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Geometric study of anholonomic systems
By GHEORGHEVRANCEANU (in Jassy, Romania)

Translated by D. H. Delphenich

INTRODUCTION

The idea of searching for a geometric interpretatioramfolonomic systems in
mechanics was suggested to me by a question that was po&edfbiEVI-CIVITA,
namely:

Given an anholonomic mechanical system with comtgahat are independent of
time, whosevis vivahas the form:

n dx dx
T=1 s B Ry
Ziéla' dt dt
and whose anholonomic constraints are:
(a) D ¢, dx=0 (=12 ..n—m,

i=1

there is a metric manifold, whoseds’ is given by the expression:

dsZZZlezzzn:aﬁ dx dx,

ij=1

and for which &) will be the mobility constraints for the represen&tpoint of the
system inV, . The spontaneous trajectories of our anholonomiesyare curves N/, .
What property must they effectively enjoy in order fogit geodetic curvature M, to be
a minimum subordinate to the constrairdy

One should note that HERTZ'Y 6o-called guiding principal refers that property, not
to V, , but to the (Euclidian) manifold that corresponds vk vivaof the system in
Cartesian coordinate, i.e., to:

T=32 MmO+ y*+ 7,

n
i=1

() See HERTZPie Prinzipien der Mechanjkpp. 100-119.
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which supposes that the system is composedntdterial points and the one denotes the
mass of thé" point bym;, and its Cartesian coordinatesspyy;, z .

It is therefore proper to assume that HERTZ's prircigdn be interpreted M, as
exactly the minimum of the geodetic curvature thabmgatible with ). However, it
is approporiate to verify that directly by starting hwithe equations of motion in
Lagrangian coordinates and the metricvgn

| realized that solving that probler) (vould make it possible to develop a geometric
study of anholonomic systems that is not devoid of @stein its own right, along with
the applications that it has to mechanics.

The goal of this study is precisely that of presentirggrdsults to which | arrived
along that direction, while leaving the applications &chanics to another occasion.

Therefore, in the first part, after having given thdinlgons of an anholonomic
manifold, its fundamental congruences, and of anholonomiparagraphs 1 and 2, the
notion of parallelism in the LEVI-CIVITA sense andetmotion of geodetics in that
manifold will be introduced in paragraphs 3 and 4.

As far as the absolute differential calculus is esned, which is presented in
paragraphs 5, 6, 7, 8, and 9, one will see that one canrgentlg apply what | have
called the absolute differential calculus of congrusnte that manifold. For the
Riemannian manifoldV,, , that calculus is entirely equivalent to the usualokibe
differential calculus of coordinates. It consistsgmely of the idea that one introduces a
system ofn orthogonal congruences W, , as RICCI and LEVI-CIVITA did in their
treatment of various problems, and then searches fosysieems that have tensorial
properties with respect to the transformations of thergisystem of congruences to
another system of congruences that are also orthbgona

That last problem was considered explicitly by RENE IRXBGE ¢) and by myself
in relation to anholonomic manifold®)(

Since that calculus of congruences is less knownljdveethat it would be opportune
to present it succinctly as it is defined in the casRiefnannian manifolds and then in
the case of a anholonomic manifolds.

Finally, in 8§ 1Q the equations of geodetic variation will be given, thar invariant
character will be exhibited.

In the second part of this work, the following argumenils be treated: the second

fundamental form of arv", exterior parallelism, or WEYL parallelism in an™, the
n

geometric interpretation of the principal tensors, are dhuivalence problem of two
anholonomic manifolds.

Some of the results that are presented in this work haea published before in
short notes and will be cited as appropriate.

Permit me to express my warmest gratitude to Prof. LTOLLEVI-CIVITA for the
kind interest that he took in this work.

() See my note: “Sopra le equazioni del moto di un sisteromomo,” Rend. della R. Accademia dei
Lincei (6), vol. 1V, pp. 508.

() Cf., RENE LAGRANGE, “Calcul différentiel absolu,” pished in Mémorial des Sciences
Mathématiques.

() See my notes: “Sur le calcul différentiel absolu gesvariétés non holonomes,” Comptes rendus, t.
183, pp. 1083 and “Sur quelques tenseurs dans les variétés noprhes,” Comptes rendus, t. 186, pp.
995.
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PART ONE
8 1. — The definition of an anholonomic manifold.

Consider a metric manifol, whose line element is defined by the expressipn (

(1) ds’ = zn:qj dx dx,

ij=1

and suppose, moreover, that one is givemthan(m > 1) equations:

(2) i¢ij dx=0 (=1,2,...n=n

in this manifold.

The coefficientsa; and ¢; are assumed to be functionsxothat are continuous and
differentiable as many times as necessary in a reflorthat pertains to our
considerations. We have excluded the casesO andm = 1, because in the first case,
equations (2), which are considered to be mutually-indepentaw, only the trivial
solutionsx = constant, and in the second case, equations (2lefiie a family of curves
inVy.

In this article, we would like to study the propertasthe manifoldV, when it is
constrained by the relations (2), and which will be deshdte simplyV.". Since those

spaces present themselves very naturally in the studigeofmholonomic systems in
dynamics, one also calls themmholonomic spacesr manifolds

Equations (2) form a system ot mtotal differential equations or, as one sometimes
says,a PFAFF system

If that system is completely integrable then from (#)e can express— mof the x
as functions of the otherandn — marbitrary constant€,, Cy, ..., Cham:

3) X =f (%, X2, ..., C1, Ca, ..., Ca-m) G=m+1,..,n),

in such a way that one and only one of those integralfalds pass through a point in
space. If one fixes the integration constadtarbitrarily — for example, such that the
general integral will pass through a given point arbifyar then the study of the

anholonomic spac®™ will reduce to the study of a metric manifolth whoseds is
obtained by introducing the values that are given in (3) fotmula (1). The study of
V." reduces to the study of ™ metric manifolds/m, .

Now suppose that the system (2) is not completely iabdgyr In that case, it can also
admit a certain number of integrable combinations, arelaam show?j that one can

() The notations that relate to metric manifolds #ratused in the course of this work are the ones that
Prof. LEVI-CIVITA adopted in hid_ezioni di Calcolo differenziale assolutwhich were compiled by E.
PERSICO (Rome, A. Stok, 1923), which will be indicatgdimplyLez. Levi-Civitan what follows.

(®) Cf., GOURSAT Lecons sur le probléme de Pfaflermann, Paris, pp. 296.
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exhibit those integrable combinations by transforming tlséesy into another one of the
form:

%) { df =0 (i=1,2... h-p),

w; =0 (j=n-p,...,n—-m).

The first equations in (4) are exact total differentialsd the last ones are Pfaffian
equations that do not admit any integrable combinationem Fhe first equations (4),
one can express — pof thex as functions of the otherandn — pintegration constants,

and by the same argument as before, the study ofvill reduce to the study ob"™®
metric manifoldsV,, for which the last of (4) will persist, or t&"® anholonomic
manifoldsV,".

Upon introducing the language that is typically used fatrim manifolds and
Euclidian spaces, one can say that the anholonomicfoth\i." is immersedin the
metric manifoldV,, . That last result can be expressed by saying thanth#est number
of dimensions for a metric manifold in whidl" can be considered to be immerseq.is

Therefore, the numbgr— mexpresses the degree of anholonomity of the manifdid

If the relations (2) do not admit any integrable comiiames then one will be inclined
to guess thav," contains all of the points af,, in the sense that one can go from an
arbitrary point ofV,, to another arbitrary point along an integral curve [whictlsieas (2)]
or always remains iV,". A general proof of that fact does not exist, but fataie

systems (2), the proof is immediate. The converseues and in fact, if equations (2)
admit an integrable combination then two points can meegbby an integral curve only
when they belong to the same hypersurface that is deeminby the integrable
combination.

From what was said above, one can always referetaridmifoldV," whenever the

equations of anholonomity have not integrable combinati¢tswever, given a system
of total differential equations (2), the question of howt that system into the form (4)
is very difficult, in general.

We shall therefore refer our considerations to gfstesn (2) without thinking about
whether it can admit integral combinations.

8 2. — On the fundamental and anholonomity congruences.

We begin by recalling some well-known notions aboutesys ofn orthogonal
congruences in a metric manifol (*). _
When one is given a systemrofontravariant quantitie&', the equations:

¢ de __dy

4 —=— =..=
) A A A"

() In particular, sekez. Levi-Civitachap. X.
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will define a system of curves W, that one calls aongruence. _

One and only one of those curves pass an arbitrary goivitich not all of the\' are
zero. Since the multiplication of th& by a non-zero factor will not change our
congruence, we can always suppose that it is defined lguthdities:

A= A
o
which satisfies the relation:

which is equivalent to determiningfrom the formula:

F=Ya AA.

ij=1

The A' thus-defined are called thearameters of the congruenceThe covariant
guantities:

n

/]j :Zaﬁ /]i

i=1

are called thenomentaof the congruence.
One proves that one can always choosautually-orthogonal congruences inva

(and also in an infinitude of ways), andAf (h =1, 2, ...,n) denote the parameters of
that congruence then one will have the following retaiat any point 0¥, :

o 1 h=k
5 AN =0 =
®) i;a' Rt { 0 hzk

One deduces from them, the following relations betwéenparameters and the
moments:

n .
z A A= 5#’
i=1

and the relations between the momenta:

> Ay Ay = 9,

ij=1

in which thea! are the inverses of tlzg .
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A noteworthy fact to observe is that if one is giveither the momenta or the
parameters of a system forthogonal congruencé4, then the metric on that manifold
will remain completely determined on the basis of trenfilas:

(5) 8= D Ay Ay al=3 A
i=1 i=1

Therefore the metric o, can be considered to be epitomized byrnh&thogonal
congruencesd.

If one is given an infinitesimal displacemeatgwhose components ady, dx, ...,
dx,then its projections onto the congruendg) (vill be given by the formulas:

(6) ds, =D Ay dx,
i=1

wheres, is nothing but the arc-length of the congrueng. ( If one divides byds then
one will have the relations:

ds, _ & dx
y =_" = A —,
(6) Un ds Z:l: hii ds

in whichuy, are the cosines that the displacenusforms with the congruencdy).

@) d =Y Ads,;

h=1
i.e., the displacememts is determined completely by the differentials of the-langth

ds, . If one introduces those values into the quadratic {d)nthen, on the basis of (5),
one will get the formula:

1) ds = dg + dg +---+ dg.

Having said that, we move on to our anholonomic mani¥ild From equations (2),

we have that we can exprass- mof thedx in that manifold as functions of the othmy
and more generally, we can expressdken the form:

(5") dx =Y Iida,,
h=1

in which thedd, denotemindependent linear combinations of the (%).

() Cf., my note: “Sopra una classe di sistemi anoldijoRend. della R. Accademia dei Lincei (8)
(1926), pp. 549.
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Those formulas (in which theéag, are regarded as arbitrary) express the idea that the
possible displacements of the poirt, (i, ..., X)) in the anholonomic manifol®." will
proceed in any of the™* directions of a subspaceicitura), which can be specified by
m of its arbitrary, but mutually-independent, directions. tha form (3), when one

assumes that each of tey, are equated to zero in succession, except for theofiest
the second one, etc., they will present themselvesose directions that correspond to

increments in the; that are proportional t§ , 1, ..., etc., respectively.

One can introduce the parameters of the correspondiegtidn by using the
fundamental form (1) and writing ‘(bin the form:

(7) dx = > A ds,,
h=1
in which one sets:
. |
(6") A= ds, = o ds,

and takes thg, in such a way that:
Zé\,ﬂl A=1 =12 ...m,

i.j=1

which is equivalent to determining tjmg based upon the form:

Pr :zaij W1

ij=1

Take them directions 4) to be mutually orthogonal, which is also permissiblde
expressions for thdx can then be presented (and also in an infinitude of waythe
form:

(8) dx =) Ads,,
h=1
in which the parameterd satisfy the orthogonality relations:

@) Zn:a")l A= hk=1,2,..m.

i.j=1

It results from this that equations (2) do nothing but thice a subspace of™*
directions at any point o, , among which one finds all of the displacements/jh

The m orthogonal directionsA| that determine that subspace at the pontxg, ..., %)
definem congruences in all of,, that one callfundamental
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When one completes tm congruenced with n — mother congruences in order to
form a system o orthogonal congruences Y, , equations (2) will be equivalent to the
equations):

9) Zn:)lh.“ dx =0 h'=m+1,..,n),

which express precisely the idea that the projectiotleoélisplacement ont®¥." will be

zero for the lash — mcongruenced . Those lash — mcongruences are also called the
anholonomitycongruences.
Since equations (9) are a consequence of formulas (8),camesay that the

anholonomic manifoldv.” is determined completely by formulas (1) and (8). If one
divides formulas (8) bgsthen one will have the following:

d O
(10) ?X = E,/]h Un
t =

in which u, are the cosines of the displacement/jii that is composed of the firgt

congruences, while the other ones are always zeroneltakes (8) and'(yinto account
thenits will once more result that the metric ®" is given by the formula:

1" ds = dg + dg +---+ dg.

Integrability conditions— One knows that the integrability conditions for a FFA
system of the form (9) can be expressed by annullingoHdoaliedbilinear covariant:

o (dAy, dhy,
— 1 _ T |dx OX h'=m+1, ...,n
Zg( a  dx ) 00 ( )

for any choice of the two displacements whose compusnaredx and J; and which
satisfy equations (9). By virtue of the last conditithhe displacements can be expressed
by the formulas (8):

dx =Y A ds,
(8) n
o% =Y A Js,,
h=1

and the bilinear covariants will assume the form:

() In the course of the article, the indices that vemynfm + 1 ton will be denoted by primed symbols,
for more clarity.



Vranceanu — Geometric study of anholonomic systems.

dAdy  dAy; ) 0
quﬁ%z{ = d:(“j;lh/u.

h, k=1 i,j=1 Xj

In that formulads, and ds are the components along tindundamental congruences
of two displacements that are situated/jii. Since theds, and s are arbitrary, it will

result that the necessary and sufficient conditmrthe integrability of equations (9) are
given by the formulas:

0 (dA,  dAg )
9) Z{A— ““j)lm;:o.

il dx dx

In order to give a more expressive form to those comdit recall the definition of
the RICCI rotation coefficients, which we shall ajwause in what follows. The RICCI
rotation coefficients relative to a systemrofmutually-orthogonal congruencésof V,
are given by the expressions:

11 = | L _JUL g
( ) J’ﬁk|_ de r hir kN

in which {I J} are the CHRISTOFFEL symbols of the second kind tb&te to the
r

guadratic form (1). The RICCI coefficients are antisyetma with respect to the first
indices and are invariants of coordinate transformaticdesw consider the quantities:

(10) Wy = W s

which are obviously antisymmetric in the lower indicdéone takes formulas (11) into
account and the symmetry of the CHRISTOFFEL symbwa tne will have:

dA,  dAg )
(107 W, = { o dj(“}/lh/u-

By virtue of that formula, the integrability condit®r{9) will assume the simple
form:

(12) W::k :yﬁ'hk—}zﬁ'khzo (h:m+ 1,...,n:h k=1, 2,...,m).
One obtains the following formula from formulas )10

(10") Yo =3 (W5 + - W, ),
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which will define they as functions of the elements of only the congruences the
basis of (10).

§ 3. — Parallelism inV,".

Let R be a vector at a poift of the manifoldV, that is characterized, for example, by
its contravariant componenis. The projections of those vectors onto therthogonal
congruencesA) are given by the formulas:

(9" = Zn:Ri Ani (h=1,2,...,n),

in whichry, are invariant under coordinate transformations.

Conversely, the vectoR is determined completely by those invariants, and the
contravariant component® are expressed as functions of theby means of the
formulas:

(11) R = Z Al (=12 ..n).

The vector R is said to be situated in the anhattinananifoldV," when then — m
projectionsry onto then — manholonomity congruences are zero, so one will have:

> RA,;=0 h=m+1,...n).
i=1

If one is given a vector iV," and a displacement that is also\fff', which has

componentsls, and links the poinP with a neighboring poinP’then one would like to
transport the vectoR from the pointP to the pointP’ by parallelism in the LEVI-
CIVITA sense. In order to do that, recall that tlipiaions of parallelism iV, are

obtained by the symbolic equatiorik (

(12) z r.ox =0,

which must be true for all of the independent displaceésn®n and as a consequence one
will have the following equations of parallelism:

(11) o= g, dR + > Jkl‘ Rdx=0 k=1,2,..n).
=1 ij=1

() Cf., Lez. Levi-Civitapp. 157, formulas (50).
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In order to find the equations of parallelism in the azfseur V.", we must observe

that the ox« are no longer arbitrary, but are given by formulas (8),tle symbolic
equations (12 are written:

(12") za%zrk/”: =y

and given the arbitrariness in tlg, in our case, the equations of parallelism will assume
the form:

(13) zn:rk)l;:o h=1,2, ..m).

We shall specify those equations under the double hypsttiesdi the vectoR and
the infinitesimal segmer®P’ whose components ady are found in the anholonomic
manifold V.", and therefore the following formulas will both bedr

zAa a

(13)
dx =Y Ads.
1=1

Differentiate the first of those formulas aloRg":

dr! :idra)l; +irazn: 04,

d'l
a=1 a=1 =1 OX .

and introduce those values into equations (13).
If one takes into account the values mfthat are given in (I} and moves the
summation that goes from 1 moto the first position then one will obtain:

n

Zm:drazn:akj)l;)l'WZr ds z 0, aq)l Al +25d$z

a=1 k,j=1 a=1 |]k1 ijk=1

)l’)l A=0.

The first term in this equation reducesdip , based upon the orthogonal formulas
(7). As for the second summation in the second térme introduce the momenta of
the congruencds, which are given by the formulas:

A= D ag A
k=1

and if we also take into account the formula:
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dA! dAy; ..
13" —Z A= LAl
( ) dXI h|j d)g a

which one obtains by differentiating formuld)(S~vhich couples the parameters and the
momenta. The equations can then be written:

drh_zr s Z[d)lh“ = ikj

i,j=1 k=1

)Ih"j)lﬂj A
By virtue of the formula that couples the CHRISTOFF&Imbols of the first and

second kind, one will further have:

]

2k

m |J
A= Z{ . }/]hlk,
k=1

and based upon formula (11), which defines the RICCI rotatioefficients, the
equations of parallelism " will assume the definitive form:

(14) drm= > ¥, ds (h=1,2, ...m).

al=1

Thosem equations determine the increments thatl@mmponents, , which specify
the vectorR in V.", must experience when one transports that vectorgatbe

infinitesimal segmenPP’in such a way that the angle between the vdetat P’ and the
vectorR atP is a minimum that is compatible with the anholonoragpstraints (9).

We must observe that if no anholonomity relation texieen all of the calculations
that we are about to do will be valid in the system ofthogonal congruences Wy by
simply puttingn in place ofm, and the equations of parallelism in the metric mani@ld
will have the form )

(14) dry = Zn: Your T, 0S (h=1,2, ..n).

al=1

When one compares those equations with the usual ecaiafiparallelism that refer
to the coordinates, one will see that one has introduced the RICCI mmatpefficients
into the calculation of the congruences in place efGHRISTOFFEL symbols, and that
observation will be true in general, as one will seehat follows.

It is clear that the parallelism that is defined by eguafiL4) is different from the
parallelism inV, that is defined by equations ()J4so one can call the formeonstrained

: . R
parallelism or simplyparallelism inV.".

() See CARPANESE, “Parallelismo e curvature in unaetarqualunque,” Annali di Matemati@y
(1919), 147-169.
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Now, if one considers a finite segment of a curv& ththen the way that one varies

r, when one transports the vec®by parallelism along that curve will be defined by the
differential equations [equations (14) dividedds).

(15) drh = i yhal a (ul ds j

a,l=1 dS

which define a system ah linear differential equations in tireand will serve to define
ther, as a function o6. One must take theinto account, and consequently, thdike
the cosines , are well-defined functions of the arc-lengtalongT.

One easily proves that parallel transport does nangdh the length of the vector or
the angle between two vectors.

Therefore, it is enough to know how the cosines efirtoR change under parallel
transport, in which case, equations (15) can be written:

dv m
(15) = Vo Ve

a,l=1

These equations obviously have the quadratic first integral

Vi = 1.

=y

I MB

1

They then form a system of differential equationghwain antisymmetric determinant,
due to the antisymmetry property of the coefficieptsith respect to the first two
indices.

It results from the properties of the linear diffdr@inequations in the normal form
(15) that when one is given a direction at a point ar@urve that passes through that
point, its parallel constraint will remain determined unlgwdong the curve.

§ 4. — Geodetics inv,".

In order to find the equations of the geodetics in the folanV/", we start with the
autoparallel curves. Those are the curves whose idineat each point form a system of
parallel vectors inV/." along that curve. In order to get the equations ofetlcosves, we

setv = u in the equations of parallelism (15 If we associate those equations with
equations (10) then we will arrive at the system:



Vranceanu — Geometric study of anholonomic systems. 14

%=Zm)A;uh (i=1,2,..m),
(16) S m

d m
oy vy, (h=1,2,..,m).
ds =

That system oin + n differential equations, in a normal form, will serto define the
m + n unknownx andu as functions of the arc-length One sees from (16) that when
one chooses an arbitrary point, (X, ..., X,) and a directionuy, Uy, ..., Uy), there will
exist one and only one autoparallel curve thatgsmwough that point in that direction.

We would now like to prove that equations (16)vute us, at the same time, with the

geodetics of the manifold". For the sake of brevity, recall that when ongiv@n two

pointsA andB on a curveC that is in the manifold/.", the variation of the arc-leng&B

for an infinitesimal variation of the curné@to a neighboring curve while the endpoints
A andB are fixed, is expressed by the formuia (

> p X% ds,

k=1

(16) 3l =-

> — W

in which the quantitiep are given by the expressions:

(16") pk:Za,-k*ﬁZk X X

j,k=1 jl=1

° jl‘.

The variation of the arc-length must be zero foee geodetics, so the symbolic
equation of the geodetic will take the form:

(17) > P 0% =0,
k=1

which must be valid for all displacements that@mpatible with the constraints.
Given the arbitrariness of thx, , one will get the equations of the geodetics & th
manifold V,, by equating they to zero. In the case &f", one obviously supposes that

the curveC is found inV." and then that the neighboring cuvés obtained fronC by
displacement®x, that are inv.", so they are given by the expressions:

(17) I =D A Js,,
h=1

() Seelez. Levi-Civitapp. 153, formula (44).
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in which theds, are regarded as arbitrary. In general, the neighboungec will be in
V", and one will see later on that this is generallyharacteristic property of the

manifoldsV." for which the anholonomity relations are not conglieintegrable.
By virtue of (17), the symbolic equation (17) will become:

(17" iési P A =

It will result with no further analysis that the gistics of V" will satisfy them
equations:

(18) zn:pk)l;:o h=1,2, ..m).

If one takes into account the first formula in (16), abhis always validv.", and

formula (16) then one will easily find that those equations aréingt but the last of
(16).
That is to say, equations (16) will provide the curveVifi such that the distance

between two points on one of the those curvesiiigmal with respect to all of the
neighboring curves that through those two points thabhtained fromdisplacements
that are compatible with the anholonomity consttai{®). In that sense, the autoparallel

curves inV," are also the geodetics, and conversely.

One must observe that it is not true that when siggven two points arbitrarily, there
will exist a geodetic that passes through those two points

8 5. — Absolute differential calculus of congruences in4, .

It is obvious that when one is given a metric manikld the way that one refers that
manifold to a system af orthogonal congruencekis not unique. One should note that

if one is given another system mirthogonal congruences — callt — then there will
exist linear relations between the two systems ofdhea:

(19) A_h|i = ZCL(/]ku (h=1,2,..n),
k=1

where thec® are invariant under coordinate transformations.

Formulas (19) define a transformation of congruentiesne takes formulas (6) into
account then one will find the transformation formutarsthe differentials of arc-length:

(19) ds = o ds.
k=1
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Since our transformations (}9must leave the quadratic form')Invariant, it will
result that thect are the coefficients of an orthogonal substitutiond that they will
therefore satisfy the relations:

n A 1=k
19’ <G, =0 =
(19" ;% & =9=1 0 |2k

That fact can also be expressed by saying that, basedfanqauas (5), formulas
(19) will not change the values af and consequently, the quadratic form (1). If one
takes into account the formulas that couple the parasnatel momenta then one will
find the same law of transformation. One will find theerse formulas by virtue of
formulas (19):

i — ST
A= Ay -
a=1
If one now solves formulas (19) for tigg then one will get:

(20) G = Zn: _h|i A

We would like to see that thel satisfy a system of first-order differential equations

that involve the RICCI rotation coefficients relatieetheA and A . In order to do that,
we recall the formula the gives the intrinsic deriwatof an arbitrary functioru of
position:

du_ g du

dg 4dx! "

and differentiate (20) with respect to the arc-lergyitso we will have:

Z hll/]/]l Zd/]ll/]J
|]l |Jl)$

The second term in the right-hand side of that formalabe transformed based upon
(19) and then based upon formula"(1&nd one can write:

Coadd,
(20) i AAT = Uiy
DIAIIE 3 >

|]l ij=1

Since one can infer from the defining formula for tbiation coefficients (11) that:

dA,

n |J n
PV Z{ }Ahla + 2 Vg Aai A

i a=1 a a,f=1
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and an analogous form for theA,;/dx, one will obtain the desired formula by
introducing terms into (2Pthat contain the CHRISTOFFEL symbols and reducing:

Kk

d n _ n
(21) _Ch: thaﬂcgc}?_zcgyakl'
dst a,pf=1 a=1

Vectors— If one is given a vectd® in V, then its (invariant) componemntsalong the
congruenced will be given by formulas (9. If T, denote the components of that vector

along the congruenced, which are coupled with those of theby formulas (19), then
one will have the transformations formulas:

(20) r=Yd,.

Conversely, if one is given a system rofquantities that are invariant under the
coordinate transformations and one changes them by dotmaasion of congruences
according to the law (29 then those quantities will specify a vector \lh whose
covariant (or contravariant) components are givethbyexpressions:

n

A=A, A=D1y
h=1

h=1

Tensors— If one is given an arbitrary tendi(and for simplicity, suppose that it is a
second-order mixed tensor with componeRYS) then its invariant components in the

system of congruenceswill be given by the expressions:

Ik = ZRJ /],iﬂk“ .

ij=1

If one denotes the components of that tefsorthe system of congruencésy 1.,
then one will immediately have the transformatiomulas:

(21) T = D, LsChcy.

a,pf=1

Conversely, if one is given a system of quantities that are invariant under
coordinate transformations and one changes them by dotraasion of congruences
according to the law (2Lthen that will specify a second-order tenso¥,in Therefore,
the RIEMANN symbols of the first kind (which are, asedknows, the components of a
covariant tensor of order four) will determine the inaats:
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(217) wkie = Y (i, aB) A AL AT AP

i,j.a,8=1

in the system of congruencdswhich are just the four-index RICCI coefficient. will
result that those RICCI coefficients form a fouattttler tensor in the absolute differential
calculus of congruences. Those coefficients egatsas functions of the rotation
coefficients by the known formulas:

d Vi _ dyi

(22) Wk = ds dé +;[Vahr Y ~ Von Viar +yhka(yalr ~Ven )] .

One must observe that not all systems of invasiaatn specify a tensor, and an
example of that would be the rotation coefficiemtbijch are invariants, but do not form a
tensor, as formula (21) shows.

Tensorial derivation.— Given the vectorR with (invariant) componentsy,
differentiate the transformation law (30of that vector with respect t§, while taking

into account the formulas:
Wy
a=1 Sg

The derivatives of the coefficients appear in the result. If one eliminates those
derivatives with the help of formulas (21) and lets denote the quantitied)(

dr n
22 rhp=——-=>r ,
(22) hil ds ;ayhm
one will find the formula:
(22 T = D2 fasCrcl.
a,B=1

That signifies that the, |, specify a second-order tensor that one callge¢hsorial
derivativeof the vectoR. If one now differentiates formula (22and takes into account
(21) then one find the tensorial second derivatofehe vectoR, which are given by the
formulas:

(23) Fhik = _+Z all Vank +zrh|a Vo -

() That method of forming the tensorial derivativeanslogous to the one that is usednivariants of
guadratic differential formdy OSWALD VEBLEN, Cambridge University Press, Lond&827, pp. 36-
40.
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One can find the tensorial derivatives of an arbitransoér in an analogous way.
Finally, if one considers the difference between tloese derivatives then one will find
the formulas:

(23) Fhik = Thik = zra Vani s
a1

in which yan, ik are the four-index RICCI coefficients that were @aded above.

We can find the tensorial derivatives by making usenefdquations of parallelism,
and that is the method that we prefer, because oneasdy extend it to anholonomic
manifolds.

One sees that the two points of view for considetiiegabsolute differential calculus
are equivalent for a metric manifoldl ; that is to say, one can pass from one to the other
at any moment.

The calculus of congruences presents a certain sitgplalbeit formally, because
one can consider only the orthogonal transformatiotisis therefore unnecessary to
distinguish between covariance and contravariancausecdhey coincide.

8§ 6. — Absolute differential calculus on anholonomic manifolds

As we saw in &, an anholonomic manifol®f," is characterized, on the one hand, by

the firstm congruenced, which we also calleflindamentgland on the other hand, by
the lastn — m congruenced, which we have also callexshholonomity congruencedue
to the fact that the moments of the latter congruespecify the anholonomic constraints

(9). It will then result, with no further discussiahat the congruences ¥f"are divided

into two distinct groups. It is also obvious that the/waat one chooses the congruences
that define one of the two groups is not unique.

In the first place, one can replace the&ongruenced, which define the first group,

with m other congruenced of that same subspace, which are therefore givenéy th
transformation formulas:

(24) Do = DA, th=1,2,..m,
k=1

in which them quantitiesc are invariants. Analogous formulas for the transfaoiona
of the differentials of the arc-length length wilktdt from those formulas:

(24) ds, = zm:qﬁ ds, th=1,2,..m.
k=1

Since the quadratic form "(lLthat defines the metric o¥," must remain invariant

under those transformations, as in the casé, oft will result thatc' are the coefficients

of an orthogonal substitution. Therefore, as in thgecofV, , one will also have the
formulas:



(24")

We now move on to the second group of congruenbas are determined by
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A =20 A

k=1

equations (9), and the situation is completelyedéht for them.

Indeed, the system of equations (9) admits tHeviahg group of transformations:

(25)

A_h'|i = z CFI:”AK’H

K'=m+l

¢ A, h1=1,2, ..

(h'=m+1,2,..n),

20

where the invariant quantities satisty only the condition that their determinant must be
non-zero. Because of that, formulas (25) will beertible, and one will consequently

have:

(25)

Ah'|i = z G’k’ A_I’|i )

K'=m+1

as well, in whichc! is the inverse of the determinant of ttfe.
It is interesting to observe that although the@dfarmations (24) and (25) do leave the

metric inV," invariant, they do not generally leave the on¥imnvariant, and therefore
they do not leave the coefficierdg of the quadratic form invariant either. In faifta,

denote the coefficients of the metric that corresisato then congruences! then, based
upon (5), one will have:

By virtue of (24) and (25) and the orthogonalifyd, that formula can be written:

& =2 Ayt 2 A Ay
h=1 h=m+1

aij = ZAhH Ah|j + z Cl? CL AI(HAI’H !
h=1

h,K,I=m+1

and it is enough to take into account those vadieg if one is to put those relations into

the form:

(25")

g =g+ 2 (G- AgAy -

h, K, I'=m+1
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From this, one sees that the metric\Marwill remain invariant only in the case where
¢l can also be the coefficients of an orthogonaltiutisn.
In order to now find the transformation formulas ftre parameters of the

anholonomity congruenced and A, one takes into account the relations between the
momenta and the parameters:

v Av = Oy (h,1’=m+1, ...,n)

i=1

that derive from the fact that the parameters arentherses of the determinants that are
composed of the momenta. One will easily find theofwilhg transformation formulas
then:

K=Y 54
(25,,,) a'=m+1

n
[ =a' i
A, c’ A
=m+1

|’

It is probably superfluous to point out that thensformations (24) and (25) do not
disturb the orthogonality of the two groups of cargnces, in the sense that the relations:

D AiAv=0 h<m h’>m)
i=1
will always be satisfied.

Tensors— A system of certain quantities that are functiohthe x that are invariant
under coordinate transformations will be said tenfioa tensor relative to the manifold

V," when the new quantities that result from perfoigrime two transformation@4) and
(25) in succession can be expressed as linear, homogsrfeoctions of the old ones
whose coefficients are homogeneous functions afahee degree it and ¢ that do
not involve the derivatives of the c.

One will be better able to see what that definitmeans after some examples that
will be considered in what follows.

Let R be a vector iV." (see 83) that is determined by its projectionsonto them
fundamental congruences ™". It is obvious that the transformation (25) doed

change those projections at all, because it doeshamge the fundamental congruences,
and the transformations (24) will change thaccording to the formulas:

(26) L=yt (h=1,2,...m),

a=1

Vector derived from a vector along a curveLetC be a curve ir'V," whose cosines
areu, and whose arc-length ssand consider the quantities:
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(26) O =23 puru (h=1,2, ...m)

h _
S =

in which r, are the components of the vec®in V.". In order to do that, in the first
place, observe that the transformations (25) do st (26).

Indeed, it will obviously not change the componentand the cosines, , and by
virtue of the formula (10), it will also leave invariahetRICCI rotation coefficientgi
(h, k, I <m).

Therefore, consider the transformations (24) and let:

_ af, & o
(Dr,) = d_;_m:lyhm .,

denote the quantities (36that correspond to the congruencés If one takes into
account formula (26), when differentiated with respedhe arc-lengtls, and that of the
curveC and the formula:

p,0=1 dSp

_ m d “J m "
th|22(_%+zck Vadpjcgqp (h, k I <m),
a=1

which will be proved in &, formula (30), then one will arrive with no difficultyith the
relations:

(O%) = Y. (Dr,).

which express theDn) precisely and define a vector¥". Call that vector thderived

vectorto Ralong the curve&, just as one called its analogue in the casenadiifold V,, .
It results from the equations of parallelism (1&gttthe derived vector is zero when the
vectorR is transported by constrained parallelism al@nglt also results from this that

the equations of parallelism iN," have an invariant character with respect to the
transformations (24) and (25).

Geodetic curvature- Now suppose that the vect®is a unit vector that is tangent to
the curveC, in which the case, formula (2&will assume the form:

" du, &
(26") Uh:_h_E,thukuw
ds K,I=1

and will obviously continue to form a vector{" that one calls thgeodetic curvature
When one compares that equation with the geodgtiaten (16), it will result that the
geodetics ofV." are the curves iV." that have zero geodetic curvaturend that the
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equations of those geodetics have an invariant form w&pect to the transformations
(24) and (25). That geodetic curvature vector is preciselytbjection intoV," of the
geodetic curvature vector 6fin V, , but calculated based upon formulas (10), which are
true inV.". If one multiplies (26) by u, and sums then one will get zero, which is to say
that the geodetic curvature vector of the cuve normal to that curve.

Directly or inversely interior and exterior tensors.Only the coefficients of (24)
enter into the transformation laws that were cosrgd so far. As a result of that fact, the
vectors or tensors that have that property will bkedé@nterior vectors or tensors ¥, .

A tensor whose transformation laws are of degraethe ¢ and degree in the cf

will be calledinterior of orderp andexterior of orderg. Moreover: A tensor that is
supposed to be exterior of order one will be caledctly exteriorif its components
change like the momenta of the congrueadéormulas (25)], and on the contrary, one
v¥ill call it inversely exterioif its components change like parameters [formula&'(R5
).

It is interesting to observe that those anholonomic manifolds are nmetmsfolds
only with respect to the fundamental congruences, but not with respettet
anholonomity congruences, which can be subjected to a general linear transforofation
the type(25). Therefore, one cannot speak of the directly exter inversely exterior
components of those tensors.

Then — mcomponents of an arbitrary vector\fy with respect to the anholonomity
congruences provide an example of a directly exteeator inV,", and the derivatives

of a function of position along the anholonomity congaee will form an inversely
exterior vector.

Tensorial character of the integrability conditiorsSuppose that the transformations
(24) and (25) have been performed, and let [see formul&f:(10

oo (dA, dAL ) - —
V—Vh: hji _ hj Al
ki Z( de dx k 7N

ihj=1 b

be the integrability conditions for the system of caemcesA. By virtue of the
derivatives of (25) and the first of formulas (R4one will find the relations:

(27) Wy= > cig > o w,

a,b=1 a'=m+l

() In the interests of greater clarity, the primed iedithat are intended to indicate the property of a
tensor being directly exterior will be placed above, laitihe ones that relate to the inversely exterior
tensors will be placed below.
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which expresses precisely the idea that the integrabditgitions (12) represent a tensor
of order three inV." that is twice interior and once directly exterior.

§ 7. — Fundamental formulas inV,".

We have seen that in the case of a manN@)dhe coefficients of the transformations
(19) satisfy equations (21). We would now like to find thal@gous equations for the

coefficientsct andct in (24) and (25).
We begin with the transformations (24), from which wél get the ¢ from the
formulas:

(28) C|I1( = z _h|i /]|i< :
If one differentiates this with respect4dl < m) then one will arrive at the formula:

dCL( _ h|| a||
28 — = A AT - A
( ) dst |;l dX azl |le

in an analogous way [see (H0
We shall also make use of the formulas:

dA, & (i "
. :Z{ })Ihla+ > Voas Aai A
, dxj a=1 a a,f=1
25) ity o], <
hi _ T
i = A+ .
dXJ- ;{a} hla a;lyrnﬂ ai 51

but when we take into account the fact that the CHRISHEL symbols in this case refer
to two different metrics that are coupled by formulas (26).
By virtue of those formulas and (28), (R8an be written as:

(29)

Q.LO

z };—Z‘%’Vakﬁ z pu/]mr/] /]J
a=1

a,p=1 ijr=1

in which the p; denote the third-order tensor (twice covariant and ooatravariant):
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Without performing all of the calculations that pertenthat tensor on the basis of
formulas (26), one can account for the fact thateaths in that tensor have at least one of
the parameters or momenta of the anholonomity congrufamce factor, which will

always amount to zero when combined with the prodyg#, A (h, k, | <m).
Hence, (29) will take on the aspect of (21), and thesefor

d Kk m. m
(30) ﬁz > Fous c;,—;q: Voo (hk1<m).

a,pf=1

Formulas (30) give only the first intrinsic derivatives of the. In order to find the

other ones, one must differentiate with resped-{0’< m), and therefore put'in place
of I in formula (28). In that case, the product:

,OJ A_h|r All AIJ

will no longer be zero. In order to arrive at theuledirectly, observe that when one is
given the orthogonality of the two groups of congruenaas,will have the formula:

z = h<m;l’=m+1, ...,n),
which can be writte :
n mdA,
h|j i h|j i _
)l’)l - AA1=0
Izl( ;. d| I kj

when it is differentiated with respectgo(k < m).

When one subtracts that formula from’j2& which one set§’> m in place ofl,
then when one also takes into account formulas)(2d6d (28), one will obtain the
desired formula:

) S-3Swad-Suwe,

which is essentially different from (30), as one sees.
We shall now move on to the transformations (25fshich we will get the values

of ¢ in the form:
& = 3 A A
i=1

Here, we must also first look for the firstintrinsic derivatives, and we will find the
formulas:

(32)

K’

Lo

ZZ 0 Cr G =D G W
a=la'=1 a'=1
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from a calculation that is analogous to the preceding one
One cannot simplify the form of (29) as far as thé has mintrinsic derivatives of

the ¢ are concerned, and therefore it will be written:

dc® 4
(33) S - z yhaﬂ z ‘ﬁ Voer z Cg‘gkr ’
dS} a',f'=m+l a'=ml a=m1l
in which one sets:
(32) ‘SLZII’ = z ,OJ Aa|r4<i’4j’ !
i,jr=1
for simplicity.

The quantity £7,, which cannot be eliminated from (33), will be especially

interesting in what follows. We shall try to prove ttim metric exists inside of the
anholonomity congruence.

If we now look for the interior derivatives of tfi&’, instead of thect , then we will
arrive at the formulas:

(32) B oS ymcid+ > w,w

ds. a=la'=1 a'=m+1

which will also be useful in what follows.
Given the symmetry of the’, in the lower indices, we have the formulas:

df dd_ & v v
(33) — —-—T= W, 5 Cp Cp — o
ds. ds a,;nﬂ g g a’:Zn:MV\Zl u

which determine the difference between the exteriorvaves of theck and the
formulas in which theZ, no longer appear.

8 8. — Tensorial derivation.

Definitions (). — If one is given an interior tensor " and the transformation law

for its components with respect to the transformati@4) then one can differentiate that
law along an arc of the fundamental congruence. Thaeniiintrinsic derivatives of the

coefficientsc® will appear in the result. If one eliminates thdseivatives with the help
of formulas (30) and combines, on the one hand, the qeantiiat refer to the

congruences and, on the other, the ones that refer to the congrsehdadien one will
find the transformation law for a new interior tensanose components will be called

() See the footnote on page 18.
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interior tensorial derivativef the given tensor. The order of that derived tensor i
greater by one than that of the given tensor.

If one differentiates that tensor along an arc e &nholonomity congruence and
eliminates the derivatives of the' with the help of (31) then one will find the
transformation laws of exterior tensorial derivativieat tspecify a tensor that is as many
time interior as the given tensor and more than amgsrsely exterior.

If one is now given a tensor that is one or moreesiraxterior then one can find the
interior tensorial derivative of that tensor wittetsame method. However, if one would
like to find the exterior derivatives then one must alse formulas (33) and therefore the

quantities‘s@], will appear in the result, which means that the exteterivatives are not
tensors. It then results that when one starts faonmterior tensor, it is not possible to

find tensors that are one or more times exterior bivawon, and when one starts from
an exterior or mixed tensor, one cannot increase ttexi@xorder by derivation. One

knows only one tensor " that is twice exterior, which is specified by the grability
conditions of the fundamental congruences and whickfoems according to the law:

m n i
w3 Y W

a=1 a' f'=m+1

and according to the last observation, its intemsorial derivatives will also have that
property.

Example.— If one is given an interior vectdt then determine its componenms.
First, differentiate the transformation law (26) fowat vector with respect to one arc-
length 5, of the fundamental congruencds and if one takes formulas (30) into account

then one will find the tensorial relations:

m

(34) T = D TaysCr CF

a,B=1

in which the interior derivatives, | are given by the formulas:
dr, &

34 Mhik=—2=>r :

(34) " s ; o Vhak

and are in the same form as if space were complBielypannian [see (20.
In order to find the exterior derivatives Rf differentiate (26) with respect to an arc-
length's,, so that one has:
dTh = Zqﬁ’%.}- r dCh

ds, o= "d§ =7 d% .

If one takes into account the fact that the extantiinsic derivatives are inversely
exterior vectors, along with formulas (31), one can (8% the tensorial form:
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(35) Tk = 2.6 20 & -
a=1 a' 1

Ju—

In that formula, the |« denote the lash — mtensorial derivatives of the vectsy
which are determined on the basis of the expressions:

dr, &
(36) Mhik = —-= > Wi T, .
I ds, Z:‘I k

As one sees, those derivatives, which are the comooéra second-order tensor
that is once interior and once inversely exterior, essentially different from the
derivatives that one would have if space were Riemannian.

We now move on to the determination of the tensay@dond derivatives of the
vectorR, that is to say, the first derivatives of the tessgy andry k- .

We first focus our attention on the first derivatives of the tensor (34 If we
differentiate that formula with respect $oand make use of (30) then we will easily find
the expressions for the interior tensorial second deres

dr,,

(36) rhlklzd_l_zrmk th_zrma Va1
S == a=1

which are obviously the components of a third-orderimtéensor.
If we now differentiate formulas (34with respect ta then it will be enough to take
(31) into account if we are to arrive at the followieg@nd-order tensorial derivatives:

dr, & m

— [k h k

(37) Mhikk = __Zrmkwak'_zrmawak .
ds, o= a=1

They are the components of a third-order tens®f.Inthat is twice interior and once

inverse exterior.

We now move on to the tenser i and differentiate (3% with respect tes . If we
take (32) into account then we will get the following tensoradrivatives with no
difficulty:

dr., @O n ,
(37) rhlk'k:d_;lf_zrmk' Vhak ~ z rh|aW£IZk’

a=1 a'=m+1

which are the components of a third-order tensor thatic® interior and once inversely
exterior.

Formulas (39, (37), and (37 represent all of the second-order tensorial derivatives
of the vectorR, which specify tensors " .
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§ 9. — Principal tensors in av,".

We would now like to find the expressions for two foustder tensors by
considering the differences of the second derivatifebeo vectorR that were found in
the preceding paragraph. One of those tensors isointerd the other one is three-times
interior and once inversely exterior.

In order to arrive at the expressions for the firaste, consider the difference of the
second derivatives in (36

d’, _ d’r,
dg dg ds ds

(38) DAY= Thk = i =

In order to avoid excessively long calculations, obsénat the difference in question
is expressed by formula (33n the case of &,. In that case, the unwritten terms on the
right-hand side of formula (38) will be the same as dines for a manifold, that is
determined by then fundamental congruencdsof V.". However, that is no longer true

for the written terms, which can be written:

2 2 m n
(38) dn, _ d _ %\/\/ﬁ—z%v\f
dsds ds ds &=ds, azme1 dS

from a known formula iV, , where in the right-hand side we have divided the sum i
two parts in order to exhibit the elements that refatédhe anholonomity congruences. If
the anholonomity relations (9) are completely integraben the integrability conditions

wZ will all be zero, and one will have the formula:

m
h _
A= zra yah,kl )
a=1

in which the four-index RICCI coefficients refer to omhe m fundamental congruences,
and are therefore given by the expressions:

d d 4
(38") Vah, ki = Lo _ Van +Z[yahi(yikl Vi) tVa Y ~Ha Wl
ds dg i=1

In the general case, (38) can be written:

m n dr p
(39) AE| = zra Vonw = z _hWkI '
a=1 a'=m+l dsa’

and it is obviously intended that the,« are always determined by (38 It is also
obvious that the differencd;, specifies a fourth-order interior tensor, but ider to
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exhibit that fact in the right-hand side of (39), as weltall formula (36), which gives
the exterior derivatives of the vect@rfrom which one has:

dr, u
—=Thja*t Z:Wh r

aa' ‘a "
dSa' a=1

By virtue of that relation, (39) assumes the definifomn:

(39) A = iAah,kl r, - Zn: M Wi
in which one sets: ” o

(40) Aah, K = Vah, kI — Zn: W, W
for simplicity. o

Given the fact that the last term in the right-handle of (39) is obviously the
component of a third-order interior tensor, the sameaythiill be true for the left-hand
side, since the quantitiedn specify a fourth-order interior tensor. That tensor
antisymmetric in the last two indices, because #fe, as well as theymu , are
antisymmetric in the indicdg |. However, the latter are no longer antisymmetrithe
first indices, so we will have the formula:

(39" Vah ki + Yook = z Vig o W,

a'=m+1

in which we have set:

(40) Vha, @ = Vah ki t VoKl -

It will then result that the quantity,,, » also specifies a fourth-order tensor that is
twice interior and once inversely exterior.

In order to find the second tensor of which we spoke atb#winning of this
paragraph, consider the difference:

(41) DY = Thikk = Thikks

in which thern [ andrn |k« are defined by formulas (37) and (37), since that diffexenc
can be written:

dr,, & n . dr m n
h_ Yl o Yl h K
(41) Ay= ds + E Jope Vet E, Mg Wk ds +§,ra|kwal’<+ E, Mg Wo
a=1 =}

a'=m+1 a'=m+1

(h, ks m; k’>m).
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Now recall formulas (3% and (36), which define the first tensorial derivative $hef
vectorR, and first consider the terms in the right-hand sid@®) that contain the first
and second derivatives nf, and which can be written:

ds dg SV L o SRR SOV TP B WSV I
d°r, dsxdfz[ Vo ™ d§y“"kJ Z[ g/ T gee | L 2, — ke

If one takes the formula (38nto account, which provides the difference between th
second derivatives, and reduces the similar terms, the @dose terms will reduce to

the following one:
O dr,
zd_vak,k’ J
a1 43,

in which the quantities,xx are given by (40.

If one introduces the first tensorial derivativeglace of thedr, / ds, , based upon
(34"), and performs the calculations then one can give (£1fptim:

(42) AE| = zravha,kl( +zrﬂavak,k ,
a=1 a=1
in which one sets:
dy, d
(40) Vhakk = dyshk'k V\gk Z(thwlkk +yh|k ynk W)t z V\Z V\Zk
a'=m+l

It results with no further analysis that the qutse® v« Specify a fourth-order
tensor that is three times interior and once iralgrexterior.

§ 10. — Equations of geodetic variatioff).

In this paragraph, we would like to consider socdy the equations of geodetic
variation for the anholonomic manifol" in the general form and exhibit their invariant

character with respect to the transformations &) (25) inVv.".
Let a curve €) in the manifoldV," be defined by the equations:

(© X% = ¢ (0),

() See my note: “Sullo scostamento geodetico nelleetzanolonome,” Rend. della R. Accad. dei
Lincei (6) 7 (1928), pp. 134. In my article: “Sur I'écart géodésique dam®edpaces non holonomes,”
Annales Scientifiques de I'Université de Jassy, t. Xl¢.fds2, pp. 7-24, due to the hypotheses that the

displacementX) is an interior vector itvV.", which is a hypothesis that is not generally compatibth the

anholonomity relation, | did not find correct equationstfe variations in certain particular cases, but the
preliminary calculations and the methodology were valge also my note in the following issue of that
review, which refers to that article.
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in which gindicates the arc-length of the curve. The cosifélseoangles that that curve
makes with the congruencésare provided by the expressions:

G = z/]hu (o).
i=1
A curve €) that is close toQ) can always be determined by equations of the type
(c) X = @i (0 + D A&,
h=1

in which &, denotes the invariant components of the displaoerextor, which takesd)
to the neighboring curve),

The cosines of the angles that the cujenfakes with the congruencdsn V, are
given by the formulas:

do de, | <
(42) Uh:E[Ch +E;+kzlz“l\/\lgl q(s,j (h=1,2,...n),

in which s denotes the arc-length af){ and thew have values that they must have along
the curve C). Those formulas are obviously calculated unflerhypothesis that the
are first-order quantities.

On the basis of the formulas that define the ilwdrcomponents of the derived
vector of €) along C), those formulas can also be written:

d m
(42") Uh:d_Z[Ch'*'(D‘gh)'*'Zthl Ck‘glj'

k,1=1

If one introduces those values into the quadratations for the cosines then one will
get a value for the ratio:

in which i denotes the first-order quantity:
H= zch(D‘gh) -
h=1

Now suppose thatQ) is a geodetic iV, and demand thatc) should also be a
geodetic inV,, . In order for that to be true, it is enoughngpose the condition on the
cosines of €) that are provided by formulas (92that they must satisfy the geodetic
equations in/, . One will then arrive at the following equatiasfsvariation:
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(43) 0 %s) - d—”ch > Vw6 G £,

k,Ir=1

which are nothing but the invariant components of the vettiat provides LEVI-
CIVITA’s equations of variations'Y.

We now move on to the anholonomic manifolds and supgwethie curve @) is
situated inV,", that is to say, that the last- mcosinesy (h’>m) are zero.

The cosines between the curve and a neighboring curveiae gy the same
formulas (42), since the displacement is always an arbitraryorect V,, , and in
particular, the lash — m formulas (42 are written:

Un' = (jja[d‘gh + Z Zw,'jl C & +Z W, qslj

I'=m+1 k=1 k,1=1

which say precisely that the cosines betwe®ra(id the anholonomity congruence are
first-order quantities.

If one would now desire that the cun& ghould also be situated M then one
must have the equations:

(43) dg" +y S.ZWE. G+ W G &= h'=m+1,...n),

I'=m+1 k= k,I=1

which represenh — mlinear differential equations in the — mquantitiesg,” (h” > m)
whose known terms are linear an homogeneous in thegfi(st< m). One immediately
sees that these differential equations cannot admsdheiong,. = 0, which says that
the displacement is itself situated\iii', in which case, one will have the relations:

2 k|Q<‘9|

k,I=1

along C).
Those relations can be valid for an arbitrary cu@egnd displacementg( only in

the case where they, are zero, or what amounts to the same thing, when the
anholonomity relations are completely integrable. ré&fowe, in an effectively
anholonomic manifold, one must always associate a neigigo curve €) with the
differential equations (4Bin order to determine the — m&,- as functions of the arc-
length owhen them &, are known.

Now suppose that) is a geodetic ifV.", and therefore that the cosinessatisfy

equations (16). In order foc)(to also be a geodetic M", its cosinesu, must also

() See T. LEVI-CIVITA, The absolute differential calculusdited by E. PERSICO, Blackie, London,
1927, pp. 215, formulas (57).
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satisfy equations (16), and when one performs the cafmsda one will find the
following equations of variation:

(44) 0O’ &) - ch Z/lkh.rckw +Zq¢ Z Vir &

k,I,r=1 k=1 r'=m+1

in which the D? &) represent the components of the second derived vecWf ifsee
formulas (26)] of the projection of the displaceme (nto V." along our curve®), and

the Anr and vk - are the components of the tensors (40) and),(4€sp. As for the
quantityy, it is always determined by the quadratic relation betvibe cosines and can
be written:

H= zch(Dgh)+ z &y zvhkl G G -

I'=m+1 h,k=1

Equations (44), along with (43), define a systdrdifferential equations of order —
m for the determination of the unknownse.

In order to confirm that this system has an irasatricharacter with respect to the
transformations of the congruences (24) and (25§ e€nough to observe that the left-
hand side of (44), as well as the right, givesatmponents of an interior vector. As for
(43), since they are exterior cosines, they will be tbomponents of a directly exterior
vector.




