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 The general theory of curved surfaces coincides with the theory of simultaneous 
transformations of binary quadratic forms that are constructed from the differentials of 
two independent variable quantities and whose coefficients are functions of those 
variables themselves.  When one continuously maps the points of a curved surface to a 
sphere of unit radius using GAUSS’s process, two quadratic forms of that sort will 
emerge from the simplest geometric considerations.  The first of them is the square of the 
distance between two infinitely-close points of the surface considered.  The second one is 
represented by the product that one obtains when one multiplies that distance times the 
value of its image on the sphere and cosine of the angle that the connecting line between 
two infinitely-close points on the surface makes with the line that connects their images.  
In place of the second form, one can also appeal to the one that specifies the square of the 
distance between the images of two infinitely-close points on the given surface.  That 
third quadratic form is connected with the first two by a linear homogeneous equation. 
 If a point on a curved surface is specified by x, y, z, which are functions of two 
independently-varying quantities p, q, and the cosines of the angles that the normal to the 
surface at that point on the surface makes with the rectangular coordinate axes are 
specified by X, Y, Z, resp. (i.e., the coordinates of the Gaussian image of that point on the 
sphere of unit radius with its center at the coordinate origin) then the three 
aforementioned quadratic forms will be the following ones: 
 
 dx2 + dy2 + dz2  = a11 dp2 + 2a12 dp dq + a22 dq2, 
 
 dX dx + dY dy + dZ dz  = c11 dp2 + 2c12 dp dq + c22 dq2, 
 
 dX2 + dY2 + dZ2  = b11 dp2 + 2b12 dp dq + b22 dq2, 
 
and their coefficients aik , bik , cik will be given functions of the variables p, q for a given 
surface. 
 Investigations that I carried out on the properties of those forms, and which will be 
published in the next issue of the Journal für Mathematik, have led me to some results 
that relate to the theory of deformations of curved surfaces that I dare to submit below to 
the Königlichen Akademie der Wissenschaften. 
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 If one gives each point (x, y, z) of a surface in question an infinitely-small 
displacement σ whose components along the coordinate axes are determined by the 
equations: 

δx = u i, δy = v i, δz = w i, 
 

where the u, v, w in those equations are finite and continuous functions of the variables p, 
q, including their second derivatives, and i denotes an infinitely-small constant, then the 
square of the distance between two infinitely-close points (x, y, z) and (x + dx, y + dy, z + 
dz) on that surface will go to the value: 
 

(dx + i du)2 + (dy + i dv)2 + (dz + i dw)2 
 
under the displacement that took place.  Should the chosen displacement of the original 
distance between two infinitely-close points not have changed, so the surface in question 
would have also changed without any change in its line element, then when one neglects 
quantities that have second order relative to the infinitely-small displacements, the 
following equation must be valid: 
 

du dx + dv dy + dw dz = 0. 
 
Since the coefficients of the products dp2, dp dq, and dq2 in that equation must vanish 
separately, it will decompose into three other ones that represent those simultaneous 
partial differential equations that the functions u, v, w must satisfy when a displacement 
of the points of a curved surface can be mediated by them that leads to an infinitely-close 
surface that is developable onto the original one. 
 Now, it can be shown that ascertaining such functions u, v, w can be made to depend 
upon the discovery of a single function φ that satisfies the linear partial differential 
equation: 
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The aik , cik in it denote the coefficients of the aforementioned quadratic forms, and a is 
the determinant a11 a22 − 2

12a  of the first of them.  Furthermore, k is the curvature of the 

point (p, q) on the surface in question, which will be assumed to vanish only at individual 
point or lines on the surface. 
 The function φ itself is the invariant of the differential expression: 
 

u dx + v dy + w dz = P dp + Q dq ; 
 
i.e., it is the quantity that is determined by the equation: 
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 If any real-valued integral φ of the differential equation (I) is known then it will 
correspond to a displacement without extension of the given curved surface in such a way 
that the displacement ri  of a point on it along a fixed direction r can be ascertain from the 
equations: 
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by quadrature.  In those equations, R denotes the cosine of the angle that the fixed 
direction r makes with the normal that is raised at the point (p, q). 
 Any well-defined real-valued function φ that satisfies equation (I) will then 
correspond (up to an additive constant) to a well-defined displacement without extension 
of the surface that we speak of, and conversely, every well-defined displacement without 
extension of it will correspond to a well-defined function φ that satisfies the differential 
equation. 
 In what follows, such a function φ that is intrinsically linked with an infinitely-small 
displacement without extension of a surface will be given the name of displacement 
function, and the differential equation (I) will be referred to as the differential equation of 
the displacement function. 
 The following theorems will be true then: 
 
 Any linear homogeneous function: 
 

a X + b Y + c Z 
 
of the cosines X, Y, Z represents a displacement function, and the displacement of a 
curved surface that is connected with that function consists of an infinitely-small rotation 
of the fixed surface around a line whose direction cosines are proportional to the 
constants a, b, c and an infinitely-small advance of that surface in an arbitrary direction. 
 
 Conversely: 
 
 Any infinitely-small possible motion of the fixed surface corresponds to a 
displacement function φ of the form: 
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φ = a X + b Y + c Z. 
 

Any integral φ of the differential equation (I) that cannot be represented as a 
homogeneous linear function of the quantities X, Y, Z corresponds to an infinitely-small 
deformation of the surface under consideration. 
 
 The foregoing theorems are easily obtained by considering the changes that the values 
of the given coefficients cik will have suffered at the corresponding point of the second 
surface that arises from an infinitely-small displacement.  If one denotes the variations of 
those coefficient that correspond to the variations: 
 

δx = u i, δy = v i, δz = w i 
 
by δcik then after introducing the displacement function φ, those variations can be 
obtained in a simple form that is closely linked with the forms that appear in the theory of 
the transformations of quadratic differential expressions. 
 When one appeals to a notation that CHRISTOFFEL introduced into the theory of the 
transformations of quadratic differential expressions (E. B. CHRISTOFFEL, “Über die 
Transformation der homogenen Differentialausdrücke zweiten Grades,” Borchardt’s 
Journal, Bd. 70) and in relation to the quadratic form: 
 

dX 2 + dY 2 + dZ 2 = b11 dp2 + 2 b12 dp dq + b22 dq2, 
 
one introduces the notation: 
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to abbreviate, then one will find the following values for the variations of the coefficients 
c11 , c12 , c22 of the original surface under a displacement of it that is mediated by a 
displacement function φ : 

  δc11 =
1

b
(− c11 ∆12 + c12 ∆11) i, 

 

  δc12 =
1

b
(− c11 ∆22 + c12 ∆12) i, 
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  δc12 =
1

b
(+ c22 ∆11 − c12 ∆12) i, 

 

  δc22 =
1

b
 (+ c22 ∆12 − c12 ∆22) i, 

 
in which b means the determinant b11 b22 − 2

12b . 

 If one chooses the parameters u, v of the curvature lines of the given surface to be the 
variables p, q, resp., then since c12 = 0, b12 = 0 under that assumption, the foregoing 
equations will be converted into the following ones: 
 

  δc11 = − 1

b
 c11 ∆12 i, δc12 = − 1

b
 c11 ∆22 i, 

 

  δc12 =   1

b
 c22 ∆11 i, δc22 =   1

b
 c22 ∆12 i . 

 
With their help, one can resolve the question that has been touched upon many times of 
the conditions under which a given surface will admit an infinitely-small deformation 
without extension under which the lines of curvature will, in turn, go to lines of 
curvature. 
 In order to go further into those conditions, it is obviously necessary that c12 + δc12 
should vanish for all points of the deformed surface, and since one already has c12 = 0, 
that δc12 itself should be equal to zero. 
 A displacement function φ must then exist for the given surface that simultaneously 
satisfies the equations: 

∆11 = 0, ∆22 = 0, 
 
while ∆12 remains non-zero.  If ∆12 were likewise zero then that would yield a linear 
homogeneous function of the cosines X, Y, Z for the displacement function in question, so 
its corresponding displacement would be one without deformation, and the conservation 
of the lines of curvature would be obvious. 
 Since the quantities ∆11, ∆12, ∆22 fulfill the equations: 
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identically for every arbitrary function φ and any variables p, q (Cf., “Über die Theorie 
der aufeinander abwickelbaren Oberflächen,” Festschrift der Königlichen Technischen 
Hochschule zu Berlin, 1884, pp. 35), the simultaneous vanishing of ∆11, ∆22  for non-
vanishing ∆12 would require the fulfillment of the equations: 
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which would go directly to the following ones: 
 

12
11log

b

v b

 ∆∂
  ∂  

= 0, 
12

22log
b

u b

 ∆∂
  ∂  

= 0, 

 

corresponding to the definition of the 
i k

h

 
 
 

.  It follows from them that: 

 

22

11

b

b
= 

V

U
, ∆12 = UV , 

 
in which one understands U to mean a function of only the variable u, and V to mean a 
function of only the variable v.  One must then be able to put the equation: 
 

dX2 + dY2 + dZ2 = b11 du2 + b22 dv2 
into the form: 

dX2 + dY2 + dZ2 = 11b

U
(U du2 + V dv2), 

or the following one: 
dX2 + dY2 + dZ2 = λ (du′2 + dv′ 2), 

 
in the latter of which, one defines: 
 

du′ = U du,  dv′ = V dv,  λ = b11 U
−1. 

 
 Under the assumption that the functions u′, v′ (which can, in turn, be referred to as the 
parameters of the lines of curvature of the surface considered) were introduced as the 
variables u, v, the necessary conditions for the surface to admit an infinitely-small 
deformation that preserves the lines of curvature will now read: 
 

λ = b11 = b22 ,  ∆12 = 1. 
 

However, as a result of the linear partial differential equations that the quantities X, Y, Z 
are subject to, those necessary conditions will also immediately prove to be sufficient, 
since one infers from the equations: 
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 dX2 + dY2 + dZ2 = λ (du2 + dv2), 
 X2 + Y2 + Z2 = 1 
 
the conclusion that the following differential expressions: 
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represent the total differentials of three functions α, β, γ of the variables u, v, from which 
those functions can be obtained by quadratures.  After doing that, the function: 
 

φ = α X + β Y + γ Z 
 

will represent a function of the quantities u, v that does, in fact, satisfy the conditions: 
 

∆11 = 0, ∆12 = 0, ∆22 = 0 . 
It will then follow that: 
 
 In order for a surface to admit an infinitely-small deformation that is not coupled 
with any extension, and under which its lines of curvature will go to lines of curvature in 
the deformed surface, it is necessary and sufficient that under the map of its lines of 
curvature to the GAUSSian sphere, that sphere is suitable for being associated with 
infinitely-small squares. 
 
 The family of surfaces that is characterized by the property that was expressed in the 
foregoing theorem possesses a feature that is analogous to the one that I exhibited in a 
publication that I presented to the Königlichen Akademie on 8 November 1883 for those 
surfaces that can be associated with infinitely-small squares by way of their lines of 
curvature. 
 When one understands ρ and ρ′ to mean the radii of principal curvature of a curved 
surface at the point (x, y, z), that feature can be expressed in the following form: 
 
 In order for the map of the lines of curvature of a surface to the GAUSSian sphere to 
be capable of being assigned squares in the infinitely small, it is necessary and sufficient 
that the differential equation: 
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should be the total differential of a function of position on that surface. 
 
 Proving that theorem and exhibiting of the fourth-order partial differential equation 
that the family of surfaces that we spoke of must satisfy emerge from an almost direct 
reproduction of the conclusions that were reached in the aforementioned article on 8 
November 1883. 
 If Ω denotes the foregoing differential expression and one assumes that Ω proves to 
be the total differential of a function of position for a given surface then the sum: 
 

dX2 + dY2 + dZ2 = b11 dp2 + 2b12 dp dq + b22 dq2 
 

will always take on the form: 
λ (du2 + dv2) 

 
by the introduction of suitable parameters for the lines of curvature of that surface, and 
one will determine the function λ as a function of the original variables p, q from the 
equation: 

Ω = 1
2 d log λ 

 
by quadrature without it being necessary to know the parameters u, v as functions of the 
p, q. 
 Equations (II) then give rise to a new consequence.  One can easily convert the first 
one into the form: 

dα = 
1

( )λ ρ ρ′−
{2 (Y dz – Z dy) – (ρ + ρ′ ) (Z dY – Y dZ)}, 

 
from which the other two can be derived by cyclically permuting X, Y, Z.  The function α, 
and as a result, β and γ, as well, can be obtained from that equation by quadrature without 
having to ascertain the parameters u, v.  The same thing will therefore be true for the 
displacement function in question: 
 

φ = α X + β Y + γ Z . 
 

 In order to ascertain the displacement function that mediates the deformation of a 
surface that preserves the lines of curvature, when the surface admits such a 
deformation, it is only necessary to perform quadratures of differential expressions that 
are given in terms of the original variables and their differentials. 
 
 Finally, the equation: 

dα dX + dβ dY + dγ dZ = 2 du dv 
 
also shows that the parameters of the lines of curvature in the surface that we speak of 
can be determined by quadratures in their own right. 
 When a surface admits an infinitely-small bending that takes its lines of curvature to 
other ones on the bent surface, nothing will follow from that fact alone besides the fact 
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that the second surface will, in turn, possess that same property.  Should the property in 
question also remain true for that surface, and also for further deformations, which would 
then follow, then it would not be sufficient for the square of the map of its line elements 
to the GAUSSian sphere to be capable of being put into the form λ (du2 + dv2) in terms of 
the parameters of the lines of curvature, but it would be necessary, in addition, that λ 
should be a function of only the parameter u or the other one v. 
 The type of surface that corresponds to the latter condition, which belongs to the 
general class that was defined above, can be given completely and proves to belong to 
MONGE’s moulure (milling) surfaces, to which one can also count surfaces of 
revolution.  That remark agrees with a study by CODAZZI, who showed in volume VII 
of series 1 of TORTOLONI’s Annali (1856) that the surfaces in question and the 
developables were the only ones that could be subjected to finite deformations that 
preserved their lines of curvature. 
 The developable surfaces were expressly excluded from our analysis. 
 

___________ 
 


