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 It is known that the complex motions of three-dimensional Euclidian space play a 
fundamental role in many geometric questions, especially LIE’s sphere of ideas, but 
nevertheless, as far as I know, only their analytical, but not their geometric significance 
has been appreciated, up to now.  In the present article, we shall then attempt to develop a 
real-geometric interpretation for the aforementioned space transformations, and in fact, 
on the basis of the two closely-related remarks that, first of all, every complex motion 
permutes the fourfold-infinitude of minimal planes in space amongst themselves, and 
secondly, those planes can be associated with the ∞4 oriented lines in space – i.e., with 
STUDY’s terminology, the spears – in a single-valued and invertible way.  We shall then 
consider the complex motions to be spear transformations of R3 . 
 To that end, in § 1, we first examine which real spatial structures in the geometry of 
spears correspond to the complex points and lines in R3 .  Naturally, the principle of that 
map is by no means new.  Rather, it is closely related to the well-known representation of 
the points of R3 by oriented circles that was studied by M. CHASLES and E. 
LAGUERRE, and in addition to the work of STUDY that we shall cite later on, we would 
like to emphasize G. TARRY’s theory of imaginaries (1).  By contrast, the main 
evaluation of spears that is carried out here will grow out of known ideas in many 
respects, and for constructive purposes, in particular.  The following § 2, in which we 
investigate spear transformations that are defined by a complex motion more closely, 
deals with only motions in a narrower sense, while the reversals and conversions of space 
that one can call “improper” or “anti-motions” that were important in the work of C. 
JUELS and  C. SEGRE shall be reserved for a special treatment.  Finally, in the third §, 
we will answer the fundamental question of the real interpretation of the invariants that a 
quadruple of spears will exhibit under the group Γ12 of all complex motions. 
 It is hardly necessary to point out that the problems that are treated here all find 
analogues in the geometry of complex non-Euclidian motions, and that their solutions 
seem to be free of the asymmetry that their Euclidian consideration would necessitate.  
That remark by itself will also yield the intrinsic connection between the present 
investigations and STUDY’s recent work (2), in which the group of complex non-
Euclidian motions was examined repeatedly, and also referred to limiting case that is 
treated here. 
 

                                                
 (1) Assoc. Fr. C. R. Séance XVIII-XXII (1889-93).  
 (2) Cf., in particular: “Über nicht-euklidische und Liniengeometrie,” Greifswald, 1900, as well as 
Geometrie der Dynamen, Leipzig, 1903.  
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§ 1.  Complex points and lines. 
 

 1. We (with STUDY) understand a spear to mean an oriented – i.e., endowed with a 
sense of direction – line in R3 that does not lie at infinity; any such line then “contains” 
two opposite spears.  One and only one spear is defined by any system of seven real 
numbers pik, π that fulfill the conditions: 
 

p12 p34 + p13 p42 + p14 p23 = 0,  π 2 = 2 2 2
41 42 43p p p+ + , 

π ≠ 0. 
 

Of those spear coordinates, the pik are nothing but the PLÜCKERian coordinates of the 
straight line that contains the spear, while the seventh one π is represented in the form of 
the cosine of the angle that the spear direction makes with the three positive directions of 
the axes of the basic Cartesian coordinate system.  Following LIE, a complex plane: 
 

ux + vy + wz + ϖ = 0 
 

is called a minimal plane when the relation: 
 
(1)      u2 + v2 + w2 = 0 
 
exists without u, v, w vanishing simultaneously.  Any minimal plane contains a finite, real 
line, and conversely, two conjugate-imaginary minimal planes go through any such line 
that are associated uniquely with both of the spears that lie on that line.  This comes about 
by means of the formulas: 

(2)     
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(3)     
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σπ

′ ′′ ′′ ′ ′ ′′ ′ ′′= − = −
 ′ ′′ ′′ ′ ′ ′′ ′ ′′= − = −
 ′ ′′ ′′ ′ ′ ′′ ′ ′′= − = −
 ′ ′ ′ ′′ ′′ ′′= + + = + +

 

 
in which one has set u = u′ + i u″, etc.  Any spear is therefore assigned to a minimal plane 
in an invertible, single-valued way, and should be regarded as the real representation of 
the latter.  From now on, we can then also understand “spear coordinates” to mean any 
four complex numbers that are coupled by equation (1) without u, v, w vanishing 
simultaneously. 
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 2.  We call the totality of ∞2 spears that represent the minimal planes that go through 
a real or complex point P a spear cycle, or more briefly, the cycle P.  If P is a real point 
then the cycle P will be identical with the spear bundle P; viz., the totality of all spears 
that go through P.  If P is a complex point at infinity then the minimal planes that go 
through it will define an improper cycle; the associated spears distribute themselves on 
two different bundles of syntactic (1) spears.  Those bundles are opposite when P is a real 
point at infinity, while they will coincide when P lies in the spherical circle at infinity. 
 If a + i a′, b + i b′, c + i c′ are the coordinates of P, referred to our Cartesian axis-
cross, and A, A′ are the real spatial points with the coordinates a, b, c (a + a′, b + b′, c + 
c′, resp.) then we would like to refer to the point-pair AA′ as the arrow that belongs to the 
cycle P, where A is the starting point, and A′ is the end point.  A is also called the center, 
the positive line segment AA′ = r is called the radius, and the line AA′ is called the axis of 
the cycle P.  Since it is defined completely by the real points A, A′, we could probably 
also speak of the cycle [AA′].  If the real point A″ is determined in such a way that A is the 
midpoint of the line segment A″A′ then the arrow AA″ will belong to the conjugate-
imaginary point P , and A will be the midpoint of the pure-imaginary line segment PP. 
 In the plane that is perpendicular to the axis AA′ at the point A, we construct the 
connected circle K with its center at A and radius r, and endow it with the sense of 
traversal that, when seen from the point A′, appears the same as the rotation that takes the 
positive X-axis to the positive Y-axis in the shortest way would appear when considered 
from a point of the positive Z-axis.  That oriented circle K is called the equator of the 
cycle P.  Now, as one verifies easily, the spears of that cycle consist of the totality of all 
generators of the confocal one-sheeted hyperboloid of rotation that has the equator K for 
its focal circle, and in fact those generators are oriented such that the vertical projections 
of the point A that lie in the equatorial plane will circle in the same sense as the equator 
itself.  Among the spears of the cycle P, one also finds the ∞1 oriented tangents of K.  
Naturally, one will obtain the conjugate cycle P by inverting the sense of all spears of a 
cycle P. 
 
 
 3.  Two spears σ1, σ2 of the cycle P go through any real point Q.  They are the 
generators of the one-sheeted hyperboloid of rotation that goes through Q and has the 
focal circle K, so it is easy to construct when A, A′, Q are given.  They will go to the  
oriented tangents that are drawn to K when Q is chosen to be on the equatorial plane 
outside of K, and will coincide if and only if Q lies in K itself.  The two spears that lie on 
the axis will then be the only opposite ones in the cycle. 
 
 
 4.  If a spear σ is given arbitrarily then there will exist one and only one spear in the 
cycle P that is syntactic to it.  In order to find it, one draws the spear σ′ that is syntactic to 
the given one through the point A and chooses the point Q along it in the direction of the 
spear such that AQ = r.  If Q′ is the projection of Q onto the equatorial plane, and 
furthermore, Q″ is determined on that plane such that the line segment AQ′ is equal and 

                                                
 (1) That is, spears that are parallel and directed the same way (STUDY). 
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perpendicular to AQ″, and the rotation through 90o that brings AQ″ to the position AQ′ in 
the sense of the equator then the spear that is drawn through Q″ syntactic to σ will be the 
desired one. 

 
 

 5.  Conversely, if a spear σ and a real point A are given then one understands B to 
mean the base point of the perpendicular that is dropped from A to σ and determines the 
point B by the demand that the line segment AB′ must be perpendicular to the plane (A, 
σ) and equal to AB, and in fact such that the direction of σ that points from B to A and 
direction that points from A to B′ will follow each other in a manner that is analogous to 
the X, Y, and Z directions of our coordinate system.  The line through B′ that is drawn 
parallel to σ will then be the locus of all points A′ with the property that the cycle [AA′ ] 
contains the spear σ.  We then obtain a simple geometric definition of the ∞4 arrows that 
belong to the points of a given minimal plane. 
 
 
 6. The ∞2 complex points that lie on a real line γ will be represented by the totality 
of arrows that have their starting and ending points on γ.  Secondly, we consider a sub-
imaginary line γ – i.e., a complex line that possesses one real point and lies in a real 
plane, and indeed initially under the assumption that the real point is at infinity.  Two 
minimal planes will then go through γ that are represented by anti-syntactic spears σ, σ′ .  
Conversely, a complex line with a real direction is defined by two such spears as the line 
of intersection of the two associated minimal planes.  The ∞1 oriented circles that are 
contacted by the spears σ and σ′ are then associated with just as many arrows, whose 
starting (ending, resp.) points fill up a line h (h′, resp.) that is parallel to σ and σ′.  h lies 
in the plane of the spears σ, σ′ at the same distance d from each of them, h′ is at a 
distance d from h, and the plane (σσ′ ) will be perpendicular to the plane of the lines h, 
h′.  The latter plane contains the line γ.  The ∞2 complex points of that line will now be 
represented by the arrows that have their starting points on h (their end points on h′, 
resp.).  Conversely, in order for the connecting line of two complex points [AA′] and 
[BB′] to have a given real direction, it is necessary and sufficient that the real lines AB 
and A′ B′ should be parallel to that direction. 
 
 
 7.  Now, let γ mean a sub-imaginary line with the real point O; let it contain the real 
plane e that goes through O.  The arrows of all complex points of γ will then lie in e.  
Conversely, if two arrows 1 1A A′  and 2 2A A′  lie in the same real plane e without the lines 

A1A2 and 1 2A A′  being parallel then the connecting line of the complex points 1 1[ ]A A′  and 

2 2[ ]A A′  will contain a real point O that lies at infinity. 

 
 
 8. We think of the plane e as being oriented; i.e., the domains into which it divides 
space are distinguished as its positive and negative sides.  Of the two bundles of syntactic 
spears that are perpendicular to e, we say the first (second, resp.) bundle to mean the 
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spears that point into the positive (negative, resp.) side of e.  The minimal planes that are 
defined by the first (second, resp.) bundle of spears then cut out the first (second, resp.) 
system of minimal lines from e. 
 If i iA A′  is an arrow that lies in e then one can distinguish a first Pi and a second iP′  
among the two points at which the associated equator cuts the plane e according to 
whether the spear that contacts the point of the equatorial circle in question on the 
positive or negative side of e, resp.  i i iPA P′  lie along a line that is perpendicular to i iA A′ , 
and one will have Pi Ai = i iA P′  = i iA A′ .  Since the pair i iPP′  can then be constructed in an 

entirely single-valued way from any point-pair i iA A′  that lies on e, and conversely, the 

one object can be employed as the definition of a complex point that lies on e as well as 
the other, and in fact i iPP′  represents those complex points of e at which the minimal 

lines of the first one that go through Pi intersect those of the second system that go 
through iP′ ; the complex-conjugate point will be represented by i iP P′ . 

 
 
 9.  We consider the plane to be the GAUSSian number plane and accordingly refer it 
to a rectangular axis-cross ξ, η such that the first (second, resp.) system of minimal 
planes is given by the equations: 
 

ξ + i η = const., ξ − i η = const., resp. 
 
If the complex numbers ξ, η mean the coordinates of the point [ ]i iA A′ , moreover, while 

the numbers z, z′ mean the GAUSSian affix of the aforementioned real points Pi , iP′  then 

one will obviously have: 
(4)     z = ξ + i η, z′ = ξ − i η . 
 
Let the complex line γ be defined by the equation: 
 
(5)      aξ + bη + c = 0. 
 
One writes that by means of (4) as follows: 
 

z′  = α z + β, 
in which one sets: 

α = − a ib

a ib

−
+

, β =
2c

a ib

−
+

. 

 
That relation defines an indirect similarity transformation A of the plane e into itself.  Its 

fixed point O is laid at a finite point, under the assumption that was made about γ, which 
is expressed analytically by | α | ≠ 1, so the ratio of a and b is not real. 
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 10.  If a sub-imaginary line γ is then given by two points that lie on it – i.e., by two 
arrows 1 1A A′  and 2 2A A′  that lie in a plane e – then one will find its real point O as the 

fixed point of the indirect similarity transformation A that takes the points P1, P2 that are 

constructed according to no. 8 to 1P′  and 2P′ .  Two minimal planes go through γ whose 

spears σ, σ′ contain the point O the cycle can be easily constructed from no. 3 as the 
common spear.  Now, in order to find the arrow i iA A′  of all complex points of γ, one 

determines the point 3A′  that is the common point of intersection of the plane e and two 

lines that are parallel to σ and σ′  for an arbitrarily chosen point A3 on e according to no. 
5.  One can also ascertain the fixed point P3 of the indirect similarity transformation that 
arises from the succession of A and the reflection through the point A3 , and constructs 

the points 3P′  and 3A′  from the prescription that was given in no. 8. 

 
 
 11.  The analysis of no. 9 admits an exception when the coefficient b in equation (5) 
is equal to ia (− ia, resp.), so γ means a minimal line of the first (second, resp.) system.  
The first (second, resp.) point of every pair i iPP′  will then be identical to the real point O 

of γ, so the spears σ, σ′ will coincide in the spear of the first (second, resp.) bundle that 
goes through O perpendicular to e, and one will then obtain the point iA′  as the point of 

intersection of e with the parallels to σ that are constructed as in no. 5 for every point Ai 
that lies in e.  A sub-imaginary minimal line γ is then characterized completely by the 
spear σ of the minimal plane that goes through it and the real point O that lies on γ and σ. 
 
 
 12.  Now, let a super-imaginary line γ be given as the connecting line of two complex 
points [A1 B1] and [A2 B2].  The four points Ai , Bi will not lie in the same plane then.  Let 
e be the plane that goes through A1 and A2 and is parallel to the line B1 B2, and likewise 
let e′ be the plane that goes through B1 and B2 parallel to A1 A2 .  The arrows Ai Bi  of the 
∞2 points of γ then lie such that the points Ai fill up the plane e, while the Bi fill up the 
plane e′.  The plane e is parallel to γ and the line γ  that is complex-conjugate to it. 
 The vertical projection of the arrow that belongs a complex point P that lies in e is 
obviously identical with the arrow of the vertical projection of P onto e.  Hence, if the 
complex points [Ai Bi] lie on γ, and iA′  means the vertical projection of Bi onto e then the 

complex points [ ]i iA A′  will lie on the sub-imaginary line γ′ to which γ projects.  We 

construct the real point O in the line γ from no. 10 by means of the given points 1 1A A′  and 

2 2A A′ , as well as the base point P of the perpendicular that is dropped from O to e′.  The 

line OP cuts γ and γ  perpendicularly, and [OP] is its base point on γ.  Furthermore, if σ 

and σ′ are two spears that go through O and belong to the minimal planes that lie along 
γ′, while τ and τ′  are spears that represent the minimal planes that go through γ, then 
obviously σ will be syntactic to τ, and σ′ is syntactic to τ′, due to the parallelism of γ and 
γ′.  One then constructs τ and τ′ easily according to no. 4 by means of the remark that this 
spear must belong to any of the cycles [Ai Bi]; e.g., to the cycle [OP], as well. 
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 13.  If the connecting line γ of the points [Ai Bi] is a super-imaginary minimal line 
then the construction of the planes e, e′, as well as the points O, P will stay the same, 
while the spears τ, τ′ will coincide with one of the spears that fall along the line OP.  A 
super-imaginary minimal line can then be characterized completely by a spear τ and an 
arrow OP that lies along it.  The planes e and e′ will then be perpendicular to τ at the 
points O and P, resp., and one will obtain the points Bi that are associated with arbitrarily-
chosen points Ai of e as the intersection of e′ and a line that is parallel to τ (no. 5). 
 
 
 14.  From the foregoing, two cycles [A1 B1] and [A2 B2] possess two different 
common spears whose construction will emerge immediately from what was said in nos. 
10-12.  The points [Ai Bi] lie on a minimal line, so their separation distances will vanish if 
and only if the two cycles have a single, doubly-counted spear in common. 
 Let the point 2B′  be chosen such that the arrows 1 2A B′  and A2 B2 are equal and 

equally-directed.  In order for the points [A1 B1] and [A2 B2] to have a zero separation, it is 
necessary and sufficient that the line segments A1 A2 and 1 2B B′  have the same length and 

that the lines that contain them are perpendicular (1). 
 
 
 15.  We understand the middle plane of two non-parallel spears to mean the real plane 
that goes through the common normal secant to both spears and defines the same angles 
with them in such a way that the vertical projections of the spears onto the 
aforementioned plane will be anti-tactic.  If the spears themselves are anti-tactic then we 
will refer to the plane that is perpendicular to both spears and the plane that is parallel to 
them and has the same distance to both of them as its middle plane. 
 Obviously, the plane that was called e in no. 12 is the middle plane for the spear-pair 
σ, σ′, as well as the pair τ, τ′.  We would like to briefly call the complex line of 
intersection γ of two minimal planes that are represented by the spears τ and τ′ the line 
(ττ′ ); the line γ  will then be defined by the opposite spear-pair ( )τ τ ′ .  From nos. 10-12, 
the starting points Ai of the arrows that belong to the points of γ will lie on the middle 
plane of τ and τ′ and fill it up completely when those spears are not anti-tactic.  From no. 
5, one obtains the point Bi from any point Ai  as the point of intersection of certain lines 
that are parallel to τ and τ′. 
 
 
 16.  The results of the previous no. yield the solution to the fundamental problem of 
constructing the arrow [AA′ ] of a cycle when three of its spears σ1, σ2, σ3 are given (2); 
i.e., of finding the point of intersection of three given minimal planes.  It suffices to 
determine the center A of our cycle; one will then obtain the point A′ as the intersection 
point of three lines that are parallel to the respective spears σi (no. 5). 

                                                
 (1) For more on this so-called “minimal position” of two cycles, see my note “Zur Geometrie der Kreise 
in Raum,” which will appear soon in Arch. f. Math. 
 (2) The assumption that two of the spears σi , or all three of them, are syntactic, leads to improper 
cycles.  
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 Now, A is the intersection point of the middle planes of the three spear-pairs σi , σk , 
In general, The three aforementioned planes will intersect along a line h that is 
perpendicular to the same real plane e if and only if the three spears of e are parallel.  In 
that case, let Pi be the point where the plane that goes through h and perpendicular to σi 
meets that spear; A will then be the intersection point of h with the plane P1 P2 P3 . 
 The latter construction will also break down when the three spears σi are intersected 
perpendicularly by the same line h.  We then let Mi denote intersection point of σi with h, 
and think of the line h as being oriented such that the line segments AMi , Mi Mk are also 
determined up to sign.  Now, if ϑi is one of the angles that the equatorial plane of the 
desired cycle through h makes with σi , and r is the (positive) radius of our cycle, 
moreover, then one will have: 
(6)      AMi  = r cos ϑi , 
and therefore: 
(7)     Mi Mk = r (cos ϑi – cos ϑk), 
 
 (8)    M2 M1 (cos ϑ3 – cos ϑ1) = M3 M1 (cos ϑ2 – cos ϑ1). 
 
The latter equation yields the following construction: Let e be a real plane that is 
perpendicular to h at the point M, and let iσ ′  be the vertical projection of σi on e.  One 

then carries the point Qi from M along iσ ′  in the direction of that spear in such a way that 

MQi = 1 and lays a line l in the plane e through M in such a way that the ratio of the 
projections of the line segments Q2 Q1 and Q3 Q1 onto l will be equal to M2 M1 : M3 M1 .  
The latter elementary geometric construction obviously possesses one and only one 
solution.  The plane of the lines h and l is the equatorial plane of the desired cycle, and 
one knows the absolute magnitude of cos ϑi and cos ϑi – cos ϑk from now on, so one can 
construct the (absolutely-taken) line segments r and AMi from (7) and (6), and therefore, 
A itself. 
 
 

§ 2.  Complex motions as spear transformations. 
 
 17.  On the basis of a Cartesian coordinate system x, y, z, the formulas: 
 
 x′ = α1 x + β1 y + γ1 z + a, 
(1) y′ = α2 x + β2 y + γ2 z + b, 
 z′ = α3 x + β3 y + γ3 z + c, 
 
in which the complex numbers αi , βi, γi fulfill two well-known groups of six relations, 
define a complex motion when the three-rowed determinant of the quantities αi , βi, γi 

have the value + 1.  Since the transformation (1) takes any minimal plane to another one, 
any complex motion can be interpreted as a transformation of the spears of R3, from no. 
2. 
 The real motions are then characterized within the group Γ12 of all complex motions 
by the fact that they convert any pair of opposite spears into another such pair.  Two anti-
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tactic spears do not generally go to anti-tactic spears under complex motions, while by 
contrast, one pair of syntactic spears will go to another one. 
 
 
 18.  The complex translation: 
 

x′ = x + a, y′ = y + b, z′ = z + c 
 
is called pure-imaginary when the a, b, c have the form ia′, ib′, ic′ .  It takes the 
coordinate origin O to the complex point [OO′ ], where O′  means the real point with the 
coordinates a′, b′, c′, and furthermore, the complex point [AB] will go to the point [AB′ ], 
where B′ is determined by the fact that the arrow BB′ coincides with OO′ in magnitude 
and direction.  From no. 3, one will obtain the spear σ′ to which a given spear σ goes as 
the spear of the cycle [BB′ ] that is syntactic to σ when B is chosen arbitrarily on σ, and 
B′ is determined as it just was. 
 
 
 19.  Any complex translation T can be represented in the form T T′ = T′ T, where T 

means a real, and T′ means a pure imaginary translation.  If it takes the point O to P, and 
the latter to [OO′ ] then one will obtain the complex point [A′ B′ ] into which the point 
[AB] is converted by T when one chooses the real points A′,  B1, B′ in such a way that the 

arrow AA′ coincides with OP in magnitude and direction, 1A B′ , with AB, and finally,  

1B B′  with OO′.  Conversely, when A, B, A′, B′ are given, one will get the points P and O′ 
from this directly; i.e., the translation T T′ that converts the point [AB] to [A′ B′ ]. 
 
 
 20.  If Q is the real point that the real translation T takes O to, and if σ1, σ2 mean the 
two spears of the cycle [OO′ ] that go through Q then all of the spears that are syntactic to 
σ1 or σ2, and only them, will remain individually invariant under the translation T = T T′.  
The improper cycle that is defined by those two bundles belongs to the complex fixed 
point at infinity of our translation.  Any other bundle of syntactic spears will be displaced 
into itself by means of a real translation under the motion T. 

 The translation T is a minimal translation – i.e., two points [AB] and [A′ B′ ] that 

correspond under T have a separation distance of zero when ∢O′ OP is a right angle, 

and OP = OO′.  The two bundles of invariant spears will then coincide in a single one. 
 
 
 21.  We now turn our consideration to the complex motion (rotations) that fix the 
coordinate origin O (1).  The real sphere with center O and radius 1 will be called κ.  The 
two systems of equations: 
 

                                                
 (1) For this, one can also confer E. STUDY: “Über Nicht-euklidische und Liniengeometrie.”  
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(1)    x + i y = λ (1 + z), 1 – z = λ (x – i y), 
(2)    x − i y = µ (1 + z), 1 – z = µ (x + i y), 
 
define the two systems of minimal lines that lie on κ ; we distinguish them as the first and 
second system, respectively.  The coordinates x, y, z of any point P of the sphere can be 
expressed rationally in terms of λ and µ by means of those equations; λ is called the first 
parameter of the point P, while µ is called the second one.  If that point is real then one 
will have µ = λ , and conversely. 
 Any spear σ that goes through O will cut κ at two diametrically-opposite points, 
namely, the exit point P and the entrance point P0 ; we also refer to σ as the spear OP.  
The associated minimal plane cuts out of κ the minimal line of the first system that goes  
through P and the minimal line of the second system that goes through P0 .  The 
coordinates ξ, η, ζ of the exit point P are connected with the coordinates pik , π (u, v, w, 
o, resp.) of the spear σ by the equations: 
 
(3)     u : v : w = i ξ + η ζ : ξζ – iη : ζ 2 – 1, 
 

(4)    ξ = 41p

π
, η = 42p

π
, ζ = 43p

π
, 

 
while the parameters λ, µ of the point P are defined by the formulas: 
 

(5)    λ =
iu v

w

−
= 

w

u iv+
= 

1

iξ η
ζ

+
−

= 
1

i

ζ
ξ η

−
−

 = µ . 

 
 
 22.  We consider a complex motion B that leaves the point O fixed to be a certain 

collineation of the sphere κ into itself for which any generating system of κ is 
transformed into itself.  If the spear OP goes to OΠ under B then the first parameters λ, 

Λ of the sphere points P, Π will be connected by an equation of the form: 
 

(6)      Λ = 
αλ β
γλ δ

+
+

, 

 
in which the α, β, γ, δ mean complex constants that satisfy the inequality: 
 
(7)      αδ – βγ ≠ 1. 
 
P and Π are then corresponding points of a circle conversion V.  The spherical point Q 
that is diametral to P is converted into Q′ by means of V, and let Π′ be the point of κ that 
is dimetrically-opposite to Q′.  If one then denotes the second parameters of the points P 
and Π′ by µ, N then one will have the equation: 
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(6′)      M =
δµ γ
βµ α

−
− +

. 

 
The sphere generator of the first (second, resp.) system that goes through P then goes to 
the generator of the first system that goes through Π (the generator of the second system 
that goes through Π′, resp.) under our rotation.  In other words: Formulas (6), (6′) 
together define the collineation of the sphere κ into itself that corresponds to the motion 
B.  Conversely, if the four complex numbers α, β, γ, δ correspondingly give the 

condition (7) then formulas (6), (6′) will define a collineation of the sphere κ into itself 
that, when interpreted as a spatial transformation, will take every minimal plane that goes 
through O to another one, and thus, the spherical circle at infinity will go to itself, so it 
will be identical with a complex motion B. 

 If F, G are the fixed points of the circle conversion V, and one lets σ, τ denote the 
spear OF, OG, then the complex axis of rotation B will be the line (σ, τ) (cf., no. 15).  

For the complex rotation angle, one easily finds that: 
 

cos ω = 1 + 
2( ) 4

2( )

α δ βγ
αδ βγ

− +
−

, 

 
and ω is equal to the logarithm of the double ratio that the points F, G define with any 
pair of points P, Π that correspond under V, multiplied by – i. 
 
 
 23.  From the foregoing, the group Γ6 of the complex motions that leave the point O 
fixed is assigned to the direct circle conversions on the sphere κ in an invertible and 
single-valued way (1).  There is then one and only one motion B that takes three given 

spears σi through O to three other such spears iσ ′ , respectively.  If Pi , iP′  are the exit 

points of those spears in κ then one will find the spear 4σ ′  or 4OP′  that corresponds to any 

spear σ4 that goes through O by means of B when one, following MÖBIUS, constructs 

the point that corresponds to P4 under the circle conversion V that associates the three 
point-pairs i iPP′ . 

 
 
 24.  If we preserve the notation of no. 22, a real point P of κ will correspond in the 
aforementioned complex motion B to a complex point whose equatorial circle π cuts the 

sphere κ perpendicularly at the points Π, Π′.  In that, Π is referred to as the exit point of 
the oriented circle π, and Π′ is referred to as the entrance point; namely, the circle will 
contact the sphere at the point Π of the spear OΠ, and at the point Π′ of the spear OQ′ (or 
Π′O). 
 

                                                
 (1) Cf., STUDY, loc. cit.  
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 25.  One likewise finds the complex point into which an arbitrary real spatial point A 
will be converted by B when one applies the analogous construction to the sphere that is 

concentric to κ and goes through A. 
 It is, moreover, easy to construct the spear σ that the motion B will take a given spear 

σ′ to.  Namely, if one lays the spear τ that is syntactic to σ through O, and if τ is the spear 
that τ′ goes to under B then σ will be the spear of the cycle that is syntactic to iτ ′  into 

which any real point of σ will be transformed by the motion B. 

 
 
 26.  A complex rotation R that fixes the complex point [AA′ ] is determined when one 

knows the three spears 1σ ′ , 2σ ′ , 3σ ′  that correspond to the three spears σ1, σ2, σ3 .  If the 

translation T that takes the point [AA′ ] to O converts the spears σi ( iσ ′ , resp.) into the 

spears τi ( iτ ′ , resp.) that go through O, and if R′ is the rotation around O that takes the τi 

to the iτ ′ , resp., then one will obtain the spear that corresponds to an arbitrary spear σ4 

under R easily from the relation: 

R = T R′ T−1. 

 
 
 27.  There is one and only one complex motion B that takes three given spears σi , no 

two of which are syntactic, to three other ones iσ ′ .  The proof of that, and likewise, the 

construction of the spear 4σ ′  that corresponds to an arbitrarily-given spear σ4 under B, 

will be first achieved when one ascertains the arrows [AB] and [A′B′] of the cycle that is 
defined by the triples σi and iσ ′  (no. 16).  The spear σi will be converted into iσ ′′  by 

means of the translation T that takes the point [AB] to [A′B′].  The rotation R that takes 

the triple 1σ ′′ , 2σ ′′ , 3σ ′′  to 1σ ′ , 2σ ′ , 3σ ′  (no. 26) will then bring the spear 4σ ′′  to the desired 

position 4σ ′ , and one will have B = TR. 

 
 
 28.  Since any direct, real, circle conversion possesses two real fixed points on the 
sphere κ that can coincide in special cases, any complex rotation can, in general, leave 
two distinct spears σ, τ fixed, and the line (σ, τ) is the rotational axis.  For any complex 
motion B that is not a translation, there are then two and only two distinct bundles of 

syntactic spears, in general, that remain invariant under B; if those bundles coincide in 

one then we will call the motion B parabolic. 

 
 
 29.  The following facts that relate to the fixed spears of an arbitrary motion B, and 

thus, to the minimal planes that B fixes, will flow easily from the known properties of 

the system of coefficients αi , βi , γi (no. 17): 
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 In order for the first motion B to be parabolic, it is necessary and sufficient that one 

must have: 
(8)      α1 + β2 + γ3 = 3, 
 
without all three of the numbers α1, β2, γ3 being equal to 1; the last assumption is 
characteristic of translations.  Any parabolic motion will leave one and only one bundle 
of syntactic spears invariant, but generally no spear (viz., parabolic motion of the first 
kind), since it displaces the bundle β into itself by translation.  There are ∞3 such 
parabolic motions that transform a given bundle β into itself. 
 In particular, a parabolic motion can leave any spear of a syntactic bundle fixed (viz., 
parabolic motion of the second kind).  Any bundle β remains unchanged under ∞6 
motions of that kind. 
 Conversely, any motion that displaces a bundle of syntactic spears into itself by 
translation is either a translation or a parabolic motion of the first kind, and furthermore, 
the motion that fixes the individual spears of a syntactic bundle is either a translation or a 
parabolic motion of the second kind. 
 
 
 30.  Any motion B that does not satisfy the condition (8) will possess two different 

invariant bundles of syntactic spears, and inside of each of them, a fixed spear σ (τ, 
resp.).  The complex line (σ, τ) is the screw axis of the motion.  The spears of each of the 
two bundles will be permuted with each other by a direct similarity transformation A (A′, 
resp.).  That is, if the spears σi that are syntactic to σ correspond to the spears iσ ′  under 

B, and the spears τi that are syntactic to τ correspond to iτ ′  then the parallel triangles 

σσi iσ ′  will all be directly similar to each other, and similarly for the triangles τ τi iτ ′ .  
Moreover, the latter triangles will be directly similar to the former ones; i.e., the 
similarity transformations A, A′ will be inverse. 

 The construction of the fixed spear of the motion that we defined in no. 27 will follow 
easily from these remarks. 
 
 
 31.  There are ∞2 complex motions that transform two given bundles of syntactic 
spears into themselves by means of given direct similarity transformations A (A′ = A−1, 

resp.).  In other words: There exist ∞2 motions that fix two given spears σ, τ and convert 
a given spear σ1 that is syntactic to σ into another one 1σ ′ .  Among those motions, one 

will find a rotation R, and all of the rest will have the form RT = TR, where T means 

any of the ∞2 complex translations that fix the spears of each bundle individually. 
 
 
 32.  In order to construct the rotation R from the data of the previous number, we 

represent R in the form TR′T−1, where T is any translation that converts σ and τ into two 

spears that go through O, so R′ means a rotation about O.  The problem is then reduced 
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to the following one: One knows the two fixed spears σ, τ of a rotation R that fixes the 

coordinate origin O, and the similarity transformations A and A′ = A−1 by which the 

spears that are syntactic to σ and τ are permuted amongst themselves.  One then looks for 
the direct circle conversion V that corresponds to the rotation R on the spherical surface 

κ. 
 The following fact serves to solve that problem: There are always two and only two 
diametrically-opposite points P1, P2 on κ that are converted into two diametrically-
opposite points Π1, Π2 by a given circle conversion V; P1 and P2 are the fixed points of 
the direct circle conversion: 

CVCV−1, 
 

in which C means the indirect circle conversion that converts any point of the sphere into 
their diametric opposites.  The points P1, P2  are symmetric to the points Π1, Π2 relative to 
the middle plane e of the two spears σ, τ.  When one now associates any spear that is 
syntactic to σ with its midpoint, the similarity transformation A will correspond to a 

similarity transformation of the plane e into itself that was referred to.  If g is the line that 
lies in e that goes through O, and cuts σ and τ at right angles then there will be infinitely 
many point-pairs PP′ on e such that P′ is associated with the point P by means of A, and 

the connecting line PP′ is perpendicular to g.  The locus of P (P′, resp.) is line h (h′, 
resp.) that goes through O.  The planes (h, σ) and (h′, τ) then intersect along the line P1 
P2.  Now, the circle conversion V is over-determined when one knows its fixed points 
(i.e., the exit points of the spears σ, τ) and the two pairs of corresponding points Pi Πi . 
 
 
 33.  If the spears σ, τ are opposite then the previous construction will break down, 
since the points P1 and Π1 would now coincide in the exit point of σ, while P2 and Π2 
would coincide in the exist point of τ.  One would then be dealing with a complex 
rotation R with a real axis.  From now on, e will mean the plane that goes through O 

perpendicular to σ and τ.  When one lets any spear that is syntactic to either of σ or τ 
correspond to the point where it pierces e, the given similarity transformations A and A′ 
will determine two similarity transformations A and A′ of the plane e into itself.  If the 

points Pi are converted into iP′  by A and into iP′′  by A′ then the triangles O Pi iP′  will all 

be directly similar, and the triangles O iP′′ Pi will all be inversely similar, such that point-

pairs iP′
iP′′  lie on a line that goes through O.  Under R, the real points Pi will correspond 

to the cycle whose equator cuts the plane e perpendicularly at the points iP′  and iP′′ , and 

will thus be oriented such that its tangents at iP′  are syntactic to σ, while its tangents at 

iP′′  are syntactic to τ.  Naturally, analogous things are true for any plane that is 

perpendicular to the rotational axis such that the complex point to which a given real 
point goes under R, can be constructed immediately. 
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 Now, in order to construct the spear s′ that corresponds to an arbitrary spear s under 
R, one chooses two real points on s and ascertains the cycles that correspond to them, as 

well their common spears s′, t′ (no. 14); among them, the desired s′ is made known by the 
fact that it also belong to the cycle that is determined by s, σ, τ. 
 
 
 34.  If two triples of spears σ1, σ2, σ3 and 1σ ′ , 2σ ′ , 3σ ′  are given, such that σ1 is 

syntactic to σ2 , and 1σ ′  is syntactic to 2σ ′  then there will exist ∞2 motions B that convert 

the σi into the iσ ′ , resp.  Namely, if R is any of the rotations that take the spears σi into 

three spears 1σ ′′ , 2σ ′′ , 3σ ′′  that are syntactic to 1σ ′ , 2σ ′ , 3σ ′ , resp., then there will be one 

and only one direct similarity transformation that converts 1σ ′′  into 1σ ′  and 2σ ′′  into 2σ ′   

inside of the spear bundle β that contains 1σ ′  and 2σ ′ .  The similarity transformation that 

is inverse to it, which transforms the bundle γ that is syntactic to 3σ ′′ , and thus brings 3σ ′′  
to the position 3σ ′ , is then determined completely.   From no. 31, there will then exist a 

rotation R, under which the iσ ′′  will go to the iσ ′ , and the ∞2 motions B are all of the 

form RR′T, where T means one of the ∞2 translations that leave the spears of the 

bundles β and γ fixed individually.  For the case in which the figure of intersection of the 
four spears 1σ ′′ , 2σ ′′ , 1σ ′ , 2σ ′  defines a parallelogram with any plane, one must choose a 

complex translation that is easy to discern in place of R′. 
 If the three spears σ1, σ2, σ3, and likewise 1σ ′ , 2σ ′ , 3σ ′ , are syntactic then taking the 

first triple to the second one will possible if and only if the two triangles σi and iσ ′  are 

directly similar; in that case, there will be ∞6 motions that facilitate that transition. 
 
 

§ 3.  Invariants of quadruples. 
 

 35.  A quadruple of spears σ1, σ2, σ3, σ4, no two of which are syntactic, obviously 
possesses four independent real or two independent complex (absolute) invariants under 
the Γ12 of all complex motions.  If τk is the spear that goes through the coordinate origin 
syntactic to σk , where Pk is its exit point from the unit sphere κ, then one of the double 
ratios of the four spherical points Pk can be taken to be one of the complex invariants 
above.  We denote the coordinates of the point Pk by ξk, ηk, ζk, and denote its first 
parameter by λk, such that one then has: 
 

λk = 
1
k k

k

iξ η
ζ

+
+

= 
1 k

k ki

ζ
ξ η

−
−

  (k = 1, 2, 3, 4), 

and then write: 

(klpq) = : p kl k

l p q p

λ λλ λ
λ λ λ λ

−−
− −

, 
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δ0 = (1234), δ1 = (2314), δ2 = (3124). 
 

 We further set the coordinates uk, vk, wk of the spear τk equal to the expressions: 
 

ξk ζk – i ηk , iξk + ηk ζk , 
2
kζ – 1, 

and write: 
[kl] = uk ul + vk vl + wk wl , 

 
to abbreviate; the relation will then exist: 
 

[ ]kl  = 
( )

2 2
(1 )(1 )

k l l k

k k l l

i
λ λ λ λ

λ λ λ λ
−

+ +
, 

 

which likewise means that the symbol [ ]kl  will be made unambiguous when one 

understands kλ  on the right-hand side to mean a certain one of the two complex 

numbers whose square equals kλ .  If one then sets: 

 

p0 = [13] [42] , p1 = [12] [34] , p2 = [23] [14]  

 
then one will have the relations: 

p0 + p1 + p2 = 0, 
 

− δ0 = 1

2

p

p
, − δ1 = 2

0

p

p
, − δ2 = 0

1

p

p
. 

 
These three double ratios can then be expressed in a known way in terms of one of them.  
The absolute value of the number δk is equal to the corresponding double ratio of the 
absolutely-taken line segment Pk Pl , while its arc is equal to one of the MÖBIUS double 
angles of the spherical rectangle P1 P2 P3 P4 .  We call the numbers δk , as well as the real 
double ratios and double angles that they define, the direction invariants of the spear-
quadruple σk . 
 
 
 36.  If one lets M0, M1, M2 denote the moments of the three complex line-pairs (no. 
15): 

(σ1, σ3), (σ4, σ2); (σ1, σ2), (σ3, σ4); (σ1, σ4), (σ2, σ3), 
 
resp., and denotes the four-rowed determinant that is defined by the coordinates uk , vk , 
wk , ϖk of the four spears by ∆ then one will find that: 
 

Mh = 
2
hp

∆
. 
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Obviously, each of the numbers δk , together with any of the quantities Mk , defines the 
complete system of invariants of the spear-quadruple σ1, σ2, σ3, σ4 under our Γ12 .  As 
before, we come to the problem of replacing the δk , as well as the Mk , by real, 
constructible, geometric quantities. 
 
 
 37.  To that end, we let k

hP  denote the base point on σh of the shortest distance 

between the spears σh and σk ; if those spears have a point in common then the points k
hP  

and h
kP  will coincide in the point of intersection.  Moreover, we understand kl

hd  to mean 

the line segment k l
h kP P , and let kl

hd > 0 or kl
hd < 0 according to whether direction that 

points from k
hP  to l

hP  does or does not coincide with that of the spear σh , resp.  Finally, 

we set: 
{ hklm} = hl km lh mk

k l m hd d d d− + − . 

 
Since that expression, which we would like to call a double difference of our spear-
quadruple, obviously changes sign when one permutes the indices hklm cyclically or 
writes them down in the opposite order, the 24 double differences will reduce to the 
following three that are distinct, up to sign: 
 

D0 = {1234}, D1 = {2314}, D2 = {3124}, 
 
which are coupled by the relation: 

D0 + D1 + D2 = 0, 
in their own right. 
 The geometric definition of the double difference is also applicable when the 
quadruple contains one or two pairs of anti-tactic spears.  If, e.g., σ1 is anti-tactic to σ2 
then one will understand 2

1P  to mean any point of σ1, and 1
2P  to mean its vertical 

projection onto σ2 ; the expression D0 will obviously be entirely independent of the 
choice of point 2

1P  then. 

 
 
 38.  The double differences of the spear-quadruples are connected with the complex 
moments Mh by the following relations: 
 

(1)     

2 2

0 1 2 0 1 2

0 1 2 0 1 2

2

2

h h
h h h

h h

p pi
D M M

p p p p p p

p pi

p p p p p p

  
= − −  

  


 ∆ ∆ = − − 
 

, (h = 0, 1, 2). 
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These relations can be solved for ∆ and ∆ ; i.e., the moment Mh can be represented as a 
linear, homogeneous expression in the quantities D0, D1, D2 whose coefficients are 
direction invariants.  An exception exists only in the case where the equations: 
 

0

0

p

p
= 1

1

p

p
= 2

2

p

p
 

 
are valid, each of which has the other ones as a consequence, and which express the fact 
that one of the three double ratios δh is real, and as a result, all three of them, so the four 
exit points Pk on the unit sphere κ of the spear τk that is drawn through O syntactic to σk 
will belong to the same spherical circle.  If we refer to the quadruple σk as special in the 
latter case then we can say: 
 
 For a general quadruple of spears, the complete system of absolute invariants under 
the group Γ12 of all complex motions will be represented by any two of the MÖBIUS 
double ratios and double angles of the spherical rectangle P1 P2 P3 P4 and by any two of 
the double differences D0, D1, D2 . 
 
 
 39.  We now consider a special quadruple of spears σ1, σ2, σ3, σ4, and initially 
assume that the spherical circle K that contains the four points Pk is not a great circle; i.e., 
that the four spears σk do not run parallel to one and the same real plane.  P means the 
spherical center of the circle K that lies on the smaller cap on κ , ζ means the cosine of 
the spherical radius of K, σ means the spear OP, e means any real plane that is 
perpendicular to σ, Qk is the point at which it is pierced by the spear σk , kσ ′  is the vertical 

projection of σk onto the plane e, and finally, kσ ′′  means the spear that lies in e, goes 

through Qk, and is perpendicular to kσ ′ , whose direction is chosen so that the sequence of 

three spears kσ ′ , kσ ′′ , σ appears to be oriented analogously to the coordinate cross X, Y, Z, 

respectively.  If one then decomposes the complex moment Mh into its real and imaginary 
parts: 

Mh = h hM i M′′ ′+ , 

 
and lets hD′  ( hD′′ , resp.) denote the double differences of the two spear quadruples 1σ ′ , 

2σ ′ , 3σ ′ , 4σ ′  and 1σ ′′ , 2σ ′′ , 3σ ′′ , 4σ ′′ , resp., which are defined analogously to Dh, then one 

will easily find the relations: 
 

(2)    hM ′ = (1 – ζ 2)−2 0 1 2
2 h
h

p p p
D

p
′  = 0 1 2

2 h
h

p p p
D

p
, 

 

(3)    hM ′′ = ζ (1 – ζ 2)−2 0 1 2
2 h
h

p p p
D

p
′′ , 
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D0 : D1 : D0 = 0 1 2: :D D D′ ′ ′  = 0 1 2: :D D D′′ ′′ ′′  = p0 : p1 : p2 . 

 
For a special quadruple of spears that are not parallel to the same real planes, the 
complete system of absolute invariants will then consist of any one of the three real 
double ratios δh and one of the three number-pairs: 
 

ζ (1 – ζ 2)−2
hD′′ , Dh = (1 – ζ 2)−2

hD′ . 

 
 

 40.  This real-geometric interpretation of the invariants of a special quadruple breaks 
down if and only if the four spears σk are parallel to the same real plane e.  Now, if ρk is 
the plane that goes through σk parallel to e, and Qk is the point where it is pierced by any 
spear σ that is perpendicular to e then hD′  = Dh, and in place of (3), one will have the 

equation: 

0M ′′  = 
2 2(13) (24)

2sin sin
2 2

H

⋅
, 

 
as well as the relations for 1M ′′  and 2M ′′  that emerge from it by cyclic permutation of 1, 2, 

3.  In this, H means the expression: 
 

H = 1( 1) sin( )k l
k lQ Q pq+ +−∑ ; 

 
Qk Ql is a positive or negative line segment according to whether the direction that points 
from Qk to Ql does or does not coincide with that of σ, resp.  Furthermore, sin (pq) shall 
mean the positive or negative sine of the angle between the spears σp and σq according to 
whether the three spears σp, σq, σ are oriented analogously to the coordinate system or 
not, resp.  The indices k, l, p, q represent a permutation of the numerals 1, 2, 3, 4, and the 
sum is taken over the six terms that arise when each of the pairs kl and pq run through the 
six choices: 

12, 13, 14, 23, 34, 42. 
 

 With that, for four spears σk , no two of which are syntactic, the absolute invariants of 
the group Γ12 are represented in all cases by quantities that have a geometrically simple 
meaning. 
 
 
 41.  Incidentally, it follows from these results that if four spears belong to the same 
cycle then all of its double differences will vanish.  That theorem is invertible when the 
quadruple is not special.  In the latter case, the four spears belong to the same cycle if and 
only if the double differences hD′′  that were defined above vanish (the expression H, 

resp., in the event that the σk are parallel to the same plane), in addition to the double 
differences Dh (and hD′ ).  It further follows that in order for four spears σk to be able to 
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go to four spears in the same real plane by complex motions, it is necessary and sufficient 
that the quadruple must be special and that the double differences hD′′  (the expression H, 

resp.) must vanish (1). 
 
 
 42.  Four spears σk , two of which (say, σ1 and σ2) are syntactic, possess merely two 
independent real invariants under the group Γ12 , and therefore, one complex one, for 
which one can choose the expression: 
 

M = M0 = M2 = 
[13][24]

∆
, 

 
while the complex moment M1 is illusory.  If we further set: 
 

M = M′ + i M″ 
 
then the double difference D1 will be equal to – M″, while D0 and D2 will be 
indeterminate.  As before, we let P1, P3, P4 be the exit points on the sphere k of the spears 
that are drawn through O and syntactic to σ1, σ3, σ4, resp., and further let P be a real 
point on σ1 , while P′ is its vertical projection onto σ2 .  If one draws a spear through the 
sphere point P1 that is syntactic to the spear PP′ then it will contact the sphere κ at P1, 
and thus determine a point P2 on the spherical surface κ that is infinitely close to the 
point P1 .  The arc of the complex invariant M will then be one of the MÖBIUS double 
angles of the spherical rectangle P1 P2 P3 P4 . 
 Furthermore, we consider the case in which σ1 is syntactic to σ2 , and likewise, σ3 is 
syntactic to σ4 .  Since there are ∞12 such quadruples, and each of them admits ∞2 
complex motions (translations), there will also exist two independent real invariants in 
this case, and therefore one complex invariant, which we can choose to have the 
expression: 

J = 2 1 4 3( )( )

[13]

ϖ ϖ ϖ ϖ− −
, 

 

                                                
 (1) The subgroup Γ6 of our Γ12 that permute the spears of a real plane e amongst themselves is also a 
subgroup of LIE’s group Γ10 of all real contact transformations that take circles to circles.  É. LAGUERRE 
(Recherches sur la Géométrie de Direction, Paris 1885) has studied these spear transformations in the plane 
e without, however, recognizing the connection above.  [On that, cf., C. STEPHANOS, in C. R. 92 (1881), 
pp. 1195.]  The generating LAGUERRE transformation is simply the reflection in the complex plane: 
 

α x + β y + i γ z + δ = 0, 
 
in which α, β, γ, δ mean real numbers, and the plane e is chosen to be the xy-plane.  Four spears σk of the 
plane e possess two invariants under this LAGUERRE group Γ6 , namely, one of the three real number-
pairs (δh, Dh).  LAGUERRE referred to the invariant D0 as the longitude of the quadruple σ1, σ2, σ3, σ4 
[Bull. Soc. Math. 3 (1880), 200]. 
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under the assumption that the numbers u1, v1, w1 are equal to u2, v2, w2, resp., and u3, v3, 
w3 are equal to u4, v4, w4, resp.  If d denotes the distance between the spears σ1, σ2, and d′ 
denotes the distance between the spears σ3, σ4, while ω is the angle between the two 
directions σ1 and σ3 then one will find the value: 
 

| J | = 
1

2 1 cos

dd

ω
′
⋅

−
 

 
for the absolute value of J.  If the points P1, P3 that lie on the sphere k have the meaning 
that was explained above, and if P, Q are arbitrary points on σ1 (σ 3, resp.), while P′, Q′ 
are their vertical projections onto σ2 (σ4, resp.) then one can further determine the points 
P2 (P4, resp.) on the spherical surface κ that are infinitely close to P1 (P3, resp.) such that 
the spears P1P2 and P3P4 are syntactic to the spears PP′ (QQ′, resp.), so the arc of the 
complex invariant J will be equal to one of the MÖBIUS double angles of the spherical 
rectangle P1 P2 P3 P4; i.e., up to sign, they will be equal to the angles that the oriented 
spherical circle that goes through P1 and contacts the spear P2 P4 makes with the spear P1 

P2 . 
 In order for a spear quadruple σ1, σ2, σ3, σ4, in which, the first three (all four, resp.) 
spears are syntactic to be able to go to an analogous quadruple kσ ′  by a complex motion, 

from no. 34, it is necessary and sufficient that the parallel triangles σ1 σ2 σ3 and 1 2 3σ σ σ′ ′ ′  
(the rectangles in question, resp.) must be directly similar.  Thus, the surface angles that 
appear in the triangles (rectangles, resp.) in question prove to be the invariants of a 
quadruple of that type. 
 From the considerations of this number, the quadruple invariants are also 
characterized geometrically for all cases in which syntactic spears enter among the four 
given ones. 
 
 Munich, in October 1903. 
 

___________ 
 

 


