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Summary. – One sees how one may construct a unitary theory of fields, both gravitational and 
electromagnetic, by starting with an anholonomic hypersurfaceV5

4  that is totally geodesic.  This amounts to 
supposing that physical space is locally four-dimensional, like the space of the relativity theory, but that 
when one starts at a point P, one may not return to it by an infinitesimal circuit, but only reach a point P´, 
where the direction PP´ is normal to the local space at P, and the segment PP´ thus defines the torsion of the 
space.  With the aid of the curvature tensor of the local spaces and the torsion tensor, which is considered to 
be the electromagnetic tensor, one writes the Einstein and Maxwell equations, and one assumes that the 
geodesic equations ofV5

4  represent the equations of an electrically charged particle, such that the trajectories 
of light are the special case of auto-parallel geodesics of null length. 

 
 
In his celebrated general theory of relativity, Einstein gave an interpretation of 

gravitation as a characteristic property of physical space, which he considered to be a 
four-dimensional Riemann space with an indefinite quadratic form: 

 
ds2 = aij dxi dxj  (i, j = 1, 2, 3, 4)  (1) 

 
in which x1, x2, x3 are treated like the spatial coordinates and x4 is treated like the time 
coordinate.  Since then, physics has sought to find an analogous interpretation for 
electromagnetic phenomena, or, more precisely, a unitary theory that is capable of 
explaining Einstein’s gravitational equations and Maxwell’s equations of 
electromagnetism by means of the same geometrical principle. 

That is why Weyl (2), starting with the observation that the electromagnetic field 
may be defined in spacetime V4, in the absence of true magnetism, by the rotation: 

 

ϕij =
∂ϕ i

∂x j −
∂ϕ j

∂x i       (1′) 

 
of a covariant vector ϕi (i = 1, 2, 3, 4), has proposed that one consider spacetime V4 to be 
a space such that when one passes from one point to another, the unit of length for the 
metric possesses a coefficient of dilatation that is given by the Pfaff form: 
 

                                                
1 This anholonomic unitary theory was the object of a conference Les espaces non holonome et leurs 
applications mécanique at the Institute H. Poincaré, 3 June 1935, at the invitation of the Faculté des 
Sciences of the University of Paris.  It was also summarized in the notes: La théorie unitaire des champs et 
les hypersurfaces non holonomes, Comtes rendus, 1935, 200, pp. 2056, and in Sur une théorie unitaire…, 
C.R. Ac. Sc. Roumanie, tome I, 1936. 
 
2 See H. Weyl, Raum, Zeit, Materie, 5th ed., Berlin, Springer, 1923, pp. 121. 
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dϕ =ϕi dxi      (1′′) 
 

that one may construct from the electromagnetic potential world-vector. 
Another unitary theory was proposed by Kaluza (1), who considered the physical 

continuum to be a five-dimensional Riemann space V5 whose metric may be written: 
 

dσ 2 = ds2 + 2ϕi dxi + a55 (dx5)2 ,    (2) 
 
in which ds2 is given by the metric (1) of the spacetime V4 of relativity theory.  One sees 
that in Kaluza’s theory the metric on the space V5 is defined when one is given the metric 
on spacetime V4, the electromagnetic potential four-vector ϕi , and the coefficient a55. 

This hypothesis that the physical world is five-dimensional, when it only seems to 
have four, and the difficulty of finding a natural interpretation for the coefficient a55 have 
led Einstein and Mayer to propose a unitary theory (2) that seeks to avoid these 
inconveniences of Kaluza’s theory, while preserving the principal hypothesis of the 
existence of a metric space V5 that is associated with the spacetime V4 of relativity theory, 
with the difference that one now supposes that the space V5 is only a vector space, which 
avoids the direct consideration of the coefficient a55.  As for the method, which plays a 
major role in the theory of Einstein and Mayer, it was greatly inspired by the method of 
congruences (tétrapodes) that was considered in the unitary theory that has been proposed 
by Einstein several times before and was given a remarkable systematization by Levi-
Civita (3) with the aid of Ricci’s notion of pseudo-orthogonal congruences.  As one 
knows, the unitary theory of Einstein, which was also subjected to a profound study by 
Cartan (4), consists of considering the physical world to be a four-dimensional Riemann 
space that is also endowed with absolute parallelism, and the torsion of this absolute 
parallelism that measures the electromagnetic field. 

In this new unitary theory, Einstein and Mayer suppose that the physical world is 
four-dimensional, namely, the spacetime V4 of relativity theory, but that this space is 
found to be embedded in a five-dimensional metric vector space V5.  This is realized in 
such a manner that at each point of V4 we have, in addition to four independent directions 
on V4, which one may call “interior,” or tangent, directions, also an “exterior,” or normal, 
direction to V4.  Moreover, one supposes that one has a metric, not only for the tangent 
directions, which is the metric of V4, but also a metric for the non-tangent direction. 

One may also say that one associates the spacetime V4 with a vector space V5, in such 
a fashion that the linear space that is tangent to V4 may be defined at each point of V4 by a 

                                                
1 See. Th. Kaluza, Zum Unitätsproblem der Physik, Sitzungsberichte der preuss. Ak. der Wiss., 1921, pp. 
966. 
 
2 See A. Einstein and W. Mayer, Einheitliche Theorie von Gravitation und Electrizität, Sitzungsberichte 
Akademie, Berlin, 1931, 1. 
 
3 See T. Levi-Civita, Vereinfachte Herstellung der Einsteinschen einheitlichen Feldgleichungen, ibid., 
1929, pp. 137. 
 
4 See E. Cartan, Sur la théorie des systemes en involution et ses applications à la relativité, Bull. de la Soc. 
Math. de France, 1931, 59, pp 88.  
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hyperplane in V5 that one calls the distinguished hyperplane.  Moreover, one may arrange 
this in such a fashion that the components gab (a, b = 1, 2, … , 5) of the metric tensor of 
this vector space V5 are given by the formulas: 

 
gij = aij , gi5 = 0,  g55 = 1 (i, j = 1, 2, 3, 4),  (2′) 

 
where aij are the components of the metric tensor of V4 [Einstein and Mayer formulas 
(50), (51), (52)].  Having said this, if one considers the Levi-Civita parallel transport of 
vectors along paths tangent to V4, which are, moreover, the only possible paths in this 
theory, and if one imposes the condition that when a vector that is tangent to V4 is 
displaced along its proper direction remains a vector tangent to V4, then one finds an 
anti-symmetric tensor Fij of second order that Einstein and Mayer considered to be the 
tensor generator of the electromagnetic field. 

In order to arrive at this association of the spacetime V4 with the vector space V5 in a 
natural manner, at least from the mathematical point of view, Veblen (1), Schouten (2), 
etc., have also considered the projective properties of spacetime V4, and thus created an 
important projective unitary theory by starting with the theory of Einstein and Mayer. 

However, without leaving the metric domain, one may remark that on account of 
formula (2´) the metric of the space V5 may be written in the form: 

 
dσ 2 = ds2 + (ds5)2,    (2″) 

 
where ds2 is the metric on V4 and ds5 is an arbitrary Pfaff form in the variables x1, x2, x3, 
x4, and a new variable x5.  This new variable is determined only by abstraction on a 
transformation: 

x5′ = f(x1, x2, x3, x4, x5),    (2″′) 
 

which allows us to write the form ds5 in the form: 
 

ds5 = dx5 – ϕi dxi  (i = 1, 2, 3, 4).   (3) 
 
This being the case, if we suppose that ϕi depends explicitly only upon x5 then one finds 
that the electromagnetic tensor Fij is related the rotation ϕij of the covariant vector ϕi by 
the following very simple formula: 

ϕij = 2Fij .     (3′) 
 
One thus sees that this unitary theory of Einstein and Mayer may be related to the Pfaff 
form (3), or, more precisely, to the Pfaff equation: 
 

ds5 = dx5 – ϕi dxi = 0,     (3″) 
 

                                                
1 See O. Veblen.  Projektive Relativitätstheorie, Springer, Berlin, 1933. 
 
2 See J. A. Schouten, La théorie projective de la relativité, Annales de l’Institut H. Poincaré, volume V, 
1935, pp. 49. 
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which represents the distinguished hyperplane in V5, moreover. 
This fact has led me to look for an interpretation of this unitary theory with the aid of 

the anholonomic hypersurface V5
4 that is defined in V5 by this Pfaff equation.  One thus 

arrives at an interpretation that gives us the possibility of constructing all of that unitary 
theory by starting with only two invariants: the metric (1) and the Pfaff form (3); i.e., 
with only the knowledge of two fields: the gravitational field and electromagnetic field.  
The geometry of the anholonomic hypersurface that one thus considers possesses two 
fundamental tensors in our case: a curvature tensor, namely, the curvature tensor of V4, 
and a torsion tensor, which is defined by the electromagnetic tensor Fij.  It is with the aid 
of these two tensors that one forms the gravitational equations and the Maxwell 
equations. 

Our anholonomic interpretation (1) amounts to saying that the physical world is 
locally four-dimensional, as is natural, but that the totality of these local spaces may not 
be regarded as the set of local tangent spaces to the same space V4.  These local spaces 
are the tangent spaces to anholonomic hypersurface V5

4, just as the planes in a linear 
complex are the planes that are tangent to a anholonomic surface, since the total 
differential equation of the linear complex is not completely integrable.  Moreover, one 
may remark that the use of anholonomic spaces as a basis for a unitary theory of our 
physical world may be considered to be very natural if one thinks that the anholonomic 
spaces are obtained by the geometrical interpretation of anholonomic systems in 
mechanics. 

We have divided this memoir into three chapters.  In the first chapter, we shall see 
how one may study the Riemann spaces whose metric is not a positive-definite form on 
the basis of the notation of the group of transformations of a Pfaff form, by a method that 
is analogous to Ricci and Levi-Civita’s method of orthogonal congruences in spaces with 
positive-definite metrics.  The notation of transformation group for a Pfaff form is, 
moreover, at the basis for all of our considerations. 

In the second chapter, we shall recall a certain number of properties of anholonomic 
spaces, and in the third chapter we shall give an anholonomic geometrical interpretation 
of the unitary theory of Einstein and Mayer, while also indicating how one might 
possibly modify or generalize this unitary theory. 

 
 
1.  Group of a Vn with an indefinite metric. – Suppose that we have an n-

dimensional Riemann space Vn whose metric may be given by the formula: 
 

ds2 = aij dxi dxj  (i, j = 1, 2…, n),  (4) 
 
in which x1, x2, …, xn are real variables and the aij are real functions of these variables 
whose determinant | aij | is non-zero.  If the quadratic form (4) is a positive-definite form 
then one may deduce it from a sum of squares: 
 

ds2 = (ds1)2 + (ds2)2 + … + (dsn)2.    (4′) 
 
                                                
1 As far as the theory of anholonomic spaces is concerned, see G. Vranceanu.  Les espaces non holonome 
et leurs applications mécaniques, Mémorial des Sciences Matématiques, fascicule 76, 1936.  
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If this quadratic form is not positive-definite then it may be reduced to the canonical 
form: 

ds2 = (ds1)2 + (ds2)2 + … + (dsp)2 − (dsp+1)2 − (dsp+2)2 − … − (dsn)2,  (4″) 
 

i.e., the sum of p positive squares and n – p negative squares.  In both cases, the 
quantities ds1, …, dsn are Pfaff forms in conveniently chosen differentials (1): 
 

dsa =λi
adxi  (a = 1, 2, …, n)   (5) 

 
in which theλi

a  are functions of n variables x1, …, xn whose determinant ∆ = |λi
a | is non-

zero.  Formula (5) may be solved for the differentials dxi: 
 

dxi =λa
i  dsa   (i = 1, 2, …, n),  (5′) 

 
in whichλa

i are the reciprocals of the determinant ∆. 
If one considers the system of n congruences of curves that is defined in the space Xn 

of the variables x1, x2, …, xn by the differential equations: 
 

  

dx1

λa
1 =

dx2

λa
2 =⋯=

dxn

λa
n  (a = 1, 2, …, n) 

 
then one says that the quantitiesλa

i are the parameters and theλi
a  are the moments of these 

congruences.  One thus sees that each system of n independent Pfaff forms (5) determines 
a system of n independent congruences (λ), and conversely. 

One knows that in a Riemann space with positive-definite metric one may give the 
name of orthogonal congruences to those congruences (λ) whose parameters satisfy the 
conditions: 

aij λa
i λb

j  = δab 
= 0, a ≠ b,

= 1, a = b,

 
 
 

    (6) 

 
which amounts to supposing that the forms dsa, which are the differentials of the arcs of 
these congruences, reduce the metric of Vn to the canonical form (4�).  In this case, we 
also have the following formulas between the parametersλa

i and the momentsλi
aof the 

orthogonal congruence (λ), and the coefficients aij of the metric on Vn: 
 

aij =λi
aλ j

b , λi
a  = aij λa

i .    (5″) 
 

If the metric of our space Vn is not positive-definite then the parameters of the 
congruences whose differentials dsa reduce this metric to the canonical form (4″) 
obviously satisfy the conditions: 

                                                
1 One imposes the well-known convention that when two indices are repeated then this indicates that the 
sum is taken over those indices.  Likewise, one employs indices i, j for the variables (x) and indices a, b, c, 
d, e, f, g, h, k, l, r for the congruences (λ). 
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aij λa
i λb

j  = εab ,     (6′) 
 
in which εab is equal to zero if a is different from b, εhh equals 1 (h ≤ p), and εαα equals –1 
(α > p).  In this case, the coefficients aij are expressible as functions of the momentsλi

aby 
the formulas: 
 

aij =λi
hλi

h − λi
α λ j

α  (h = 1, 2, …, p, α = p + 1, …, n). 

 
As for the formulas that give us the moments as a function of the parameters, by 

taking into account equations (5′′) they may be written: 
 

λi
a  = εab aij λb

i  [λi
h  = aij λh

i , λi
α  = − aij λα

i ].  (6′′) 
 
We shall call congruences (λ) that satisfy conditions (5′′) and (6′) pseudo-orthogonal 

congruences of the space Vn. 
We must remark that one may also introduce, with Eisenhart (1), pseudo-orthogonal 

congruences in Vn in another manner by supposing only that the parameters satisfy 
conditions (6′) and then determine the moments by formulas: 

 
′ λ i
a  = aij λa

i . 
 

If a > p then these moments′ λ i
aare, as one sees, different from the momentsλi

a  
because from formulas (6′′) we have ′ λ i

a  = − λi
α  (α > p).  It is Eisenhart’s pseudo-

orthogonal congruences that Levi-Civita considered in his systematization of Einstein’s 
first unitary theory (2). 

If one now considers a transformation of n Pfaff forms dsa into n other Pfaff forms 
ads then this transformation may be written in the form: 

 
ads =cb

adsb,      (7) 
 
in which thecb

aare arbitrary functions of the variables x1, x2, …, xn whose determinant |cb
a | 

is non-zero.  The totality of these linear transformations form a group (the general linear 
group) in the sense that it contains the identity transformation, each transformation has an 
inverse, and the product of transformations of the form (7) is also a transformation of the 
form (7). 

Having said this, if the metric on the space Vn is positive-definite then a 
transformation of the Pfaff forms, or, more precisely, the congruences (7), preserves the 
canonical form (4′) only if the coefficientscb

aof this transformation satisfies the 
orthogonality conditions: 

cb
a cc

a= δbc .     (7′) 

                                                
1 See L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1926, chap. III. 
 
2 See T. Levi-Civita, Vereinfachte Herstellung, …, loc. cit., pp. 144. 
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Together, these transformations form a group that is a subgroup of the general linear 
group, namely, the orthogonal group, and one knows that one may study the geometrical 
properties of the space Vn as properties of this orthogonal group of transformations of the 
congruences (7), (7′).  In particular, one knows that the components of the Levi-Civita 
affine connection of this space on a set of orthogonal congruence (λ) are given by the 
rotation coefficientsγbc

a of these congruences.  This signifies that if one indicates the 
components of a contravariant vector u by u1, u2, …, un on the n congruences (λ) then the 
parallel transport of this vector along an infinitesimal displacement dsc is given by the 
formula: 

dua =γbc
a ub dsc .     (8) 

 
Like Weyl, one knows that this parallel transport is characterized by the property of 

preserving the length of the vector, which tells us that the coefficientsγbc
a must be anti-

symmetric in the indices a and b, as well as the property that infinitesimal parallelograms 
must be closed.  This latter condition amounts to saying that the componentstbc

a  of the 
torsion of our connection are null: 

 
tbc

a  = γbc
a − γcb

a  − wbc
a  = 0, 

 
in which wbc

a  are the coefficients of the bilinear covariants ∆sa of the forms dsa: 
 
    ∆sa = δdsa – dδsa = wbc

a dsb δsc , 
 

wbc
a =

∂λ i
a

∂x j −
∂λ j

a

∂x i

 
  

 
  

λb
i λ c

j  .     (9) 

 
One finds that the coefficients of rotationγbc

a  are coupled with the coefficientswbc
a  of the 

bilinear covariants ∆sa by the formulas: 
 

γbc
a =

wbc
a + wca

b + wba
c

2
,  wbc

a  = γbc
a − γcb

a   (9′) 

 
If the metric of the space Vn is not positive-definite then the totality of the 

transformations (7) that preserve the canonical form of that metric also defines a pseudo-
orthogonal group, by the equations: 

 
ca

hcb
h − ca

α cb
α  = εab ,     (10) 

 
in which the εab are defined above.  This group may be regarded as a generalization of the 
Lorentz group, a group that is well known in the special theory of relativity.  If one 
introduces imaginary quantities then it may be reduced to an orthogonal group of 
transformations of the congruences, and, as a consequence, one may deduce the 
properties of this group from those of the orthogonal group, but we shall show that one 
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may directly study the geometrical properties of this group without needing to appeal to 
imaginary quantities. 

Indeed, suppose that u1, u2, …, up, up+1, …, un are the components of a contravariant 
vector u on the pseudo-orthogonal congruences (λ) in Vn, whose length is given, by virtue 
of the canonical form (4′′), by the formula: 

 
u2 = (u1)2 + (u1)2 + … + (up)2 − (up+1)2 − (up+2)2 − … − (un)2 .  (10′) 

 
If one lets γbc

∗a denote the components of an arbitrary affine connection Γ* on the 
pseudo-orthogonal congruence (λ) then one obtains the variation of the length u under 
parallel transport using this connection by differentiating formula (10′): 

 
u du = uh duh – uα duα, 

 
and if one takes into account the fact that the duα are given by the parallel transport 
formula: 

duα  =γbc
∗a ub dsc ,    (11) 

then one arrives at the formula: 
 

u du = (γkc
∗h +γhc

∗k ) uh uk dsc + (γαc
∗h −γhc

∗α ) uh u� dsc + (γβc
∗α +γαc

∗β ) uα uβ dsc . 

 
It results from this that our connection possesses the property of preserving the 

length of the vector that is being transported only if the componentsγbc
∗a satisfy the 

conditions: 
γ kc

* h + γ hc
* k = 0, γαc

* h + γ hc
*α = 0,

γβc
*α + γαc

* β = 0 (h,k ≤ p,α,β > p).

 
 
 

  
   (12) 

 
If one associates these conditions with the conditions that express that the connection 

closes infinitesimal parallelograms: 
γbc

∗a −γcb
∗a  =wbc

∗a       (13) 
 
then one may infer the values of the γ*  and state the following theorem: 

The Levi-Civita affine connection on a Riemann space Vn with an indefinite metric 
that has been reduced to the canonical form (4′′) has components relative to the pseudo-
orthogonal congruences (λ) that are given by the following quantities: 

 
γkl

*h = γ kl
h , γ kα

* h = γ kα
h + whk

α , γ hk
*α = γαk

* h = −γ kh
*α ,

γαβ
*h = γ hβ

*α = −γ βα
h , γ βh

*α = γ βh
α + wαβ

h , γ βγ
*α = γ βγ

α ,

 
 
 

  
 (14) 

 
in which thewbc

a  are the coefficients of the bilinear covariants of the arclength differential 
of our pseudo-orthogonal congruences, and theγbc

a are the rotation coefficients of these 
congruences, which are defined as functions of thewbc

a  by formulas (9). 
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Naturally, one may express the values of theγbc
*a  as functions of only the quantities 

wbc
a , and one obtains formulas that are somewhat analogous to formulas (9′). 

Once one knows the connectionγbc
*a  on the space Vn, one may find the curvature 

tensor of Vn by parallel transporting the vector ua along an infinitesimal parallelogram 
that is constructed from two infinitesimal displacements dsh, δsc .  Indeed, one finds the 
formula: 

∆ua = δdah − dδsa =γbcd
*a  ub dsc dsd ,   (15) 

 
in which γbcd

*a  are precisely the components of the curvature tensor of Vn on the 
congruences (λ), and are given as functions of theγbc

*a  by the formula: 
 

γbcd
*a =

∂γ bc
* a

∂sd −
∂γ bd

* a

∂sc + γ fc
* aγ bd

* f − γ fd
* aγbc

* f + γ bf
* awcd

f ,  (16) 

 
from which the analogy with the formulas that give the four-index Ricci 
coefficientsγbcd

a is obvious.  By the fact that our parallel transport preserves length, the 
componentsγbcd

*a are anti-symmetric with respect to the first indices a and b.  Likewise, 
from formulas (15) it then results that these components are also anti-symmetric with 
respect to the last indices c and d. 

By contracting over the indices a and c, which is possible since the first index is 
contravariant and the third one is covariant, one obtains the Ricci tensor: 

 
Rbd = γbad

*a  ,     (17) 
 
and if one lets εab denote the reciprocals of the coefficients εab of the metric (εab = εab) 
then one may consider the mixed componentsRd

aof the tensor Rbd, i.e., Rd
a  = εab Rbd , and 

finally, by contraction, the value R of the Ricci scalar (R =Ra
a). 

The connection and the curvature on Vn are thus defined by their componentsγbc
*a  and 

γbcd
*a on the pseudo-orthogonal congruences.  If one considers a transformation of the 

congruences or the Pfaff forms (7) then the new components γ bc
* a ,γ bcd

* a of our connection 
and curvature are related toγbc

*a  andγbcd
*a  by well-known transformation formulas for affine 

connections and tensors (1). 
 
 
2.  Anholonomic spaces with indefinite metrics. – Now suppose that we have a 

certain number n – m of Pfaff equations: 
 

dsh′ =λ i
′ h  dxi = 0 (h′ = m + 1, …, n)   (18) 

 
in the Riemann space Vn with the metric (4). 

                                                
1 As far as the absolute differential calculus of congruences is concerned, see G. VRANCEANU, Les 
espaces non holonome et leurs applications mécaniques, loc. cit., chap I. 
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If the covariants ∆sh′  (mod dsh′���) of these equations (in which mod dsh′  indicates that 
one accounts for equations of the form dsh′  = 0 in the ∆sh′  ): 

 
∆sh′  (mod dsh′   ) =wkl

′ h dsk dsl     (18′) 
 
are null, which happens only when the coefficientswkl

′ h are null, then the Pfaff system (18) 
will be completely integrable.  In this case, equations (18) may be written by 
conveniently choosing the variables: 
 

dsh′    = dxh′��� = 0  (xh′    = constants),  (18′′) 
 
and our system (18′′) determines a family of ∞n−m Vm’s in the space Vn. 

If the system (18) is not completely integrable then one says, by analogy with 
anholonomic mechanical systems, that the system defines an anholonomic spaceVn

m  in 
the Riemann space Vn.  In order to study the properties of anholonomic spaces one may 
commence by associating the n – m Pfaff forms dsh′��� with m other forms: 

 
dsh� =λi

hdxi  (h = 1, 2, …, m), 
 
in such a fashion that the n forms dsh, dsh′�� constitute a system of n independent forms.  If 
one expresses the n differentials dxi with the aid of these n forms dsa then the metric (4) 
of the space Vn may be written: 
 

ds2 = gab dsa dsb  (gab = aij λa
i λb

j ), 
 
and if one takes the equations of the system (18) into account in this metric then one 
obtains the metric of the anholonomic spaceVn

m : 
 

ds2 (mod dsh′  ) = ghk dsh dsk (h, k = 1, 2, …, m).  (19) 
 
One sees that this metric can only be applied to the directions that satisfy system (18), or, 
more precisely, the directions that are tangent toVn

m . 
We thus have two fundamental invariants of the anholonomic space, the metric (19) 

and the Pfaff system (18).  One uses the term “intrinsic properties” of the spaceVn
m to 

describe properties that depend only upon these two invariants, which is due to the fact 
that if the system (18) is completely integrable then these properties coincide with the 
intrinsic properties, in the Riemann sense, of the ∞n−m Vm’s into which we decomposed 
our anholonomic spaceVn

m in this case. 
One may relate the study of the intrinsic properties ofVn

m to that of the properties of a 
group of transformations of Pfaff forms.  Indeed, the most general transformations of 
Pfaff forms that preserve the system (18) are given by the formulas: 

 

  

ds h = ck
hdsk + c ′ k 

h ds ′ k (h.k =1,2,⋯,m),

ds ′ h = c ′ k 
′ h ds ′ k ( ′ h , ′ k = m+1,⋯,n),

 
 
 

  (20) 
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in which ck
h ,c ′ k 

′ h ,c ′ k 
h  are real functions of n variables x1, x2, …, xn, such that the 

determinants |ck
h | and |c ′ k 

′ h | are non-zero.  These transformations define the group of the 
Pfaff system (18), and the intrinsic properties ofVn

mare the properties of this group, to 
which one may associate the metric (19) ofVn

m .  If one now reduces this metric to the 
canonical form: 
 

ds2 (mod dsh′  ) = (ds1)2 + … + (dsp)2 − (dsp+1)2 − … − (dsm)2 ,   (19′) 
 
in which the number p is equal to m if the metric is positive-definite, then the 
transformations (20) that preserve this canonical form are obtained by imposing the 
conditions: 

ck
hcl

h − ck
α cl

α = εab (h ≤ p, α > p),   (20′) 
 
in which εab is null if k ≠ l, εhh = 1 and  εαα = −1. 

From this, it results that one may define the intrinsic properties ofVn
m to be the 

properties of the group of transformations of the Pfaff forms (20), (20′), a group that one 
calls the intrinsic group of the anholonomic spaceVn

m . 
In the case in which the Pfaff system is not completely integrable, one proves that 

this intrinsic group is not generally geometrizable; i.e., that the knowledge of the two 
fundamental invariants ofVn

m is not generally sufficient to give the important geometric 
properties of the space. 

 We associate these two invariants with the condition that the coefficientsc ′ k 
h have 

well-defined values, which one may assume to be zero after a convenient transformation 
of the dsh, which geometrically amounts to fixing the normal space toVn

m , a space that is 
then defined by the system: 

 
dsh = 0  (h = 1, 2, …, m). 

 
With this condition the subgroup of our intrinsic group, which also preserves this Pfaff 
system (c ′ k 

h  = 0), constitutes a semi-intrinsic group of the space, and groups like this are 
called geometrizable groups. 

Under certain conditions, one may, in a manner of speaking, reduce the study of the 
intrinsic group ofVn

m to the study of one of its semi-intrinsic subgroups, and likewise to 
one of the rigid subgroups of the intrinsic group (1), subgroups that are obtained by 
supposing that the c ′ k 

h  satisfy conditions that are analogous to the conditions (20′).  These 
rigid groups thus possess a metric in all directions, and not only for the tangent 
directions. 

The reduction of the intrinsic group to the rigid group is always possible if the Pfaff 
system (18) is composed of only one non-completely integrable Pfaff equation: 

 
dsn =λi

ndxi = 0,     (21) 
 

                                                
1 See my work: Sur quelques points, …, loc. cit., pp. 184-191. 
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i.e., if our anholonomic space is an anholonomic hypersurface. 
Indeed, the intrinsic group of that hypersurface may obviously be written: 
 

ds h = ck
hdsk + c hdsn

ds n = λdsn,

 
 
 

    (21′) 

 
in which the ck

h  satisfy the pseudo-orthogonality or orthogonality conditions (20′), and 
we have set cn

h= ch, cn
n= λ to simplify. The coefficientswkl

n  of the hypersurface covariant 
in equation (21): 

∆sn (mod dsn ) =wkl
n  dsk dsl,    (22) 

 
form a third-order tensor with respect to the group whose transformation law is given by 
the formula: 

w αβ
n ck

α cl
β  = λ wkl

n .     (22′) 
 

Having said this, if the rank of covariant ∆sn (mod dsn ), which is always an even 
number 2q ≤ n – 1, is equal to n – 1, which happens only if n is odd, then we have the 
formula: 

δ 2∆  = λ2q ∆ ,     (21′′) 
 
in which ∆ is the determinant of the covariant ∆sn (mod dsn ) and δ is the determinant 
|ck

h |, which is equal to +1.  This formula shows us that if one reduces the determinant ∆ to 
unity with the aid of the coefficient λ of the group (21′) then it will remain equal to unity 
only for the transformations (21′) with λ = 1.  The form dsn is invariant under these 
transformations, and, as a consequence, the covariant: 
 

∆sn =wkl
n  dsk δsl + wnk

n  (dsk δsn − dsk δsn)  (22′′) 
 
is also an invariant.  Now, one may choose the coefficients ch in one and only one manner 
that annuls all of the coefficientswnl

n  in this covariant and consequently reduces the study 
of the intrinsic group (21′) to the study of a rigid group.  This result may be considered to 
be a particular case of a theorem of Schouten (1) on affine anholonomic hypersurfaces. 

If the rank 2q of the covariant ∆sn is less than n – 1, which always happens if n is 
even, then one may arrange that this covariant involves only the first 2q forms dsh.  
Having said this, the group that preserves this situation is a subgroup of our intrinsic 
group that separately transforms the first 2q forms dsh and the last n – 2q – 1 forms dsk, 
and this is true because subgroups of an orthogonal or pseudo-orthogonal group have the 
property of being completely integrable.  If we now let ν denote the determinant of the 
transformation of the first 2q forms dsh and let ∆ denote the determinant of the covariant 
∆sn thus reduced then we have a formula that is analogous to (1′′), in such a fashion that 
if we reduce ∆ to unity then one may choose the coefficients ch (h ≥ 29) in one and only 

                                                
1 See J. A. Schouten, On non-holonomic connections, Koninklijke Ak. Wetenschappen Amsterdam, 1928, 
31, no. 3, pp. 299. 
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one manner that annuls the coefficientswnh
n  (h ≤ 2q).  The group that preserves the 

covariant, thus normalized, obviously preserves the two Pfaff systems: 
 

  

ds1 = ds2 =⋯= ds2q = 0,

ds2q +1 = ds2q+ 2 =⋯= dsn−1 = dsn = 0.

 
 
 

   (22′′′) 

 
Now, in the latter of these systems the covariant ∆sn (ds2q+1, … , dsn) also preserves its 
rank 2q, which is the maximum rank of this system.  Consequently, if one considers the 
covariant of one of the equations in this system that takes the form: 
 

dsk + ck dsn  (k = 2p + 1, …, n – 1) 
 
then one may choose the quantities ck to be the roots of the characteristic equation of this 
covariant in such a fashion that the rank of the this covariant is less than 2q in the interior 
of our system.  It then results that one may generally choose the ck in several different 
ways.  If the rank of the covariant ∆sn is equal to two then this manner of choosing the ck 
is obviously unique, and the dsk = 0 then constitute the equations of the derived system of 
our second system (22′′′).  In particular, this happens in the case in which the 
hypersurface is aV5

4  and the covariant is not of maximum rank n – 1 = 4.  We may then 
state the following theorem: 

If one is given an anholonomic hypersurfaceVn
n −1then one may always, and in several 

different manners, reduce the study of its intrinsic group to the study of a rigid group, or, 
in other words, one may always fix the direction of the normal (ch = 0) and the metric on 
this normal (λ = 1).  If the hypersurface is aV5

4 then this reduction is always unique. 
The importance of this theorem consists in the fact that it reduces the study of the 

invariants of the intrinsic group ofVn
n −1 to the study of a rigid group, a group for which 

one knows a complete system of invariants.  Obviously, one arrives at the same results if 
one considers the form dsn to be an invariant (λ = 1) from the outset, or, more precisely, 
if ∆ is an invariant, a case that seems to also have an interesting physical interpretation, as 
we shall show in the third part. 

Now consider a rigid group of an anholonomic hypersurfaceVn
n −1: 

 
hds = ck

hdsk, nds = dsn,    (23) 
 

or, more precisely, the group of an anholonomic hypersurface that possesses a normal 
direction and a metric on that that normal. 

This rigid group possesses two affine connections, each of which preserves the 
character of the tangent vector and the normal vector, and precisely one affine connection 
whose principal characteristic is that it closes infinitesimal parallelograms as much as 
possible.  This latter connection has the following quantities for its components on the 
congruences (λ): 

Γkl
h = γ kl

* h, Γkn
h = wkn

h , Γnk
n = wnk

n , Γnn
n = 0,

Γna
h = Γha

n = 0.

 
 
 

 (24) 
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One sees that the parallel transport of a tangent vector vh along a tangent path dsl is 
given by the formulas: 

dvh =γkl
*h vk dsl     (25) 

 
and formally coincides with the Levi-Civita parallel transport of the metric on the 
hypersurface.  I say “formally” because our transport preserves length, but it does not 
close the parallelogram that one abstractly constructs with a fifth side that is directed 
along the normal and has the components: 
 

wkl
n  dsk δsl , 

 
in which dsk and δsl are the components of the two displacements on which one 
constructs the parallelogram.  From this, it results that the integrability tensorwkl

n  is, at the 
same time, the torsion tensor of the anholonomic hypersurfaceVn

n −1. 
If one now considers parallel transport of a tangent vector vh along the normal then 

we have: 
dvh = wkl

n vk dsn ,     (26) 
 

in such a fashion that the variation of the square of the length of this vector: 
 

v dv = vh dvh – vn dvh 
is given by the formula: 
 

2v dv = (vhk,n v
h vk + 2vhα,n v

h vα + vαβ,n v
α vβ ) dsn , 

 
in which the quantities vkl,n are the components of the second fundamental form for the 
hypersurface.  One may express the components of this tensor with the aid of the rotation 
pseudo-coefficients γ* by the formula: 
 

vkl,n =γ kl
* +γ lk

* n    (k, l = 1, 2, …, n – 1).  (27) 
 

If one transports a tangent vector along the infinitesimal parallelogram that is 
constructed from two tangent displacements dsl, δsr then the variation of the components 
of this vector is given by the formula: 

 
Dvh = λklr

h vk dsl δsr , 
 
in which the quantities λklr

h represent the components of the curvature tensor (interior, or 
tangent) of the hypersurface.  These components are given by the formula: 
 

λklr
h =γ klr

*h + wkn
h wlr

n ,    (25′) 
 
in which the γ klr

*h are the quantities (16) when one allows the index f to vary only from 1 to 
n – 1.  Consequently, in the integrable case these quantities define the Riemann curvature 
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tensor of theVn-1 into which we have decomposed ourVn
n −1.  One thus sees that our 

curvature tensor λklr
h coincides with the Riemann curvature tensorγklr

*h  in the integrable 
case (wlr

h  = 0) or in the case where the parallelism (26) along the normal preserves the 
values of the components vh (wkn

h  = 0). 
Likewise, if one transports a normal vector vn along the two circuits – viz., the 

pentagon and parallelogram that were considered – then one obtains a curvature tensor in 
the form of the tensorwkln

h  that is the derivative of the torsion tensorwkl
h  along the normal, 

and the tensor
δw pk

n

δsn , but these tensors are only rigid tensors, whereas the tensorswkl
h , vkl,n, 

λklr
h , λkln

h  are also semi-intrinsic tensors. 
We shall now show that one may choose the variables in such a fashion that the 

metric and the equation of the hypersurface reduce to simple forms.  Indeed, one may 
always suppose that the n – 1 forms dsh (h ≤ n – 1) are expressed as functions of only the 
n – 1 differentials dx1, dx2, …, dxn-1.  In this case, the metric of the hypersurface will be a 
quadratic form in the n – 1 differentials: 

 
ds2 = aij dxi dxj (i, j = 1, …, n – 1),   (26′) 

 
in which the coefficients aij are general functions of the variable xn.  As for the equation 
of the hypersurface, since it must contain the differential dxn, one may, by a convenient 
change, write it in the form: 
 

dsn = dxn – ϕi dxi = 0  (i = 1, …, n – 1)  (26′′) 
 

in which the ϕi are general functions of all of the variables xr, …, xn. 
If this is true then one finds that in this case the metric tensor (26′) does not depend 

on the variable xn, and the second fundamental form and the second curvature tensor 
λk,ln

h are both null.  As for the curvature tensorλklr
h of the hypersurface, it reduces to the 

curvature tensor of the metric (26′).  In this case, one says that our hypersurface is totally 
geodesic.  If the functions ϕi do not depend upon the variable xn either then the curvature 

tensorswkl,n
h ,

∂wnk
n

∂sl  are also null, in such a fashion that the only tensors that may be non-

zero in this case are the torsion tensor and interior curvature tensor, whose components 
are obviously functions of only the variables x1, x2, …, xn-1. 

The case in which aij and ϕi do not depend on the variable xn is characterized by the 
fact that the hypersurface admits a continuous one-parameter group: 

 

Xf =
∂f

∂xn   (x n= xn + t) 

 
that represents a translation along the normal.  Indeed, if an anholonomic hypersurface 
that is intrinsically defined by its metric and its equation admits a one-parameter group 
that is not tangent (one may not say “normal” since the direction of the normal is not 
fixed) then one may reduce it to this case by choosing the normal to be the direction of 
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the group trajectories.  The normal direction thus determined might not coincide with its 
determinant when one reduces the determinant ∆ of the covariant of the equation (26′′) to 
unity. 
 
 

3.  Non-holonomic unitary theory. – Suppose that we now concern ourselves with 
the case of physics: i.e., we have, on the one hand, the spacetime V4 of the theory of 
relativity, which is a four-dimensional Riemann space whose metric is an indefinite 
quadratic form that has three negative squares and one positive square: 

 
ds2 = − (ds1)2 − (ds2)2 − (ds3)2  + (ds4)2   (26′′′) 

 
in which the forms ds1, ds2, ds3, ds4 are functions of three variables x1, x2, x3, and time t, 
or, more precisely, the four variables x1, x2, x3, x4 = ct, where c is the velocity of light, 
and, on the other hand, the electromagnetic field, which may be determined in the space 
of these four variables by the rotation of a covariant vector ϕi (i = 1, 2, 3, 4).  Indeed, if 
the space V4 is reduced to the space of special relativity, in which we have: 
 

ds1 = dx1, ds2 = dx2, ds3 = dx3, ds4 = dx4 = c dt, 
 
in which x1, x2, x3, are the orthogonal Cartesian coordinates, the components (ex , ey , ez ) 
of the electric vector e and the components (mx , my , mz ) of the magnetic vector m are 
given with the aid of the components of this rotation by the formulas: 
 

ex = ϕ14,   ey = ϕ24,   ez = ϕ34, mx = ϕ23,   my = ϕ31,   mz = ϕ12, 

ϕij =
∂ϕ i

∂x j −
∂ϕ j

∂x i . 

 
From the fact that the ϕij are the components of a rotation, they satisfy the formulas: 
 

∂ϕ ij

∂x j +
∂ϕ jl

∂x l +
∂ϕ li

∂x j  = 0 (i, j, l = 1, 2, 3, 4),  (27′) 

 
which constitute the first Maxwell equations for the vectors e and m in the case where 
there exists no true magnetism. 

From this, it then results that, whenever the electromagnetic field is not identically 
null the form: 

dx5 = ϕi dxi 
 
is not an exact total differential, or, more precisely, the Pfaff equation: 
 

ds5 = dx5 � ϕi dxi = 0      (28) 
 
is not completely integrable.  One must then observe that, whereas the knowledge of the 
vector ϕi uniquely determines the vectors e and m, the converse is not true.  The 
components ϕi are determined by e and m alone, which is an abstraction from terms of 
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the form
∂f
∂xi where f is a function of the variables x1, x2, x3, x4.  This amounts to saying 

that the variable x5 that appears in equation (28) only through its differential is 
determined by abstracting from a transformation: 
 

x′ 5 = x5 + f(x1, x2, x3, x4). 
 

This transformation plays a significant role in the projective unitary theory.  In our 
case, in the manner in which we posed our problem all of our results are invariant under 
this transformation.  One may likewise observe that the determinant ∆ of the covariant: 

 
∆s5 = − ∆x5 = ϕij dxi δxj , 

 
is equal to the square of the scalar product of the vectors e and m: 
 

∆ = (ex  mx + ey  my + ez  mz  )
2 , 

 
and consequently the rank of this covariant is two or four depending on whether these 
vectors are orthogonal or not. 

In the general case where V4 does not reduce to the Euclidian space of special 
relativity, one also agrees to consider the electromagnetic field as being defined by the 
rotation of a covariant vector, or, more, precisely, by an anti-symmetric tensor Fij of 
second order that satisfies the first Maxwell equations (27′) because these equations 
represent the necessary and sufficient condition for the Fij to be regarded as the 
components of a rotation. 

The question at hand now is to see how one must relate these two invariants in order 
to arrive at a unitary theory that satisfies the various conditions that are imposed by 
physics. 

In Weyl’s theory, the form ϕi dxi appears as a coefficient of dilatation for the metric 
on spacetime V4, i.e., as something that is superposed on the space V4 and determined in 
the same manner by which the metric on V4 is defined or known. 

In Kaluza’s theory (1), one makes the form ϕi dxi play an external role, and, more 
precisely, one supposes that it serves to determine the metric (2) of the physical 
continuum, which is supposed to be five-dimensional, but this form is not sufficient to 
completely determine the metric on V5 when starting with the one on V4. 

In the theory of Einstein and Mayer, the form ϕi dxi does not appear explicitly.  What 
one uses for the determination of the electromagnetic field is an anti-symmetric tensor Fij 
of second order.  One arrives at this tensor upon considering the parallel transport in the 
Levi-Civita sense in the vector space V5 that is associated with our space V4, whose 
metric may written in the form (2′′), or, more precisely, reduced to the canonical form: 

 
dσ 2 = − (ds1)2 − (ds2)2 − (ds3)2  + (ds4)2  + (ds5)2 , 

 

                                                
1 See also O. Klein, Quantentheorie und fünfdimensionale Relativitätstheorie, Z. für Physik, 1926, 37, pp. 
895. 
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when this metric is referred to a system of five pseudo-orthogonal congruences in V5 that 
consists of four pseudo-orthogonal congruences in V4 and a fifth congruence that is 
normal to V4.  Indeed, if one lets v1, v2, …, v5 denote the components of a contravariant 
vector (v) on the five pseudo-orthogonal congruences of V5 then the parallel transport of 
this vector along an infinitesimal path that is tangent to V4 (ds5 = 0), which are the only 
possible paths from the physical viewpoint, is defined by the equation: 
 

dva =γbl
*a vb dsl   (a, b = 1, 2, …, 5, l = 1, 2, 3, 4),  (29) 

 
in which the rotation coefficientsγbl

*a of our five pseudo-orthogonal congruences are 
determined by formula (14). 

Among the rotation coefficientsγbl
*a , the coefficientsγkl

*h (h, k, l ≤ 4) are completely 
determined by the metric on V4, whereas the other rotation coefficientsγkl

*5 ,γ5l
*k  that also 

appear in the parallel transport equation (20) are undetermined if the form ds2 that is 
defined by formula (3) is not given.  In any case, one may remark that if one applies the 
transport law (29) to a tangent vector vb (v5 = 0) then this vector remains a tangent vector 
under transport if one has the formula: 

 
dvb =γkl

*5vk dsl = 0. 
 

We suppose that this is not the case in general, but that a tangent vector, which one may 
assume is unitary, remains tangent to V4 if it is transported along its proper direction.  We 
thus assume that one has: 
 

dv5 = (γkl
*5+γ lk

*5) uk ul ds = 0  (dsl = ul ds)  (29′) 
 

in which u1, u2, u3, u4 are the cosines that the vector makes with the pseudo-orthogonal of 
V4 and ds is the length of the displacement dsl , which constitutes condition III of Einstein 
and Mayer.  In this case, formula (20) shows us that the componentsγkl

*5must satisfy the 
anti-symmetry conditions: 

 γkl
*5+γ lk

*5= 0,     (30) 
 
and it suffices to consider the projections of the tensorγkl

*5onto the directions of the 
system of variables (x) of the spacetime V4, in order to arrive at the tensor: 
 

Fij =γ kl
*5 λi

k λ j
l   (γ kl

*5  =Fij λ k
i λl

j ) 

 
that one takes to be the definition of the electromagnetic tensor. 

This being the case, if one considers the anholonomic hypersurfaceV5
4 that is defined 

in V5 by the Pfaff equation (28) and has a metric that is defined by the metric on V4 and 
has a normal in the direction V5 that is orthogonal to V4 then, as we saw in the preceding 
section, that hypersurface possesses two tensors of third order: the second fundamental 
form, which is null in this case, by virtue of conditions (30), and the integrability 
tensorwkl

5 , which, by virtue of the same condition, can be written: 
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wkl
5  = γkl

*5 �γ lk
*5  =2γ kl

* 5 .    (30′) 
 

It suffices to project these formulas into the system of variables (x) in order to arrive at 
the important formula (3′): 

ϕij = 2Fij , 
 
which leads us to relate the unitary theory of Einstein and Mayer to the properties of the 
anholonomic surfaceV5

4 . 
Moreover, from the fact that the parallel transport (29) does not generally preserve 

the character of the tangent vector to V4, it seems to us preferable to consider one of two 
rigid transport laws on our anholonomic hypersurface instead of this parallel transport, 
laws that have the property that they preserve the character of the tangent vector and, in 
particular, exhibit the transport law (25), which is more intrinsically linked withV5

4 .  We 
shall now see that if we consider this transport law (25) and the anholonomic 
interpretation, in general, then, from the physical viewpoint, one may arrive at the same 
consequences as in the initial theory of Einstein and Mayer.  More precisely, we shall 
show how, by starting with the anholonomic hypersurfaceV5

4 , one may arrive, on the one 
hand, at the equations of the trajectories of a charged electric particle, and, on the other 
hand, at the equations of gravitation and electromagnetism. 

Einstein and Mayer arrived at the equations of the trajectories of charged electric 
particle by considering the curves in spacetime V4 that are auto-parallel curves of the 
transport law (29), and, as a consequence, if one lets u1, u2, u3 denote cosines that the 
tangent to one of these curves makes with the four pseudo-orthogonal congruences of V4, 
then we also have that dsl = ul ds in such a fashion that these cosines must satisfy the 
following equations: 

 
duh

ds
− γ kl

* hukul = γ hl
*5ul u5

(h = 1,2,3) (γ 5l
* h = γ hl

*5,(h ≤ 3))
du4

ds
− γ kl

*4ukul = −γ 4 l
*5ul u5

γ 5l
*4 = −γ 4l

*5( ).

 

 

 
 
 

 

 
 
 

    (31) 

 
The quantity v5, which is a constant by virtue of condition (29′), is, by definition, 

associated with the ratio: 

v5 = ρ =
e
m0

, 

 
in which e is the electric charge and m0 is the rest mass of the particle. 

If one considers our anholonomic interpretation then one knows that we have two 
types of tangent geodesics for an anholonomic space: geodesics that are defined as auto-
parallel curves and geodesics that are defined as curves of shortest distance (1).  In the 

                                                
1 See G. Vranceanu, Sur quelques points de la théorie des espaces non holonomes, loc. cit., pp. 192. 
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present case, in which the anholonomic hypersurface is totally geodesic and the 
components of the electromagnetic vector ϕi are independent of the variable x5 ( w5k

5  = 0), 
the latter curves have the equations: 

 
duh

ds
− γ kl

*huku l = whl
5 ul u5 dv5

ds
= 0,

du4

ds
− γ kl

*4 uku l = −w4l
5 ul u5,

 

 
  

 
 
 

     (32) 

 
in which v5 is now the normal component of a covariant vector.  One sees that if we take 
(30′) into account then it suffices to set: 
 

v5 = 2v5 = ρ 
 
in order to identify equations (31) with equations (32). 

This being the case, one may remark that equations (31), in which v5 is the normal 
component of a contravariant vector, are not invariant under modifications of the metric 
on the normal to V4, i.e., changes of the form ds5 into λ ds5, where λ is an arbitrary 
function of the variables x1, x2, x3, x4, a property that equations (32) exhibit.  It thus seems 
preferable to take equations (32) to be the equations of a charged particle of electricity, 
equations that describe the geodesics of shortest distance on the anholonomic 
hypersurfaceV5

4 , and to assimilate the coefficient ρ into the component v5 of a covariant 
normal vector.  This amounts to saying that the form ρ ds5 is independent of changes of 
the metric on the normal. 

One may remark that if one supposes that this coefficient ρ is null then equations 
(32) for the charged particle of electricity become: 

 
duh

ds
− γ kl

*h uk ul  = 0.    (30′′) 

 
Now, these equations are precisely the equations of the auto-parallel geodesics of the 
hypersurfaceV5

4 , and thus also coincide with the geodesics of spacetime V4, in such a 
fashion that if one takes into account the fact that the velocity of light is such that: 
 

ds2 = aij dxi dxj = − (ds1)2 – (ds2)2 – (ds3)2 + (ds4)2 = 0, 
 
then it results that one finds the trajectories of light that are given by the theory of 
relativity, i.e., the null-length geodesics (1) of spacetime V4, trajectories that are, as one 
sees, independent of the electromagnetic field if one supposes that the factor ρ is null.  
This amounts to supposing that that electric charge is zero for light, or, more precisely, 

                                                
1 See T. Levi-Civita.  The Absolute Differential Calculus, Blackie, London, 1927, pp. 330. 
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the photon, and that the ponderable mass m0 is non-zero, a fact that agrees with the 
hypotheses of Louis de Broglie (1). 

If one now wishes to integrate the equations of motion (31) or (32) of a charged 
particle of electricity then one must associate them with the equations: 

 
dxi

dt
 = λh

i uh ,     (31′) 

 
and one thus obtains a system of eight equations in eight unknowns xi, uh, a system that 
possesses the particular quadratic first integral: 
 

− (u1)2 − (u2)2 − (u3)2 + (u4)2 = 1.   (32′) 
 

We now pass on to the equations of gravitation and electromagnetism, to which 
Einstein and Mayer arrived by a very complicated method, by considering the curvature 
tensor of the affine connection (29) of the space V5 and following a path that is somewhat 
analogous to the one that led to the Einstein tensor (15′).  In the case of our anholonomic 
interpretation one may arrive at these equations in a manner that is very simple and, in 
our opinion, quite natural. 

Indeed, if one is given, on the one hand, the spacetime V4, which has the metric (26), 
and, on the other hand, the Pfaff form (3), or, more precisely, the electromagnetic field 
and the gravitational field, then, as we saw in the second part of this memoir, one 
determines a hypersurfaceV5

4whose normal direction may be fixed in an invariant manner 
as being defined by the four equations: 

 
ds1 = ds2 = ds3 = ds4 = 0. 

 
One arrives at this invariant determination of the normal, either by starting with the fact 
that the form ds2 is an invariant, or by starting with the fact thatV5

4must possess a 
continuous one-parameter group of transformations that are not tangent.  This 
anholonomic hypersurface, which is totally geodesic under these conditions, possesses 
only two non-zero tensors: the curvature tensorλklr

h ofV5
4 , which coincides with the 

curvature tensor of V4, and the torsion tensorwkl
5  of V5

4 , which we write as wkl to simplify, 
and which determines the electromagnetic field.  We remark that Einstein and Mayer 
considered this tensor wkl to be a part of the curvature tensor of space V5, which is not 
true in our case, at least if one considers the curvature to be the fourth order tensor that 
one obtains by parallel transporting a vector along an infinitesimal circuit, as is 
customary. 

This being the case, with the aid of the curvature tensor, one may, by the well-known 
method of the general theory of relativity, construct the Einstein tensor: 

 
Rkl –1

2εkl R  (Rkl =λkhl
h ),   (32′′) 

 

                                                
1 See Louis de Broglie. Une nouvelle conception de la lumiére, Hermann, Paris, 1934, pp. 47-48. 
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in which the εkl are equal to the coefficients of the metric (26), and one may write the 
equations of gravitation in the form: 
 

Rkl –1
2εkl R = µ Tkl ,    (33) 

 
in which µ is a constant and the Tkl are the components of the energy tensor.  Likewise, 
with the aid of the covariant derivatives: 
 

wh,l
k =

∂wh
k

∂sl + wα
kγ hl

*α + wh
α γαl

* k  

 
of the mixed components of the torsion: 
 

wh
k = εkα whα  , 

 
then, by contracting over the indices k and l one may form the divergence of this tensor 
and write the second Maxwell equation in the form: 
 

wh,k
k =

∂wh
k

∂sk + wα
kγ hl

*α + wh
α γαl

* k = 0.   (34) 

 
As for the first Maxwell equations (27′), they may also be written: 
 

∂whk

∂sk +
∂wkl

∂sk +
∂wlh

∂sk + whα wkl
α + wkα wlh

α + wlα whk
α = 0,  (34′) 

 
in which thewh

kl  are the coefficients of the bilinear covariants of the four forms ds1, ds2, 
ds3, ds4 and it is easy to see that the equations (34) and (34′) coincide with the well-
known Maxwell equations for empty space if one suppose that the metric (26′′) is that of 
special relativity. 

In the case where one supposes that space is not empty, but in which there still exists 
no true magnetism, one must modify equations (34) by introducing the electric current 
vector into the right-hand side (1).  One may also suppose that the energy tensor Tkl is the 
sum of two tensors, one of which is due to the electromagnetic field, and has components 
equal to the quantities: 

tkl =whkwl
k − 1

4 εklw  (w = εhl whk wl
k), 

 
which is obtained from the tensor wkl in a manner that is somewhat analogous to the one 
by which one obtained the Einstein tensor from the curvature tensor. 
 
 

Conclusion. – One may now summarize the results to which we are led by our 
anholonomic interpretation.  We have associated the equations of motion of a charged 

                                                
1 See T. Levi-Civita.  Vereinfachte, loc. cit., pp. 149-150. 
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particle of electricity with geodesics of shortest distance of the anholonomic 
hypersurfaceV5

4 , in such a fashion that one may arrive at the equations of motion for light 
rays, which are defined as null-length geodesics of the spacetime V4, by annulling the 
constant factor (ρ = 2v5) in these equations.  Likewise, we have constructed the 
gravitational equations with the aid of the Einstein tensor, which is derived form the 
curvature tensor, and the Maxwell equations from the divergence of the torsion tensor; 
the first Maxwell equations are satisfied by definition. 

Now, one may remark that these equations, like the equations of gravitation and 
Maxwell’s equations, are independent of the variation of the metric on V5 along the 
normal to V4, which is obviously preferable.  Moreover, our anholonomic physical space 
is locally four-dimensional, i.e., the points of that space are determined by the values of 
four variables x1, x2, x3, x4, and the distance between two of these points is given by the 
metric (26′′′), but the totality of these local tangent spaces is not to be considered as the 
totality of the local tangent spaces to the same space V4, and this is due to the fact that 
one supposes that the parallelogram that is constructed from infinitesimal displacements 
closes only by imagining that the fifth side points in a direction that is exterior to our 
space V4, and that this fifth side is measured essentially by the electromagnetic tensor.  It 
then results that our physical space also coincides globally with the space V4 of the theory 
of relativity only if the electromagnetic field is null.  One may say that the fact that 
physical space seems to us to have only four dimensions is a result of what we perceive 
only locally. 

However, if the equations considered up till now are invariant under changes of 
metric on the normal then they are not invariant under changes of the normal direction, 
except for the equations of motion for an electrically charged particle.  This question 
leads us to think about the case in which one supposes that the normal deviates from that 
invariant position, a deviation that one may suppose is due to certain physical 
phenomena.  This deviation will be obviously measured by the values of four functions ch 
in the intrinsic group (20) of the hypersurfaceV5

4 .  In this case, the curvature tensor 
ofV5

4does not coincide with the curvature of V4 because the wkn
h in formula (25′) are no 

longer null, in such a fashion that the electromagnetic tensor also appears in the left-hand 
side of equation (33) for gravitation, and consequently, the interaction of the two fields is 
very complex, which might be more in conformity with the nature of things. 

Moreover, in the case of the deviation of the normal we have some new tensors.  For 
example, the second fundamental form, which is no longer null, in general, and the 
second curvature tensor: 

λkl5
h =

∂γ kl
* h

∂s5 −
∂γ k5

* h

∂sl + γ kα
* hwl 5

α +γαl
* hwk5

α − wα 5
h γ kl

*α + wk5
h wl 5

5 ,  (35) 

 
which is a tensor of the third order in the indices h, k, l; perhaps these new tensors might 
serve to account for other physical phenomena. 
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