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INTRODUCTION  
 

 The idea of searching for a geometric interpretation of anholonomic systems in 
mechanics was suggested to me by a question that was posed by Prof. LEVI-CIVITA, 
namely: 
 Given an anholonomic mechanical system with constraints that are independent of 
time, whose vis viva has the form: 

T = 1
2

, 1

n
ji

ij
i j

dxdx
a

dt dt=
∑ , 

 
and whose anholonomic constraints are: 
 

(α)     
1

n

ij i
i

dxϕ
=
∑ = 0   (j = 1, 2, …, n – m), 

 
there is a metric manifold Vn whose ds2 is given by the expression: 
 

ds2 = 2T dt2 =
, 1

n

ij i j
i j

a dx dx
=
∑ , 

 
and for which (α) will be the mobility constraints for the representative point of the 
system in Vn .  The spontaneous trajectories of our anholonomic system are curves in Vn .  
What property must they effectively enjoy in order for their geodetic curvature in Vn to be 
a minimum subordinate to the constraints (α)? 
 One should note that HERTZ’s (1) so-called guiding principal refers that property, not 
to Vn , but to the (Euclidian) manifold that corresponds to the vis viva of the system in 
Cartesian coordinate, i.e., to: 

T = 2 2 21
2

1

( )
n

i i i i
i

m x y z
=

′ ′ ′+ +∑ , 

 

                                                
 (1) See HERTZ, Die Prinzipien der Mechanik, pp. 100-119.  
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which supposes that the system is composed of r material points and the one denotes the 
mass of the i th point by mi and its Cartesian coordinates by xi , yi , zi . 
 It is therefore proper to assume that HERTZ’s principle can be interpreted in Vn as 
exactly the minimum of the geodetic curvature that is compatible with (α).  However, it 
is approporiate to verify that directly by starting with the equations of motion in 
Lagrangian coordinates and the metric on Vn . 
 I realized that solving that problem (1) would make it possible to develop a geometric 
study of anholonomic systems that is not devoid of interest in its own right, along with 
the applications that it has to mechanics. 
 The goal of this study is precisely that of presenting the results to which I arrived 
along that direction, while leaving the applications to mechanics to another occasion. 
 Therefore, in the first part, after having given the definitions of an anholonomic 
manifold, its fundamental congruences, and of anholonomity in paragraphs 1 and 2, the 
notion of parallelism in the LEVI-CIVITA sense and the notion of geodetics in that 
manifold will be introduced in paragraphs 3 and 4. 
 As far as the absolute differential calculus is concerned, which is presented in 
paragraphs 5, 6, 7, 8, and 9, one will see that one can conveniently apply what I have 
called the absolute differential calculus of congruences to that manifold.  For the 
Riemannian manifold Vn , that calculus is entirely equivalent to the usual absolute 
differential calculus of coordinates.  It consists precisely of the idea that one introduces a 
system of n orthogonal congruences in Vn , as RICCI and LEVI-CIVITA did in their 
treatment of various problems, and then searches for the systems that have tensorial 
properties with respect to the transformations of the given system of congruences to 
another system of congruences that are also orthogonal. 
 That last problem was considered explicitly by RENÉ LAGRANGE (2) and by myself 
in relation to anholonomic manifolds (3). 
 Since that calculus of congruences is less known, I believe that it would be opportune 
to present it succinctly as it is defined in the case of Riemannian manifolds and then in 
the case of a anholonomic manifolds. 
 Finally, in § 10, the equations of geodetic variation will be given, and their invariant 
character will be exhibited. 
 In the second part of this work, the following arguments will be treated: the second 
fundamental form of an m

nV , exterior parallelism, or WEYL parallelism in an mnV , the 

geometric interpretation of the principal tensors, and the equivalence problem of two 
anholonomic manifolds. 
 Some of the results that are presented in this work have been published before in 
short notes and will be cited as appropriate. 
 Permit me to express my warmest gratitude to Prof. TULLIO LEVI-CIVITA for the 
kind interest that he took in this work. 

                                                
 (1) See my note: “Sopra le equazioni del moto di un sistema anolonomo,” Rend. della R. Accademia dei 
Lincei (6), vol. IV, pp. 508. 
 (2) Cf., RENÉ LAGRANGE, “Calcul différentiel absolu,” published in Mémorial des Sciences 
Mathématiques. 
 (3) See my notes: “Sur le calcul différentiel absolu pour les variétés non holonomes,” Comptes rendus, t. 
183, pp. 1083 and “Sur quelques tenseurs dans les variétés non holonomes,” Comptes rendus, t. 186, pp. 
995. 
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PART ONE 
 

§ 1. – The definition of an anholonomic manifold. 
 

 Consider a metric manifold Vn whose line element is defined by the expression (1): 
 

(1)      ds2 = 
, 1

n

ij i j
i j

a dx dx
=
∑ , 

 
and suppose, moreover, that one is given the n – m (m > 1) equations: 
 

(2)      
1

n

ij i
i

dxϕ
=
∑ = 0  (j = 1, 2, …, n – m) 

in this manifold. 
 The coefficients aij and ϕij are assumed to be functions of x that are continuous and 
differentiable as many times as necessary in a region D that pertains to our 
considerations.  We have excluded the cases m = 0 and m = 1, because in the first case, 
equations (2), which are considered to be mutually-independent, have only the trivial 
solutions x = constant, and in the second case, equations (2) will define a family of curves 
in Vn . 
 In this article, we would like to study the properties of the manifold Vn when it is 
constrained by the relations (2), and which will be denoted by simply m

nV .  Since those 

spaces present themselves very naturally in the study of the anholonomic systems in 
dynamics, one also calls them anholonomic spaces or manifolds. 
 Equations (2) form a system of n – m total differential equations or, as one sometimes 
says, a PFAFF system. 
 If that system is completely integrable then from (2), one can express n – m of the x 
as functions of the other x and n – m arbitrary constants C1, C2, …, Cn−m : 
 
(3)    xj = fj (x1, x2, …, C1, C2, …, Cn−m)  (j = m + 1, …, n), 
 
in such a way that one and only one of those integral manifolds pass through a point in 
space.  If one fixes the integration constants C arbitrarily – for example, such that the 
general integral will pass through a given point arbitrarily – then the study of the 
anholonomic space m

nV  will reduce to the study of a metric manifold Vm whose ds2 is 

obtained by introducing the values that are given in (3) into formula (1).  The study of 
m

nV  reduces to the study of ∞n−m metric manifolds Vm . 

 Now suppose that the system (2) is not completely integrable.  In that case, it can also 
admit a certain number of integrable combinations, and one can show (2) that one can 

                                                
 (1) The notations that relate to metric manifolds that are used in the course of this work are the ones that 
Prof. LEVI-CIVITA adopted in his Lezioni di Calcolo differenziale assoluto, which were compiled by E. 
PERSICO (Rome, A. Stok, 1923), which will be indicated by simply Lez. Levi-Civita in what follows. 
 (2) Cf., GOURSAT, Leçons sur le problème de Pfaff, Hermann, Paris, pp. 296. 
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exhibit those integrable combinations by transforming the system into another one of the 
form: 

(4)     
0 ( 1,2, , ),

0 ( , , ).
i

j

df i n p

w j n p n m

= = −
 = = − −

…

…
 

 
 The first equations in (4) are exact total differentials, and the last ones are Pfaffian 
equations that do not admit any integrable combinations.  From the first equations (4), 
one can express n – p of the x as functions of the other x and n – p integration constants, 
and by the same argument as before, the study of m

nV  will reduce to the study of ∞n−p 

metric manifolds Vp, for which the last of (4) will persist, or to ∞n−p anholonomic 
manifolds m

nV . 

 Upon introducing the language that is typically used for metric manifolds and 
Euclidian spaces, one can say that the anholonomic manifold m

nV  is immersed in the 

metric manifold Vn .  That last result can be expressed by saying that the smallest number 
of dimensions for a metric manifold in which mnV  can be considered to be immersed is p.  

Therefore, the number p – m expresses the degree of anholonomity of the manifold m
nV . 

 If the relations (2) do not admit any integrable combinations then one will be inclined 
to guess that m

nV  contains all of the points of Vn , in the sense that one can go from an 

arbitrary point of Vn to another arbitrary point along an integral curve [which satisfies (2)] 
or always remains in m

nV .  A general proof of that fact does not exist, but for certain 

systems (2), the proof is immediate.  The converse is true, and in fact, if equations (2) 
admit an integrable combination then two points can be joined by an integral curve only 
when they belong to the same hypersurface that is determined by the integrable 
combination. 
 From what was said above, one can always refer to the manifold m

nV  whenever the 

equations of anholonomity have not integrable combinations.  However, given a system 
of total differential equations (2), the question of how to put that system into the form (4) 
is very difficult, in general. 
 We shall therefore refer our considerations to the system (2) without thinking about 
whether it can admit integral combinations. 
 
 

§ 2. – On the fundamental and anholonomity congruences. 
 

 We begin by recalling some well-known notions about systems of n orthogonal 
congruences in a metric manifold Vn (

1). 
 When one is given a system of n contravariant quantities Ai, the equations: 
 

(4′)     
1

1

dx

A
= 

2

2

dx

A
 = … = 

n

n

dx

A
 

                                                
 (1) In particular, see Lez. Levi-Civita, chap. X.  
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will define a system of curves in Vn that one calls a congruence. 
 One and only one of those curves pass an arbitrary point at which not all of the Ai are 
zero.  Since the multiplication of the Ai by a non-zero factor will not change our 
congruence, we can always suppose that it is defined by the quantities: 
 

λi = 
iA

σ
 (i = 1, 2, …, n), 

which satisfies the relation: 

, 1

n
i j

ij
i j

a λ λ
=
∑ = 1, 

 
which is equivalent to determining σ from the formula: 
 

σ2 = 
, 1

n
i j

ij
i j

a A A
=
∑ . 

 
 The λi thus-defined are called the parameters of the congruence.  The covariant 
quantities: 

λj =
1

n
i

ij
i

a λ
=
∑  

 
are called the momenta of the congruence. 
 One proves that one can always choose n mutually-orthogonal congruences in a Vn  
(and also in an infinitude of ways), and if ihλ  (h = 1, 2, …, n) denote the parameters of 

that congruence then one will have the following relations at any point of Vn : 
 

(5)     
. 1

n
i j

ij h k
i j

a λ λ
=
∑ = k

hδ  = 
1

0 .

h k

h k

=
 ≠

 

 
 One deduces from them, the following relations between the parameters and the 
moments: 

|
1

n
i

h i k
i

λ λ
=
∑ = k

hδ , 

 
and the relations between the momenta: 
 

| |
, 1

n
ij

h i k j
i j

a λ λ
=
∑ = k

hδ , 

 
in which the aij are the inverses of the aij . 
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 A noteworthy fact to observe is that if one is given either the momenta or the 
parameters of a system of n orthogonal congruences Vn then the metric on that manifold 
will remain completely determined on the basis of the formulas: 
 

(5′)    aij = | |
1

n

h i h j
i

λ λ
=
∑ ,  aij = 

1

n
i j
h k

i

λ λ
=
∑ . 

 
 Therefore the metric on Vn can be considered to be epitomized by the n orthogonal 
congruences λ. 
 If one is given an infinitesimal displacement ds whose components are dx1, dx2, …, 
dxn then its projections onto the congruence (λh) will be given by the formulas: 
 

(6)      dsh = |
1

n

h i i
i

dxλ
=
∑ , 

 
where sh is nothing but the arc-length of the congruence (λh).  If one divides by ds then 
one will have the relations: 

(6′)      uh = hds

ds
 = |

1

n
i

h i
i

dx

ds
λ

=
∑ , 

 
in which uh are the cosines that the displacement ds forms with the congruence (λh). 
  

(7)      dxi = 
1

n
i
h h

h

dsλ
=
∑ ; 

 
i.e., the displacement ds is determined completely by the differentials of the arc-length 
dsh .  If one introduces those values into the quadratic form (1) then, on the basis of (5), 
one will get the formula: 
 
(1′)     ds2 = 2 2 2

1 2 nds ds ds+ + +⋯ . 

 
 Having said that, we move on to our anholonomic manifold m

nV .  From equations (2), 

we have that we can express n – m of the dxi in that manifold as functions of the other m, 
and more generally, we can express the dxi in the form: 
 

(5″)     dxi =
1

m
i
h h

h

l dσ
=
∑ , 

 
in which the dσh denote m independent linear combinations of the dxi (

1). 

                                                
 (1) Cf., my note: “Sopra una classe di sistemi anolonomi,” Rend. della R. Accademia dei Lincei (6) 3 
(1926), pp. 549. 
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 Those formulas (in which the dσh are regarded as arbitrary) express the idea that the 
possible displacements of the point (x1, x1, …, xn) in the anholonomic manifold m

nV  will 

proceed in any of the ∞m−1 directions of a subspace (giacitura), which can be specified by 
m of its arbitrary, but mutually-independent, directions.  In the form (5″), when one 
assumes that each of the dσh are equated to zero in succession, except for the first one, 
the second one, etc., they will present themselves as those directions that correspond to 
increments in the xi that are proportional to 1

il , 2
il , …, etc., respectively. 

 One can introduce the parameters of the corresponding direction by using the 
fundamental form (1) and writing (5″) in the form: 
 

(7′)      dxi = 
1

m
i
h h

h

dsλ
=
∑ , 

in which one sets: 

(6″)    i
hλ  = 

i
h

h

l

ρ
, dsh = ρh dsh  

 
and takes the ρh in such a way that: 

. 1

n
i j

ij h h
i j

a λ λ
=
∑ = 1   (h = 1, 2, …, m), 

 
which is equivalent to determining the ρh based upon the form: 
 

2
hρ  =

. 1

n
i j

ij h h
i j

a l l
=
∑ . 

 
 Take the m directions (λ) to be mutually orthogonal, which is also permissible.  The 
expressions for the dxi can then be presented (and also in an infinitude of ways) in the 
form: 

(8)      dxi =
1

n
i
h h

h

dsλ
=
∑ , 

 
in which the parameters ihλ  satisfy the orthogonality relations: 

 

(7″)     
. 1

n
i j

ij h h
i j

a λ λ
=
∑ = k

hδ   (h, k = 1, 2, …, m). 

 
 It results from this that equations (2) do nothing but introduce a subspace of ∞m−1 
directions at any point of Vn , among which one finds all of the displacements in m

nV .  

The m orthogonal directions (λ) that determine that subspace at the point (x1, x2, …, xn) 
define m congruences in all of Vn that one calls fundamental. 
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 When one completes the m congruences λ with n – m other congruences in order to 
form a system of n orthogonal congruences in Vn , equations (2) will be equivalent to the 
equations (1): 

(9)      |
1

n

h i i
i

dxλ ′
=
∑ = 0  (h′ = m + 1, …, n), 

 
which express precisely the idea that the projections of the displacement onto  mnV  will be 

zero for the last n – m congruences λ .  Those last n – m congruences are also called the 
anholonomity congruences. 
 Since equations (9) are a consequence of formulas (8), one can say that the 
anholonomic manifold m

nV  is determined completely by formulas (1) and (8).  If one 

divides formulas (8) by ds then one will have the following: 
 

(10)     idx

dt
 = 

1

m
i
h h

h

uλ
=
∑ , 

 
in which uh are the cosines of the displacement in m

nV  that is composed of the first m 

congruences, while the other ones are always zero.  If one takes (8) and (7″) into account 
then its will once more result that the metric of  m

nV  is given by the formula: 

 
(1″)    ds2 = 2 2 2

1 2 mds ds ds+ + +⋯ . 

 
 Integrability conditions. – One knows that the integrability conditions for a PFAFF 
system of the form (9) can be expressed by annulling the so-called bilinear covariant : 
 

||

, 1

n
h jh i

i jj i
i j

dd
dx x

dx dx

λλ
δ′′

=

 
− 

 
∑   (h′ = m + 1, …, n) 

 
for any choice of the two displacements whose components are dxi and δxj and which 
satisfy equations (9).  By virtue of the last condition, the displacements can be expressed 
by the formulas (8): 

(8′)     1

1

,

,

m
i

i h h
h

m
i

i h h
h

dx ds

x s

λ

δ λ δ

=

=

 =


 =


∑

∑
 

 
and the bilinear covariants will assume the form: 
 

                                                
 (1) In the course of the article, the indices that vary from m + 1 to n will be denoted by primed symbols, 
for more clarity. 
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||

, 1 , 1

m n
h jh i i j

h k h k
h k i j j i

dd
ds s

dx dx

λλ
δ λ λ′′

= =

 
−  

 
∑ ∑ . 

 
 In that formula, dsh and δsk are the components along the m fundamental congruences 
of two displacements that are situated in m

nV .  Since the dsh and δsk are arbitrary, it will 

result that the necessary and sufficient condition for the integrability of equations (9) are 
given by the formulas: 

(9′)     ||

, 1

n
h jh i i j

h k
i j j i

dd

dx dx

λλ
λ λ′′

=

 
−  

 
∑ = 0. 

 
 In order to give a more expressive form to those conditions, recall the definition of 
the RICCI rotation coefficients, which we shall always use in what follows.  The RICCI 
rotation coefficients relative to a system of n mutually-orthogonal congruences λ of Vn 
are given by the expressions: 

(11)    γhkl = |
|

h i i j
h r k l

j

d i j

rdx

λ
λ λ λ′  

−     
, 

 

in which 
i j

r

 
 
 

 are the CHRISTOFFEL symbols of the second kind that relate to the 

quadratic form (1).  The RICCI coefficients are antisymmetric with respect to the first 
indices and are invariants of coordinate transformations.  Now consider the quantities: 
 
(10′)     h

klw  = γhkl , 

 
which are obviously antisymmetric in the lower indices.  If one takes formulas (11) into 
account and the symmetry of the CHRISTOFFEL symbols then one will have: 
 

(10″)    h
klw  = || h jh i i j

h k
j i

dd

dx dx

λλ
λ λ′′ 

−  
 

. 

 
 By virtue of that formula, the integrability conditions (9′) will assume the simple 
form: 
 
(12)   h

hkw ′  = γh′ hk − γh′ kh = 0  (h = m + 1, …, n ; h, k = 1, 2, …, m). 

 
 One obtains the following formula from formulas (10′): 
 

(10″′)     γhkl = ( )1
2

h k l
kl lh hkw w w+ − , 
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which will define the γhkl as functions of the elements of only the congruences λ on the 
basis of (10″). 
 
 

§ 3. – Parallelism in m
nV . 

 
 Let R be a vector at a point P of the manifold Vn that is characterized, for example, by 
its contravariant components Ri.  The projections of those vectors onto the n orthogonal 
congruences (λ) are given by the formulas: 
 

(9″)     rh = |
1

n
i

h i
i

R λ
=
∑    (h = 1, 2, …, n), 

 
in which rh are invariant under coordinate transformations. 
 Conversely, the vector R is determined completely by those invariants, and the 
contravariant components Ri are expressed as functions of the rh by means of the 
formulas: 

(11′)     Ri = 
1

n
i

h h
i

r λ
=
∑    (i = 1, 2, …, n). 

 
 The vector R is said to be situated in the anholonomic manifold m

nV  when the n – m 

projections rh onto the n – m anholonomity congruences are zero, so one will have: 
 

|
1

n
i

h i
i

R λ ′
=
∑ = 0  (h = m + 1, …, n). 

 
 If one is given a vector in m

nV  and a displacement that is also in m
nV , which has 

components dsh and links the point P with a neighboring point P′ then one would like to 
transport the vector R from the point P to the point P′ by parallelism in the LEVI-
CIVITA sense.  In order to do that, recall that the equations of parallelism in Vn are 
obtained by the symbolic equations (1): 
 

(12′)     
1

n

k k
k

xτ δ
=
∑  = 0, 

 
which must be true for all of the independent displacements δxh and as a consequence one 
will have the following equations of parallelism: 
 

(11″)   τk = 
1 , 1

n n
j j

kj i
j i j

j i
a dR R dx

k= =
+∑ ∑  = 0  (k = 1, 2, …, n). 

 
                                                
 (1) Cf., Lez. Levi-Civita, pp. 157, formulas (50).  
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 In order to find the equations of parallelism in the case of our m
nV , we must observe 

that the δxk are no longer arbitrary, but are given by formulas (8), so the symbolic 
equations (12′) are written: 

(12″)     
1 1

m n
k

h k h
h k

sδ τ λ
= =
∑ ∑ = 0, 

 
and given the arbitrariness in the dsh in our case, the equations of parallelism will assume 
the form: 

(13)     
1

n
k

k h
k

τ λ
=
∑ = 0  (h = 1, 2, …, m). 

 
 We shall specify those equations under the double hypothesis that the vector R and 
the infinitesimal segment PP′ whose components are dxi are found in the anholonomic 
manifold m

nV , and therefore the following formulas will both be true: 

 

  R j = 
1

m
j rα α

α
λ

=
∑ , 

(13′) 

  dxi = 
1

m
i
l l

l

dsλ
=
∑ . 

 
 Differentiate the first of those formulas along PP′ : 
 

dR j =
1 1 1

jm m n
j

i
i i

dr r dx
x

α
α α α

α α

λλ
= = =

∂+
∂∑ ∑ ∑ , 

 
and introduce those values into equations (13). 
 If one takes into account the values of τk that are given in (11″) and moves the 
summation that goes from 1 to m to the first position then one will obtain: 
 

1 , 1 1 , , 1 1 , , 1

jm n m n m n
j k k i j i k

kj h l kj h l l l h
k j i j k i j ki

i j
dr a r ds a r ds

kx
α

α α α α α
α α α

λλ λ λ λ λ λ λ
= = = = = =

∂+ +
∂∑ ∑ ∑ ∑ ∑ ∑ = 0. 

 
 The first term in this equation reduces to drh , based upon the orthogonal formulas 
(7″).  As for the second summation in the second term, if we introduce the momenta of 
the congruences h, which are given by the formulas: 
 

λh | j = 
1

n
k

kj h
k

a λ
=
∑ , 

 
and if we also take into account the formula: 
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(13″)     |

i

h ji

d

dx
αλ λ = − |h j j

i

d

dx α

λ
λ , 

 
which one obtains by differentiating formula (5′), which couples the parameters and the 
momenta.  The equations can then be written: 
 

drh =
|

1 , 1 1

m n m
h j k j i

l h l
i j ki

d i j
r ds

kdxα α
α

λ
λ λ λ

= = =

 
− 

 
∑ ∑ ∑ . 

 
 By virtue of the formula that couples the CHRISTOFFEL symbols of the first and 
second kind, one will further have: 
 

1

m
k
h

k

i j

k
λ

=
∑  = |

1

m

h k
k

i j

k
λ

=

 
 
 

∑ , 

 
and based upon formula (11), which defines the RICCI rotation coefficients, the 
equations of parallelism in mnV  will assume the definitive form: 

 

(14) drh = 
, 1

m

h l l
l

dsα
α

γ
=
∑   (h = 1, 2, …, m). 

 
 Those m equations determine the increments that the m components rh , which specify 
the vector R in m

nV , must experience when one transports that vector along the 

infinitesimal segment PP′ in such a way that the angle between the vector R′ at P′ and the 
vector R at P is a minimum that is compatible with the anholonomity constraints (9). 
 We must observe that if no anholonomity relation exists then all of the calculations 
that we are about to do will be valid in the system of n orthogonal congruences in Vn by 
simply putting n in place of m, and the equations of parallelism in the metric manifold Vn 
will have the form (1): 

(14′)     drh = 
, 1

n

h l l
l

r dsα α
α

γ
=
∑   (h = 1, 2, …, n). 

 
 When one compares those equations with the usual equations of parallelism that refer 
to the coordinates x, one will see that one has introduced the RICCI rotation coefficients 
into the calculation of the congruences in place of the CHRISTOFFEL symbols, and that 
observation will be true in general, as one will see in what follows. 
 It is clear that the parallelism that is defined by equation (14) is different from the 
parallelism in Vn that is defined by equations (14′), so one can call the former constrained 
parallelism, or simply parallelism in m

nV . 

                                                
 (1) See CARPANESE, “Parallelismo e curvature in una varieta qualunque,” Annali di Matematica 27 
(1919), 147-169. 
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 Now, if one considers a finite segment of a curve in m
nV  then the way that one varies 

rh when one transports the vector R by parallelism along that curve will be defined by the 
differential equations [equations (14) divided by ds]: 
 

(15)    hdr

ds
 =

, 1

m

h l l
l

r uα α
α

γ
=
∑   l

l

ds
u

ds
 = 
 

, 

 
which define a system of m linear differential equations in the r and will serve to define 
the rh as a function of s.  One must take the x into account, and consequently, the γ, like 
the cosines ul , are well-defined functions of the arc-length s along T. 
 One easily proves that parallel transport does not change the length of the vector or 
the angle between two vectors. 
 Therefore, it is enough to know how the cosines of the vector R change under parallel 
transport, in which case, equations (15) can be written: 
 

(15′) hdv

ds
 =

, 1

m

h l l
l

v uα α
α

γ
=
∑ . 

 
 These equations obviously have the quadratic first integral: 
 

2

1

m

h
h

v
=
∑ = 1. 

 
 They then form a system of differential equations with an antisymmetric determinant, 
due to the antisymmetry property of the coefficients γ with respect to the first two 
indices. 
 It results from the properties of the linear differential equations in the normal form 
(15) that when one is given a direction at a point and a curve that passes through that 
point, its parallel constraint will remain determined uniquely along the curve. 
 
 

§ 4. – Geodetics in m
nV . 

 
 In order to find the equations of the geodetics in the manifold m

nV , we start with the 

autoparallel curves.  Those are the curves whose directions at each point form a system of 
parallel vectors in m

nV  along that curve.  In order to get the equations of those curves, we 

set v = u in the equations of parallelism (15′).  If we associate those equations with 
equations (10) then we will arrive at the system: 
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(16)   1

1

( 1,2, . ),

( 1,2, , ).

m
ii
h h

h

m
h

h l h
h

dx
u i m

ds

du
u u h m

ds α α

λ

γ

=

=

 = =


 = =


∑

∑

…

…

 

 
 That system of m + n differential equations, in a normal form, will serve to define the 
m + n unknown x and u as functions of the arc-length s.  One sees from (16) that when 
one chooses an arbitrary point (x1, x2, …, xn) and a direction (u1, u2, …, un), there will 
exist one and only one autoparallel curve that passes through that point in that direction. 
 We would now like to prove that equations (16) provide us, at the same time, with the 
geodetics of the manifold mnV .  For the sake of brevity, recall that when one is given two 

points A and B on a curve C that is in the manifold m
nV , the variation of the arc-length AB 

for an infinitesimal variation of the curve C to a neighboring curve c, while the endpoints 
A and B are fixed, is expressed by the formula (1): 
 

(16′)     δ l = − 
1

B n

k k
kA

p x dsδ
=
∑∫ , 

 
in which the quantities p are given by the expressions: 
 

(16″)    pk = 
, 1 , 1

n n

jk j j l
j k j l

j l
a x x x

k= =
+∑ ∑ɺɺ ɺ ɺ . 

 
 The variation of the arc-length must be zero for the geodetics, so the symbolic 
equation of the geodetic will take the form: 
 

(17)     
1

n

k k
k

p xδ
=
∑ = 0, 

 
which must be valid for all displacements that are compatible with the constraints. 
 Given the arbitrariness of the δ xk , one will get the equations of the geodetics in the 
manifold Vn by equating the pk to zero.  In the case of mnV , one obviously supposes that 

the curve C is found in m
nV  and then that the neighboring curve c is obtained from C by 

displacements δ xk that are in m
nV , so they are given by the expressions: 

 

(17′)     δ xk = 
1

m
k
h h

h

sλ δ
=
∑ , 

 

                                                
 (1) See Lez. Levi-Civita, pp. 153, formula (44).  
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in which the δ sh are regarded as arbitrary.  In general, the neighboring curve c will be in 
m

nV , and one will see later on that this is generally a characteristic property of the 

manifolds m
nV  for which the anholonomity relations are not completely integrable. 

 By virtue of (17′), the symbolic equation (17) will become: 
 

(17″)     
1 1

m n
k

h k h
h k

s pδ λ
= =
∑ ∑ = 0. 

 
 It will result with no further analysis that the geodetics of m

nV  will satisfy the m 

equations: 

(18)     
1

n
k

k h
k

p λ
=
∑ = 0  (h = 1, 2, …, m). 

 
 If one takes into account the first formula in (16), which is always valid m

nV , and 

formula (16″) then one will easily find that those equations are nothing but the last of 
(16). 
 That is to say, equations (16) will provide the curve in m

nV  such that the distance 

between two points on one of the those curves is minimal with respect to all of the 
neighboring curves that through those two points that are obtained from displacements 
that are compatible with the anholonomity constraints (9).  In that sense, the autoparallel 
curves in m

nV  are also the geodetics, and conversely. 

 One must observe that it is not true that when one is given two points arbitrarily, there 
will exist a geodetic that passes through those two points. 
 
 

§ 5. – Absolute differential calculus of congruences in a Vn . 
 

 It is obvious that when one is given a metric manifold Vn , the way that one refers that 
manifold to a system of n orthogonal congruences λ is not unique.  One should note that 
if one is given another system of n orthogonal congruences – call it λ  − then there will 
exist linear relations between the two systems of the form: 
 

(19)     |h iλ  = |
1

n
k
h k i

k

c λ
=
∑   (h = 1, 2, …, n), 

 
where the k

hc  are invariant under coordinate transformations. 

   Formulas (19) define a transformation of congruences.  If one takes formulas (6) into 
account then one will find the transformation formulas for the differentials of arc-length: 
 

(19′)     hds  = 
1

n
k
h k

k

c ds
=
∑ . 
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 Since our transformations (19′) must leave the quadratic form (1′) invariant, it will 
result that the k

hc  are the coefficients of an orthogonal substitution and that they will 

therefore satisfy the relations: 

(19″)     
1

n
k l
h h

h

c c
=
∑  = l

kδ = 
0 .

l k

l k

λ =
 ≠

 

 
 That fact can also be expressed by saying that, based upon formulas (5′), formulas 
(19) will not change the values of aij and consequently, the quadratic form (1).  If one 
takes into account the formulas that couple the parameters and momenta then one will 
find the same law of transformation.  One will find the inverse formulas by virtue of 
formulas (19″): 

λl | i = |
1

n
l

icα α
α

λ
=
∑ . 

 
 If one now solves formulas (19) for the k

hc  then one will get: 

 

(20)     k
hc  = |

1

n
i

h i k
i

λ λ
=
∑ . 

 
 We would like to see that the khc  satisfy a system of first-order differential equations 

that involve the RICCI rotation coefficients relative to the λ and λ .  In order to do that, 
we recall the formula the gives the intrinsic derivative of an arbitrary function u of 
position: 

du

dsα = 
1

n
j

kj
j

du

dx
λ

=
∑ , 

 
and differentiate (20) with respect to the arc-length sl , so we will have: 
 

  
k
h
l

dc

ds
= |

, 1 , 1

in n
h i i j jk

k l l
i j i jj j

d d

dx dx

λ λλ λ λ
= =

+∑ ∑ . 

 
 The second term in the right-hand side of that formula can be transformed based upon 
(19) and then based upon formula (13″), and one can write: 
 

(20′)    
k
h
l

dc

ds
= | |

, 1 , 1

n n
h i ii j i j

k l k l
i j i jj j

d d

dx dx
αλ λ

λ λ λ λ
= =

−∑ ∑ . 

 
 Since one can infer from the defining formula for the rotation coefficients (11) that: 
 

|h i

j

d

dx

λ
= | | |

1 , 1

n n

h h i j

i j
α αβ α β

α α β
λ γ λ λ

α= =

 
+ 

 
∑ ∑ , 
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and an analogous form for the | /i jd dxαλ , one will obtain the desired formula by 

introducing terms into (20′) that contain the CHRISTOFFEL symbols and reducing: 
 

(21)    
k
h

l

dc

ds
= 

, 1 1

n n
k l

h h klc c cα
αβ α β α

α β α
γ γ

= =

−∑ ∑ . 

 
 Vectors. – If one is given a vector R in Vn then its (invariant) components rh along the 
congruences λ will be given by formulas (9″).  If hr  denote the components of that vector 

along the congruences λ , which are coupled with those of the λ by formulas (19), then 
one will have the transformations formulas: 
 

(20″)     hr  = 
1

n
k
h k

k

c r
=
∑ . 

 
 Conversely, if one is given a system of n quantities that are invariant under the 
coordinate transformations and one changes them by a transformation of congruences 
according to the law (20″) then those quantities will specify a vector in Vn whose 
covariant (or contravariant) components are given by the expressions: 
 

Ai = 
1

n
i

h h
h

r λ
=
∑ ,  Ai = |

1

n

h h i
h

r λ
=
∑ . 

 
 Tensors. – If one is given an arbitrary tensor R (and for simplicity, suppose that it is a 
second-order mixed tensor with components j

iR ) then its invariant components in the 

system of congruences λ will be given by the expressions: 
 

rhk = |
, 1

n
j i

i h k j
i j

R λ λ
=
∑ . 

  
 If one denotes the components of that tensor R in the system of congruences λ by hkr  

then one will immediately have the transformation formulas: 
 

(21′)     hkr  = 
, 1

n

h kr c cα β
αβ

α β =
∑ . 

 
 Conversely, if one is given a system of n2 quantities that are invariant under 
coordinate transformations and one changes them by a transformation of congruences 
according to the law (21′) then that will specify a second-order tensor in Vn .  Therefore, 
the RIEMANN symbols of the first kind (which are, as one knows, the components of a 
covariant tensor of order four) will determine the invariants: 
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(21″)    γhk, lr = 
, , , 1

( , )
n

i j
h k l r

i j

ij α β

α β
αβ λ λ λ λ

=
∑  

 
in the system of congruences λ, which are just the four-index RICCI coefficients.  It will 
result that those RICCI coefficients form a fourth-order tensor in the absolute differential 
calculus of congruences.  Those coefficients expressed as functions of the rotation 
coefficients by the known formulas: 
 

(22)  γhk, lr = 
1

[ ( )]
n

khl hkr
hr kl hl k r hk lr rlr l

d d

ds ds α α α α α α α
α

γ γ γ γ γ γ γ γ γ
=

− + − + −∑ . 

 
 One must observe that not all systems of invariants can specify a tensor, and an 
example of that would be the rotation coefficients, which are invariants, but do not form a 
tensor, as formula (21) shows. 
 
 Tensorial derivation. – Given the vector R with (invariant) components rh, 
differentiate the transformation law (20″) of that vector with respect to ls , while taking 

into account the formulas: 

l

du

ds
 = 

1

n

l

du
c

ds
α

α α=
∑ . 

 
 The derivatives of the coefficients khc  appear in the result.  If one eliminates those 

derivatives with the help of formulas (21) and lets rh | l denote the quantities (1): 
 

(22′)     rh | l = 
1

n
h

h l
l

dr
r

ds α α
α

γ
=

−∑ , 

one will find the formula: 

(22″)     |h lr  = |
, 1

n

h lr c cα β
α β

α β =
∑ . 

 
 That signifies that the rh | l specify a second-order tensor that one calls the tensorial 
derivative of the vector R.  If one now differentiates formula (22″) and takes into account 
(21) then one find the tensorial second derivatives of the vector R, which are given by the 
formulas: 

(23)    rh | lk = |
| |

1 1

n n
h l

l hk h lk
k

dr
r r

ds α α α α
α α

γ γ
= =

+ +∑ ∑ . 

 

                                                
 (1) That method of forming the tensorial derivatives is analogous to the one that is used in Invariants of 
quadratic differential forms by OSWALD VEBLEN, Cambridge University Press, London, 1927, pp. 36-
40.  
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 One can find the tensorial derivatives of an arbitrary tensor in an analogous way.  
Finally, if one considers the difference between the second derivatives then one will find 
the formulas: 

(23′)    rh | lk − rh | kl = ,
1

n

h lkrα α
α

γ
=
∑ , 

 
in which γah, lk are the four-index RICCI coefficients that were indicated above. 
 We can find the tensorial derivatives by making use of the equations of parallelism, 
and that is the method that we prefer, because one can easily extend it to anholonomic 
manifolds. 
 One sees that the two points of view for considering the absolute differential calculus 
are equivalent for a metric manifold Vn ; that is to say, one can pass from one to the other 
at any moment. 
 The calculus of congruences presents a certain simplicity, albeit formally, because 
one can consider only the orthogonal transformations.  It is therefore unnecessary to 
distinguish between covariance and contravariance, because they coincide. 
 
 

§ 6. – Absolute differential calculus on anholonomic manifolds. 
 
 As we saw in § 2, an anholonomic manifold mnV  is characterized, on the one hand, by 

the first m congruences λ, which we also called fundamental, and on the other hand, by 
the last n – m  congruences λ, which we have also called anholonomity congruences, due 
to the fact that the moments of the latter congruences specify the anholonomic constraints 
(9).  It will then result, with no further discussion, that the congruences of mnV are divided 

into two distinct groups.  It is also obvious that the way that one chooses the congruences 
that define one of the two groups is not unique. 
 In the first place, one can replace the m congruences λ, which define the first group, 
with m other congruences λ  of that same subspace, which are therefore given by the 
transformation formulas: 

(24)     |h iλ  = |
1

m
k
h k i

k

c λ
=
∑   (h = 1, 2, …, m), 

 
in which the m quantities k

hc  are invariants.  Analogous formulas for the transformation 

of the differentials of the arc-length length will result from those formulas: 
 

(24′)     hds  = 
1

m
k
h k

k

c ds
=
∑   (h = 1, 2, …, m). 

 
 Since the quadratic form (1″) that defines the metric on mnV  must remain invariant 

under those transformations, as in the case of Vn , it will result that k
hc  are the coefficients 

of an orthogonal substitution.  Therefore, as in the case of Vn , one will also have the 
formulas: 
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(24″)    

1

| |
1

1

,

,

,

m
i k i

h h k
k

m
l

l i k k i
k

m
i l i
l k k

k

c

c

c

λ λ

λ λ

λ λ

=

=

=

 =



=



=


∑

∑

∑

  (h, l = 1, 2, …, m). 

 
 We now move on to the second group of congruences that are determined by 
equations (9), and the situation is completely different for them. 
 Indeed, the system of equations (9) admits the following group of transformations: 
 

(25)    |h iλ ′  = |
1

n
k
h k i

k m

c λ′
′ ′

′= +
∑   (h′ = m + 1, 2, …, n), 

 
where the invariant quantities satisfy k

hc ′
′  only the condition that their determinant must be 

non-zero.  Because of that, formulas (25) will be invertible, and one will consequently 
have: 

(25′)    |h iλ ′  = |
1

n
k

l l i
k m

c λ′
′ ′

′= +
∑ , 

 
as well, in which k

lc ′
′  is the inverse of the determinant of the k

hc ′
′ . 

 It is interesting to observe that although the transformations (24) and (25) do leave the 
metric in m

nV  invariant, they do not generally leave the one in Vn invariant, and therefore 

they do not leave the coefficients aij of the quadratic form invariant either.  In fact, if ija  

denote the coefficients of the metric that corresponds to the n congruences λ  then, based 
upon (5), one will have: 

ija  = | | | |
1 1

m n

h i h j h i h j
h h m

λ λ λ λ′ ′
′= = +

+∑ ∑ . 

 
 By virtue of (24) and (25) and the orthogonality of k

hc , that formula can be written: 

 

  ija  = | | | |
1 , , 1

m n
h l

h i h j k h k i l j
h h k l m

c cλ λ λ λ′ ′
′ ′ ′ ′

′ ′ ′= = +

+∑ ∑ , 

 
and it is enough to take into account those values of aij if one is to put those relations into 
the form: 

(25″)    ija  = | |
, , 1

( )
n

h l l
ij k h h k i l j

h k l m

a c c δ λ λ′ ′ ′
′ ′ ′ ′ ′

′ ′ ′= +

+ −∑ . 
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 From this, one sees that the metric on Vn will remain invariant only in the case where  
h
kc ′

′  can also be the coefficients of an orthogonal substitution. 

 In order to now find the transformation formulas for the parameters of the 
anholonomity congruences λ  and λ, one takes into account the relations between the 
momenta and the parameters: 

    |
1

n
i

h i l
i

λ λ′ ′ ′
=
∑  = l

hδ ′
′   (h′, l′ = m + 1, …, n) 

 
that derive from the fact that the parameters are the inverses of the determinants that are 
composed of the momenta.  One will easily find the following transformation formulas 
then: 

(25″′)    1

1

,

.

n
i i

l l
m

n
i i

l l
l m

c

c

α
α

α

α
α

λ λ

λ λ

′
′ ′ ′

′= +

′
′ ′ ′

′= +

 =


 =


∑

∑
 

 
 It is probably superfluous to point out that the transformations (24) and (25) do not 
disturb the orthogonality of the two groups of congruences, in the sense that the relations: 
 

  |
1

n
i

h i h
i

λ λ ′
=
∑ = 0   (h ≤ m, h′ > m) 

will always be satisfied. 
 
 Tensors. – A system of certain quantities that are functions of the x that are invariant 
under coordinate transformations will be said to form a tensor relative to the manifold 

m
nV  when the new quantities that result from performing the two transformations (24) and 

(25) in succession can be expressed as linear, homogeneous functions of the old ones 
whose coefficients are homogeneous functions of the same degree in khc  and k

hc ′
′  that do 

not involve the derivatives of the c. 
 
 One will be better able to see what that definition means after some examples that 
will be considered in what follows. 
 Let R be a vector in m

nV  (see § 3) that is determined by its projections rh onto the m 

fundamental congruences of mnV .  It is obvious that the transformation (25) does not 

change those projections at all, because it does not change the fundamental congruences, 
and the transformations (24) will change the rh according to the formulas: 
 

(26)     hr  = 
1

m

hc rα
α

α
′

=
∑   (h = 1, 2, …, m), 

 
 Vector derived from a vector along a curve. – Let C be a curve in m

nV  whose cosines 

are ul and whose arc-length is s, and consider the quantities: 
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(26′)    (Drh) = 
, 1

m
h

hkl k l
k l

dr
r u

ds
γ

=

−∑   (h = 1, 2, …, m), 

 
in which rh are the components of the vector R in m

nV .  In order to do that, in the first 

place, observe that the transformations (25) do not disturb (26′). 
 Indeed, it will obviously not change the components rh and the cosines ul , and by 
virtue of the formula (10), it will also leave invariant the RICCI rotation coefficients γhkl 
(h, k, l ≤ m). 
 Therefore, consider the transformations (24) and let: 
 

( )hDr  = 
, 1

m
h

hkl k l
k l

dr
r u

ds
γ

=

−∑  

 
denote the quantities (26′) that correspond to the congruences λ .  If one takes into 
account formula (26), when differentiated with respect to the arc-length s, and that of the 
curve C and the formula: 
 

hklγ =
, 1 1

m m
h

k h l

dc
c c c

ds

δ
α δ ρ

αδρ
ρ δ αρ

γ
= =

 
+  

 
∑ ∑   (h, k, l ≤ m), 

 
which will be proved in § 7, formula (30), then one will arrive with no difficulty with the 
relations: 

( )hD r  = 
1

( )
m

hc Drα
α

α =
∑ , 

 
which express the (Drh) precisely and define a vector in mnV .  Call that vector the derived 

vector to R along the curve C, just as one called its analogue in the case of a manifold Vn .  
It results from the equations of parallelism (15) that the derived vector is zero when the 
vector R is transported by constrained parallelism along C.  It also results from this that 
the equations of parallelism in mnV  have an invariant character with respect to the 

transformations (24) and (25). 
 
 Geodetic curvature. – Now suppose that the vector R is a unit vector that is tangent to 
the curve C, in which the case, formula (26′) will assume the form: 
 

(26″)    uh = 
, 1

m
h

hkl k l
k l

du
u u

ds
γ

=

−∑ , 

 
and will obviously continue to form a vector in mnV  that one calls the geodetic curvature.  

When one compares that equation with the geodetic equation (16), it will result that the 
geodetics of m

nV  are the curves in m
nV  that have zero geodetic curvature, and that the 
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equations of those geodetics have an invariant form with respect to the transformations 
(24) and (25).  That geodetic curvature vector is precisely the projection into m

nV  of the 

geodetic curvature vector of C in Vn , but calculated based upon formulas (10), which are 
true in m

nV .  If one multiplies (26″) by uh and sums then one will get zero, which is to say 

that the geodetic curvature vector of the curve C is normal to that curve. 
 
 Directly or inversely interior and exterior tensors. – Only the coefficients khc  of (24) 

enter into the transformation laws that were considered so far.  As a result of that fact, the 
vectors or tensors that have that property will be called interior vectors or tensors in mnV . 

 A tensor whose transformation laws are of degree p in the k
hc  and degree q in the k

hc ′
′  

will be called interior of order p and exterior of order q.  Moreover: A tensor that is 
supposed to be exterior of order one will be called directly exterior if its components 
change like the momenta of the congruence λ [formulas (25)], and on the contrary, one 
will call it inversely exterior if its components change like parameters [formulas (25″′)] 
(1). 
 It is interesting to observe that those anholonomic manifolds are metric manifolds 
only with respect to the fundamental congruences, but not with respect to the 
anholonomity congruences, which can be subjected to a general linear transformation of 
the type (25).  Therefore, one cannot speak of the directly exterior or inversely exterior 
components of those tensors. 
 The n – m components of an arbitrary vector in Vn with respect to the anholonomity 
congruences provide an example of a directly exterior vector in m

nV , and the derivatives 

of a function of position along the anholonomity congruence will form an inversely 
exterior vector. 
 
 Tensorial character of the integrability conditions. – Suppose that the transformations 
(24) and (25) have been performed, and let [see formulas (10″)]: 
 

h
klw ′ = | |

, 1

n
h i h j i j

k l
i j j i

d d

dx dx

λ λ
λ λ′ ′

=

 
−  

 
∑  

 
be the integrability conditions for the system of congruences λ .  By virtue of the 
derivatives of (25) and the first of formulas (24″), one will find the relations: 
 

(27)    h
klw ′ = 

, 1 1

m n
k l
a b h ab

a b m

c c c wα α

α

′ ′
′

′= = +
∑ ∑ , 

 

                                                
 (1) In the interests of greater clarity, the primed indices that are intended to indicate the property of a 
tensor being directly exterior will be placed above, while the ones that relate to the inversely exterior 
tensors will be placed below. 
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which expresses precisely the idea that the integrability conditions (12) represent a tensor 
of order three in m

nV  that is twice interior and once directly exterior. 

 
 

§ 7. – Fundamental formulas in m
nV . 

 
 We have seen that in the case of a manifold Vn, the coefficients of the transformations 
(19) satisfy equations (21).  We would now like to find the analogous equations for the 
coefficients k

hc  and k
hc ′

′  in (24) and (25). 

 We begin with the transformations (24), from which we will get the k
hc  from the 

formulas: 

(28)     k
hc  = |

1

n
i

h i k
i

λ λ
=
∑ . 

 
 If one differentiates this with respect to sl (l ≤ m) then one will arrive at the formula: 
 

(28)   
k
h

l

dc

ds
 = | |

, 1 1 , 1

n m n
h i ii j i j

k l h k l
i j i jj j

d d
c

dx dx
αα

α

λ λ
λ λ λ λ

= = =
−∑ ∑ ∑  

 
in an analogous way [see (20′)]. 
 We shall also make use of the formulas: 
 

(28″)   

|
| | |

1 , 1

|
| | |

1 , 1

,

,

n n
h i

h h i j
j

n n
h i

h h i j
j

d i j

dx

d i j

dx

α αβ α β
α α β

α αβ α β
α α β

λ
λ γ λ λ

α

λ
λ γ λ λ

α

= =

= =

  
= + 

 


  = + 
 

∑ ∑

∑ ∑
 

 
but when we take into account the fact that the CHRISTOFFEL symbols in this case refer 
to two different metrics that are coupled by formulas (26). 
 By virtue of those formulas and (28), (28′) can be written as: 
 

(29)   
k
hdc

ds
= |

, 1 1 , , 1

m m n
k l r i j

h h h kl ij h r k l
i j r

c c cα
αβ β α

α β α
γ γ ρ λ λ λ

= = =

− +∑ ∑ ∑ , 

 
in which the r

ijρ  denote the third-order tensor (twice covariant and once contravariant): 

 

(29)    r
ijρ = 

i j i j

r r

   
−   

   
. 
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 Without performing all of the calculations that pertain to that tensor on the basis of 
formulas (26), one can account for the fact that all terms in that tensor have at least one of 
the parameters or momenta of the anholonomity congruence for a factor, which will 
always amount to zero when combined with the product |

i j
h r k lλ λ λ  (h, k, l ≤ m). 

 Hence, (29) will take on the aspect of (21), and therefore: 
 

(30)    
k
h
l

dc

ds
= 

, 1 1

m m
k l

h h h klc c cα
αβ β α

α β α
γ γ

= =

−∑ ∑  (h, k, l ≤ m). 

 
 Formulas (30) give only the first m intrinsic derivatives of the khc .  In order to find the 

other ones, one must differentiate with respect to sl′ (l′ < m), and therefore put l′ in place 
of l in formula (28′).  In that case, the product: 
 

|
r i j
ij h r k lρ λ λ λ ′  

 
will no longer be zero.  In order to arrive at the result directly, observe that when one is 
given the orthogonality of the two groups of congruences, one will have the formula: 
 

|
1

n
j

h j l
j

λ λ ′
=
∑ = 0  (h ≤ m ; l′ = m + 1, …, n), 

which can be written: 

| |

, , 1 1

n m
h j h jj i j i

l k l k
i j i i

d d

dx dxα

λ λ
λ λ λ λ′ ′

= =

 
−  

 
∑ ∑  = 0 

 
when it is differentiated with respect to sk (k ≤ m). 
 When one subtracts that formula from (28′), in which one sets l′ > m in place of l, 
then when one also takes into account formulas (10″) and (28), one will obtain the 
desired formula: 

(31)    
k
h

l

dc

ds′

= 
1 1 1

n m m
h k l

kl hw c c w cα α
αα α α

α α α

′
′ ′

′= = =
−∑∑ ∑ , 

 
which is essentially different from (30), as one sees. 
 We shall now move on to the transformations (25), from which we will get the values 
of k

hc ′
′  in the form: 

k
hc ′

′  = |
1

n
i

h i k
i

λ λ′ ′
=
∑ . 

 
 Here, we must also first look for the first m intrinsic derivatives, and we will find the 
formulas: 

(32)    
k
h
l

dc

ds

′
′ = 

1 1 1

m n m
h k l

h k lw c c c wα α
α α α α

α α α

′ ′ ′ ′
′ ′ ′ ′

′ ′= = =

−∑∑ ∑  
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from a calculation that is analogous to the preceding one. 
 One cannot simplify the form of (29) as far as the last n – m intrinsic derivatives of 
the k

hc ′
′  are concerned, and therefore it will be written: 

 

(33)  
k
h

l

dc

ds

′
′

′

= 
, 1 1 1

n n n
k l

h h k l h k l
m m m

c c c cα α α
α β α β α

α β α α
γ γ ε′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′
′ ′ ′ ′= + = + = +

− +∑ ∑ ∑ , 

 
in which one sets: 

(32′)    k l
αε ′
′ ′  = |

, , 1

n
r i j
ij r k l

i j r
αρ λ λ λ′ ′

=
∑ , 

for simplicity. 
 The quantity k l

αε ′
′ ′ , which cannot be eliminated from (33), will be especially 

interesting in what follows.  We shall try to prove that no metric exists inside of the 
anholonomity congruence. 
 If we now look for the interior derivatives of the khc ′

′ , instead of the khc ′
′ , then we will 

arrive at the formulas: 

(32″)    
k

h

l

dc

ds

′
′

′

= −
1 1 1

m n n
k l k

h l h
m

w c c w cα α
α α α α

α α α

′ ′ ′
′ ′ ′ ′

′ ′= = = +
+∑∑ ∑ , 

 
which will also be useful in what follows. 
 Given the symmetry of the k l

αε ′
′ ′  in the lower indices, we have the formulas: 

 

(33′)    
k l
h h

l k

dc dc

ds ds

′ ′
′ ′

′ ′

− = 
, 1 1

n n
h k l

k l h
m m

w c c w cα α
α β α β

α α α

′ ′ ′ ′ ′
′ ′ ′ ′ ′ ′

′ ′= + = +

−∑ ∑ , 

 
which determine the difference between the exterior derivatives of the k

hc ′
′  and the 

formulas in which the k l
αε ′
′ ′  no longer appear. 

 
 

§ 8. – Tensorial derivation. 
 

 Definitions (1). – If one is given an interior tensor in mnV  and the transformation law 

for its components with respect to the transformations (24) then one can differentiate that 
law along an arc of the fundamental congruence.  The first m intrinsic derivatives of the 
coefficients k

hc  will appear in the result.  If one eliminates those derivatives with the help 

of formulas (30) and combines, on the one hand, the quantities that refer to the 
congruences λ and, on the other, the ones that refer to the congruences λ  then one will 
find the transformation law for a new interior tensor whose components will be called 

                                                
 (1) See the footnote on page 18.  
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interior tensorial derivatives of the given tensor.  The order of that derived tensor is 
greater by one than that of the given tensor. 
 If one differentiates that tensor along an arc of the anholonomity congruence and 
eliminates the derivatives of the khc  with the help of (31) then one will find the 

transformation laws of exterior tensorial derivatives that specify a tensor that is as many 
time interior as the given tensor and more than once inversely exterior. 
 If one is now given a tensor that is one or more times exterior then one can find the 
interior tensorial derivative of that tensor with the same method.  However, if one would 
like to find the exterior derivatives then one must also use formulas (33) and therefore the 
quantities k l

αε ′
′ ′  will appear in the result, which means that the exterior derivatives are not 

tensors.  It then results that when one starts from an interior tensor, it is not possible to 
find tensors that are one or more times exterior by derivation, and when one starts from 
an exterior or mixed tensor, one cannot increase the exterior order by derivation.  One 
knows only one tensor in mnV  that is twice exterior, which is specified by the integrability 

conditions of the fundamental congruences and which transforms according to the law: 
 

h
p qw ′ ′ = 

1 , 1

m n
h p q

m

c w c cα
α α β α β

α α β

′ ′
′ ′ ′ ′

′ ′= = +
∑ ∑ , 

 
and according to the last observation, its interior tensorial derivatives will also have that 
property. 
 
 Example. – If one is given an interior vector R then determine its components rh .  
First, differentiate the transformation law (26) for that vector with respect to one arc-
length ks  of the fundamental congruences λ , and if one takes formulas (30) into account 

then one will find the tensorial relations: 

(34)     |h kr  = |
, 1

m

h kr c cα β
α β

α β =
∑ , 

 
in which the interior derivatives rh | k are given by the formulas: 
 

(34′)     rh | k = 
1

m
h

h k
k

dr
r

ds α α
α

γ
=

−∑ , 

 
and are in the same form as if space were completely Riemannian [see (22′)]. 
 In order to find the exterior derivatives of R, differentiate (26) with respect to an arc-
length ks , so that one has: 

h

k

dr

ds ′

= 
1 1

m m
h

h
k k

dr dc
c r

ds ds

α
α α

α
α α= =′ ′

+∑ ∑ . 

 
 If one takes into account the fact that the exterior intrinsic derivatives are inversely 
exterior vectors, along with formulas (31), one can give (35) the tensorial form: 



Vranceanu – Geometric study of anholonomic systems. 28 

(35′)    |h kr ′  = |
1 1

m n

h k
m

c c rα α
α α

α α

′
′ ′

′= = +
∑ ∑ . 

 
 In that formula, the rh | k′ denote the last n – m tensorial derivatives of the vector R, 
which are determined on the basis of the expressions: 
 

(36)    rh | k′  = 
1

m
hh
k

k

dr
w r

ds α α
α =′

−∑ . 

 
 As one sees, those derivatives, which are the components of a second-order tensor 
that is once interior and once inversely exterior, are essentially different from the 
derivatives that one would have if space were Riemannian. 
 We now move on to the determination of the tensorial second derivatives of the 
vector R, that is to say, the first derivatives of the tensors rh | k and rh | k′ . 
 We first focus our attention on the first m derivatives of the tensor (34′).  If we 
differentiate that formula with respect to sl and make use of (30) then we will easily find 
the expressions for the interior tensorial second derivatives: 
 

(36′)    rh | k l = |
| |

1 1

m m
h k

k h l h k l
l

dr
r r

ds α α α α
α α

γ γ
= =

− −∑ ∑ , 

 
which are obviously the components of a third-order interior tensor. 
 If we now differentiate formulas (34′) with respect to sk′ then it will be enough to take 
(31) into account if we are to arrive at the following second-order tensorial derivatives: 
 

(37)    rh | k k′ = |
| |

1 1

m m
h k h k

k k h k
k

dr
r w r w

ds α α α α
α α

′ ′
= =′

− −∑ ∑ . 

 
 They are the components of a third-order tensor in m

nV  that is twice interior and once 

inverse exterior. 
 We now move on to the tensor rh | k′ and differentiate (35′) with respect to sk .  If we 
take (32″) into account then we will get the following tensorial derivatives with no 
difficulty: 

(37′)    rh | k′k = |
| |

1 1

m n
h k

k h k h k k
mk

dr
r r w

ds
α

α α α
α α

γ′ ′
′ ′

′= = +
− −∑ ∑ , 

 
which are the components of a third-order tensor that is twice interior and once inversely 
exterior. 
 Formulas (36′), (37), and (37′) represent all of the second-order tensorial derivatives 
of the vector R, which specify tensors in mnV . 
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§ 9. – Principal tensors in a m
nV . 

 
 We would now like to find the expressions for two fourth-order tensors by 
considering the differences of the second derivatives of the vector R that were found in 
the preceding paragraph.  One of those tensors is interior and the other one is three-times 
interior and once inversely exterior. 
 In order to arrive at the expressions for the first tensor, consider the difference of the 
second derivatives in (36′): 

(38)    h
kl∆ = rh | kl – rh | lk = 

2 2
h h

l k k l

d r d r

ds ds ds ds
− + … 

 
 In order to avoid excessively long calculations, observe that the difference in question 
is expressed by formula (23′) in the case of a Vn .  In that case, the unwritten terms on the 
right-hand side of formula (38) will be the same as the ones for a manifold Vm that is 
determined by the m fundamental congruences λ of m

nV .  However, that is no longer true 

for the written terms, which can be written: 
 

(38′)    
2 2

h h

l k k l

d r d r

ds ds ds ds
− = 

1 1

m n
h h

kl kl
m

dr dr
w w

ds ds
α α

α αα α

′

′= = + ′

−∑ ∑ , 

 
from a known formula in Vn , where in the right-hand side we have divided the sum into 
two parts in order to exhibit the elements that relate to the anholonomity congruences.  If 
the anholonomity relations (9) are completely integrable then the integrability conditions 

klwα ′  will all be zero, and one will have the formula: 

 

∆h = ,
1

m

h klrα α
α

γ
=
∑ , 

 
in which the four-index RICCI coefficients refer to only the m fundamental congruences, 
and are therefore given by the expressions: 
 

(38″)  γαh, kl = 
1

[ ( ) ]
m

hk hl
hi ikl ilk i l ihl i k ikl

il k

d d

ds ds
α α

α α α
γ γ γ γ γ γ γ γ γ

=

− + − + −∑ . 

 
 In the general case, (38) can be written: 
 

(39)    h
kl∆  = ,

1 1

m n
h

h kl kl
m

dr
r w

ds
α

α α
α α α

γ ′

′= = + ′

−∑ ∑ , 

 
and it is obviously intended that the γαh,kl are always determined by (38″).  It is also 
obvious that the difference hkl∆  specifies a fourth-order interior tensor, but in order to 
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exhibit that fact in the right-hand side of (39), as well, recall formula (36), which gives 
the exterior derivatives of the vector R, from which one has: 
 

hdr

dsα ′

= rh | α′  + 
1

m
hw rαα α

α
′

=
∑ . 

 
 By virtue of that relation, (39) assumes the definitive form: 
 

(39′)    h
kl∆  = , |

1 1

m n

h kl h kl
m

r r wα
α α α

α α
λ ′

′
′= = +

−∑ ∑ , 

in which one sets: 

(40)    λαh, kl = γαh, kl − 
1

n
h

kl
m

w wα
αα

α

′
′

′= +
∑ , 

for simplicity. 
 Given the fact that the last term in the right-hand side of (39′) is obviously the 
component of a third-order interior tensor, the same thing will be true for the left-hand 
side, since the quantities λαh,kl specify a fourth-order interior tensor.  That tensor is 
antisymmetric in the last two indices, because the klwα ′ , as well as the γαh,kl , are 

antisymmetric in the indices k, l.  However, the latter are no longer antisymmetric in the 
first indices, so we will have the formula: 

(39″)    γαh, kl + γhα, kl = ,
1

n

h kl
m

v wα
α α

α

′
′

′= +
∑ , 

in which we have set: 
 
(40′)     vhα, α′ = γαh, kl + γhα, kl . 
 
 It will then result that the quantity vhα, α′ also specifies a fourth-order tensor that is 
twice interior and once inversely exterior. 
 In order to find the second tensor of which we spoke at the beginning of this 
paragraph, consider the difference: 
 
(41)     h

kl∆  = rh | k′ k − rh | kk′ , 

 
in which the rh | kk′ and rh | k′ k are defined by formulas (37) and (37), since that difference 
can be written: 
 

(41′)  h
kl∆ = | |

| | | |
1 1 1 1

m n m n
h k h k h k

k h k h k k k k h k
m mk k

dr dr
r r w r w r w

ds ds
α

α α α α α α α
α α α α

γ′ ′
′ ′ ′ ′ ′

′ ′= = + = = +′

+ + − + +∑ ∑ ∑ ∑  

 
(h, k ≤ m ; k′ > m). 
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 Now recall formulas (34′) and (36), which define the first tensorial derivatives of the 
vector R, and first consider the terms in the right-hand side of (41′) that contain the first 
and second derivatives of rh , and which can be written: 
 

2

2
1 1 1 1

m m m n
h h kk k h h h
k h k h k k k k k

mh k k k k k k

ds ds d r dr dr dr dr dr dr
w w w w

d r ds ds ds ds ds ds ds ds
αα α α α

α α α α α
α α α αα α

γ γ ′′
′ ′ ′ ′

′= = = = +′ ′ ′ ′

   
− + − − − + +   

   
∑ ∑ ∑ ∑ . 

 
 If one takes the formula (38′) into account, which provides the difference between the 
second derivatives, and reduces the similar terms, then all of those terms will reduce to 
the following one: 

,
1

m
h

k k

dr
v

ds α
α α

′
=
∑ , 

 
in which the quantities vα k,k′ are given by (40′). 
 If one introduces the first tensorial derivatives in place of the drh / dsα , based upon 
(34″), and performs the calculations then one can give (41) the form: 
 

(42)     h
kl∆  = , | ,

1 1

m m

h kk h k kr v r vα α α α
α α

′ ′
= =

+∑ ∑ , 

in which one sets: 
 

(40′)  vhαk,k′ = 
1 1

( )
h m n

i i h hh k k
h i kk hik k i k ik hkk k

i m

d dw
w w w w w

ds ds
αα α

α α α αα
α

γ γ γ γ ′′
′ ′ ′ ′′

′= = +
− + + − +∑ ∑ . 

 
 It results with no further analysis that the quantities vhαk,k′ specify a fourth-order 
tensor that is three times interior and once inversely exterior. 
 
 

§ 10. – Equations of geodetic variation (1). 
 

 In this paragraph, we would like to consider succinctly the equations of geodetic 
variation for the anholonomic manifold mnV  in the general form and exhibit their invariant 

character with respect to the transformations (24) and (25) in m
nV . 

 Let a curve (C) in the manifold m
nV  be defined by the equations: 

 
(C)      xi = ϕi (σ), 
                                                
 (1) See my note: “Sullo scostamento geodetico nelle varietà anolonome,” Rend. della R. Accad. dei 
Lincei (6) 7 (1928), pp. 134.  In my article: “Sur l’écart géodésique dans les espaces non holonomes,” 
Annales Scientifiques de l’Université de Jassy, t. XI, fasc. 1-2, pp. 7-24, due to the hypotheses that the 

displacement (Σ) is an interior vector in m

n
V , which is a hypothesis that is not generally compatible with the 

anholonomity relation, I did not find correct equations for the variations in certain particular cases, but the 
preliminary calculations and the methodology were valid.  See also my note in the following issue of that 
review, which refers to that article. 
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in which σ indicates the arc-length of the curve.  The cosines of the angles that that curve 
makes with the congruences λ are provided by the expressions: 
 

  ch = |
1

( )
n

h i i
i

λ ϕ σ
=

′∑ . 

 
 A curve (c) that is close to (C) can always be determined by equations of the type: 
 

(c)     xi = ϕi (σ) + 
1

n
i
h h

h

λ ε
=
∑ , 

 
in which εh denotes the invariant components of the displacement vector, which takes (C) 
to the neighboring curve (c). 
 The cosines of the angles that the curve (c) makes with the congruences λ in Vn are 
given by the formulas: 

(42′)   uh = 
, 1

n
hh

h kl k l
k l

dd
c w c

ds d

εσ ε
σ =

 
+ + 

 
∑   (h = 1, 2, …, n), 

 
in which s denotes the arc-length of (c), and the w have values that they must have along 
the curve (C).  Those formulas are obviously calculated under the hypothesis that the εh 
are first-order quantities. 
 On the basis of the formulas that define the invariant components of the derived 
vector of (ε) along (C), those formulas can also be written: 
 

(42″)   uh = 
, 1

( )
m

h h hkl k l
k l

d
c D c

ds

σ ε γ ε
=

 
+ + 

 
∑ . 

 
 If one introduces those values into the quadratic relations for the cosines then one will 
get a value for the ratio: 

d

ds

σ
= 1 – µ, 

 
in which µ denotes the first-order quantity: 
 

µ = 
1

( )
n

h h
h

c Dε
=
∑ . 

 
 Now suppose that (C) is a geodetic in Vn and demand that (c) should also be a 
geodetic in Vn .  In order for that to be true, it is enough to impose the condition on the 
cosines of (c) that are provided by formulas (42″) that they must satisfy the geodetic 
equations in Vn .  One will then arrive at the following equations of variation: 
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(43)    (D 2εh) − h

d
c

d

µ
σ

 = ,
, 1

n

hk lr k l r
k lr

c cγ ε
=
∑ , 

 
which are nothing but the invariant components of the vector that provides LEVI-
CIVITA’s equations of variations (1). 
 We now move on to the anholonomic manifolds and suppose that the curve (C) is 
situated in m

nV , that is to say, that the last n – m cosines ch′ (h′ > m) are zero. 

 The cosines between the curve and a neighboring curve are given by the same 
formulas (42′), since the displacement is always an arbitrary vector in Vn , and in 
particular, the last n – m  formulas (42′) are written: 
 

uh′ = 
1 1 , 1

n m m
h hh
kl k l kl k l

l m k k l

dd
w c w c

ds d

εσ ε ε
σ

′ ′′
′ ′

′= + = =

 
+ + 

 
∑ ∑ ∑ , 

 
which say precisely that the cosines between (c) and the anholonomity congruence are 
first-order quantities. 
 If one would now desire that the curve (c) should also be situated in mnV  then one 

must have the equations: 
 

(43′)   
1 1 , 1

n m m
h hh

l kl k kl k l
l m k k l

d
w c w c

d

ε ε ε
σ

′ ′′
′ ′

′= + = =

+ +∑ ∑ ∑ = 0 (h′ = m + 1, …, n), 

 
which represent n – m linear differential equations in the n – m quantities εh′ (h′ > m) 
whose known terms are linear an homogeneous in the first εh (h ≤ m).  One immediately 
sees that these differential equations cannot admit the solution εh′  = 0, which says that 
the displacement is itself situated in m

nV , in which case, one will have the relations: 

 

, 1

m
h
kl k l

k l

w c ε′

=
∑ = 0 

along (C). 
 Those relations can be valid for an arbitrary curve (C) and displacement (ε) only in 
the case where the h

klw ′  are zero, or what amounts to the same thing, when the 

anholonomity relations are completely integrable.  Therefore, in an effectively 
anholonomic manifold, one must always associate a neighboring curve (c) with the 
differential equations (43′) in order to determine the n – m εh′ as functions of the arc-
length σ when the m εh are known. 
 Now suppose that (C) is a geodetic in m

nV , and therefore that the cosines ch satisfy 

equations (16).  In order for (c) to also be a geodetic in mnV , its cosines uh must also 

                                                
 (1) See T. LEVI-CIVITA, The absolute differential calculus, edited by E. PERSICO, Blackie, London, 
1927, pp. 215, formulas (57).  
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satisfy equations (16), and when one performs the calculations, one will find the 
following equations of variation: 
 

(44)   (D2 εh) − h

d
c

d

µ
σ

 = , ,
, , 1 , 1 1

m m n

kh lr k l r k l hk lr r
k l r k l r m

c c c c vλ ε ε′ ′
′= = = +

+∑ ∑ ∑ , 

 
in which the (D2 εh) represent the components of the second derived vector in m

nV  [see 

formulas (26′)] of the projection of the displacement (ε) into m
nV  along our curve (C), and 

the λhk,lr and vhk,lr ′ are the components of the tensors (40) and (40′), resp.  As for the 
quantity µ, it is always determined by the quadratic relation between the cosines and can 
be written: 

µ = 1
,2

1 1 , 1

( )
m n m

h h l hk l h k
h l m h k

c D v c cε ε ′ ′
′= = + =

+∑ ∑ ∑ . 

 
 Equations (44), along with (43), define a system of differential equations of order n – 
m for the determination of the n unknowns ε. 
 In order to confirm that this system has an invariant character with respect to the 
transformations of the congruences (24) and (25), it is enough to observe that the left-
hand side of (44), as well as the right, gives the components of an interior vector.  As for 
(43′), since they are exterior cosines, they will be the components of a directly exterior 
vector. 
 

____________ 


