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Complex motions
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E. von WEBER
Translated by D. H. Delphenich

It is known that the complex motions of three-disienal Euclidian space play a
fundamental role in many geometric questions, especialyysLsphere of ideas, but
nevertheless, as far as | know, only their analytioat not their geometric significance
has been appreciated, up to now. Inthe present artielshall then attempt to develop a
real-geometric interpretation for the aforementionecasgeansformations, and in fact,
on the basis of the two closely-related remarks tiat, of all, every complex motion
permutes the fourfold-infinitude of minimal planes in spacgongst themselves, and
secondly, those planes can be associated witkothaiented lines in space — i.e., with
STUDY'’s terminology, thespears— in a single-valued and invertible wawe shall then
consider the complex motions to be spear transformations.of R

To that end, in 8 1, we first examine which real spatrakcttires in the geometry of
spears correspond to the complex points and lin&s inNaturally, the principle of that
map is by no means new. Rather, it is closely relat¢lde well-known representation of
the points of Rz by oriented circles that was studied by M. CHASLES and E.
LAGUERRE, and in addition to the work of STUDY that aleall cite later on, we would
like to emphasize G. TARRY'’s theory of imaginari€3. ( By contrast, the main
evaluation of spears that is carried out here wilwgmut of known ideas in many
respects, and for constructive purposes, in particuldre féllowing § 2, in which we
investigate spear transformations that are defined by glegnmotion more closely,
deals with only motions in a narrower sense, while ¢vensals and conversions of space
that one can call “improper” or “anti-motions” thatere important in the work of C.
JUELS and C. SEGRE shall be reserved for a speemnent. Finally, in the third §,
we will answer the fundamental question of the re@rpretation of the invariants that a
quadruple of spears will exhibit under the gréupof all complex motions.

It is hardly necessary to point out that the prokldimt are treated here all find
analogues in the geometry of complex non-Euclidian meti@and that their solutions
seem to be free of the asymmetry that their Euclid@msideration would necessitate.
That remark by itself will also yield the intrinsic ramection between the present
investigations and STUDY’s recent work),(in which the group of complex non-
Euclidian motions was examined repeatedly, and alsoreefdp limiting case that is
treated here.

() Assoc. Fr. C. R. Séance XVIII-XXII (1889-93).
() Cf., in particular: “Uber nicht-euklidische und Linigeometrie,” Greifswald, 1900, as well as
Geometrie der Dynameheipzig, 1903.
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8§ 1. Complex pointsand lines.

1. We (with STUDY) understand spearto mean an oriented — i.e., endowed with a
sense of direction — line iR; that does not lie at infinity; any such line then “w@ons”
two opposite spears. One and only one spear is definehyogystem of seven real
numbergi, 7rthat fulfill the conditions:

P12 P34 + P13 Paz + Pra P23 = 0, T° = ph+ P+ P
iz 0.

Of thosespear coordinatesthe pix are nothing but the PLUCKERian coordinates of the
straight line that contains the spear, while the séwvenerris represented in the form of
the cosine of the angle that the spear direction makaghe three positive directions of
the axes of the basic Cartesian coordinate systentowkng LIE, a complex plane:

ux+vy+wz+ w=0
is called aminimal planewhen the relation:
(1) w+V+wW=0
exists withoutu, v, w vanishing simultaneously. Any minimal plane contaifigite, real
line, and conversely, two conjugate-imaginary minimal plageshrough any such line

that are associated uniquely with both of the speardi¢ha that line. This comes about
by means of the formulas:

PU= =Dy Py~ Py Post 7T Prg
) PV==D5 0B~ PPt :VTDSI
PW==D3 P~ PosPsst TP,
Pm = P+ P+ Pay
op,=aowW-a'w, op,=vw- Wy,
3) Op,=wu -aw', op,=wd-uw,
op,=wV -a'v, op,=uv- vy,
om=u?+Vi+ W =U?+ V3i+ W3

in which one has set=u' +iu", etc. Any spear is therefore assigned to a mininaalepl
in an invertible, single-valued way, and should be regardeatieareal representation of
the latter. From now on, we can then also understgmehr coordinates” to mean any
four complex numbers that are coupled by equation (1) withp v, w vanishing
simultaneously.
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2. We call the totality ofo® spears that represent the minimal planes that go through
a real or complex poir® aspear cycleor more briefly, theycle P If P is a real point
then the cyclé® will be identical with thespear bundle Pyiz., the totality of all spears
that go througtP. If P is a complex point at infinity then the minimal plartbat go
through it will define anmproper cycle the associated spears distribute themselves on
two different bundles of syntacti¢)(spears. Those bundles are opposite Whina real
point at infinity, while they will coincide wheR lies in the spherical circle at infinity.

Ifa+ia,b+ib,c+ic arethe coordinates &, referred to our Cartesian axis-
cross, andh, A’ are the real spatial points with the coordinads, c(a+a,b+b',c+
c', resp.) then we would like to refer to the point-ge as thearrow that belongs to the
cycle P, whereA is the starting point, an& is the end pointA is also called theenter
the positive line segme&A =r is called theadius and the linAA' is called theaxis of
the cycleP. Since it is defined completely by the real poiatsA’, we could probably
also speak ahe cyclgAA]. If the real pointA” is determined in such a way thaats the
midpoint of the line segmer”A’ then the arronAA” will belong to the conjugate-
imaginary pointP , andA will be the midpoint of the pure-imaginary line segmem.

In the plane that is perpendicular to the a& at the pointA, we construct the
connected circlK with its center atA and radiusr, and endow it with the sense of
traversal that, when seen from the pdhtappears the same as the rotation that takes the
positive X-axis to the positiver-axis in the shortest way would appear when considered
from a point of the positiv&-axis. That oriented circlK is called theequatorof the
cycleP. Now, as one verifies easily, the spears of tiyate consist of the totality of all
generators of the confocal one-sheeted hyperboloid dfaotdnat has the equatérfor
its focal circle, and in fact those generators arenbed such that the vertical projections
of the pointA that lie in the equatorial plane will circle in tharsasense as the equator
itself. Among the spears of the cydte one also finds theo’ oriented tangents df.
Naturally, one will obtain the conjugate cydRby inverting the sense of all spears of a
cycleP.

3. Two spearssi, & of the cycleP go through any real poir®. They are the
generators of the one-sheeted hyperboloid of rotationgbes throughQ and has the
focal circleK, so it is easy to construct whén A', Q are given. They will go to the
oriented tangents that are drawnkowhenQ is chosen to be on the equatorial plane
outside ofK, and will coincide if and only if) lies inK itself. The two spears that lie on
the axis will then be the only opposite ones in theecycl

4. If a spearois given arbitrarily then there will exist one and oahe spear in the
cycleP that is syntactic to it. In order to find it, onedss the speaw’that is syntactic to
the given one through the poitand chooses the poi@talong it in the direction of the
spear such thadQ =r. If Q’is the projection ofQ onto the equatorial plane, and
furthermore,Q” is determined on that plane such that the line segA®@nts equal and

() Thatis, spears that are parallel and directegahee way (STUDY).
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perpendicular t&AQ”, and the rotation through 9¢hat bringsAQ” to the positiolPAQ’ in
the sense of the equator then the spear that is drasugtiQ ” syntactic too will be the
desired one.

5. Conversely, if a spear and a real poinA are given then one understarigl$o
mean the base point of the perpendicular that is droppedX to g and determines the
point B by the demand that the line segmAR" must be perpendicular to the plare (
0) and equal tAAB, and in fact such that the direction @that points fronB to A and
direction that points fronA to B’ will follow each other in a manner that is analogous to
the X, Y, andZ directions of our coordinate system. The line throBgkhat is drawn
parallel too will then be the locus of all poin&’with the property that the cycl&p’]
contains the spear. We then obtain a simple geometric definition ofeffearrows that
belong to the points of a given minimal plane.

6. The? complex points that lie on a real lipewill be represented by the totality
of arrows that have their starting and ending pointg.oecondly, we considersab-
imaginary line y— i.e., a complex line that possesses one real podhties in a real
plane, and indeed initially under the assumption thate¢lé point is at infinity. Two
minimal planes will then go throughthat are represented by anti-syntactic spears .
Conversely, a complex line with a real direction isired by two such spears as the line
of intersection of the two associated minimal plan@e «® oriented circles that are
contacted by the speatsand ¢’ are then associated with just as many arrows, whose
starting (ending, resp.) points fill up a lingh’, resp.) that is parallel tocando”. h lies
in the plane of the spears o’ at the same distanak from each of themh’ is at a
distanced from h, and the planedg”) will be perpendicular to the plane of the lifes
h’. The latter plane contains the lipe Theo? complex points of that line will now be
represented by the arrows that have their starting poimts (their end points o’
resp.). Conversely, in order for the connecting lindvad complex points4A’ and
[BB] to have a given real direction, it is necessany smfficient that the real lineAB
andA’B’should be parallel to that direction.

7. Now, letymean a sub-imaginary line with the real patlet it contain the real
planee that goes througl. The arrows of all complex points gfwill then lie ine.
Conversely, if two arrowsA A and A, A lie in the same real plareewithout the lines
AA; and A A, being parallel then the connecting line of the complertpdA A] and

[A,A] will contain a real poin®© that lies at infinity.

8. We think of the plane as being oriented; i.e., the domains into which it dwide
space are distinguished as its positive and negative didliethe two bundles of syntactic
spears that are perpendiculargowe say thdirst (second resp.) bundle to mean the
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spears that point into the positive (negative, respe) si@. The minimal planes that are
defined by the first (second, resp.) bundle of spearsdbeout the first (second, resp.)
system of minimal lines frorm

If AA is an arrow that lies ie then one can distinguish a fif8tand a second®’

among the two points at which the associated equatarthat planee according to
whether the spear that contacts the point of the egalatorcle in question on the
positive or negative side ef resp. PAP lie along a line that is perpendicular £A,
and one will havé> Ai =AF =AA. Since the pailPF can then be constructed in an
entirely single-valued way from any point-paf A" that lies one, and conversely, the

one object can be employed as the definition of a texrgoint that lies o as well as
the other, and in facBP represents those complex pointsecdt which the minimal

lines of the first one that go throudh intersect those of the second system that go
throughP'; the complex-conjugate point will be representedly.

9. We consider the plane to be the GAUSSian number pladeaccordingly refer it
to a rectangular axis-cross 7 such that the first (second, resp.) system of minimal
planes is given by the equations:

&+i n=const., &—1n=const., resp.

If the complex numbers, 7 mean the coordinates of the poj# A], moreover, while
the numberg, z’ mean the GAUSSian affix of the aforementioned reaitgéi , P’ then

one will obviously have:
(4) z=¢+in,  Z=45-i7.

Let the complex ling’be defined by the equation:
(5 af+bn+c=0.

One writes that by means of (4) as follows:

Z=az+p
in which one sets:
__a-ib _ —2c
a+ib’ a+ib’

That relation defines an indirect similarity transfatran®l of the planee into itself. Its

fixed pointO is laid at a finite point, under the assumption thad made aboug which
is expressed analytically byr|| # 1, so the ratio od andb is not real.
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10. If a sub-imaginary ling/is then given by two points that lie on it — i.e.,tlyo
arrows AA and A /A that lie in a plane — then one will find its real poir® as the

fixed point of the indirect similarity transformati@hthat takes the point3;, P, that are
constructed according to n8.to B and P,. Two minimal planes go throughwhose

spearsg, ¢’ contain the poinO the cycle can be easily constructed from 3@s the
common spear. Now, in order to find the arréyA of all complex points of; one
determines the poin#, that is the common point of intersection of thenpla and two
lines that are parallel toand g’ for an arbitrarily chosen poii; one according to no.
5. One can also ascertain the fixed p&tnof the indirect similarity transformation that
arises from the successionfand the reflection through the poits , and constructs

the pointsk, and A, from the prescription that was given in i8o.

11. The analysis of nd® admits an exception when the coefficienn equation (5)
is equal taa (- ia, resp.), soymeans a minimal line of the first (second, resp.)esyst
The first (second, resp.) point of every pRiF" will then be identical to the real poifx

of y; so the spearg, o’ will coincide in the spear of the first (second, rggundle that
goes througl© perpendicular te, and one will then obtain the poi#{ as the point of

intersection ok with the parallels tarthat are constructed as in riofor every pointA;
that lies ine. A sub-imaginary minimal ling/is then characterized completely by the
spearo of the minimal plane that goes through it and the pealt O that lies onyando.

12. Now, let a super-imaginary linebe given as the connecting line of two complex
points [A; B;] and [A; B,]. The four pointsA , B will not lie in the same plane then. Let
e be the plane that goes throujhandA, and is parallel to the linB; B,, and likewise
let € be the plane that goes throughandB, parallel toA; A, . The arrows\ B; of the
? points ofythen lie such that the poings fill up the planee, while theB; fill up the
planee’. The planes is parallel toyand the liney that is complex-conjugate to it.

The vertical projection of the arrow that belongsoaplex pointP that lies ine is
obviously identical with the arrow of the vertical mcjion of P ontoe. Hence, if the
complex pointsA B lie on y; and A' means the vertical projection Bf ontoe then the

complex points[AA] will lie on the sub-imaginary ling” to which y projects. We
construct the real poif@ in the lineyfrom no.10 by means of the given poin§A and
A A, as well as the base poiatof the perpendicular that is dropped fr@o e”. The
line OP cutsyand y perpendicularly, anddP] is its base point o Furthermore, o

and o’ are two spears that go throu@hand belong to the minimal planes that lie along
¥, while 7 and 7’ are spears that represent the minimal planesgthahroughy; then
obviously o will be syntactic tor, ando’is syntactic tor’, due to the parallelism gfand

y. One then constructsand 7’ easily according to nd. by means of the remark that this
spear must belong to any of the cyclasB]; e.g., to the cycleQP], as well.
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13. If the connecting ling/ of the points A Bj] is a super-imaginary minimal line
then the construction of the plangse’, as well as the point®, P will stay the same,
while the spears, 7’ will coincide with one of the spears that fall along time OP. A
super-imaginary minimal line can then be characterizenpéetely by a spear and an
arrow OP that lies along it. The planesande’ will then be perpendicular to at the
pointsO andP, resp., and one will obtain the poilisthat are associated with arbitrarily-
chosen point#\ of e as the intersection @f and a line that is parallel to(no.5).

14. From the foregoing, two cycle®\| Bi] and [A; B,] possess two different
common spears whose construction will emerge immddiattan what was said in nos.
10-12. The pointsA Bj] lie on a minimal line, so their separation distanad| vanish if
and only if the two cycles have a single, doubly-countedrapecommon.

Let the point B, be chosen such that the arroWsB, and A, B, are equal and

equally-directed. In order for the poins [B;] and |A; B;] to have a zero separation, it is
necessary and sufficient that the line segmant, and B,B, have the same length and

that the lines that contain them are perpendictjar (

15. We understand thaiddle planeof two non-parallel spears to mean the real plane
that goes through the common normal secant to bothsspadrdefines the same angles
with them in such a way that the vertical projectioris tbe spears onto the
aforementioned plane will be anti-tactic. If the azethemselves are anti-tactic then we
will refer to the plane that is perpendicular to bgplears and the plane that is parallel to
them and has the same distance to both of them ragditde plane.

Obviously, the plane that was calledh no.12 is the middle plane for the spear-pair
o, o, as well as the pair, 7° We would like to briefly call the complex line of
intersectiony of two minimal planes that are represented by the sgeand 7’ the line
(77’); the line y will then be defined by the opposite spear-gair). From nos10-12,

the starting point#\ of the arrows that belong to the pointsyokill lie on the middle
plane ofr and 7’ and fill it up completely when those spears areami-tactic. From no.
5, one obtains the poifg; from any pointA; as the point of intersection of certain lines
that are parallel taandr”.

16. The results of the previous no. yield the solutio the fundamental problem of
constructing the arrowJA’] of a cycle when three of its spears ¢, o are given?);
i.e., of finding the point of intersection of thrggzen minimal planes. It suffices to
determine the centeéx of our cycle; one will then obtain the poitas the intersection
point of three lines that are parallel to the retipe spearg; (no.5).

() For more on this so-called “minimal position” of twyctes, see my note “Zur Geometrie der Kreise
in Raum,” which will appear soon in Arch. f. Math.

() The assumption that two of the spears or all three of them, are syntactic, leads to oppr
cycles.
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Now, A is the intersection point of the middle planes ofttiree spear-pairg;, o,

In general, The three aforementioned planes willrsstet along a lineh that is
perpendicular to the same real planéand only if the three spears efare parallel. In
that case, leP; be the point where the plane that goes thrdughd perpendicular to;

meets that spea# will then be the intersection point bfwith the pland?; P, Ps .

The latter construction will also break down whenttiree spearg; are intersected
perpendicularly by the same lihe We then letV; denote intersection point of with h,
and think of the lindr as being oriented such that the line segmaMs, M; My are also
determined up to sign. Now, # is one of the angles that the equatorial plane of the
desired cycle througlh makes withg , andr is the (positive) radius of our cycle,
moreover, then one will have:

(6) AM; =r cos,

and therefore:

(7) Mi Mg =1 (cos& — cos),

(8) M, M; (cosd; — cosdh) = M3M; (cossh — costh).

The latter equation yields the following construction: leebe a real plane that is
perpendicular td at the pointM, and letg, be the vertical projection af one. One
then carries the poil@ fromM along g/ in the direction of that spear in such a way that
MQ = 1 and lays a lin¢ in the planee throughM in such a way that the ratio of the
projections of the line segmer@ Q: andQs; Q; ontol will be equal toM; My : M3 My .
The latter elementary geometric construction obviouslysggses one and only one
solution. The plane of the lindsandl is the equatorial plane of the desired cycle, and
one knows the absolute magnitude of ¢pand coss — coss from now on, so one can
construct the (absolutely-taken) line segmeraadAM; from (7) and (6), and therefore,
A itself.

§ 2. Complex motions as spear transformations.

17. On the basis of a Cartesian coordinate systgne, the formulas:

X =anx+pBy+pz+a,
(1) Y =X+ Ryt pztb,
Z = Xx+[Byt+ )zt

in which the complex numbeus , 3, y fulfill two well-known groups of six relations,
define a complex motion when the three-rowed determioftite quantitiesa; , 3, ¥
have the value + 1. Since the transformation (1) takgaminimal plane to another one,
any complex motion can be interpreted as a transfaxmaf the spears d®s;, from no.
2.

Thereal motions are then characterized within the growpof all complex motions
by the fact that they convert any pair of opposite spaetwsanother such pair. Two anti-
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tactic spears do not generally go to anti-tactic speader complex motions, while by
contrast, one pair of syntactic spears will go to anathe.

18. The complex translation:
X =X+a, y'=y+Db, Z=z+cC

is called pure-imaginarywhen thea, b, ¢ have the forma’, ib’, ic’. It takes the
coordinate origirO to the complex pointQO’], whereO’ means the real point with the
coordinates’, b’, ¢/, and furthermore, the complex poidtH] will go to the point AB’],
whereB’ is determined by the fact that the arrBB’ coincides withOO’ in magnitude
and direction. From n@, one will obtain the spear’to which a given spear goes as
the spear of the cycldB’] that is syntactic tar whenB is chosen arbitrarily o, and
B’is determined as it just was.

19. Any complex translatiof can be represented in the folnT’ =T’ T, whereT
means a real, an’ means a pure imaginary translation. If it takes thatgaio P, and
the latter to @O’] then one will obtain the complex poimATB’] into which the point
[AB] is converted by when one chooses the real poiits B;, B’in such a way that the
arrow AA’ coincides withOP in magnitude and directionA'B, with AB, and finally,
B,B" with OO’ Conversely, wheA, B, A’, B”are given, one will get the poirftsandO’
from this directly; i.e., the translatidnT’that converts the poinAB] to [A’B’].

20. If Q is the real point that the real translatibtakesO to, and ifgi, > mean the
two spears of the cycl®©[O’] that go througi® then all of the spears that are syntactic to
o1 or oz, and only them, will remain individually invariant undeettranslatiort =T T
The improper cycle that is defined by those two bunbiengs to the complex fixed
point at infinity of our translation. Any other bundl&syntactic spears will be displaced
into itself by means of a real translation under th&éioncg.

The translationt is a minimal translation — i.e., two pointaB] and [A’ B’] that
correspond undef have a separation distance of zero wke®’ OP is a right angle,
andOP =00’ The two bundles of invariant spears will then caladn a single one.

21. We now turn our consideration to the complex motimtafions) that fix the
coordinate origirO (*). The real sphere with cent®rand radius 1 will be called The
two systems of equations:

() For this, one can also confer E. STUDY: “Uber Niebklidische und Liniengeometrie.”
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1) X+iy=A(1+2, 1-z=A(X-1Yy),
(2) X=iy=pul+2, 1-z=u(x+iy),

define the two systems of minimal lines that liexonwe distinguish them as thiest and
secondsystem, respectively. The coordinatey, z of any pointP of the sphere can be
expressed rationally in terms éfandy by means of those equationisis called thdirst
parameterof the pointP, while & is called thesecondone. If that point is real then one
will have 7= A, and conversely.

Any spearo that goes througl® will cut « at two diametrically-opposite points,
namely, theexit point Pand theentrance point p; we also refer tar asthe spear OP
The associated minimal plane cuts oukdhe minimal line of the first system that goes
through P and the minimal line of the second system that gbesughPy . The
coordinatest, 1, { of the exit pointP are connected with the coordinags, 77(u, v, w,

o, resp.) of the spearby the equations:

(3) u:v:w=ié+nd:&—in:J%*-1,
(4) §=Pa n=Xe 7= Ps
T T T

while the parametets, 1 of the pointP are defined by the formulas:

u-v_ w _E+i/7: 1-¢

(5) A= =——= :
w utiv 1-¢ ¢&-in

::U'

22. We consider a complex motid8 that leaves the poir® fixed to be a certain

collineation of the spherec into itself for which any generating system gfis
transformed into itself. If the spe@P goes toOlN under® then the first parameters

N of the sphere pointg, N will be connected by an equation of the form:

A:a/l+,8’
W+o

(6)

in which thea, £, y; dmean complex constants that satisfy the inequality
(7) ad— Py# 1.

P andll are then corresponding points of a circle conear$i. The spherical poin®
that is diametral t® is converted int&’ by means oY/, and letl'1" be the point ok that
is dimetrically-opposite t@". If one then denotes the second parameters qidimesP
andl’ by x4, N then one will have the equation:
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®) Mo ¥V
~Bu+a

The sphere generator of the first (second, resp.¢syttat goes through then goes to
the generator of the first system that goes thrduidthe generator of the second system
that goes througlfil’, resp.) under our rotation. In other words: Formulas (&)
together define the collineation of the spheriato itself that corresponds to the motion
%B. Conversely, if the four complex numbess S, ), J correspondingly give the
condition (7) then formulas (6), '{6will define a collineation of the sphereinto itself
that, when interpreted as a spatial transformatiohtaké every minimal plane that goes
throughO to another one, and thus, the spherical circlafatity will go to itself, so it
will be identical with a complex motio®.

If F, G are the fixed points of the circle conversignand one lets;, r denote the
spearOF, OG, then the complex axis of rotati® will be the line g; 1) (cf., no.15).

For the complex rotation angle, one easily finds that:

cosw=1+

(a-9)*+4By
2@o-By)

and wis equal to the logarithm of the double ratio ttie pointsF, G define with any
pair of pointsP, IN that correspond und®; multiplied by —.

23. From the foregoing, the grouig of the complex motions that leave the pdint
fixed is assigned to the direct circle conversionsthe spherec in an invertible and
single-valued way'j. There is then one and only one motiBrihat takes three given

spearsd throughO to three other such speaws, respectively. 1P, P' are the exit

points of those spears ithen one will find the spear, or OF, that corresponds to any
spearas that goes throug® by means of8 when one, following MOBIUS, constructs

the point that corresponds Ry under the circle conversiovi that associates the three
point-pairsPF .

24. If we preserve the notation of n22, a real pointP of « will correspond in the
aforementioned complex moti® to a complex point whose equatorial circteuts the

spherex perpendicularly at the point$, '. In that,1 is referred to as thexit pointof
the oriented circlez andl’ is referred to as thentrance pointnamely, the circle will
contact the sphere at the pdihof the spea®rl, and at the poirfil’ of the spea®©Q’ (or
n'o).

() Cf., STUDY,loc. cit.
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25. One likewise finds the complex point into which abitaary real spatial poin&
will be converted byB when one applies the analogous construction to theespinet is

concentric tax and goes through.
It is, moreover, easy to construct the spedrat the motiodB will take a given spear

o’'to. Namely, if one lays the speathat is syntactic t@throughO, and if7 is the spear
that 7’ goes to unde®® then o will be the spear of the cycle that is syntacticrtointo

which any real point o& will be transformed by the motidB.

26. A complex rotatiod® that fixes the complex poinAR’] is determined when one
knows the three spears , g,,0, that correspond to the three speaisc, oz . If the
translation¥ that takes the pointAJA’] to O converts the speaks (o, resp.) into the
spearsr; (7;, resp.) that go througB, and iffR’ is the rotation aroun@ that takes the;
to the 7/, resp., then one will obtain the spear that corresptm@s arbitrary speas,
underR easily from the relation:

R=FTR T

27. There is one and only one complex mot®rihat takes three given speas no
two of which are syntactic, to three other orgs The proof of that, and likewise, the
construction of the spear, that corresponds to an arbitrarily-given speaunders,

will be first achieved when one ascertains the arrévg} fnd [A'B'] of the cycle that is
defined by the triplegr and g’ (no.16). The speai will be converted intoo; by

means of the translatioh that takes the pointAB] to [A'B']. The rotatiortk that takes
the triple oy, 0, ,0; to o;, g,, g, (no.26) will then bring the speav;, to the desired
position g, , and one will havé = TR.

28. Since any direct, real, circle conversion possessegdal fixed points on the
spherexk that can coincide in special cases, any complex oot&t@n, in general, leave
two distinct spear; 1 fixed, and the lined; 7) is the rotational axis. For any complex
motion B that is not a translation, there are then two and twdy distinct bundles of

syntactic spears, in general, that remain invariant ugidaf those bundles coincide in
one then we will call the motio® parabolic.

29. The following facts that relate to the fixed spearamfarbitrary motior3, and
thus, to the minimal planes th&t fixes, will flow easily from the known properties of
the system of coefficients;, 4, ) (no.17):
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In order for the first motioM to be parabolic, it is necessary and sufficient dme

must have:
(8) at+B+ =3,

without all three of the numbers;, 5, )5 being equal to 1; the last assumption is
characteristic of translations. Any parabolic motialt lwave one and only one bundle
of syntactic spears invariant, but generally no spear, (vaabolic motion of the first
kind), since it displaces the bundJ@ into itself by translation. There are® such
parabolic motions that transform a given bunflato itself.

In particular, a parabolic motion can leave any spéarsyntactic bundle fixed (viz.,
parabolic motion of the second kjnd Any bundle 8 remains unchanged underf
motions of that kind.

Conversely, any motion that displaces a bundle ofasyic spears into itself by
translation is either a translation or a parabolatiom of the first kind, and furthermore,
the motion that fixes the individual spears of a syntdmtiadle is either a translation or a
parabolic motion of the second kind.

30. Any motion‘s that does not satisfy the condition (8) will poss@ss different

invariant bundles of syntactic spears, and inside of eddhem, a fixed speaw (7,
resp.). The complex lineg( 7) is thescrew axisof the motion. The spears of each of the
two bundles will be permuted with each other by a dseutlarity transformatio®( (',

resp.). That is, if the speagsthat are syntactic torcorrespond to the speass under
B, and the spearsg that are syntactic t@ correspond tor; then the parallel triangles
oo, o; will all be directly similar to each other, and sianly for the trianglesr 7 7, .

Moreover, the latter triangles will be directly shami to the former ones; ie., the
similarity transformation8(, (" will be inverse.

The construction of the fixed spear of the motion Watdefined in no27 will follow
easily from these remarks.

31. There arex® complex motions that transform two given bundles yoftactic
spears into themselves by means of given direct sityilaeinsformation( (' = A%,

resp.). In other words: There exist motions that fix two given spears r and convert
a given speaw; that is syntactic tar into another oneg; . Among those motions, one

will find a rotationf’, and all of the rest will have the forfff¥ = TR, where¥ means
any of thew? complex translations that fix the spears of eaaidte individually.

32. In order to construct the rotati®f from the data of the previous number, we
represenfr in the formT9R'T ", where¥ is any translation that conversand 7 into two
spears that go through, sofR’ means a rotation abo@ The problem is then reduced
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to the following one: One knows the two fixed speadrs of a rotatiortk that fixes the
coordinate originO, and the similarity transformatio® and2' = 2™ by which the

spears that are syntacticdand r are permuted amongst themselves. One then looks for
the direct circle conversioyf that corresponds to the rotatidhon the spherical surface

K.

The following fact serves to solve that problem: Thame always two and only two
diametrically-opposite point®;, P, on « that are converted into two diametrically-
opposite point$1,, My, by a given circle conversiovi, P; andP, are the fixed points of
the direct circle conversion:

cvcVv?,

in which C means the indirect circle conversion that convertspanmyt of the sphere into
their diametric opposites. The poifts P, are symmetric to the poin¥,, M, relative to

the middle planes of the two spearg;, 7. When one now associates any spear that is
syntactic too with its midpoint, the similarity transformatiot will correspond to a
similarity transformation of the plareeinto itself that was referred to. dfis the line that
lies ine that goes throug®, and cutsoandr at right angles then there will be infinitely
many point-pair$?P’ one such thaP’is associated with the poiRtby means of(, and

the connecting lind°P’ is perpendicular t@. The locus ofP (P’ resp.) is lineh (h,
resp.) that goes through The planesh, o) and @', 7) then intersect along the lirky

P,. Now, the circle conversioX is over-determined when one knows its fixed points
(i.e., the exit points of the spearsr) and the two pairs of corresponding poiRt$l; .

33. If the spearsy, T are opposite then the previous construction will breakngdow
since the point$; andl1; would now coincide in the exit point @, while P, andll,
would coincide in the exist point af. One would then be dealing with a complex
rotation® with a real axis. From now or,will mean the plane that goes through

perpendicular tag and 7. When one lets any spear that is syntactic to rether or 7
correspond to the point where it pier@gshe given similarity transformatior?s and(’
will determine two similarity transformatior% and®2(' of the planee into itself. If the
pointsP; are converted int&' by 2l and intoR” by’ then the triangle® P P" will all
be directly similar, and the triangl€sP" P; will all be inversely similar, such that point-
pairs P’ P" lie on a line that goes through UnderR, the real point®; will correspond
to the cycle whose equator cuts the plaperpendicularly at the point8" and P, and
will thus be oriented such that its tangentsatare syntactic tas;, while its tangents at
P" are syntactic tor. Naturally, analogous things are true for any plane ihat

perpendicular to the rotational axis such that the cexpbint to which a given real
point goes undeR, can be constructed immediately.
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Now, in order to construct the spesthat corresponds to an arbitrary spgander
R, one chooses two real points ®and ascertains the cycles that correspond to them, as

well their common speass, t’(no. 14); among them, the desiradis made known by the
fact that it also belong to the cycle that is deteedlibys, g, 1.

34. If two triples of spearsn, &, oz and g,, g,, g, are given, such that is
syntactic tocs , and o] is syntactic tag), then there will existo> motions® that convert
the g into the g/, resp. Namely, ifR is any of the rotations that take the speairisito
three spearws; , 0,, o, that are syntactic to; , o,, g;, resp., then there will be one
and only one direct similarity transformation thaheerts o, into o, and o, into o,
inside of the spear bundf@that containsg; and o,. The similarity transformation that
is inverse to it, which transforms the bunghihat is syntactic tar; , and thus bringer;
to the positiono;, is then determined completely. From B, there will then exist a
rotation %, under which thes” will go to the o', and theo® motions® are all of the

form RR'T, where means one of theo? translations that leave the spears of the

bundless and yfixed individually. For the case in which the figureimtersection of the
four spearso; , 0,, o,, o, defines a parallelogram with any plane, one must choose a

complex translation that is easy to discern in ptfca'.

If the three spear&i, o, o3, and likewiseo; , o,, o,, are syntactic then taking the
first triple to the second one will possible if andyoiflthe two triangless; and o' are
directly similar; in that case, there will b& motions that facilitate that transition.

8 3. Invariantsof quadruples.

35. A quadruple of spearai, o, g3, g3, no two of which are syntactic, obviously
possesses four independent real or two independent cofasalute) invariants under
the 1, of all complex motions. Ifi is the spear that goes through the coordinate origin
syntactic took, wherePx is its exit point from the unit sphere then one of the double
ratios of the four spherical poinB can be taken to be one of the complex invariants
above. We denote the coordinates of the pBinby &, /7« < and denote its first
parameter byly, such that one then has:

p=Srin . 14, =1,2,3,4)

1+Zk 5k_i,7k

and then write:

A=A A=A
Klpg) = 22—
MPD =323 2, =2
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Q= (1234), & =(2314), & = (3124).
We further set the coordinates v, W of the speari equal to the expressions:

&G—in, i&+md, -1,
and write:
[KI] = ue Uy + Vie Vi + W W,

to abbreviate; the relation will then exist:

\/W - Ziﬁ \//]TkﬁM -A)

@+ AAIA+AA)

which likewise means that the symbg’l[kl] will be made unambiguous when one

understands,/ 4, on the right-hand side to mean a certain one eftio complex
numbers whose square equdjs If one then sets:

po=y[131V142], p=J02IJ[34], p=[231J[14]

then one will have the relations:
Po+pL+pP2=0,

—d):&, —d:&, —é:&.
P2 Po B

These three double ratios can then be expresse#nown way in terms of one of them.

The absolute value of the numb&ris equal to the corresponding double ratio of the
absolutely-taken line segmeRt P, , while its arc is equal to one of the MOBIUS daubl
angles of the spherical rectan§leP, P; P, . We call the number&, as well as the real
double ratios and double angles that they definedirection invariantsof the spear-
quadruplec .

36. If one letsMop, M;, M, denote the moments of the three complex line-fains
15):
(a1, 73), (0u, O2); (a1, &), (03, Ou); (a1, @), (o2, %),

resp., and denotes the four-rowed determinantishd¢fined by the coordinates , Vi,
Wk, ak of the four spears by then one will find that:

Mh:A.

pr
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Obviously, each of the numbeds, together with any of the quantitid4 , defines the
complete system of invariants of the spear-quadraples, s, g, under ourl 12 . As
before, we come to the problem of replacing the as well as theéVi, , by real,
constructible, geometric quantities.

37. To that end, we leP’ denote the base point am of the shortest distance
between the speats and ¢ ; if those spears have a point in common then thep&ih
and P" will coincide in the point of intersection. Moreayeve understand' to mean
the line segmentP'P!, and letd,'> 0 or d/< 0 according to whether direction that

points fromP* to P! does or does not coincide with that of the spmarresp. Finally,
we set:
{hKIm} = d" =+ ¢" - d™.

Since that expression, which we would like to caliauble differenceof our spear-
qguadruple, obviously changes sign when one permutes the srditre cyclically or
writes them down in the opposite order, the 24 double diféere will reduce to the
following three that are distinct, up to sign:

Do = {1234}, D; = {2314}, D, = {3124},

which are coupled by the relation:
Do+D1+D2=0,
in their own right.
The geometric definition of the double difference isoabhpplicable when the
guadruple contains one or two pairs of anti-tactic speHrse.g., gi is anti-tactic too

then one will understand®® to mean any point obi, and P, to mean its vertical

projection ontoc: ; the expressioDy will obviously be entirely independent of the
choice of pointR? then.

38. The double differences of the spear-quadruples are cexdnedh the complex
momentaVl,, by the following relations:

(1) _ . (=0,1,2).
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These relations can be solved foand A; i.e., the momenm;, can be represented as a
linear, homogeneous expression in the quantibgsD;, D, whose coefficients are
direction invariants. An exception exists only in thee&where the equations:

are valid, each of which has the other ones as a go@see, and which express the fact
that one of the three double ratigsis real, and as a result, all three of them, sofdlr
exit pointsPyx on the unit sphere of the speauy that is drawn througl syntactic took
will belong to the same spherical circle. If weereto the quadruplex asspecialin the
latter case then we can say:

For a general quadruple of spears, the complet¢éesyof absolute invariants under
the groupl i, of all complex motions will be represented by amg bf the MOBIUS
double ratios and double angles of the sphericatargle R P, P; P, and by any two of
the double differencesyPD;, D

39. We now consider a special quadruple of spearse, oz, g, and initially
assume that the spherical cirléhat contains the four poinB is not a great circle; i.e.,

that the four spearg do not run parallel to one and the same real pldheneans the
spherical center of the circle that lies on the smaller cap en { means the cosine of
the spherical radius oK, o means the spedDP, e means any real plane that is
perpendicular tas;, Qx is the point at which it is pierced by the spear o, is the vertical
projection of gi onto the planes, and finally, o, means the spear that liesengoes
throughQy, and is perpendicular ta, , whose direction is chosen so that the sequence of
three spearw, , g, , oappears to be oriented analogously to the coordinate Xrosg,

respectively. If one then decomposes the complex molkheintto its real and imaginary
parts:
Mp=M;+iM,

and letsD; (D;, resp.) denote the double differences of the two spear queslap|
o,, g, 0, and g, , o,, g,, 0,, resp., which are defined analogoushDiy then one
will easily find the relations:

(2) M;:(l_52)—2 por‘);DZDr'1 = p0p§p2Dh,
Pr Pn

3) Mi=¢ -2 BaRor,

h
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Do:D1:Do=D,:D;:D,=D;:D;:D, =po:pi:p2.

For a special quadruple of spears that are not paralléhetcosame real planes, the
complete system of absolute invariants will then consisany one of the three real
double ratios), and one of the three number-pairs:

{(1-¢%7Dy, Dh=(1-¢?)7D;.

40. This real-geometric interpretation of the invariarita gpecial quadruple breaks
down if and only if the four speark are parallel to the same real planeNow, if o is
the plane that goes through parallel toe, andQx is the point where it is pierced by any
spearo that is perpendicular te then D, = Dy, and in place of (3), one will have the

equation:

M2 = A
" osie i (24)
2 2

as well as the relations favl,’ and M, that emerge from it by cyclic permutation of 1, 2,
3. In this,H means the expression:

H=> (-1)“"Q.Q sin(pa);

Qk Q is a positive or negative line segment according/hether the direction that points
from Qx to Q does or does not coincide with thatafresp. Furthermore, sipd) shall
mean the positive or negative sine of the anglevésen the spears, and g; according to
whether the three speass, ¢g;, o are oriented analogously to the coordinate sysiem
not, resp. The indicds |, p, g represent a permutation of the numerals 1, 2, 8nd the
sum is taken over the six terms that arise wheh ehthe pairkl andpqrun through the
six choices:

12, 13, 14, 23, 34, 42.

With that, for four spearsk, no two of which are syntactic, the absolute iravats of
the groupl 1, are represented in all cases by quantities thag hageometrically simple
meaning.

41. Incidentally, it follows from these results thhfour spears belong to the same
cycle then all of its double differences will vamisThat theorem is invertible when the
quadruple is not special. In the latter casefdbe spears belong to the same cycle if and
only if the double difference®, that were defined above vanish (the expressipn

resp., in the event that th® are parallel to the same plane), in addition ® dbuble
differencesDy, (and Dy). It further follows that in order for four speagk to be able to
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go to four spears in the same real plane by complexongtit is necessary and sufficient
that the quadruple must be special and that the doubleetiffesD, (the expressio,

resp.) must vanisH

42. Four spearsk, two of which (sayoi and &) are syntactic, possess merely two
independent real invariants under the gréup, and therefore, one complex one, for
which one can choose the expression:

A

M:MOZMZZM’

while the complex momem, is illusory. If we further set:
M=M"+iM”

then the double differenc®; will be equal to —M”, while D, and D, will be
indeterminate. As before, we B, P3;, P4 be the exit points on the sphéref the spears
that are drawn throug® and syntactic tas, os, o, resp., and further |d® be a real
point onoi , while P’is its vertical projection onte, . If one draws a spear through the
sphere poinP; that is syntactic to the speBP’ then it will contact the sphere at P,
and thus determine a poiRb on the spherical surface that is infinitely close to the
point Py . The arc of the complex invariakt will then be one of the MOBIUS double
angles of the spherical rectan@leP, P; Py .

Furthermore, we consider the case in whaghs syntactic tao , and likewise gz is
syntactic togz . Since there are'? such quadruples, and each of them admits
complex motions (translations), there will alsoséxiwo independent real invariants in
this case, and therefore one complex invariant,civiwe can choose to have the
expression:

- (@, ~w)(w,-w,)
[13]

() The subgroupis of our 'y, that permute the spears of a real plars@mongst themselves is also a
subgroup of LIE’s grouf, of all real contact transformations that take cirttesircles. E. LAGUERRE
(Recherches sur la Géométrie de DirectiBaris 1885) has studied these spear transformationspiatie
e without, however, recognizing the connection aboven ff@t, cf., C. STEPHANOS, in C. B2 (1881),
pp. 1195.] The generating LAGUERRE transformation ihirthe reflection in the complex plane:

ax+py+iyz+9=0,

in which a, B, i dmean real numbers, and the plarns chosen to be thes-plane. Four speais of the
planee possess two invariants under this LAGUERRE grbeip namely, one of the three real number-
pairs &, Dn). LAGUERRE referred to the invariaby, as thelongitude of the quadrupler;, &, &, 0y
[Bull. Soc. Math.3 (1880), 200].
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under the assumption that the numherss, wi areequalto u,, o, We, resp., andis, vs,
ws are equal tau, Va4, Wy, resp. Ifd denotes the distance between the spgars,, andd’
denotes the distance between the spegrwi, while wis the angle between the two
directionsgi; and gz then one will find the value:

2 1-cosw

for the absolute value df If the pointsP;, P; that lie on the sphelehave the meaning
that was explained above, andPifQ are arbitrary points oo (o3, resp.), whileP’, Q”
are their vertical projections ontm (s, resp.) then one can further determine the points
P2 (P4, resp.) on the spherical surfag¢hat are infinitely close t@; (Ps, resp.) such that
the spear$;P, andPsP, are syntactic to the sped®®’ (QQ’, resp.), so the arc of the
complex invariant] will be equal to one of the MOBIUS double angléshe spherical
rectangleP; P, P; Py4; i.e., up to sign, they will be equal to the asglkat the oriented
spherical circle that goes throuBhand contacts the speayrP, makes with the spe&h
Ps.

In order for a spear quadrupde, &, ¢, da, in which, the first three (all four, resp.)
spears are syntactic to be able to go to an anadogoadrupleo, by a complex motion,

from no.34, it is necessary and sufficient that the paratiehgleso: o> 0z and g, o, o,

(the rectangles in question, resp.) must be dyrestthilar. Thus, the surface angles that
appear in the triangles (rectangles, resp.) in tqpregprove to be the invariants of a
quadruple of that type.

From the considerations of this number, the quadruinvariants are also
characterized geometrically for all cases in whsghtactic spears enter among the four
given ones.

Munich, in October 1903.




