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Summary. — One sees how one may construct a unitary theoryelofsf both gravitational and
electromagnetic, by starting with an anholonomic hypersevfathat is totally geodesic. This amounts to

supposing that physical space is locally four-dimensidika,the space of the relativity theory, but that
when one starts at a point P, one may not returhly an infinitesimal circuit, but only reach a point P’,
where the direction PP” is normal to the local spaé¢® and the segment PP” thus defines the torsitwe of
space. With the aid of the curvature tensor of deallspaces and the torsion tensor, which is consitered
be the electromagnetic tensor, one writes the &msthd Maxwell equations, and one assumes that the
geodesic equations\f represent the equations of an electrically chargecciggrsuch that the trajectories

of light are the special case of auto-parallel geodesinsll length.

In his celebrated general theory of relativity, Einstgave an interpretation of
gravitation as a characteristic property of physicaktspahich he considered to be a
four-dimensional Riemann space with an indefinite quadfatm:

d<’ = a; dX d¥ (,j=1,2,3,4) 1)

in which x!, %, X are treated like the spatial coordinates &hi treated like the time
coordinate. Since then, physics has sought to find an analagtupretation for
electromagnetic phenomena, or, more precisalynitary theorythat is capable of
explaining Einstein’s gravitational equations and Maxwellsquations of
electromagnetism by means of the same geometric&ilen

That is why Weyl ?), starting with the observation that the electroneaig field
may be defined in spacetirivg, in the absence of true magnetism, by the rotation:

_a¢| a¢] i
b1 =5 " 3 &)
of a covariant vectog, (i = 1, 2, 3, 4), has proposed that one consider spac¥iineebe
a space such that when one passes from one point to arntbéhenit of length for the

metric possesses a coefficient of dilatation thgiven by the Pfaff form:

! This anholonomic unitary theory was the object of afe@mcelLes espaces non holonome et leurs
applications mécaniquat the Institute H. Poincaré, 3 June 1935, at thdaien of the Faculté des
Sciences of the University of Paris. It was also sanwad in the noted:a théorie unitaire des champs et
les hypersurfaces non holonom€&€omtes rendus, 193300, pp. 2056, and iBur une théorie unitaire...,
C.R. Ac. Sc. Roumanie, tome |, 1936.

% See H. WeylRaum, Zeit, Materie5" ed., Berlin, Springer, 1923, pp. 121.
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d¢ =¢: dx (1)

that one may construct from the electromagnetic piademorld-vector.
Another unitary theory was proposed by KaluZa \ho considered the physical
continuum to be a five-dimensional Riemann spacehose metric may be written:

do? =d< + 2¢; dX + ass (dX)?, 2)

in whichds< is given by the metric (1) of the spacetiMgof relativity theory. One sees
that in Kaluza’s theory the metric on the spsgés defined when one is given the metric
on spacetimé&/,, the electromagnetic potential four-vecipr and the coefficiertss.

This hypothesis that the physical world is five-dimensiondden it only seems to
have four, and the difficulty of finding a natural irgeetation for the coefficierdss have
led Einstein and Mayer to propose a unitary thedjytiiat seeks to avoid these
inconveniences of Kaluza’'s theory, while preserving the po@ichypothesis of the
existence of a metric spavk that is associated with the spacetivheof relativity theory,
with the difference that one now supposes that theesgais only a vector space, which
avoids the direct consideration of the coefficiegg As for the method, which plays a
major role in the theory of Einstein and Mayer, itswgeatly inspired by the method of
congruences (tétrapodes) that was considered in the uthiteowy that has been proposed
by Einstein several times before and was given a reiblgrlsystematization by Levi-
Civita (}) with the aid of Ricci’s notion of pseudo-orthogomaingruences. As one
knows, the unitary theory of Einstein, which was alsbjected to a profound study by
Cartan f), consists of considering the physical world to betwa-ftimensional Riemann
space that is also endowed with absolute parallelisih,tlatorsion of this absolute
parallelism that measures the electromagnetic field.

In this new unitary theory, Einstein and Mayer suppose ttie physical world is
four-dimensional, namely, the spacetivig of relativity theory, but that this space is
found to be embedded in a five-dimensional metric vespaceVs. This is realized in
such a manner that at each poinVpfve have, in addition to four independent directions
on V4, which one may call “interior,” or tangent, directipasso an “exterior,” or normal,
direction toV4. Moreover, one supposes that one has a metric,mptffar the tangent
directions, which is the metric &, but also a metric for the non-tangent direction.

One may also say that one associates the spacétimieh a vector spac¥s, in such
a fashion that the linear space that is tange¥; tnay be defined at each point\6fby a

! See. Th. KaluzaZum Unitatsproblem der Physigjtzungsberichte der preuss. Ak. der Wiss., 1921, pp.
966.

% See A. Einstein and W. MayeEjnheitliche Theorie von Gravitation und Electrizjt&itzungsberichte
Akademie, Berlin, 1931, 1.

3 See T, Levi-Civita, Vereinfachte Herstellung der Eairsschen einheitlichen Feldgleichungéid.,
1929, pp. 137.

* See E. Cartar§ur la théorie des systemes en involution et ses applicatian®kativité, Bull. de la Soc.
Math. de France, 193%9, pp 88.
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hyperplane irVs that one calls thdistinguished hyperplaneMoreover, one may arrange
this in such a fashion that the componegnts(a, b= 1, 2, ... , 5) of the metric tensor of
this vector spac¥s are given by the formulas:

gj=aj, 0s5=0, gs=1(]=1,2, 3, 4), (2

wherea; are the components of the metric tensoVo{Einstein and Mayer formulas
(50), (51), (52)]. Having said this, if one considers tbeiCivita parallel transport of
vectors along paths tangent ¥a, which are, moreover, the only possible paths in this
theory, and if one imposes the condition tiadtena vector that is tangent tos\s
displaced along its proper direction remains a vector tangent;tdhén one finds an
anti-symmetric tensof;; of second order that Einstein and Mayer considered tihdéoe
tensor generator of the electromagnetic field.

In order to arrive at this association of the spacelineith the vector spaces in a
natural manner, at least from the mathematical pafiniew, Veblen ), Schouten?,
etc., have also considered the projective propertispadetimeV/,, and thus created an
importantprojective unitary theorpy starting with the theory of Einstein and Mayer.

However, without leaving the metric domain, one may r&nthat on account of
formula (27) the metric of the spa¥e may be written in the form:

do? =ds + (ds)? (2)
whereds is the metric oV, andds’ is an arbitrary Pfaff form in the variables x, X,

x*, and a new variabl#®. This new variable is determined only by abstraction on a
transformation:

X =1, 52, 8, X, X0), (2"
which allows us to write the forae’ in the form:
ds = dx’ — ¢, dX (i=1,2,3,4). (3)

This being the case, if we suppose thatlepends explicitly only upox® then one finds
that the electromagnetic tendgy is related the rotatiog; of the covariant vectog, by
the following very simple formula:

¢y =X . (3)

One thus sees that this unitary theory of EinsteinMager may be related to the Pfaff
form (3), or, more precisely, to the Pfaff equation:

ds =dxX — ¢ dX = 0, (3)

! see . VeblenProjektive Relativitatstheorjespringer, Berlin, 1933.

% See J. A. Schouteha théorie projective de la relativitédnnales de I'Institut H. Poincaré, volume V,
1935, pp. 49.
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which represents the distinguished hyperplanéiimoreover.

This fact has led me to look for an interpretationhes unitary theory with the aid of
the anholonomic hypersurfasé® that is defined iVs by this Pfaff equation. One thus
arrives at an interpretation that gives us the possilafitconstructing all of that unitary
theory by starting with only two invariants: the metfldg and the Pfaff form (3); i.e.,
with only the knowledge of two fields: the gravitationgld and electromagnetic field.
The geometry of the anholonomic hypersurface that one tbnsiders possesses two
fundamental tensors in our caseclavature tensqrnamely, the curvature tensor \&4,
and atorsion tensorwhich is defined by the electromagnetic terfSpr It is with the aid
of these two tensors that one forms the gravitatieegations and the Maxwell
equations.

Our anholonomic interpretatiort)(amounts to saying that the physical world is
locally four-dimensional, as is natural, but that thalityt of these local spaces may not
be regarded as the set of local tangent spaces torttee gmce/s. These local spaces
are the tangent spaces to anholonomic hypersulgcegust as the planes in a linear
complex are the planes that are tangent to a anhwmioneurface, since the total
differential equation of the linear complex is not gdetely integrable. Moreover, one
may remark that the use of anholonomic spaces as s foasa unitary theory of our
physical world may be considered to be very naturahé& thinks that the anholonomic
spaces are obtained by the geometrical interpretatiomnbblonomic systems in
mechanics.

We have divided this memoir into three chapters. Infiteechapter, we shall see
how one may study the Riemann spaces whose metrat i@ positive-definite form on
the basis of the notation of the group of transformatiof a Pfaff form, by a method that
is analogous to Ricci and Levi-Civita’s method of ortheggjacongruences in spaces with
positive-definite metrics. The notation of transfation group for a Pfaff form is,
moreover, at the basis for all of our considerations.

In the second chapter, we shall recall a certain nuimberoperties of anholonomic
spaces, and in the third chapter we shall give an anholorggametrical interpretation
of the unitary theory of Einstein and Mayer, while aisdicating how one might
possibly modify or generalize this unitary theory.

1. Group of a V, with an indefinite metric. — Suppose that we have an
dimensional Riemann spa®g whose metric may be given by the formula:
ds’ = a; dX d¥ (,j=1,2...n), (4)
in which x', %2, ..., X" are real variables and tlag are real functions of these variables

whose determinantg); | is non-zero. If the quadratic form (4) is a positiedinite form
then one may deduce it from a sum of squares:

ds’ = (ds)? + (d)? + ... + @2 (4)

L As far as the theory of anholonomic spaces is coecersee G. VranceanuLes espaces non holonome
et leurs applications mécaniqyédémorial des Sciences Matématiques, fascicule 76, 1936.
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If this quadratic form is not positive-definite then it may be reduto the canonical
form:

ds’ = (ds)? + dS)* + ... + @)* - dLH? - [dF?)? - ... - (d)?, 4

i.e., the sum ofp positive squares and — p negative squares. In both cases, the
quantitiesds’, ..., ds are Pfaff forms in conveniently chosen different{@)s

d€=2dX (a=1,2,...n (5)

in which theA® are functions oh variablesx', ..., X" whose determinark = |47] is non-
zero. Formula (5) may be solved for the differesti!:

dx =1, d$ (=12, ..n), (3)

in which/, are the reciprocals of the determinAnt
If one considers the systemmtongruences of curves that is defined in the siace
of the variablex?, 52, ..., X" by the differential equations:

dX _dx _ _dX
E-EC T

a

@a=1,2,...n

then one says that the quantiﬂgare theparametersand thel” are themomentof these
congruences. One thus sees that each systenma¢pendent Pfaff forms (5) determines
a system oh independent congruencel,(and conversely.

One knows that in a Riemann space with positive-defimetric one may give the
name oforthogonal congruence® those congruenced)(whose parameters satisfy the
conditions:

o =0, a#b,
QjAaAb = éb - :L a=b (6)

which amounts to supposing that the fomiss which are the differentials of the arcs of
these congruences, reduce the metri¥'ofo the canonical form (4). In this case, we
also have the following formulas between the patarsé and the moment¥of the

orthogonal congruencd), and the coefficients; of the metric orVy:
a =AA, A =ay A, (8)
If the metric of our spac®, is not positive-definite then the parameters & th

congruences whose differentiatis" reduce this metric to the canonical form’)(4
obviously satisfy the conditions:

! one imposes the well-known convention that when twoceslare repeated then this indicates that the
sum is taken over those indices. Likewise, one empialisasi, j for the variablesx) and indices, b, c,
d, e, f, g, h, k, [, for the congruenced).
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3 A = &b, (6)

in which & is equal to zero # is different fromb, &, equals 1l < p), ande,, equals -1
(a>p). Inthis case, the coefficierds are expressible as functions of the mométy
the formulas:

aj =AA - AKX (h=1,2,..p,a=p+1,..,n).

As for the formulas that give us the moments asration of the parameters, by
taking into account equations’(ghey may be written:

A =gpay Ay [A =gy A, A =—a A, (6")

We shall call congruenceg)(that satisfy conditiong&'’) and (6) pseudo-orthogonal
congruencesf the spacé/,.

We must remark that one may also introduce, with Eiserfhapseudo-orthogonal
congruences iV, in another manner by supposing only that the parametéssysa
conditions (6) and then determine the moments by formulas:

A =ay AL

If a > p then these momems’are, as one sees, different from the moméhts
because from formulas '(p we haveA'® =- A7 (a > p). It is Eisenhart's pseudo-
orthogonal congruences that Levi-Civita considered insigematization of Einstein’s
first unitary theory?).

If one now considers a transformationroPfaff formsds into n other Pfaff forms
ds®then this transformation may be written in the form:

ds*=c’d¢, )

in which thec are arbitrary functions of the variabbe's X, ..., X" whose determinant]|

is non-zero. The totality of these linear transfarams form a group (the general linear
group) in the sense that it contains the identity tanshtion, each transformation has an
inverse, and the product of transformations of the fafmg(also a transformation of the
form (7).

Having said this, if the metric on the spa®g is positive-definite then a
transformation of the Pfaff forms, or, more pregisé¢he congruences (7), preserves the
canonical form (4 only if the coefficientsof this transformation satisfies the
orthogonality conditions:

clci= . (7)

lseelL.P. EisenhafRiemannian GeometrPrinceton University Press, 1926, chap. Il

2See . Levi-CivitaYereinfachte Herstellung.., loc. cit., pp. 144.
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Together, these transformations form a group that igogreup of the general linear
group, namely, the orthogonal group, and one knows tletr@y study the geometrical
properties of the spad as properties of this orthogonal group of transformatafrthe
congruences (7), () In particular, one knows that the componentshefltevi-Civita
affine connection of this space on a set of orthogonajrcemce 4) are given by the
rotation coefficientgf, of these congruences. This signifies that if one itdicahe
components of a contravariant vectoby u*, U ..., u" on then congruencesA) then the
parallel transport of this vector along an infinitesird&placementls’ is given by the
formula:

df =AU ds . (8)

Like Weyl, one knows that this parallel transport iarelsterized by the property of
preserving the length of the vector, which tells us thatdbefficients/, must be anti-
symmetric in the indicea andb, as well as the property that infinitesimal paralledogs
must be closed. This latter condition amounts to safiay the component§ of the
torsion of our connection are null:

J/a yab c - !
in which w;, are the coefficients of the bilinear covarias of the formsds™:
AS = A —dF = widd &,

(94 XY
bc Laxj ax JAA (9)

One finds that the coefficients of rotatigh are coupled with the coefficierws. of the
bilinear covariantds® by the formulas:

a b c
Wbc W, +Wba

ottt te W= yo g @)

If the metric of the spacé&/, is not positive-definite then the totality of the
transformations (7) that preserve the canonical forthatf metric also defines a pseudo-
orthogonal group, by the equations:

C.Cy —CoCy = &, (10)

in which theg,, are defined above. This group may be regarded as a geaigwaliaf the
Lorentz group, a group that is well known in the speciabhef relativity. If one
introduces imaginary quantities then it may be reduced tmrdrgonal group of
transformations of the congruences, and, as a consequeneemay deduce the
properties of this group from those of the orthogonal groupwe shall show thaine
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may directly study the geometrical properties of this graithout needing to appeal to
imaginary quantities.

Indeed, suppose that, U, ..., uP, u”*}, ..., u" are the components of a contravariant
vectoru on the pseudo-orthogonal congruenchsrf V,, whose length is given, by virtue
of the canonical form (9, by the formula:

p+1

W= U2+ U+ L+ @) - (P = (WP - - (D) (10)

If one lets ;" denote the components of an arbitrary affine connedtioon the
pseudo-orthogonal congruencd) then one obtains the variation of the lengthnder
parallel transport using this connection by differentiatogniula (10):

u du=u"dd' — U duf,

and if one takes into account the fact that do@ are given by the parallel transport
formula:

du” =)2u° dg, (11)
then one arrives at the formula:

U du= (p +p) U UAS + (o0 =yl ) UM U dS + (yg +4,2 ) uT U dS

It results from this that our connection possessesptbperty of preserving the
length of the vector that is being transported only if d:Itnﬂanponent${.fzl satisfy the
conditions:

Y+ V=0, Yl +ye =0, } 12)
Vi *Va =0 (hkspa,B>p).

If one associates these conditions with the cabtihat express that the connection
closes infinitesimal parallelograms:

Voo = Ver =Wor (13)

then one may infer the values of tpfeand state the following theorem:

The Levi-Civita affine connection on a Riemann spdgcwith an indefinite metric
that has been reduced to the canonical f¢4f) has components relative to the pseudo-
orthogonal congruencdd) that are given by the following quantities:

Fh —

Ya = Vi Yia =Via *Wao Vik = Vo = Vidr- (14)
Vop =Vos =~ Vi Vin =Vin *Wapr Vg =V
in which thew;, are the coefficients of the bilinear covariantshef arclength differential

of our pseudo-orthogonal congruences, and{ilzee the rotation coefficients of these
congruences, which are defined as functions ofifhey formulas (9).
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Naturally, one may express the values ofyffieas functions of only the quantities
w., and one obtains formulas that are somewhat analdgdosnulas (9.

Once one knows the connectigh on the spacé/,, one may find the curvature
tensor ofV, by parallel transporting the vectat along an infinitesimal parallelogram
that is constructed from two infinitesimal displacetsels’, & . Indeed, one finds the
formula:

AP = dd' - d& = )2 U d< de', (15)

in which )% are precisely the components of the curvature tensov,ofn the
congruencesA), and are given as functions of V;j? by the formula:

*a *a
Vo %LZ —% VicVoa Vihoe + Vi Wea: (16)

from which the analogy with the formulas that give tlieur-index Ricci
coefficientg/_ is obvious. By the fact that our parallel transportserees length, the
componentg;> are anti-symmetric with respect to the first indieeandb. Likewise,
from formulas (15) it then results that these comptmane also anti-symmetric with
respect to the last indicesandd.

By contracting over the indices and c, which is possible since the first index is
contravariant and the third one is covariant, oneiodthe Ricci tensor:

Rod = Voae - (17)

and if one lets™ denote the reciprocals of the coefficiests of the metric €° = &)
then one may consider the mixed componBfits the tensoRyg, i.e., RS = £° Ry, and
finally, by contraction, the valuR of the Ricci scalarR =R?).

The connection and the curvature\grare thus defined by their componegfsand
V.o on the pseudo-orthogonal congruences. If one considemnsfdrmation of the
congruences or the Pfaff forms (7) then the new comysiie?, ¥ of our connection
and curvature are relatedyfp andy,> by well-known transformation formulas for affine
connections and tensors.(

2. Anholonomic spaces with indefinite metrics. — Now suppose that we have a
certain numben — mof Pfaff equations:

dd"=A" d¥X=0h'=m+1,..,n) (18)

in the Riemann spadé, with the metric (4).

! As far as the absolute differential calculus of congeasnis concerned, see G. VRANCEANLEs
espaces non holonome et leurs applications mécanitpee<it., chap |.
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If the covariants\s' (modds') of these equations (in which mdd"" indicates that
one accounts for equations of the faddh = 0 in theAs' ):

AS" (modds" ) =w;, ds‘ ds (18)

are null, which happens only when the coefficimﬂare null, then the Pfaff system (18)
will be completely integrable. In this case, equatiof8) (may be written by
conveniently choosing the variables:

d€" =d¥"'=0 " = constants), (19

and our system (1§ determines a family ab"™ V,,'s in the spac&/,.

If the system (18) is not completely integrable thee says, by analogy with
anholonomic mechanical systems, that the system dedimasholonomic spaceV in
the Riemann spacé,. In order to study the properties of anholonomic spacesmay
commence by associating the- mPfaff formsds with m other forms:

dd' =1"dX (h=1,2,...m),

in such a fashion that threformsds’, ds"’ constitute a system aofindependent forms. If
one expresses thedifferentialsdX with the aid of thesa formsds' then the metric (4)
of the spac&/, may be written:

d< = gap d< d¥ (@ab=a; ALA)),

and if one takes the equations of the system (18) intouatadn this metric then one
obtains the metric of the anholonomic spéfe

d$ (moddd" ) =g dd' d&  (h, k=1, 2, ...,m). (19)

One sees that this metric can only be applied to tleetdins that satisfy system (18), or,
more precisely, the directions that are tange¥f'to

We thus have two fundamental invariants of the anhatonspace, the metric (19)
and the Pfaff system (18). One uses the term ‘“intripsdperties” of the spas&'to
describe properties that depend only upon these two invanahnish is due to the fact
that if the system (18) is completely integrable theesé properties coincide with the
intrinsic properties, in the Riemann sense, ofsfé" V,'s into which we decomposed
our anholonomic spad#in this case.

One may relate the study of the intrinsic propertid4 @b that of the properties of a
group of transformations of Pfaff forms. Indeed, thest general transformations of
Pfaff forms that preserve the system (18) are givendyaitmulas:
d8" =¢/ds +cpds’  (hk=1,2;--,m), 20
dg" = ds¢ (h'.k' =m+1,--,n), (20)
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in which ¢,c,,c are real functions of variablesx', °, ..., X', such that the
determinantscLh| and {:I?f| are non-zero. These transformations define the grbtipeo
Pfaff system (18), and the intrinsic propertie¥/ 8ére the properties of this group, to
which one may associate the metric (19Y.6f If one now reduces this metric to the
canonical form:

ds’ (moddd") = (ds)? + ... + @F)? - (™) - ... — (d")?, (19)

in which the numberp is equal tom if the metric is positive-definite, then the
transformations (20) that preserve this canonical foren aotained by imposing the
conditions:

¢G -c¢=&n (h=p a>p), (20)

inwhich&gpis null ifk#1, &n=1 and &, =—-1.

From this, it results that one may define the intrinsioperties 0¥ to be the
properties of the group of transformations of the Pfaffis (20), (20, a group that one
calls theintrinsic group of the anholonomic spaggV

In the case in which the Pfaff system is not congbfeintegrable, one proves that
this intrinsic group is not generally geometrizable; itkeat the knowledge of the two
fundamental invariants ®f"is not generally sufficient to give the important geainet
properties of the space.

We associate these two invariants with the conditiat the coefficients. have
well-defined values, which one may assume to be zeeo aftonvenient transformation
of thedd', which geometrically amounts to fixing the normal sp@d€”, a space that is
then defined by the system:

df'=0 h=1,2,..m.

With this condition the subgroup of our intrinsic groufieh also preserves this Pfaff
system (::, = 0), constitutes a semi-intrinsic group of the space,gandps like this are
calledgeometrizable groups

Under certain conditions, one may, in a manner of spgakeduce the study of the
intrinsic group o¥"to the study of one of itsemi-intrinsicsubgroups, and likewise to
one of therigid subgroups of the intrinsic group),( subgroups that are obtained by
supposing that the:. satisfy conditions that are analogous to the canwht(20). These
rigid groups thus possess a metric in all directions, aod only for the tangent
directions.

The reduction of the intrinsic group to the rigid grouplvgags possible if the Pfaff
system (18) is composed of only one non-completely iatdgrPfaff equation:

dd' =A"dX = 0, (21)

! see my workSur quelques points,., loc. cit., pp. 184-191.
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i.e., if our anholonomic space is an anholonomic hyptxser
Indeed, the intrinsic group of that hypersurface may obwdushritten:

ds" = Ads, (21)

ds" =cds +chds”}
in which thec: satisfy the pseudo-orthogonality or orthogonality coods (20), and
we have set=c", c"= A to simplify. The coefficients; of the hypersurface covariant
in equation (21):
AS' (modds') =w]} ds‘ ds, (22)

form a third-order tensor with respect to the group whasesformation law is given by
the formula:
Wycicl =Awy. (22)

Having said this, if the rank of covariafis’ (modds'), which is always an even
number 2 < n — 1, is equal ton — 1, which happens only if is odd, then we have the
formula:

oA =N, (21)

in which A is the determinant of the covariaht’ (modds') and J is the determinant
|cf|, which is equal to +1. This formula shows us thahé@ ceduces the determinanto
unity with the aid of the coefficient of the group (23 then it will remain equal to unity
only for the transformations (91with A = 1. The formds' is invariant under these
transformations, and, as a consequence, the covariant:

AS =w] ds* & + w' (ds* &' - ds &) (22"

is also an invariant. Now, one may choose the adeffisc" in one and only one manner
that annuls all of the coefficients, in this covariant and consequently reduces the study
of the intrinsic group (2} to the study of a rigid group. This result may besidered to

be a particular case of a theorem of Schoufeor( affine anholonomic hypersurfaces.

If the rank 2) of the covarianAs® is less tham — 1, which always happensrifis
even, then one may arrange that this covariant invabveg the first 2| forms d<.
Having said this, the group that preserves this situationsisbgroup of our intrinsic
group that separately transforms the firgtf@ms d<' and the lash — 2 — 1 formsds',
and this is true because subgroups of an orthogonal od@sethogonal group have the
property of being completely integrable. If we now letlenote the determinant of the
transformation of the first@formsds’ and letA denote the determinant of the covariant
As' thus reduced then we have a formula that is analogo(i$)toin such a fashion that
if we reduceA to unity then one may choose the coefficiagitéh > 29) in one and only

! See . A Schoute®@n non-holonomic connectignkoninklijke Ak. Wetenschappen Amsterdam, 1928,
31, no. 3, pp. 299.
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one manner that annuls the coefficiems (h < 2q). The group that preserves the
covariant, thus normalized, obviously preserves the tati Bfstems:

d51:d52:...:d52q:(), g
49 = 4257 = ... = 4 = dd' = 0, (22%)

Now, in the latter of these systems the covarisit(ds™?, ... , d<) also preserves its

rank 2y, which is the maximum rank of this system. Consequeifithne considers the
covariant of one of the equations in this system #ietd the form:

ds + ¢ dd' k=2p+1,..,n=-1)

then one may choose the quantit€o be the roots of the characteristic equation of this
covariant in such a fashion that the rank of the thisigant is less thandggn the interior

of our system. It then results that one may genecdibose the® in several different
ways. If the rank of the covariaf” is equal to two then this manner of choosingche

is obviously unique, and this‘ = 0 then constitute the equations of the derived system of
our second system (22. In particular, this happens in the case in which the
hypersurface is\d, and the covariant is not of maximum ramk 1 = 4. We may then
state the following theorem:

If one is given an anholonomic hypersurfaéeéthen one may always, and in several
different manners, reduce the study of its intrinsic group tottiey f a rigid group, or,
in other words, one may always fix the direction of the nofniat 0)and the metric on
this normal(A = 1). If the hypersurface is g\then this reduction is always unique.

The importance of this theorem consists in the faat threduces the study of the
invariants of the intrinsic group Vf’l to the study of a rigid group, a group for which
one knows a&omplete system of invariant©bviously, one arrives at the same results if
one considerthe form d8to be an invarian{A = 1) from the outset, or, more precisely,
if Ais an invariant, a case that seems to also havaexesting physical interpretation, as
we shall show in the third part.

Now consider a rigid group of an anholonomic hypersuﬂﬁc’:’e

ds"= ¢/ ds", ds"=d¢, (23)

or, more precisely, the group of an anholonomic hyperseitiagt possesses a normal
direction and a metric on that that normal.

This rigid group possesses two affine connections, eachhafh preserves the
character of the tangent vector and the normal veatal precisely one affine connection
whose principal characteristic is that it closesniisimal parallelograms as much as
possible. This latter connection has the following quastifor its components on the
congruencesA):

r:l = y;lh’ r:n = W:n’ rnnk = Wr?k’ r:n = O’
rh _ rn _ O (24)
na_ ' ha” Y
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One sees that the parallel transport of a tangent métalong a tangent pat is
given by the formulas:

dV' =y, V< ds (25)

and formally coincides with the Levi-Civita paralleansport of the metric on the
hypersurface. | say “formally” because our transporsgmess length, but it does not
close the parallelogram that one abstractly constnuitts a fifth side that is directed
along the normal and has the components:

Wi ds o8,

in which ds* and & are the components of the two displacements on whigh o
constructs the parallelogram. From this, it results the integrability tensay,, is, at the
same time, th&orsion tensor of the anholonomic hypersurfa,f:év
If one now considers parallel transport of a tangentove along the normal then
we have:
dv' = wi v dd', (26)

in such a fashion that the variation of the squaréefength of this vector:

vdv=V'dV' -V dV’
is given by the formula:

2v dv= (th,th Vk + Qhan Vh V7 + Vagn VY Vg) ds' ,

in which the quantitiesy, are the components of the second fundamental forrthéor
hypersurface. One may express the components of tsrteith the aid of the rotation
pseudo-coefficientg* by the formula:

Vun =Y, Y Kk 1=1,2,...,n=1). (27)

If one transports a tangent vector along the infinitesipeallelogram that is
constructed from two tangent displacememisc%r then the variation of the components
of this vector is given by the formula:

DV' = Al v ds &,

in which the quantitiesl), represent the components of the curvature tensor @nteri
tangent) of the hypersurface. These components are Igpe formula:

AEIr = ylilrr1 + WEan (25)

Ir?

in which the ;" are the quantities (16) when one allows the irfdexvary only from 1 to
n— 1. Consequently, in the integrable case these quaditie® the Riemann curvature
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tensor of th¥,; into which we have decomposed W(i'. One thus sees that our
curvature tensord), coincides with the Riemann curvature tengprin the integrable
case (N: = 0) or in the case where the parallelism (26) alonghtrenal preserves the
values of the component%(w,?n =0).

Likewise, if one transports a normal vectdralong the two circuits — viz., the
pentagon and parallelogram that were considered — theobb@@s a curvature tensor in
the form of the tenswv:m that is the derivative of the torsion tenmgjralong the normal,

d,vn
and the tenseg,’fk, but these tensors are only rigid tensors, whereaxaltiserwv,z, Vii.ny

b, Ay, are also semi-intrinsic tensors.

We shall now show that one may choose the variablesi¢ch a fashion that the
metric and the equation of the hypersurface reduce tolesifopms. Indeed, one may
always suppose that tie- 1 formsds' (h < n — 1) are expressed as functions of only the
n— 1 differentialgdx!, d, ..., dX* . In this case, the metric of the hypersurface wilhbe
quadratic form in the — 1 differentials:

d€=a;dXd¥ (,j=1,..,n—1), (26)

in which the coefficients; are general functions of the variatfe As for the equation
of the hypersurface, since it must contain the diffésédi’, one may, by a convenient
change, write it in the form:

d'=dX' =g dX =0 i=1,..n-1) (26)

in which theg; are general functions of all of the variabtés..., X".

If this is true then one finds that in this case therimétnsor (26 does not depend
on the variablex", and the second fundamental form and the second curvanser
)lﬂy,nare both null. As for the curvature tendrof the hypersurface, it reduces to the

curvature tensor of the metric (26 In this case, one says that our hypersurfatea#ly
geodesic. If the functionsg, do not depend upon the variabfeeither then the curvature

n

ow, . .
tensorsrv,':lyn, ach are also null, in such a fashion that the only tenf@smay be non-
zero in this case are the torsion tensor and intetiorature tensor, whose components
are obviously functions of only the variabis)?, ..., x"™.

The case in which; and ¢ do not depend on the variabfeis characterized by the

fact that the hypersurface admits a continuous one-gaeamgroup:

ﬂ=£n (X"=x" +1)

that represents a translation along the normal. thdéan anholonomic hypersurface
that is intrinsically defined by its metric and ggjuationadmits a one-parameter group
that is not tangent (one may not say “normal” sirfee direction of the normal is not
fixed) then one may reduce it to this case by choosiaghtiimal to be the direction of
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the group trajectories. The normal direction thus deteanmight not coincide with its
determinant when one reduces the determifaoftthe covariant of the equation (360
unity.

3. Non-holonomic unitary theory. — Suppose that we now concern ourselves with
the case of physics: i.e., we have, on the one hhedspacetimé/, of the theory of
relativity, which is a four-dimensional Riemann space who®etric is an indefinite
guadratic form that has three negative squares and ohwgegquare:

ds = - (ds)? - (d)? - (ds))? + (ds)? (28")

in which the formgis', d<’, ds’, ds' are functions of three variableh X2, x°, and timet,

or, more precisely, the four variables x%, x°, xX* = ct, wherec is the velocity of light,
and, on the other hand, the electromagnetic field, wimai be determined in the space
of these four variables by the rotation of a covanasdtor¢g (i = 1, 2, 3, 4). Indeed, if
the spac&/, is reduced to the space of special relativity, in winehhave:

ds =dx, ds® = d¥, ds’ = dx, ds' =d¥* =c dt,

in whichx', X%, X3, are the orthogonal Cartesian coordinates, the coemisig , & , € )
of the electric vectoe and the componentsy( , m, , m, ) of the magnetic vectan are
given with the aid of the components of this rotatiorih®/formulas:

& =P, & =@ €= M= M=g¢3 M =@,
5 00,99,
PUoxh ox'

From the fact that the; are the components of a rotation, they satisfy thadtas:

9¢; , 99, , 94,
ox!  ox'  ox!

=0 i.j,1=1,2,3,4), (27

which constitute the first Maxwell equations for theteese andm in the case where
there exists no true magnetism.
From this, it then results that, whenever the elecagnetic field is not identically
null the form: _
dxC = ¢ dX

IS not an exact total differential, or, more pregiséie Pfaff equation:
dg=dxX’ ¢ dX =0 (28)

is not completely integrable. One must then observe Wiegereas the knowledge of the
vector ¢; uniquely determines the vectoesand m, the converse is not true. The
componentsp; are determined bg andm alone, which is an abstraction from terms of
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f . . . . .
the form(,% wheref is a function of the variableg, >, x°, . This amounts to saying

that the variablex’ that appears in equation (28) only through its differensal i
determined by abstracting from a transformation:

x"2 =+, %, 5, X4).

This transformation plays a significant role in thejgctve unitary theory. In our
case, in the manner in which we posed our problem all ofesuits are invariant under
this transformation. One may likewise observe thatdeterminanh of the covariant:

AS =-AX = &; dxX o )
is equal to the square of the scalar product of the \seetmmdm:

A= mc+gm+em ),

and consequently the rank of this covariant is twdoar depending on whether these
vectors are orthogonal or not.

In the general case whekg does not reduce to the Euclidian space of special
relativity, one also agrees to consider the electroetagfield as being defined by the
rotation of a covariant vector, or, more, precisdly,an anti-symmetric tensdf; of
second order that satisfies the first Maxwell equati¢2/) because these equations
represent the necessary and sufficient conditiontlier F; to be regarded as the
components of a rotation.

The question at hand now is to see how one must tblase two invariants in order
to arrive at a unitary theory that satisfies the varioosditions that are imposed by
physics. _

In Weyl's theory, the forn® dX appears as a coefficient of dilatation for the metri
on spacetimé/,, i.e., as something that is superposed on the 3phaaed determined in
the same manner by which the metric\ans defined or known.

In Kaluza’'s theory ]() one makes the form dX play an external role, and, more
precisely, one supposes that it serves to determine thec ng2) of the physical
continuum, which is supposed to be five-dimensional, butftinis is not sufficient to
completely determine the metric ®when starting with the one &A.

In the theory of Einstein and Mayer, the fogdX does not appear explicitly. What
one uses for the determination of the electromagfietitis an anti-symmetric tensé;
of second order. One arrives at this tensor upon congidine parallel transport in the
Levi-Civita sense in the vector spave that is associated with our spadg whose
metric may written in the form (2, or, more precisely, reduced to the canonical form:

do? = - (dsh)? - (d)? - (d)? + (d)? + (d<)?,

! See also O. KleinrQuantentheorie und finfdimensionale Relativitatstheatidir Physik, 192637, pp.
895.
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when this metric is referred to a system of five psemrtloogonal congruences W3 that
consists of four pseudo-orthogonal congruence¥,irand a fifth congruence that is
normal toV,. Indeed, if one letg', V4, ..., v’ denote the components of a contravariant
vector () on the five pseudo-orthogonal congruence¥sahen the parallel transport of
this vector along an infinitesimal path that is tangeri¥, (ds’ = 0), which are the only
possible paths from the physical viewpoint, is defined byth&tion:

dV? =)V dd @b=1,2 ...5 1=1,2 3, 4), (29)

in which the rotation coefficien]éf’of our five pseudo-orthogonal congruences are
determined by formula (14).

Among the rotation coefficienis', the coefficientg; (h, k, |< 4) are completely
determined by the metric ov, whereas the other rotation coefficienfs ;' that also
appear in the parallel transport equation (23 undetermined if the form dthat is
defined by formuld3) is not given. In any case, one may remark that if one applies the
transport law (29) to a tangent vect8r(v* = 0) then this vector remains a tangent vector
under transport if one has the formula:

dv’ =)’V ds = 0.

We suppose that this is not the case in general, buatfzatgent vector, which one may
assume is unitary, remains tangenViaf it is transported along its proper direction. We
thus assume that one has:

dv’ = () +y0) U d ds=0 ds=udg (29)

in whichu*, U?, u®, u* are the cosines that the vector makes with the psetidogonal of
V4 anddsis the length of the displacemets, which constitutes condition Il of Einstein
and Mayer. In this case, formula (20) shows us thatsmeponentg,’ must satisfy the
anti-symmetry conditions:

Yo+ % =0, (30)

and it suffices to consider the projections of the tepSonto the directions of the
system of variablex) of the spacetim¥,, in order to arrive at the tensor:

Fij :ykI5 /]Ii( /]Ij (yk|5 :Fij /]ik/hj)

that one takes to be the definition of the electroratigmensor.

This being the case, if one considers the anholonomic $ygace/; that is defined
in Vs by the Pfaff equation (28) and has a metric that i;xddfby the metric ok, and
has a normal in the directidss that is orthogonal t&/, then, as we saw in the preceding
section, that hypersurface possesses two tensors afattder: the second fundamental
form, which is null in this case by virtue of conditions (30), and the integrability
tensom_ , which, by virtue of the same condition, can be written
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Wo = Vo Vie =2 - (30)

It suffices to project these formulas into the egsiof variablesx) in order to arrive at
the important formula (3
@y = 2F,

which leads us to relate the unitary theory of Eimsand Mayer to the properties of the
anholonomic surfacé’.

Moreover, from the fact that the parallel transg@Q) does not generally preserve
the character of the tangent vectoM it seems to us preferable to consider one of two
rigid transport laws on our anholonomic hyperswafatstead of this parallel transport,
laws that have the property that they preservechiagacter of the tangent vector and, in
particular, exhibit the transport law (25), whichmore intrinsically linked Witlv{54. We
shall now see that if we consider this transpow |25) and the anholonomic
interpretation, in general, then, from the physidelvpoint, one may arrive at the same
consequences as in the initial theory of Einsteid Blayer. More precisely, we shall
show how, by starting with the anholonomic hype‘aalﬂv54, one may arrive, on the one
hand, at the equations of the trajectories of agdthelectric particle, and, on the other
hand, at the equations of gravitation and electgyaasm.

Einstein and Mayer arrived at the equations oftthgctories of charged electric
particle by considering the curves in spacetMiethat are auto-parallel curves of the
transport law (29), and, as a consequence, if ersul, u?, u®> denote cosines that the
tangent to one of these curves makes with thegeeudo-orthogonal congruencesvaf
then we also have that = u' dsin such a fashion that these cosines must satisfy
following equations:

%‘ HITESATT
(h=123) (/i =43 (<3) (31)
du i s s
E_Vmu u==yyuu
(sl = i)

The quantityv’, which is a constant by virtue of condition (29s, by definition,
associated with the ratio:

V= p=—s
7 m,

in whiche is the electric charge ama, is the rest mass of the particle.

If one considers our anholonomic interpretatiomtio@e knows that we have two
types of tangent geodesics for an anholonomic sggmalesics that are defined as auto-
parallel curves and geodesics that are definedua@s of shortest distancd.( In the

!seeG. Vrancean®ur quelques points de la théorie des espaces non holgrlomesit., pp. 192.
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present case, in which the anholonomic hypersurface islytajalodesic and the
components of the electromagnetic veaoare independent of the variabfe(w;, = 0),
the latter curves have the equations:

du’ _ yl’:lhukul - Wr?| uus dvg =0,

ds ds

Y (32)
e youu' =-wiu'e,

in whichvs is now the normal component of a covariant vectone sees that if we take
(30) into account then it suffices to set:

V5:2\/5:,0

in order to identify equations (31) with equations (32).

This being the case, one may remark that equations (3tiah v’ is the normal
component of a contravariant vector, are not invatedier modifications of the metric
on the normal tdvs, i.e., changes of the forus into A ds’, where/ is an arbitrary
function of the variables', X4, X¢, X%, a property that equations (32) exhibit. It thus seems
preferable to take equations (32) to be the equations ofrgechparticle of electricity,
equations that describe the geodesics of shortest distancéhe anholonomic
hypersurfac¥, , and to assimilate the coefficieatinto the components of a covariant
normal vector. This amounts to saying that the fords is independent of changes of
the metric on the normal.

One may remark that if one supposes that this coeftigas null then equations
(32) for the charged particle of electricity become:

Wy =0, (30)
Now, these equations are precisely the equations ofutweparallel geodesics of the
hypersurfac¥,’, and thus also coincide with the geodesics of spacefiin such a
fashion that if one takes into account the fact thatv#locity of light is such that:

ds = a; dX dX = - (ds)? - [d)? — @ds)* + [@ds)* = 0,

then it results that one finds the trajectories ohtlithat are given by the theory of
relativity, i.e.,the null-length geodesiq3) of spacetimeV,, trajectories that are, as one
sees,independent of the electromagnetic fidldne supposes that the factoris null.
This amounts to supposing that that electric chargere fee light, or, more precisely,

! See T. Levi-Civita. The Absolute Differential CalculuBlackie, London, 1927, pp. 330.
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the photon, and that the ponderable masss non-zero, a fact that agrees with the
hypotheses of Louis de Broglid (

If one now wishes to integrate the equations of mot&ik) or (32) of a charged
particle of electricity then one must associate tketin the equations:

dX .

— =AU", 31
dt h ( )

and one thus obtains a system of eight equations in efgmownsx, u”, a system that

possesses the particular quadratic first integral:

- (U= (- )+ U =1 (32

We now pass on to the equations of gravitation and eleagoetism, to which
Einstein and Mayer arrived by a very complicated method;omgidering the curvature
tensor of the affine connection (29) of the spésand following a path that is somewhat
analogous to the one that led to the Einstein tensox. (Ibthe case of our anholonomic
interpretation one may arrive at these equations inranemahat is very simple and, in
our opinion, quite natural.

Indeed, if one is given, on the one hand, the spac&timghich has the metric (26),
and, on the other hand, the Pfaff form (3), or, moexipely, the electromagnetic field
and the gravitational field, then, as we saw in the re@qoart of this memoir, one
determines a hypersurfaszéwhose normal direction may be fixed in an invariant neann
as being defined by the four equations:

ds =d€ =ds’=ds' = 0.

One arrives at this invariant determination of the noregiher by starting with the fact
that the formds’ is an invariant, or by starting with the fact #amust possess a
continuous one-parameter group of transformations that ret tangent. This
anholonomic hypersurface, which tistally geodesiaunder these conditions, possesses
only two non-zero tensors: the curvature teA$oofV,', which coincides with the
curvature tensor 0f,, and the torsion tensef, of V', which we write aswq to simplify,
and which determines the electromagnetic field. We rertteat Einstein and Mayer
considered this tensav to be a part of the curvature tensor of spésewhich is not
true in our case, at least if one considers the curvéubpe the fourth order tensor that
one obtains by parallel transporting a vector along amitefimal circuit, as is
customary.

This being the case, with the aid of the curvature teos@rmay, by the well-known
method of the general theory of relativity, construet@mnstein tensor:

Ra —5& R (Ra =Ap,,), (32')

! See Louis de BroglidJne nouvelle conception de la lumigkermann, Paris, 1934, pp. 47-48.
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in which the g are equal to the coefficients of the metric (26), and may write the
equations of gravitation in the form:

Ra—s& R=uTa, (33)

in which y is a constant and thi are the components of the energy tensor. Likewise,
with the aid of the covariant derivatives:

K
K _OW, K *a i
Wh, = P TW, +WZVm

=

of the mixed components of the torsion:
k _
Wh = &ka Wha

then, by contracting over the indicksindl one may form the divergence of this tensor
and write the second Maxwell equation in the form:

oy . .
W:,k:a_sli1 +Wzkryhl +Wﬁymk= 0. (34)

As for the first Maxwell equations (27they may also be written:

GWEK + aWI|((| + aW:(h +WhaW|?| + Wkg% +megk: O, (34)
0s 0s 0s

in which thew/' are the coefficients of the bilinear covariantsha four formsds', d<,
ds’, d€ and it is easy to see that the equations (34) arljl ¢8éhcide with the well-
known Maxwell equations for empty space if one supposethibanetric (28) is that of
special relativity.

In the case where one supposes that space is not démpiy,which there still exists
no true magnetism, one must modify equations (34) byduotriog the electric current
vector into the right-hand sid&( One may also suppose that the energy téhgé the
sum of two tensors, one of which is due to the eletdgnetic field, and has components
equal to the quantities:

i :thWr — 3 EW (w= " Whi W|k)a

which is obtained from the tensak, in a manner that is somewhat analogous to the one
by which one obtained the Einstein tensor from the ¢urgaensor.

Conclusion. — One may now summarize the results to which weledeby our
anholonomic interpretation. We have associated thetieqaaof motion of a charged

lseeT. Levi-Civita.Vereinfachteloc. cit., pp. 149-150.
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particle of electricity with geodesics of shortest alste of the anholonomic
hypersurfac¥; , in such a fashion that one may arrive at the equatibnmtion for light
rays, which are defined as null-length geodesics of theesip#e Va4, by annulling the
constant factor 4 = 2vs) in these equations. Likewise, we have constructed the
gravitational equations with the aid of the Einsteinsten which is derived form the
curvature tensor, and the Maxwell equations from thergaree of the torsion tensor;
the first Maxwell equations are satisfied by definition.

Now, one may remark that these equations, like the @msabf gravitation and
Maxwell's equations, are independent of the variatibrihe metric onVs along the
normal toV,, which is obviously preferable. Moreover, our anhotoimphysical space
is locally four-dimensional, i.e., the points of thpase are determined by the values of
four variablesd, x4, x, x*, and the distance between two of these points isidiyethe
metric (26'"), but the totality of these local tangent spaces igombe considered as the
totality of the local tangent spaces to the same s@acand this is due to the fact that
one supposes that the parallelogram that is constructedififinitesimal displacements
closes only by imagining that the fifth side points idigection that is exterior to our
spaceV,, and that this fifth side is measured essentially byelbetromagnetic tensor. It
then results that our physical space also coincideslijobith the spac&/, of the theory
of relativity only if the electromagnetic field is lhu One may say that the fact that
physical space seems to us to have only four dimensi@sesult of what we perceive
only locally.

However, if the equations considered up till now are innariender changes of
metric on the normal then they are not invariant urat@mnges of the normal direction,
except for the equations of motion for an electricalharged particle. This question
leads us to think about the case in which one supposehehadrmal deviates from that
invariant position, a deviation that one may suppose is dueettain physical
phenomena. This deviation will be obviously measured byahes of four functions”
in the intrinsic group (20) of the hypersurfalé‘e In this case, the curvature tensor
ofV. does not coincide with the curvature\tf because thav/! in formula (25) are no
longer null, in such a fashion that the electromagnetisor also appears in the left-hand
side of equation (33) for gravitation, and consequentlyintieeaction of the two fields is
very complex, which might be more in conformity witie nature of things.

Moreover, in the case of the deviation of the nomv@have some new tensors. For
example, the second fundamental form, which is mmdo null, in general, and the
second curvature tensor:

0y e | - . .
EISZ 612;3' _% + ykZWTS + ythW[IZS - W;Sykla + W:SWISS’ (35)

which is a tensor of the third order in the indibe%, t perhaps these new tensors might
serve to account for other physical phenomena.

Manuscript received 20 July 1936.




