of motion will then become: 

 

Qs = ( )is i is i is i ia x b y c z m+ +  

  = ( )is i is i is i i s

d
a x b y c z m R

dt
+ + − , 

in which: 

Rs = 
is is is

i i i i

da db dc
m x y z

dx dx dx

 
+ + 

 
  . 

 

Now, it will follow from the equations: 

 

i

s

x

q




= ais , 

i

s

y

q




= bis , 

i

s

z

q




= cis , 

that: 

s

s

d T
R

dt q

 
− 

 
 = Qs , 

 

but Rs itself is still not equal to T / qs when the coefficients ais, bis, cis, which generally depend 

upon all variables q1, …, qk, depend upon only the variables q1, …, qk−l, which is the case for many 

questions, namely, for the simple problems of bodies in rolling motion. That fact is not always 

noticed, rather it is precisely in the latter case that one repeatedly frees T of the seemingly-

superfluous coordinates q with the help of the expressions for ix , iy , iz , and apply that to the 

expression for T that arises in that way, which C. Neumann called the illegitimate form of the vis 

viva, which will naturally lead to incorrect results (221.a). 

 

 

 39. Gauss’s principle of least constraint. – In Gauss’s own words, it reads (223): The motion 

of a system of material points, which are always coupled to each other in some way, and whose 

motions are, at the same time, always coupled by external constraints, will occur at each moment 

with the greatest-possible agreement with the free motion, or with the smallest-possible constraint, 

when one considers the measure of the constraint that the entire system experiences at each time-

 
 (221.a) Cf., on this, A. Vierkandt, “Über gleitende und rollende Bewegung,” Monatschr. f. Math. Phys. 3 (1892), 

pp. 31; J. Hadamard, “Sur les mouvements de roulement,” Bordeaux Mém. (4) 5 (1895); O. Hölder, “Die Prinzipien 

von Hamilton und Maupertuis,” Gött. Nachr. (1896), § 11; D. J. Kortweg, “Über eine ziemlich verbreitete unrichtige 

Behandlung eines Problem der rollenden Bewegung,” Nieuw Achief voor Wiskunde (2) 4 (1899); P. Appell, “Les 

mouvements de roullement en dynamique,” Sammlung Scientia, Phys. math., no. 4, Paris, 1899. 

 (223) J. f. Math. 4 (1829) = Werke 5, pp. 23. 
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point to be the sum of the products of the squares of the “deviation of each point from its free 

motion” (224). 

 If the position of the point mi at time t + 2 dt is denoted by: 

 
21

2
2i i ix x dt x dt+ + , 

 

while the position that it would assume as a result of the applied forces if it were completely free 

is denoted by: 

22
2

i
i i

i

X
x x dt dt

m
+ +  

 

(and corresponding expressions for the remaining coordinates) then the constraint Z will be given 

by (225): 

Z = 
2 2 21

( ) ( ) ( )i i i i i i i i i

i

X m x Y m y Z m z
m

 − + − + −  . 

 

Now, if any varied position is expressed by: 

 
21

2
2 ( )i i i ix x dt x x dt+ + +  

 

as Gauss did, then if one recalls the constraints, which might be holonomic or non-holonomic, one 

must have: 

( )ik i ik i ik ia x b y c z  + +  = 0 . 

 

If one then multiplies the Lagrange equations (3) by ix , iy , iz , and adds them then that will 

give: 

 

(1)     ( ) ( ) ( )i i i i i i i i i i i iX m x x Y m y y Z m z z  − + − + −  = 0 , 

 
 (224) According to E. Schering, Gött. Nachr. 18 (1873), pp. 3, 11, that expression is interpreted to mean that one 

can treat a completely-arbitrary free motion in so doing. By contrast, R. Lipschitz [J. f. Math. 82 (1877), pp. 321] 

drew attention to the fact that neither x nor x , but only the acceleration x , can be varied in the deviation in Gauss 

principle. 

 (225) For Lipschitz [J. f. Math. 82 (1877), pp. 316], Z seems to be covariant under arbitrary transformations of the 

variables x, y, z, which are considered to be independent. Cf., also A. Wassmuth, Ann. Phys. Chem. (2) 54 (1895), 

pp. 164. Moreover, see A. Voss, “Bemerkungen über die Prinzipien der Mechanik,” Münch. Ber. (1901), pp. 167. 

Gauss’s principle can also be formulated as the principle of least work done by lost forces: cf., Rachmaninoff, Zeit. 

Math. Phys. 25 (1879), pp. 206. That is also connected with Moseley’s principle of least resistance (Rankine, A 

manual of applied mechanics, 3rd ed., London,1863, pp. 215), as well as the Ménabréa-Castigliano minimum 

principle, L. F. Ménabréa, Rom. Rend. dell’Acc. dei Lincei (2) 2 (1869), pp. 210. See also A. Castigliano, Théorie 

de l’équilibre des systèmes élastiques et ses applications, Turin, 1879, German trans. by E. Hauff, Vienna 1886. A. 

F. B. Müller-Breslau, Die neueren Methoden der Festigkeitslehre, Leipzig, 1886, as well as “Über die Elasticität der 

Deformationarbeit,” Civilingenieur (2) 32 (1886), pp. 553, and the citation by F. Kötter, Forthschritte d. Math. 18 

(1886), pp. 950. However, among others, O. Mohr, Civilingenieur (2) 32 (1886), pp. 395 disputed that way of 

expressing the principle. Finally, cf., C. Neumann, “Das Ostwald’sche Axiom des Energieumsatzes,” Leipz. Ber. 44 

(1892), pp. 185.  
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and that is the condition for Z to be a minimum with respect to all varied positions. 

 In this form, Gauss’s principle is completely equivalent to d’Alembert’s, which can also be 

written in the form (1) now (226), which was first given to it by Gibbs. At the same time, he 

remarked that for the case of equations of motion, that form of d’Alembert’s principle allows one 

to make an immediate decision about the actual course of motion (227). 

 The fact that, conversely, one can derive everything within the entire scope of mechanics, in 

particular, the study of statics (theorem of the parallelogram of forces, etc.), from Gauss’s or 

d’Alembert’s principle was first shown by Ritter (228) in his dissertation, which was supervised 

by Gauss himself. Hertz had expressed Gauss’s principle as a fundamental law in his force-less 

dynamics (229). 

 

 

 40. The differential equations of motion for inequality constraints. –  If one considers the 

variations that appear in the principle of virtual velocities to be equivalent to the variations of the 

accelerations for unchanged xi and ix  then one can also extend Fourier’s extension of the 

aforementioned principle to the case of accelerated motion, and in that way get the most-general 

form of Gauss’s principle (230): 

 

(1)     ( ) ( ) ( )i i i i i i i i i i i iX m x x Y m y y Z m z z  − + − + −   0 . 

 

 As Gauss had already remarked, his principle also finds application in statics. One succeeds 

in that ambition by assuming that the ix , iy , iz  are zero. Möbius (231) had a different way of 

expressing that notion. If one denotes the coordinates of the coordinates of each point that is at a 

distance from the point of application xi, yi, zi of a force that equals the intensity of the force in the 

direction of the force by ai, bi, ci then if: 

 

Xi = ai – xi , Yi = bi – yi , Zi = ci – zi 

then 

( )i i i i i iX x Y y Z z  + +  =  ( ) ( ) ( )i i i i i i i i ia x x b y y c z z  − + − + −   0 

 
 (226) It then comes down to the same thing as solving specific problems of that kind by Gauss’s or d’Alembert’s 

principle. For applications of the former, in that sense, to examples in statics and dynamics, cg., K. Hollefreund, 

Schul-Programm Berlin, 1897, no. 97. 

 (227) J. W. Gibbs, “On the fundamental formulae of dynamics,” Am. J. Math. 2 (1897), pp. 49; cf., also 

Boltzmann, Mechanik, pp. 230 and 233. 

 (228) A. Ritter, “Über das Prinzip des kleinsten Zwanges,” Diss. Göttingen 1853. C. G. Reuschle, “Über das 

Prinzip des kleinsten Zwanges,” Archiv f. Math. Phys. 6 (1845), pp. 238. H. Scheffler, “Über das Gauss’sche 

Grundgesetz d. Mechanik,” Zeit. Math. Phys. 3 (1858), pp. 197; A. Buckendahl, “Über das Prinzip des kleinsten 

Zwanges,” Diss. Göttingen 1873. 

 (229) Hertz, Mechanik, pp. 185. 

 (230) W. Schell (Mechanik, v. 2, pp. 502) derived the theorem at that level of generality, but in his proof one should 

notice that one cannot infer the signs of summands from the sign of a sum. The concept of virtual displacements was 

also given a different meaning from the original one in Boltzmann’s presentation (Mechanik, pp. 217). In regard to 

those concerns, it would seem appropriate to regard Gauss’s principle, in its extended form, as a fundamental principle 

that cannot be rigorously proved from prior principles. That is also true for the case (which was not treated in this 

book) where the constraint equations include the x, y, z ; x , y , z  in a completely-arbitrary way. 

 (231) Möbius, Statik, v. 1, pp. 330, et seq., cf., however, Euler, Mém. de l’Acad. (1752), pp. 246.  
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will be the condition for equilibrium, which one now expresses by saying that: 

 
2 2 2( ) ( ) ( )i i i i i ia x b y c z − + − + −   

 

is a minimum with respect to all admissible displacements. 

 In regard to the dynamical problems, here we must raise the question that Ostrogradsky (232) 

first posed (but did not answer completely) of the extent to which equation (1) determines the 

motion at all. A. Mayer has recently taken up that question again (233) and showed a simple (but 

not generally direct) way of resolving it by applying Gauss’s principle that is suitable for excluding 

all unusable solutions with certainty. However, Mayer proved that one well-defined solution 

exists at all only in the case of one and two degrees of freedom. Nonetheless, Zermelo (234) 

corrected that flaw completely in the precisely the way that Jacobi (235) had already suggested in 

his lectures, namely, by appealing to the special nature of the minimum that exists here, which 

excludes the existence of several minima. 

 

 

 41. D’Alembert’s principle for impulse. – If one integrates the equation: 

 

( )i i i im x X x− +  = 0 , 

 

after multiplying it by dt, over an arbitrarily-small time-interval from 0 to , while ix , …, Xi, … 

always have the same sign (236), then if one recalls that the impulse is set to: 

 

0

iX dt



  = Pi , 
0

iY dt



  = Qi , 
0

iZ dt



  = Ri , 

one can set: 

 

( )0 0 0| | | | | |i i i i i i i i im x x m y y m z z    + +  = ( )i i i i i iP x Q y R z  + +  , 

 

by the mean-value theorem in the differential calculus, in which one understands ix , … to mean 

the mean values of the virtual displacements. Under the assumption that  converges to zero, which 

will likewise make all of those mean values of the displacements go to zero, one will then get the 

equation: 

 0( ( ) )i i i im x x x− +  = 0 

 

 
 (232) M. Ostrogradsky, “Sur les déplacements instantanées,” Petersb. Mém. de l’Acad. (6) 1 (1838), pp. 565.  

 (233) A. Mayer, “Über die Aufstellung der Differentialgleichungen der Bewegung reibungsloser Punktsysteme,” 

Leipz. Ber. 51 (1899), pp. 224 and 245.  

 (234) E. Zermelo, Gött. Nachr. (1899), pp. 306 employed an argument that probably goes back to D. Hilbert at a 

crucial step, moreover.  

 (235) Jacobi, edition by Scheibner, pp. 83, et seq.  

 (236) A. Ritter had already treated that case in his Diss. (1853) with the methods of the study of manifolds, but his 

presentation was not generally rigorous. 
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for determining the sudden changes in the velocities as a result of the impulse vectors P, Q, R. One 

can also obtain them directly by applying the d’Alembert argument to the velocities that are 

produced by the impulses, instead of to the accelerations that are produced by continuous forces 

(237). 

 That consideration can also be applied to the case in which the constraints on the system are 

suddenly replaced with other ones. If the equations that pertain to the time-point 0 are not the ones 

that were used up to now: 

 

f1 = 0 ,   f2 = 0 ,  …, fk = 0 , 

but new ones: 

1 = 0 ,  …, l = 0 , 

then one will get: 

 0( ( ) )i i i im x x x− +  = 0 , 

 

in a similar way, in which the displacements have to make all  = 0 (238). Obviously, those formulas 

can also be developed for generalized coordinates q (239). Namely, under the assumptions that were 

made before, it will follow from equations (4) in no. 37 that: 

 

0s s

T T

q q

    
−   

    
 = 

0

sQ dt



  = Ps . 

 

Now if T contains no terms that are linear in the sq  then one will have: 

 

s

T

q




 = Ps , 

 

when all q  vanish at time 0, as was pointed out before in no. 24. 

 

 

B) True variational (isoperimetric) principles. 

 

 42. Hamilton’s principle. – One can refer to the principle that was treated in the foregoing as 

an elementary variational or differential principle in its useful form. Formally, one is dealing with 

a variational expression in it. Its direct connection to the presentation of forces and accelerations 

defines the proper foundation for the mechanics of material system. We distinguish that from the 

 
 (237) That is introduced here as an assumption, although a continuous function from 0 to  that has a well-defined 

number of derivatives in that interval will always have a constant sign for a sufficiently-small positive t, even when it 

vanishes for t = 0, in the event that not all of those derivatives vanish. 

 (238) Cf., Ch. Sturm, C. R. Acad. Sci. Paris 13 (1841), pp. 1046, and also Mécanique, pp. 353, as well as the 

summary presentation in Routh (Dynamik, v. 1, pp. 335). 

 (239) As Lagrange did before in Mécanique, t. 2, Œuvres, t. 12, pp. 173, and then W. D. Niven, Mess. of Math. 4 

(1867), J. Routh, Dynamik, v. 1, pp. 361; P. Appell, J. de math. 12 (1896), pp. 5. For the Lagrange equations in the 

case of friction, cf., P. Appell, C. R. Acad. Sci. Paris 114 (1892), pp. 331. 
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true variational or isoperimetric principles (240), whose evidence is no longer based upon an 

immediate application of mechanical concepts, but only upon the verification that one can deduce 

the equations of dynamics with its help in any case (241). Whereas the expressions that appear in 

the differential principles possess only the property of covariance (see no. 37, conclusion), true 

variational principles will yield invariant forms that are exceptionally useful in regard to the 

transformation of coordinates since they include only the first differential quotients (under the 

usual assumptions about the nature of forces). By contrast, that represents a restriction compared 

to what the analytical treatment of constraint equations would assume. A third class is defined by 

the true integral principles, which we will first speak of later on in no. 45. 

 Under the assumption that Xi, Yi, Zi are partial differential quotients of a function A with respect 

to the coordinates xi, yi, zi that can also include t, we shall now consider the quantity: 

 

A = 

0

( )

t

t

X x Y y Z z t+ +  

 

and form its variation for an unchanging t. We will then have: 

 

 A = 
0

( )
t

t
X x Y y Z z  + + , 

 

so when all  x, … vanish at t0 (
242): 

 

 A = ( )X x Y y Z z  + + . 

 

 For an arbitrary X, Y, Z, one then defines: 

 

 A = ( )X x Y y Z z  + +  

 

instead of that, i.e., the virtual work (242.a). If one now assumes that the variations of the x, … at t1 

are also zero then that will give: 

 H = 
1 1

0 0

t t

t t

T dt Adt +   

the following form: 

 H = 
1

0

t

i i

i it

T d T
dt X x

x dt x


   
+ − +  

   
  . 

The statement: 

 
 (240) Moreover, that principle, taken in its broader sense, is no longer truly isoperimetric, since one is dealing with 

an entirely-different variational concept; cf., A. Voss, “Über die Differentialgleichungen der Mechanik,” Math. Ann. 

25 (1885), pp. 264. 

 (241) In so doing, one does not exclude the possibility that this principle can once more be regarded as a first 

principle from a different standpoint.  

 (242) That is the only case in which the variation of the work also represents the virtual work, under the given 

assumptions.  

 (242.a) For the concept of work, see no. 46. 
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 H = 0 

 

is then completely equivalent to the differential equations of mechanics; it is called Hamilton’s 

principle. It is completely independent of the special form that the coordinates and constraints 

might take, and in particular, for holonomic systems with the independent generalized coordinates 

qs, one can set: 

 H = 
1

0

( )

t

s s

t

T Q q dt +  = 0 . 

  

 If X, Y, Z are once more partial differential quotients of a force function U, as Hamilton 

assumed (243), then one can introduce the so-called Hamiltonian integral: 

 

H = 
1

0

( )

t

t

T U dt+ . 

 

As before, the principle demands that  H = 0. At the same time, one has: 

 

i

d T

dt x

 
 

 
 = 

( )
s si

i

T U
a

x


 +
+


 , 

 

or for independent generalized coordinates and holonomic systems: 

 

i

d T

dt q

 
 

 
 = 

( )

i

T U

q

 +


, 

 

from which it will further follow that: 

 

( ) ( )s

s

T
q T U T U dt

q t

  
− + + + 

  
  = 0 . 

 

If T + U is explicitly independent of t then: 

 

 
 (243) W. R. Hamilton, Lond. Phil. Trans. (1834) first started from the principle of least action, which is discussed 

thoroughly in the following section of this book. It was only on pp. 307 of his investigations in the Lond. Phil. Trans. 

(1835), pp. 95, that he introduced the fundamental integral H, without especially emphasizing the variational process 

that is peculiar to him, moreover, which one can actually find a complete description of in Lagrange’s Mécanique 

before him. Jacobi (Dynamik, Werke, Suppl., pp. 58) had referred to it as Hamilton’s integral and the variational 

principle as Hamilton’s principle. That terminology did not seem to be used in England. It would also seem much 

more appropriate to refer to Hamilton’s actual discovery as the principle of varied action [Lond. Phil. Trans. (1835), 

pp. 99]. In it, H is referred to as the principal function. Routh (Dynamik, v. 1, pp. 375) called U + T the Lagrangian 

function, while Helmholtz called it the kinetic potential. For the expression “force function,” cf., footnote 295. 
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( )s

s

T
q T U

q


− +


  = const., 

 

so when T is a homogeneous function of degree two in the sq : 

 

T – U = const. 

 

That important theorem, which assumes the independence of the constraints and the force function 

on time, is called the principle of vis viva (244). Its meaning will be treated thoroughly in no. 45. 

 The investigations that are connected with Weber’s law have also allowed us to consider force 

functions that depend upon velocity and higher differential quotients of the coordinates, i.e., look 

for values of X, Y, Z for which: 

( )X x Y y Z z  + +  

 

is the complete differential of a single-valued function (cf., footnote 306, moreover) under these 

extended circumstances. That investigation, which was begun by Riemann (245) and C. Neumann 

(246), was carried out by Schering (247) in the most-general way. For force functions of that kind, 

one can also give a form to Hamilton’s principle for which an actual variation will take place 

under the integral (248). 

 Due to its simplicity, Hamilton’s principle can used as a foundation for most investigations to 

great advantage (249). In particular, one can also take the position that one can employ it with no 

prior deductive basis with the help of force functions that are defined by certain analogies for the 

derivation of equations for systems whose applied forces admit explicit representation (250). One 

then arrives at the fundamental equations of elasticity, hydrodynamics (cf., Band IV 15), and 

Maxwell’s equations of electrodynamics by means of it; see the specialized investigations. 

 
 (244) For more details, see no. 45.  

 (245) B. Riemann, Schwere, Elektrizität, und Magnetismus, ed. by K. Hattendorf, Hannover, 1880.  

 (246) C. Neumann, Die Prinzipien der Elektrodynamik, Tübingen, 1868, = Math. Ann. 17 (1880), pp. 400; also 

ibid. 1 (1869), pp. 317.  

 (247) E. Schering, “Hamilton-Jacobi’sche Theorie der Kräfte, deren Maass von der Bewegung der Körper 

abhängt,” Gött. Abh. 18 (1873), pp. 32; cf., E. Voigt, Kompendium, v. 1, pp. 24; as well as L. Koenigsberger, Die 

Prinzipien der Mechanik, Leipzig, 1901. 

 (248) In addition to the cited papers, cf., G. Holzmüller, Zeit. Math. Phys. 15 (1870), pp. 69; C. Neumann, 

Allgemeine Untersuchungen über das Newton’sche Prinzip, Leipzig, 1896, pp. 227, et seq.; E. Budde, Mechanik, v. 

1, pps. 339 and 372.  

 (249) For the investigation of relative motion, cf., e.g., C. Neumann, Leipz. Ber. 51 (1899), pp. 371. 

 (250) In addition to the known papers of W. Thomson [Edinb. Roy. Soc. Trans. (1863), Math. and Phys. Papers, 

v. 3, pp. 386; Kirchhoff, Mechanik, pps. 57, 118], cf., inter alia: A. Walther, “Hamilton’s Methode und die 

Grundgleichungen der Elastizität,” Diss. Berlin, 1868; Boltzman, “Über der Prinzip von Hamilton,” J. f. Math. 73 

(1871), pp. 111, which includes a consideration of multiply-connected spaces filled with fluids; C. Neumann, 

Beiträge zur mathematischen Physik, Leipzig, 1893, pp. 193, et seq.; likewise, Die elektrische Kräfte, v. 2, pp. 347; 

W. Wien, Hydrodynamik, pp. 47, Leipzig, 1900; H. von Helmholtz, “Das Prinzip der kleinsten Wirkung in der 

Elektrodynamik,” Berl. Ber. (1892), pp. 187; likewise, “Über die physikalische Bedeutung des Prinzips der kleinsten 

Wirkung,” J. f. Math. 100 (1887), with the remark on pp. 143: “In any event, it seems to me that the general validity 

of the principle has been verified to such an extent that it can used to great advantage as a heuristic principle and a 

guideline for the ambition to formulate the laws of new classes of phenomena.” C. Neumann [Ann. di mat. (2) 2 

(1868), pp. 2] also referred to the principle as forma suprema et sacrosancta, nullis exceptionibus obvia (supreme and 

sacrosanct form with no obvious exception). 
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 The fact that Hamilton’s principle is equivalent to d’Alembert’s, under the given assumptions, 

emerges immediately from the presentation above. In general, one must observe the virtual 

character of the variations for non-holonomic constraints precisely. Since Hertz did not observe 

that in his Mechanik (1894), he arrived at the idea that Hamilton’s integral could not be applied 

to systems of that type, although Voss had already referred to the way that would have to be applied 

in the context of virtual variations in 1884 (251). 

 

 

 43. The principle of least action (252). – A correct understanding of the principle of least effect 

(Wirkung), or as one should properly say, least action, raises even more difficulties, since one will 

then be dealing with a concept of variation that does not find application in true isoperimetric 

problems. 

 For a system whose initial and final positions, which are associated with times t0 and t1, are 

fixed, a variation of the actual motion will consist of a path that begins at, say, t0, and each of point 

of which P +  P is associated with a point P of the original path. In that way, not only a variation 

of the coordinates  x,  y,  z will occur, but also one of time, namely, the difference between the 

times of the system positions P and P +  P. Moreover, if (P P1) = ds, (P + P, P1 + P1) = ds +  

ds then ds +  ds will be the time it takes to go through the varied path element, so: 

 

ds ds

dt dt





+

+
 

 

will be the varied velocity, which is established arbitrarily for one point of the system but can be 

subject to one arbitrary constraint more generally. In particular, one can choose it in such a way 

that the variation of the total energy: 

T U  −  

 

is zero, in which one understands U   to mean the expression: 

 

( )X x Y y Z z  + +  . 

 

 Hamilton’s principle will again follow from the identity: 

 
1

0

(2 ( )

t

t

T d t T U dt   + +  = 
1

0

[( ) ( ) ( ) ]

t

t

X m x x Y m z y Z m z z dt  − + − + −  

 

when time is not varied, i.e., for  t = 0. By contrast, if one adds  t by means of the admissible 

constraint: 

 
 (251) A. Voss, Math. Ann. 25 (1885), pp. 263; cf., O. Hölder, “Über die Prinzipien von Hamilton und 

Maupertuis,” Gött. Nachr. (1896).  

 (252) The more socio-political history of this principle, which is connected with the name of Maupertuis, will not 

be considered in this treatise. See, in addition, Montucla, Histoire, v. 3, pp. 645; A. Mayer, “Zur Geschichte des 

Prinzips der kleinsten Aktion,” Leipzig (1877). E. du Bois-Reymond, Maupertuis, Berl. Ber. (1892), pp. 393; 

likewise, M. Cantor, Vorlesungen über Geschichte der Mathematik, v. 3, pp. 579. 
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 T = U  , 

 

according to the remark above, then that will give: 

 

 
1

0

2

t

t

T dt   = 
1

0

[( ) ]

t

t

X m x x dt− +  = 0 . 

 

That is the principle of least action, whose complete equivalence with d’Alembert’s principle is 

obvious from this derivation. However, it is an extended form of it that assumes neither a force 

function that is explicitly free of t for the forces nor independence of time for the holonomic or 

non-holonomic constraints, while generally the variations  x,  y,  z are treated with no regard 

for time, so in general it will correspond to a change in position that has nothing whatsoever to do 

with the constraints on the motion that actually ensues (253). 

 The principle of least action then reads (254): The variation of the integral: 

 
1

0

t

t

T dt  

 

is itself equal to zero relative to all virtual variations of the path of the system that actually results 

and satisfies the variational constraint that is required by d’Alembert’s principle, along with the 

boundary condition, and for which the variation of the total energy is zero at every moment, and 

conversely, the system of differential equations of dynamics can be derived from that demand, just 

as it can from d’Alembert’s principle. 

 In particular, if a force function U exists, so: 

 

U   =  U , 

 

and if U is independent of time, moreover, and that is also true of the constraints then one will 

have the principle of least action in the form that was expressed by Lagrange. 

 Meanwhile, with the introduction of the most-general concept of a variation, which really first 

takes on its well-defined form when one intends to obtain the differential equations of motion, the 

special form of the expression that appears under the integral will become completely irrelevant. 

As Voss remarked, one can ultimately replace it with an entirely-arbitrary function of the 

 
 (253) Here, those virtual paths are (which is always rooted in the character of more general virtual displacements) 

generally impossible then, which is a direct contradiction to Ostwald’s principle of the distinguished case (cf., footnote 

27). 

 (254) Thus, as A. Mayer correctly observed about the variational problem: “If the motion of a system…obeys the 

principle of vis viva, and if the positions at time t0 and an unknown time t1 are given then the problem of determining 

the motion of the system will coincide with the problem of determining the values of the coordinates and the value of 

t1 that satisfy the differential equation: 

T = U + h 

and make 
1

0

0

t

t

T dt = ”; Leipz. Ber. 38 (1886), pp. 354. 
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coordinates and velocities, although the historical forms T + U and T are obviously distinguished 

by their simplicity and generality (255). 

 

 

 44. Historical remarks regarding the principle of least action. – Euler was the first to derive 

the principle that Maupertuis (256) had expressed so unclearly and incorrectly from a teleological 

viewpoint (257), and applied it to central forces (258), in particular. It was Lagrange (259) who first 

proved that in general under the assumption of a force function and constraints that were 

independent of time. However, since Lagrange did not define the variational process that he 

employed more precisely, misunderstandings soon arose regarding the possibility of arriving at the 

differential equations of motion from Lagrange’s integral. Namely, insofar as the variation was 

performed at constant energy, while the variation of time was not brought under consideration 

explicitly, the  x,  y,  z did not seem to be independent of each other anymore (260). In general, 

Rodrigues (261) has already also varied the time in the Lagrange integral in a completely-

applicable way and arrived at the differential equations of motion with the help of the method of 

multipliers; however, his work has remained unnoticed. 

 Jacobi (262), who likewise started from the assumption that time should not be varied, then 

gave the question an entirely new twist by eliminating time from the integral completely with the 

help of the principle of vis viva. A so-to-speak new variational principle will then arise that one 

might refer to as Jacobi’s principle. For him, only the geometric elements of the path appeared 

under the integral (263). Now, if the integral is varied in such a way that the coordinates are varied, 

 
 (255) A. Voss, “Bemerkungen über die Prinzipe der Mechanik,” Münch. Ber. (1901), pp. 167.  

 (256) Moreau de Maupertuis (footnote 252) first published it in Mém. de l’Acad. de Paris (1740), and then in the 

paper “Des lois de movement et de repos deduites d’un principe métaphysique,” Mém. de l’Acad. (1745), pp. 276, 

esp. 286. 

 (257) Euler, in “Additamentum II de motu projectorum,” pp. 309 in “methodus inveniendi,” Lausannae (1744): 

“Quoniam omnes naturae effectus sequuntur quondam maximi minimive legem, dubium est nullum, quin in lineis 

curvis, quas corpora projecta describunt si a viribus quibusconque sollicitantur, quaepiam maximi minimive proprietas 

locum habeat.” (Since all the effects of nature follow the law of greatest or least, there is no doubt that in the curved 

lines which projected bodies describe when they are disturbed by forces of any kind, any property of greatest or least 

exists.) 

 (258) Ibid., but with the remark: “Tam late ergo hoc principium patet, ut solus motus a resistentia medii perturbantis 

excipiendus videatur.” (So widely then is this principle evident that the only movement to be received by the resistance 

of the disturbing medium seems to be received.) 

 (259) Lagrange, “Application de la méthode des maxima et minima à la resolution de différents problèmes de la 

dynamique,” Misc. Taur. 2 (1760/61), and Œuvres, t. 1, pp. 353. Furthermore, the principle of least action takes on 

only a peripheral position in Lagrange’s Mécanique, although Lagrange had perhaps originally regarded it as closer 

in spirit to a (not entirely general) basic principle of dynamics, analogous to the principle of virtual velocities in statics. 

Later on, he gave it even less attention. Poisson said of the application of Hamilton’s principle of varied action in J. 

de math. 2 (1837), pp. 333: “that principle of least action, which is only a useless rule today.” 

 (260) See A. Mayer, Leipz. Ber. 28 (1886), pp. 343.  

 (261) Olinde Rodrigues, Correspond. sur l’éc. polyt. Paris 3 (1815), pp. 159. 

 (262) Jacobi, Werke, Suppl., pp. 44: “In almost all textbooks, the principle is presented in a way that cannot be 

understood, in my opinion. Indeed, it is said that this law can be true only as long as the law of vis viva is true, but 

they forget to say that one must eliminate time from the integral above by the law of vis viva and reduce everything to 

spatial elements.” However, in that way, the circumstances that opposed one’s understanding at that point in time 

were not even mentioned. The fact that the variation of the integral would vanish due to the equations of motion was 

never doubted. One addressed only the converse of the law (Lagrange, Méc. anal., t. 1, pp. 211). 

 (263) The Jacobi principle then has an entirely-specialized character. Also, it only takes the form of a new 

statement. (See footnote 174)  
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which might also correspond to possible changes in the path, due to the independence of the 

constraints of time, then that will, in fact, imply the equations of dynamics.  

 Namely, starting from: 

T – U = h , 

when one sets: 
1
2 ik i ka dq dq  = S , 

to abbreviate, one will have: 

dt = 
S

U h+
 . 

In that way, one will get: 

J = T dt  = ( )S U h+ , 

and in fact: 

 

2  J = 1
2

sk
s k i ik k i

i i

aU h U S U h
dq dq q d a dq q

S q q U h S
 

   +  + 
+ −       +    

      = 0 , 

 

in which one introduces: 

dt = 
S

U h+
, 

 

to abbreviate, will yield the equations that arise from Lagrange’s by eliminating time. 

 By contrast, M. Ostrogradsky, who likewise vigorously emphasized the incorrect foundation 

of the principle, was of the opinion that Lagrange’s minimum principle has to be understood in 

the sense of Hamilton in order to correctly treat the principle (264). Sloudsky (265), recalling 

Rodrigues, was the first to once more emphasize that the latter was essentially different from the 

principle of least action. A. Mayer (266) then gave the true state of affairs connected with those 

papers, which was long-known in England by, e.g., Routh (267), moreover. Helmholtz (268) 

attracted new interest to the principle. It was Hölder who first removed all doubt concerning it and 

expressed the principle in its broadest context (269). 

 
 (264) M. Ostrogradsky, “Equations différentielles dans le problème des isopérimetres,” Pétersb. Mém. de l’Acad. 

(6) 4 (1850), pp. 385; cf., especially, pp. 415, et seq. 

 (265) Th. Sloudsky, Nouv. ann. de math. (2) 18 (1866), pp. 198.  

 (266) A. Mayer, “Die beiden allgemeinen Sätze der Variationsrechnung, welche den beiden Formen des Prinzips 

der kleinsten Wirkung entsprechen,” Leipzig. Ber. 38 (1886), pp. 343.  

 (267) E. J. Routh, Dynamics of a system of rigid bodies, 4th ed., v. 2, pp. 244, like Rodrigues, used the method of 

multipliers. K. Uckermann, Diss. Marburg, 1893, derived the principle without them.  

 (268) H. von Helmholtz, “Das Prinzip der kleinsten Aktion.” Berl. Ber. (1887), pp. 225. Many objections can be 

raised against his presentation; cf., Hölder’s paper in footnote 269. 

 (269) O. Hölder, “Über die Prinzipien von Hamilton und Maupertuis,” Gött. Nachr. (1900). Further, see E. 

Mathieu, Dynamique analytique, 1877, pp. 42; G. Sabinine, “Sur le principle de la moindre action.” Ann. di mat. (2) 

12 (1883), pp. 237; “Sur le minimum d’une intégrale,” ibid. 14 (1887), pp. 13; “Sur les considérations d’Ostrogradsky 

et de Jacobi relatives au principe de la moindre action,” ibid. 15 (1888), pp. 27; M. Réthy, “Über das Prinzip der 

kleinsten Wirkung und das Hamilton’sche Prinzip,” Math. Ann. 48 (1897), pp. 514; A. Voss, Gött. Nachr. (1900).  
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 From the principle of least work, in its original form, one has T dt   = 0, so the maximum-

minimum condition for the integral is fulfilled. We shall not touch upon an examination of the sign 

of the second variation (270) here, i.e., the proof that one is, in fact, dealing with a minimum for 

sufficiently-small intervals, since it properly belongs to the realm of pure mathematics. 

 

 

C) True integral principles. 

 

 45. The principle of vis viva. – From the fundamental equations of dynamics [no. 37, (3)]: 

 

  im x  =
i s isX a+ , etc., 

 

and the equations of constraint [loc. cit., (2)]: 

 

( )si i si i si i sa x b y c z c+ + +  = 0 , 

 

when one multiplies them by ix , iy , iz , and sums, while introducing the vis viva or kinetic energy 

T, one will get the equation: 

 

dT

dt
 = ( )i i i i i i s sX x Y y Z z c+ + −  , 

 

in which Xi, Yi, Zi are all understood to mean forces, which the exception of the ones that emerge 

from the equations of constraint. In particular, if the cs are all equal to zero then it will follow upon 

integration that: 

T – T0 = 
1

0

( )

t

i i i i i i

t

X dx Y dy Z dz+ +   . 

 

This general law of vis viva or kinetic energy (271), namely: the increase in vis viva or kinetic 

energy is equal to the work done by all forces during that time interval, is then true for all non-

holonomic constraints only in the event that the cs = 0 (272). Thus, it will be true when constraints 

take the form of finite equations: 

f1 = 0 , …, fk = 0 

 

in any event when they are explicitly independent of t. 

 If one imagines that the Xi, Yi, Zi are decomposed into the components: 

 
 (270)  See J. A. Serret, C. R. Acad. Sci. Paris 72 (1871), pp. 697, or Bull. sciences math. 2 (1871), pp. 97; likewise, 

G. Darboux, Leçons sur la théorie Générale des surfaces, t. 2, Paris, 1896, pp. 480. D. Bobylev, Peterst. Abh. d. 

Akad. 59 (1889); G. Kobb, “Sur le principle de la moindre action.” Toul. Ann. 5 (1891), pp. 1-3. 

 (271) It is simpler for one to obtain that equation directly from d’Alembert’s principle under the assumption that 

the actual path-elements dxi, dyi, dzi are included among the virtual ones, in which the holonomic or non-holonomic 

character is entirely irrelevant. 

 (272) That was probably first shown by A. Voss, “Über die Differentialgleichungen der Mechanik,” Math. Ann. 

25 (1885), pp. 266.  
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  Xi = i iX X + , 

  Yi = i iY Y + , 

  Zi = i iZ Z + , 

 

the first of which possesses a force function U that is independent of time explicitly, then under 

those assumptions, one will have: 

 

T – T0 = 0 ( )U U X dx Y dy Z dz  − + + +  , 

 

when one introduces the function: 

V = − U 

in place of U, one will have: 

 

T + V = 0 0 ( )T V X dx Y dy Z dz  + + + +  . 

 

In particular, if the work integral on the right-hand side is equal to zero then one will get: 

 

T + V = T0 + V0 . 

 

For all mechanical systems with one degree of freedom on which only conservative forces act. i.e., 

ones that arise from a force function that is independent of t explicitly, and under assumptions on 

the constraints that were given before, this last theorem, which again expresses the principle of the 

conservation of vis viva or kinetic energy, will yield the solution by quadrature, and is, above all, 

the fundamental theorem that will lead to any further discussion of every mechanical problem. 

 Meanwhile, it would seem that what is much more important for seeing the overall mechanical 

picture is the conversion that was first introduced by Helmholtz (273), which regarded the negative 

force function as the potential, T as the kinetic, T + V as the total energy, so the law of vis viva will 

lead to the energy principle, i.e., the study of the conservation of energy. 

 The consideration of energy in a purely-mathematical context offers certain advantages that 

emerges especially clearly in the questions of stability. Here, we shall mention only the far-

reaching generalization that Routh (274) introduced into Lagrange’s stability criterion, which was 

first proved completely by Dirichlet (275). 

 On the other hand, all of that is closely connected with the viewpoint that emerges when one 

extends analytic geometry to a multidimensional conception of space. Above all, let us recall the 

investigations of the line element (276), which takes the form of the square root of the differential 

of (twice) the kinetic energy, the theory of quadratic forms in the problem of small oscillations 

 
 (273) Helmholtz, “Erhaltung der Kraft,” Ostwald, K. B., no. 1, pp. 11; Clausius was also led back to the same 

general form of the concept as Helmholtz, which probably already existed in isolation [Ann. Phys. Chem. 150 (1873), 

pp. 109]. 

 (274) Routh, “Essay on the stability of motion,” Dynamik, v. 2, pp. 75, et seq.  

 (275) P. G. Lejeune-Dirichlet, “Über die Stabilität des Gleichgewichts,” J. f. Math. 32 (1846), pp. 85; A. 

Liapounoff, “Sur l’instabilité de l’équilibre dans certains cas où la function n’est pas maximum.” J. de math. (5) 3 

(1897), pp. 81; J. Hadamard, “Sur certaines propriétés des trajectoire en dynamique,” ibid., pp. 364. 

 (276) Which began with J. Liouville’s treatise: “Expression remarquable de la quantité qui est un minimum en 

vertu du principe de la moindre action,” J. de math. (2) 1 (1856), pp. 297. 
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(277), and the study of the equivalence of mechanical problems (278), as well as the presentations of 

the theories of groups and transformations (279). 

 Finally, that is most important is the appearance of the total energy E = T + V in the Poisson-

Hamilton transformation of the Lagrange equations [no. 37, (4)]. If one decomposes variables qs, 

s = 1, 2, …, r into two groups 
1s

q  and r , s1 = 1, 2, …, l;  = 1, 2, …, l  ; l l+  = r, and sets: 

 

1s

T

q




 = 

1s
p , 

 

then it will follow for T   = 
1 1

( ) s sT p q− , when (T) is the value of T that is produced by replacing 

the 
1s

q with 
1s

p  in it, such that T   is a function of the 
1s

q , 
1s

p , r , r : 

 

  1s
dp

dt
 =  

1

1

s

s

T
Q

q


+


, 

  1s
dq

dt
 = − 

1s

T

p




, 

d T T

dt r r 

   
− 

  
= Q , 

 

or when the groups qs and 
1s

q  coincide: 

  sdp

dt
 =  s

s

T
Q

q


+


, 

  sdq

dt
 = − 

s

T

p




. 

 

In the special case where T is a homogeneous quadratic function of the sq  (no. 37), one will have 

T   = − (T). If one also assumes that: 

Qs = − 
s

V

q




 

then for: 

E = (T) + V, 

 

one will get the canonical form for the differential equations of mechanics: 

 

 
 (277) Namely, see E. J. Routh, Dynamics of a system of rigid bodies, vols. 1 and 2. 

 (278) P. Stäckel, J. f. Math. 107 (1891), pp. 319.  

 (279) In addition to all of the works of S. Lie, cf., the investigations of P. Painlevé, P. Stäckel, et al., as well as 

the articles 11-14 in Bd. IV. 
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  sdq

dt
 = + 

s

E

p




, 

  sdp

dt
 = − 

s

E

q




, 

 

in which the whole problem will depend upon only the energy function E (279.a). 

 

 

 46. Historical remarks about work, vis viva, and energy. – The law of vis viva, in its simplest 

form, was already found in Galilei (280), who recognized that the final velocity of a body falling 

on a skew plane depends upon only the altitude. However, the principle of the conservation of vis 

viva appeared in a more definitive form in Huygens (281) as an axiom. Joh. Bernoulli (282) already 

spoke of the conservatio virium vivarum, namely, the capacity of the vis viva to do work in various 

forms. 

 However, the law was first found in its proper form that belongs to analytical mechanics by 

Dan. Bernoulli, who had already developed it for the problems of celestial mechanics (283). For 

Lagrange (284), the concept of potential function arose for discrete masses, while for Laplace (285), 

it arose for continuous masses. 

 The entire study of energy also arose from the special formula 2mv  = 2 g h m. Originally, the 

expression for the vis viva was the quantity 2mv . Moreover, a concept that is just as primitive is 

that of the work P h that is done when a weight P experiences a change in height h. It was gradually 

adapted to all of the (initially constant) forces that are expressible by weights. 

 
 (279.a) This canonical form of the differential equations of dynamics, into which every isoperimetric problem can 

be brought, according to Ostrogradsky, Petersb. Mém. de l’Acad. (6) 4 (1850), pp. 403, was already found in an 

unpublished paper by Cauchy in Turin, Mém. (1831). Compare A. Cayley, Brit. Assoc. Rep. 1862), London, 1863, 

pp. 184; for the appearance of canonical equations in Lagrange, Poisson, Hamilton, Routh, cf., article 11.a of Bd. 

IV. 

 (280) Cf., Mach, Mechanik, pp. 342. Similar considerations are discussed in P. Varignon, “Propriétés communes 

aux chutes rectlignes dans le vuide,” Paris Mém. de l’Acad. (1720), pp. 107 (Paris, 1722). 

 (281) Ch. Huygens in “Horologium oscillatorum,” Paris, 1673. Cf., in addition, Lagrange, Mécanique, v. 1, pp. 

249, Mach, Mechanik, pp. 180: “We hope that this principle (of the center of oscillation) can be put into the correct 

light here as something that is identical to the law of vis viva.” For a more-precise investigation, cf., the fundamental 

papers of Jacob Bernoulli, “Démonstration générale du centre de balancement,” Paris, Mém. de l’Acad. (1703), pp. 

78; Opera, two vols., Geneva, 1744, Bd. 1, pp. 930; “Démonstration du principe de M. Huyghens,” Paris, Mém. de 

l’Acad. (1704), pp. 136; Opera, Bd. 1, pp. 947. 

 (282) Joh. Bernoulli, “Theoremata selecta pro conservation virium vivarum,” Comm. Ac. Petrop. 2 (1729), pp. 

200; as well as Opera, v. 3, pp. 243 (from the Acta erud. Lips., 1735), “de vera notione virium vivarum,” with the 

noteworthy observation that: “Hinc patet, vim vivam quae aptius vocatur facultas agenda esse aliquid reale et 

substantiale quod per se substitit et quantum in se est, non dependet ab alio.” (From this, it is clear that the living force, 

which is more properly called the ability to act, is something real and substantial, which subsists by itself, and insofar 

as it exists by itself, it does not depend upon anything else.) 

 (283) D. Bernoulli, “Remarques sur le principe de la conservation des forces vives pris dans son sens général,” 

Berlin, Mém. de l’Acad. (1748), pp. 356; ibidem, for the n-body problem, pp. 363. 

 (284) Lagrange, Berlin, Mém. de l’Acad. (1777), pp. 155. The term potential function is known to go back to G. 

Green (“An essay on the application of mathematical analysis,” Nottingham, 1828), as well as being in his Math. 

Papers, it was also printed in J. f. Math. (1850/54), pps. 39, 44, 47. German transl. by A. Wangerin, Ostwald, K. B. 

no. 61. 

 (285) Laplace, Paris, Mém. de l’Acad. (1782), pp. 119. 
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 That quantity was soon referred to as an effect of the force, as the puissance mécanique (286), 

the moment d’activité (287), the quantité d’action (288) (Coulomb); however, others [Ch. Dupin 

(289), Hachette (290), Prony (291)] had already referred to it as Arbeit, travail, labour. 

 However, it was only under the influence of Poncelet that Coriolis (292) completely established 

a sharp definition of the concept of the Arbeit, work, travail, lavoro done by a varying force along 

an arbitrary path. Those two French researchers, whose ideas overlapped in many places, and 

were also probably modified by their reciprocal influence on each other, applied the law of vis viva 

in its full generality to the determinate motion of machines (293): That implied the Coriolis-

Poncelet formula: 
2 21

02
( )m v v−  = Tm – Tr – Tf – Tc , 

 

in which the quantities on the right-hand side refer to the works done by the moving forces and the 

various resistances (collisions, resp.). 

 S. Carnot (294) was the first to also apply that equation to non-mechanical processes, with their 

meaning in that era, such as thermodynamic problems, and this laid the groundwork for the modern 

study of energy, while the mathematical formulation was, in fact, developed further by Green’s 

work and Hamilton’s general concept of a force function (295). 

 The presentation of Th. Young (296), which was still restricted to purely-mechanical processes 

of collisions between moving masses, etc., and which ascribed energy to bodies as the means by 

which they could do work, which was already referred to by L. N. Carnot as force vive virtuelle 

(which is now called potential energy), along with force vive, was built up by Coriolis (297) and 

 
 (286) For example, J. Smeaton referred to it as “mechanical power” in London Phil. Trans. 66 (1776), pp. 450.  

 (287) Carnot, Principes fondamentaux.  

 (288) As in G. Monge and J. P. Hachette. 

 (289) Ch. Dupin, Géométrie et mécanique des arts, v. 3, 1826, pp. 477.  

 (290) J. P. Hachette, Traité élémentaire des machines, 4th ed., 1828, pp. 19. 

 (291) R. Prony, Annales des mines (1826), pp. 33; cf., what Poncelet said in Cours de mécanique, § 6.  

 (292) In the Foreword to the first edition of his Traité de la mécanique des corps solides et du calcul de l’effet des 

machines, 1829 (2nd ed., 1844), G. Coriolis said: “I shall refer to the quantity that one quite commonly calls the 

‘puissance mécanique’ by the term work,…” In that same reference, Poncelet also defined the fundamental theorem 

of the work done by the resultant. 

 (293) Meanwhile, according to C. L. Navier, “Details historiques sur l’emploi du principe des forces vives dans la 

théorie des machines,” Ann. de chimie 9 (1818), pp. 146, L. N. Carnot had already begun that extension of scope in 

his Essai sur les machines en générale, 1783. 

 (294) Said Carnot, 1824; published in Ann. éc. norm. (2) 1 (1872), pp. 393.  

 (295) W. R. Hamilton, “On a general method in dynamics,” Lond. Phil. Trans. (1834), pp. 249. The term “force 

function” was introduced by Jacobi in 1836, J. f. Math. 17 (1838), pp. 97. The more-concise term Ergal was used by 

Clausius, Ann. Phys. Chem. 150 (1873), pp. 136, and more recently by E. Budde, Mechanik, Bd. 1, pp. 430.  

 (296) Th. Young, A course of lectures on natural philosophy, v. 1, pp. 78; v. 2, pp. 51; also there, on pp. 79, one 

finds the remark: “The labour expended in producing any motion is proportional not to the momentum, but to the 

energy, which is obtained.” Meanwhile, the energy of a moving body was already defined by d’Alembert, 

Encyclopédie (four vols., 2nd ed., Paris, 1785), t. 2, pp. 82, “Art. Mathématiques.” 

 (297) Coriolis, Traité, ed. 1844, pps. 39 and 114. The current definition of vis viva also goes back to Coriolis 

(preface to the first edition: “I shall again permit myself a slight innovation by calling the product of the weight with 

the height the vis viva.”), which expressed precisely that equivalence of work and vis viva. This apparently-only-formal 

alteration is just as important as the knowledge that is obtained from Helmholtz’s way of preserving the force by 

inverting the sign of the potential function in such a way that the total energy will be constant. It took some time for 

the expression 
2

mv  to be abandoned. Even to this day, it still exists in many places, such as W. Schell, Theorie der 

Bewegung, v. 2, pp. 530. Especially with the French authors, e.g., H. Resal, Mécanique, t. 2, pp. 235; R. Liouville, 
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Poncelet (298) into the principe de la transmission du travail, i.e., the study of the conversion of 

the quantity of work in machines. 

 As a result of R. Mayer’s (299) bold and entirely-original train of thought, that led to an 

entirely-general conception of things, by means of which all phenomena were subsumed by the 

unified picture of mechanically-equivalent works that could be transformed into each other. Those 

ideas were expressed by Helmholtz (300) in a mathematically more-precise form, and independently 

of R. Mayer, as the general law of conservation of energy: 

 
21

2
mv V+  = const., 

 

into which Helmholtz introduced representation of the tension V (301) in place of minus the 

potential function, and at the same time enriched the most far-reaching applications to 

thermodynamics, electrodynamics, etc. 

 Those ideas were further developed conceptually by, above all, Rankine and W. Thomson, 

whose terminology is finally coming into general use. 

 For Rankine (302), the present or sensible energy (vis viva, heat, light, electrical motion, etc.), 

which was called dynamical or kinetic energy by W. Thomson soon afterwards had to be 

contrasted with the potential (latent) energy (molecular forces, gravitation, chemical affinity, 

electrical charge, etc.). All phenomena are based upon an ongoing transformation of those two 

forms of energy, whose total amount is conserved, and the problem of physical mechanics is to 

find the law that makes those conversions result. (For the further development of those ideas by 

Ostwald, see no. 49.) 

 

 

 47. The energy principle. – The law of conservation of energy, in the older sense (no. 42), is 

a purely-dynamical one. However, things are quite different (303) with the energy principle in 

modern physics, which regards it as an axiom that is founded upon a substantial induction. 

 
C. R. Acad. Sci. Paris 114 (1892), pp. 1171; P. Appell, J. de math. 12 (1896), pp. 5. J. Boussinesq distinguished 

between the énergie actuelle and Leibniz’s force vive (Acta erudit. Lips. 1695). It is almost universal in the English 

literature; see the remark by Routh, Dynamik, v. 1, pp. 315. 

 (298) J. V. Poncelet, Cours de mécanique, pp. 17: “The sum of the elementary works that are developed, whether 

by the various forces that produce the modification of the motion or by the forces of inertial that are created by that 

modification, is contantly equal to zero.” 

 (299) R. Mayer, manuscript from 1841 for Ann. Phys. Chem. in: R. Mayer, kleinere Schriften und Briefe, ed., by 

J. Weyrauch, Stuttgart, 1893. 

 (300) H. von Helmholtz, Über die Erhaltung der Kraft, Berlin, 23 July 1847 = Wiss. Abh., Bd. 1, pp. 12-75; also 

Ostwald, K. B., no. 1.  

 (301) Ostwald, K. B., no. 1., pp. 12. 

 (302) W. J. M. Rankine, “On the general law of the transformation of energy,” Glasgow, Phil. Soc. Proc. 3 (1853) 

= Papers, 1881, pp. 203; “Outlines of the sciences of energetics,” ibid., 1855 = Papers, pp. 209 with the remark: “Any 

kind of energy may be made by the means of performing any kind of work,” pp. 218; likewise, W. Thomson, “On 

the origin and transformations of motive power,” 1856 = Papers, v. 2, pp. 182.  

 (303) Cf., e.g., P. Duhem, Traité élémentaire de mécanique chimique, Paris, 1897, pp. 25.   
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 The energy of a material system (304) is the amount, measured in mechanical units of work, of 

all effects that are produced “externally” to the system when it goes from its state (304.a) to a certain 

normal state in any way. That amount is completely independent of the type of transition. 

 We assume that a material system whose particles not only exhibit dynamical phenomena, but 

also exist in various states (thermal, elastic, magnetic, chemical affinities, …), and that total state 

is defined by a series of parameters q1, q2, …, qk, and their velocities 1q , 2q , …, kq . If the system 

now goes from any normal state 0 0

0( , )s sZ q q  to a new state 0 0( , )s sZ q q  then a certain amount of 

mechanical work (305) A would be produced outside of the system, which generally assumes that 

it is possible to measure all of those effects by equivalent mechanical work. Now, if the work done 

along the first path W1 from Z0 to Z is equal to A1, and the work done along a second path W2 is 

equal to A2, and if the path W3 from Z to Z0 corresponds to the work A3 then one has two closed 

paths: 

W1 + W3 and W2 + W3 

 

that correspond to the works A1 + A3, A2 + A3, resp. If one now makes the assumption that a 

perpetuum mobile is impossible, namely, that the work done along a closed path is always equal 

to zero (306), then it will follow that: 

A1 = A2 , 

 

i.e., the total work is a function of the parameters that depends upon only the initial and final state: 

 

A = 0 0( , | , )s s s sF q q q q  . 

 

Moreover, since one must also have: 

 

A = 0 0( , | , ) ( , | , )s s s s s s s sF q q q q F q q q q+  

 

upon introducing another state ( , )s sZ q q , one must generally have: 

 

A = 0 0( , ) ( , )s s s sq q q q +   , 

or when one imagines that: 

0 = 0 0 0 0( , ) ( , )s s s sq q q q +  , 

 
 (304) W. Thomson, 1851, Phil. Mag. (4) 9 (1855), pp. 523: “The total mechanical Energy of a body might be 

defined as the mechanical value of all the effects it would produce if heat were omitted and resistances overcome, if 

it were cooled to the utmost. But…it is convenient to choose a certain state as standard,” likewise, Quart. J. of Math. 

1 (1857), pp. 57. Cf., M. Planck, Energie, pp. 99; G. Helm, Grundzüge de math. Chemie, Leipzig, 1894, pp. 1; 

Planck, Vorlesungen über Thermodynamik, Leipzig, 1897, pp. 34, et seq. 

 (304.a) For the terminology here, which was chosen by Planck, cf.: Planck, Prinzip der Erhaltung der Energie, pp. 

93. 

 (305) P. Duhem referred to that as Oeuvre in Commentaire aux principes de la thermodynamique, J. de math. (4) 

8 (1892), pp. 290.   

 (306) Naturally, as soon as one deals with general manifolds, the theorems of analysis situs will come into play, 

which were developed by E. Betti, “Sopra gli spazii d’un numero qualunque di dimensioni,” Ann. di mat. (2) 4 

(1870/71), pp. 140, likewise, E. Lemmi, “Sur les cas d’exception du théorème des forces vives,” J. de math. (3) 2 

(1876), pp. 233. Cf., Maxwell, Elektrizität and Magnetismus, Bd. 1, pp. 19. 
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one must have: 

A = 0 0( , ) ( , )s s s sq q q q − . 

 

If one now assumes that  splits into two parts, one of which includes only the qs, while the other 

one is a homogeneous quadratic function of the sq  whose coefficients might depend upon the qs 

then one will have: 

−  = ( ) ( , )s s sV q T q q+  , 

so one must have: 

− A = V – V0 + T – T0 , 

 

in which A is expressed by an ordinary work integral or a sum of thermal, electrical, chemical, … 

works, when expressed in mechanical units. Since (307): 

 

− dA  = dV + dT , 

 

or when one denotes the left-hand side, which does not need to be a complete differential in the qs, 

by: 

1 1

m k

s s s s s

m

P dq E Q dq
+

+   

 

(the first part of which refers to the mechanical forces, while the second refers to the other 

contributions, expressed in terms of suitable equivalent numbers): 

 

1 1

m k

s s s s s

m

dV dT P dq E Q dq
+

+ − −   = 0 

 

will be the expression for the general law of conservation of energy. 

 If one now defines: 

   P = 
s sP q , 

   Q = 
s s sQ E q  

 

then one can finally regard the extended Hamilton principle: 

 

( )T V P Q dt − + +  = 0 

for all mechanical processes. 

 
 (307) This appropriate notation for incomplete differentials of C. Neumann [Leipz. Ber. 46 (1894), pp. 1] is also 

used in W. Voigt, Kompendium, Bd. 1, pp. 22. 
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 In the past (308), one sought to represent the general viewpoint of energetics with the help of 

the axiom of the impossibility of a perpetuum mobile. Helmholtz (309) had already gone down that 

path in his well-known treatise, with the remark that the energy principle coincides with the law 

of conservation of vis viva when one attributes all processes to pure action-at-a-distance (310). 

 

 

 48. The virial theorem and the second law of thermodynamics. – Upon multiplying the 

Lagrange equations (no. 37) by x, y, z and summing, one will get: 

 

(1)  
dR

dt
 = 21

2
i i

d
m r

dt
  = 1

2
( )T X x Y y Z z+ + +  

 

for a free system (i.e., one in which all constraints are replaced by forces), in which r is the distance 

from the point to the coordinate origin. If one now assumes that the left-hand side remains 

unchanged during the course of time from t0 to t then one will have: 

 

T – T0 = V – V0 , 

when one lets: 

V = − 1
2

( )X x Y y Z z+ +  

 

denote the virial of the forces (311). According to Clausius, this very special law can be generalized 

when one integrates (1) over time: 

R – R0 = 
1 1

0 0

t t

t t

T dt V dt−  , 

 

from which, it will follow that when the left-hand side fluctuates within relatively-narrow limits, 

the mean values Tm, Vm of T, V for sufficiently-large t1 – t0 will satisfy: 

 

Tm = Vm , 

 

 
 (308) One cf., P. Duhem, “Commentaire aux principes de la thermodynamique,” J. de math. (4) 8 (1892), pp. 269; 

ibid., 9 (1893), pp. 293; ibid., 10 (1894), pp. 207. likewise, Traité de mécanique chimque, t. 1, pp. 25. Similarly, there 

is a sharper application of the axiom of the perpetuum mobile that Helmholtz’s in M. Planck, Energie, pp. 140; L. 

Natanson, “Über die Gesetze nicht umkehrbarer Vorgänge,” Zeit. phys. Chemie 21 (1896), pp. 193. 

 (309) Moreover, the same argument is already found in G. Green’s 1837 treatise on the work done by elastic 

forces: “Indeed, if   were not an exact differential, a perpetual motion would be possible, and we have every reason 

to think that the forces of nature are so disposed as to render this a natural impossibility,” (Green, Papers, pp. 248). 

 (310) For that dogmatic formulation, which was already contested by Clausius, Ann. Phys. Chem. 91 (1854), pp. 

604, and referred to as awkward (misslich) by Planck (Energie, pp. 137), but has probably been generally abandoned 

nowadays, see, e.g., H. Klein “Deduktion des Satzes von der Erhaltung der Kraft,” Schul.-Progr. Dresden, 1889, no. 

508. 

 (311) R. Clausius, Ann. Phys. Chem. 141 (1870), pp. 124; Jubelband 1874, pp. 411; Y. Villarceau, “Sur un 

nouveau principe de mécanique,” C. R. Acad. Sci. Paris 75 (1872), pp. 232, 377. For the virial, see Jacobi’s Dynamik, 

pp. 22; c f., R. Lipschitz, Bull. sciences math. 3 (1872), pp. 349. The virial already appeared in statics in 1837, and 

for Möbius, it was the certainty function (Sicherheitsfunktion) (Statik, Bd. 1, pp. 230). Later, it was discussed in F. 

Schwein, J. f. Math. 38 (1849), pp. 77, and ibid., 47 (1854), pp. 238, as torque (Fliehmoment), in analogy with the 

usual moments. 
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i.e., the mean vis viva is equal to the (mean) virial. 

 The virial shifts the consideration of the mean state of a system to the foreground, as one 

actually does in the kinetic theory of gases and gives an expression for the closely-connected study 

of the calculation of probabilities over the periodic recurrence of certain states. We shall pursue 

that topic here only to the extent that it relates to the second law of thermodynamics. 

 If one sets: 

T + U = H 

 

for generalized coordinates qs then one will have: 

 

1

0

t

t

H dt   = 

1 1

00

( )

t t

s s k

s stt

H U
H t q q t c dt

q c
   

 
+ − +

 
   , 

 

in the event that the potential energy parameter, which is not varied in Hamilton’s integral, 

experiences a variation that is denoted by  c. If one denotes the last integral by W then one will 

have: 
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for the total energy T – U = E with time-independent constraints when T is a homogeneous function 

of second degree of sq . Now, if the system moves in such a way that the points assume the same 

positions and velocities at times t0 and t1 (
312) then: 

 
1

0

2

t

t

T dt   = (t1 – t0)  E + W , 

 

so when one replaces the integral with its value 2 Tm (t1 – t0) : 

 

2  [Tm (t1 – t0)] = (t1 – t0)  E + W . 

 

 In particular, it will follow for W = 0 that: 
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Therefore, if a series of states of motion are traversed that define a complete cyclic process, such 

that one ultimately returns to the original state of motion then: 

 
 (312) The very-specialized assumptions that were made in this treatise are found in extended form in Clausius, 

“Über die Zurückführung des zweiten Hauptsatzes der mechanischen Wärmetheorie auf allgemeine mechanische 

Principien,” Ann. Phys. Chem. 142 (1871), pp. 433; ibid., Suppl. 7 (1876); for a new mechanical law, Ann. Phys. 

Chem. 150 (1873), pp. 106; for the connection between the second law… and Hamilton’s principle, Ann. Phys. Chem. 

146 (1872), pp. 585, cf., also C. Szily, “Das dynamische Prinzip von Hamilton in der Thermodynamik,” Ann. Phys. 

Chem. 149 (1873), pp. 74. 
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m

E

T


  = 0 , 

 

which will correspond to the second law of thermodynamics for complete cyclic process when Tm 

is replaced by the absolute temperature T, and  E is replaced with the quantity of added heat dQ 

(313). 

 Now, the two fundamental laws of Gibbs (314), which reproduce the principle of virtual 

velocities, are also true for energy E and entropy S: 

 

S = 
d Q

T . 

 

 For the equilibrium of a material system that is free from external influences, it is necessary 

and sufficient that the change in entropy must be: 

 

 S  0 , 

 

and that the change in energy for unchanged S must be: 

 

 E  0 

 

for all possible changes in its state that leave the energy unchanged. 

 Here, we can only suggest the further development of the concepts of energy and entropy, e.g., 

the distinction between free and bound energy; for that, cf., Band V. 

 

 

 49. The localization of energy. – It would be natural to regard the energy of a system as a 

primitive quality of it that expresses only the value of mechanical work, in addition to space and 

time quantities. Ostwald (315) had developed Rankine’s ideas regarding that into a system of 

energetics whose problem consists of distinguishing the different forms of energy by their 

“capacity” and “intensity” factors and, at the same time, giving the ground rules for their 

conversions. The amount of energy in an independent system is unvarying, and of all the 

conversions that can occur, the ones that will happen will be the ones that produce the greatest 

change in potential energy in a given time interval. 

 Those ideas, which are subsumed by a set of different phenomena from more-general 

viewpoint by way of an interesting analogy (which is also generally more formal, in part), are 

indeed repeatedly challenged from various angles nowadays (316), but they seem to have an 

 
 (313) Boltzmann, “Über die mechanische Bedeutung des zweiten Hauptsatzes in der Wärmetheorie,” Wien. Ber. 

53 (1866), pp. 195. 

 (314) J. W. Gibbs, Thermodynamischen Studien, pp. 66. 

 (315) W. Ostwald, “Die Energie und ihre Wandlungen,” Leipz. Antrittsrede 1888; “Studien zur Energetik,” Leipz. 

Ber. 43 (1891), pp. 271; ibid., 44 (1892), pp. 211; likewise, Lehrbuch der allgemeinen Chemie, Leipzig, 1893, Bd. 21, 

pp. 1-39. 

 (316) L. Boltzmann, “Über d. Entwicklungen der Methoden d. theoretischen Physik,” Deutsche Math.-Ver. 8 

(1900), pp. 71, esp. pp. 87; “Ein Wort der Mathematik an die Energetik,” Ann. Phys. Chem. (2) 57 (1896), pp. 39; M. 
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inductive value that cannot be underestimated, on the whole, and they might lead to many further 

insights into their intrinsic connection to our present understanding of nature (317). As evidence for 

that, we would only like to emphasize the representation that refers to the migration of energy. 

 In a continuous medium where any sort of process might take place, a certain quantum of 

energy that might depend upon x, y, z, t (318) will exist at every point in time and every location. 

One can also deal with a change in the energy in the sense of Euler’s differential equations of 

hydrodynamics. One will then get a representation of a current or migration of localized energy 

that is connected with Lagrange’s conception of fluid motion, which does not examine the state 

of motion at an arbitrary location, but the motion of each individual particle, if one would like to 

also determine the paths of that current (319). Such representations are not new, moreover. Coriolis 

(320) already compared the kinetic energy in a machine to a fluid that flows in it, and similar 

pictures might also be found in many other places. However, they have appeared in a well-defined 

form only in the last twenty-five years. 

 N. Umow (321) has already developed the problem of the migration of energy in fluid and 

elastic media in an entirely-general way in 1874. However, the first to draw attention to this picture 

in an outstanding way was Poynting (322), who represented the current of electromagnetic energy 

on the basis of Maxwell’s formulas as something that was governed by very simple laws. 

 As is known, the equation of continuity for any continuous medium whose mass is distributed 

with a density of  and is thought of as invariable reads: 

 

u v w

t x y z

      
+ + +

   
 = 0 , 

 

in which u, v, w are the velocity components of the current. Conversely, for any equation: 

 

(1)  
E U V W

t x y z

   
+ + +

   
 = 0 , 

 

 
Planck, “Gegen d. neuere Energetik,” Ann. Phys. Chem. (2) 57 (1896), pp. 72; L. Dressel, “Zur Orientierung in der 

Energielehre,” Natur und Offenbarung 39, Münster 1893; pps. 321, 390, 449. 

 (317) Cf., in addition to Ostwald, Lehrbuch der allgemeinen Chemie, also Duhem’s Mécanique chimique, J. H. 

van’t Hoff, Vorlesungen über theoretische und physikalische Chemie, Braunschweig, 1898/99 (also in French by 

Corvisy, 2 vols., Paris, 1899.1900), as well as Lem’s Energetik. The emerging attempt in the German literature (cf., 

e.g., H. Januschke, Das Prinzipe d. Erhaltung d. Energie, Leipzig, 1897) to make a summary treatment of the 

multifaceted problems by applying the concept of energy, in place of clarity of insight, still seems premature at this 

point in time.  

 (318) Cf., O. Lodge, “On the identity of energy,” Phil. Mag. (4) 19 (1885), pp. 482. 

 (319) Up to now, that analogy can be pursued only in individual cases. 

 (320) Coriolis, Traité de mécanique, pp. 117; “In addition, the fluid can accumulate in certain bodies and stay 

there…the work that is stored, which we assimilate to a fluid, is what we have called the vis viva,” pp. 171: “One can 

compare the transmission of work by the machine to the flowing of a fluid, etc.” 

 (321) N. Umow, “Ableitung d. Bewegungsgleichungen der Energie in kontinuierlichen Medien,” Zeit. Math. Phys. 

19 (1874), pp. 419.   

 (322) J. H. Poynting, “On the transfer of Energy in the electromagnetic field,” Lond. Phil. Trans. 175 (1884), pp. 

343; cf., O. Heaviside, Electrician 14 (1885), pp. 178, 306; esp., “On the forces, stresses and fluxes of energy in the 

electromagnetic field,” Lond. Phil. Trans. 183 (1892), pp. 423; W. Wien, “Über d. Begriff d. Lokalisierung d. 

Energie,” Ann. Phys. Chem. (2) 45 (1892), pp. 684. 
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one can refer to U, V, W as the components of the current and U / E, V / E, W / E as the velocity 

components. 

 It will follow from the equations of motion for an elastic (fluid, resp.) medium: 

 

x  = 
yx z

XX X
X

x y z


 
+ + +

  
, 

(2)  y  = 
yx z

YY Y
Y

x y z


 
+ + +

  
, 

z  = 
yx z

ZZ Z
Z

x y z


 
+ + +

  
, 

and the Euler equations for: 

u = 
dx

dt
, v = 

dy

dt
, w = 

dz

dt
, 

 

  
du

dt
 = 

u u u u
u v w

t x y z

   
+ + +

   
, 

(3)  
dv

dt
  = 

v v v v
u v w

t x y z

   
+ + +

   
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dw
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 = 

w w w w
u v w

t x y z

   
+ + +

   
, 

 

when one multiplies equations (2) by x , y , z  that: 

 

(4)    
2

dq

dt


 =  (X u + Y v + Z z) − 

A B C

x y z

   
+ + 

   
 +  , 

when one sets: 

q = 2 2 2u v w+ + , 

 

  A = Xx u + Yx v + Zx w , 

  B = Xy u + Yy v + Zy w , 

  C = Xz u + Yz v + Zz w , 

 

and finally uses –  as an abbreviation for the expression: 

 

x x x y y y z z z

u v w u v w u v w
X Y Z X Y Z X Y Z

x x x y y y z z z

        
+ + + + + + + +

        
 . 

 

It also follows from (3) that: 
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or with the help of the equation of continuity: 

 

(5)  −
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
  

=  (X u + Y v + Z z) − ( ) ( ) ( )1 1 1
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 +  . 

 

If one assumes conservative forces X, Y, Z, for the sake of clarity, i.e., one sets: 

 

X = − 
V

x




, Y = − 

V

y




, Z = − 

V

z




, 

then it will follow from (5) that: 
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q
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t t
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 Now, it can be shown by an application of Green’s partial integration that –  is the partial 

differential quotient with respect to t of the density S of the deformation energy (323), so one will 

get from (6) that: 

21
2

U V W
q V S

t x y z
 

   
 + + + + +    

 = 0 , 

 

or, when one assumes, in addition, that the potential energy V depends upon not only external 

forces, but also originates in the action-at-a-distance of the masses in the system upon each other, 

such that: 
21

2
q V S + +  

 

can now be regarded as the density E of total energy per unit volume, one will have: 

 

E U V W

t x y z

   
+ + +

   
 = 0 . 

 

The velocity components of the energy current will then be: 

 

 
 (323) See footnote 309. Moreover, W. Thomson had already shown in 1857 [Quart. J. of Math. 1 (1867), pp. 57], 

by an application of the second law of mechanical theory of heat, that elastic forces will possess a force function 

whenever the temperature of the medium either remains constant or changes adiabatically, while nothing beyond that 

much can be asserted, in general; cf., Love, Elasticity, v. 1, pp. 117. Thermodynamic effects are ignored completely 

(constant temperature is assumed, resp.) in this treatise. The extended question does not seem to have been considered 

up to now. 
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 For an inviscid fluid, the pressure p enters in place of Xx, Yy, Zz, so A, B, C will then be 

proportional to u, v, w, and current will flow in the direction of motion of the fluid (324). When 

Poynting developed similar formulas for the electromagnetic energy, that led to Poynting’s 

theorem that the energy in an electromagnetic field flowed with a certain intensity perpendicular 

to the plane of the lines of magnetic and electric force (325). For a conductor with current flowing 

in it, energy must then flow into it in order for heat to appear (326). 

 In general, there is a difficulty in regard to the real meaning that one can ascribe to those 

pictures. That is because, as would emerge from the presentation above, one can add arbitrary 

functions u1, v1, w1 that satisfy the equation: 

 

1 1 1u v w

x y z

  
+ +

  
 = 0 

 

to the components, i.e., the flow velocity components for an incompressible fluid. It therefore 

seems that the whole approach will have only the character of a representation that is capable of 

many modifications as long as one is not in a position to sharply distinguish between a true energy 

current and the innumerable fictitious ones. We shall not go into the question of whether it is 

possible at this point in time to make such a decision, which is a possibility that Heaviside and 

Föppl have both disputed (327). 

 The foregoing considerations refer to continuous masses. More recently, Volterra (328) has 

extended that picture in several articles to discrete masses, between which actions-at-a-distance 

also appear by means of an extension of Maxwell’s equations. There, as well, there are analogous 

values for U, V, W, since the influence of discontinuity surfaces across which jumps in the density 

and velocities take place drops out. However, in so doing, it is necessary for one to also assign 

negative values to the energy, which is hard to reconcile with the usual physical assumptions. 

 

 

 50. Energetic foundation of mechanics. – We shall now mention the attempts to arrive at the 

differential equations of motion from the energy principle, initially in the simple form: 

 

 
 (324) For viscous fluids, see Umow, footnote 321; Wien, footnote 322, pp. 698.  

 (325) Poynting, footnote 322, pp. 348; for similar pictures in mechanics, see A. Föppl, Technische Mechanik, pp. 

213, et seq. 

 (326) According to G. Mie, “Ein Beispiel zum Poynting’schen Theorem,” Zeit. f. Phys. Chem. 34 (1900), pp. 522, 

the direction of motion of the energy current in the immediate neighborhood of the wire is roughly parallel to it. 

 (327) Cf., A. Föppl, Einführung, pp. 293. According to G. Mie, “Entwurf einer allgemeiner Theorie der 

Energieübertragung,” Wien. Ber. 107 (1898), pp. 1114, it is possible.  

 (328) V. Volterra, “Sul flusso di energie meccanica,” Torino, Atti dell’Accad, 34 (1899), likewise in Nuovo 

Cimento (4) 10 (1899).  
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T + V = c . 

 If one sets: 

T = 
2 2 21

2
( )i i i im x y z+ +  

 

for a completely-free system that is subject to only conservative forces, and one assumes that the 

accelerations are independent of the velocities, and that c should be a constant then one will have: 

 

0 = ( )i i i i i i i i i i

i i i

V V V
m x x y y z z x y z

x y z
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Should that equation be true for all values of ix , iy , iz  then it would, in fact, follow that: 

 

  
i

V
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x
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
 = 0 , etc. 

 

 However, one cannot reach a similar conclusion when equations of constraint exist between x, 

y, z, as R. Lipschitz (329) remarked before. Helm (330) then sought to appeal to the variational 

process by giving the energy principle the form: The change in total energy in each possible 

direction is equal to zero. However, one can only understand that change to mean the increase in 

energy that corresponds to a variation of the coordinates x, y, z by  x,  y,  z, resp. In that way, 

one will now have, in fact: 

 V = 
i i i

i i i

V V V
x y z

x y z
  
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but the change in the kinetic energy is: 
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and is by no means equal to: 

( )m x x y y z z  + + , 

 

which is an expression that can be obtained only by an inadmissible substitution of dx, dy, dz with 

 x,  y,  z that does not apply to both parts of the energy (331). However, if one defines the possible 

change of energy to be that expression from the outset then one will have an arbitrary formalism 

 
 (329) See Helmholtz, “Über die Erhaltung der Kraft,” Ostwald, K. B., no. 1, pp. 55, also Wiss. Abh., Bd. 1, 1882, 

pp. 12. 

 (330) See J. Boussinesq, Recherches sur les principes de la mécanique, 1872; J. de math. (2) 18 (1873), pp. 315; 

Leçons, pp. 24. Cf., also the remarks of C. Neumann (Helm, Energetik, pp. 229).  

 (331) G. Helm, Zeit. Math. Phys. 35 (1890), pp. 307; Energetik, pp. 232; also Ann. Phys. Chem. (2) 57 (1896), pp. 

646. Cf., Boltzmann, ibid., pp. 39.  
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that was invented with the sole purpose of being able to assert the equivalence of the energy 

principle with that of d’Alembert. 

 The repeatedly-mentioned investigations of P. Duhem point in a whole different direction, 

namely, towards finding a basis for physical mechanics from an energetic standpoint. He sought 

to give an abstract foundation for the mechanics of material systems, and with regard to the 

thermodynamic concept of work, in particular, while giving painstaking emphasis to the 

hypothetical “conventions.” However, it has still not been decided at present to what extent that 

will influence the systematic representation of the foundations of theoretical mechanics.  

 

 

 51. Concluding remarks. – The general mathematical principles of mechanics always prove 

to be theorems and methods that are probably based upon the basic intuitions about their 

mechanical (i.e., expressed by mathematical concepts) connection to phenomena in their simplest 

form, but appear to be inductive, heuristic statements in their advanced form, and their validity is 

first tested by the possibility of applying them. Thus, the ideal of a purely-deductive philosophical 

system, of the type that mechanics had in mind during the Eighteenth Century, and as Hertz 

undertook to present in a completely-abstract way, has not been achieved in reality up to now. 

Therefore, the present standpoint on the theory offers the possibility that our ongoing knowledge 

of the facts will not be inhibited by arbitrary deductive principles that are inferred from a restricted 

sphere of facts. That standpoint is the one that Galilei had assumed before, which is characteristic 

of the mathematical description of nature, and neither asks about unknowable causes nor starts 

from the notion that all phenomena should be subject to the constraint of one (or at most a few) 

fundamental physical hypotheses, but with the assumption that a coherent understanding of reality 

that is free from contradictions is possible at all. It initially seeks the forms that would suffice for 

describing the simplest processes and reserves the extension and correction of them to the extent 

that it would expand the scope of the experiments. 

 

__________ 

 


