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 As is known, the determination of all surfaces that are partially developable to parts 
of a given surface requires one to ascertain the most general real-valued functions x, y, z 
that depend upon two real variables and satisfy the equation: 
 
(a)    dx2 + dy2 + dz2 = E dp2 + 2F dp dq + G dq2, 
 
 
in which E, F, G are given functions of the variables p, q, and indeed they denote the 
coefficients of the square of the line element of the given surface. 
 Ascertaining those functions x, y, z then depends upon integrating three simultaneous 
partial differential equations: 

 
2 2 2

x y z

p p p

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
 = E, 

 

(a′)  x x y y z z

p q p q p q

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = F, 

 

 
2 2 2

x y z

q q q

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
 = G. 

 
In order to perform that integration, one next appeals to the path that consists of 
eliminating two of the functions to be determined – say, y, z – that are derived from the 
foregoing three equations with the help of partial differentiations of a single partial 
differential equation that the function x must satisfy.  Due to the symmetry that exists 
between the functions x, y, z, the two functions y, z would also be coupled by that 
equation. 
 That path is, in fact, the path that EDMOND BOUR followed in his response to the 
Paris Academy of Science for the prize problem that was posed in the year 1860, which 
was concerned with the theory of mutually-developable surfaces, albeit modified by 
specialized forms of the squares of the line elements of the given surface that he chose to 
serve as the starting point for the investigation.  In our opinion, as opposed to BOUR’s 
(“Théorie de la déformation des surfaces,” Journal de l’École polytechnique, tome XII, 
page 5), that starting point would lead to ancillary difficulties in the problem, instead of 
avoiding them, even if by overlooking those difficulties, the introduction of new 
independent variables into a partial differential equation would generally seem to be 
coupled with a change in the domain of the original variables. 
 Over a long span of time, it has occurred to us that no one has ever remarked that the 
elimination of two of the functions x, y, z from equations (a′) by GAUSS in his 
“Disquisitiones generales circa superficies curvas” was accomplished in full generality to 
the extent that it can be referred to as something that GAUSS himself contributed, even 
though that elimination was not completed in the cited reference. 
 One finds the following equation in Section XI of Disquisitiones: 
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 AD   =   
2

2 ( ) ( )
x x x

nF mG mF nE
p p q

∂ ∂ ∂∆ + − + −
∂ ∂ ∂

, 

 

(b) AD′  =
2

( ) ( )
x x x

n F m G m F n E
p q p q

∂ ∂ ∂′ ′ ′ ′∆ + − + −
∂ ∂ ∂ ∂

, 

 

 AD″  =  
2

2 ( ) ( )
x x x

n F m G m F n E
q p q

∂ ∂ ∂′′ ′′ ′′ ′′∆ + − + −
∂ ∂ ∂

, 

 
∆ = EG – F2, 

 
and in Section X, one finds the equation: 
 

(c)     
2

2

DD D′′ ′−
∆

= k , 

 
in which k denotes the curvature of the given surface that was represented in Section XI 
in terms of the coefficients E, F, G. 
 If one introduces the notation: 
 
 m G – n F  = ∆M, n E – m F  = ∆N, 
 m′ G – n′ F  = ∆M, n′ E – m′ F  = ∆N′, 
 m″ G – n″ F  = ∆M, n″ E – m″ F  = ∆N″, 
 
to simplify, and one introduces the notations x1, x2, x11, x12, x22 for the first and second 
partial derivatives of a function x with respect to the variables p, q, for the same reason, 
then the six quantities M, N, … will be quantities that are determined in the same way 
from the given E, F, G, and one will get the following equation from equations (b) and 
(c): 

A2 k = (x11 – M x1 – N x2) (x22 – M″ x1 – N″ x2) – (x12 – M′ x1 – N′ x2)
2, 

 
and as a result of the simple relation: 
 

A2 = (y1 z2 – z1 y2)
2 = 2 2

1 2( )( )E x G x− − − (F – x1 x2)
2, 

 
one will get the equation: 
 
(d) ∆ [1 – ∆1 (x)] k = (x11 – M x1 – N x2) (x22 – M″ x1 – N″ x2) – (x12 – M′ x1 – N′ x2)

2, 
 
in which ∆1 (x) refers to the differential parameter of the function x: 
 

2 2
2 1 2 12E x F x x G x− +

∆
, 
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which is the second-order partial differential equation that the function x must satisfy, 
along with the other two y, z, as a consequence of equations (a′). 
 If one chooses E = 0, F = 2λ, G = 0 (under the assumption that one has introduced 
complex conjugate variables p, q) then one will get equation (III) that BOUR gave on 
page 15 of the cited treatise from the equation above. 
 The only opinion that BOUR expressed that we cannot share is that this equation [or 
more generally, equation (d)] represents the differential equation of the coordinates of 
those surfaces that are developable from with the given surface with the line element 

2 22E dp F dp dq G dq+ + . 
 In fact, no real-valued function x of the variables p, q that satisfies the partial 
differential equation (d) can be considered to be a function that is suitable to fulfill the 
fundamental equation: 

dx2 + dy2 + dz2 = E dp2 + 2F dp dq + G dq2, 
 
when combined with two other functions y, z, which it would have to though if we were 
to adopt the opinion that we do not share. 
 One can easily convince oneself of the validity of that assertion when one derives the 
differential equation (d) in a different way that provides more satisfying information 
about its content. 
 Namely, if one puts equation (a) into the form: 
 

dx2 + dy2 + dz2 = [E − 2
1x ] dp2 + 2 [F − x1 x2] dp dq + [G − 2

2x ] dq2 

 
then one will see that the quadratic form in the of the quantities dp, dq that the right-hand 
side of the foregoing equation represents must possess zero curvature. 
 When one forms that curvature using the formula that GAUSS gave in the cited 
reference, as is easy to see, one will be led to a second-order partial differential equation 
for the function x that proves to be identical to the differential equation (d). 
 The differential equation (d) can then be regarded as the expression of the condition 
that the quadratic form: 
 

[E − 2
1x ] dp2 + 2 [F − x1 x2] dp dq + [G − 2

2x ] dq2 
 
mist possess zero curvature, or (which is know to say the same thing) that this form can 
be converted into the product of the differentials of two functions α, β of the variables p, 
q. 
 Any function x that satisfies the differential equation (d) will then fulfill the equation: 
 

[E − 2
1x ] dp2 + 2 [F − x1 x2] dp dq + [G − 2

2x ] dq2 = dα dβ, 

 
in which the functions α, β are easy to determine. 
 Namely, if one decomposes the quadratic form on the left-hand side of that equation 
in the known way into two linear factors a dp + b dq, a′ dp + b′ dq then there will always 
exist a function φ that simultaneously satisfies the two equations: 
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 eφ  (a  dp + b  dq) = dα, 
(e) 
 e−φ (a′ dp + b′ dq) = dβ . 
 
 The integrability equations that follow from these equations: 
 

 
( )e a

q

φ∂
∂

= 
( )e b

p

φ∂
∂

, 

 

 
( )e a

q

φ− ′∂
∂

= 
( )e b

p

φ− ′∂
∂

, 

 

obviously determine the differential quotients 
p

φ∂
∂

, 
q

φ∂
∂

 in terms of the given quantities a, 

b, a′, b′, which are given by the given quadratic form, and their differential quotients.  

After determining 
p

φ∂
∂

, 
q

φ∂
∂

, one can get the function φ by a quadrature, and after 

ascertaining that function, the functions α and β themselves can be determined from 
equations (e) by quadrature. 
 However, it is only in the special case in which the functions α, β thus-obtained 
assume complex-conjugate values y + zi, y – zi for all values of the variables p, q that 
belong to the domain in question (or part of it) that the function x, which satisfies 
equation (d), will have the property that two real-valued functions y and z exist that make 
the equation: 

dx2 + dy2 + dz2 = E dp2 + 2F dp dq + G dq2 
 
into an identity, together with the function x. 
 That special case will occur only when the function x possesses the property that it 
satisfies the inequality: 
 

2 2 2
x x x x

E G F
p q p q

        ∂ ∂ ∂ ∂− − − −        ∂ ∂ ∂ ∂           

> 0, 

 
in addition to the property that it satisfies the differential equation (d), and that inequality 
expresses a simple geometric property of those functions x that can be considered to the x 

coordinate of a curved surface with the line element 2 22E dp F dp dq G dq+ + . 
 In the case where that inequality does not apply (i.e., in the case where the functions 
α, β prove to be real-valued for the domain in question of the variables p, q), the product 
dα dβ can only be put into the form dy2 – dz2, and that is therefore the case in which the 
function x that satisfies the differential equation (d) can possibly fulfill the equation: 
 

dx2 + dy2 − dz2 = E dp2 + 2F dp dq + G dq2 
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jointly with the functions y and z, and that equation is foreign to the problem of the 
mutual developability of curved surfaces. 
 As a result of the foregoing juxtaposition, one can then regard the partial differential 
equation (d) as also being the result of eliminating the functions y, z from one or the other 
series of the following two times three equations: 
 

 
2 2 2

x y z

p p p
ε     ∂ ∂ ∂+ +     ∂ ∂ ∂     

 = E, 

 

  
x x y y z z

p q p q p q
ε∂ ∂ ∂ ∂ ∂ ∂+ +

∂ ∂ ∂ ∂ ∂ ∂
 = F, 

 

 
2 2 2

x y z

q q q
ε     ∂ ∂ ∂+ +     ∂ ∂ ∂     

 = G 

 
that one obtains when one first understands ε to be first positive unity and then negative 
unity. 
 One further remarks that as long as one understands the functions E, F, G to mean 
only ones that are suitable for appearing as the coefficients of the square of the line 
element of a curved surface, the differential equation (d) in question will suggest two 
transformation problems that are essentially different for real-valued functions x, y, z, 
namely, the ones that are distinguished by the equations: 
 
(a)    dx2 + dy2 + dz2 = E dp2 + 2F dp dq + G dq2, 
 
(a*)    dx2 + dy2 − dz2 = E dp2 + 2F dp dq + G dq2, 
  
of which, only the former relates to the problem of finding those surfaces that can be 
developed onto a given one, while the latter, which is not symmetric in x, y, z, requires 
only that the functions x, y must fulfill equation (d), while the function z must fulfill the 
following one: 
 
(d*) − ∆ [1 + ∆1(z)] k = (z11 – M z1 – N z2)(z22 – M″ z1 – N″ z2) – (z12 – M′ z1 – N′ z2)

2. 
 
In contrast to the differential equation (d), this latter equation, which can be regarded as 
the condition for the form: 
 

[E + 2
1z ] dp2 + 2 [F + z1 z2] dp dq + [G + 2

2z ] dq2 

 
to possess zero curvature, is in fact the decisive differential equation for the 
transformation problem (a*).  Since the foregoing quadratic form in the differentials dp, 
dq is always essentially positive, every real-valued function z that satisfies that equation 
will correspond to two real-valued functions x, y that satisfy the equation: 
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(a*)    dx2 + dy2 − dz2 = E dp2 + 2F dp dq + G dq2, 
 
jointly with z.  Those functions x, y satisfy the differential equation (d) without being 
related to the problem of developability. 
 The differential equation (d) then possesses greater scope in relation to the functions x 
that satisfy it than the one that is prescribed by the problem of the deformation of curved 
surfaces.  One will therefore forsake that differential equation for the treatment of that 
problem, or else the two transformation problems that it defines would have to split from 
each other. 
 In his “Théorie de la déformation des surfaces,” BOUR gave yet another method for 
finding three functions x, y, z that might fulfill equation (a).  That method is linked with 
the assumption that the square of the line element of the given surface is given in the 
form: 

dp2 + G dq2, 
 
or can be put into it.  It is free of the reproach that when one complies with it, one can 
also arrive at functions x, y, z that are foreign to the problem that was posed, and in fact 
the transformation problems that are defined by equations (a) and (a*) will split from each 
other, although BOUR avoided that eventuality since his second method encompassed the 
same scope as his first one.  The method itself is based upon special geometric properties 
of the geodetic lines of curved surfaces and requires that before one can enter into it, one 
must have the results of integrating the differential equation for geodetic lines for a given 
surface.  Once that integration was considered to have been performed, BOUR reduced 
the determination of the desired functions x, y, z to the determination of three functions 
H, T, H1 of the variables p, q that are already coupled by a homogeneous equation of 
degree two from two more simultaneous linear partial differential equations that govern 
those functions, and then to the resulting integration of a system of nine simultaneous 
first-order ordinary differential equations in the variable p, which is an integration that 
must be performed in such a way that the nine functions that are to be determined will 
likewise fulfill a similar system of nine differential equations in the variable q.  The 
differential equations for the functions H, T, H1 are the necessary conditions for it to be 
possible for the latter eighteen differential equations to be valid simultaneously. 
 BOUR referred to the equations that he presented for the functions H, T, H1 as the 
fundamental equations for the problem of finding the surfaces that can be developed onto 
a given one. 
 Following BOUR, various authors have specified differential equations for the 
quantities that GAUSS denoted by D, D′, D″ (or the products of those quantities with a 

simple power of the determinant ∆) that did not use the specialized form 2 2dp G dq+ , 

but the general one 2 22E dp F dp dq G dq+ + , as the starting point for their geometric 
investigations, so those equations would not be suitable to replace BOUR’s fundamental 
equations.  BOUR’s functions H, T, H1 are themselves such products. 
 To our knowledge, it was only the step that leads from one’s knowledge of the 
quantities D, D′, D″ in order to arrive at a definitive representation of the coordinates x, y, 
z for the desired surface that was not discussed.  It was only in recent times that 
LIPSCHITZ [Sitzungsberichte der Königl. Preuss. Akademie der Wissenschaften zu 
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Berlin (1883), pps. 550 and 551], while preserving the quantities H, T, H1 as the ones to 
be determined, transformed BOUR’s fundamental equations into more general ones that 
would be true for any given form of the line element, and specified the step in question 
by introducing new geometrically-defined functions that one would need to find.  In my 
opinion, those elegant investigations do not reduce that step to its simplest form, but only 
abandon the symmetry in the final result by introducing asymmetric relations. 
 In what follows, we will prove that after succeeding in finding three fundamental 
quantities that are defined by equations of the same type as BOUR’s that would 
definitively represent the functions x, y, z, only the integration of two second-order linear 
ordinary differential equations would be required, and that proof will also imply that the 
same demands would also suffice in relation to the solution of the transformation 
problem: 

dx2 + dy2 − dz2 = E dp2 + 2F dp dq + G dq2, 
 

independently of the fact that we have already presented the same partial differential 
equation (d*) for that problem, which governs it completely. 
 Geometric considerations, as well as applications to examples, will be avoided in the 
following developments.  However, when one starts from the known finite equations for 
the class of surfaces that can be developed from the surface of revolution of the evolute 
of the catenary that I gave in CRELLE-BORCHARDT’s Journal (bd. 59), as well as the 
other class of surfaces that can be wrapped around a surface of revolution that I presented 
in that same journal (Bd. 62), it will be easy to verify those developments conversely, and 
to give integrals to equations (a), as well as BOUR’s fundamental equations, in special 
cases of the given line element, which will provide information about the nature of those 
equations. 
 When one overlooks the class of surfaces that can be developed to the plane, which 
has been known since the time of EULER, the aforementioned two classes of surfaces, 
which can be expanded by way of the class of surfaces whose line element is: 
 

2 22 2dp q dpdq pdq+ +  
 
(which are determined by the minimal surfaces), are the only classes of mutually-
developable surfaces whose finite equations have been given up to now. 
 
 

I. 
 

 One must thank GAUSS for the fundamental discovery of a special invariance under 
the transformation of quadratic binary differential forms. 
 If the quadratic form in the differentials dp, dq : 
 

A = a11 dp2 + 2a12 dp dq + a22 dq2, 
 

in which a11 , a12 , a22 denote three given functions of the real variables p, q, goes to 
another one: 
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A′ = 2 2
11 12 222a dp a dp dq a dq′ ′ ′ ′ ′ ′ ′+ + , 

 
in which 11a′ , 12a′ , 22a′  now denote known functions of the variables p′, q′ under the 

substitutions p′ = f (p, q), q′ = f (p, q) then a function k that GAUSS gave that is 
constructed from the coefficients ai,k and their first and second partial derivatives will go 
to the same function of the coefficients ,i ka′  and their partial derivatives with respect to 

the variables p′, q′ under those substitutions. 
 The invariant k that GAUSS gave can be represented in the symmetric form: 
 

 k = 

22 11

11 22 12 22 11 12
12 12

log log

1 2 2

2

a a

a a a a a a
a a

q p q p q p

p qa a a

    ∂ ∂    ∂ ∂ ∂ ∂
    + − + −

− ∂ ∂∂ ∂ ∂ ∂ ∂ ∂    +    ∂ ∂    
    
        

, 

  
 a = a11 a22 − 2

12a . 

 
 Although GAUSS apparently restricted the derivation of that result to those forms: 
 

a11 dp2 + 2 a12 dp dq + a11 dq2 
 
that are capable of representing the square of the line element of a curved surface, one 
easily observes that the same thing would be valid for all forms with a non-vanishing 
determinant a11 a22 − 2

12a .  As long as we do not misunderstand the motto “Ab his via 

sternitur ad maiora (†)” that he himself quoted as a preface to his essay “Allgemeine 
Lösung der Aufgabe, die Theile einer gegebenen Fläche auf die Theile einer anderen 
gegebenen Fläche so abzubilden, dass die Abbildung dem Abgebildeten in the kleinsten 
Theilen ähnlich wird (††),” the properties of the decomposition of a given binary 
quadratic differential form into linear factors – i.e., the properties of the transformation: 
 

λ (a11 dp2 + 2 a12 dp dq + a11 dq2) = dα dβ, 
 
would become the starting point for the discovery of that invariant relationship. 
 In fact, as we have known for some time, one easily derives a second-order partial 
differential equation for the quantity log (λ) from the foregoing equation by performing a 
calculation that was suggested in the introduction, and the term in that equation that is 
free of the differential quotients will be identical with the quantity k. 

                                                
 (†) Translator: “This path will lead to greater things.” 
 (††) Translator: “General solution to the problem of mapping part of a given surface to part of another 
given surface in such a way that the image will be similar to the mapped surface in its smallest parts.”  Note 
that the word “Theil” is an archaic form of the word “Teil” for “part” or sometimes “subset.”  
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 If one starts from that derivation of the transformed form then one will next note the 
agreement of the terms in the two differential equations that one obtains for the quantity 
log (λ) that are free of the differential quotients and conclude from that the equality of the 
quantity k with the k′ that is constructed from the coefficients of the transformed form in 
the same way as the quantity k was constructed from the coefficients of the original form.  
The invariance that was mentioned consists of that equality. 
 If one considers a curved surface to be a flexible, inextensible body with one 
vanishingly small dimension then the geometric properties of that surface in the 
neighborhood of any of its points will be partly connected with its special form and will 
partly remain unchanged, which will bring with it new forms that can be linked with the 
condition of the inextensibility of its parts. 
 If one thinks of the position of each point P of the surface as being determined by the 
values of two independently-varying parameters p, q then properties of the latter kind will 
be determined completely by knowing the differential form: 
 

E dp2 + 2F dp dq + G dq2, 
 
which gives the distance from any point (p, q) to the infinitely-close one (p + dp, q+ dq), 
while determining the properties of the former kind will require knowing a second 
differential form: 

E dp2 + 2F dp dq + G dq2 

 
that will depend upon the one that was just given.  That second form is the value of the 
differential quantity: 

dX dx + dY dy + dZ dz, 
 

which is independent of the choice of rectangular axis system to which one thinks of the 
position of the given surface as being referred, and in which x, y, z denote the coordinates 
of the point (p, q), and X, Y, Z denote the cosines of the angle that the normal that is 
raised at that point make with the coordinate axes, while the differential sign refers to the 
difference between the quantities in question at the point (p, q) and the ones at the point 
(p + dp, q + dq). 
 The simultaneous algebraic invariants: 
 

 h = 
2

2E F G

EG F

− +
−

G F E
, 

 

 k = 
2

2EG F

−
−

EG F
 

 
of the two given quadratic forms determine the sum of the principal curvatures r, r′ at the 
point (p, q) of the surface considered in the first case, and the product of those curvatures 
in the second case.  The agreement of the second one with the invariant k of the square of 
the line element was likewise proved by GAUSS. 
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 The better part of the infinitesimal-geometric investigations that geometers since 
EULER have addressed are connected with the question of finding those surfaces for 
which one of those invariants is constant or a function of the other one.  Other 
investigations were concerned with those surfaces for which a second type of 
simultaneous invariant of the aforementioned differential forms possessed given 
properties.  That second type of simultaneous invariant, which contains not just the 
coefficients of the forms in question, but also their partial derivatives, corresponding to 
the invariants that GAUSS presented for an individual form, does not seem to have been 
introduced expressly into the theory of curved surfaces and evaluated for them up to now. 
 We therefore believe that although we have easily drifted away from the part of the 
following developments that is connected with the theory of mutually-developable 
surfaces, and have been able to explain them independently of the consideration of those 
invariants, some discussion must be prefixed in regard to the simultaneous transformation 
of binary quadratic differential forms, and all the more because that will shed some light 
upon the path of investigation into the theory of the curvature of surfaces that was 
pursued up to now. 
 Let: 

A = a11 dp2 + 2 a12 dp dq + a11 dq2 
 
be a quadratic form in the differentials dp, dq whose coefficients a11, a12, a22 are real-
valued functions of the real variables p, q that are given inside a known region of those 
variables.  The choice of those functions in what follows shall be subject to the restriction 
that they should be suitable for representing the coefficients of the squares of the line 
elements of a curved surface; i.e., that the functions a11, a12, a22 will fulfill the 
inequalities: 

a11 > 0,  a22 > 0,  a11 a22 − 2
12a  > 0 

  
for all values of the variables p, q that fall within the given region. 
 Furthermore, let: 

C = c11 dp2 + 2 c12 dp dq + c11 dq2 
 
be a second quadratic form in the differentials dp, dq whose coefficients c11, c12, c22 are 
likewise real-valued functions of the variables p, q, but the choice of those coefficients is 
not subject to any further restriction. 
 Let the two absolute simultaneous invariants of the forms A and C be denoted by H 
and K, in such a way that: 

 H = 11 22 12 12 22 11
2

11 22 12

2a c a c a c

a a a

− +
−

,  

 

 K = 
2

11 22 12
2

11 22 12

c c c

a a a

−
−

. 

 
The simultaneous transformation of two given forms A, C by the introduction of new 
variables p′, q′, in place of the original ones p, q, will always be accompanied by two 
other forms that are connected with them that we will denote by B and E in what follows. 
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 The first of those forms: 
 

B = b11 dp2 + 2 b12 dp dq + b22 dq2 
 
is given by the following determination of its coefficients: 
 

b11 = H c11 − K a11 ,  b12 = H c12 − K a12 , b22 = H c22 − K a22 , 
 
and its determinant b11 b22 − 2

12b  obviously satisfies the equation: 

 
b11 b22 − 2

12b  = K2 (a11 a22 − 2
12a ), 

 
and when one considers the convention on the choice of coefficients ai,k , that equation 
will show that the determinant of the form B will possess a positive value for the entire 
domain of the values of the variables p, q. 
 The other accompanying form: 
 

E = e11 dp2 + 2 e12 dp dq + e22 dq2 
is given by the equation: 
 

E = 
2

11 22 12

1

a a a−
[(a11 dp + a12 dq)(c11 dp + c12 dq) − (a12 dp + a22 dq)(c11 dp + c12 dq)], 

 
which agrees with the following one: 
 

E =
2

11 22 12

1

a a a−
[(a11 c12 − a12 c11)dp2 + (a11 c22 − a22 c11)dp dq + (a12 c22 − a22 c12)dq2]. 

 
The coefficients of the form E are then determined from the equations: 
 

e11 = 11 12 12 11

2
11 22 12

a c a c

a a a

−
−

,  2e12 = 11 22 22 11

2
11 22 12

a c a c

a a a

−
−

,  e22 = 12 22 22 12

2
11 22 12

a c a c

a a a

−
−

. 

 
 That determination of the coefficients is connected with the system of quantities that 
emerges as a result and is defined by the following equations: 
 

 A11 = 22 11 12 12
2

11 22 12

a c a c

a a a

−
−

, A12 = 11 12 12 11
2

11 22 12

a c a c

a a a

−
−

, 

 

 A21 = 22 12 12 22
2

11 22 12

a c a c

a a a

−
−

, A22 = 11 22 12 12
2

11 22 12

a c a c

a a a

−
−

, 

 
from which one easily defines the relations: 
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 A11 + A22 = H, 
 A11 A22 − A12 A21 = K. 
 
 With the help of that system of quantities, the form E will assume the form: 
 

(e)   E = 2
11 22 12a a a− [A12 dp2 + (A22 – A11) dp dq – A21 dq2], 

 
and when one now denotes the determinant 2

11 22 12a a a−  of a form A by a, its coefficients 

will take the forms: 
 

e11 = 12A a ,  2e12 = 22 11( )A A a− ,  e22 = − 21A a . 

 
 The transformation of the given form B that takes places at the same time as the 
transformation of the form C leads to a system of quantities Bi,k that correspond to the 
system of quantities Ai,k and are derived from the former when one exchanges the 
coefficients ai,k with the corresponding ones bi,k .  One effortlessly notes the following 
relations for that system: 

  B11 =   22

1
A

K
,  B12 = − 12

1
A

K
, 

 

  B21 = − 21

1
A

K
,  B22 =   11

1
A

K
, 

 
and then the further representation of the form E in the form: 
 

(e′)    E = K a [− B12 dp2 + (B11 – B22) dp dq + B21 dq2] . 

 
 As far as the determinant e = e11 e22 − 2

12e  of the form E is concerned, which can be 

put into the form: 
e = − 1

4 [4 A12 A21 + (A22 – A11)
2] a = − 1

4 [H 2 – 4K] a 

 
by means of the representation of the coefficients of that form in terms of the quantities 
Ai,k , one recognizes that this determinant will always have a negative value in the entire 
domain of the quantities p, q, because the former of the foregoing values for e agrees with 
the following one: 

e = − 
2 2

12 121
22 11 124 2

11 11

2 4
a A

A A A a a
a a

  
 − − + 
   

, 

 
and that representation will illuminate the validity of the statement that was made when 
one recalls the always-positive value of the determinant a. 
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 Under the assumptions that were made, the form E can always be decomposed into 
two real factors α dp + α′ dq, β dp + β′ dq that are linear and homogeneous in the 
differentials dp, dq. 
 One will then have: 

E = (α dp + α′ dq)( β dp + β′ dq), 
 
in which α, α′, β, β′ are real-valued function of the variables p, q. 
 If λ and µ denote the integrating factors of the first and second, resp., of the linear 
factors of E (which always exist) then one will have the equations: 
 
 du = λ (α dp + α′ dq), 
 dv = µ (β dp + β′ dq), 
 
in which the quantities u and v denote real-valued functions of the variables p, q, and the 
form E can be put into the form: 

E = 
1

λµ
du dv . 

 
 If one now introduces the functions u and v as new variables in the four forms A, B, 
C, E (1), in place of the original variables p, q, and adds an asterisk to the coefficients of 
the original forms in order to denote the coefficients of the transformed ones then one 
will get the equations: 
 
 A = 2 2

11 11 222a du a du dv a dv∗ ∗ ∗+ + , 

 B = 2 2
11 11 222b du b du dv b dv∗ ∗ ∗+ + , 

 C = 2 2
11 11 222c du c du dv c dv∗ ∗ ∗+ + , 

 

 E = 2 2
11 12 12 11 11 22 22 11 12 22 22 12

1
[( ) ( ) ( ) ]a c a c du a c a c du dv a c a c dv

a

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗
− + − + − , 

 
the last of which must coincide with the representation that was just given for the form E. 
 Therefore, the relations: 
  11 12 12 11a c a c∗ ∗ ∗ ∗−  = 0, 

  12 22 22 12a c a c∗ ∗ ∗ ∗− = 0, 

  11 22 22 11a c a c∗ ∗ ∗ ∗−  = 
a

λµ

∗

 

 
are necessary.  When one recalls the third of them, the first two will imply that: 

                                                
 (1) The functions u and v will not be mutually-independent only in the case where the determinant e of 
the form E vanishes identically.   That case, which is characterized by the invariant relation: 

H2 = 4K, 
shall be excluded from what follows. 
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12a∗ = 0,  12c∗ = 0. 

 
When one introduces the variables u, v, the forms A and C will then take on the forms: 
 
  A = 2 2

11 22a du a dv∗ ∗+ , 

  C = 2 2
11 22c du c dv∗ ∗+ . 

 
If one constructs the two simultaneous invariants H and K from those transformed forms 
then one will obtain them from the equations: 
 

  H = 11 22

11 22

c c

a a

∗ ∗

∗ ∗+ , 

 

  K = 11 22

11 22

c c

a a

∗ ∗

∗ ∗⋅ . 

 After introducing the relations: 
 

11

11

c

a

∗

∗ = w, 22

22

c

a

∗

∗ = w′, 

 
those invariants can be represented in the forms: 
 
  H = w + w′, 
  K = ww′, 
 
and the quantities w and w′ prove to the two roots (which are always real) of the quadratic 
equation: 

w2 – H w + K = 0, 
 
which is an equation that can be constructed from the known simultaneous invariants of 
the quadratic forms A, C with no further analysis when they are also given special forms. 
 When one uses the variables u, v that were just defined instead of the original 
variables p, q and incorporates the irrational invariants w, w′ into the calculations instead 
of the invariants H, K, the four jointly-considered forms A, B, C, E will go to the 
transformed forms that are given by the following system of equations: 
 
 a11 dp2 + 2a12 dp dq + a22 dq2 = 2 2

11 22a du a dv∗ ∗+ , 

 
 c11 dp2 + 2c12 dp dq + c22 dq2 = 2 2

11 22wa du w a dv∗ ∗′+ , 

(1) 
 b11 dp2 + 2b12 dp dq + b22 dq2 = 2 2 2 2

11 22w a du w a dv∗ ∗′+ , 
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 e11 dp2 + 2e12 dp dq + e22 dq2  = 11 22 ( )a a w w du dv∗ ∗ ′− . 

 
If δp, δq, δu, δv denote the variations of the variables p, q, u, v, resp., − i.e., quantities 
between which the same linear relations exist as the ones that exist between the 
differentials dp, dq, du, dv, namely, the following ones: 
 

δp = 
p p

u v
u v

δ δ∂ ∂+
∂ ∂

,  δq = 
q q

u v
u v

δ δ∂ ∂+
∂ ∂

, 

  
then along with the first set (1) of transformations of the forms A, B, C, E, it is known 
that one will simultaneously have the second set: 
 
 a11 δp dq + a12 (δq dp + δp dq) + a22 δp dq = 11 22a u du a vdvδ δ∗ ∗+ , 

 
 c11 δp dq + c12 (δq dp + δp dq) + c22 δp dq = 11 22wa u du w a v dvδ δ∗ ∗′+ , 

(2) 
 b11 δp dq + b12 (δq dp + δp dq) + b22 δp dq = 2 2

11 22w a u du w a v dvδ δ∗ ∗′+ , 

 

 e11 δp dq + e12 (δq dp + δp dq) + e22 δp dq = 1
11 222 ( )( )a a w w v du u dvδ δ∗ ∗ ′ − + . 

 
 A set of variations δp, δq, δu, δv will obviously be given by the equations: 
 

 δp = − 1

qa

φ∂
∂

, δq =
1

pa

φ∂
∂

, 

(δ) 

 δu = − 1

va

φ
∗

∂
∂

, δv =
1

ua

φ
∗

∂
∂

, 

 
in which φ denotes an arbitrary function of the variables p, q.  They will emerge 
immediately from the equations that express the differential quotients of a function φ with 
respect to the new variables u, v in terms of the differential quotients of the original 
variables, when one considers the equation: 
 

a =
2

u v u v
a

p q q p
∗  ∂ ∂ ∂ ∂− ∂ ∂ ∂ ∂ 

. 

 
A second set of variations will follow directly from the one above.  If the transformation 
relation exists that: 
 

P dp + Q dq = U du + V dv 
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then a system of quantities will also be given by the equations: 
 

 δp = − 1
Q

a
, δq =

1
P

a
, 

 

 δu = − 1
V

a∗
, δv =

1
U

a∗
 

 
that possesses the property of a system of variations. 
 We will make use of the introduction of the system of variations δ in order to exhibit 
an equation that corresponds to the equations (2), in which we think of the coefficients eik 
as being determined by the equation (e′). 
 When one considers the relation: 
 

K (B11 + B22) = H 
 

and appeals to the relations φ1 , φ2 for the partial derivatives of φ, the introduction of the 
variations δ will convert the last of equations (2) into the following one: 
 

K [(B11 φ1 + B12 φ2) dp + (B21 φ1 + B22 φ2) dq] – 1
2 H dφ  = 1

2 (w′ – w) [φ1 du – φ2 dv], 

 
and when one adds 1

2 H dφ to each side of the equality and divides by K = w w′, the 

following transformation relation, which is true for any function φ, will seem to emerge 
from that: 

(3)   11 12 21 22B B dp B B dq
p q p q

φ φ φ φ   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂   
 = 

1 1
du dv

w u w v

φ φ∂ ∂+
′∂ ∂

. 

 
Use will likewise be made from now on of the transformation: 
 

(3*)  11 12 21 22A A dp A A dq
p q p q

φ φ φ φ   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂   
 = w du w dv

u v

φ φ∂ ∂′+
∂ ∂

, 

 
which is developed in the same way with the help of equation (e). 
 It hardly needs to be mentioned that each of the transformation relations that were 
presented up to now, as well as each of the other ones that are developed by introducing 
the system δ of variations or the second system that was cited in place of the differentials 
dp, dq, du, dv, will be converted into a new transformation relation that is likewise true 
for every function φ.  Those conversions often perform a welcome service in the 
transformation of partial differential equations that are closely connected with the 
foregoing investigations. 
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II. 
 

 In order to represent such simultaneous invariants of the forms A, C, as well as those 
of the accompanying forms, which are composed from the coefficients aik , cik and their 
partial derivatives analogously to the way GAUSS constructed the invariant k from a 
given individual form, the GAUSSian curvature next provides the family of forms A 
+ Cλ ; i.e., the ones with the form: 
 

(a11 + λ c11) dp2 + 2 (a12 + λ c12) dp dq + (a22 + λ c22) dq2, 
 
in which λ is understood to mean an arbitrary constant. 
 The coefficients of the powers of the constant λ that appear in the development of 
that curvature in powers of λ were represented for a simultaneous invariant of the forms 
A and B. 
 It is only in that way that the invariants that one obtains would include differential 
quotients of the coefficients ai,k , ci,k up to and including order two, while different 
considerations might bring about the appearance of simultaneous invariants that would 
lead only to the first-order differential quotients of those coefficients. 
 In the simultaneous transformation of two forms A, C, those couplings of the 
coefficients and their differential quotients that already bring to prominence one of those 
forms – e.g., the form A – will, in turn, appear to be obvious couplings.  Those couplings 
are the quantities that already appeared in the introduction and were denoted by M, M′, 
M″, N, N′, N″ there. 
 Once we drop the GAUSSian notations E, F, G for the coefficients of the binary 
differential forms of degree two that was applied in the introduction and adopt the 
notations a11, a12, a22, which will be more appropriate in what follows, the quantities m, 
m′, m″, n, n′, n″, which were likewise introduced by GAUSS, will be given by the 
following equations: 
 

 m = 111
2

a

p

∂
∂

, m′ = 111
2

a

q

∂
∂

, m″ = 12 221
2

a a

q p

∂ ∂−
∂ ∂

, 

 

 n = 12 111
2

a a

p q

∂ ∂−
∂ ∂

, n′ = 221
2

a

p

∂
∂

, n″ = 221
2

a

q

∂
∂

. 

 
 We will choose a notation that goes back to CHRISTOFFEL for the quantities that 
were previously denoted by M, M′, M″, N, N′, N″  and set: 
 

  22 12
2

11 22 12

ma na

a a a

−
−

= 
11

1
a

 
 
 

, 11 12
2

11 22 12

na ma

a a a

−
−

= 
11

2
a

 
 
 

, 

 

  22 12
2

11 22 12

m a n a

a a a

′ ′−
−

= 
12

1
a

 
 
 

, 11 12
2

11 22 12

n a m a

a a a

′ ′−
−

= 
12

2
a

 
 
 

, 
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  22 12
2

11 22 12

m a n a

a a a

′′ ′′−
−

= 
22

1
a

 
 
 

, 11 12
2

11 22 12

n a m a

a a a

′′ ′′−
−

= 
22

2
a

 
 
 

, 

in what follows. 
 The index a that is introduced into the CHRISTOFFEL notation suggests the 

quadratic form A, from which one infers the characteristic system of quantities 
a

i k

h

 
 
 

 , 

and when one infers that system from another form G, it will be replaced with the 
corresponding index g. 
 The simultaneous invariants of the forms A and C that we speak of, which only lead 
to first-order differential quotients of the coefficients of those forms, are obtained from 
considering two couplings ca (p), ca (q) of those coefficients and their derivatives that are 

linear in the quantities 
a

i h

k

 
 
 

 of the first form and the coefficients ci,k of the other form 

and its derivatives. 
 Those couplings are defined by the following equations: 
 

 ca (p) = 22 12 11 12 22
22 12 111

2
1 1 1

a a a

c c c c c

p qa a a a a a

          ∂ ∂− + − +             ∂ ∂           

, 

(4) 

 ca (q) = 11 12 11 12 22
22 12 111

2
2 2 2

a a a

c c c c c

q pa a a a a a

          ∂ ∂− + − +             ∂ ∂           

, 

 
which can also be represented in the following form: 
 

 ca (p) = 22 12
11 12 22

22 22 21 121
1 2 1 2

a a a a

c c
c c c

a p q

         ∂ ∂− + + − −          ∂ ∂           
, 

(4′) 

 ca (q) = 11 12
11 12 22

12 11 12 111
1 1 2 2

a a a a

c c
c c c

a q p

         ∂ ∂− − + − +          ∂ ∂           
. 

 
 The couplings ca (p), ca (q) themselves (1) do not have the character of invariants.  
However, between them and the corresponding couplings that one infers from the 
transforms of the form A, C, namely: 
 

ca (p′ ) = 22 12 11 12 22
22 12 111

2
1 1 1

a a a

c c c c c

p qa a a a a a′ ′ ′

    ′ ′ ′ ′ ′     ∂ ∂− + − +             ′ ′∂ ∂′ ′ ′ ′ ′ ′          

, 

                                                
 (1) One immediately notes the validity of the equations: 

aa (p) = 0, aa (q) = 0. 
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ca (q′ ) = 11 12 11 12 22
22 12 111

2
2 2 2

a a a

c c c c c

q pa a a a a a′ ′ ′

    ′ ′ ′ ′ ′     ∂ ∂− + − +             ′ ′∂ ∂′ ′ ′ ′ ′ ′          

, 

 
the following equations exist: 

 ca (p′ ) = ( ) ( )a a

p p
c p c q

p q

′ ′∂ ∂+
∂ ∂

, 

(6) 

 ca (q′ ) = ( ) ( )a a

q q
c p c q

p q

′ ′∂ ∂+
∂ ∂

. 

 
One proves that in a way that we believe we should only suggest, for the sake of brevity.  
It is known that every identity: 
 

P dp + Q dp = P′ dp′ + Q′ dq′ 
 
between two linear differential expressions that can be transformed into each other will 
lead, under the assumption of the second identity: 
 

a11 dp2 + a12 dp dq + a22 dq2 = 2 2
11 12 222a dp a dp dq a dq′ ′ ′ ′ ′ ′ ′+ + , 

 
to the equation: 

(ε)     
1 P Q

q pa

 ∂ ∂− ∂ ∂ 
 = 

1 P Q

q pa

′ ′ ∂ ∂− ′ ′∂ ∂′  
. 

 
If one applies that remark twice to the identity: 
 

11 12 22 12

1
c c dp c c dq

q p p qa

φ φ φ φ    ∂ ∂ ∂ ∂− − −    ∂ ∂ ∂ ∂    

=
11 12 22 12

1
c c dp c c dq

q p p qa

φ φ φ φ    ∂ ∂ ∂ ∂′ ′ ′ ′ ′ ′− − −    ′ ′ ′ ′∂ ∂ ∂ ∂′     

, 

 
in which one understands the function φ to first mean the function p′ of the variables p, q 
and then the function q′, then one will get two equations that correspond to equation (ε).  
One can eliminate the second differential quotients of the functions p′, q′ from them with 
the help of the equations (9) that CHRISTOFFEL gave in his treatise “Über die 
Transformation der homogenen Differentialausdrücke zweiten Grades” (CRELLE-
BORCHARDT’s Journal, Bd. 70) and then obtain equations (6). 
 It follows from equations (6) that the system of quantities ca (p), ca (q), ca (p′ ), ca(q′) 
possesses the properties of a system of variations δp, δq, δp′, δq′ (a system of 
differentials, respectively), and is therefore suitable for converting each of the 
transformation relations that is true for the latter system into a new one that represents an 
identity relation between expressions that are composed in the same way, on the one 
hand, from the coefficients aik , cik , and on the other hand, from the coefficients ika′ , ikc′ , 
and their corresponding derivatives. 
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 By employing that property, one can then derive a wealth of simultaneous invariants 
of two simultaneously-transformed forms A and C, by which, one understands that to 
mean forms that play a preeminent role in the investigations of infinitesimal geometry. 
 For example, if one replaces the variations in the transformation relation: 
 

g11 δp dp + g12 (δq dp + δp dq) + g22 δq dq = 11 12 22( )g p dp g q dp p dq g q dqδ δ δ δ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + , 

 
which is valid for any form G, with the quantities ha (p), ha (q), ha (p′ ), ha (q′ ), which are 
inferred from a second form H in conjunction with the form A, then one will be led to the 
equation: 
 
(7)   [g11 ha (p) + g12 ha (q)] dp + [g12 ha (p) + g22 ha (q)] dq  
 

= 11 12 12 22[ ( ) ( )] [ ( ) ( )]a a a ag h p g h q dp g h p g h q dq′ ′ ′ ′ ′ ′ ′ ′ ′ ′+ + + , 

 
which can be applied to the question whose analogue in the theory of curved surfaces is 
the question: Under what conditions on a surface will the lines of curvature be suitable 
for dividing that surface into infinitely-small squares? 
 We would like to specify the conditions under which a form C : 
 

c11 dp2 + 2c12 dp dq + c22 dq2 
 
will be suitable for transforming the given form A : 
 

a11 dp2 + 2a12 dp dq + a22 dq2 
into the form: 

f (u, v) [du2 + dv2] 
 

by introducing the variables u, v that were defined in Section I. 
 If one chooses the form G in equation (7) to be the form E that was defined in the 
same place, and likewise for the form H, and uses the variables u, v in place of the 
arbitrary variables p′, q′ then that equation will be converted into: 
 
(8)  [e11 ea (p) + e12 ea (q)] dp + [e12 ea (p) + e22 ea (q)] dq = 12e∗ [ea (v) du + ea (u) dv], 

 
in which the coefficients of the form E that was transformed by the introduction of the 
variables u, v are denoted by adding an asterisk, as we have done up to now, once one 
considers that 11e∗ = 0, 22e∗ = 0. 

 Now, as a result of the definitions (4), one will have: 
 

 ea (u) = − 12 12
121

2
1

a

e e

va a a ∗

∗ ∗

∗ ∗ ∗

    ∂
   +   ∂    

, 
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 ea (v) = − 12 12
121

2
2

a

e e

ua a a ∗

∗ ∗

∗ ∗ ∗

    ∂
   +   ∂    

, 

 

and as a result of the meaning of the notations 
a

i k

h ∗

 
 
 

: 

 
12

1
a∗

 
 
 

= 11

11

1 1

2

a

a v

∗

∗

∂
∂

,  
12

2
a∗

 
 
 

= 22

22

1 1

2

a

a u

∗

∗

∂
∂

, 

and furthermore: 

12e∗  = 1
2 a∗ (w′ – w), 

so one will also have: 

 ea (u) = 1
2

log ( )w w w w

va∗

′ ′− ∂ −
∂

, 

 

 ea (v) = 1
2

log ( )w w w w

ua∗

′ ′− ∂ −
∂

. 

 
With the use of those equations, equation (8) will be converted into the following one: 
 

[e11 ea (p) + e12 ea (q)] dp + [e12 ea (p) + e22 ea (q)] dq 
 

= − 2 22 111
4

log( ) log( )
( )

w w a w w a
w w du dv

u v

∗ ∗′ ′ ∂ − ∂ −′− + ∂ ∂ 
. 

 
Now, should the form C possess the property that introducing the variables u, v will 
generate the coefficients 11a∗ , 22a∗  of the transformed form A and the quantity λ in the 

same way as before, then the differential expression: 
 

{[ e11 ea (p) + e12 ea (q)] dp + [e12 ea (p) + e22 ea (q)] dq}( w – w′ )−2 = Ω 
 
would obviously have to go to the total differential: 
 

− 1
4 d [log ((w – w′ ) λ)]. 

 
Conversely, if the differential expression Ω is the total differential of a function of the 
variables p, q then, as is easy to see, the introduction of the new variables u = f (u), v = 
φ (v) will suffice to transform the form A into the form: 
 

λ (du′ 2 + dv′ 2). 
 



Weingarten – On the theory of mutually-developable surfaces 23 

 The condition for the possibility that a form C is suitable for putting the form: 
 

A = a11 dp2 + 2a12 dp dq + a22 dq2 
into the form: 

A = λ (du2 + dv2) 
 
by introducing the variables u, v is then expressed by the partial differential equation: 
 

12 22
2

( ) ( )

4
a ae e p e e q

p H K

+∂  
 ∂ − 

 = 11 12
2

( ) ( )

4
a ae e p e e q

q H K

+∂  
 ∂ − 

. 

 
 That equation, which admits a multitude of conversions and simplifications, is the 
source of the article that was presented to the Königlich Preussischen Akademie der 
Wissenschaften zu Berlin on 8 November 1883: “Über die Differentialgleichung der 
Oberflächen, welche durch ihre Krümmungslinien in unendlich kleine Quadrate getheilt 
werden können.”  Insofar as the three coefficients c11, c12, c22 of the form C only need to 
be coupled with each other by one equation in order for that form to effect the desired 
conversion of the given form A, it will still remain that those coefficients can be subjected 
to two more arbitrary conditions. 
 That suggests the remark that when one has succeeded in determining the three 
coefficients cik in accordance with that one equation of condition that was posed, the 
variables u, v themselves will be arrived at by quadratures.  In fact, the equation: 
 

11 12 12 22
2 2

( ) ( ) ( ) ( )

4 4
a a a ae e p e e q e e p e e q

dp dq
H K H K

+ ++
− −

= − 1
4 d log [(w – w′ ) λ], 

 
which is equivalent to the equation of condition, allows one to determine the quantity 

( )w wλ ′−  by a quadrature. 
 Knowing that quantity will suffice for one to represent a given quadratic form by 
means of the equation: 
 

1

( )w w λ′−
[e11 dp2 + 2 e12 dp dq + e22 dq2] = du dv . 

 
u and v can be obtained from that equation by means of quadratures using the process that 
was suggested in the introduction.  Carrying out the process in question will show that for 
those required quadratures, it is not the value of the quantity λ (w – w′ ) itself that is 
given directly by the condition equation, but only the differential quotients of its natural 
logarithm, in such a way that the quadrature that is required first can be skipped, and that 
will yield some simple and elegant expressions for the variables u, v after one makes 
some conversions that are close at hand.  That last remark is also obviously true when 
one ascertains the lines of curvature in the corresponding geometric problem. 
 We do not believe that this method for converting a given quadratic form: 
 

a11 dp2 + 2a12 dp dq + a22 dq2 
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into the form: 
λ (du2 + dv2) 

 
by consulting a second one that contains three arbitrary coefficients is unworthy of 
attention. 
 
 

III. 
 
 We would now like to choose the form c11 dp2 + 2c12 dp dq + c22 dq2 that is to be 
transformed along with a11 dp2 + 2a12 dp dq + a22 dq2 in such a way that its three 
coefficients will be subject to the two condition equations: 
 
(10) ca (p) = 0, ca (q) = 0. 
 
 When those two conditions are fulfilled for any two original variables p, q, as a result 
of equations (6), the corresponding conditions: 
 
(10*) ca (p′) = 0, ca (q′) = 0 
 
will also be fulfilled for any new arbitrary variables p′, q′ that one introduces, and 
conversely. 
 If one introduces the functions u, v as the new variables, which possess the property 
that the form E that accompanies the forms A and C will go to the product of their 
differentials multiplied by a function of u, v, then equations (4′) will next imply the 
following ones: 

  ca (u) = 22
11 22

22 121

1 2
a a

w a
wa w a

a u ∗ ∗

∗
∗ ∗

∗

 ′    ∂ ′+ −     ∂     
, 

 

  ca (v) = 11
11 22

12 111

1 2
a a

w a
wa w a

a v ∗ ∗

∗
∗ ∗

∗

 ′    ∂ ′− +     ∂     
, 

 
and as a result of the equations: 
 

 
22

1
a∗

 
 
 

= − 22

11

1 1

2

a

a u

∗

∗

∂
∂

, 
12

2
a∗

 
 
 

= − 22

22

1 1

2

a

a u

∗

∗

∂
∂

, 

 

 
12

1
a∗

 
 
 

=    11

11

1 1

2

a

a v

∗

∗

∂
∂

, 
11

2
a∗

 
 
 

= − 11

22

1 1

2

a

a v

∗

∗

∂
∂

, 

one will obtain: 

 ca (u) = 221
2

log1
( )

aw
w w

a u u

∗

∗

′ ∂∂ ′− − ∂ ∂ 
, 
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(11) 

 ca (v) = 111
2

log1
( )

aw
w w

a v v

∗

∗

 ∂∂ ′− − ∂ ∂ 
. 

 
Under the assumption that equations (10) [equations (10*), resp.] are true, the differential 
equations will be true: 

 221
2

loga

u

∗∂
∂

= 

w

u
w w

′∂
∂

′−
, 

(12) 

 111
2

loga

u

∗∂
∂

= 

w

v
w w

′∂
∂

′−
. 

 
 Under the assumption that is expressed by equations (10) in regard to the coefficients 
of the form C, the form B that accompanies the forms A and C will possess a remarkable 
property, whose derivation we shall move on to.  It is that: 
 

B = b11 dp2 + 2b12 dp dq + b22 dq2 = 2 2 2 2
11 22w a du w a dv∗ ∗′+ . 

 
When one constructs the invariant kb (or curvature) that GAUSS gave from that quadratic 
form, and indeed in its representation in terms of the variables u, v, with the 
representation that was given in Section I, that will yield the same thing that one 
determines from the equation: 
 

kb = 
2 2

22 11

11 22 11 22 11 22

1 1 1

2

w a w a

u u v vww a a ww a a ww a a

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

    ′∂ ∂− ∂ ∂
    +

   ∂ ∂ ∂ ∂ ′ ′ ′    

. 

 

 After introducing the values of the differential quotients 
w

u

′∂
∂

, 
w

v

∂
∂

 in equations (12), 

one will note the relations: 
 

2
22w a

u

∗′∂
∂

= 22a
ww

u

∗∂′
∂

,  
2

11w a

v

∗∂
∂

= 11a
ww

v

∗∂′
∂

, 

 
and with their help, one will get the following representation for kb : 
 

kb = − 22 11

11 22 11 22 11 22

1 1 1 1

2

a a

u u v vww a a a a a a

∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

    ∂ ∂∂ ∂
    +

   ∂ ∂ ∂ ∂ ′     

. 
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One recognizes the curvature ka of the given form a11 dp2 + 2a12 dp dq + a22 dq2 in the 
quantity that is found in the factor w w′  in the reciprocal product on the right-hand side 
of the foregoing equation. 
 Under the assumption that equations (10) are true, the very important equation: 
 

(13)     ka = 
1

ak
ww′

 

 
will also be valid.  The form B is to the form C what the form A is to the form C, which 
emerges from equations (1) in the same algebraic relations.  If one takes the form B itself 
to be the starting form then that, in conjunction with the form C, will imply the form A in 
the same way that the form B is obtained from A and C when one simply exchanges the 
quantities w, w′ with their reciprocals. 
 The quantities cb (p), cb (q) are also closely related to the quantities ca (p), ca (q), 
which would emerge from the simple relations between the quantities cb (u), cb (v) and 
ca(u), ca (v). 
 Namely, if one constructs the latter quantities from the equations that serve to define 
them then one will find, after a brief calculation, that: 
 

 cb (u) = − 
2

1 1

w ww′
ca (u), 

 

 cb (v) = − 
2

1 1

w ww′ ′
ca (v) . 

 
Those equations also imply that under the assumption that was made about equations 
(10*) being true, the following equations: 
 
  cb (u) = 0, cb (v) = 0 
 
will also be fulfilled, and as a result of them, the equations: 
 
(14)    cb (p) = 0, cb (q) = 0 
 
will also be true. 
 We would further like to determine the three coefficients c11 , c12 , c22 of the form C, 
which are already subject to the conditions (10), upon further assuming that the form B, 
which is obviously always positive, represents the square of the line element of a surface 
of constant curvature ε, where we understand ε to mean one of the two square roots of 
unity. 
 As a result of equation (13), that assumption can be expressed by the equation: 
 

ε = 
1

ak
w w′

, 
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which is an equation that will take the form: 
 

2
11 22 12

2
11 22 12

c c c

a a a

−
−

 = ε ka 

 
after one introduces the value of the invariant ww′ that is expressed in terms of the 
coefficients of the forms A, C. 
 The three conditions that the coefficients c11, c12, c22 of the form C will be subject to 
as a result are now given by the following equations: 
 

 22 12
11 12 22

22 22 21 12

1 2 1 2
a a a a

c c
c c c

p q

        ∂ ∂− + + − −         ∂ ∂         
= 0, 

(I) 

 11 12
11 12 22

12 11 12 11

1 1 2 2
a a a a

c c
c c c

q p

        ∂ ∂− − + − +         ∂ ∂         
= 0, 

 
2

11 22 12
2

11 22 12

c c c

a a a

−
−

 = ε ka . 

 
 Under the assumption that the equations are fulfilled for any system of quantities c11, 
c12, c22, from the composition that exists in them, the form: 
 

b11 dp2 + 2b12 dp dq + b22 dq2 = 2 2 2 2
11 22w a du w a dv∗ ∗′+  

 
will represent the square of the line element of a surface of constant curvature ε. 
 In volume 94 of CRELLE-BORCHARDT’s Journal, pp. 201, as well as in volume 
95, pp. 326-329, we have carried out the proof of that for the case in which the form: 
 

b11 dp2 + 2b12 dp dq + b22 dq2 
 
represents the square of the line element of a surface of constant curvature ε by 
integrating two second-order linear ordinary differential equations in the real-valued 
functions X, Y, Z, which are always real and which fulfill the equations: 
 
 dX 2 + dY 2 + ε dZ 2 = b11 dp2 + 2b12 dp dq + b22 dq2, 
    X 2  +  Y 2 + ε  Z 2  = ε. 
 
It would seem superfluous to once more exhibit the differential equations in question in 
the notations that were chosen here. 
 The functions X, Y, Z themselves, which were denoted by x, y, z in the first-mentioned 
article, satisfy the equation that were denoted by (XII) there, and which can be 
represented by the following ones in the notations that were chosen here: 
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2

112

11 11

1 2
b b

b
p p q

ξ ξ ξ ε ξ   ∂ ∂ ∂− − +   ∂ ∂ ∂   
 = 0, 

 

(II) 
2

12

12 12

1 2
b b

b
p q p q

ξ ξ ξ ε ξ   ∂ ∂ ∂− − +   ∂ ∂ ∂ ∂   
 = 0, 

 

 
2

222

22 22

1 2
b b

b
q p q

ξ ξ ξ ε ξ   ∂ ∂ ∂− − +   ∂ ∂ ∂   
= 0. 

 
 By introducing the functions u, v as the new variables, as a result of their invariance 
that was pointed out in loc. cit., those equations will go to the following ones: 
 

 
2

2
112

11 11

1 2
b b

w a
u u v

ξ ξ ξ ε ξ
∗ ∗

∗   ∂ ∂ ∂− − +   ∂ ∂ ∂   
 = 0, 

 

(II *) 
2 12 12

1 2
b b

u v u v

ξ ξ ξ
∗ ∗

   ∂ ∂ ∂− −   ∂ ∂ ∂ ∂   
 = 0, 

 

 
2

2
222

22 22

1 2
b b

w a
v u v

ξ ξ ξ ε ξ
∗ ∗

∗   ∂ ∂ ∂ ′− − +   ∂ ∂ ∂   
= 0. 

 
 As a result of the relations: 
 

12

1
b∗

 
 
 

= 

(1/ )

1 1

w

v

w w

∂
∂

−
′

, 
12

2
b∗

 
 
 

= 

(1/ )

1 1

w

u

w w

′∂
∂

−
′

, 

 

which are obtained effortlessly from the equations that define the quantities 
b

i k

h ∗

 
 
 

with 

the help of equations (12), the middle of those equations, the consideration of which is all 
that is required next, can be put into the form: 
 

21 1 (1/ ) (1/ )w w

w w u v v u u v

ξ ξ ξ′∂ ∂ ∂ ∂ ∂ − + − ′ ∂ ∂ ∂ ∂ ∂ ∂ 
 = 0, 

 
from which, the equation: 

1

v w u

ξ∂ ∂ 
 ∂ ∂ 

 = 
1

u w v

ξ∂ ∂ 
 ′∂ ∂ 

 

will emerge. 
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 The property of a function ξ that satisfies that equation can be expressed by saying 
that the differential expression: 

1 1
du dv

w u w v

ξ ξ∂ ∂+
′∂ ∂

 

 
is equivalent to a total differential of a function of the variables u, v is therefore a 
property of each of the three functions X, Y, Z. 
 As a result of that remark, one will have the three equations: 
 

 dx = 
1 1X X

du dv
w u w v

∂ ∂+
′∂ ∂

, 

 

(III) dy = 
1 1Y Y

du dv
w u w v

∂ ∂+
′∂ ∂

, 

 

 dz = 
1 1Z Z

du dv
w u w v

∂ ∂+
′∂ ∂

, 

 
in which x, y, z denote three new functions of the variable u, v. 
 If one constructs the sum: 

dx2 + dy2 + ε dz2 
 

from the foregoing equations then when one considers the equation that is fulfilled by the 
functions X, Y, Z : 

dX 2 + dY 2 + ε dZ 2 = 2 2 2 2
11 22w a du w a dv∗ ∗′+ , 

 
one will find the following equation: 
 

dx2 + dy2 + ε dz2 = 2 2
11 22a du a dv∗ ∗+  = A. 

 
The functions x, y, z, which are given by equations (III) by quadratures, are therefore 
ones that correspond to the transformation problem that was spoken of in the introduction 
and is expressed by the equation: 
 

dx2 + dy2 + ε dz2 = a11 dp2 + 2a12 dp dq + a22 dq2 = A. 
 
 With the help of formula (3) of Section I, the differentials dx, dy, dz of those 
functions will be transformed directly into expressions that are represented in terms of the 
original variables p, q, and their differentials dp, dq, namely, the following ones: 
 

 dx = 11 12 21 22

X X X X
B B dp B B dq

p q p q

   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂   
, 
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(IV) dy = 11 12 21 22

Y Y Y Y
B B dp B B dq

p q p q

   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂   
, 

 

 dz = 11 12 21 22

Z Z Z Z
B B dp B B dq

p q p q

   ∂ ∂ ∂ ∂+ + +   ∂ ∂ ∂ ∂   
, 

 
in which one understands the quantities Bik to have the following values: 
 

 B11 = 11 22 12 12
2

11 22 12

1

a

a c a c

k a a a

−
−

, B12 = 12 11 11 12
2

11 22 12

1

a

a c a c

k a a a

−
−

, 

 

 B21 = 12 22 22 12
2

11 22 12

1

a

a c a c

k a a a

−
−

, B22 = 22 11 12 12
2

11 22 12

1

a

a c a c

k a a a

−
−

, 

 
from the formulas that were cited in Section I.  As long as the quantities c11, c12, c22 in 
these equations refer to three functions that satisfy equations (I), the former equations 
will include a solution to the problem: Determine three real-valued functions x, y, z of the 
variables p, q in such a way that the equation: 
 

dx2 + dy2 + ε dz2 = a11 dp2 + 2a12 dp dq + a22 dq2 
 
will become an identity. 
 In the case where ε denotes positive unity, those functions will give the so-called 
general solution to the problem of deforming a curved surface in the way that BOUR 
himself presented it, under the assumption that one has succeeded in integrating the 
differential equation for the geodetic lines for any given surface.  When one makes that 
assumption, the equation: 

X 2 + Y 2 + Z 2  = 1 
 

will exist between the functions X, Y, Z, and after equations (IV) have been multiplied by 
X, Y, Z, resp., and one has added together the products that one obtains, that will give the 
further equation: 

X dx + Y dy + Z dz = 0, 
 

from which it will follow that those functions X, Y, Z represent the cosines of the angles 
that the normal that is raised at the point (p, q) of the surface that is represented by 
equations (IV) makes with the x, y, z coordinate axes, resp. 
 If one further multiplies equations (IV), or equations (III), which are identical to 
them, by dX, dY, dZ, resp., and adds together the resulting products then one will be led 
to the equation: 

dX dx + dY dy + dZ dz = 2 2
11 22wa du w a dv∗ ∗′+ ; 

 
i.e., to the following one: 
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dX dx + dY dy + dZ dz = c11 dp2 + 2c12 dp dq + c22 dq2, 
 
which will yield the geometric meaning of the coefficients c11, c12, c22 that was mentioned 
already in the foregoing. 
 Finally, the equation: 
 

dX 2 + dY 2  + dZ 2 = b11 dp2 + 2b12 dp dq + b22 dq2 
 
shows that the form B gives the square of the line element for the image of the map of the 
surface that is given by equations (IV) to the GAUSSian sphere. 
 From the known formulas for the theory of the curvature of curved surfaces, the 
simultaneous invariants H, K of the forms A and C, resp., prove to be identical with the 
sum of the principal curvatures at the point (p, q) of the surface considered, in the first 
case, and their product, in the second case.  If one denotes those two principal curvatures, 
which are now the values of the invariants w and w′, by r and r′, resp., then the linear 
relationship: 
 

r r ′ (dx2 + dy2 + dz2) − (r + r′ )(dX dx + dY dy + dZ dz) + dX 2 + dY 2 + dZ 2 = 0 
 
will exist between the three forms A, B, C, which is a relationship that allows one to 
recognize immediately the known theorem of the similarity of infinitely-small parts of 
those surfaces for which r + r′ = 0 with the corresponding parts under their map to the 
GAUSSian sphere. 
 One effortlessly observes that equations (IV) are nothing but the ones that I 
introduced before into the theory of curved surfaces in the year 1861 in volume 59 of 
CRELLE-BORCHARDT’s Journal (“Über eine besondere Klasse von aufeineander 
abwickelbaren Oberflächen”). 
 As far as the determination of the functions X, Y, Z by integrating two second-order 
linear ordinary differential equations is concerned, that determination can lead to other 
mutually-distinct systems of those functions depending upon what constants one assumes 
for the integration.  However, as was shown already in the aforementioned article 
(CRELLE-BORCHARDT’s Journal, Bd. 94), the relations: 
 
 X′ = a  X + b   Y + c  Z, 
 Y′ = a1 X + b1 Y + c1 Z, 
 Z′ = a2 X + b2 Y + c2 Z 
 
exist between two systems (X, Y, Z), (X′, Y′, Z′ ), in which the coefficients ai , bi , ci are 
constant coefficients, and each of the systems represents a system of linearly-independent 
integrals of equations (II).  Moreover, due to the equations: 
 
  X 2  + Y 2  + Z 2  = 1, 
  X′ 2 + Y′ 2 + Z′ 2 = 1, 
 
the coefficients represent an orthogonal substitution. 
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 When one understands the ε in equations (IV) to mean positive unity and c11, c12, c22 
to mean a triple of quantities that satisfy equations (I), after one determines a system of 
quantities X, Y, Z, those equations will always lead to only one well-defined surface, 
although it can be obtained by rotating the axis system into different positions or 
reflecting it in a plane. 
 With the assumption ε = − 1 in the equations that were spoken of, that will yield a 
class of real-valued functions x, y, z that fulfill the equation: 
 

dx2 + dy2 − dz2 = a11 dp2 + 2a12 dp dq + a22 dq2. 
 
The functions x, y of that class satisfy the second-order partial differential that was 
denoted by (d) in the introduction, which does not relate to the problem of the 
developability of curved surfaces. 
 
 

IV. 
 

 The developments that were presented in the previous section reduced the 
determination of three functions x, y, z that satisfied the equation: 
 

dx2 + dy2 + ε dz2 = a11 dp2 + 2a12 dp dq + a22 dq2 
 
not to the integration of three simultaneous differential equations: 
 

 
2 2 2

x y z

p p p

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
 = a11 , 

 

  
x x y y z z

p q p q p q

∂ ∂ ∂ ∂ ∂ ∂+ +
∂ ∂ ∂ ∂ ∂ ∂

 = a12 , 

 

 
2 2 2

x y z

q q q

     ∂ ∂ ∂+ +     ∂ ∂ ∂     
 = a22 , 

 
but to the integration of the system of equations (I).  The latter system, which likewise 
includes three simultaneous equation, further requires only the fulfillment of two partial 
differential equations in three functions c11, c12, c22 , which are themselves coupled to 
each other by a second-degree algebraic equation.  That will allow one to eliminate one 
of the functions ci,k , so that two partial differential equations in the remaining two 
functions will exist that are linear in regard to the differential quotients of the functions 
that are included in them.  The question of ascertaining the three functions x, y, z will 
then be reduced to the integration of those two equations. 
 Although one can see that this reduction represents a simplification of the problem in 
question, it must still not conceal the fact that exhibiting a single differential equation 
whose integration will resolve the problem under the assumption that ε = 1 is not just 
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necessary, but also sufficient, and that this was not achieved by that reduction, which has 
not be observed anywhere, up to now.  One will indeed be led to a single partial 
differential equation for the last of the two remaining functions ci,k by further eliminating 
one of them from the two aforementioned partial differential equations.  That partial 
differential equation was a necessary consequence of equations (I), although it possesses 
integrals that go beyond the integrals of equations (I).  The subset of those integrals that 
are foreign to the solution of the problem must then be separated from the ones that are 
not, and that separation is tantamount to a new problem whose difficulty cannot be 
overlooked, and all the more so because that problem will lack a precise formulation 
before that integration has been accomplished. 
 Now it actually proves to be easy to express each of the three functions ci,k that appear 
in equations (I) in terms of a single function φ in such a way that those equations happen 
to be sufficient when the function φ satisfies a second-order partial differential equation.  
However, any real-valued integral φ of the latter will always correspond to real-valued ci,k 
in the case where ε = − 1, whereas in the case of ε = 1, those integrals can also 
correspond to purely-imaginary values of the ci,k , which are excluded due to the nature of 
the problem that was posed. 
 From a detailed consideration of the formulas for the products AD, AD′, AD″ that 
GAUSS gave and were reproduced in the introduction [and are easily confirmed by 
carrying out a simple calculation that will not be communicated here, since it requires the 
introduction of some further formal devices in regard to the differential quotients of the 

quantities 
a

i k

h

 
 
 

 and the quotients 11a

a
, 12a

a
, 22a

a
], one will see that quantities c11, c12, 

c22 will be given by the equations: 

 c11 = 
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2

2 2

11 12 22

11 11

1 2

1
2

a a
p p q

a a a
a q p q p

φ φ φ

φ φ φ φα ε

   ∂ ∂ ∂− −   ∂ ∂ ∂   

    ∂ ∂ ∂ ∂− − +    ∂ ∂ ∂ ∂     
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 c12 = 
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2 2

11 12 22

12 12

1 2

1
2

a a
p q p q
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a q p q p

φ φ φ

φ φ φ φα ε

   ∂ ∂ ∂− −   ∂ ∂ ∂ ∂   

    ∂ ∂ ∂ ∂− − +    ∂ ∂ ∂ ∂     
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 c22 = 

2

2

2 2

11 12 22

2 2 22

1 2

1
2

a a
q p q

a a a
a q p q p

φ φ φ

φ φ φ φα ε
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    ∂ ∂ ∂ ∂− − +    ∂ ∂ ∂ ∂     
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that satisfy equations (I), as long as one understands the function φ to mean an integral of 
the partial differential equation: 
 
  ε ka{ α – ε ∆1 (φ)} a  
(φ) 

= 

2

22 1 2 22 1 2 12 1 2

11 11 22 2 2 12 12

1 2 1 2 1 2
a a a a a a

φ φ φ φ φ φ φ φ φ
                

− − − − − − −                 
                

, 

 
in which the partial derivatives of the function φ are suggested by indices. 
 In that differential equation, ∆1(φ) denotes the differential parameter of the function 
φ : 

2 2

11 12 22

2
11 22 12

2a a a
q p q p

a a a

φ φ φ φ   ∂ ∂ ∂ ∂− +   ∂ ∂ ∂ ∂   
−

, 

 
for the sake of brevity, and α refers to an arbitrary constant that might have real positive 
values, including zero. 
 In the case where one assumes that ε = − 1, the functions c11 , c12 , c22 that are given 
by the foregoing equations will always be real-valued when φ is chosen to be a real-
valued solution of the partial differential equation (φ).  If the arbitrary constant α is not 
assumed to be equal to zero then that partial differential equation will coincide with 
equation (d*) in the introduction, and determining x, y, z by integrating it will require only 
quadratures, but no longer the integration of equations (IV). 
 When one understands the ε in equation (φ) to mean negative unity and the α to be 
mean a constant that is positive or zero, one can then regard that equation as the partial 
differential equation whose integration would be necessary and sufficient for resolution 
of the transformation problem: 
 

dx2 + dy2 − dz2 = a11 dp2 + 2a12 dp dq + a22 dq2 ; 
 
i.e., as the differential equation whose set of real-valued integrals would not be greater 
than what is required to resolve the problem. 
 Things are not the same when one understands the ε in equations (I) to mean positive 
unity.  If one assumes that the constant α has the value zero then the three quantities c11 , 
c12 , c22 will be pure imaginary (1) for any real-valued integral of equation (φ), and will 
suffice to solve the problem of the mutual developability of surfaces, whereas when one 

                                                
 (1) The equation (9) that OSSIAN BONNET presented in his “Mémoire sur la théorie des surfaces 
applicables sur une surface donnée” [Journal de l’École impériale polytechnique, 25 (1867), pp. 3] for the 
solution of the problem of the developability of a surface onto a given one will coincide with equation (φ) 

above when one chooses α = 0 in it and introduces the line element 24 dx dyψ  that BONNET chose. 
 To our way of looking at things, the equation that the distinguished geometer gave will not satisfy the 
conditions of the problem in question; however, its treatment would be sufficient for the accompanying 
problem in pseudo-geometry. 
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assumes that α is equal to a positive constant, the quantities c11 , c12 , c22 will prove to be 
real-valued only when: 

2 2

11 12 22

2
11 22 12

2a a a
q p q p

a a a

φ φ φ φ   ∂ ∂ ∂ ∂− +   ∂ ∂ ∂ ∂   
−

< α ; 

 
i.e., only for those real-valued functions φ that satisfy the differential equation (φ) itself, 
as well as the foregoing condition, which comes from the condition that was discussed in 
the introduction, as is easy to see.  The differential equation (φ) will have more real-
valued integrals than the ones that are connected with the problem of developability, and 
a comment that was already expressed before will still apply in regard to the separation of 
those solutions. 
 One can succeed in fulfilling the equation: 
 
(a)    dx2 + dy2 + dz2 = a11 dp2 + 2a12 dp dq + a22 dq2 
 
in only one case that is linked with a second-order partial differential equation whose set 
of all real-valued integrals does not exceed the set of all integrals that fulfill the foregoing 
equation.  That is the case in which the quadratic form: 
 

a11 dp2 + 2a12 dp dq + a22 dq2 
 
represents the square of the line element of a surface of constant curvature k.  As is easily 
verified (1), the equations: 
 

 c11 = 
2

112

11 11

1 2
a a

k a
p p q

φ φ φ φ   ∂ ∂ ∂− − +   ∂ ∂ ∂   
, 

 

 c12 = 
2

12

12 12

1 2
a a

k a
p q p q

φ φ φ φ   ∂ ∂ ∂− − +   ∂ ∂ ∂ ∂   
, 

 

 c22 = 
2

222

2 2 22

1 2
a a

k a
q p q

φ φ φ φ   ∂ ∂ ∂− − +   ∂ ∂ ∂   
, 

 
in which φ denotes an arbitrary real-valued function of the variables p, q, will determine 
three functions c11 , c12 , c22 of the variables p, q that satisfy the first two of equations (I) 
identically.  In order for them to also satisfy the third of those equations, the function 
φ must be determined from the following second-order partial differential equation: 
  

                                                
 (1) That is done most easily by using the invariance properties of equations (I), which can also take into 
account the foregoing remarks. 
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2

11 1 2 11 22 1 2 22 12 1 2 12

2
11 22 12

11 11 22 22 12 12

1 1 1 2 1 2
a a a a a a

k a k a k a

a a a

φ φ φ φ φ φ φ φ φ φ φ φ
                − − + − − + − − − +                 

                
−

= k . 

 
Any real-valued integral of that differential equation will lead to three functions c11 , c12 , 
c22 that satisfy equations (I), and then to three functions x, y, z that satisfy equation (a), 
just as conversely three functions x, y, z that satisfy the latter equation will determine a 
real-valued integral of the foregoing differential equation. 
 The proof of the converse that was just spoken of can be obtained from the following 
consideration: 
 Let x, y, z be three given functions for which the sum of the squares of their 
differentials yields a quadratic form a11 dp2 + 2a12 dp dq + a22 dq2 whose curvature 
possesses the constant value ε, where ε is understood to mean a square root of unity, with 
no loss of generality.  When one regards those functions as the rectangular coordinates of 
a point in space, a well-defined curved will then be given by those functions whose 
curvature at every point will be equal to the number ε.  If one calculates the cosines X, Y, 
Z of the angles that the normal that is raised at the point (p, q) on that surface makes with 
the axes of the chosen coordinates then those cosines will be given functions of the 
variables p, q.  One will obtain the following three quadratic forms with the help of the 
six functions x, y, z, X, Y, Z : 
 
 dx2 + dy2 + dz2 = a11 dp2 + 2a12 dp dq + a22 dq2 = A, 
 
 dX dx + dY dy + dZ dz = c11 dp2 + 2c12 dp dq + c22 dq2  = C, 
 
 dX2 + dY2 + dZ2 = b11 dp2 + 2b12 dp dq + b22 dq2 = B, 
 
whose coefficients are known functions of the variables p, q.  The parameters of the lines 
of curvature of the surface in question are the quantities that were previously denoted by 
u, v, and the invariants w, w′ of the first two of the foregoing forms are the principal 
curvature of that surface at the point p, q. 
 Since the form a11 dp2 + 2a12 dp dq + a22 dq2 has constant curvature ε, it will 
determine three functions that satisfy the equations: 
 
 X2 + Y2 + ε Z2 = ε, 

 d X2 + d Y2 + ε d Z2 = a11 dp2 + 2a12 dp dq + a22 dq2. 

 
 Each of those functions then satisfies the three linear partial differential equations: 
 

 
2

2

11 11

1 2
a a

p p q

η η η   ∂ ∂ ∂− −   ∂ ∂ ∂   
+ ε a11 η = 0, 

 

 
2 12 12

1 2
a a

p q p q

η η η   ∂ ∂ ∂− −   ∂ ∂ ∂ ∂   
+ ε a12 η = 0, 
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2

2

2 2 22

1 2
a a

q p q

η η η   ∂ ∂ ∂− −   ∂ ∂ ∂   
+ ε a22 η = 0, 

 
which will coincide with the following three equations when one introduces the 
parameters u, v of the lines of curvature in place of the variables p, q : 
 

 
2

112

11 11

1 2
a a

a
u u v

η η η ε η
∗ ∗

∗   ∂ ∂ ∂− − +   ∂ ∂ ∂   
 = 0, 

 

 
2 12 12

1 2
a a

u v u v

η η η
∗ ∗

   ∂ ∂ ∂− −   ∂ ∂ ∂ ∂   
 = 0, 

 

 
2

222

22 22

1 2
a a

a
u u v

η η η ε η
∗ ∗

∗   ∂ ∂ ∂− − +   ∂ ∂ ∂   
 = 0, 

 
the middle of which, as a result of the relations: 
 

 
12

1
a∗

 
 
 

= 11log1

2

a

v

∗∂
∂

 = 

r

v
r r

∂
∂
′ −

, 

 

 
12

2
a∗

 
 
 

= 22log1

2

a

u

∗∂
∂

 = 

r

u
r r

′∂
∂

′−
, 

can be put into the form: 

r
v u

η∂ ∂ 
 ∂ ∂ 

 = r
u v

η∂ ∂ ′ ∂ ∂ 
. 

 
Since each of the three functions X, Y, Z satisfy the foregoing equation, there will exist 

three other functions x, y, z that fulfill the equations (1): 

 

 d x = r du r dv
u v

∂ ∂′+
∂ ∂
X X

, 

 

(V)  d y = r du r dv
u v

∂ ∂′+
∂ ∂
Y Y

, 

 

                                                
 (1) One can express d x, d y, d z directly in terms of the original variables p, q with the help of formula 
(3*) in Section I. 
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 d z = r du r dv
u v

∂ ∂′+
∂ ∂
Z Z

. 

 
The functions X, Y, Z will then be determined in such a way that: 

 
(VI)  d X2 + d Y2 + ε d Z2 = 2 2

11 22a du a dv∗ ∗+ = a11 dp2 + 2a12 dp dq + a22 dq2. 

 
If one forms the sum d x2 + d y2 + ε d z2 while recalling the foregoing equations then one 

will obviously find that: 
 

d x2 + d y2 + ε d z2 = 2 2 2 2
11 22r a du r a dv∗ ∗′+  = b11 dp2 + 2b12 dp dq + b22 dq2, 

 
whereas the differential form: 

d X dx + d Y dy + ε dZ dz 

will then have the equation: 
 
(VII) d X dx + d Y dy + ε dZ dz = 2 2 2 2

11 22r a du r a dv∗ ∗′+ = b11 dp2 + 2b12 dp dq + b22 dq2. 

 
 Finally, one notes that due to the relation: 
 

X2 + Y2 + ε Z2 = ε, 

one will have the equation: 
 
(VII)    X dx + Y dy + ε Z dz = 0. 

 
If one now considers the sum X x + Y y + ε Z z (which might be denoted by Q) the 

equations (VII) and (VIII) will imply the following ones: 
 
 Q = X x + Y y + ε Z z , 

 

 
Q

p

∂
∂

 = 
p p p

ε∂ ∂ ∂+ +
∂ ∂ ∂
X Y Z
x y z , 

 

 
Q

q

∂
∂

 = 
q q q

ε∂ ∂ ∂+ +
∂ ∂ ∂
X Y Z
x y z , 

 

 
2

2

Q

p

∂
∂

 = 
2 2 2

2 2 2p p p
ε∂ ∂ ∂+ +

∂ ∂ ∂
X Y Z
x y z+ c11 , 

 

 
2Q

p q

∂
∂ ∂

 = 
2 2 2

p q p q p q
ε∂ ∂ ∂+ +

∂ ∂ ∂ ∂ ∂ ∂
X Y Z
x y z  + c12 , 
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2

2

Q

q

∂
∂

 = 
2 2 2

2 2 2q q q
ε∂ ∂ ∂+ +

∂ ∂ ∂
X Y Z
x y z+ c22 , 

 
the last three of which will go to the following ones: 
 

 
2

2

Q

p

∂
∂

 = 
11 11

1 2
a a

Q Q

p q

   ∂ ∂+   ∂ ∂   
− ε a11 Q + c11 , 

 

 
2Q

p q

∂
∂ ∂

 = 
12 12

1 2
a a

Q Q

p q

   ∂ ∂+   ∂ ∂   
− ε a12 Q + c12 , 

 

 
2

2

Q

q

∂
∂

 = 
22 22

1 2
a a

Q Q

p q

   ∂ ∂+   ∂ ∂   
− ε a22 Q + c22 

 
when one uses the linear partial differential equations that govern the functions X, Y, Z . 

 Due to the fact that: 
2

11 22 12
2

11 22 12

c c c

a a a

−
−

 = ε, 

 
those equations will imply the second-order differential equation: 
 

2

11 1 2 11 22 1 2 22 12 1 2 12

2
11 22 12

11 11 22 22 12 12

1 2 1 2 1 2
a a a a a a

Q Q Q a Q Q Q Q a Q Q Q Q a Q

a a a

ε ε ε
                − − + − − + − − − +                 

                
−

= ε 

 
for the function Q, which coincides with the one that was presented above for the 
function φ (1). 
 Any real-valued solution φ of that differential equation will, in fact, correspond to a 
surface of constant curvature ε, and conversely, any such surface will correspond to a 
real-valued solution of that differential equation. 
 In the case where ε is set equal to positive unity, the latter developments will include 
an interesting result that relates to surfaces of unity curvature.  In that case, as a result of 
the equation: 

X dx + Y dy + Z dz = 0, 

 
equations (V) will determine a surface for which the functions X, Y, Z give the cosines 

of the angles that the normal to it that is raised at the point (u, v) make with the 
                                                
 (1) The introduction of the intermediate variables u, v, which will not appear in the final result of all of 
the foregoing developments, is not necessary.  The properties of the couplings ca (p), ca (q) of the original 
variables suffices completely to develop the final result free of all variables u, v.  However, avoiding those 
variables would lead to a greater expenditure of calculation and would make the geometric relationships to 
the results harder to see. 
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coordinate axes x, y, z, resp.  That is because the curvature of the form B, by which the 

square of the line element: 
dx2 + dy2 + dz2 

 
of that surface is represented, is equal to unity, since that form yields the square of the 
line element of the map to the GAUSS sphere for the original surface (x, y, z). 
 Equations (V) further show that the variables u, v also represent the parameters of the 
lines of curvature for that second surface, and that r and r′ are its radii of principal 
curvature at the point (u, v), while the same quantities will represent the parameters u, v 
of the corresponding principal curvatures for the original surface.  The relations: 
 
 dx2 + dy2 + dz2    = a11 dp2 + 2a12 dp dq + a22 dq2, 
 
 dX2 + dY2 + dZ2  = b11 dp2 + 2b12 dp dq + b22 dq2, 
 
 dx2 + dy2 + dz2    = b11 dp2 + 2b12 dp dq + b22 dq2, 

 
 dX2 + dY2 + dZ2 = a11 dp2 + 2a12 dp dq + a22 dq2, 

 
which exist for the given surface [x, y, z] and the one that is derived from it [x, y, z], now 

contain the following theorem: 
 
 The points of a given surface of unity curvature always correspond to the points of a 
second surface of equal curvature that those points determine in such a way that the line 
element of the first one is equal to the line element of the image of the second one under 
the map to the GAUSSian sphere, and conversely.  Under that correspondence, the lines 
of curvature of both surfaces will correspond to each other, and the principal curvatures 
will be equal at corresponding points, although the associated lines of curvature will be 
switched with each other. 
 
 This would be a good place to mention the connection between the developments that 
were just employed and some other investigations into the theory of surfaces. 
 Instead of examining those properties of curved surfaces that are linked with a given 
form for the square of its line element, one can also shift one’s attention to the properties 
of surface that emerge from the map of a given form for the square of the line element 
onto the GAUSSian sphere.  OSSIAN BONNET published that genre of investigations in 
his treatise “Mémoire sur l’emploi d’un nouveau système de variables dans l’étude des 
propriétes des surfaces courbes” [LIOUVILLE’s Journal 5 (1860)], and indeed under the 
assumption that the square of the line element for the map to the GAUSSian sphere 
possessed the form: 

dφ 2 + sin2 φ dv2. 
 

CHRISTOFFEL presented his beautiful study “Über die Bestimmung der Gestalt einer 
krummen Oberfläche durch locale Messungen auf derselben” (CRELLE-
BORCHARDT’s Journal, Bd. 64) from the same standpoint. 
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 If one imagines that the point (x, y, z) of a curved surface is determined by the values 
of two variables p, q, and one lets X, Y, Z denote the cosines of the angles that the normal 
that is raised at the point (x, y, z) of that surface makes with the coordinate axes – i.e., the 
coordinates of the point (X, Y, Z) on the GAUSSian sphere that is the image of the point 
(x, y, z) – and one lets the quadratic form: 
 

b11 dp2 + 2b12 dp dq + b22 dq2 
 
of the given representation be the sum: 
 

dX 2 + dY 2 + dZ 2 
 
then the cosines X, Y, Z will individually satisfy the three simultaneous linear partial 
differential equations: 

 
2

2

U

p

∂
∂

 − 
11 11

1 2
b b

U U

p q

   ∂ ∂+   ∂ ∂   
+ b11 U = 0, 

 

 
2U

p q

∂
∂ ∂

 −
12 12

1 2
b b

U U

p q

   ∂ ∂+   ∂ ∂   
 + b12 U = 0, 

 

 
2

2

U

q

∂
∂

 −
22 22

1 2
b b

U U

p q

   ∂ ∂+   ∂ ∂   
 + b22 U = 0. 

 
 If one considers the function P, which is defined by the equation: 
 
(15)     P = Xx + Yy + Zz, 
 
or the algebraic value of the normal that is raised to the tangent plane at the point (x, y, z) 
of the given surface when the origin of the coordinates is arbitrary, then that will yield 
the following equations for its first differential quotients: 
 

 
P

p

∂
∂

 = 
X Y Z

x y z
p p p

∂ ∂ ∂+ +
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, 

(16) 

 
P

q

∂
∂

 = 
X Y Z

x y z
q q q

∂ ∂ ∂+ +
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, 

 
while the second differential quotients of that function will be given by the further 
equations: 

 
2

2

P

p

∂
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11 11

1 2
b b

P P X x Y y Z z
b P

p q p p p p p p

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂+ − + + +     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂     
, 
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P P X x Y y Z z
b P

p q q q q q q q
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when one uses the linear partial differential equations that the cosines X, Y, Z satisfy. 
 After introducing the relations: 
 

 c11 = 
2

112

11 11

1 2
b b

P P P
b P

p p q

   ∂ ∂ ∂− − +   ∂ ∂ ∂   
, 

 

 c12 = 
2

12

12 12
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b b

P P P
b P

p q p q

   ∂ ∂ ∂− − +   ∂ ∂ ∂ ∂   
, 

 

 c22 = 
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22 2 2

1 2
b b

P P P
b P

q p q

   ∂ ∂ ∂− − +   ∂ ∂ ∂   
, 

 
one will recognize the validity of the equation: 
 

c11 dp2 + 2c12 dp dq + c22 dq2 = dX dx + dY dy + dZ dz . 
 
 Now, as one easily convinces oneself, the simultaneous absolute invariants of the two 
forms dX 2 + dY 2 + dZ 2, dX dx + dY dy + dZ dz for any surface; i.e., the following 
values: 

11 22 12 12 22 11
2

11 22 12

2b c b c b c

b b b

− +
−

, 

 
2

11 22 12
2

11 22 12

c c c

b b b

−
−

, 

 
are identical to the sum of the radii of principal curvature ρ, ρ′ at the point (p, q) of the 
surface in question in the former case and their product in the latter, and the following 
equations will be true: 

(17)    11 22 12 12 22 11
2

11 22 12

2b c b c b c

b b b

− +
−

= ρ + ρ′, 
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(18)    
2

11 22 12
2

11 22 12

c c c

b b b

−
−

= ρ ρ′ = 
1

k
. 

 
 When one considers the definitions that were given for the quantities cik , equation 
(17) can be easily brought into the form: 
 

(19)  
22 12 11 12

2 2 2
11 22 12 11 22 12 11 22 12

1
P P P P

b b b b
p q q p

p pb b b b b b b b b

 ∂ ∂ ∂ ∂    − −    ∂ ∂∂ ∂ ∂ ∂
    +
∂ ∂    − − −
        

+ 2P = ρ + ρ′. 

 
 The coordinates x, y, z can be determined using equations (15) and (16) : 
 

 x = PX + 
11 12 22

2
11 22 12

X P X P X P X P
b b b

q q p q q p p p

b b b
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(20) y = PY + 
11 12 22
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Y P Y P Y P Y P
b b b

q q p q q p p p

b b b
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−
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 z = PZ + 
11 12 22

2
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Z P Z P Z P Z P
b b b

q q p q q p p p

b b b

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂− + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 
−

. 

 
 The foregoing equations contain the elements of a theory of the curvature of surfaces 
that corresponds to the assumption that the cosines of the angles that the normal that is 
raised at point (p, q) of a surface makes with the coordinate axes are given as functions of 
the variables p, q. 
 They show that when the sum of the radii of principal curvature of a surface is 
supposed to be a known function of the variables p, q under that assumption, which 
depends upon the determination of that surface by integrating the second-order linear 
differential equation (19), the coordinates of the points of that surface can be determined 
by integration from the function P and its derivatives alone. 
 By contrast, if a function k of the variables p, q were given each point of a surface 
that was supposed to represent its curvature then one would have to integrate the 
complicated differential equation (18), and the determination of the coordinates would 
result from that integration, as before. 
 Finally, if the cosines X, Y, Z themselves are not given, but only the sum of the 
squares of their differentials: 
 

b11 dp2 + 2b12 dp dq + b22 dq2, 
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then the integration of two second-order linear ordinary differential equations that has 
been mentioned many times by now would always allow one to determine a system of 
functions X, Y, Z that could represent those cosines.  In place of that system, one could 
also choose other ones that are connected with it by the relationship of an orthogonal 
substitution. 
 In the context of that remark, equations (20) obviously prove the following theorem: 
 
 If the map of the points of a curved surface to the GAUSSian sphere (the celestial 
sphere, respectively) is given and one knows the distance from a point in the tangent 
plane to that surface at a fixed point of the surface to each point of the surface then the 
form of the surface will be determined completely, while its position is space will not be 
fixed by that determination. 
 
 Obviously, that theorem is linked with the assumption that the distance from points 
that are coupled with the given surface to the corresponding tangent plane, which varies 
from point to point, will always admit first and second partial differential quotients with 
well-defined values. 
 
 Berlin 1884. 
 

__________ 
 

  


