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ANHOLONOMIC SPACES

AND

THEIR MECHANICAL APPLICATIONS

By G. VRANCEANU.

Professor at the University of Cernauti

INTRODUCTION.

One knows that the division of mechanical systenbs holonomic and anholonomic
ones is imposed by analytical considerations. Indeedonbmic systems are
characterized by the property that one may choose tlaenpters on which the position
of the system depend in such a manner that all of thetr@ints of the systems are
expressed by relations in finite terms in these parametenereas for anholonomic
systems, at least a subset of these constraigtgen by a system of Pfaff equations that
is not completely integrable.

As is well known, this fact entails that there assential differences between the
analytical study of holonomic systems and that of &rtwmic systems. On the one
hand, this is because it is only the holonomic systéaisare subject to Lagrange’s and
Hamilton’s equations of motion (and one knows that atnadl of the results of analytical
mechanics are obtained by starting with these equatio@s).the other hand, this is
because it is for the holonomic systems that one gy a very natural geometric
interpretation, with the aid of a Riemann space whoseanstdefined by the vis viva of
the system, in such a manner that the unforced trajestofia holonomic system with
time-independent constraints are also the geodesibe abrresponding Riemann space.

For anholonomic systems, one either seeks to find emsabf motion that are
applicable all mechanical systems (and we then havedbations of Maggi, Volterra,
Appell, etc. [], v. Il, para. |, pp. 393,4]), but these equations are loath to have the
malleability and the properties of Lagrange’s and Hamigt@quations, or one seeks to
find geometrical properties of these systems. The Ip##r has led to the concept of an
anholonomic space, which is a generalization of the equtnof a Riemann space, but
which also is intimately related to spaces with afttoanections.

The original idea of applying geometrical consideratidgaosthe study of an
anholonomic system is due to A. Vos$]([L885), who was concerned with the unforced
trajectories of the motion of a point in ordinary epavhose coordinates satisfy a Pfaff
equation that is not completely integrable. LateZ], (1888-1889), the abbot of Issaly
extended this to manifolds in ordinary space that araeléfoy a Pfaff equation that is
not completely integrable, manifolds that one cpfisudo-surfacegnd that have many
of the properties of surfaces. Nevertheless, thisnekie is almost always formal, and
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one cannot really see its significance, and perhapsibedd this fact these works remain
isolated.

The concept of an anholonomic space was introduced in 196 Yyanceanu {],
1926), who showed that if, in a Riemann sp¥geone is given a system of— mPfaff

equations that is not completely integrable then onenelefan anholonomic spatgin

which it is possible to introduce a parallelism in th@sseof Levi-Civita, in such a
manner that to each anholonomic system with timegiaddent constraints one may
attach an anholonomic space whose geodesics (auto-peualies) are also the unforced
trajectories of the mechanical system under condidera

In an independent fashion, Z. Horakt3, 1927) showed how one may generalize
the concept of manifold by introducing anholonomic manifaddsthe configuration
spaces of anholonomic mechanical systems.

In 1928, J. A. Schouterd§] introduced anholonomic spaces with affine connections,
and the work that was done by E. Cartan, J. L. Syndé&aRklin, and C. L. E. Moore, E.
Bortollotti, A. Wundheiler, J. A. Schouten, Z. Hordk, Vranceanu, etc., developed the
study of anholonomic spaces considerably. The objethisfmonograph is precisely
that of presenting most important results that wetainéd in that direction, as well as
some applications to holonomic and anholonomic mechasyséms.



CHAPTER I

THE ABSOLUTE DIFFERENTIAL CALCULUS OF CONGRUENCES.

1. Systems of n independent congruences. — Consider, in the space, %f n real
variablesx', 34, ...., X", a contravariant vectot that has the componentyx) (i = 1, 2,
..., n), where the functiond' are continuous and differentiable, as are all of timetfons
that will be considered in the sequel. Having said thesdtfierential equations:

o _o¢__ox
AL A2 A"
define a congruence of curves in the spage Xhrough each point B( X%, ...., X",

where the quantities' are not all null there passes one and only one cufwbeo
congruence, such that the tangent to the curve at thePpdias the same direction as the
vectorA at this point.

Now considern independent contravariant vectdi¢a = 1, 2, ...,n); ie., the

determinant of their components:
A=Al

IS non-zero, at least in a certain region of the spacm which our considerations are
valid. Thesen vectors determine a systemroindependent congruences i, X1 such a
fashion that through each point P there passrves of the system whose tangents at P
have the same directions as thedependent vectordy) that pass through that point.
Since the determinadtis non-zero, one may consider its invetSewhich is related

to the elements df by the well-known formulas of the theory of determirsal):
)I,;)IJ?1 =a“Jﬁ . APA =07,

where thed are equal to zero or one according to whether thedadice different or not.
These formulas show that the quantifigsA;,..., A% may be regarded as the components
of n covariant vectorsA) in the space X and one sees that thaseovariant vectors are

determined once one is given the system of independagtiue@ncesA).
Now, let P&, X4, ....,x") be a point and let:

P +dx, xE +d)é, ..., X"+ dX)

(*) We employ the convention that two repeated indivdisate the sum over these indices. Likewdse,
b, c, d, g f, g are indices that relate to the congruendgswhereas, j, r, s, t, u, v are indices that relate to
the variablesx).
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be a point that is infinitely close to P. The infisiteal displacement PHs a
contravariant vector whose origin is at P and whamseponents ardx', d¢, ..., dxX". Its
projectionsds® on the congruenced)(that pass through P are given by the formulas:

1) d€=A%dX (X =Alds).

It then results that the displacement’ B determined either by its componemté
relative to the system of variable§,(or by its componentds’ relative to the system of
congruencesA).

Following E. Cartan, the Pfaff formds, d<, ..., d§' may be interpreted as the
coordinates of a point’ Rvith respect to a Cartesian frame that is determihéUlay the
tangents to the congruencey that pass through P. Moreover, tenay be taken to be
the new variables in the space, Xnly if the total differential equations (1) are

completely integrable, and for this to be true it isessary tha%%ij: ddf't . If these
conditions are not satisfied, which is obviously the ganease, then the formulas (1) do
not define a true transformation of variables, becausg thal differentialsds' have
meaning, and not th&. One may say, with J. A. Schouten, that in the germase the

n

formulas (1) define a transformation in the spageh¥t takes the variables, X2, ..., X
to the anholonomic variables &, ..., S".

2. The Riemann space associated with the congruences (A). — One may give a
geometrical interpretation to these anholonomic variadlles’, ..., s" if one associates
our system of congruences with a Riemann spadéat has the metric:

(1) ds’ = (ds)? + d)* + ... +dI)?;

i.e., the space Vin which the Q) are orthogonal congruences. In this case, as has been
known since the work of Ricci and Levi-Civita5][ 1901), thes are arcs of the
congruencesk,), as measured in the associated spag@an the Pfaff formds' are the
differentials of the arcs of these congruences. okstiie quantitied. andA®, they are
called theparametersandmomentof the congruencedl).

It is obvious that the Riemann spacg Will vary with the chosen system of
congruences in X Indeed, consider another system of independent conga{dnteat
has the quantities:

(1) ds*= T

for its differential arcs, where tb are functions of the variableg)( Due to the fact

that then independent vectofd ) may always be expressed linearly with the aid ofrthe
independent vectorg), and conversely, we will have formulas of the form:
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(2) ds*=c2de,

where the&’ are convenient functions of the variablgswhose determinant}| is non-
zero. It then results that the sp&e which is associated wifd), coincides with ¥,
which is associated withA), only in the case where the determinant ofcfheas
orthogonal, that is, if the. satisfy the orthogonality conditions:

0 (b#d),

@) 2e=a={] oo

3. Transformations of congruences. — The formulas (2) may be interpreted as
defining a transformation of the congruences, and, m@a@saly, the transformation that

takes the congruences)(to the congruencg2). By that transformation, the moments
and parameters of the congruencisad(1) are related by the formulas:

(2") A=GAT, A =CA

The transformations of the congruences (2) form a griaupge sense that it contains
the identity transformation, each transformation hasinverse, and the product of
transformations is also a transformation (2), and thiglue to the linearity of the
transformations. This group depends updmrbitrary functions; of the variablesx],

and it contains, as a particular case, the invertibiletip@ transformations:
(3) X" =x (8 LX)

that one considers in the absolute differential datcu For that reason, certain authors
(R. Lagrange 10], pp. 17; J. A. Schoutenl9], [21]; Horak [14], etc.) have agreed to
generalize the absolute differential calculus by aasing the transformations (3) with
the transformations (2). Nevertheless, one may methat the property of the group (2)
that it must contain the pointlike group (3) as a subgroightmot be true for a subgroup
of the group (2). Indeed, the orthogonal subgroUpni®yht not contain any subgroup of
the pointlike group if the space,\that is associated with the congruencési$ not
Euclidian.

As in the sequel, we will have to occupy ourselves wéhtain subgroups of the
linear groups (2), it is convenient to make a clear distindetween the transformations
of the variables (3) and the transformation of the ceeages (2). As for the definition
of the vectors or tensors, we must take into accoenfofowing results:

If we are given a tensor, which, to simplify thing® suppose to be of second order —

once contravariant and once covariant — and has theitigsR| for its components

relative to the systems of variables),(then its components with respect to the
congruencesA) are given by the formulas:
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=RIAAL.

These components, which one also callensic, are invariant under the transformation
of variables (3); however, under a transformation ofcegruences (2) they transform
according to the formula:

(3) ricl=rbca.

Conversely, if we have a system of quantities that are invariant under the
transformations (3) and that transform under (2) acogrdd (3) then they define a
tensor of second order that is contravariant in tidexa and covariant in the index
and whose components relative to the variab{earg:

i —p,ayigb
R, =1,44].

Moreover, if one remarks that tR(;are invariant under the transformations (2) and

that they transform under (3) according to the webwn formulas from the absolute
differential calculus of coordinates tlmme sees that there exists a complete duality
between the calculus of coordinates and that of congruemeesthat one may define
vectors, tensors, and, as we verify later on, afsoeaconnections, by the way that they
transform under either a transformation of coordinates a transformation of
congruences, while the variableg femain the same.

As examples of contravariant and covariant vectelaive to the congruences)(
we have the displacemedt' and the vector that has as its components, thensitri
derivatives of an arbitrary function:

o o
ox? ox'

It is useful to remark that the second intrinsic denveat are not generally symmetric; we
have the following formula @], pp. 290):

0’f 9% e O
959 999 & P axe

(3"

for the commutation of the second intrinsic derivativelsere the’, are defined by the
formulas (4) that are given in the following section.

4. Fundamental formulas and identities ([30], pp. 180). — We return to the
formulas (1) in order to calculate the bilinear cowatsaof the formsds. If one
considers another displacemexrt, which is different frontx, then we have:
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0A* 047

odé—-d& (
ox! X

jdx’cfx‘ + A2 (0 dXx— do ),

and if, in that formula, one introduces, in pladel® and X, their values as functions of
d< and & then one finds the formulas:

(4) 0dS —d & =widSI$+A°A%X  (AX =ddX —d &K ),
Sz
(4) wh = —- 92 AL
X 6><

These quantitiesf., which play an important role in the calculus ehgruences, are
obviously invariant under the transformation ofighles. They are also skew-symmetric
in b andc, and are all null if the® may be regarded as the true variables. In péaticif
one of the formsls" — for exampleds' — is an exact total differential then the afeall
null.

If one now takes the bilinear covariants of therfe (2) then one has:

sds* - dow=| 9o G
0s° 09

jdsb5§+ @0 ds- @ 9,

and if one takes (4) into account here, as wethas analogues for the forms')xhen
one arrives at the following formulasyhich are fundamental to the calculus of
congruences:

Q % -5 el - .
As one sees, these formulas express the relatpm&i@tween the quantities for the
congruencesd), the quantitied for the congruencdd ), the coefficients?, and the first
order partial derivatives of these coefficients.

If one differentiates the formulas (5) along an grand then, after permuting the
indicesb, c, d,one takes the sum then one finds without diffiuttpon taking into

account formula (3 for the commutation of the second derivatigfes that the
quantitiesrf, must satisfythe fundamental identities:
owg, 6\/\/a oW,

5! db+
) as" s 099

+\N(?fV\4)d+ V\&\Ngb‘*' V\z)fV\g:d O
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Moreover, these identities may also be found by sayiagthen partial differential
equations Xf =A! gf 0 satisfy the Jacobi identities. As one sees, délfsyexpress the
X

fact that the fundamental equations (5), when considevetiet partial differential
equations i:, satisfy their integrability conditions identically.

5. Affine connections. — Suppose that we have an affine connectipimAhe space
Xn whose coefficients in the systems of variabl@safe F:} . One knows that under a
transformation of variables (3) these coefficientsisform according to the well known
law of affine connections 1P], pp. 3; [L3], pp. 35). If one takes the coefficients of the
connection A in the system of congruencef (o be the quantities:

sl — aAiﬁl rja i
ybc_(axj A j/]o/]c]’

which are invariant under coordinate transformations, thenparallel transport of a
vectorn? or v, along a displacement’ will be defined by the equations:

(5") dV? =2V de, dva = -2 v, dS.

Having said this, one easily verifies that under a chafigengruences thg" must
transform according to the formula:

(6)

_yef Cb ybc e’

which constitutes the transformation law for affinenwections in the absolute
differential calculus of congruences.
If one introduces the formulas (6) into the fundamefotahulas (5) then one finds:

=+an~f_ ce~a ca_5ea s a a
Tef Cbcc _Tbcce’ (Tbc_ybc _ycb _Wbc)’

in which the quantitieg:are the components of thersion tensor of the affine
connection A relative to the congruences)(

6. Infinitesmal parallelogram and pentagon. — Consider a point Rj and an
infinitely close point QX + dx). One may say that the point Q is obtained by applying
the operatod to P. Let R{ + dx) be another point that is obtained by applying the
operatoroto P. If one now applies the operatbto the point and the operatorto the
point R then one finds two other pointXSf dx + &x + dx)] and TK + & +d(X +
X)].
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This being the case, the vector TS has the quanfites J dX — d & for its
components in the system of coordinatgs (f d and dare operators defined by parallel
transport under the connection, then the components of the vector TS relative & th
congruencesA) have, by virtue of formula (4), the expressions:

(6") AS = DX = (2 -2 -w2) ds &° .

It then results that the point T coincides with $hié torsion tensat2is null; in this
case, the figure PQSR constitutes what one referstteeadinitesimal parallelogranof
a space with an affine connection with vanishing torsion.

If the torsion tensor is not null then the figure A®Sconstitutes thénfinitesimal
pentagonof A,, and one sees that the fifth side TS of the pentag@second order
infinitesimal with respect to the two sides PQ, PRnf which the pentagon is
constructed.

If one considers the parallel transport of a veckmngathe infinitesimal parallelogram
or pentagon then the variations of the componentiisfviector will be expressed with
the aid of curvature tensor of, 7], pp. 197).

7. The group of the Riemann space. — Suppose that the space B a Riemann
space Y. In this case, one may choose the congruemje® (be an orthogonal system
of congruences in V([7"], chap. X), and if one desires that (A¢be orthogonal in ¥

then it is necessary that ttfe satisfy the orthogonality conditions 2 The

transformations of the congruences (2)) @oviously form a group, therthogonal
group. The properties that are invariant under this group atbegeasame time, invariant
properties of the space,Vand conversely. It is interesting to remark that wihealing
with the orthogonal group the concept of covariancenades with the concept of
contravariance. As for the affine connection gf & the orthogonal group, it is defined,

with respect to theAj, by the Ricci rotation coefficiend. ( =-)~.), which are related
to thewf_by the formulas:

) WV TS OG WU,

Indeed, if one differentiates the orthogonality fotasu(2) along an ars® and then one
takes into account the fundamental formulas (5) thea fimds that the rotation

coefficientgf, andy;’. satisfy the law of affine connections (6). Obviouslythiéy are no
longer orthogonal congruences ip tien the connection on,Will not be represented by
the rotation coefficients for ti{d ) relative to théA).

It useful to remark that the equations of the geod@sivs, which are also the auto-
parallel curves in Y, may be written:
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du?
ds

S

(6")

wheres is the arc length along the curve anduhare the direction cosines that the curve
makes with the congruence} (

Naturally, one may associate the last of equationsditjded byds with these
equations; one thus obtains a system in the normal fo@n first order equations in the
n unknowns{ and then unknownsu® (Carpanése5f]).
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ANHOLONOMIC GROUPS AND SPACES.

8. The group of a Pfaff syssem. — Now suppose that we have, in the spageaX
system oh — mPfaff equations:

(7) ds' =A"dx'=0 h’'=m+1,...n A.

If this system is completely integrable then one mayabgonvenient change of the
variables X) and the formgs" , reduce this to the form:

5Y) de' =dx"'= 0 X" =c" (const.)],

in such a fashion that this system defines a famiby"of™ spaces ¥ in the space X At
each poinP° (x)of the space Xthere passes one and only one spage axd this

m+1

happens precisely when the constants of integrafion’, ..., c” have the valuesq

., X . If the Pfaff system (7) is not completely intdgjeathen one may no longer reduce
it to the form (%’); thus, it no longer defines a family of spagg.XIn this case, one says
that the system (7) defines anholonomic spack¥'in X.

Upon associating the formds” with other formsds' (h < m), subject to only the

condition that they form a system ofindependent forms, together with ds8 , one
easily sees that the most general transformatiortbeotongruences that preserve the
system (7) are given by the formula:

(7) {dg“ = add+ ¢ dé,

ds" = ¢ d¥.

They are obtained from the general formulas (2) upon simptsat the coefficients'

are null. These transformations)(@bviously form a group themselves; it is the group of
the anholonomic spa¢€’. This group has the property of preserving the charactbaeof

contravariant vector 'Rhat satisfies equations (TAT R = 0). Such a vector, which is
also referred to as a contravariant vector thattéior or tangenttoX|', is characterized
by its components" =A"R' relative to the congruenced"), which one also calls the
fundamental congruences o0X,, because its components relative to the

congruence1") (which areanholonomiccongruences o) are null. The group (¥
also preserves the character of the covamaterior or normal vector (" = 0), and, in

() Unless stated to the contrary, we make the cororetttat the indiceb, k, |, a, B, y; & u vary from 1
tom, whereas the same indices, when accented, varynfrem ton.
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particular, the system of partial differential equagidhat is associated with the Pfaff
system (7):
i of
Xp=A—=0.
" ox'

By contrast, the group (7does not preserve the character of the interioarant vector

(r™= 0), or that of the exterior contravariant vectdr% 0), because for the latter, for

example, we have:
h— b K

=c)r¥, " =cr¥,

and one sees that, in general,fthare non-null.

One obtains an important property of the anholonomiougr(7) if, in the
fundamental formulas (5) that relate to that grogp< 0), one set&r=h’, B=k, c =1,
which leads us to the formulas:

(7) Wy GG~V ¢ =0,

which expresses that the quantiti€sare the components of a third order tensor relative

to the congruenced) that is once contravariant exterior and twice ciawd interior.
One may obtain an interpretation for that tensocdnysidering the bilinear covariants
of equations (7) for two displacements that satisfy tegsations. One finds:

7" As"=5ds"-dd ¢ - o d§ dsrA"A S (modds').

These covariants are null at the same time aéxthenly if the tensow] is null, but in
this case one knows that the system (7) is completedgrable, and for that reason one
calls the tensosf] theintegrability tensoifor the equations of anholonomity (7).

One calls minimum number independent equations in therayg ds'= 0 therank
of the covariantAs” (for a fixedh’), which is always an even number.

9. The group of a Pfaff system and its derived systems. — One knows that the
search for integrable combinations of a system of Rfaffitions may be carried out with
the aid of the derived systems of the given systén pp. 294). One defines thgst
derived systerof (7) to be the system that is formed from allef tombinations of these
equations such that the bilinear covariants)(@re null ifAxX = 0 . If there exisp — m
linearly independent combinations among these then onetakaythem to be the first
equations (7), and in this case the compongfi(sn’= m + 1, ...,p) of the integrability

tensor are null. As for the other components, onevknaoreover, that the equations:

WEI’Ah’ =0 h’>p)
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might not have non-zero solutions in the unknoWnssince, otherwise, the derived
system would contain more thpr- mequations. If one know desires to obtain the group
that contains the system (7) and its derived syst¥rs O then it is necessary that the
coefficients]’ (k”> p) be null in the latter formulas (7

In an analogous manner, one may consider the deriveshsydtthe systenas™ = 0,
or even the second derived system of the system (7}hislfsecond derived system

possesseq — mequations, which are chosen to be the first equations ,jrth@) one
must have:

W, =w =wZ,=0 @=m+1, . ..,ql,k'=p+1,..,n).

One knows that if it so happens that a derived systahotie might form coincides with
its proper derived system then it is formed from integraldmbinations of our system
(7). As a consequence, if (7) does not admit any integcaloiinations then one must
arrive at a derived system that is identically nuth ahy case, the group that preserves
the system (7) and its derived system is a well definbdrseup of the group ()

Along with the concept of derived system, we will fihdiseful to define the concept
of the classof a Pfaff system, which is the minimum number ofialales that figure in
the system under a transformation of variables. mamber is equal to the number of
independent equations in the Pfaff system:

") ds'=0, W) ds'=0.

If the class i: — pthen one may suppose that the fodsSfor k< p do not appear in
this system; i.e., thaf; = 0 k< p).

10. The affine connection of two complementary Pfaff systems. — The
anhomolomic group (Y may be decomposed into a product of two groups. The group:

ds" = ¢ ds,
®) {d§” = ¢ ds,

which completely preserves the character of the intétamgent) vector or the exterior
(normal) to the anholonomic spaXg, and the group:

(8)

ds" = d&+ ¢ d¥,
ds" = dg'.

One sees that the group (8) is also characterized bfaché¢hat it preserves the system
(7), along with the system that is obtained by equatirgld’ to zero. As a consequence,

if one setsa = h, b = Kk, ¢ = I in the fundamental formula for this group}E&c'” = 0)
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then obtainanalogousformulas to (7) (the accented indices having been changed into
unaccented indices, and conversely), in such a fashagrtht quantities], themselves
define a third order tensor with respect to the group (& thieintegrability tensorof the
fundamental congruencesXf .

This amounts to insuring that the group (8) also possessésartial) affine

connectiol. Indeed, if one se&s= h, b =k, ¢ =1in the fundamental formula (5) for the
group then one finds:

a_C::_ a -
(9) aSI W;,Bck CVH Vfl §’

and if one seta = h', b = K, ¢ = | then one findainalogousformulas. These formulas
express, in accord with (6), the fact that the quantifjesndw/, are the components of
an affine connection relative to the congruendg (hich permits us to transport an
interior vecton/" or v, along an exterior displacemeds$ according to the formulas:

9) dv' =wi v dd, dvi, = —w v ds

and an exterior vectol orv, along an interior displacemeds by analogousformulas.

It is interesting to see the significance of that eation in the particular case where
the two integrability tensowg), andw, are null; i.e., if the anholonomic spaxis
composed ofx"™ spaces ¥% , and likewise if thecomplementaryanholonomic
spaceX; " (d<" = 0) is composed eb™ spaces X . In this case, one may arrange this
in such a fashion thaf} ,w{, are all null, and the parallel transport)(@mounts to
transporting a vector that is situated in an(X,-m, resp.) along a path that is situated in
an X,-m (X, resp.) while leaving the vector invariant.

The affine connection, ,W'Ij,'l Is a connection without torsion. Indeed, the
parallelogram that is constructed from an interior Idisqaumentdé1 and an exterior

displacements’ closes because we have, in accord with the firstdtasn(9) and their
analogues:

odd' =w, dsJ ¢, dod =wfl o5 ds,

and thendds' = dds'= 0, becauses' = ds' = 0. Now, the values that were introduced
in (6") show us that the tensor TS is null. Moreover, @mmection ischaracteristicby
the condition that it forms a parallelogram thatdsstructed fromils' = Js" .

Along with the (partial) affine connectiovj, ,w), , which exists for any Pfaff systems
ds" = 0, ds’ = 0, the group (8) might possess a connection that dsecto the non-
integrability of these systemdndeed, suppose, for example, that the system (7) is not
completely integrable. In this case, the commutatiomdtas (3) for the second
derivatives of thel'j,' along the arcs’ and 8, where the first derivatives are given by
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formulas that aranalogoudo (9), lead us, taking into account the fundamental iicest
to the formulas:

" 4 aC:" _\_Ivh' a 1 ’ .
(8) \NIZF_ aﬂ,a’ckqﬁcfg_v\z,k’(z’
where we have set:
=2 g
kiK' — 68 + ka Ik + al V\Zk’ + V% V\Za’

Since the tensay is null, the equations {8 are not all null, and they permit us to

.
deduce the values of at least some of the derivagrclv;és
S

Suppose, to begin with, that the first derived syste(@)ois null. In this case, among
the equations (8§, one finds at least one system of independent equatmribe
"

oc, . . , "
unknownsa%. Upon solving this system, one may write the soluitioime form:
S

I a H’
9" Ck _J/j’ck qﬂ 5k,|,C2

In order to account for this fact, we introduce theseeaslnto (8), the 0 andd being
arbitrary, for the moment. If one takes into accoufi} {fien one obtains the tensorial
formulas:

8" (WipOay — W o) & € 6 = (WG 305 — W) G
If one letsr, sdenote the values &f | that correspond to the chosen independent system
in thechg', then thedandd are solutions of the system:

W O =W

WOy =W G 7,

and consequently they are also well defined. If one @®asother independent system
then one will have another solutiorf)9but the difference between the corresponding
will be a tensor. Equations "9 when compared to (6), express the fact that the
quantitiesd;, are the components of an affine connection relativéa¢occongruencesi)

that allows us to transport an exterior vector alongeerior path. Obviously, if the
systemds' = 0 then one also has that its first derived systeralisso one may apply the
same considerations to it and obtain analogous fornmukisch a fashion that in this case
the group (8) will possess a complete affine connectidh.we let y denote the
components of that connection relative to the congruepijeand take into account the
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fact that it must preserve the character of theimtend exterior vectors &' then we
have the formulas:

=9, V' =w), yh=0,
9" { Y i ki ki k

SN st cHo_ CHo_
Yir =0 Vil =Wers Vig =

This connection has torsion, because among the compooktite torsion tensor we
have:

N _ ' h —
Iy= _W|I:| 1 Ly = _WI|:'|"

in such a fashion that one is sure that the parallelogmatms constructed from the two
interior (exterior, resp.) displacements does noteclosvioreover, one sees that the
integrability tensor defines part of the torsion tensotttie connection on the group (8).
As far as the tensor (§ is concerned, it defines part of the curvature tensoithe

connection, i.e., the tensor that is obtained bycthelition that th%&; that are given by
S
(6) satisfy the commutation relations for the seconivdives. This shows us that the
affine connection (9) contains all of the invariants of the Pfaff system &nd the
systemds’ = 0.
Now suppose that the first derived system of (7) ispmsad op — mequationsis™?

=...=d9=0. Inthis case, the equation8)(Bermit us to deduce only the values of the
.

derivatives?%f (I' >p). As for the solution, it will have the form"(Qonly if ¢ =0 (& <
S
p, I' > p); i.e., if the transformations (8) also preserve dieeived system of (7). One

arrives without difficulty at the following theorem:

The group of transformations of the congruences that preserves the sgistents

and ds' = 0 and their derived systems induces a complete affineection on the space
Xn if these systems do not admit integrable combinatio

It is obvious that this theorem contains the case e considered above as a
particular case when the first derived systems are Mbreover, this theorem may be
applied to the case of a group that preserves three rer coonplementary Pfaff systems
and their derived systems, because it suffices thatiilon of these systems givesms
independent equations3f], pp. 195).

One may also remark that if one is given only thefPfgstem (7) then one may,
under certain conditions, reduce its group) by invariant operations in the covariants of
the system, to a group that preserves two or more camaplary systems. In this case,
one says that the system (7)gsometrizablethe geometrization being complete if the
complementary systems do not admit integrable combirgatiéior example, systems of
two equations in an even number of variables, and, incp&tj systems of two
equations in six variables, are, in general, completelyngéizable (Vranceanu36]).
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11. Anholonomic metric spaces. — Now suppose that the spacg ¥ which the
Pfaff system (7) is embedded, is a Riemann spacdithis case, one may consider the

left-hand sideds" of (7) to be the differentials of the arc lengthsnof morthogonal
congruences in y and for this to be true it suffices to combine the &itgr multiplying

them by suitable factors. Moreover, one may assodtkEsen — mformsds’ with m
other formsds’, in such a fashion that the corresponding congruences constitute an
orthogonal system of congruences ip, Vo which the metric on Yis given by the
formula (1). If one takes equations (7) into account in the métf)cfor the space ¥
then it may be written:

(10) ds’ = (ds)? + d)* + ... + d9)?.

This metric (10), which is the sum ofsquares, but which generally contains all ofrihe
variablesx', »2, ..., X", constitutes thenetric of the anholonomic spa¢g@that is defined

in V, by the Pfaff system (7). The spatgthus possesses two invariants: the metric (1),

which applies to the interior of the fundamental congeaseri,), and the system (7).
The group of transformations of these congruences tleaepes these two invariants,
namely, theanholonomic groupf the spac¥ ", is obtained from the group 'J7upon

n?

associating it with the orthogonality conditions:

honoa |0 (k#1),
(11) qq—éi—{l k=1,
Naturally, this anholonomic group '}/ (11) preserves the metric (10) that is
abstracted from the terms that it annuls withdgie
It is interesting to know the significance of that@4"in the particular case where
equation (7) forms a completely integrable system thatroay suppose to be written in
the form (%'). In this case, the metric (10) Wfibecomes a quadratic form in the
differentialsdx’, d, ..., dX™ that has coefficients that depend updné, ..., x™ andn —
m constants of integration” . It results from this that our spa¢is composed of" ™"
Riemann spacesV. Due to this fact, we continue to refer to th&insic properties
of V."when we mean the properties that are invariant undegringp (7), (11), in the

non-integrable case.
We saw above that the groupg)(possesses a remarkable subgroup: the orthogonal
group; i.e., the group for which tblfésatisfy the orthogonality conditions:

(12) e =4

This orthogonal group preserves not only the metric (10} grbut also the metric
(1) on V,. The invariant properties of this group are filged properties oW,", because
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if V"reduces to a family of \ then the properties of the orthogonal group are, et th
same time, the rigid properties of thesg Which are embedded in,V
One also sees that tleemi-intrinsic properties of/"are the properties that are

intermediate between the rigid properties and thensitriproperties. One sees this fact
very clearly in the integrable case. Indeed, in the® ¢he metric Ymay be written:

(13) ds’ =a,,dxX' d¥ +2 g, d% dk + g, dk dx

and thals are linear combinations of the” . It then results that under a linear
transformation of theds' under the group (8), (11), one may modify only the
coefficientsa,; , in such a fashion that the semi-intrinsic group presethe coefficients

aqp of the metric of the family of W (dx” = 0), as the intrinsic group, and also #@hg;

i.e., the angles between the directions that belortpe family of \f, and the family of
complementary ¥ (dx? = 0). In particular, if the two families are orthogd (a,,. = 0)
then they remain orthogonal during the transformatmige semi-intrinsic group (8),
(12).

One may say, moreover, that the intrinsic propediggsendent on the coefficients
agp the semi-intrinsic properties, on thgg, a,, , and the rigid properties, on tlgg,

Qg s B -



CHAPTER 11l

THE GEOMETRIC PROPERTIES OF:

12. The second fundamental form. — In this chapter, we shall study, in the first
place, the semi-intrinsic geometric properties of éinolonomic spacd4’that were

defined above; i.e., the properties that are invariant rutiae anholonomic group (8),
(11). To that end, we remark that the fundamental dtasn(5) that related to that group
decompose into six categories, according to whether theesd, b, c have values
between 1 anan or betweerm + 1 andn. We have already considered four of these
categories in formulas (¥, (9), and their analogues relative to the group (8), wareh
the same for the (8), (11), with the sole differetiet thec] now satisfy the orthogonality

conditions (11). It remains for us only to consider the tategories that are defined by
the formula:

oc; _og' _ _
(14) 5 W, ¢ & - W g,

and their analogues. |If one associates (14) with thenui@ that one obtains by
differentiating the orthogonality formula (11) with pest to the fundamental congruence
h

then one finds a system of equations in the deriva%%‘emat may be solved in the

form:

(15) a—ck Vo ce o =y .

Likewise, if one differentiates (11) with respect #m arcs and eliminates
h

thea—c‘i then, with the aid of (9), one arrives at the formula

ds

(14) (W, + W, ) G & ¢ =W + Wy,

which expresses the fact that the quantitigs=w. +w,. =/ + ;. are the components,
relative to the congruences)( of a third order tensor that is twice interior coaat and
once exterior covariant. We thus have three tensaf§that are semi-intrinsic and of
third order: the two integrability tensos andw/, , and the tensox .

One may find a geometric interpretation for the latersor if one considers the
variation of the metric (10) ovi" under the transition from a point P to an infinitely elos

point R that is obtained from P by a normal displagend = A\ £", where the" are to
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be regarded as infinitesimal constants. Indeed, if wed#t=A"dX denote the

components of a tangential displacement that passesgth P then the corresponding
displacement that passes through R will have thevialip components relative to the
fundamental congruences:

dd" =A"(x + &) d(X + &) = dg" + W, dde”".

It then results from this that the lenglk of the displacement that passes through P is
related to the lengtto of the displacement that passes through R by the farmu

(16) do? = ds’ + v, d§ d&” .

One may say that the last term in the right-hand eidéhis formula represents the
variation of the metric (10), or of thest fundamental fornofV,"; i.e., it constitutes the

second fundamental form.This second fundamental form decomposes imte m
guadratic forms:
¢a‘ = VW, dé( dé,

which correspond to the — manholonomic congruences. Mf'is composed of"™
spaces ¥, then:
Wo =Va V=0, Ve =2),

and thg/ are, in this case, the components of the Euleriaratune of \4,

13. The class of the metric onV". — We have remarked above that the metric (10)

onV™may depend upon ati variablesx', >, ..., X", but obviously this number might be

reduced tan. The minimum number of variables that may appear srttatric is given
by the number of independent equations in the syst&dh (ip. 194):

(15) dd'=0, wl, ds"=0, Ve dd =0 .

One sees that this number is equal to the class afygtemds’ = 0 if the tensor of the
second fornvy » is null.

14. Interior parallelism. — We now return to formula (15). In accord with (6g\h
express the fact that the Ricci coefficiggjisletermine a connection in the interior of the

fundamental congruences that permits one to transpointamor vectory” along an
interior pathds by the equations 9], pp. 853):

(17) dv' —yivids=0.
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Upon dividing these equations by the lendgtof the displacements and regarding
ds

thed—to be the cosineg of a certain interior curvec) [X = #'(s)], one obtains the
S

equations of parallel transport alorg). ( This parallelism may be defined geometrically
in the same manner as Levi-Civita defines his paralleiisRiemann spaces; i.e., by the
condition that the angle between the vectdrs” + dV', which are both considered to be

vectors in a Euclidian space in whigfiis embedded, be the minimum that is compatible

with the constraints 20], pp. 18).
This parallel transport preserves lengths and angledeedh the variation of the
length of a vector is given by the formula:

ldl =V dV' =) V"V dd,

and this variation is null due to the skew symmetry @ ribtation coefficients. If one
now considers the ang®between the two vectord andu”, which one may assume to
be unitary, then we have:

sin@dd=V"dd'+u" dv' =0 (i.e.,d@=0).

This transport is different from the parallel trangpdiLevi-Civita in the surrounding
V,, which given by formula (9, when one usgg.in place ofy,?, because in order for
that type of transport to give us an interior vectoewlt is applied to a vector and an
interior path, it is necessary that yjebe null. From this, it results that the necessady a
sufficient condition for the interior transport (1H\8"to be, at the same time, a parallel
transport on Yis that the tensorg; , v, both be null.

If the vecton/" is not parallel transported along the interior cug)eX = ¢'(s)] then
the quantities:

DV _dV’ -
16 = -y Vu,
(16) ds ds y'I:'

whereu' are the cosines o€) and are calculated along)(represent the components of
the derivativeof a vecton along €).

15. Infinitesimal pentagon inV.". — One knows that the parallel transport in V

enjoys the property that the parallelogram thatasstructed from two infinitesimal
displacements PQ and PR closes. Moreover, one kifblw Weyl, B'], pp. 88) that
Levi-Civita transport on Ymay be defined in an intrinsic manner (i.e., withappealing
to the surrounding Euclidian space) as the trangpat preserves lengths and closes the

parallelogram. We shall see that our interior gpeomt inV.'does not close the
parallelogram. Indeed, if, in formula”§6 one takes into account thgt=) and that
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¥, = 0, because our transport must preserve the charactetedér vectors, then one
finds that the closure vector TS is an exterior vedtar has the components:

17) AS" = -w'dsds.

One sees that these components are null for anyadeapentsd and o only
if V™"decomposes intoY(w = 0). As a consequence, &Jf has an infinitesimal figure
that is a pentagon that is constructed from two intedisplacementsis’ and &, and
whose fifth side is the exterior vector (17

One may also give our transport (17) an intrinsic geaenéefinition: It is the
transport that preserves length and the character obintectors, and which annuls the

interior components of the vector TS. Indeed, the éoroondition says that the" must
be skew symmetric ih andk, and the latter one says that they must satisfgahdition:

sh _ sh—_ . ph
Va =V =We >

and consequently that thg are equal to the rotation coefficiepfs

16. Geodesics (auto-parallel curves). — The auto-parallel curves of the interior
connection oV,"are obviously obtained if, in formula (17), one supposestkigavector
V', which one may assume to be unitary, is tangent toctimee of transport, and

: ds’
consequently, that its components are equal to thee=sin 45 If one also takes
s

into account formula (1) for an interior curudé‘(’ = 0) then one finds the equations for
the auto-parallel curves in the form:

X du"
18 == =", — =kl
(18) ds " ds 2

It constitutes a first order differential system inmat form; i.e.,n + m equations in the
n + munknownsx andu. One sees that these curves have the property thatlapoint

P of V, and tangent to each interior directionVvdf, there passes one and only one of
these curves. Since"™ of these curves pass through each point P it then sebalt
upon starting at a point P one might not reach athefpoints of { with the aid of auto-
parallel curves iV,"that start at P, because in order for this to be trere tvould have to
be«"™ curves that start at P.

These curves also satisfy a minimum condition. yTée the curves such that the
distance between two points that are sufficientlgrrie one of these curves (G) is the

shortest one when compared to all of the neighboringesug) that pass through these
two points and are obtained from (G)ihterior displacements 2D], pp. 22). In general,

it so happens that these neighboring curves are norlangior curves V", and



23 Anholonomic spaces

consequently the minimum problem does not coincide wehugual minimum problem,
which is that of finding the interior curves whose lengta iminimum compared to all of
the neighboringnterior curves. This latter problem will be treated later o808

In order for a fundamental congruence — for examplg) ¢ to be a geodesic
congruence it is necessary thét= 0 (h < m), u™ = 1, be a solution of (18); i.e., it is
necessary that quantitigq, which one also calls the components of geodesic
curvatureof the congruence, be null. Likewise, in order for alo-parallel geodesics
inV"to be, at the same time, geodesics of the surrounding 6 necessary that the

latter equations (6) be satisfied if one set§= 0. This amounts to saying that the tensor
Vi 1S null. In this case, one says that the anholoampacé/"is totally geodesidn
the Riemann space,V

If the tensowvnn is non-null, i.e., if then — msecond fundamental forngs, are not
all null, then the solutions to the equatighs = 0, if they exist, define thasymptotic
curvesof the spac¥,". In the case whema=n- 1, and in particular the case= 2,n =

3, one may extend many of the properties and formulasvéhabtained in the holonomic
case to these asymptotic curves (Hlava2]j.

17. Exterior parallelism and the infinitesmal parallelogram. — One refers to the
parallelism that is provided by formula’Y@nd its analogues axterior parallelism
which permits one to transport an interior (exteri@sp.) vector along an exterior
(interior, resp.) path. We have seen that this péisafieis completely defined by the
property that it close the parallelogram that is congttuérom an interior displacement
d<' and an exterior displacemedt. It is interesting to remark that this parallelism does
not preserve the length of the interior vecirbecause the variation of that length is
given by the formula:

| d :% th,HVthdél ,

and one sees that this variation may be constanttyardy in the case whek&"is totally
geodesic in Y.

In summation, we have a semi-intrinsic affine conpactin the anholonomic
space/"that has the quantitig§, w). ,w/, for its components relative to the
congruencesA). This connection is not complete because it dodsgh@® us the
possibility of transporting an exterior vector along ategor curve. However, if the
system (7) itV"has its first derived system equal to null then one nspa@ate our

connection with the connectidfi, [formulas (9)], and one then obtains @mplete

semi-intrinsic connectiorthat has components relative to the congruendeshét are
equal to:

(18) {Vlhh = Vl?w yl‘dp = WkT” Vk: =0,

o st cHo_ Ho_
Yer =0 Vir =Wers Via = 0.
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If the first derived system is non-null, but the sgst@) has no integrable combinations,
then one may confirm that the subgroup of the semi-intrigsoup (8), (11) that
preserves the derived system of (7) possesses a comifbileéeconnection.

The existence of the semi-intrinsic affine connectiaturally entails the possibility
of the tensorial derivation of tensors. We remanky ahat, as long as one is limited to
the connectiom,, W), ,w,, which one may catlegular [because it exists for any system

(7)], one does not have the possibility of obtaining amotéesor from an exterior or
mixed tensor by differentiating along an arc of the antmaic congruence 2P|, pp.
35).

18. Curvature tensors ([18], pp. 65; RO], pp. 38). — We shall now find two semi-
intrinsic tensors of order four: one of them is irde&nd the other one is once covariant
exterior. These two tensors may be obtained byutzlog the variation of the
components of an interior vector under parallel transgorg the infinitesimal pentagon
and parallelogram M. Indeed, if one first transports the vecBrlong the pentagon

PQRSTRP then the variations of the compone’ﬁt:taking into account only terms of
second order, is obtained by taking the difference efdbmponents of the vectof
when it is transported, in one case, along PQS, andoither case, along PRTS, and we

have:
DV'=ddV' —d " — AV,

in which A denotes transport along TS. Upon performing the cdiocofa one arrives at
the formula:

(19) D/ =A" V¥ ds &,
where we have set:

0 oy" ,
19) K= 2O Vi W

This formula may also be written:
(19") AIPIr = yII:Ir + a‘f(ha’("fr” !

where thgj, are the four-indexed Ricci coefficients relative toe tfundamental
congruences.
h

The quantitied,;, are obviously the components of a fourth order integosar; it is

the interior curvature tensor ¥f". 1fV™ is composed of ¥ then thel)} are equal to the

four-indexed Ricci coefficients relative to the fundartal congruence, and consequently

our tensor coincides with the Riemann curvature tenstheovy, .

The quantitied,} are skew-symmetric in the indiceandr. As far as the indicels

andk are concerned, they satisfy the formulas:
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h k — !
Aklr +Ah|r _th,a’V\ﬁ .

Since the variation Dof the lengtH of the vecton along the pentagon is provided
by the formulal DI = V' DV", it results from this that the length of the vectBris

preserved along the pentagon if the curvatijfeis also skew-symmetric in the first two

indicesh andk, which comes about, in particular, whéfis composed of ¥, or ifV."is

totally geodesic in ¥,

If one denotes the angle between a unitary vefand the vectov” by 6, the length
by, and the angle between the vectdrandV' + DV by 8+ D& then the variation B,
when one has taken into account only the first ordengeis given by the formula:

(20) —-sin@ DO=A) u"v*dso $ —cosHDI—I :

This formula is analogous to that of Pér&]([pp. 219) for the V. but one sees that for
theV"it is no longer symmetric in the vectorg é&nd ¢), in general $3], 8 6).

If one now transports the vectdl along the infinitesimal parallelogram in then one
finds:

(21) DV'= A" Vds &,
where the quantities:

ayy  ow. ,
20) R =200y =l

are the components of the exterior curvature tensd gfwhich is, as one sees, a fourth
order tensor that is once exterior covariant. Omg gonsider the tensot§ andA;). to

be just one tensdf,,, in which the indesa varies from 1 tan. This tensor is obtained

when one looks for the variations of the veofdrlong the infinitesimal circuit that is
constructed from an interior displacemestand an arbitrargs’.

19. Geometrizable anholonomic groups. — The results of this chapter show that the
spaceV/,"possesses some remarkable semi-intrinsic geometric pgespelt the spac¥,"

is composed of"™ copies of \, (W, = 0) then a subset of these properties, more
precisely, interior parallelism, auto-parallel geodesiex] the interior curvature tensor
are also intrinsic properties \gf", or rather, theo"™ copies of \4 that it is composed of.

We shall now show, on the one hand, thatVifis an anholonomic space, properly
speaking (i.ewf # 0), then none of these geometric properties is amaitriproperty
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of V", and, on the other hand, that there exist, in genefradr sbgroups of the intrinsic

group that are larger than the semi-intrinsic subgroupwanch preserve some of these
properties (Cartani[]; Vranceanu 30]). In order to do this, one starts with the remark
that ifV"is composed of \ then the intrinsic properties of thesg, ®re also intrinsic
properties o¥.". Now, as intrinsic properties of the,.Mve have, along with the metric
(10), the Levi-Civita parallelism of these Vv which is defined by the interior
connectiory/,onV™, and the Riemann curvature of thesg Which coincides, as we
have already remarked, with the intrinsic curvature teofd," [23].

Consequently, in the non-integrable case, it is natoralemand that the interior
connection and the interior curvature are, moreovemriants of the intrinsic group;
however, since this group is the product of the semi-intripup and the group '(8it
suffices to see whether they are invariants of thiedajroup. From the fundamental
equations (5), relative to the group)(®ne deduces that:

(20 W =W + W Q)

Since thgj, are defined as functions of Wby formula (3), it then results that the
interior connection will be an intrinsic invariant onlyf'is composed of ¥ (W = 0).
One also sees that tjfe are invariant under the transformations) @nly when the
coefficients). satisfy the equations:

(21) wWich=0.

Now, if the first derived systerf¥) is null thenthese equations might only have the
solution ¢ = 0, in such a fashion that in this cabe largest subgroup of the intrinsic

group that preserves the interior connection is the semi-intrinsic subgr
If the derived system of (7) is composedef mequationsls™ = ... =d< = 0 then
the general solution of (21is:

c=0K >p) and  c arbitrary (' < p),

in such a fashion that the largest subgroup 9ftf@it preserves the interior connection is
given by the formulas:

(21 {dgh:d§+ ¢ d& (e ml-, P

ds" = ds'.

Obviously, the largest group that preserves the inteoanection is the product of this
group (21) with the semi-intrinsic group, and if one so desis#sce it is preferable, to
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preserve the character of thd" as forms of the derived system then one obtains the
group:

ds"=¢ds+ & dg,
(22) ds™ = ¢' dg' (h = ml---, p

ds‘ = ¢ d§ (k= p1---, 0

One may say that this grougpthe largest geometrizable subgroup of the istargroup.

In an analogous manner, one finds that the tramsfiions (8), which preserve the
interior curvature, are analogous to'(Rwith the difference that thegs” must belong to
the second derived systeaot (7). It then results that the group (R2lso preserves the
interior curvature o¥"only if the first derived system is completely igtable. In the
general case, the largest group that preserves thethconnection and the interior
curvature is a subgroup of the group (22) thatroag easily write down.

One may also pose the problem of finding the grina preserves the auto-parallel
geodesics o¥,". This problem is of considerable mechanical esebecause, as will be
proven later on, these curves are also the unfotradctories of an anholonomic
mechanical system. For a long time no@],(1895) we have known the following result,
which is due to J. Hadamard, that the equationsaifon of an anholonomic system do
not remain the same if one modifies the vis vivah® system in an arbitrary manner
with the aid of the equations of anholonomity (iméic case), but they do remain the
same if one modifies the vis viva by a quadratierfon these equations (semi-intrinsic
case B3], Introduction).

In order to find the group of auto-parallel geacdgs one remarks that their
coefficients )} + yy =wf +w, are invariant under the transformations) (8nly when

thec. satisfy the equation:
(22) Wi ¢ + Wi G =0.

These transformations define a group. Indeedeihave two solutions of (22then the
product of the corresponding transformationy (&s the sum of the solutions for its
coefficients, which is also a solution of equat{@®), due to the fact that these equations
are linear and homogeneous.

The group that preserves the auto-parallel gecslésj in general, the largest group
(22) that preserves the interior connection, as amey see, for example, in a

spaceV/,"that is defined by the following forms and equasion

dd' = dx", (h=1,2,3)
ds'=d¥* —x®dx’ =0,
ds =dxX -xd¥' =0,
df=d¥ -x*dx¥=0.
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Indeed, in this case the components of the integralidingom( are all null, except

forw;,, w3, ,w’,, which are all unity. It then results that the group’Y2&duces to the

identity, because the first derived system of the egustiof anholonomity is null,
whereas the subgroup of'Y8hat preserves the auto-parallel geodesics is givemdy t
formulas:

(22) {d§h =dd+p d&° ( h12,3),

ds" = d¢' (h=4,5,6),

n

wherepis an arbitrary function of the variable’s X, ..., x".

These considerations show us that the group that opettach to an anholonomic
mechanical system in a natural manner, as the group thaerpee the unforced
equations of motion of the system, may be geometricadllized if it coincides with the
group that preserves the interior connection.

20. Geodesics of minimum length. — If the intrinsic group o¥"possesses no
geometric invariants in the non-integrable case, asioe fthe metric ol,"and the
tensowf,, then it will nevertheless possess an important dnalyinvariant: the
geodesics of minimum lengite., the interior curves M."such that the length:

(23) = [Cds = [ )P+ (uB) -+ (U) 2dls

between two of their points A and B that are suffithe close is the smallest when
compared to all of the neighborimgterior curves that pass through the A and B (Voss
[1], pp. 280; Franklin and Moore9], pp. 189).

Obviously, the curves of minimum lengthVili are, at the same time, the extremal

curves of the integral (23); i.e., the interior curveshsthat the variatiod of the integral
(23) under the transition from one of these curves tanénitely close neighboring
interior curve is null. This fact permits us to find ithequations by the method of
Lagrange multipliers, which consists of seeking theeswétl curves of the integral that
one obtains from (23) by adding the tevgnds” to ds where thev, are the multipliers,
which one must regard as functions of the arc lergyth Upon performing the
calculations, one will arrive at the equations for geedesics of minimum length in the
form:
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du’ .
(24) E‘MZUKUI:V\EN(V{’
S g =y 0

of a first order normal differential system that sists of 2 equations in & unknowns,
h
u, V.

It is easy to see that this system is an invariarthefsemi-intrinsic group, if one
regards the multiplierg, to be the components ofcavariantexterior vector relative to
the congruencesl]. In this case, in effect, the left-hand sides ofléteer equations are
the components of the derivative of the veatgralong the curve of shortest distance,

this derivative being performed with respect to the coimeaf,. As a consequence, in
order to conclude that the system (24) is an invariant efiritrinsic group o¥/", it

suffices to see that the system (24) is an invariatbhe@@roup (8, which is effectively
the case if one takes new multipliers to be the questtiti

—a' — h ,.h
Vi=v,-q u.

In the non-integrable case, the geodesics of mininength are different from the
auto-parallel geodesics, as well as being more numerdup. —Imis the number of
equations in the derived system of (7) then therenarep of these geodesics that pass
through each point P and tangent to each interior direabioe may see this in the right-
hand side of the second equation in (24). One may alsotslad the system (24) may be
decomposed into two subsets, the first of which willisafto determine the unknowns
X, u", viy (" =m+ 1, ...,0) only if the equationds” (¢ > q) are integrable combinations
of the system (7).

Equations (24) also show us that in the non-integralsie itee auto-parallel geodesics

are, at the same time, the geodesics of minimum leigtfiis totally geodesic in ¥

(vakr = 0). This signifies that in this case one may suppuesehe multipliers, are null
in equations (24).

21. Rigid connectionsonV.". — We shall now study the rigid geometric properties

of V", that is, the properties ¥f"that are invariant under the orthogonal group (8), (11),
(12). We remark that this group coincides with the rigidugrof the anholonomic
space/" " that is complementary ¥)", which one obtains by equating tie to zero, in

such a fashion that the rigid propertiesV,"andV, "coincide. Nevertheless, there
obviously exist properties that one attacheég'tmore than one does¥W™ ", such as the
geodesics of", interior parallelism, etc. Moreover, one can gaadcount for the fact
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that if one adds the semi-intrinsic propertiesVpf'to the semi-intrinsic properties
of V"then one obtains all of the rigid properties\gforV™ ™. Indeed, if one takes into

account the fact that the! satisfy the orthogonality conditions (12) then thenfolas
that areanalogousto (14) may, like (14) themselves, be solved with respedhe

h
derivativesa&, :
03
ac g C
(25) S = ap & Viﬂ ~Var d; :

0s’

These formulas express precisely the last that thatioot coefficienty/, are the
components of an affine connection that permits us dosport an exterior vector
inV"along a path that is also exterior. This connectiomaghing but the interior
connection on the spa®g "that is complementary ¥". Consequently, if one
associates the connectighto the semi-intrinsic connection dj'then one obtains a
rigid connection onV", in the form of the complete connection that is redi by the

n !

formula (Schouten and Kampe2d], pp. 771; VranceanB], pp. 199):
(26) Ya' =V Vi =W Vi =W, Vet =Ver» Ver=Va =0.

This connection obviously has the property of preservingchaacter of interior and
exterior vectors ¥."=y." = 0). It is characterized by the property of preservingtten

under the transport of an interior (exterior, respctmealong an interior (exterior, resp.)
path and closing the parallelograas much as is possiblelndeed, this connection is

composed of interior connections BfiandV; ™and the exterior connection W,
which is, at the same time, an exterior connedt[pfi, and all of these connections have
that property. It is also obvious that as examplasiad order rigid tensors, we have the
two integrability tensorsf] ,w/,, the second fundamental fomg,; of V™", and the second
fundamental formpg, forVv; ™.

Instead of regarding the rigid group as a subgroup of theéisginsic group o¥.",

one may also regard it as a subgroup of the orthogonal gnoty . In this case, in
order to obtain the fundamental formulas of our rigjtbup one must assume

thatc). =c' = 0 in the fundamental formula (6) for the orthogonalugr¢y = ) on V.
Along with the formula (15) and its analogue (25), one fihesfollowing formulas:

h

S _n as_ h
(27) aS| _yaﬂckqﬁ Vz Ca’

O:J_/;ﬂ'cl?(f Vi CS’
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and analogous formulas. The first of these formutastheir analogues for (15) and (25)
show that the anholonomic spat@also possesses the complete rigid connection that

was considered by Schoute@], pp. 294; p4], pp. 770; BO], pp.198):
(28) Va=Var Ve e Va=Va=0.

As one sees, this connection differs from the rigidnneztion (26) by the
quantities/ , i, , which are, by virtue of the last of (27), the componeitsvo rigid
tensors of third order. Moreover, one may remark thatfour rigid tensors of third
order that were considered above can be expressetheithd of these two tensors.

The connection (28) itself preserves the charactentefior and exterior vectors. It
is characterized by the property that it preserve lergghshe Levi-Civita connection of

the surrounding space,Vhowever, it closes the parallelogram only if the oesg’ , y1,

are both null. This signifies thef'andV; "must be holonomic and totally geodesic.

Moreover, parallel transport under the connection (28) beagbtained from the one on
V by following construction (Enéa BortollotT], pp. 7):

One obtains the vector that is parallel to an interior (exteriesp.) vector by taking
the projection of the vector that is parallelV onto the fundamental (and anholonomic)
congruences

From the rigid viewpoint, the two connections (26) &) have the same value and
both of them preserve the interior or exterior cbemaof a vector; however, if one also
considers the semi-intrinsic properties then one $e¢ghe connection (26) is related to
the properties df,"in an intimate manner.

We also have another rigid connection, which is due tg&{s], pp. 745; 7], pp.

2; [30], pp. 202), that only preserves the character of inteeators, and which was the
first rigid connection that was considered in the studyamiiolonomic spaces. The
components of that connection on the congruentearé given by the formula:

(29) =yt =y ph=2h, pil=o.

One sees that this connection preserves the charactetesfor vectors only i = 0,
that is, ifV;"andV, "are holonomic and totally geodesic.

22. Rigid curvature tensors. — The infinitesimal circuits for the connection (26¢ a
obviously two pentagons W"andV' ", and the parallelogram \fj" that is also common
toV, ™. If one transports an interior vector and an exter@mtors around these three

circuits then one obtains six curvature tensors. Fbtinese tensors are already known

to us: they are the two curvature tenstrsA;.onV™, and the two curvature

tensorsy,., A, onV"™™. In order to obtain the other two curvature tensors, muost
transport an exterior vector around the pentagdff'imnd an interior vector around the
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pentagon itY,"™. Upon performing the calculations, one easily percevasdne does
not arrive at any new tenscwg'yr. W, ., but only the derived tensors and the integrability

tensors (0], pp. 200).
Naturally, the curvature tensors of the connection (28) @9) are expressed as

functions of the curvature tensors of the connection é2@) the tensous , )., , which
represents the difference between the two connectiemparticular, (Horak,1P]) if one
transports an interior vector around the pentag®]'inith the aid of the connection (28)

then one obtains the curvature terRgtthat was found by J. A. Schouten:
R.lél.rh :Al?lr + ylﬁ(V\(r’ '

One sees that the ten&y", like the tensod} , reduces to the Riemann tensor anit/

the system (7) is completely integrable. In the ndegrable case, the tensBf;" is only

a rigid tensor, and not a semi-intrinsic tensor like td¥esord, of interior curvature

onv,".

In concluding this chapter, we would like to remark, infirg place, that one may
also consider anholonomic spattfeembedded in an anholonomic sp¥¢E i.e., spaces
that are defined Wby a Pfaff systerds”=0 (@=p + 1, ...,m). One obviously obtains
the groups of these spaces if, in the groupg'ofone separates the transformations of

the fundamental congruenceswjfinto two subsets, according to whether the indicds

have values between 1 apar betweerp + 1 andm.
In the second place, we would like to remark that dotaies an interesting subgroup

of the semi-intrinsic group M™, by supposing that thé' are constant. Indeed, this

anholonomic group possessescamplete affine connection whose only non-zero
components are the following ones:

VQh:VlI:w Vll|'7=VV|'3r-

This connection preserves the character of interidr eterior vectors; however, it is
rigidly related to the anholonomic congruences. Astli@r third order tensors of this
connection, they are given by the second fundamentai fensorvgy and the four

torsion tensorsy) , Wy, , Wi, , W, .
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ANHOLONOMIC SPACES WITH AFFINE CONNECTION.

23. Geometric properties. — Up till now, we have considered the properties of
anholonomic spac@&g"to be the invariants of certain groups of transformatiointhe

congruences; however, obviousbne may also express these properties in an arbitrary
system of congruences or coordinafdgl], [15], [16], [21], [24]). In particular, one may
easily pass to the condition that the congruencesthegamal with respect to the metric

(10) onV.", because it suffices to introduce this metric, notrageariant of the group,
but explicitly in the form:

(28) ds = a,zds” d¥ (a, B=1, 2, ...,m).

In this case, the intrinsic properties\fwill be invariants of the group )7and the

metric (28), and the semi-intrinsic properties will be invariantshe group (8) and the
metric (28). It results from this that the semi-intrinsic eide connectiowf), ,w), is

preserved, whereas the compongfitef the interior connection owW'will be
represented by the coefficients of rotatiginonly if the metric (29 reduces to the sum

of squares of thds”. As for the rigid properties, they are the invariaftthe group (8),
the metric (28, and a metric that is analogous to the interior onea system of
anholonomic congruences.

These considerations are useful if one wishes to stadglonomic spaces with affine
connection by the same methods as the groups of trarfon®: of congruences.
Indeed, suppose that we have the Pfaff system (7) ince #pawith affine connection.

If one associates the forrds" with m complementary formds’ and one letg *index the
components of the connection op welative to then congruencesi) then one may refer
to the connection that has the compongjitas theconnection inducedy A, on the

interior of the congruencesl)). One easily perceives that in this case, as 8,
induced connection is an invariant of the intrinsic group @ualy if the system (7 is
completely integrable and only if it is an invariant lo¢ group (8) because we have the
formula:

a " . a ¥4
(29) CT :ya?; G qﬂ_ym Cg -
0s
Consequently, the semi-intrinsic properties of the amiwtic spacé', which is

defined in A by the system (7) and the congrueno@ﬁs, (@re invariants of the group (8)
that one associates with the induced connegffon The regular semi-intrinsic

connection on the anholonomic spagthas the quantitigg”,w). ,w), for its
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components relative to the congruencds (As for the irregular connectidy, , if it
exists, it depends, as one knows, only on the system (7).
If the connection Ais not symmetric then the interior componatjts ;" —wj of the

torsion tensor might not be null, and in this case tletgrdnine an interior tensor of third
order with respect to the group (8).

In order to find this semi-intrinsic curvature tendgronA™, one may, as in the case

of aV.", seek the variations of the components of an intev@ntor under parallel

transport along the infinitesimal pentagon that is cocgtd from an interior
displacementls’ and an arbitrary displacemef&f. We remark only that the fifth side of
the pentagon also has, in this case, the interior coemsAs' =7\ ds* ds if 7 is non-

null. From this, it results that in order to obtaie tcomponentd; of the curvature

tensor oA™, it is necessary to substityt@in place of/)in (19), and add the term

n o
~Vialt -

In order to obtain the rigid properties AJf, one must associate the
connectiory;!" that is induced from the surrounding space oA the interior of the
anholonomic congruences. The connection thayfiasf, ,w, , ).l for its non-null
components thus constitutes a first complete rigid ection on the spade, which is
equivalent to the connection (26) fod. In order to obtain the equivalence with the
rigid connection (28), one must take into account tfiatc’ = 0 in formulas (6), and one

finds the connection that has the quantigésy;" for its non-null components (Schouten
and KampenZ4], pp. 770, 775).

24. Equations of variation for auto-parallel curves. — The auto-parallel connection
of the interior connection on the anholonomic affspaced is obviously given by the
equations:

s
(28') .

du’ _ ok

E_yk'u u

The parametes that is determined along one of these curves by thes¢ictpwill be
called theaffine arc lengthof the curve. In order to find the equations of varabof
these curves (Vrancean®0], pp. 41; WundheilerZ8]), consider, in the space,>f
variablesx, an arbitrary curve (C):

X=¢(9,



35 Anholonomic spaces

obeing a parameter whose values determine the differemtispafithe curve, and let:

X =¢(0) +Ae,
be the equations of a curve) ¢hat is close to (C). In these equations, the pearam
Al appear with their values as a functionaélong (C), and® are considered to be first

order quantities. Moreover, they represent the compsnegiative to the congruences
(A), of the vector that connects the points that epoad to the same value of the
parametew on the two curves (C) and)( If we letsdenote an arbitrary parameter upon
which the points of the curve)(depend then we have, neglecting terms of higher than
first order in thes?, the formula:

dX _do de?
ua: A_a N =Y Ca+_+ Cbé'd ’
( i )c dS ds( Cb_ V\Ed j
where the\f, appear with their values along (C), afidare the cosines of the cun@.(
Now, suppose that the curve (C) is an interioveun the anholonomic spake’ ("
= 0). In order for the curveg) to be itself an interior curve X', one must satisfy the
equation:

(29" u = ?jia +wice' +wW de'=0 .

One sees that if one supposes thatstlaee known then these equations constitute a first
order differential system in th&. We also remark that if the quantitisc* are null, in
particular, if the spacé™is composed oé"™ copies of % (W] = 0), then equations

(29") do not depend upon ti# in such a fashion that they possess the soltion0 in
this case; that is, one may obtain the neighbaringes to (C) by displacements that are

interior toX". If one introduce the vector derived from theteee” along (C):

De" _de"

-w.e¥c
do do

then one may give equations (2¢he semi-intrinsically invariant form:

)
(29") De” L wigc=0.
do

If we are in a space with affine connectifithen we also have the formula:

WI|2| :V|;|h - Kkh - Tkhl '
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and if we are interested only in auto-parallel curves tenmay change the connection
without changing these curves, in such a fashion thatotmpanents;, of the torsion are

null. This being the case, if one introduces the vetttat is derived from the interior
vectoré&" along (C):

then one may write the components of the tangestbvéo €) in the form:

D h
o :d—a(ch+ € +y,°(|th£|+V\£|,Ck£'j.
ds

Now suppose that the curve (C) is an auto-parellefe of the anholonomic spag&g

and thatois its affine arc length. If one wishes thek ifself should be an auto-parallel
curve inAT'with the affine arc length then it is necessary tha u" satisfy the formulas

(28"). If we assume, as is, moreover, natural, that:

in which 4 is a first order quantity, and we introduce théuga of theu" into (28), and
neglect terms greater than first, then we findftliewing formula without difficulty:

D%e" du
30 —-—Lc"=Alckce?,
( ) da_z dU kla
D%e"
where thed—2 are the components of the second vector derivative along (C) and
o}

theA;" are the components of the curvature tensoA’of These equations, which

obviously have a semi-intrinsic invariant characterd are associated with (29
constitute a system ofdifferential equations in the + 1 unknownss®, i/ that is second
order in thes" and first order in the", 1.

In order to determine the unknowsfs £, it suffices to associate this system with a
law of correspondence between curves (C) andIf our anholonomic space i8/d'then

we may choose the displacement vecfoto be orthogonal to the curve (GJ'¢" = 0),
and since the sum of the squares ofuhenust be, as with cosines, equal to unity, we

have the value gf as:
h

De ,
+1y . d'de’.
pn ,

p=c
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Moreover, if one takes the fundamental congruencesuath s fashion that the
congruenceA) is tangent to the curve (C) then all of the costlaare null, except foc,
which is unity. It then results that the last- 1 equations (30) no longer contaiand
take on the form:

(30) —— =)he?, h=2,3,...,m.

If the displacement® is orthogonal to the curve (C¥'(= 0) then these equations that are
associated with (29 constitute a differential system af— 1 equations in the — 1
unknownss, ..., &. One may further simplify equations (B0y taking the congruences
(A9, ..., ™) to be congruences that are transported by plsal@long (C), because in

2 ~h
this case the compone%s%(h > 2) of the second vector derivative coincide whk t
o

2 h

second derivative%%. Likewise, one may simplify equations (29by taking the

anholonomic congruences to be congruences thattransported by semi-intrinsic

: . D" "
parallelism along (C), since the componegfsrln this case are also equal%‘gk.
o o

25. The equivalence of two anholonomic spaces. — Consider two spaces, ¥ndX;,,
one of which refers functions of the variabiés..., X" to the congruencesl), and the
other of which refers functions of the variabi's x2, ..., X" to the congruenced). If
one carries out the transformation of variablesii3he spacX’ then the formsis® of

the congruencesl() become linear forms in the variabled &nd in that form they may
be expressed linearly with the aid of the fordgsof the congruencesi) of X,

(31) ds? =ctde,

where thes are suitable functions of the variable¥ \fhose determinant is non-zero. If
one considers the transformation (3) to be unknthem equations (31) constitute a

system of total differentials in the unknowsi§ as functions ok, which may also be
written:

X' —_ ayrigb
(32) ﬁ_CbAaAj'

As for the integrability conditions for this systewhich express the fact that the second
derivatives of thed' are symmetric, they may be written in the form:
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a b
% 9% wicse! - v

(33) 0 9%

One sees that these conditions differ from the fundéahéormulas (5) only by the fact
that here the/; are considered to be functions of the variabt8s (

Equations (32), (33) constitute a first order system digdatifferential equations in
the n unknownsx' and then? auxiliary unknowns?, which are considered to be
functions of then variablesx. As long as one imposes no conditions oncthehis
system obviously possesses all of the transforma(®hss its solutions, because this
signifies that the spaces,dndX’ are equivalent, the equivalence group being the point
group (3).

Now suppose that tligsatisfy the equations] = 0, which express the fact that the
Pfaff systemds" = 0 that is associated with (32) and (33) provides us inttinsic
equations of equivalence for the anholonomic spAfesdX ", which are defined in X
andX' by the Pfaff systemdd’ = 0 andds" = 0. Among the equations (33), we also
have, in this case, the relations in finite terms:

(32) W, GG =W, ¢=0,

which express the fact that the integrability tensoirsoar two Pfaff systems are
equivalent. If one exhibits the derived systems to tisgseems then one finds that a

necessary condition that the equations of equivalenc€ fandX" have solutions is that
thect must belong to the group that preserves the systerm@/saderived systems3]

§ 7). If one also imposes the conditighs O on the?then obtains the equations of
equivalence for the anholonomic spa¥&sandX'™, which can be regarded from either
the semi-intrinsic or the rigid viewpoint, since theteoincide for th&'. Obviously, in

this case thef must also belong to the group that preserves the desyjstéms of the

systemds' = 0.

It then results from this that if the systems = 0, ds" = 0 have no integrable
combinations then our equivalence problem, in accordandethet theorem in section
10, reduceso the equivalence problem for two complete spaces with affine connection.
One knows that such a problem reduces to the studg eystem of mixed total
differentials and consequently it may be regarded as completely sgiZdpp. 14). In
particular, one knows that the equivalence transfoomstiif they exist, might only
depend upon arbitrary constants.

If our complementary system has integrable combinatibes one may no longer
assert that the integration of the semi-intrinsic rigid equivalence equations for
XMandX!"reduces to a system of total differentials, in such hidasthat, in this case,

anda fortiori in the intrinsic case, the equivalence transformatimay also depend on
arbitrary functions.
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One may now pass to the problem of the equivalencgmahholonomic spaces with
affine connectiolandA!". If one takes the rigid viewpoint then the equivalence
equations are obviously composed of equations (32). Therace of equations (33),
we have: equations (29 (where the;_/;['} are replaced bp/,,'ﬂ“) and their analogues,
equations (9) and their analogues, in whichwhee replaced withw/, and for the
relations in finite terms, we have (32nd their analogues, and finally, the relations in
finite terms that is provided by the torsion tergoand its analogue. We thus have a

system of mixed total differentials to determine thenknownsx', n* unknowns!, and

the @ — m? unknowng! as functions of then variables. If one considers the
integrability conditions of the equationsanhen one finds relations in finite terms that is
provided by the curvature tensods,, A1 . Naturally, upon deriving these relations in
finite terms one finds relations in which the tensor\@gives of our tensors appear.
Consequently, one may assert that the only relatiofisite terms that must be satisfied
for there to be equivalence are the ones that anadea by the four tensors of third

ordemf; ,w{, 75,7/, the curvature tensors, and by the tensor derivatifeieo six
tensors. One may also say that these six tensdrghain tensor derivatives constitide
complete system of invariants for the rigid anholonomic spdce

If one takes the semi-intrinsic viewpoint then one tfiust renounce equations that
are analogous to (30 in such a fashion that the system of equivalenaaoisonger
composed of total differentials. Nevertheless, oneMsrihat it reduces to such a system
if the system (7) has no integrable combinations. In ease, the semi-intrinsic

tensorsv)) W, 7, A", and the derived tensors, using the regular semi-intrinsic
connection or\', do not constitute a complete system of semi-intrimsiariants o\

These results on tha'are obviously also valid for the", with the sole difference

that in this case one must also associate the mdatlmat are provided by the metric
tensora,s in the semi-intrinsic case, and also by the teager in the rigid case. In the
case oV", one may also take the intrinsic viewpoint, and thatieis in finite terms are

then ¢ = 0, equations (32), and the ones that are given by teertags. However, in
the case of th€'one may also simplify the problem by the use of orthago
congruences. In this case, the intrinsic equivalence ieqadorVare (32), (33).c =

0, and (11); to obtain those of semi-intrinsic equivedgrone must associate tfie 0
([33], Chap II), and, finally, for rigid equivalence, one massociate (12).

26. The transformation groups of anholonomic spaces. — One arrives at the
equations of transformation of an anholonomic space itsget by supposing that the
congruencesA) are the same functions of theé)(as the congruenceg)(are of the X).

In this case, the equations of equivalence that were dmesi above always have the
identity solution:



Chapter IV 40

0 (azh),

(33) X=X Cg:é*?:{l (a=b),

and the question amounts to seeing whether these equatsmnéave other solutions
besides (33.

To find the defining equations for the infinitesimal tramefations of the
transformation group of the space in a neighborhood oidenaity transformation one
must set

(33) X=X+ dt, =02 +£8dt,

in the equations of equivalence, where ﬁﬁesﬁ‘are new unknowns and is to be
considered as a constant quantity of first order. Ofig¢hwis find equations and relations
in finite terms that are linear in the unknowfiands;.

If we are dealing with the case oVA in which we have chosen orthogonal
congruences then equations (11), the following equations:

G =G=0,

and equations (12), which represent the defining equationsgfdramholonomic group
forV.", give us, quite simply, the defining equations of the itégimal transformations
as:

h k — h — h — h kK —
(34) & +e,=0, & =0, =0, o +te=0.

Obviously, in order to have defining equations for the satnirsic infinitesimal
transformations o¥.", one must limit oneself to the first three groups of &qna (34),

and to have those of the intrinsic casé/fn one must limit oneself to only the first two
groups.
Since the unknowrg are the auxiliary unknowns of our problem, the principal

unknowns being thé - or rather, the projections® =& of the vector € onto the
congruencesA) — one may eliminate them from (34), because we havethauifas:

(34) & =—
Upon taking into account these formulas, one easilyfiegrthat (34), just like the

equations relative to the semi-intrinsic or intringft, have an invariant character with
respect to the corresponding groupvih
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Now suppose that oM possesses the one-parameter transformation grouée
may always suppose that this group is generated by theasfimil transformation:

. _of

a

In this case, equations (34) become linear homogeneous eguatithe derivatives—(j;)](i1 ,

in such a fashion that (34) are satisfied identically ef tbngruencesif do not depend
upon x' explicitly. Conversely, one may prove that if aidjgsemi-intrinsic, or

intrinsicV,", resp., possesses the group)Y8den one may, by a suitable transformation
that belongs to the rigid, semi-intrinsic, or intringioup, resp., refer th&"to a system
of congruences that does not contain the varighdaplicitly (Vranceanu33], § 10).

If the congruences/] in the spac¥."have constants for the quantitesthen the
equations of transformation have the solutpad? for any x', which then satisfy the
completely integrable system of total differentials (8&)=4J;). It then results that in

this casé/"possesses a simply transitive transformation groupre®der, this group is
the reciprocal of the simply transitive continuous grdgi ts determined in this case by
the congruencesl). One may also prove thiéithe transformation group o "possesses

a simply transitive subgroup then it may be reféne a system of congruences that has
constant rotation coefficients.

27. Anholonomic hypersurfaces. — An anholonomic spad€that is defined by

just one Pfaff equation that is not completely integrabhy be called aanholonomic
hypersurface If the connection on Apreserves volumes, and if the equats 0 has
its covariant of rank — 1, which can happen onlynfis an odd number, then one may

always reduce the intrinsic groupAff*to the semi-intrinsic group, which amounts to
saying that one may fix an affine normalAb'in an invariant manner (Schoutet6],
pp. 299).

If we have an anholonomic hypersurfa€’ then one may always, and generally in

several different ways, reduce the intrinsic group tdga group, which amounts to
saying that one may always fix the normal and the metrithat normal. Now consider

an anholonomic spad& that is defined in a three-dimensional Riemann space ligfa P

equation that is not completely integrable’(# 0), a space that one may also call an

anholonomic surface The transformation group of such a space may coritain
parameters at maximuni{], §14).

If the spac&? admits a G then this G must contain a simply transitive; ®ecause,
on the one hand, one may prove thef aproperly speakingwf,# 0), might not have an
intransitive G, and, on the other hand, one knows that,al®ays possesses a.Glt
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then results that thé? that possess a4@nay be referred to a system of congruences with
constant rotation coefficients. Having done so, equat{®29, which, due to the
orthogonality of the] (h, k= 1, 2) becom&,=c3w,, tell us thatci= 1, or rather, that
the rigid and semi-intrinsic transformation groups of \éficoincide. One also proves

that thev (W, # 0) that possess a,Gre totally geodesic and the exterior curvature

tensor, just like the tensor derivative of the integarvature tensor, is null. As for the
interior curvature tensor itself, it has only one congminl;, 1> = K, which might be a
positive, negative, or null constant. If we writewdothe equation of anholonomity

for VZin the form:

d¢+ud¥=0,

whereu is a functions of the single variabe which is always possibled], pp. 39), one
may give the metric ovi the form:

ds = (@j (dx)? +(dx)?,
ds

in which the functioru has the values’, isin\/Exz,ieFkxz according to whether

N NE~

our anholonomic surface has curvature that is politive, or negative, resp. One sees
that in the space of variablgl x* the metric oiv2is the metric of a surface of constant
curvature.

28. Anholonomic planes. — One knows that the curves in ordinary space hhaé
the lines of a linear complex for their tangentsisfa a Pfaff equation that is not
completely integrable, which, if one takes the afishe complex to be theaxis, may
be written:

xdy—-ydx—-kdzO,

wherex, y, zare orthogonal Cartesian coordinates and the aatisis the parameter of

the complex. This equation, which is also callesletguation of the complegefines one
or more simple anholonomic spad&sn Euclidian space. Indeed, if one takes

cylindrical coordinates then one may take the foomég_ to be the following ones:

ds=dp, dd=p(lpd+pdx dsp(-p* @ ki

(34) e 1
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It then first results that? is totally geodesic because the second fundamentaliform
identically null:

(V2= Vao=Viz * V2 = 0),

which is obviously true priori, sinceV contains the lines of the complex at each point.
This property is characteristic, in such a fashion thwt, analogy with the two-
dimensional planes that constitute the totally geodssiéaces in ordinary space, one
may call thev? that are defined by linear complexasholonomic planegG. Moisil [25],
pp. 17).

Since the forms (34 do not contain the variableégandz explicitly it then results
thatV. admits a transformation group that takes the forrh@fbelian group:

of of
34 x, = x, =2
(34) Y > oz

which is composed of a rotation around the axis of thept®moand a translation around
the same axis. This group constitutes the total senmgintror rigid transformation

group ofV?. Indeed, on the one handy3, properly speakingw;,#0), might not have

an intransitive three-parameter group. On the other ltamy¥? might not have a simply

transitive group, because the interior curvature, which Irathis case, just the one
component:

- 2 52
A12,12=3K"p,

must, by the transformation conditions, remain invdyiaich is true only ifo invariant.
Upon appealing to the well known properties of linear cengd, one may give the

parallelism on ouy? an interesting geometric interpretation (D. Hulul2él).
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ANHOLONOMIC MECHANICAL SYSTEMS.

29. Systems with time-independent constraints. — Consider a holonomic
mechanical system,Svith time-independent constraints, and let:

1o ,_dx
T=2a x¥ X =— |,
2% (X dtj

be the vis viva of the system, in whitls time and the; are functions of the Lagrangian
parameters’, X4, ..., X" that the positions in the systemd&pend upon. One may, as is
well known (Ricci and Levi-Civita §]), associate the holonomic system \8ith the
Riemann space \Mhat is defined in the space of variabt&sé, ..., X" by the metric:

d$ = 2Td? = a; dX d¥ .

If we introduce a system of orthogonal congruendgfo V, then we will have the
formulas:

OX =AoE,  FE=)0 K,
(35) L Au?, W _ds _ )liaik,
dt dt dt
T=3[(u)*+(u) *+---+(U) ],

in which thedx' denote virtual displacements of S As for theu?®, one calls them the
kinetic characteristics of the motigWolterra [B]).
Having said this, if, in the symbolic equation of dynanfiicgthe system S

(ia_T_a_T

: _—-P |oX=0,
4tox  ox 'jx

where Ris the component in thé direction of the resultant of the forces that applied
directly, one takes into account formulas (35) #radfollowing formulas:

a b
ia—T.:i( ot ;lﬁj:d—”/]iuub%/uuﬂ
dtox  dtlow dt ox

a b
dT _oT 0w _ n 04}

dX  ou? ox ox

then it may be written:
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(36) [d(;‘t —wWhuPue - Pajé'sa: 0,

in which R denotes the component of the force in the directiotie congruenceAf).
As for thew?, , they are defined by formula'j4

Since this symbolic equation must be true for any ineresds”, it then results, upon
also taking into account that +wf =)2 +)3, that one may write the equations of

motion in § in the form:

LS = A,
(37) ddta
u b .c
= U u+P,
dt yt’)aC a

One sees that the system (37) constitutes a first differential system in normal
form for the n unknownsx and then unknownsu?, which are to be determined as
functions oft.

Now consider the anholonomic mechanical sys@®mthat is obtained from Sbhy
imposingn — mconstraints of the form (7) on the variablgs (One may always consider
the left-hand sideds” of these constraints to be the differentials efahc lengths of —

m orthogonal congruences in the Riemann spaciat is associated with,Sand for this

to be true, one need only combine (7), after multiplying tlhgnsuitable factors. One
may also associate td" with m other formsds' in such a fashion that the congruences
(An) and @) are orthogonal congruences iR V Consequently, to each anholonomic
systen§'one may associate the anholonomic spgtehat is defined in ¥ by the

system (7) of equations of anholonomitysih which may be written:
du” K, |l _
(37) E—y,ﬂu u-pP,|69=0 h<m),

since the incrementd&” and the characteristie€ are null by virtue of the constraints
(7).

Since this symbolic equation $fmust be true for any®', it then results that the
equations of motion &' may be written in the form:

at
(38) du®
S ik 4R,

dt
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They constitute a differential s%/stem of first ordembrmal form for then unknownsx
and them kinetic characteristics’ (Vranceanul1], Horak [14]).
If the force is derived from a potential U; (P%, Pa :%) then the system,S
X S
admits the vis viva integral. In order to find this intédmastarting with equations (37),
one must multiply the latter equations withand sum, upon taking into account the fact

that the Ricci rotation coefficientg are skew-symmetric in the indicasandb. One
finds the integral:

T=21[(uh)?+ )+ ... + U)?] = U + const.

If one passes to the anholonomic sys&mthen the vis viva integral obviously takes the

form:
LU + (W) + ... + @)?] = U + const.

Now suppose that the systemisSunforced (P= 0). In this case, the vis viva integral
tells us that T is constant and that one may convtyielmoose the unit of time in such a
fashion that one hads = dt Having done so, one may verify that the unforced
trajectories of Sare, at the same time, the geodesit9 (8 the associated spacg.V

In an analogous manner, one easily sees ftimatunforced trajectories of an

anholonomic systeB8fare also the auto-parallel geodesi¢$8) of the anholonomic
spaceV," associated with the syst&h.

30. Systemswith independent characteristics. — The integration of the equations of
motion (37) in § or (38) inS! (unforced) decompose into two subsets if the coefficients

of the latter of these equatiopd,+ y3 0ryf; + i, which are generally functions, x,

..., X', do not depend upon these variables. These systems weietldty V. Volterra
([3Y, 1898) and were callethdependent characteristicsince in order to obtain the

values of the kinetic characteristics gf@S; as functions of time it suffices to integrate

only the last of equations (37) or (38).

Ultimately, upon taking into account the values that ewdound for these
characteristics as functions of time, the integrati the first of equations (37) or (38)
provides us with the values of the parametess functions of time.

We do not have, moreover, a geometric charactesizati systems with independent
characteristics, but we do know an important classhefa systems. They are the
mechanical systems such that one may choose a sydteongruencesA) that has
constant rotation coefficients.

These mechanical systems are characterized by the tyrtiperthe space MorV,"

that is associated with them possesses a simplytivangroup of transformations (8 26).
We also have another class of mechanical systeats miay be regarded as a
generalization of the class of systems with independkatacteristics. That class is
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mechanically remarkable because many of the usual anmiomoechanical systems
are included in that class.

Suppose that the force 8hderives from a potential function af and that in the

spaceV/,"that is associated wi] one may choose a system of congruenggsych that
the parameters and moments of the fundamental congruanegunctions of only the
position coordinated, and that, moreover, the directionxdfmay be chosen to be the
direction of a fundamental congruence — for examplg, (Having said this, the first of
equations (38) may be written:

% =au,
dt
o
dt

(37")
AU, (=2, ,n),

aand/' being functions ok".
In these formulasl, may be regarded as null, because otherwise one may rédice i
zero by a transformatiod’ = X + f(x') . In this case, the (h=>2) are null ifk, | are

both different from unity, and likewisd,= 0, in such a fashion that the last— 1
equations in (38) assume the form:

du"
(38) E:(y,'jﬁylhk)u"ul (h, k=2, 3, ....m).

If x* is notconstant during some interval of time" ¢ 0) then one may divide these

equations bygd_f and obtain the system:

(39) 3—£=§(yfl+ﬁk)uk (h, k=2, 3, ...m).

One sees that by integrating this homogeneous lindareafitial system one may obtain
the values of then — 1 kinetic characteristics” (h = 2) as functions of the variabié.
From the vis viva integral, which may written:

1
dt

7 —j + (W) + ... + UM?= 2 UKY) + const.,

one deduces the value ¥f as a function of time by a single quadrature. alijn by
introducing the values of and theu" as functions of time into the last of equatiorig’(3
one finds the values of the variab#és..., X" byn — 1 quadratures.
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It then results that the integration of the equatioinsiotion of our systel§ reduce

to the integration of the linear system (39) and tmuadratures.
We have left aside the case whetés constant, which corresponds to the stationary

solution ofST:

one may study the complete stability of this systemd(anot just in the first
approximation) with the aid of the vis viva integral (Vreaou 8%]).

31. Linear first integrals. — One may now demand to know the conditions under
which the equations of motion (38)Sfiadmit the first integral:

¢, 4, ..., X% Ut ué .., u™) = const.

Since the derivative of that integral with respect teetimust be null, by virtue of (38),
one finds that the functionmust satisfy the partial differential equation:

of of of
(39) guh+myg Ukul+ﬁph:0 .
If the functionf is a polynomial of degree in the kinetic characteristics then
equation (39 decomposes intp + 2 equations upon first equating to zero the set of
terms of degrep + 1, then the terms of degrpeetc. In particular, when the set of terms

of degreep + 1 in theu" are equated to zero, that will give us the equation:

o
os"

of? 4

h kK, l—
u +Wyklu u=0,

wheref® denotes the set of terms of degpem the first integraf = const. This latter
equation shows us thfit = const. must be the first integral of the unforcgdations of

motion inS’', or rather, the auto-parallel geodesics of the anholangpacé/"that is
associated witB'. Here, we consider only the case where the intégimlear. Such an
integral, by a convenient transformation of the fundaalex@ngruences, may be written:

(39" au™ = const.,

in which a is a functions of the variables, X4, ..., x™. In order for (39) to be a first
integral of equations (38), it is first necessary thatefuatioru™ = 0 that is obtained
from (39') by giving the constant the value zero be an invariant eouat (38), and for
this to be true, one must satisfy the following condiio

Vot V=0 k=12, ...m-1).
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They express the fact that the anholonomic sp@ce (U™ = 0), which is embedded
inV", is totally geodesic " .

If that invariance condition is satisfied and if tipgantityu is constant then in order
for U™ = const. to be a first integral of the geodesic¥Mit is necessary that the

coefficients of rotatiop;, be null, or, what amounts to the same thing, that the

congruenceAn) be a geodesic congruenceVffi. If ais not constant then we have the
conditions:

dloga _
ag"

and the congruenck, (ds™= a ds") is then a geodesic congruengé’(= 0). One may
remark that this congruenﬁgdefines one of the spacés that is complementary to the
spacev™™ (u™ = 0) and defined semi-intrinsically Vf{".

Now suppose that we have a certain number pof homogeneous linear first
integrals of the form:

(40) a'u'=¢? @=p+1,..,m).
It is obvious that one may arrange this in such a faghmnonly the cosines”?, ..., u™
appear in these equations. It then results that theieasa® ' = ...=u™ = 0 are invariant

equations, and consequently that the anholonomic $ffadefined inV'by these
equations is totally geodesic in\M.e., that we have:

Y+ =0 (@=p+1,..mkl<p).

Obviously, these invariance conditions are not sufficier the existence of first
integrals (40). In particular, if one desires thatufie c” (o =p + 1, ...,m) be the first
integrals then one must satisfy the conditions:

Vﬁﬂ’LVZh:O B>p).

32. The eguations of trajectories of S'. — From a result of Painlevér{[ vol. I

pp. 414), one knows that the totality of the trajectorfes lmolonomic mechanical system
with time-independent constraints depends upor 2 arbitrary constants instead of 2
and if the system is unforced then only-22 constants are arbitrary. We shall see that
this result may be also extended to anholonomic systémiged, suppose that during the
motion of the system one of these variables — fomga, x* — is not constandi" # 0),

and that one of the characteristics, which one may suppdssu’, by a suitable change
of indices, is different from zero. In that cageyne takes the new independent variable
to bex! instead of, and one sets:
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uh:E—d—élié:\/h ut (h=2,...m
dt ds dt
then one may considar, V2, ..., V" to be the new characteristics and the first of

equations (38) may be written:

ax
E_(Al + V),

40 -
(40) dX _ A+ AV

d—xl—m, (|:2,"',n).

If we now take into account the fact that we have:

h
du :dv“ Uiy du :dv“ (ul)z(/lll+/1h1vh)+\/‘d—d ’
dt dt dt dt dt
then the last of equations (38) take on the form:
du' _ (v + V)W) P+ R,
(40) dx' AL+ AV d ’
dv' _ [+ (Ve +H YV H eV V() 2 +P = V(Y Vi V(9 ° - WPy
dx' A+ ANV (W) ? '

Upon taking into account the fact that time doetsappear explicitly in our equations
one sees that equations '(Y@xcept for the first one, and equations”j4€onstitute a
differential system in normal form, namety+ m— 1 first order equations for tlme+ m
— 1 unknownsé, ..., X", ut, V2, ..., V", and the independent variabfe It then results
from this that this system provides us with theueal of the variableg? ..., X" as
functions of the variable andn + m - 1 arbitrary constants. It constitutes the
differential system of the trajectoriesSp.

If the mechanical system is unforced then the axttaristicu® does not appear in the
lastm — 1 of equation (40, in such a fashion that, in this case, one maysider the
equations of the trajectoriesSfi to be the system af + m — 2 first order equations that

is formed from the last — 1 equations in (4pand the lasm — 1 equations in (40. It
then results from this that if the system is unéarthen the trajectories depend only upon
then + m— 2 arbitrary constants.

One may remark that the method that we followedrder to arrive at the equations
of the trajectories may be simplified if the systisnholonomic. Indeed, in this case, one
may consider the congruenct)(in the direction of the variable (dx" = A'ds'), which

implies as a consequence the fact that the chaisiicte V" no longer appear in the
denominators of equations ($0(40'). In the anholonomic case, this simplification is
possible only if the systeds' = 0 admits an integrable combination, which ong than
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take to balx'. If this is not true, and if the system is unforceehtthe right-hand sides of
the lastm— 1 equations (49 are polynomials of third degree in the characterisfics..,

V™. In order for them to be polynomials of only secondeo it is necessary that
Vi + ¥ =0, or rather, that the integrable combinatioh< 0) be an invariant equation of

the equations of motion 8Y'.

33. Trigonometric stability of equilibrium. — Suppose that our mechanical system
possesses an equilibrium point that is chosen to beridiie of the coordinates. In this
case, the equations of motion (38) of the system museg®$ise solutio® = u" = 0, in
such a fashion that upon developing the right-hand sidegoétions (38) into a series
around the point = u" = 0 the constant terms of this series are nullortter to simplify
the terms of the first order in the first of equati¢d8), one may suppose that the first
coordinatex' are chosen to be tangent to the origin ofrthindamental congruences in
such a fashion that, abstracting from the terms ofrandgher than the first, equations
(38) may be written:

%: a
dt ’
dx"
41 =2 -,
(41) .
T T

In these equations, one may further suppose that tificeds a;= 0 (8> a) are
null, because otherwise one would reduce them to zesmlmythogonal transformation
with constant coefficients of the fundamental congceenand the coordinates.
Having said this, one sees that the characteristic equatiour equilibrium point always
possesses — m null roots andm roots that are equal m/% . One sees that the
equilibrium point is stable in the first approximationtlie non-null roots are all pure
imaginary; i.e., in our case, if all of the quantigésire negative or null. If this happens
to be the case then equations (41) can be integratedheithid of linear polynomials in
the sines and cosines\@t, or, if one so desires, with the aid of a trigonometéries.
Poincaré has shown that if a mechanical system @enbaiic and conservative, and the
equilibrium point is stable in the first approximatioa’&-r?) then one may, at least
formally, satisfy equations (37) by means of trigonomest&ies if none of the
rootsty/~1r,of the characteristic equation is null and if the satisfy no

commensurability relatiop; r1 + ... + pmrm = 0, in which the's are integers.

This property was taken by G. Birkhofflg], pp. 106, 113) as the definition of
trigonometric stability of equilibrium by showing that, a certain sens#his property is
characteristic of conservative (Hamiltonian) holomo systems.
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The proof of this assertion amounts to showing thet property is common to all
mechanical systems with time-independent constrainsn@éanu I3]). Indeed, if one
supposes that none of thg is null and that they are all different then ona,cay a
transformation of the form:

ﬂ+§%+§f

XU
0 =0+

(B<a),

annul all of the coefficient; (5 # a), a;, and we remark that these transformations

preserve the property, which is fundamental for ug, tti@right-hand side of the first
of equations (38) are odd functions of the characterisfiand the right-hand sides of
the lastm of equations (38) are even functions of the same vasiafile

Having said this, in place of the variabbs u“, consider the conjugate imaginary
variablesx®, U“:

X7 +U”

XH
41
(41) {ua:ﬁra(y”—n”) (afixed).

When the derivative%x? are expressed with the aid of the variafifestu®, x“, they

will have only pure imaginary coefficients, because theyodd functions of the’, and
it is only the last of (4] that introduces the imaginary numbers. It thenlte$tom this

that the derivativeg;(% might not have terms of the form:

(41") AXTY) ™ (XU (XY T (X)

Indeed, on the one hand, A must be pure imaginary, andheoother hand, nothing

changes if one change5-1 into —v/-1, becausgdx’% is real; i.e., A= 0.

. .o du” . . -
Since the derlvatlve%Tare even functions of the, they will have real coefficients

in the variableg”,0, x?. Consequently, the variabke$,u”, x* satisfy the differential
system:
dx :\/—_]_ra)T” +...
dt
du® _ .
(42) N ET
dt
ﬁ =0+---,
dt
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where the unwritten terms are of at least second ordigh respect to the

variablex? 0, x?, with pure imaginary coefficients. It is completelyvious that this
system is changed into a system that acts under thefsezaddy the transformation:

(42) X =y +F U=V + G, X7 =y" + HT,

the I, G% H? being polynomials with real coefficients in the variy®, v, y* that are
of at least second order in these variables witraird G’ being conjugate, i.e., they
change into each other when one exchaggesth v°.

If F*, G”, H” are homogeneous polynomials of second order then tims wrorder
two that are introduced into the first of equations (42)garen by the formula:

\/_].(I' F - oF 1 yﬂ+g$r y j (ar fixed).

Now, one sees without difficulty that if thhg are not mutually commensurable then the
only terms in these expressions that are null for &hgré& of the form &°¢ , ¢ being a
function of the pairg“v” and they”.

For the second of equations (4¢},is changed inte”, and for the third one it is the
terms (41) that may not be introduced by the transformation§.(42

. dx”
It then results, upon taking into account the famm%are not terms of the form

(41"), that upon performing the transformations'{4®here E, G% H” are polynomials
of second order, then third order, etc., one may use ctiefficients of these
transformations to give our equations the form:

dt a¥
dv”
43 — =N
(43) it Y
dy” _
dt ’

M. and N, being functions of the paigg v* and they” .

Obviously, one knows nothing about the convergence cddhes that is obtained by
taking the product of all of the transformations "(4that have been considered up till
now. Since the functions Mand N, are, at the same time, conjugate and have pure
imaginary coefficients one must have,M — N,, in such a fashion that the equations
(43) have the first integraig’v® = y? = const. Consequently, the functions &hd N,
become constants themselves, and the equations integoategonometric expressions
of the form:
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(44) y7 = ygeMS(t-to) , V7 :Vge—Mg(t—to) , yd — yg’ _

We only have to introduce these values into the sénasexpresses the, u?, x¥ as
functions of the/”, v¥, y* to obtain the values of thé, u?, x? as formal developments in
trigonometric series.

34. Systems with time-dependent constraints.- Consider a holonomic system S
with time-dependent constraints, and let:

(45) T=%+Ti+To,

be the vis viva of the system, whergi3 a quadratic form that is positive definite in the

.. dx : . . L
derlvatlvesa, T, is a linear form, andlis independent of these derivatives:

dxX dx _dx

-1 _a-_,
ST

—EaﬁEE, To=3 a0,

2

the coefficientsa;, ai, ao generally being functions of the variablds ¥4, ..., x" andt.
Since the form Tis positive definite one may associate the systemith the family
of Riemann spacesy\that have the metric:

(46) d€ =2 T,d? = a; dX dX .

By the fact that one obtains the various spagesfVhis family by taking constant values
at the timet, one may say that the family of,\Ms virtually associatedwith S, .

Obviously, one may, with the aid of theformsds* = A%dx', reduce the metric (46) to a
sum ofn squares, and one may define an anholonomic syitemS, by equations of
anholonomity of the form:

(47) dd" =v" dt, G =m+1,..,n).

If one takes the characteristics of the motiofito be the quantitieg” :Z—fthen one

may arrive at the equations of motiorSftoy a method that is analogous to the one that

was followed in the case of time-independent constaititis clear that these equations
will be invariant under the transformations of the vagal{B).

We also have equations of motiorSjtthat are invariant under the transformations
(3), which contain time as a parameter (WundheB&])[ Indeed, consider the family of
the virtual \, , embedded in the Riemann spacgiWhose metric is provided by the
total vis viva in &
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dd? = 2T d = a; dX d¥ + 2a; dX dt + ap d.
This metric may be reduced to the form:
(48) dd? = (ddY)? + (dA)? + ... +Hdd)? + 12 df
if one sets:

dif=d€+Pdt  (*=Aa'=Aa),
P=d -

wherea is the length of theector a; under the metric (46). One sees that the metric (48)
on the space \4 is itself positive definite if the quantit} = ao — &” is positive. 1A% is

not positive then one then one may add a suitable axunist it, because this amounts to
adding a constant to the vis viva of the system, which oblyialses not change the
equations of motion of the system. Moreover, the Laggaequations show us that the

equations of motion on,&lo not change if one adds the deriva%a?eof an arbitrary

function of the variables', X, ..., x" andt to the vis viva.

From this, it results that one may always assoaagstem Swith a Riemann space
V1 With a positive definite metric (48) that is defined bygtadcting from a term of the
form d¢ dt, and in which the family of virtual Vis defined by the completely integrable
Pfaff systemds.+1 = A dt = 0. One sees that this family constitutes an anhalmo

m

spaceV,,in Vn1 whose arc lengths along the fundamental congruenceg' are, d",
and whose anholonomic congruencedi$® (Vranceanu 34]). Obviously, the kinetic

a

. do . : . . :
characteristics® = are invariants of the transformation of variables {@ich also

contains time as a parameter. In order to arrivehatequations of motion of the
mechanical system,$hat has these characteristics one must’&ét= 0 andv™** = 1 in
the symbolic equation (36) of the Riemann spaga that is associated with the system
Sh.

Since we also have:

wi= g0,
g

one thus obtains the equations:

dx

— = AV -a,
d_ = \N?a\f)vc-i_ V\ﬁﬂa\}ﬂ +Aa_a+ Pa’

dt do
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where the quantities are defined relative to the+ 1 formsdd', ..., dd", dd™™* = A dtin
then + 1 variablesd, ..., X" t.
In order to exhibit the invariant character of thegeagions under the rigid group of

the virtual anholonomic spa®£,, that is associated to,Swe remark that one may

replace the’, with )2, and that the covariant differential of the inteniectorv? of V", ,
which is constructed with the aid of the rigid connec{®8) may be written:

DV =dV? — )2 Vo -y, VA dt,
in such a fashion that one may give the last of equa{#®) the form:

Dv?

(49) T + yg;l\/bA =A da

do?

+P,.

Since2) =2y *are the components of the second fundamental fensot o/, , the

n+l?
invariance that we demanded then results. Onetmmytake the equations of motion on
S, to be the first of equations (49) and equatio®s) @Vundheiler B1], pp. 128, formula
(53)].
If one now considers the anholonomic mechanicatesyS''then its equations of
anholonomity may be written:

»
V=97 - o,
dt

Upon introducing these values of into the finst m of equations (49) and taking into
account that in the anholonomic sp&gkthat is defined in the virtual spaeg, by the

equationsid” = 0, the differential of the interior vectdt may be written:
DV'=dV' -y vdo' -y V o' ("=m+1,..,n+1,dd"" = A d,

one may give the equations of motiorsjithe form:

Koqved  (d=4V-a),

dt

DV"

dt
(@, =m+1---,n,ntl, V*=Q)

(50) +YRVV =V P

These equations obviously have an invariant charadth respect to the transformations
of the rigid group of the spa®®”, (dd" = 0), which is embedded Y, (A dt= 0).
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We know that among these holonomic systems wik-dlependent constraints, there
exists an important class that is comprised of theesysiwhose vis viva does not depend
upon time explicitly. Obviously, this property does not depepon the system of
variablesxt, X4, ..., X" that are chosen to represent the position of thehamécal system.
The necessary and sufficient condition for therédoa transformation of variables that
contains time as a parameter, so that one arriveyiatvava that is independent of time
is that the Riemann space.Ythat is associated with, Possesses a one-parameter group
of transformations into itself that is determined byir#mitesimal transformation of the
form:

of
50 Xf=—+p—
(50) 3t /J’

n

[ being functions of the', X4, ..., X".

Indeed, one knows that by a transformation of variakies®, ..., X" that contains
time one may reduce th& to zero, and then the metric on.¥Ydoes not contain time
explicitly, and consequently the same is true for tlseviva of S. Naturally, in these
calculations, one may appeal to the fact that the via on § may be modified by the
addition of the derivative with respect to time ofeatain functiong of x*, X2, ..., X", t.
Likewise, one may appeal to the fact that time its&y be changed by the formuda =
(1) dt; however, in this case one must take the new vis vihave the expression:

2T =i, X X +20; >’k+ia@.

These results may be summarized in the theotleenmechanical syste® possesses a
system of coordinates and a time t such that teevivia does not depend upon time
explicitly if the metric:

ds* = 2¢/(T+d¢j

admits the infinitesimal transformation:

xi=L, 500
wat ox'

with a suitable definition of the functigfof thext, »%, ..., X" and the functiony oft.
These considerations may be extended to anholengystems, in the sense that the

vis viva of the system and the equations of anhwiatyV,;, may be reduced to

expressions that do not contain time explicitlyhi associated anholonomic space, when
considered from the rigid viewpoint, possessesrtiimitesimal transformation (3D
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If the vis viva of the system,Sloes not contain time explicitly, and if T is the
derivative with respect to time of a certain functadnc, X2, ..., X", then the system may
be considered as time-independent constraint that fasa T, and force potential ol

35. Generalized vis viva integrals. — One knows that if the vis viva of the
holonomic system Sdoes not contain time and the forces are derived frontesipel U
that does not contain time either then there exigsneralized vis viva integral:

(52) T, — To— U = const.

One refers to the terms in the equations of motion,ith& are provided by the linear
part of Ty as thegyrostaticterms, because these terms make no actual contriliotite
vis viva integral. In order to exhibit these gyrostédians in the equations of motion, it
is convenient to consider thé to be the kinetic characteristics, instead ofwhend in
this case the equations of motion may be written:

% = /];ua,
dt

du® oT,
=weuPut+ g V+—2+P,
ar et U GV

(53)

in which thega,, denote the quantities:

da, 0a;) . ..
= —-—1 AIA].
Je0 (axj ox j i

These quantities are precisely the gyrostatic teresause if one multiplies the last of
equations (53) by® and takes the sum to arrive at the integral (52) therpé#nt that
contains these terms is null.

The integral of the vis viva (52) also continues to exwst the anholonomic

systen8, whose equations of anholonomity (47) do not contain &rmicitly, and the

€" are null. If thee" are not null then this integral may exist only if ata® number of
conditions are satisfied.

In the general case of a system whose vis viva depetichenone may demand that
there exists a first integral that differs from théegral (52) by at most a polynomial of
first degree in the characteristics. Indeed, if onetipligls equations (49 by V* and
sums then one finds, upon supposing that the forces derivea potential, that:

1d

1d 1d(@*+2U) 1d@*+2U)
(54) 2dt

VRV =S 2 do™
[V =(V) 2+ + (V).

Now, if there exists a polynomial of first degredhat satisfies the condition:
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2
Ay =y 4 1047 +2V0)
dt 2 ot
then the system,$ossesses the first integral:
1, 1.,
(55) EV +V_E/] +U=T,-To+Ta +V +a*—U = const.

In particular, such an integral exists if the vatspace/",, is totally geodesic j:*= 0)
10(A*+2U) _
2 ot

(52) by a polynomial of first degree in the chaesistics T, + @>. These considerations
may also be extended to anholonomic syste813,(pp. 132-134).

and if 0. Inthis case, V = 0 and the integral (55)edd from the integral
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