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As is known, the determination of all surfaces that artially developable to parts
of a given surface requires one to ascertain the mostrgereal-valued functions y, z
that depend upon two real variables and satisfy the equation:

(a) o +dy? + dZ =E dif + 2F dp dg+ G ddf,

in which E, F, G are given functions of the variablpsq, and indeed they denote the
coefficients of the square of the line element ofgiven surface.

Ascertaining those functionsy, z then depends upon integrating three simultaneous
partial differential equations:

2 2 2
% + ﬂ + 6_2 = E,
ap op ap
ox9x, dydy 9202 __
opdq 0pdq 0pdq

2 2 2
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In order to perform that integration, one next appealgdht path that consists of
eliminating two of the functions to be determined — say,— that are derived from the
foregoing three equations with the help of partial défgiations of a single partial
differential equation that the functionmust satisfy. Due to the symmetry that exists
between the functiong, y, z the two functionsy, z would also be coupled by that
equation.

That path is, in fact, the path that EDMOND BOURduwlkd in his response to the
Paris Academy of Science for the prize problem that pes®d in the year 1860, which
was concerned with the theory of mutually-developableased, albeit modified by
specialized forms of the squares of the line elemerttseofiven surface that he chose to
serve as the starting point for the investigation.oun opinion, as opposed to BOUR'’s
(“Théorie de la déformation des surfaces,” Journal deol& polytechnique, tome XII,
page 5), that starting point would lead to ancillary diffies in the problem, instead of
avoiding them, even if by overlooking those difficuliiethe introduction of new
independent variables into a partial differential equati@uld/ generally seem to be
coupled with a change in the domain of the original vaegbl

Over a long span of time, it has occurred to us thatn@ohas ever remarked that the
elimination of two of the functions, y, z from equations (@ by GAUSS in his
“Disquisitiones generales circa superficies curvas” a@®mplished in full generality to
the extent that it can be referred to as somethingGB&JSS himself contributed, even
though that elimination was not completed in the cieddrence.

One finds the following equation in Section XlDiEquisitiones:
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and in Section X, one finds the equation:

DD"-D"?
(c) T: k,

in which k denotes the curvature of the given surface thatnepresented in Section Xl
in terms of the coefficients, F, G.
If one introduces the notation:

mG-nF =AM, NE-mF =AN,
mG-nF =AM, nNE-mF =AN/’
m' G- F =AM, n"E-mMF =AN"”

to simplify, and one introduces the notatioqsxs, X11, X12, X22 for the first and second
partial derivatives of a functioxwith respect to the variablgs g, for the same reason,
then the six quantities!, N, ... will be quantities that are determined in thens way
from the givenkE, F, G, and one will get the following equation from etjoas (b) and

©F A2k = (X1 —M X1 —N %) (%2 =M% —N"%) — (a2 —M’ X1 — N X%2)?,
and as a result of the simple relation:

=(r1z-zY)’ = (E-X)(G- %)~ (F-x %),
one will get the equation:

(d) A [1 S AY] (X)] k= (Xll—M X —N X2) (Xzz—M X1 —N”Xz) — (Xlz—M'X]_ —N'X2)2,

in whichA; (x) refers to the differential parameter of the fumei:

EX-2F x x+ G %
A :
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which is the second-order partial differential equatioat the functiorx must satisfy,
along with the other twg, z, as a consequence of equationk (a

If one choose& = 0,F = 21, G = 0 (under the assumption that one has introduced
complex conjugate variablgs q) then one will get equation (lll) that BOUR gave on
page 15 of the cited treatise from the equation above.

The only opinion that BOUR expressed that we cannotdbkahat this equation [or
more generally, equation (d)] represents the differertfmation of the coordinates of
those surfaces that are developable from with the giveface with the line element

JEdp+2F dpdgr Gdg.

In fact, no real-valued functiom of the variablesp, q that satisfies the partial
differential equation (d) can be considered to bdargtion that is suitable to fulfill the
fundamental equation:

¥ +dy? + dZ =E dif + 2F dp dg+ G ddf,

when combined with two other functiogisz, which it would have to though if we were
to adopt the opinion that we do not share.

One can easily convince oneself of the validityradt assertion when one derives the
differential equation (d) in a different way thatopides more satisfying information
about its content.

Namely, if one puts equation (a) into the form:

d¢ +dy’ +dZ = [E-x’] dpf + 2 [F - x %] dp dg+ [G - X ] def

then one will see that the quadratic form in théhefquantitieslp, dq that the right-hand
side of the foregoing equation represents mustgsssgero curvature.

When one forms that curvature using the formult t8AUSS gave in the cited
reference, as is easy to see, one will be ledsecand-order partial differential equation
for the functiorx that proves to be identical to the differentiali@gpn (d).

The differential equation (d) can then be regaraedhe expression of the condition
that the quadratic form:

[E-x] dp’ + 2 [F — x1 %] dp dg+ [G-x] dof

mist possess zero curvature, or (which is knowatotee same thing) that this form can
be converted into the product of the different@iswo functionsa, £ of the variableg,
g.

Any functionx that satisfies the differential equation (d) wilén fulfill the equation:

[E-x?] dF° + 2 [F — x1 %] dp dg+ [G-x¢] df = da dB,

in which the functiongr, S are easy to determine.

Namely, if one decomposes the quadratic form enlg¢fi-hand side of that equation
in the known way into two linear factoasdp+ b dg a’dp + b’dqthen there will always
exist a functionpthat simultaneously satisfies the two equations:
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e’ (a dp+b dg =da,
(e)
e ¥@’dp+b’dg =dg.

The integrability equations that follow from these eoureti

0(e’a) _0 (e”b)
aq op

o(e°d) _ 0(eB)
aq op

obviously determine the differential quotier%g, g_(ﬂ in terms of the given quantities
p oq

b, a’, b’, which are given by the given quadratic form, d&nelir differential quotients.

After determiningg—g, Z_Z one can get the functiop by a quadrature, and after
ascertaining that function, the functiomsand S themselves can be determined from
equations (e) by quadrature.

However, it is only in the special case in whitle tfunctionsa, £ thus-obtained
assume complex-conjugate values zi, y — zi for all values of the variablgs g that
belong to the domain in question (or part of itatthhe functionx, which satisfies
equation (d), will have the property that two realued functiony andz exist that make
the equation:

¥ +dy? + dZ =E dif + 2F dp dg+ G df

into an identity, together with the functian
That special case will occur only when the functiopossesses the property that it
satisfies the inequality:

2 2 2
E—% G—% - F—%% >0,
op daq opadq

in addition to the property that it satisfies thifedential equation (d), and that inequality
expresses a simple geometric property of thoseitursx that can be considered to the
coordinate of a curved surface with the line eleméE dp* +2F dpdot+ Gdg.

In the case where that inequality does not agpy, (in the case where the functions
a, B prove to be real-valued for the domain in questibthe variableg, q), the product

da dB can only be put into the foroy? —dZ, and that is therefore the case in which the
functionx that satisfies the differential equation (d) casgbly fulfill the equation:

¥ +dy? - dZ =E dif + 2F dp dg+ G ddf



Weingarten — On the theory of mutually-developable surfaces 6

jointly with the functionsy andz and that equation is foreign to the problem of the
mutual developability of curved surfaces.

As a result of the foregoing juxtaposition, one tamn regard the partial differential
equation (d) as also being the result of eliminating tinetfonsy, z from one or the other
series of the following two times three equations:

2 2 2
% + ﬂ +& 6_2 = E,
op ap ap
xox,0ydy, 0202
opdq 0pdq 0Jpdq

2 2 2

% + ﬂ +& 6_2 =G

oq 09 aq
that one obtains when one first understaatis be first positive unity and then negative
unity.

One further remarks that as long as one understandsiribeohsk, F, G to mean

only ones that are suitable for appearing as the cwmeific of the square of the line
element of a curved surface, the differential equag@nin question will suggest two

transformation problems that are essentially diffefen real-valued functions, vy, z
namely, the ones that are distinguished by the equations:

(a) o +dy? + dZ =E dif + 2F dp dg+ G ddf,
@) o +dy? - dZ =E dif + 2F dp dg+ G ddf,

of which, only the former relates to the problem of iimgdthose surfaces that can be
developed onto a given one, while the latter, which tssgmmetric inx, y, z, requires
only that the functiong, y must fulfill equation (d), while the functionmust fulfill the
following one:

*

d) -A[l+M@Ik=@1-Mza-N2)(222—M"2—-N"2) — ([712—M’'271 =N’ ).

In contrast to the differential equation (d), thisdattquation, which can be regarded as
the condition for the form:

[E+ 2] dp’ + 2 [F +2z1 2] dp dg+ [G + Z] dof

to possess zero curvature, is in fact the decisiveerdiftial equation for the
transformation problem ()a Since the foregoing quadratic form in the differaatdp,
dq is always essentially positive, every real-valuecctiom z that satisfies that equation
will correspond to two real-valued functioxsy that satisfy the equation:
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@) o +dy? - dZ =E dif + 2F dp dg+ G ddf,

jointly with z Those functions x, y satisfy the differential equafnwithout being
related to the problem of developability.

The differential equation (d) then possesses greateesn relation to the functions
that satisfy it than the one that is prescribed byptiadlem of the deformation of curved
surfaces. One will therefore forsake that differengigliation for the treatment of that
problem, or else the two transformation problems tha@g¢fines would have to split from
each other.

In his “Théorie de la déformation des surfaces,” BOURegget another method for
finding three functions;, y, z that might fulfill equation (a). That method is limke/ith
the assumption that the square of the line elemerteofjiven surface is given in the

form:
dp® + G ddf,

or can be put into it. It is free of the reproach twhen one complies with it, one can
also arrive at functions, y, z that are foreign to the problem that was posed, anctin fa
the transformation problems that are defined by equat@rend (3 will split from each
other, although BOUR avoided that eventuality since lusrs# method encompassed the
same scope as his first one. The method itself isdhgsen special geometric properties
of the geodetic lines of curved surfaces and requiredéfate one can enter into it, one
must have the results of integrating the differerg@lation for geodetic lines for a given
surface. Once that integration was considered to haae ferformed, BOUR reduced
the determination of the desired functioqy, z to the determination of three functions
H, T, H; of the variableg, g that are already coupled by a homogeneous equation of
degree two from two more simultaneous linear partidedghtial equations that govern
those functions, and then to the resulting integratiba system of nine simultaneous
first-order ordinary differential equations in the var@p) which is an integration that
must be performed in such a way that the nine functicaisdie to be determined will
likewise fulfill a similar system of nine differenti@quations in the variablg. The
differential equations for the functiom$ T, H; are the necessary conditions for it to be
possible for the latter eighteen differential equatitmbe valid simultaneously.

BOUR referred to the equations that he presented &futictionsH, T, H; as the
fundamental equatiorfer the problem of finding the surfaces that can be deeel@mnto
a given one.

Following BOUR, various authors have specified diffeaednequations for the
guantities that GAUSS denoted By D, D” (or the products of those quantities with a

simple power of the determinafy that did not use the specialized for;;lr_ulp2 +Gdd ,

but the general onQ/ Edp’+2F dpdgt Gdd, as the starting point for their geometric

investigations, so those equations would not bealla to replace BOUR’s fundamental
equations. BOUR'’s functiorts, T, H; are themselves such products.

To our knowledge, it was only the step that le&dsn one’s knowledge of the
guantitiesD, D, D ”in order to arrive at a definitive representatidthe coordinates, v,
z for the desired surface that was not discussetdwak only in recent times that
LIPSCHITZ [Sitzungsberichte der Konigl. Preuss. é&mie der Wissenschaften zu
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Berlin (1883), pps. 550 and 551], while preserving the quanktjds H, as the ones to
be determined, transformed BOUR'’s fundamental equatidasmore general ones that
would be true for any given form of the line element, specified the step in question
by introducing new geometrically-defined functions tha¢ erould need to find. In my
opinion, those elegant investigations do not reduce thatstiés simplest form, but only
abandon the symmetry in the final result by introducsgranetric relations.

In what follows, we will prove that after succeedingfinding three fundamental
guantities that are defined by equations of the same typBCd$R’s that would
definitively represent the functionsy, z, only the integration of two second-order linear
ordinary differential equations would be required, and pihaof will also imply that the
same demands would also suffice in relation to thetisol of the transformation
problem:

o +dy? - dZ =E dif + 2F dp dg+ G ddf,

independently of the fact that we have already presdhieedame partial differential
equation (d) for that problem, which governs it completely.

Geometric considerations, as well as applicatioresxtomples, will be avoided in the
following developments. However, when one stadsfthe known finite equations for
the class of surfaces that can be developed from tf@ceusf revolution of the evolute
of the catenary that | gave in CRELLE-BORCHARDT uudwal (bd. 59), as well as the
other class of surfaces that can be wrapped around aewoiffeevolution that | presented
in that same journal (Bd. 62), it will be easy to vetifgse developments conversely, and
to give integrals to equations (a), as well as BOUR'’s furdaah equations, in special
cases of the given line element, which will provide infation about the nature of those
equations.

When one overlooks the class of surfaces that cadebeloped to the plane, which
has been known since the time of EULER, the aforeioed two classes of surfaces,
which can be expanded by way of the class of surfaceseMine element is:

\/dp2+2q dpdot 2 pd§
(which are determined by the minimal surfaces), e only classes of mutually-
developable surfaces whose finite equations hage gien up to now.
l.

One must thank GAUSS for the fundamental discoeéry special invariance under
the transformation of quadratic binary different@ims.

If the quadratic form in the differentiadp, dq:

A=a;1 dp2 + 231, dp dq+ ago dq2,

in which a;1, a12, ax denote three given functions of the real varialpleg, goes to
another one:
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A’= g, dg”+24, dp dg+ g, dd,

in which a;,, a,, a,, now denote known functions of the variabf@sq’ under the

substitutionsp’ = f (p, ), 9" = f (p, g) then a functiork that GAUSS gave that is
constructed from the coefficienég, and their first and second partial derivatives will go

to the same function of the coefficierd§ and their partial derivatives with respect to

the variable®’, g”under those substitutions.
The invariank that GAUSS gave can be represented in the symmetnc f

alog@ alogi

a a, , 08, 0a, a a,, 0a, da,

= L]0 > 24q op 9q |, 0 > 20p 0q dp
2/al|dp Ja aq Ja

a=ajap—a,.
Although GAUSS apparently restricted the derivatiorhat result to those forms:

ail dp2 + 2a0 dp dq+ ail dq2

that are capable of representing the square of the Emeeet of a curved surface, one
easily observes that the same thing would be valid foloehs with a non-vanishing

determinanta;; ax; —a%,. As long as we do not misunderstand the motto “Ab Hs vi

sternitur ad maiora'Y’ that he himself quoted as a preface to his essay “Akgee
Losung der Aufgabe, die Theile einer gegebenen Flacheliautheile einer anderen
gegebenen Flache so abzubilden, dass die Abbildung dem Abgeabildébe kleinsten
Theilen &hnlich wird (),” the properties of the decomposition of a given binary
guadratic differential form into linear factors — i#e properties of the transformation:

A (a1 dp? + 2 a1 dp dg+ a1 dof) =da dB,

would become the starting point for the discovery of imaariant relationship.

In fact, as we have known for some time, one eallyves a second-order partial
differential equation for the quantity log)(from the foregoing equation by performing a
calculation that was suggested in the introduction, andetime in that equation that is
free of the differential quotients will be identicaitivthe quantityk.

(") Translator: “This path will lead to greater things.”

("M Translator: “General solution to the problem of mapppart of a given surface to part of another
given surface in such a way that the image will belam the mapped surface in its smallest parts.” Note
that the word “Theil” is an archaic form of the worEEil” for “part” or sometimes “subset.”
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If one starts from that derivation of the transfedrform then one will next note the
agreement of the terms in the two differential equattibas one obtains for the quantity
log (1) that are free of the differential quotients and caeelfrom that the equality of the
quantityk with thek’that is constructed from the coefficients of the gfarmed form in
the same way as the quantityas constructed from the coefficients of the origfoam.
The invariance that was mentioned consists of that iygual

If one considers a curved surface to be a flexible, amsdble body with one
vanishingly small dimension then the geometric propertésthat surface in the
neighborhood of any of its points will be partly coneelctvith its special form and will
partly remain unchanged, which will bring with it new farat can be linked with the
condition of the inextensibility of its parts.

If one thinks of the position of each polbf the surface as being determined by the
values of two independently-varying parameferg then properties of the latter kind will
be determined completely by knowing the differential form

E df + 2F dp dg+ G ddf,

which gives the distance from any poipt §) to the infinitely-close onep(+ dp, g+ dq),
while determining the properties of the former kind weluire knowing a second
differential form:

¢ dpf + 25 dp dg+ & dof

that will depend upon the one that was just given. $habnd form is the value of the
differential quantity:
dX dx+dY dy+dZ dz

which is independent of the choice of rectangular axgsesy to which one thinks of the
position of the given surface as being referred, anchiolw, y, z denote the coordinates
of the point p, g), andX, Y, Z denote the cosines of the angle that the normalighat
raised at that point make with the coordinate axesgewhé differential sign refers to the
difference between the quantities in question at thet @i g) and the ones at the point
(p +dp, g+ do).

The simultaneous algebraic invariants:

h_E®—2F3+G€

EG- F? ’
_eB-3°
k===2_Y_
EG- F?

of the two given quadratic forms determine the sumeftfincipal curvatures r”at the
point (p, ) of the surface considered in the first case, and theugt of those curvatures
in the second case. The agreement of the second tmeéhevinvariank of the square of
the line element was likewise proved by GAUSS.



Weingarten — On the theory of mutually-developable surfaces 11

The better part of the infinitesimal-geometric investiigns that geometers since
EULER have addressed are connected with the questiomaihdi those surfaces for
which one of those invariants is constant or a funcodnthe other one. Other
investigations were concerned with those surfaces for whiclsecond type of
simultaneous invariant of the aforementioned diffaeénforms possessed given
properties. That second type of simultaneous invariahtchvcontains not just the
coefficients of the forms in question, but also thentiphderivatives, corresponding to
the invariants that GAUSS presented for an individual fatoes not seem to have been
introduced expressly into the theory of curved surfacdsaaluated for them up to now.

We therefore believe that although we have easilyedriaway from the part of the
following developments that is connected with the theof mutually-developable
surfaces, and have been able to explain them independétitly consideration of those
invariants, some discussion must be prefixed in regard ®irthdtaneous transformation
of binary quadratic differential forms, and all the moeeduse that will shed some light
upon the path of investigation into the theory of the atume of surfaces that was
pursued up to now.

Let:

A=an1 dp2 + 2a» dp dq+ ail dq2

be a quadratic form in the differentialp, dq whose coefficientsy,, a;o, a, are real-
valued functions of the real variablpsq that are given inside a known region of those
variables. The choice of those functions in whaofed shall be subject to the restriction
that they should be suitable for representing thdficamnts of the squares of the line
elements of a curved surface; i.e., that the functians a;o, ax will fulfill the
inequalities:

a;1 >0, az >0, 182~ a, >0

for all values of the variablgs g that fall within the given region.
Furthermore, let:
C=cny dp2 +2c¢Cp dp dq+ C11 dq2

be a second quadratic form in the differentdpgsdq whose coefficients;s, Cip, C2 are
likewise real-valued functions of the variabfgsy, but the choice of those coefficients is
not subject to any further restriction.

Let the two absolute simultaneous invariants of thengok andC be denoted by
andkK, in such a way that:

H = 8y, Cp— 28, Cppt 85, Cyy
Ay 8y~ aiz

K = Gy Gy~ Ciz_
A 85~ aiz

The simultaneous transformation of two given forsC by the introduction of new
variablesp’, g’ in place of the original ongs q, will always be accompanied by two
other forms that are connected with them that wedenote byB andE in what follows.
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The first of those forms:
B = by dp’ + 21, dp dg+ by, dof
is given by the following determination of its coeffidien
biu=Hci1—-Kay, bip=Hce-Kap, bp=Hc:-Kax,

and its determinarit;; b, — b, obviously satisfies the equation:
b1 oo — b, = K (a11 @ — a’,),

and when one considers the convention on the choicedfficentsa x , that equation
will show that the determinant of the forBnwill possess a positive value for the entire
domain of the values of the variablgs.

The other accompanying form:

E=en dp’ + 2e,dp dg+ e, dof
is given by the equation:

1
E= —\/7 [(a11 dp + a12 dg)(Ccr1 dp + C12dQ) — (a12 dp + a2 dg)(cr1 dp + C12 dO)],
2

Ay, Ay~

which agrees with the following one:

1
E=——[(annCiz— a2 Cll)dp2 + (11 Co2 — @2 C11)dp dg+ (a12 Co2 — &2 Clz)dqz]-

\ A1 85T aiz

The coefficients of the forfa are then determined from the equations:

ail C12 aiZ Cll 28]_ ail C22 a22 Cll a12 22 a22 C12

™ _\/anazz &, Jasa,-a, e Vaya,-d,

That determination of the coefficients is connectdti tie system of quantities that
emerges as a result and is defined by the following eqgation

A a22 Cll a12 12 A — ail ClZ a12 11
1 a22 aiZ 1 a22 aiZ

a22 ClZ a12 22 — all 22 a12 12

A = === App = ===
1 a22 aiZ ” 1 a22 aiZ

from which one easily defines the relations:
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Ai1+ Az =H,
A1 Az — Az Aor =K.

With the help of that system of quantities, the f@&mwill assume the form:

(e) E = a,8,~&,[A2dp’ + (Az2—Au1) dp dg—Az; dof],

and when one now denotes the determirepé,, — &, of a formA by a, its coefficients
will take the forms:

€1 = Alz\/_a’ 282 = (Akz_Au)\/_a’ e22:_'6‘21\/_3‘-

The transformation of the given forB that takes places at the same time as the
transformation of the forn@ leads to a system of quantitiBs that correspond to the
system of quantitie®\x and are derived from the former when one exchanges the
coefficientsa x with the corresponding onds, . One effortlessly notes the following
relations for that system:

1 1
Bi1= EAQZ BlZ:_EAlzi

1 1
lez—EAﬂ, Bao = Eﬁl
and then the further representation of the f&m the form:
() E = K\ a[- B2 di + (Bir —Bz2) dp dg+Bo1 dqf] .

As far as the determinast= ej; &, — €, of the formE is concerned, which can be

put into the form:
e=- %[4 A Axy + (A22—A11)2] a=- %[H 2—4K] a

by means of the representation of the coefficientthatf form in terms of the quantities
Aix , one recognizes that this determinant will always lmwegative value in the entire
domain of the quantitigs, g, because the former of the foregoing valuesfagrees with

the following one:
a12 AZ
A,-A—-22 Alj +4—=a| a,
K SR Y an}

and that representation will illuminate the validitytbé statement that was made when
one recalls the always-positive value of the determiaant



Weingarten — On the theory of mutually-developable surfaces 14

Under the assumptions that were made, the fércan always be decomposed into
two real factorsa dp + a’ dg, S dp + [’ dq that are linear and homogeneous in the
differentialsdp, dg.

One will then have:

E=(adp+a’dg(Sdp+5'dq),

in which a, a’, B, f’are real-valued function of the variabfg .
If A and i denote the integrating factors of the first and secoggp., of the linear
factors ofE (which always exist) then one will have the equations:

du=A(adp+ a’dg),
dv=u(Bdp+'dg),

in which the quantities andv denote real-valued functions of the varialgeg, and the
form E can be put into the form:

E= idu dv.
Au

If one now introduces the functionsandv as new variables in the four forms B,
C, E (M), in place of the original variablgs g, and adds an asterisk to the coefficients of
the original forms in order to denote the coefiitgeof the transformed ones then one
will get the equations:

A=a di+2a dudw g, df,
B =h;dw +21, dudw B, df,
C=c,df+2¢, dudw ¢, df,

E= i[(6‘1D101D2_ a?zéi) d&+( %1 Ezz_ 52261)1 du a ( D@zm%— Dalzmafz a\u
NES

the last of which must coincide with the represemtethat was just given for the forin
Therefore, the relations:
a1D1 C1D2_ agz dij =0,

aEz ng_ agz 622: 0,
s
u

a1D1 ng_ agz dil = /]—

are necessary. When one recalls the third of thieenfirst two will imply that:

() The functionss andv will not be mutually-independent only in the case wtikesdeterminarg of
the formE vanishes identically. That case, which is charadrby the invariant relation:
H? = 4K,
shall be excluded from what follows.
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When one introduces the variablew, the formsA andC will then take on the forms:

A= alde + &, dv,
C= ¢ diP+d, dv.

If one constructs the two simultaneous invarigthtandK from those transformed forms
then one will obtain them from the equations:

oG G
&, 8
K= iﬂl G(i .
a8y
After introducing the relations:
a0 |
%%wm f%=wﬁ
a 2,

those invariants can be represented in the forms:

H=w+w,
K =ww/

and the quantitie& andw’ prove to the two roots (which are always real) ofgbadratic
equation:
wW—-Hw+K =0,

which is an equation that can be constructed from thevkrsamultaneous invariants of
the quadratic form4, C with no further analysis when they are also giegcsgl forms.

When one uses the variablasv that were just defined instead of the original
variablesp, g and incorporates the irrational invariamtsw’ into the calculations instead
of the invariantsH, K, the four jointly-considered form8, B, C, E will go to the
transformed forms that are given by the following systémquations:

ail dp2 + 23;5 dp dq+ ao dq2 = aflduz + Efz d\;,

C11 dp2 + 210 dp dq+ Co2 dq2 = W81D1 dui + w gz d\%,

(1)
bi1 dp’ + 201, dp dg+ by dof = WP & dif + WP &, dV,
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e dp’ + 2812 dp dg+ e d =4/ & &, (w— W) dudh.

If o, A, du, ov denote the variations of the variabfes, u, v, resp.,— i.e., quantities
between which the same linear relations exist & dhes that exist between the
differentialsdp, dg, du, dv, namely, the following ones:

op . . Ip dq o 09
P=—0ou+—29av, Q=—0ou+—73av,
ou ov ou ov

then along with the first set (1) of transformaticsf the formsA, B, C, E, it is known
that one will simultaneously have the second set:

a1 P dg+ a2 (& dp+ Jp dg +ax P dg= a;dudu+ &,d va,
C11 &P dg+ ¢z (&g dp+ dp dg +cz2 P dg= wa, dudu+ W 3,0 vd,

(2)
b1 dp dg+biz (&g dp+ p dg + by p dg= W a; dudu+ W g,d vd,

e O dg+ e (0 dp+ d do) + e I dg=1./ a &, (W— w(Jvdu+J udy.

A set of variationgp, &, A, ov will obviously be given by the equations:

_1 299 __1 0y
Jadq’ RNEYT)

(9
1 dg _ 1 d¢

di=-

o YT

in which @ denotes an arbitrary function of the variabfgsg. They will emerge
immediately from the equations that express thiertintial quotients of a functiogwith
respect to the new variables v in terms of the differential quotients of the amil
variables, when one considers the equation:

ouov 6u6v
a=a"
opdq dgadp

A second set of variations will follow directly flothe one above. If the transformation
relation exists that:

Pdp+Qdg=Udu+Vdv
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then a system of quantities will also be given by the tanua

1

N S
d)_ \/EQ, d:{ \/EP,
dj:—iv, d/:iu

NES

that possesses the property of a system of variations.

We will make use of the introduction of the systenvarfationsd in order to exhibit
an equation that corresponds to the equations (2), in wiadhink of the coefficientsy
as being determined by the equatioi. (e

When one considers the relation:

K (Bll + Bzz) =H

and appeals to the relatiogs, @ for the partial derivatives afy the introduction of the
variationso will convert the last of equations (2) into the followingeo

K[(Bi1 @ +B12 @) dp+ (Bar @4 + B2 ) do] —3H d@ = 3 (W'—w) [@a du —@ dV],

and when one add$éH dgto each side of the equality and divideskoy w w/ the

following transformation relation, which is true fany functiong will seem to emerge
from that:

10 10
© (Bn +B, 7 j (%1 + Byt j (=—Lau+ P a
Use will likewise be made from now on of the tramsfation:
@3) (Al A, j [ o0 Agfq"j de=w gfdu+ w?;" o,

which is developed in the same way with the help of equétn

It hardly needs to be mentioned that each of thesfwamation relations that were
presented up to now, as well as each of the othertbatsre developed by introducing
the systen? of variations or the second system that was citgdaice of the differentials
dp, dg, du, dv, will be converted into a new transformation relatibat is likewise true
for every function@ Those conversions often perform a welcome servicéhe
transformation of partial differential equations there closely connected with the
foregoing investigations.
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In order to represent such simultaneous invarianteeofdrmsA, C, as well as those
of the accompanying forms, which are composed from theicieetsax , cik and their
partial derivatives analogously to the way GAUSS constduthe invariantk from a
given individual form, the GAUSSian curvature next pregidhe family of formsA
+AC; i.e., the ones with the form:

(a11+ A C10) dpf + 2 @12 + A C1p) dp dg+ (@22 + A &) df,

in which A is understood to mean an arbitrary constant.

The coefficients of the powers of the constarthat appear in the development of
that curvature in powers df were represented for a simultaneous invariant of tiraso
A andB.

It is only in that way that the invariants that or#ains would include differential
guotients of the coefficientsx , Gk up to and including order two, while different
considerations might bring about the appearance of sinewltes invariants that would
lead only to the first-order differential quotients adslk coefficients.

In the simultaneous transformation of two forrAs C, those couplings of the
coefficients and their differential quotients that athe bring to prominence one of those
forms — e.g., the formA — will, in turn, appear to be obvious couplings. Those coggli
are the quantities that already appeared in the introduatid were denoted iy, M/,
M” N, N, N”there.

Once we drop the GAUSSIan notatioBsF, G for the coefficients of the binary
differential forms of degree two that was applied ie ihtroduction and adopt the
notationsas1, ai», a2, Which will be more appropriate in what follows, tipgantitiesm,

m’, m” n, n, n”, which were likewise introduced by GAUSS, will be given the
following equations:

m:%aail, m':%%, m”:%—%&,
ap aq g " dp
n_%—%aail, n’:%%, n”:%%_
dp ° 0q ap aq

We will choose a notation that goes back to CHRISHELFfor the quantities that
were previously denoted b, M, M” N, N, N” and set:

mazz_nQZ:{ll} nan_mQZ:{ll}
ailaZZ_aiZ 1 a, ailaZZ_aiZ 2 a,

m a,-r a _ {12} n'a,-m a _ {12}
ailaZZ_aiZ 1 a, ailazz_aiz 2 a,
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m'a,— a _ {22} n"a, - nf a _ {22}
ailaZZ_aiZ 1 a, ailaZZ_aiZ 2 a,

in what follows.
The indexa that is introduced into the CHRISTOFFEL notation sugyebe

ik
guadratic formA, from which one infers the characteristic systenqmﬂntities{lh} ,

and when one infers that system from another f@mt will be replaced with the
corresponding indeg.

The simultaneous invariants of the fordaandC that we speak of, which only lead
to first-order differential quotients of the coefficiemtthose forms, are obtained from
considering two coupling& (p), ca (g) of those coefficients and their derivatives that are

ih
linear in the quantitie{lk} of the first form and the coefficientsx of the other form
and its derivatives.

Those couplings are defined by the following equations:

o] 0[] 2 Cu{ } i{lz} +g{“} |
Ja|opla GQﬁ Jalll, Jali], Jali],
c@ot| o) 9 {22} 2{12} +g{“} |
Jalda(a apﬁﬁ Jal2), Jal2],]

which can also be represented in the following form:

_1_%_% 22 220 (23 ) (1
Ca('D)_al_alo dq +C“{1}a+cl{{2}a {1J” CZZ{ 2”
_1_%_%_ 12 1 (1 1
Ca(Q)_a_aq op C“{l}:q{{lj}a {22}3}022{2}3]

The couplingsca (), ca (0) themselves®j do not have the character of invariants.
However, between them and the corresponding couplingsoti@ infers from the

transforms of the form, C, namely:
{12} sz { 1}
J a

N 1|0 C | 0] G ¢, 22| _
"a“’)‘ﬁ{ap(ﬁj aq'{ﬁ}ﬁ{l}d

() One immediately notes the validity of the equations:
a. (p) = 0, a, () =

(4)

(4)
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Ca(ql) - 1 i ql _i C,lZ + clll {22} _ {12} C {1‘}
Jaloalya) oplJa) Jdl2], Jalz

the following equations exist:

a (p) = 0 op (p)+ ca(ov
®)

!

ca(q)-a— (p+ ca(ov

One proves that in a way that we believe we shoulg suggest, for the sake of breuvity.
It is known that every identity:

P dp+Qdp=P’dp’+Q"dg’

between two linear differential expressions that ba transformed into each other will
lead, under the assumption of the second identity:

aq1 dpf + a2 dp dg+ &y, dof = &, dp” +24, dp dg+ §, dd,
to the equation:

(g) ®_20) 1 10)

1
ﬁ(aq ) Jala

If one applies that remark twice to the identity:

el o e <o (-

in which one understands the functigto first mean the functiop’ of the variable®, g
and then the functioq’, then one will get two equations that correspandduation §).
One can eliminate the second differential quotiehthe functiong’, q’from them with
the help of the equations (9) that CHRISTOFFEL gavehis treatise “Uber die
Transformation der homogenen Differentialausdricdweeiten Grades” (CRELLE-
BORCHARDT’s Journal, Bd. 70) and then obtain equai(6).

It follows from equations (6) that the system afqtitiesc, (), Ca (0), Ca (P”), ca(d)
possesses the properties of a system of variatipnsdg, oo, &’ (a system of
differentials, respectively), and is therefore ahblie for converting each of the
transformation relations that is true for the latgstem into a new one that represents an
identity relation between expressions that are am®g in the same way, on the one
hand, from the coefficienta , ci , and on the other hand, from the coefficieats c,,

and their corresponding derivatives.
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By employing that property, one can then derive a wedldinaultaneous invariants
of two simultaneously-transformed formsand C, by which, one understands that to
mean forms that play a preeminent role in the invesbigaiof infinitesimal geometry.

For example, if one replaces the variations inthesformation relation:

Ou & dp+ 02 (& dp+ dp dg +ge. d dq=g,, o pdp+ d,(dqdp+o pdd+ g0 ‘qds,

which is valid for any forn@, with the quantitie$, (p), ha (9), ha (p”), ha(q”), which are
inferred from a second fori in conjunction with the form, then one will be led to the
equation:

(7 [911 ha (P) + 912 ha ()] dp + [g12 ha (P) + G22 ha (0)] dq
=[g h(pP)+d,h(qQ] dp+[ & I§ P+ g L' d

which can be applied to the question whose analogue ithéloey of curved surfaces is
the question: Under what conditions on a surface willlittes of curvature be suitable
for dividing that surface into infinitely-small squares?

We would like to specify the conditions under which arf@ :

C11 dp2 + 2c1o dp dg+ ¢ dq2
will be suitable for transforming trggvenformA :

ai dp2 + 231» dp dq+ aoo dq2
into the form:

f (U, v) [dUP + dV]

by introducing the variablas v that were defined in Section I.

If one chooses the for@ in equation (7) to be the foria that was defined in the
same place, and likewise for the foid) and uses the variables v in place of the
arbitrary variablep’, g’then that equation will be converted into:

(8)  [er€a(p) +er2€ ()] dp+ [er2€a (p) + €22 €a (A)] dg = €, [€a (V) du + € (U) AV,
in which the coefficients of the foria that was transformed by the introduction of the
variablesu, v are denoted by adding an asterisk, as we have done upvi®nce one

considers thag ;= 0, €,,= 0.
Now, as a result of the definitions (4), one will have

e (u) =~ &{%{%}2%{112}6@}
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1|0 e e, [12
€ (V) =- — +2- 22 ,
" WMH el
: [ik
and as a result of the meaning of the notat»{)ﬂs} :
12 _ 11 0a, 12] _1 1 0a,
1], 2aj ov' 2] . 2a, du’
and furthermore:
elDZ = %\/?(W,_ V\b!

, W—W dlog (w- w)

so one will also have:

eu=1 :
U PERY
ea(v):%w—walog(w—w).

\/? ou

With the use of those equations, equation (8) lmalconverted into the following one:

[€11 € (D) + €126 ()] dp + [€12€a (P) + €22 €4 (Q)] dq

—_ %(W_W)Z{GIOQ(V\(;;W) d2]2 du+a IOg(V(;’\_/ w) % d\/}

Now, should the fornC possess the property that introducing the vargables will
generate the coefficienta, a;, of the transformed fornA and the quantityl in the
same way as before, then the differential exprassio

{[en € (p) +ere (0] dp+ [e12€: (D) + e € (@) da(w—wW)?=Q
would obviously have to go to the total differehtia
= 2d[log ((w—w) A)].
Conversely, if the differential expressiénis the total differential of a function of the
variablesp, g then, as is easy to see, the introduction of #we variablesu =f (u), v =

@(v) will suffice to transform the forrA into the form:

A (du’? +dv’?).
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The condition for the possibility that a fox@nis suitable for putting the form:
A=an dp2 + 221> dp dq+ a2 dq2
into the form:

A=A (U +dv)

by introducing the variablas v is then expressed by the partial differential equation:

i[m(pﬁ 6 & 91} :i[qlg( D+ & m}
ap H? -4K aq H? -4K '

That equation, which admits a multitude of coniars and simplifications, is the
source of the article that was presented to theigfich Preussischen Akademie der
Wissenschaften zu Berlin on 8 November 1883: “Ublier Differentialgleichung der
Oberflachen, welche durch ihre Krummungslinien mendlich kleine Quadrate getheilt
werden konnen.” Insofar as the three coefficientsc,,, ¢, of the formC only need to
be coupled with each other loye equation in order for that form to effect the dedi
conversion of the given forey, it will still remain that those coefficients cae subjected
to two more arbitrary conditions.

That suggests the remark that when one has swextdaddetermining the three
coefficientscy in accordance with that one equation of conditibat was posed, the
variablesu, v themselves will be arrived at by quadraturesfaém, the equation:

e.e(P+¢e &Y
H?-4K

Eaé )ﬂ_ 2§ae) - _1 _
dp+ AP Z =2 dg= - d log [w-w) 4]

which is equivalent to the equation of conditiotipwas one to determine the quantity
A(w-w) by a quadrature.

Knowing that quantity will suffice for one to regsent a given quadratic form by
means of the equation:

m [e11 AP’ + 212 dp dg+ e, def] = du dv.
u andv can be obtained from that equation by means admgtiares using the process that
was suggested in the introduction. Carrying oetgtocess in question will show that for
those required quadratures, it is not the valughefquantityd (w — w') itself that is
given directly by the condition equation, but otity differential quotients of its natural
logarithm, in such a way that the quadrature thaéquired first can be skipped, and that
will yield some simple and elegant expressionstha variableau, v after one makes
some conversions that are close at hand. Thatdasrk is also obviously true when
one ascertains the lines of curvature in the cpamsging geometric problem.

We do not believe that this method for converinggjven quadratic form:

ail dp2 + 2a;5 dp dq+ ax2 dq2
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into the form:

A (df +dVP)

by consulting a second one that contains three arbitagjficients is unworthy of
attention.

We would now like to choose the forey dp? + 2c; dp dg+ ¢z, dof that is to be
transformed along witla;, dp? + 2a, dp dqg+ ax dof in such a way that itshree
coefficients will be subject to theo condition equations:

(10) Ca(Pp)=0, ca(q)=0.

When those two conditions are fulfilled for any twagoral variable9, g, as a result
of equations (6), the corresponding conditions:

(10) G(E)=0, c(q)=0

will also be fulfilled for any new arbitrary variablgs, g that one introduces, and
conversely.

If one introduces the functions v as the new variables, which possess the property
that the formE that accompanies the forms and C will go to the product of their
differentials multiplied by a function af, v, then equations (¥ will next imply the
following ones:

1] ow & 22 12
co= 2[5 el el |

a_au 1 J

1] ow & 12 1
o 3[ousw (7] usfd |

a

and as a result of the equations:

22 :_Eiaazmz 12 :_3_106152
1), 2a; 0u’ [2), 2a, ou’

12 _ 110a, M| __110a,
1], 2a) ov ' 2. 2a, ov '

one will obtain:
1|ow ol o
Ca (U) = _{__%(W_W)%]
a Ju

odu
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(11)

_llow | dloga,
el DA S VYR St * L T
@) a{av W=W=,

Under the assumption that equations (10) [equations, (E&p.] are true, the differential
equations will be true:

ow
,0loga, _ 4y
2 du w-w '’
(12)
ow
,0loga; _ gy
Z du w-w

Under the assumption that is expressed by equatidl) in regard to the coefficients
of the formC, the formB that accompanies the formAsandC will possess a remarkable
property, whose derivation we shall move on tas that:

B= bll dp2 + 2312 dp dq+ b22 dq2 :VVZ aEl du2 + V\'/2 @2 d\?

When one constructs the invaridgt(or curvature) that GAUSS gave from that quadratic
form, and indeed in its representation in termstlod variablesu, v, with the
representation that was given in Section |, that weld the same thing that one
determines from the equation:

« -1 Kl 1 ow’a, 8 1 dW g,
2ww [ 4] a,|0ul wwy/ 4,8,) ou oV wiw/ a3) ov |

After introducing the values of the differentialcqients%—w, g_w in equations (12),
u ov

one will note the relations:

ow'a, _ 0,
ou ou

6W231D1 — Wwa_alml ,
ov ov

and with their help, one will get the following regentation foks, :

:_1_1{1{ 1 aai}i[_la_ai}
ZWW qml %2 au V fl iZ au av %1 522 av
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One recognizes the curvatutgof the given formey, dp® + 2a;. dp dq+ aze dof in the
guantity that is found in the facter w’ in the reciprocal product on the right-hand side
of the foregoing equation.

Under the assumption that equations (10) are true, tiggmportant equation:

_ 1
(13) ka_wka

will also be valid. The fornB is to the formC what the formA is to the formC, which
emerges from equations (1) in the same algebr&itiaes. If one takes the forBiitself

to be the starting form then that, in conjunctiathvihe formC, will imply the formA in
the same way that the forBhis obtained fronA andC when one simply exchanges the
guantitiesw, w’ with their reciprocals.

The quantitiesc, (p), ¢, () are also closely related to the quantitigeqp), ca (0),
which would emerge from the simple relations betwde quantities, (u), ¢, (v) and
Ca(U), Ca (V).

Namely, if one constructs the latter quantitiesrfrthe equations that serve to define
them then one will find, after a brief calculatidhat:

__ 11
Co (U) == — —WWCa(U),
__ 1 1
&)= wzwwca(v)'

Thgse equations also imply that under the assumgtiat was made about equations
(10) being true, the following equations:

uW=0 ©c(\=0
will also be fulfilled, and as a result of theme tbquations:

(14) @ =0 c(@=0

will also be true.

We would further like to determine the three coefhtsc;; , C12, C2 of the formC,
which are already subject to the conditions (1@prufurther assuming that the foiBn
which is obviously always positive, representsdgare of the line element of a surface
of constantcurvatureg, where we understanglto mean one of thevo square roots of
unity.

As a result of equation (13), that assumptionlmexpressed by the equation:
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which is an equation that will take the form:

GG~ Ciz =gk,

Q1 8y~ aiz
after one introduces the value of the invariant’ that is expressed in terms of the
coefficients of the forma, C.

The three conditions that the coefficientg ci2, C22 of the formC will be subject to
as a result are now given by the following equations:

oc, dc,,  [22 22 (21 ) [12 _
op dq +C11{1 a+012 2 . 1 . Co2 2 . 0,
oc, dc,  [12 1 (1 1 _

oq ap Cll{l a+012 1 . 2 . +Cp 2 . 0,

C11022_<:212 =ck,.
&85~ aiz

(1)

Under the assumption that the equations arel@dfiior any system of quantities,,
Ci12, C22, from the composition that exists in them, therfor

bi1 dpf + 201, dp dg+ by dof =w? & di? + W2 g, dv

will represent the square of the line element sdidace of constant curvatuse
In volume 94 of CRELLE-BORCHARDT’s Journal, pp.12Gas well as in volume
95, pp. 326-329, we have carried out the proohaf for the case in which the form:

b1 dpf + 201, dp dg+ by, dof

represents the square of the line element of aaseirbf constant curvature by
integrating two second-order linear ordinary défetial equations in the real-valued
functionsX, Y, Z, which are always real and which fulfill the eqaas:

dX?+dY?+ £dz? = by, dp® + 2oy dp dg+ by, dof,
X% +Y?+¢e272%=¢

It would seem superfluous to once more exhibitdiiterential equations in question in
the notations that were chosen here.

The functionsX, Y, Z themselves, which were denotedXy, z in the first-mentioned
article, satisfy the equation that were denoted (K|{) there, and which can be
represented by the following ones in the notatitias were chosen here:
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- e -
op 1j 0p [2),0

0’6 _[12| o0& _[12 o<, _
" dpdq {1}b6p {2} "ehes

%€ _[22] a& _[22 o

® {1}b6p {2} aq =0

By introducing the functions, v as the new variables, as a result of their invagianc
that was pointed out ioc. cit, those equations will go to the following ones:

0°¢ J11 o0& |1 o9& _
ou? { } ou {2J}wav+£wza“‘( =0.

(I - _{12} g_{lz} 5 0,
duov (1] .0u 2),0v

2 22 22
a_C:_ 9 65+£W2a225 0.
ov 1].0u 2,0V

As a result of the relations:

AL/ w) aL/W)

12 B v 12 B du

1, 1_1" [2f, 1_1"
woow ww

ik
which are obtained effortlessly from the equations tiedine the quantitie{lh} with
bu
the help of equations (12), the middle of those equatibas;onsideration of which is all
that is required next, can be put into the form:

(1 j 0°¢ ,O(WW)IE _d(m)aE _

wow auav v oJu ou 0\v

from which, the equation:

(165} (165)
oviwou ou\ W av

will emerge.
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The property of a functiog that satisfies that equation can be expressed by saying
that the differential expression:
19¢ qus £9¢ gy
wou W oV

is equivalent to a total differential of a function thle variablesu, v is therefore a
property of each of the three functioXsy, Z
As a result of that remark, one will have the tlegeations:

d :la_x _16_)( dv,
w ou w ov

(1) dy= 2 qu+ LY gy
w ou G AY;

dz= la—Zdu+—1a—Z dv,
w ou W ov

in whichx, y, zdenote three new functions of the varialle.
If one constructs the sum:
d¥ +dy* + edZ

from the foregoing equations then when one considersgingtion that is fulfilled by the
functionsX, Y, Z:

dX?+dY?+edz? = WP &) d + W? g, dV,
one will find the following equation:
¥ +dy’ + £dZ = a ) df + &, dF = A

The functionsx, y, z, which are given by equations (lll) by quadratures, arectbee
ones that correspond to the transformation problemathatspoken of in the introduction
and is expressed by the equation:

d + dy? + £ dZ = a1 dpf + 221, dp dg+ ax dof = A.

With the help of formula (3) of Section I, the ditetials dx, dy, dz of those
functions will be transformed directly into expres®dhat are represented in terms of the
original variable9, g, and their differentialdp, dg, namely, the following ones:

X . dX X . _ X
dx=| B, "~ + B, | dp+| Bo—+ B,— | dt,
(Bnap 812an p (E’map Bzzaqj
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(V) (BMY+BQ j (%1 Y+%2 j g

(5,208,222 5.22)

in which one understands the quantiBgsto have the following values:

Bn:im’ Blzziau G~ all(:lZ,
ka 811322_i2 ka &y~ iz
_la,c,-a,C _1a,c,-3,C,

BZ]_——L“, BZZ__—a
ka 811322_i2 ka 811322_i2

from the formulas that were cited in Section |. I88g as the quantitiesi, Ciz, Cx2 in
these equations refer to three functions that fgagiguations (I), the former equations
will include a solution to the problem: Determirede real-valued functionsy, z of the
variablesp, q in such a way that the equation:

d + dy? + £ dZ = a1 dpf + 221, dp dg+ az ddf

will become an identity.

In the case where denotes positive unity, those functions will githee so-called
general solution to the problem of deforming a edrsurface in the way that BOUR
himself presented it, under the assumption that lva®e succeeded in integrating the
differential equation for the geodetic lines foryagiven surface. When one makes that
assumption, the equation:

X2+Y%+2% =1

will exist between the functions, Y, Z, and after equations (IV) have been multiplied by
X, Y, Z, resp., and one has added together the prodattsrtk obtains, that will give the
further equation:

X dx+Y dy+Z dz=0,

from which it will follow that those functionX, Y, Z represent the cosines of the angles
that the normal that is raised at the poimt ) of the surface that is represented by
equations (IV) makes with they, z coordinate axes, resp.

If one further multiplies equations (1V), or eqgoas (Ill), which are identical to
them, bydX, dY, dZ, resp., and adds together the resulting prodbets one will be led
to the equation:

dX dx+dY dy+dZ dz= wa, d + W g, dV;

i.e., to the following one:
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dX dx+dY dy+ dZ dz=c;1 dp? + 21, dp dg+ c, dof,

which will yield the geometric meaning of the coefficietits Ci2, C2 that was mentioned
already in the foregoing.
Finally, the equation:

dX?+dY? +dZ? = by, dpf + 2by, dp dg+ by, ddf

shows that the formB gives the square of the line element for the imagbeomap of the
surface that is given by equations (IV) to the GAUSStmere.

From the known formulas for the theory of the cumatof curved surfaces, the
simultaneous invariantd, K of the formsA andC, resp., prove to be identical with the
sum of the principal curvatures at the pointd) of the surface considered, in the first
case, and their product, in the second case. If or@eakethose two principal curvatures,
which are now the values of the invariamtsandw’, by r andr’, resp., then the linear
relationship:

rr/(d¢ +dy? +d2) = (r +r’)(dX dx+dY dy+dZ d3 +dX?+dY?+dz?=0

will exist between the three forn#s B, C, which is a relationship that allows one to
recognize immediately the known theorem of the siitylaof infinitely-small parts of
those surfaces for which+ r”= 0 with the corresponding parts under their map to the
GAUSSian sphere.

One effortlessly observes that equations (IV) are ngthhut the ones that |
introduced before into the theory of curved surfaces enytar 1861 in volume 59 of
CRELLE-BORCHARDT’s Journal (“Uber eine besondere Klas@a aufeineander
abwickelbaren Oberflachen”).

As far as the determination of the functiofisY, Z by integrating two second-order
linear ordinary differential equations is concerned, ttetermination can lead to other
mutually-distinct systems of those functions depending ugmat wonstants one assumes
for the integration. However, as was shown alreadyhe aforementioned article
(CRELLE-BORCHARDT’s Journal, Bd. 94), the relations:

‘za X+b Y+c Z
Y=a X+bi Y+ Z
"—aa X+h, Y+ Z

exist between two systemX, (Y, Z), (X', Y, Z"), in which the coefficients; , b, ¢ are
constantcoefficients, and each of the systems representstans of linearly-independent
integrals of equations (II). Moreover, due to the equation

X2 +Y2 +722%2 =1,
x12+Y12+212:1’

the coefficients represent an orthogonal substitution.
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When one understands thén equations (IV) to mean positive unity and, Ci», C2
to mean a triple of quantities that satisfy equatiopsafter one determines a system of
guantitiesX, Y, Z, those equations will always lead omly onewell-defined surface,
although it can be obtained by rotating the axis systetm different positions or
reflecting it in a plane.

With the assumptio® = — 1 in the equations that were spoken of, that will yield a
class of real-valued functiomsy, z that fulfill the equation:

dx2+dy2—d22:a11dp2+2a12dp dq+a22dq2

The functionsx, y of that class satisfy the second-order partial diffeaé that was
denoted by (d) in the introduction, which does not relateth problem of the
developability of curved surfaces.

V.

The developments that were presented in the previousorseceduced the
determination of three functionsy, zthat satisfied the equation:

d + dy? + £ dZ = a1 dpf + 221, dp dg+ az ddf

not to the integration of three simultaneous difféiedrequations:

ox Y’ oy * [0z 2_

— | | = | ¥ — | a1,
ap ap ap

Ox0x  dydy, 9202 _
opdq 0pdq 0pdq

BEEEEE
— | ¥ = | t| — | a2,
aq dq aq
but to the integration of the system of equations Tlhe latter system, which likewise
includes three simultaneous equation, further requires oaljutfillment of two partial
differential equations in three functioes, Ci», C2 , Which are themselves coupled to
each other by a second-degree algebraic equation. Thatlew one to eliminate one
of the functionscix , so that two partial differential equations in thenaging two
functions will exist that arénear in regard to the differential quotients of the functions
that are included in them. The question of ascertainiaghtee functions, y, z will
then be reduced to the integration of those two equations

Although one can see that this reduction representa@ification of the problem in
guestion, it must still not conceal the fact that eimb a single differential equation
whose integration will resolve the problem under tesuaption that = 1 is not just

12,
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necessarybut also sufficient, and that this wast achieved by that reduction, which has
not be observed anywhere, up to now. One will indeed beoled single partial
differential equation for the last of the two remagifunctionsc; x by further eliminating
one of them from the two aforementioned partial déffeial equations. That partial
differential equation was a necessary consequence dfi@mgié), although it possesses
integrals that go beyond the integrals of equations (He Subset of those integrals that
are foreign to the solution of the problem must thersdygarated from the ones that are
not, and that separation is tantamount to a new prokldose difficulty cannot be
overlooked, and all the more so because that probleimaghkt a precise formulation
before that integration has been accomplished.

Now it actually proves to be easy to express eachedtiiree functions;x that appear
in equations (1) in terms of a single functigrin such a way that those equations happen
to be sufficient when the functiopsatisfies a second-order partial differential equation.
However, any real-valued integr@bf the latter will always correspond to real-valwgd
in the case where = — 1, whereas in the case ef= 1, those integrals can also
correspond to purely-imaginary values of the, which are excluded due to the nature of
the problem that was posed.

From a detailed consideration of the formulas for thedpctsAD, AD’, AD" that
GAUSS gave and were reproduced in the introduction [aadeasily confirmed by
carrying out a simple calculation that will not be ¢oumicated here, since it requires the
introduction of some further formal devices in regard todifferential quotients of the
%, %], one will see that quantities;, Cio,

ik
quantities{I } and the quotientsﬁaﬂ,
hj, a a

C22 Will be given by the equations:
azw_{ll} aw_{l g

GT)Z 1), 0p [2),0q
Ci1= . =
1 o dpoy op
a—-&- — | —2a, ~—+ —
\/ a{a“[aqj *3pag a”[@p”
’p |12 op_[12] ogp
opaq (1) dp [(2),0q
Ci2 = . =
1 op dpoy op
a—-&- — | —2a, ~—+ —
\/ a{a“[aqj *3pag a”[@p”
¥p_[22] ap_[22 39
o” [1]),0p [2],0q
Co2 =

2 2
1 op dpody op
e~ -+ | -2a, -+ —
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that satisfy equations (1), as long as one understaedsitistiongto mean an integral of
the partial differential equation:

ckia—ceh (g}a
(9

o3 o S S e o T

in which the partial derivatives of the functigrare suggested by indices.
In that differential equation);(¢) denotes the differential parameter of the function

Q:
2 2

op ooy o

| =2 _r-rg _r

a“(aqj ™2 4p aq az{apj

8,3~ aiz

for the sake of brevity, and refers to an arbitrary constant that might havé peaitive
values, including zero.

In the case where one assumes that- 1, the functiong;1, €12, C2that are given
by the foregoing equations will always be real-valued wipas chosen to be a real-
valued solution of the partial differential equatiap. ( If the arbitrary constant is not
assumed to be equal to zero then that partial diffialeatuation will coincide with
equation (d) in the introduction, and determinimgy, z by integrating it will require only
guadratures, but no longer the integration of equations (1V).

When one understands thaen equation § to mean negative unity and tlaeto be
mean a constant that is positive or zero, one canrdgard that equation as the partial
differential equation whose integration would be neagsand sufficient for resolution
of the transformation problem:

dx + dy? — dZ = ay; dp® + 231, dp dg+ ap, dof ;

i.e., as the differential equation whose set of vaélked integrals would not be greater
than what is required to resolve the problem.

Things are not the same when one understandsithequations (I) to mean positive
unity. If one assumes that the constaritas the value zero then the three quantities
C12, Cx» Will be pure imaginary for any real-valued integral of equatiog),(and will
suffice to solve the problem of the mutual developabditgurfaces, whereas when one

() The equation (9) that OSSIAN BONNET presented in hisrtidiée sur la théorie des surfaces
applicables sur une surface donnée” [Journal de I'Ecqabérimde polytechniqueg5 (1867), pp. 3] for the
solution of the problem of the developability of a scefanto a given one will coincide with equati@h (

above when one chooses= 0 in it and introduces the line elem 2dxdy that BONNET chose.

To our way of looking at things, the equation that therdjisished geometer gave will not satisfy the
conditions of the problem in question; however, itatment would be sufficient for the accompanying
problem in pseudo-geometry.
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assumes that is equal to a positive constant, the quantities ci1», 22 will prove to be
real-valued only when:

2 2
dp dpog dg
| =2 _ror g —_r
o[ 92) 20,0090+, 2 -
8,3~ aiz

i.e., only for those real-valued functiopghat satisfy the differential equatiom) (itself,
as well as the foregoing condition, which comes frobendondition that was discussed in
the introduction, as is easy to see. The differemtiplation & will have more real-
valued integrals than the ones that are connected weithrdblem of developability, and
a comment that was already expressed before wilbgfly in regard to the separation of
those solutions.

One can succeed in fulfilling the equation:

(a) dx + dy? + dZ = ay; dp® + 235, dp dg+ ag, dof
in only onecase that is linked with a second-order partial diffegaéequation whose set

of all real-valued integrals does not exceed the sall oftegrals that fulfill the foregoing
equation. That is the case in which the quadratic form:

ail dp2 + 23;5 dp dq+ ax2 dq2

represents the square of the line element of a surfaxmnstant curvaturk. As is easily
verified (), the equations:

0° 11| o 11 o
011:_420_{ } _40_{ J} _qo+kan§0’

ap 1] .0p (2,09
hR 12| 9§ 12] 9
Ci2 = 9 _ 9_ _§0+k312§0,
opdg (1) dp |2],0q
02 22 o 22l 9
022:—420— 2o —¢+kazz¢h
Jq 1], 0p 2),.0q

in which ¢denotes an arbitrary real-valued function of the We®&p, g, will determine
three function i, €12, G2 0f the variabled, q that satisfy the first two of equations (1)
identically. In order for them to also satisfy therd of those equations, the function
@must be determined from the following second-order paitfiterential equation:

() That is done most easily by using the invariance ptiesenf equations (1), which can also take into
account the foregoing remarks.
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I g kg 01 22 0] 28 pakaw|-lor) For) oska 2
@.1 1aﬂ 162 all 22 1al 262 2% 12 lal 262 l? :k

&, 8y~ aiz

Any real-valued integral of that differential equationl \@ad to three functione;s, 12,

C22 that satisfy equations (1), and then to three funetigry, z that satisfy equation (a),
just as conversely three functiorsy, z that satisfy the latter equation will determine a
real-valued integral of the foregoing differential eqoiati

The proof of the converse that was just spoken of eawbbained from the following
consideration:

Let x, y, z be three given functions for which the sum of the squafetheir
differentials yields a quadratic forau; dp® + 22, dp dq+ a» dof whose curvature
possesses the constant vaduehereg is understood to mean a square root of unity, with
no loss of generality. When one regards those functiertke rectangular coordinates of
a point in space, a well-defined curved will then be giventhmse functions whose
curvature at every point will be equal to the numbeif one calculates the cosinksY,

Z of the angles that the normal that is raised afpihint p, ) on that surface makes with
the axes of the chosen coordinates then those cosiliesewgiven functions of the
variablesp, g. One will obtain the following three quadratic formghathe help of the
six functionsx, y, z X, Y, Z :

dx + dy? + dZ = ay; dp” + 210 dp dg+ ax dof = A,
dX dx+dY dy+ dZ dz=c;1 dp? + 2c1o dp dg+ oo dof =C,
dX? +d¥Y? + dZ? = by dp” + 2by» dp dg+ by, dof = B,

whose coefficients adenownfunctions of the variablgs, g. The parameters of the lines
of curvature of the surface in question are the quantiteswere previously denoted by

u, v, and the invariantsy, W of the first two of the foregoing forms are the pnoadi
curvature of that surface at the pgmg.

Since the formai; dp? + 2a1, dp dq+ ax» dof has constant curvature it will
determine three functions that satisfy the equations:
%2 +232 + 532 =g
dx?+d9Q?%+ed 3% =ay dp’ + 2a1, dp dg+ azz ddf.

Each of those functions then satisfies the thremal partial differential equations:

@_ 1 a_,7_ 1 a_,7+gall/7:0
op> (1),0p |2],0q ’

a

2 12 12
6_0_ a_,7_ a_,7+ga12/7:0,
opdgqg (1), 0dp (2),0q
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2 22 22
a_Z_ a_,7_ a_,7+ga22/7:0,
Jq 1), 0p 2] 09

a

which will coincide with the following three equations wheme introduces the
parametersl, v of the lines of curvature in place of the varialgeg :

o’n J11 on |11 on, g
—_ - —_1 —+£ = O,
ou’ {1}a“ ou {ZJ} v T

a

62/7_12 6_/7_ 12 6_/7
dudv (1) ,0u 2] .0V

o°n _J22| on_J22 on, .o
—- —1- “Liealn=0,
ou’ { 1 }a“ ou { 2 }a“ ov o2

[
o

the middle of which, as a result of the relations:

12| _ 1dloga; _ gv
1], 2 ov r'—r’

or'

12| _10dloga, _ gu
2], 2 du r-r'’

i(ra_,]j :i(r'a_,]j
ovli du oul ov)

Since each of the three functioXs9), 3 satisfy the foregoing equation, there will exist
three other functions v, 3 that fulfill the equations'y:

can be put into the form:

dr= ra—%du+ r’a—xdv,
Ju ov

V) dg:ra—@duﬂ'a—@dv,
ou v

() One can express$y, d v, d 3 directly in terms of the original variablesq with the help of formula
(3) in Section .
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dz= rﬁdu+ r' @dv
ou ov

The functionsx, 2), 3 will then be determined in such a way that:
(V1) dxX*+dQ*+ed3°= al di + &, dv¥= ay; dp’ + 2a, dp dg+ ax, dof™

If one forms the surd y + d n? + £d 3% while recalling the foregoing equations then one
will obviously find that:

d®+dy® + £d3® =r%aldu®+ r?a), dv? = by dp’ + 201, dp dg+ byo df,

whereas the differential form:
dXde+dQdy+ed3d;
will then have the equation:

(VII) dXde+d9Qdy+ed3ds =r?aldu®+ r2a), dv= by dp? + 205, dp dg+ by, def.
Finally, one notes that due to the relation:

%2+@2+£32:£’

one will have the equation:
(VI Xdr+Ydyp+e3d;=0

If one now considers the sushr + ) y + £ 3 3 (which might be denoted bY) the
equations (VII) and (VIII) will imply the following ones

Q=Xr+Yn+e3;,

6Q ?‘*‘6@0*‘5@5,
op 0p ap ap
6Q +6@U+ @

0q aq? daq 6q

0°Q _9°x 0%
= +& +C
op op’ £ op’ 9 6p23 o

02 Q _ 0? % 6 @
y+ 3 tCu2,
opaq apaq apaq apa q
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°Q _9%x 9% 9473
= + +& +Cpo,
09> o9’ ' o’ 9 6q23 2

the last three of which will go to the following ones:

0°Q 11} oQ (11 0Q
= S+ - gan Q+cu,
o’ {1}a p {ZJ}a a9 11 Q + C11

2 12 12
0°Q = 6_Q+ a—Q—fale"'Clz,
1) 0dp 2),0q

02 22 22
?: 6_Q+ a—Q—fazzQ"'sz
Jq 1] 0p 2,09

when one uses the linear partial differential equatibasgovern the functiors, 2), 3 .
Due to the fact that:

GG~ Ciz =g
Q8 aiz

those equations will imply the second-order differergglation:

ool ol evene o] o3 e ad ool off e ag,

18y, ~ aiz

for the functionQ, which coincides with the one that was presented abowehg
function @ (%).
Any real-valued solutiomp of that differential equation will, in fact, corresgbto a

surface of constant curvatuge and conversely, any such surface will correspond to a
real-valued solution of that differential equation.
In the case whereis set equal to positive unity, the latter developmewtl include

an interesting result that relates to surfaces of wityature. In that case, as a result of
the equation:

Xdr+9dy+3d; =0,

equations (V) will determine a surface for which the fiord X, 2), 3 give the cosines
of the angles that the normal to it that is raisedhat point (, v) make with the

() The introduction of the intermediate variables, which will not appear in the final result of all of
the foregoing developments, is not necessary. The npiegpef the couplings, (p), ¢, (g) of the original
variables suffices completely to develop the final refsa#t of all variablesi, v. However, avoiding those
variables would lead to a greater expenditure of caionl@nd would make the geometric relationships to
the results harder to see.



Weingarten — On the theory of mutually-developable surfaces 40

coordinate axes, v, 3, resp. That is because the curvature of the Bytoy which the

square of the line element:
de + dt)z + d32

of that surface is represented, is equal to unity, simeeform yields the square of the
line element of the map to the GAUSS sphere for tlggnai surfaceX, y, 2).

Equations (V) further show that the variables also represent the parameters of the
lines of curvature for that second surface, and thanhdr” are its radii of principal
curvature at the poinu( V), while the same quantities will represent the pararsetes
of the corresponding principal curvatures for the origsuaface. The relations:

d¢ +dy? +dZ =ay; dp’ + 23, dp dg+ az, dof,
dX +d¥Y +dZ? =by, dp® + 2y, dp dg+ by, dof,
de® +dp® +d*  =by dpf + 2012 dp dg+ by, def,
dx? + dY? + d3° = a1 dp? + 2a5, dp dg+ ag, dof,

which exist for the given surfacg, [y, z] and the one that is derived fromt §, 3], now
contain the following theorem:

The points of a given surface of unity curvature always correspond fmihes of a
second surface of equal curvature that those points determine in such baivéyetline
element of the first one is equal to the line element of the iofatpe second one under
the map to the GAUSSIian sphere, and conversely. Under that corresponberices
of curvature of both surfaces will correspond to each other, and the painmirrvatures
will be equal at corresponding points, although the associated lines of curwaitlibe
switched with each other.

This would be a good place to mention the connectiondeetwhe developments that
were just employed and some other investigations intthdery of surfaces.

Instead of examining those properties of curved surfdegsare linked with a given
form for the square of its line element, one can alsfh one’s attention to the properties
of surface that emerge from the map of a given forntHersquare of the line element
onto the GAUSSian sphere. OSSIAN BONNET publisheddbkate of investigations in
his treatise “Mémoire sur 'emploi d’un nouveau systétaevariables dans I'étude des
propriétes des surfaces courbes” [LIOUVILLE’s Jou#&l860)], and indeed under the
assumption that the square of the line element fomtap to the GAUSSian sphere
possessed the form:

dg? + sirf gdV.

CHRISTOFFEL presented his beautiful study “Uber die Besung der Gestalt einer
krummen Oberflache durch locale Messungen auf derselbeGREI(LE-
BORCHARDT's Journal, Bd. 64) from the same standpoint.
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If one imagines that the point, {y, z) of a curved surface is determined by the values
of two variable9, g, and one letX, Y, Z denote the cosines of the angles that the normal
that is raised at the point,{y, z) of that surface makes with the coordinate axes -the.,
coordinates of the poinX( Y, Z) on the GAUSSian sphere that is the image of thetpoi
(X, ¥, 2 — and one lets the quadratic form:

bi1 dp” + 2b12 dp dg+ by, df
of thegivenrepresentation be the sum:
dX?+dY?+dz?

then the cosine¥, Y, Z will individually satisfy the three simultaneous lingzartial

differential equations:
U
- —+b U=0,
{ } {l} .
2
ou 6U ouU +bpU =0,
opadq 6p 2), 6q

2]
U (2200 [22 00 g
0q 6p 2 bé)q

If one considers the functid? which is defined by the equation:

(15) P=Xx+Yy+Zz

or the algebraic value of the normal that is raigethé tangent plane at the poirty, 2)
of the given surface when the origin of the coordin&esbitrary, then that will yield
the following equations for its first differential quotien

9P _oX ., 9Y . 0z

op Jp op~ dp
(16)

@_GXX oY 0Z
g dqg 0q dqg

while the second differential quotients of that functioitl Wwe given by the further

equations:
P _[11) op (1 0, [0X0X,0Y0y, 020
op’ 6p 2],0q | dpop Oopap apop’
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2 2
9°P _{ }ap { }ap_blzp+ OX0x,0Ydy 0207

dpaq ap |2],0q | 9poq 9poq apdq’
P _[12) 0P [12 0P _,  [0X0x,0Y0y,020 2
apaq ap 2),090 * |dqdop 0qdp 9qop’

P _[22) 0P [22 0P,  [0X0x,0Y0y,020.
ag° ap 2),09 ® |0qdq 0qoq 09dq

when one uses the linear partial differential equatibatthe cosinek, Y, Z satisfy.
After introducing the relations:

_0°P [11] orP |11 oP
Ci1= > —_—— _+b11P
ap 1], 0p |2),09
0°P |12] oP |12 oP
Ci2 = - —= —+b,P
opdg (1), 0p |2],0q

_0°P 22| oP |22 0P
Co2 = >~ -_— - —+b22P
Jq 1], 0p 2,09

one will recognize the validity of the equation:

c11 dp? + 2c1, dp dg+ c5 dof = dX dx+ dY dy+ dZ dz.

Now, as one easily convinces oneself, the simultangbsslute invariants of the two
formsdX 2 + dY ? + dZ 2, dX dx+ dY dy+ dZ dzfor any surface; i.e., the following
values:

b11 Cp—2 blz Cpt b22 Ci,
b11 bzz_ bfz

G, G~ ciz ,
b11 bzz - biz

are identical to the sum of the radii of princigalvaturep, p’ at the point g, q) of the
surface in question in the former case and theadpet in the latter, and the following
equations will be true:
(17) b,c,—-20,C,t b, G 0+ 0

b, b,, - bfz
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(18) C;Cp~ Ciz

b11 bzz_ 2

A2 = pp'=

43

x|

When one considers the definitions that were givernttfe quantitiesy , equation

(17) can be easily brought into the form:

oP
1 a QZ?D

oP
blzafq

(19) ~
\/bn bzz_biz op \/blleZ_ l512

oP oP
N i bllaiq blZaip

ap v b11b22_ 612

+2P=p+p’

The coordinates, y, zcan be determined using equations (15) and (16) :

qalai’—q 9X0P, 0XoP)  OXJP
_ ‘oqgaq “\opagq aqop “opdp
X=PX+ ,
bnbzz_biz
blaYaP_bl(aYaP+6Y6I:j 0 Y0 F
1 A~ A 2l A A~ A A . 22 A A
(20) y=PY+ dq dq dpoq 0qap 0 po P
bnbzz_biz
0Z OP 0ZOP 4ZoP 0Z0P
- - - 4+ T |+ -
_ b“aqaq b”[apaq 6q6pj b”apap
z=PZ+ )
bnbzz_biz

The foregoing equations contain the elements of @yhaf the curvature of surfaces
that corresponds to the assumption that the cosing® aingles that the normal that is
raised at pointg, g) of a surface makes with the coordinate axes are gisdanctions of
the variableg, q.

They show that when the sum of the radii of principatvature of a surface is
supposed to be a known function of the varialges under that assumption, which
depends upon the determination of that surface by integréim second-orddmear
differential equation (19), the coordinates of the paufitthat surface can be determined
by integration from the functioR and its derivatives alone.

By contrast, if a functioik of the variablep, q were given each point of a surface
that was supposed to represent its curvature then oned wae to integrate the
complicated differential equation (18), and the deternunapf the coordinates would
result from that integration, as before.

Finally, if the cosinesX, Y, Z themselves are not given, but only the sum of the
squares of their differentials:

by1 dpf + 201, dp dg+ by, dof,
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then the integration of two second-order linear ordirdifferential equations that has
been mentioned many times by now would always allowtongetermine a system of
functionsX, Y, Z that could represent those cosines. In place ofsifsiem, one could
also choose other ones that are connected with ihdyédlationship of an orthogonal
substitution.

In the context of that remark, equations (20) obvioushy@tthe following theorem:

If the map of the points of a curved surface to the GAUSSian sphereeftfstial
sphere, respectively) is given and one knows the distance from airpaie tangent
plane to that surface at a fixed point of the surface to each point sutfece then the
form of the surface will be determined completely, while istipa is space will not be
fixed by that determination.

Obviously, that theorem is linked with the assumption thatdistance from points
that are coupled with the given surface to the correspgrtdngent plane, which varies
from point to point, will always admit first and secopartial differential quotients with
well-defined values.

Berlin 1884.



