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By
EMIL WAELSCH in Prague.

Translated by D. H. Delphenich

Hermann Grassmanrepresented a line segment as the external produc ehd
points; in that way, one will get the homogeneous cooretimat of the straight line. As
the product of second-degree determinants, this will begedl to alternating products
by Grassmann(); namely,px = pi p« = —p« B . Similar statements are true for the
coordinates of the elementary structures of higher gegmet

If one introduces these symbolic line coordinggeisto some known line-geometric
invariant constructions () then one will see that these invariant are composéattors
that are linear in the symbols, and thus, factors like:

Prér+ P &+ ps st paés,

in which the & mean plane coordinates. These elementary factitirbevinvariant in
themselves, and e.g., thevill be contragredient to thé

One will then also symbolize the linear and higher dergs and the behavior of
symbols under linear transformations, and then defimariant elementary expressions
and then, by aggregation, all invariants. Following throughhis use ofGrassman’s
symbolism and giving some applications of it is the pugmdshe present paper.

1.
The symbols.

If X, yi are the coordinates of two points on a line ndy (i = 1, 2, 3, 4) are the
coordinates of two planes through a line then it is kndvan the ray coordinates of this
line will be the six quantities:

Pk =X Yk = X Vi,

() Cf., alsoHanke| Theorie der complexen Zahlensystef185,et seq.
(") E. g., in the formulas tha®aschderived in his treatise “Zur Theorie der linearen Conmle
Crelle’s J., Bd. 75, pp. 106.
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which are coupled with thaxis coordinates

T = &i k= S 1
by the relations:

P23 = 0 784, ..., P3a= P THD, ...
One has:
Pik == P«i, Th=—T%.
One can introduce symbols in place of these coomhnat setting:

Pk =Pi Pk =— P« Pi, pip =0,
=T Tk=—Tk 7T, T=0.

Thep; might be calleday symbolswhile thesz might be callecxis symbols
If:

D.6m =0 or > ¥bh=0,

wherecys = p )4, €tc., gives the equation of a linear complex, theck or yi will be
called itscoordinates One can again set:

Ck=C C =—CG, W=UK,k=—"KH.
Since:

Y GG, = Y GTEG T, = $(Co 78 +Ca 7B + C3 76 + Ca 78)° = 3 (C 797,
the complex equation will then go to:
icn*=0 or i(yp’=0.

If the line or complex coordinates enter into a fama higher degree then one will
introduce as many sequences of symipoisp* = p% ...; 7= 71 = 77, ...; etc., as that
degree would imply, in order to avoid ambiguities.

2.
Linear transformations.

The pointsx of space will be subjected to the linear transformatio
(1) X =(ad X).

The coordinates of the transformed lines are then:



Waelsch — On the invariant theory of line geometry. 3

P, =d xXy-d yd*x= > ajakp,p,,
SO.
() P = PR =@ p Odp).

Now, if the formF(pi) is invariant under the transformation (1) then:
F(pi) = F(PA) =F((d p) Xd" p)) = ¢ F(pi);

if one then applies the substitution: _
p=dp

to the F(p, ) then one will arrive at the transformed form. It wien follow that:

The symbols p, ¢ are cogredient in the coordinates, and therefore gattient in
the mutually cogredient; y; &

Therefore, symbolic expressions such as:

®n, PN, PH B, x), EPFP°P), EPcx,  (yrén,  etc,

are invariant under linear transformations. One \m#int obtain invariant structures by
aggregation of these expressions, the most importamthath will be then ones for
which the symbols enter in such degrees that the aggreghteave a non-symbolic
meaning.

Thus, e.g.,d 9> (c X, (cX(cy) will be invariants of linear complexes. The firseon
vanishes when the complex is singular; the last onegw# the spatial reciprocity that is
determined by the complex when it is annulled.

3.
Second-order basic forms.

The invariant forn(ci, W, Pk, 78), which contains each sequence of symbols of the
complex formc quadratically, is also an invariant structure when meduces the
quadratic form¢ &? in place of the complex in the system of given forams] likewise,
introduces the symbols of the quadratic forp®)t, (p &2, (77%)? in place of the symbols
¥, p, 7T Thus, any line-geometric invariant of a system in Whigear complexes occur
can be interpreted as an invariant of a system intohwdecond-order forms — vizhe
basic forms (Bildformen} enter in place of these complexes.

Any invariant of the latter system is, however, a enaggregate of the given
elementary symbolic expression®@ne then also obtains all line-geometric invariants of
the given system by aggregation of these elementary expressions.
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Example: Any invariant of the complexc(7)? = 0 that depends upon justis the
basis for an invariant of the surfaaed?® = 0, so only the single invariant'(c? ¢ ¢*?
should be chosen as the basis now, since (cf.,)art. 5

(Cl C2 C3 C4)2 — %((C J42)2’

so the linear complex will possess only the invariany

4.

n'"-degree complexes.

In vol. 1l of Math. Ann., Clebsch’Y showed that any complex of degneean be
represented symbolically as a power of a linear compiex.

C=2 Cikim, ... 7 7ln ... =0
is the complex equation then one can, in fact, syicdiby set:

Cik,im s -+~ =Cik Gim «--,

c=(Yam).

We now define a new symbolic form by introducing symbdihe and complex
coordinates into this. It becomes:
2"C=((c A"

which will make:

Therefore:
(c”*=0 and ¢p*=0

will be the symbolic equations of the complex. Mom\vhe basis forms of orden 2
(class 2, resp.) ¢ " and /x) %", resp., will enter in place of the given complexitie
sense of the previous no., such that the theoremsaimth will still be true when the
system contains complexes of degnee

5.
| dentities.

In order to also agree witrassmannformally, and for the sake of brevity in
notation, we would like to set:

() “Ueber die Pliicker'schen Complexe,” pp. 1. Cf., aBalmon-FiedlerRaumgeomil, pp. 503.
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icp’=Icih 2_1n(0 P*=[ca" xyOy=I[xpy

¥ x=[Ec ¥ XA, Pyl =t E ey, et
and then derive a series of identities.
a. If one introduces complex symbols into the identity:
(1) @bcd k& — (abexy W& + (@abd® (& - (acd® [bE + (bcd® hé= 0,
such that one sets:
a=c!, b=c!, c=¢c% d=¢?
then since:

one will get the identity:

2@ TE+2EP At EiE=2 et P ) KE.

Now, one has:

(coc’x) = 202 Ca(C1%, = G, %) + ... = D YK (C% — G %)
=cyOyx—xyyc;
SO

2) ccc’x)=2[c’yd  or  (w'é)=2ycd];

therefore, the last identity will go to:

I [xy'c® g+ [xy*c'd = - [c" Y] IK&,
If the complexes 1 and 2 are identical then one wil(get

. [xycé=-1[c K<

b. If one sets:
b=c c=¢c =X, a=y

x = sub-determinant of the matrig'[¢* ¢*] in the identity (1) then one will get, with the
use of (2):

) )=y By e +CScixy By 0ic+
+ (Cl R Xy) ! y3 Dy3 C2,

or, with equality of the symbols = ¢? = ¢*:

() Cf.,Paschloc. cit, § 4.
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xc AN F)=3C"Ex) Ty Ty
and from that, when one employs formula Il, and {#&non the right-hand side:
1 (X Ecy) =3¢k [xpyl.
If one setsx =y = ¢* in this then one will have:
@S =6k =0V VY
for a linear complex, and:

@' P’ p*pY’= (7 m* ® ) = 6 [p 787 = 24 [pu]
= 24 (23 Pra + Pa1 Poa + P12 P2g)°
for line coordinates.

c. Ifone sets! =a, ¢ = b, ¢ = cin (3), and if these are the symbols of different
complexes, then one will obtain:

(xbcd(ybcd = (xycd L5 d + (xybd (byyd + (xybg [bd[Dc.
If x =y =ais the symbol of another complex then one will ggtapplying formula

(2):
- 1(abcd?®=[acBd +[abyd +[ab d],

and from this, with an application of identity I:
IV. - $(abcd®=[ab] [c J + [ad[Bd + [ad[Bd].

These formulas yield the following ones, when severdghefsymbols belong to the
same complex:

3(abcc)*=[alll ¢ +2A a ) Blc
(4) (accc)’=6adly

(cc’c’c) =601,
and the latter formulas were already found above.
d. It follows from:
cechaeeeEdHacecd) =)y ae e s
and the last of formulas (4), when one equates #yenbols, that:

(5) ADE TR Oc Ccc) =-[c fO& & & 8.
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With this:
(6) 2 P Ac Ceic) =-[c A DA X OE £ 87 8,
) CE O o) =y X D X Qe &8 &Y,

the last two formulas follow from (5) by a single (doybkesp.) application of
substitutions such as = xy [y and inversion:

—zlepix=cdmm,

as the latter is clear from Il when one s€tsz in it and& = xyy on the left-hand side.
By applying formula (2), one obtains:

2(/E &) yx=-|ocx| Q& E & | =—2Z £ (c & T E2KEY),
SO
(8) EEEPYyx=[EcEI K E+[EECENKE + [ e k&3,
and furthermore:

9  EEVY) X DA =Le ) (KEPIKE? -XETBEE?) + [Xy & [Ee &7,

as would follow from (8) for&®= )2 [0y* X with the use of II.

6.
Linear complexes.
A linear complex has the equation:
cn’=[cA=0 or  (P*=[yp=0,
and the invariant ic())? = [c )}. The equations:
cékn=0, yxyy=0

give a polar relationship that represents the null systemms coupled to the complex.
From formula Il of the previous no., one has:

3 Dyxyy=(c Ecx)(c P cy),
3[epxéEn= 'V V(v v’y n)

3cy QyX?=(c A x)?

one will then have:
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for the basis formyx)?. The equation for the surface’ ¢ ¢ X)? is, however, ¢ §? in
plane coordinates, so it will be identical with othesibaurfaces. Its invariant is:

S =6[n

which implied, in no. 3, that[)} was the only invariant of the linear complex.

Since, moreover, from formula (4) of the previous oy invariant of a system of
basic forms represents a linear complex as an aggrefjateariants § )|, the latter
will define the complete system of invariants of aeysbf linear complexes.

If, for the moment, one letg denote the null plane of the poigtand letsé denote
the null point of the planéthen one will have:

& =cé, X =yxy
for the coordinates.
Therelations(') that exist between the coordinates of four points el hull planes
then follow from equations (5), (6), (7), of no. 5, anglitiduals:

4EN¢I)=le B aEnld),
2€ndx)=lcpdénix),
(Enxy)=(Enxy),

etc.

Let x be the null plane of the poirtrelative to a first complex, so the null point of
X" relative to a second complex will be:

Alzuygo
[xy'c?d=0

is thespecial collineatiorthat arises by adding the null systems.
If the two complexes are singular and intersect tteairier then:

therefore:

[xy'c?g=0

will be the equation of the intersection point theconnecting planef the two lines,
according to whether one regaifler x as variable, respectively.

[xy?ctg=0
is the collineation that is inverse to the one abawd, from formula I:

[xy' P g +[xy’c g=0

() Cf.,Paschloc. cit, § 4.
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is the identity, since the expression on the left @pprtional tox & therefore:
[xy' g -Ixy’c g=0

is the equation for theollective involutiorthat is coupled with the two complexes.

7.
Threelinear complexes.

Three linear complexes will have the covariant sagac

XleleZEt:ZysDysX:[Xy1C2y3X]=O,
Yy i é=[éc e g =0.

These have the forms of equations of second-degree esittaat will be defined by the
common complex rays of the complex. Then:

&=xy" Oy, &=xy’ oy

will be the coordinates of the null plane of the paimelative to the complexes 1 and 3;
if these planes are to intersect in a ray of theptex2 then one must haer® (> £* =
0.
In order to solve the converse problendetermining the complex that contains the
ruling of a surface:
Fo=(aX?=0,

we remark that two complexes with the desired propeitybe present in the pencil of

two complexeg, c’that are polar to each other.
The equation:

(aBsm(apBs'n’)=0
mediates the polar relationship between the lines #lanb toF,, so one will have:
c’'=lach Qapd =0;

thus, ) = ac Ox is the symbol of the complexX and with the help of formula (2), of no.
)
c’'=3(aByy:laph.

If one setsy= )/in this then one will get the polar complektoc’:

c’=1(aBde:lapA Odcd=13(aBIe® (ppcg =Alypl = AL,
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The complex of the pencil:
Ac+c’=0
then has the complex:
Ac’+Ac=0

for its polar. Should both complexes be identicahtit would follow thatA* = A. The
rulings of the surfacea(x)? = 0 are contained in the linear complexes:

+JA Oypl +[acAOBpal =0,

in which [y'p] = 0 is an arbitrary complex amd= | ai | ().

8.
Conversion principle for linear complexes.

If the plane satisfies the equation:
[écty?c® g =0

then, from the above, its null points relative te three complexes 1, 2, 3 will lie along a
line. In fact, the linear expression in the determircdrihe coordinates of the null point
will go to the plane, = 0 when one set& = £2=& = 0.

FromClebsch(Crelle’s Journal, Bd. 59), one knows that each invadaof k points
of a plane can be expressed in an entire and raticmgalinvterms of the determinants
(ikl) of the coordinates of any three of these point@né then sets the determinaitt)(
equal to the expression:

(ikl) = [éc y*c g

then one will obtain a covariant surface of the exyst of linear complexes; any of its
tangential planes will posselssiull points relative to the complex for whidhk= 0.

The dual arguments are likewise valid.

Example: Should six points lie on a conic sectiom tiee would need to have)(

(123)(345)(561)(246) = (456)(612)(231)(513);

one then obtains a surface of class eight whose tAag@tanes relative to the six
complex have six null points that lie in a conic gett

Should this be the case for any plane, ttie® complexes must lie pair-wise in
involution The plane then contains a common ray of the ¢&xap 1, 2, 3, so the conic

() Cf., Gordan “Ueber eine das Hyperboloid betreffende Aufgabe,” Sufith, Bd. 13, pp. 59, and
Paschloc. cit, 8 8 and 11.

(") S. Hunyady“Ueber die verschiedene Formen der Bedingung, welcheunksddass sechs Punkte
auf einem Kegelschnitt liegen,” Crelle’s Journ., Bd. 83,4p
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section must decompose, and therefore a common tag cbmplexes 4, 5, 6 must lie in
the plane; correspondingly, when the plane satisfiesurface (123), one of the factors
that appear in the right-hand side of the last equatiiralso vanish, and indeed, the
factor (456), since otherwise the complexes would berdkge upon each other. The
pencil of complexes (1, 2, 3) and (4, 5, 6) will then yiblel two families of the sant&;
the complexes of the first pencil are in involutionhathose of the second one.

It is, in fact, known that the null point of a plaredative to a Kleinian system of six
fundamental complexes lies on a conic section. _

Here arises the problem of verifying the vanishing ofBenvariants f' ¢| from
the identical vanishing of the covariant of class 8.

0.
Conversion principle for higher complexes.

Any invariantJ in a ternary domain is an aggregate of determinants oéeédgree,
and one regards them as linear forms that belong tosteansywhen one omits the
condition of the equality of the symbols. If one threplaces the determinants with
expressions of the fornf[c* % ¢® & then, from the last no., one will get those caavatis
of a system of linear complexes whose tangentialgsldvave a group of null points with
the invariant) = 0. If one lets the linear complexes that originageequating ternary
symbols coincide once more then one will arrive ataciawts that are also of systems of
complexes of higher order. One likewise arrives duatllgovariant surfaces that are the
loci of points whose complex cones have given invanmoperties.

If a term of the invariant containghird-degree determinants then it will follow that:

planes curves .
The whose complex relative to a number of complexes of

points cones
arbitrary degree have a property that is expressed by the vanishiag wivariant of

. . (];Iass
weight i will all lie on a surface o two.
order

_ planes curves .
In particular: The whose complex relative to a complex of degree
points cones

n have a property that is expressed by the vanishing of ananvaf degreé will all lie

rder . .
on a surface ofO | } 2 = %; this is a result that was first achieved @Gkebsch
class

(Math. Ann., Bd. V) by dropping out a factor "' 2,

Examples:

a. The discriminant of a plane curve has degree-3(Y, so the order and class of
the singularity surface of aff-degree complex will be equal to(@ — 1Y
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For the complex of degree 2§ = 0, its equation will be:
[écty g?=0,
X X' c#x]%=0,

in plane coordinates, and:
in point coordinates.

b. For the tact invarianfT@ctinvariant@ of two plane curves of ordersandm, one
will have i = n Om (n + m — 2), so the order and class of the focal surface @f th
intersection congruence of two complexes of degraadm will be equal to & [h(n +
m— 2). lIts equations will be representable when thisitaariant is known.

If m =1 then one will have to take the condition for tbatact of a line with a curve
of ordern, and thus, the equation of the curve in line coordina@®e obtains this when
one writes the expressionfé) for (ap) in the discriminant of the binary forms of order
n. If one then introducexyc g x] for [a4] in this discriminant then one will obtain the
equation of the focal surface of the intersectiorheflinear complexeg and a complex

of degreen.
Example: If n = 2 here then one will have:
[xycg x]2=0
for the equation of thKummerfocal surface. Fam = 3, one will have:
[xycg ] > Oxy'c g x> Oxyc' g X OxpPcg =0

as the equation of the focal surface.
If g is a singular complex then one will obtain the equatibtihe complex surface for

the given complex of degree

c. For the invariants whose vanishing asserts that tmees of ordem, n, r, resp.,
intersect at a point, one will have m [h [T ; therefore, the order and class of the ruled
surface of the common rays of the complexes of argex, r, resp. will be equal to &[0
n[T.

If r =1 then one must substitutefc g X] for [af] in the two binary forms of order

m andn in the resultant in order to arrive at the equatiothefruled surface.
Form=2,n=r = 1, one will have, for the two complexgsy:

[xygg X *=0.
Form=n=2,r =1, it follows that:

[xycaX® [xy'c'a X - (xyc'g ¥*) *= 0,
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etc.

d. A question arises here: Which ternary invariants hidnee property that the
substitutions ¥y’c?y® x] and [£c'y?® ¢34 that were performed above yield the same
surfaces?

This is known to be case for the discriminant ofanplcurve, since the singularity
surface of a complex is, at the same time, the lo€dlse singular points and planes, and
for the tact invariant of two curves, since the looftithe focal points and focal planes of
the rays of a congruence are identical; for the camdihat three curves must intersect at
a point, the three complexes correspond to a commed suirface.

e. However, one can also perform the latter substnutio covariants and other
invariants (cf., Gundelfingey Math. Ann., Bd. 6); one then obtains, e.g., a spatial
intermediate form from any covariant that assigns @ape with a surface that cuts out
the covariant of the complex curve from it. Cert@wariant properties of the complex
curves can be represented by the identical vanishing of ai@atyaf the property is
equivalent to three conditions then one will arriog,conversion, at a system of surfaces
whose surfaces will contact planes of the desired prppert

Example:  Should a curvea( & = 0 of class 2 degenerate into a doubly-counted
point, then & b ¥ would have to vanish identically. One would obtain, byssitution,
[ ¢ yx]? = 0 as the relation that covariantly assigns angepta a surface that cuts out
the complex conic section from it. If one se&ts= p; Opé then one will obtain the
equation of its line coordinates. Should this equatemsh for everyy for a certainé
then one would obtain: The double planes of the comfilex the double tangential
planes of the singularity surface) will contact alirplex surfaces.

Prague, in November 1889.




