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In volume 22 of the Transactions of the Royal IAslademy (1853)Jellet expressed
his beautiful observation that a flexible and inextensshigace of everywhere positive
curvature would not be deformable when a curve segmenivisifixed, while a surface
of everywhere negative curvature would admit a deformatiben one fixed one of its
asymptotic lines. However, the argument by whielet developed those theorems was
not convincing. The same thing was true of the conclusignshich L ecornu [Journal
de I'Ecole Polytechnique, Cahier 42, (1880)] later derived sormegeic properties of
the deformation of a flexible, inextensible surface itreatise that dealt with one of the
conditions for equilibrium of such a surface, which did twauch upon the crux of that
treatise. Both authors took the starting points ofrtdevelopments to be the linear
partial differential equations upon which theinitely-small deformations of a surface
that is considered to be flexible and inextensible depend.

The concept oifinitely-smalldeformations of such a surface initially allows tiao
different way of looking at things whose intrinsic agrent is by no means obvious. On
the one hand, one can consider a given surface whode poendetermined by the values
of two independent variablgs g to be a particular exemplar of a family of surfaces:

x=f1(p, q, 1), x=f1(p, q, 1), x=f1(p, q, 1),

and think of the continuous functiorsy, z of the argumentp, g, t as being subject to
the partial differential equations:

2 2 2
% + ﬂ + 6_2 = E,
op) \dp) \9p
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% + ﬂ + 6_2 =G,
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in which the function&, F, G are independent of the paramdteiThus, an exemplar of
that family that corresponds to the paramedteshould be developable to one that
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corresponds to an altered value of that parameter;ighdit can be brought from its
original position to the altered one with a continuouange of form. When two
exemplars of that family have parameters that differan infinitely-small valuer, one
can refer to one of them as tinéinitely-smalldeformation of the other one.

On the other hand, one can refer to a surface tlggnerated by an infinitely-small
displacement of a given surface asiafinitely-small deformation of a given surface
when one thinks of that displacement as being constréipete condition that it must
change the distance between two infinitely-close fgoon the given surface only by
guantities that are infinitely-small of order two orlig in comparison to the infinitely-
small displacements of those points themselves.

It is plausible that when a surface can be refewetstan infinitely-small deformation
of a given surface on the basis of the first conceptiothe term, it will also deserve that
designation on the basis of the second one. Howaevisr,not clear that an infinitely-
small deformation in the second sense of the termaislb represent one in the first
sense. The arguments ddlet andLecornu refer to the concept of an infinitely-small
deformation that corresponds to the second conceptitheadlea and which is broader in
scope than the one that belongs to the concept affaitely-small deformation as an
intermediate step in the finite change of form of mextensible surface. When one
follows the thinking of those geometers further intoréepective calculations of each in
relation to the infinitely-small displacements of @nt of a surface by infinitely-small
guantities of second order with zero, and those quanttiesdentified with zero, the
conclusion itself will also prove to be untenable titn&t vanishing of one of a number of
infinitely-small variables of the same number of hgeweous linear functions of those
variables would imply the vanishing of the determinant oftktiwse functions. One can
only infer that this determinant is infinitely-small of teeme order as the infinitely-small
variables themselves, and that they cannot be consittevediish in their own right then.

Therefore, a development &dllet’s theorems that chooses the other viewpoint on the
concept of infinitely-small deformations does not sgermtless. In the process of doing
that, one will also get the fundamental formulasnragicle on the theory of infinitely-
small deformations of flexible, inextensible surfacéattl submitted to the Kgl.
Preussischen Akademie der Wissenschaften on 28 January (8BBungsbericht der
Kgl. Preussischen Akademie der Wissenschatften, VI, 1886.)

1.

One considers two curved surfac&sandS' in space that satisfy the condition that
each pointX’ y’, z") of the first one corresponds to a poixit, §”, Z') of the second one
in such a way that the distance between any two infjrilese points of the first surface
is equal to the distance between the corresponding pufitie other one. If one thinks
of the coordinateg’, y’, z’ of each point of the surfac& as being given as functions of
two independent variable quantitipsqg, and the coordinates of the corresponding point
X', y', Z' of the surfac&” as functions of the same variables then the camdihat was
posed can be expressed by the equations:

(1) dx’? +dy’? +dz’? =dx"? + dy'*> + dZ* = E df + 2F dp dg+ G ddf,
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in whichE, F, G denote known functions of the variabjes.

We assume that the functiom$ y’ z’ and the other ones’, y', Z' are regular
functions of those variables inside of a domain ofgablesp, g under consideration,
and that in that domain they possess finite and sindleedavalues, along with all of
their derivatives.

If one couples any two corresponding points of the sesfatandS’ with lines then
the geometric locus of the midpoints of those conngclimes will represent a third
surfaceS, which we would like to refer to as theiddle surfaceof the given one§’ and
S'. The points of that surface are determined by the eaqsatio

X=X +X), Y=Y +y)  z=3(+2)

and the functiong, y, z that give the coordinates of each point on it dtewise finite
and single-valued, along with their derivatives, as a®lhe functiong’, x", etc.
If one introduces the notations:

u=1(x"-x), V=i oY), w=i(@Z-2)

then the same things will be true for the functiang w.
When one introduces the functiogsy, z andu, v, w into equations (I), instead of the
original ones, that will yield the equation:

()] dx du+ dy dv+ dz dw= 0,

which decomposes into the following three:
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Furthermore, let the equation:
dx + dy? + dZ = ay; dp” + 2a;, dp dg+ ap, dof

exist for the square of the line element of thedi@dsurfacesS, in which the functiongy
are known and are constrained by the same contioortditions as the functionsy, z

The use of equations (JIwill be lightened essentially with the aid of emfunction
@, which is defined by the function:
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and in which one easily knows one invariant of theedéhtial expression:
u dx+vdy+wdz.

Equations (I1) can then be replaced with the following four:

ox du axau
—5--0, ___¢\] aiz’

op ap opaq
(I ox du oxou
a_qa_p—_¢\/ 8y, &, ~ &, 2%@‘ .

The variablesp, q that enter into the foregoing equations dependnupat only the
function ¢, but the coordinates of a point on the middle aefS and the finite
displacements, v, w through which one has displaced that point indinections of the
coordinates, or its opposite, in order to makepihiat X', y’, Z') on the surfac&’ or the
point (X', y’, z") on the surfac&’ coincide with it. The equations:

X' =X+, y'=y+y, Z'=z+w,
along with the other ones:
X =X-U, y'=y-v, Z=z-w,

then determine the surfac8sandS”. One remarks that both surfaces can be regasied a
exemplars of the family of surfaces:

X"=x+tu, y'"=y+tyv, Z'=z+tw,

for the values + 1 and — 1 of the paramétand that it will follow from equation (I1) that
any two exemplars of that family that corresponaéd¢mal and opposite values of those
parameters will possess equally large line elemeavitde the surfac& will still remain
the middle surface for them. For infinitely-smadlluesr of t, the exemplars of that
family will define infinitely-small deformations dhe surfacé itself.

Now letX, Y, Z denote the cosines of the angles that the noortakt surfac& that is
raised at the poini(y, z) that corresponds to the valygg of the variables defines with
the coordinate axes, and the associated diffetdotia:

dX dx+dY dy+dZ dz
might imply the equation.

dX dx+dY dy+dZ dz=c;1 dp? + 2ci2dp dg+ ¢ def .
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The curvaturd of the surfacé& at the pointX, y, 2) is determined by the formula:

k = Gy Gy~ Ciz_
A 85~ aiz

As far as the functionsi1, c12, C22are concerned, as long as the determinart,, — a’,

does not vanish for individual points or lines in the surfageside of the domain of the
independent variables under consideration, they willioeefand single-valued functions
of those variables, along with their derivatives, agsult of the assumption that was
made on the domain in question, or at least a finitegfatrt

In Chap. XI of his “Disquisitiones generales circa sfipies curvas,"Gauss (Werke
v. IV, page 235) presented formulas by which the second tieesaof any of the
coordinatesx, y, z of a point of a surfac& could be expressed in terms of the first
derivatives of that same coordinate, and indeed in tefnt®rtain couplings that are
composed from the coefficients of the line element gnélrst derivatives, as well as by
means of the quantities, Y, Z, and the functions;i, Ci2, C2 in question. With the
notation that we have assumed, and under the assungbteonotation thaChristoffel
introduced for the aforementioned couplings, those forsrara the following ones:

9°x _ |11 ox (11 ax
Py e -~ X,
ap ljop |2]0q

2 12 12
(V) OX _JFolOx, J2A0X o
opadq ljop |2]0q

9°x _[22]ax |22 ox

—= —+ ——C,,X.

0q 1]0p 2]0q
For the sake of further conclusions that one can inden £quations (1), one defines the
following equation from the first two of those equatiomsth the introduction of the

notationa = ay; & — &,:

0gy/a _ 9ud*x _-du 9°x
op oqop” “—opapdq

defines another one from the last two:

0g/a _ du 9*x _-0ud®x
aq 0qopoq “—opad

and one then replaces the second differential quotatise coordinateg, y, z in the
equations thus-obtained by means of equations (1V). Whenranalls equations (l11),
and appeals to the relations:
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if¢\/5:11+12, i£¢\/5:12+22,
Ja op 1 2 Ja oq 1 2
which are easy to see, one will then be led to thewWong determinations:

ou Jdu
%: _an x67q+ Clzz X67p
ap \/E
6¢ _an X szz X
aq \/_a

In the case where the curvatlrganishes for every point of the surfégeso for all
values ofp, g, the equation:

(V)

C11C2— ¢5,=0
will be true, and that will yield the equations:

Vi) a¢—c12 ¢ -

as the first-order linear partial differential etjaa that the functio is subject to.
By contrast, when the determinamt ¢, — ¢, vanishes at only isolated points or
lines on the surfacg the following equations will be valid:

0¢ 0¢
du_ov. _ow_“og Zop
ZX——X— ryQe Wo 0 op
" dp ap ap k\/E
(Vi) a¢_qa¢
2
ZX——X@+Y@+ Z0W_ ~op
g dq aq kya

in the domain of the variablgs g, with the exception of the locations in questidhen
one differentiates the first of them with respexcttand the second one with respecpto
and subtracts the results obtained from each attegrwill yield:



Weingarten — On the deformations of a flexible, inesitde surface 7

0p __ 09 09 _ . 09

L ¢, - -c

6C226p ClZaq acllaq 126p
kfa | JE =y X ou_s- 0X0u
ap oq aq ap opaoq

When one appeals to the known formulas:

a_X: &, Ch~a, Cu%_}_ a, Gy aizclﬁ
op a ap a aq’

6_X - &, C,~ a8, szﬁ + a,C; &y, 0122(
aq a ap a aq’

the last equation that was developed will be convertedtim following second-order
partial differential equation:

0 _ . 99 0p_ .99

a%z?p_QZ?q 5 Cllaiq Clzap
(VI 1 k\/_a + k\/_a +C11azz_2c12312+ sza11¢ -0
Ja op aq a

that the functiorp satisfies.
Equations (VII) and (lIl) further imply expressions fbe six first derivatives of the

functionsu, v, win terms of the values of the functigrand its first derivatives by means
of the equations:

9p _ 40X )_ 9¢ _ ,0X

a_uzcl{xaq ¢6qj q{xap ¢6pj

; ,

(%) p ¢ axk\/_a 3¢ . oX
a_u;z{xap-%p}qz[xaq—%qj

aq ka ’

from which, the equations that relate to the denes of the functions, w will emerge
when one permutes with Y, Z.

The foregoing equations that were developed ferggometry of the middle surface
of two surfaces with equal line elements are, itt,fthe ones that one obtains for the
determination of the infinitely-small deformatioagan arbitrary curved surfac® since
even the latter represent only the same consegsiericihe condition equation for the
infinitely-small displacements without extensioaymely, the equation:
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() dx du+ dy dv+ dz dw= 0.

2.

The surface$s’” and S” that were considered in the previous section relateatin
other in such a way that every well-defined point of aidase corresponds to a well-
defined point of the other one, such that the distanceeleet two infinitely-close
neighboring points on the surfac® would be equal to the distance between the
corresponding points on the surfaB Every line in the first surface will then
correspond to a well-defined line in the second one.

We would like to assume the further property of both sed8” andS” that asingle
line on one of them will correspond to a line on theeotiinat iscongruentto it, and
indeed, in such a way that the points of both lines thagrlap as a result of that
congruence will also be corresponding points of bothased. One can then put both
surfaces into a position in which the two congruent liswes made to overlap from the
outset. One can also assume, with no loss of gktyerthat one of the independent
variables that determine the points of the surfaces e-ghas a constant valpe along
the common line to the two surfaces in question, whiedther one varies along that
line. Our assumption will then demand that the functidng’, Z' of the variable®, q
that were defined in the first section, as well as therobnes<’, y’, z’, will coincide for
the valuep, of p and every value ofh. The functionsu, v, w, which are subject to
equations (i) and the consequences that they imply will alsofyatie equations:

for every value of], and the ones that follow from them directly:

(@ [a—“j -0, [@j -0, ["’_Wj _o.
oq P=py o9 P=py o9 P=py

For further considerations, we shall exclude an espgdrderesting singularity that is
defined when the determinaat ax, — &’, vanishes fop = po , and then exclude the case
in which the middle surfac® proves to be developable from the surfa8esndS”, for
the sake of brevity. As a result of excluding the sSagtly, in a domain of the

independent variables that includes a finite valup afpo , the functiong itself will be
single-valued and finite, along with its derivativesg though the existence of a line for

which a1 a2 — @, vanishes will imply that the original domain of the istesp, q for
which only X", y', Z' andx’, y’, z’, along with their derivatives, are single-valued and
finite might have suffered a reduction.

Moreover, as a consequence of equatiahstite second of equations (II1) will imply
that:

(b) Bopn =0,
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and therefore also:

(©) [%j =0, (az—fj =0, (iﬁj =0, etc.
oq P=h oq P=py oq P=h

When one recalls equations),(the second of equations (VII), or the required cdse o
equation (VI), will then imply, in turn, the consequeticat:

(d () oes (%j =0,
P=h

Under the assumption that will established next thiathe valuep = po , the functionc,
does not vanish for any value gpfthe foregoing equation will imply:

© (%j =0
op P=Py
and furthermore:
2 3
(e’) (6¢j =0, ( 6¢2j =0, etc.
apaq pP=py apaq P=1

If one then thinks of the partial differential etjoa (VIII) that the functiong is
subjected to for all values @f g in the domain that we speak of as being arranged i
terms of the derivatives of that function, and d@hen setg = po then the foregoing
equations will imply the vanishing of all terms thiat differential equation, up to the
following one, whose vanishing it required by thastence of the differential equation,

namely:
{(czz)[%ﬂ =0,
P=P

The further equations will then be true:

3
( 62¢ j =0, etc.
op~oq P=h

Upon differentiating the differential equation (Yllwhen ordered in the aforementioned
way, with respect tp and setting the value pfequal to tqy , that will further yield:

O’p
)| —5 || =0
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and with repeated differentiation with respect to thatatde and continual use of the
equations that exist already, one will arrive at theiltabat the functiong itself will
vanish along the linp = po , along with all of its derivatives with respectgo When
one recalls the assumptions that were made for tinetidun ¢, that result will bring one
to the conclusion that the this function will vanishhie domain of the variablgs q that
finitely includes the ling = po .

As a result of equations (1X), the functiomsv, w will also vanish in that domain of
the independent variables, and the surfé&emndS” will coincide at all points of that
domain.

The conclusion that one infers from equatidnwill break down when the function
C22 vanishes for the valym of p and every value aj. In that case, a non-zero functign
can exist that satisfies the differential equationIj\édnd equationlg).

The validity of the equation:

(CZZ) P=py = 01
which can also be written in the form:

0X 0x 0YO0y, K 070z _
— 4+ 7+

0gdg 0qdg 0qgoq

as a result of the definition of the quantitigs demands that the differential equation:
dX dx+dY dy+dZdz=0

must be true along the curpe= po . As is known, the foregoing differential equatiam, i
conjunction with the one:
X dx+Y dy+Z dz= 0,

which is likewise fulfilled on the aforementioned curgays that the normals to the
surfaceS along that curve coincide with the binormals of thi#ela as long as one
continues to exclude the assumption that the curvetisigl# line.

As one knows, a double family of curves with that propetll exist in all cases of
everywhere negative curvature. However, surfaces witbrywhere non-negative
curvature can also possess individual lines with that prppgamely, any planar line of
zero curvature that they might contain.

Therefore, when the situation arises that the curaedne assumes to be common to
the surfacesS” and S” proves to be a curve with the aforementioned charactethe
middle surface, the coincidence of the surfaBsnd S” in a domain that finitely
contains that curve cannot be inferred from equatiofjs (Il

Finally, as far as the other case that was excluded npw is concerned — namely,
that the surfac& is a developable surface — some simple consideratiahsité similar
to the foregoing ones in regard to equations (1), (vig &/1) will show that even in that
case, whe,, does not vanish for the valpg of p, the functionsy, v, w must vanish in a
domain that finitely contains the curpe= po , while that conclusion cannot be inferred
whency, = 0 forp =po. The curvep = pp will then be an edge of regression §ror a
planar curve that it contains.
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As a result of the foregoing developments, the Walthg theorem can then be stated:

When two mutually-developable surfaces have a corresponding line that is not
straight and have the same common points along it, those surfacesheillaaincide on
a domain that finitely contains that line or the normal family of the raiddiface to both
surfaces will define the family of binormals to that common line alosigine.

The foregoing theorem makes it possible to resolve gwestion of what the
necessary conditions would be for a flexible, inextaassurface to admit continuous,
finite deformations that would preserve the position alvargcurve in it.

If one imagines that such a deformation is possibleafgiven surfac&, , and one
letsS denote the position of that surface after a contindedsrmation that is performed
over a timet then, as a result of the foregoing theorem, the cthakis assumed to be
fixed in § must possess the property at every ftirtleat the system of its normals on the
middle surface of the surfac&sandS, which likewise varies witlh, must coincide with
the unvarying system of its binormals. If one lets ezctine limits oft decrease the§
and the common middle surface will continuously approaeh silvfaceS, without
altering the position of that system of binormals. e Given curve must then already
possess the aforementioned property for the surfce and preserve it under all
continuous deformations & , moreover.

Surfaces of everywhere-positive curvature do not posaagscurves with that
character. Such surfaces are not deformable then whetixese finite, but still quite
small, curve segment in them. That is because ifstwoln mutually-developable surfaces
exist that coincide along that curve segment then, ftarioregoing, they would have to
coincide along a finite domain that includes that curggmet, and could separate only
in a boundary of that domain that is common to them_hmtt boundary would, in turn,
need to possess the character of an asymptotic lineh ébhoundary would not exist in
the further extent of both surfaces, with the excaptf the case in which one would be
led to have zero curvature along a planar line, butctinas@ature could not be ascribed the
property of being positive.

For surfaces of everywhere-negative curvature, thegong argument will not
suffice to prove undeformability when one fixes a snialt, finite, curve segment that is
included in it that does not belong to an asymptotic line.t iBhdecause an enlargement
of the necessarily-common finite domain of two mutudiyvelopable surfaces that
possess that curve segment in common would lead tts lanwhich a separation would
seem possible, namely, to the asymptotic lines of tihdase that go through the
endpoints of the curve segment.

The conclusions that were just inferred pertainechénecessarycondition for the
existence of a continuous, finite deformation of a @erfdat fixes a curve segment in it.
However, it was not proved that this condition for parfing the deformation was also
sufficient Strictly speaking, that proof was only completed by degithe equation for
the family of mutually-developable surfaces of negativevature that included an
asymptotic line that was common to all of its individuaemplars. By itself, that
derivation did not seem to be practicable given the prestatd of the theory. We shall
satisfy ourselves then with the proof that infinitslyall deformations of a surfa&e of
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everywhere-negative curvature are possible for whiclvangasymptotic line on it will
remain an asymptotic line.

Let x, y, z be the coordinates of a point of that surface, wheg #re expressed in
terms of the independent variablgsy, and letp = po be the equation of a well-defined
asymptotic line on it. While preserving the notations thate introduced, a surfa&
that is infinitely-close to it, wherer denotes an infinitely-small constant, can be
represented by the equations:

X =X+71U, Y =y+rV, Z=z+T1TW,

and both surfaces will possess the same line elemea Wie functionsy, v, w are
subjected to the condition:

(1 dx du+ dy dv+dz dw=0

for all p, g. That will imply all of the consequences in regarthi functionay, v, w that
were inferred in section 1.

Formulas (IX) of this section will then show thathem a functiong can be
ascertained from the differential equation (VIII), undee condition thatg,_, = 0,

which is a condition that implies the equation:

5.
o9 P=R ’

(CZZ) pP=py = 01

as a result of the assumption:

the derivatives of the functions v, w that are determined by those formulas, moreover,
will satisfy the equations:

w. @ G
aq P=R , aq P=R , aq P=h ,

and that for a suitable determination of the constdhésyalues ofi, v, w will vanish
along the curve =pp .

The surfaceS; that corresponds to such a functignwould then represent an
infinitely-small deformation of the surface and wouidlude the lingp = po. However,
the surfaceS, would not satisfy the condition that this line iscatmne of its asymptotic
lines with no further assumptions.

One would effortlessly determine the equation:

X3 _ox ¢
«_x-090p 0pog

k\/ a; &y,~ aiz
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for the difference between the cosinesY’, Z’ of the angles between the normal at a
point of the surfac&; that corresponds to the valygg of the independent variables and
the cosine¥ Y, Z at the corresponding point 8§f in which theay denote the coefficients
of the line element d&. One obtains the differenc®s—Y, Z’— Zfrom it by permuting
theX with Y, Z, resp.

The necessary coincidence of the normals to tifacasS andS; along the lingp =

po will demand the vanishing of the derivativ%g for p=po, as long as that line is not
p

planar. The functionp that mediates a possible infinitely-small deformatafnthe
surfaceSis then linked with théwo conditions:

09
¢p: = 01 [_j = O,
? op P=py

along with the differential equation (VIII). Suppressing gecond one would lead to an
infinitely-small deformation o& that could not be considered to be an intermediatgest
of a finite deformation of that surface.

That remark confirms what we said in the introductionualdhe concept of an
infinitely-small deformation of a surface using thecend approach to defining that
concept that was mentioned there being broader in scopevtia would be required for
the concept of the continuous deformation of a surface.

We believe that the sufficiently-known deformatiarfsdevelopable surfaces should
be excluded from out developments.

Finally, permit us to remark that the foregoing cdasttions are closely connected
with the study of those domain boundaries innasimensional manifold on which the
integrals of the second-order partial differential equegtiwithn independent variables
that are single-valued, finite, and continuous, along wiiteir first derivatives, can
branch, but we shall postpone an examination of th&tt®n to a later publication.

Berlin 1886




