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Foreword

According toFelix Klein, line geometry is the geometry of a quadratic manifold in a
five-dimensional space. According Eduard Study, kinematics — viz., the geometry
whose spatial element is a motion — is the geometey quiadratic manifold in a seven-
dimensional space, and as such, a natural generalizdtim® geometry. The geometry
of multidimensional spaces is then connected most lglagieh the geometry of three-
dimensional spaces in two different ways. The pregeie gives an introduction to line
geometry and kinematics on the basis of that coupling.

In the treatment of linear complexesRy the line continuum is mapped to & in

Rs. In that subject, the linear manifolds of complexesetamined, along with the loci
of points and planes that are linked to them that teadeir analytic representation, with
the help ofWeitzenbdck’s complex symbolism. One application of the map ghies
line-sphere transformation. Metric (Euclidian and iarelidian) line geometry will be
treated, up to the axis surfaces that will appear once maay geometry as chains. The
conversion principle of ray geometry admits the deiovaof a parametric representation
of motions fromEuler’s rotation formulas, and thus exhibits the connectiowéen line
geometry and kinematics. The main theorem on motindgransfers will be derived by
means of the elegant algebra of biquaternions.

Maps in the usual sense can be contained in this book oallesser degree, since it
will treat geometry in complex or multidimensional spscfor the most part. Symbolic
figures have been avoided for the sake of saving space.

The main facts of our guide are indissolubly coupled i name ofEduard
Study. The treatment of the line-sphere transformatiag, geometry, and kinematics
here goes back t&8tudy. We shall refer to the original literature by citagoat the
relevant places. With those references, we would tlikeatisfy not only the duty of
gratitude to our esteemed teacher, but also the pointheusdth intoStudy’'s world of
ideas to the reader.

| would like to thankW. Brach, H. Peters andH. Schroder for their assistance in
the correction, and the publisher for the eagernesshbgtshowed in their decision to
print this guide.

Bonn, in January 1935.
Ernst August Weiss
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Chapter One

The linear complex inR;

8 1. Pluckerian line coordinates.

1. Notations. The basic facts of the geometry of the line, tla@] and space will
be assumed in what follows. We denote binary parambieGreek symbols, 7. The
parametetf has the coordinate§ : & . The condition for the binary parametérsy to
coincide reads:

(1) &n=én—-&m=0.

We denote the homogeneous coordinates of the pomts.., p, g, ... and the planes
u, Vv, ... byx, vi, ..., pi, ¢, ... andu, v, ..., &, bj, ..., resp. in the quaternary domain=(
0, 1, 2, 3). Like the binary parameters, these coordirragesomplex numbers, except
for the cases in which we expressly restrict oursdlvélse real domain. The equation:

(2) UX=uXo+UurXg +Xa+tUsxz=0

represents the condition for the poxtio be incident with the plane (For fixedu, it is
the equation of the plane for fixed x, it is the equation of the point.)

The vanishing of the determinanf & x* x°) of the coordinates of the four points
gives the condition for the four points to be lingadkpendent, so they will lie in (at
least) one plane. Duallyu{u* u? u’) = 0 gives the condition for the four planégo be
linearly dependent; i.e., to run through (at least onejnaon point.

2. Definition of line coordinates. A line of R can be represented by a parametric
representation:

©)) X+ &y
as the connecting line of two pointsy, and by a system of two equations:
(4) @x¥=0, ¥X=0

as the intersection of two plangsv, and thus, as the carrier of the pencil of planetsisha
spanned by the planes:

(3 SUux)+&(vy)=0

The line will then appear to be a locus of points (\dzay) or planes (viz., aaxis).
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If we, with J. Pliicker (*), would now like to introduce the line asjpatial element
i.e., regard geometric figures as the loci of straigmesl — then we would need to
represent the lines by coordinates.

We define thePlucker coordinate®f the connecting liné& = @ by the six two-
rowed determinants in the matrix:

‘ % X % %

Yo Yi Yo Wl

SO

(6) {%01:)(0)/1_ X Yo X02= %Y %Yo X oF XV5 %Y
Xos =X Y3~ XY X 5= XY™ XY, X 7= XY5 %%

The quantities are determined by the line only up to a rom-factor. Namely, if one
replaces the points y by two other points of the lines:

(7) X =& X+ &Y, Y'=mX+mny, Em=#0

then one will get:
(8) X = (& 1) DXk

for the coordinatesx, of )@ One then comes down to only the ratios of the line
coordinates.The line coordinates are homogeneous coordinates.

It follows from homogeneity that at most five oktloordinates are essential ones.
However, there are onby” lines inR; («o° point-pairs, but every line containg point-
pairs: «® : ©? = ©%). The line coordinates cannot be independent of each thigxer an
identity relation must exist between them. One wiktain that relation from the
equation:

(9) (xy xy) = 0.

The four-rowed determinant vanishes, because two timesftis®rows are the same. If
one (withLaplace) develops it in its first two rows then one will get:

(10) Xo1 Xoz + Xo2 X31+ Xo3 X12=0.

The expression on the left-hand side is calledRlieker expressigrwhile the identity
itself is called theéliicker identity.

Theorem 1: The (homogeneous) Plucker line coordinates satisfy the quadratic
Plucker identity.

() J. Plucker, Neue Geometrie des Raumgsgriindet auf die Betrachtung der geraden Linie als
Raumelementeipzig, 1868.
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3. Line and point. Now, is it also true that conversely, any systersiofjuantities
Xik that satisfy the Plucker identity will determine a fneln order to answer that

guestion, we must know the condition for a poitd lie on a linex = )//\z

Let x be an arbitrary point, and &t = )//\z be an arbitrary line. The equation of their
connecting line (in variables point coordinatewill then read:

(11) & yzt)=0.

Its coordinates — viz., the coefficientstpf will be the three-rowed determinants of the
matrix:

X X% X
(12) Yo o Yo Yl
% % % 3
namely:
U, = * _)(1%23 _Xﬁal_xsaglz
(18) u, = X0%23 * _):2{03'*')(3{02
u, = X0%31 +Xr%03 _Xz{ o1
u; = XO%12 _Xr%02+xz¥01 *

Now, should the point lie on the lineX, the connecting line would be undetermined, so
theu; would have to vanish. Therefore, one would have thetiemqsa

0= * =xX;3 —XX; XX,
0= %X, * = XX g3 + XX o
0= %Xy +XXo3 * = XX oy
0= %X, ~XXgp + XX, *

(14)

together with the identity:
(15) (x 3//\2 )=0 {t} (viz., “identically zero for allt”),

as the necessary and sufficient conditions for the point x to lie on rleexli The
requirement that a point should lie on a line actuaiyreésents only two conditions —
viz., the point must lie on two distinct planes that tbhrough the line — while no
equation in equations (14) is dispensable, on the groundsnohetyy, and since one or
the other equation can break down.

If one now regards the quantiti&s in the system (14) as arbitrary, but fixed, then
one will have a system of four linear, homogeneous equaf@nthe x. Non-trivial
solutions will exist if and only if its determinant vanishddowever, one finds that the
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determinant of the skew-symmetric is the square of thekBr expression. If one then
assumes that the giveXy satisfies the Pliicker identity without all of themmighing

then the determinant will vanish, and — as a simpleutzlon will show — the matrix will
have rank 2. There will then b€ solutions, and correspondingh} points:

(16) y+éz

that satisfy the system of equations. If one conratgdwo of these points then one will
obtain a line with the coordinates, . If one poses the systems of equations for these

X, that is analogous to (14) then one will obtain, by aoicsibn, a system of equations
with (16) for its solutions. The quantitiés will then be identical with the coordinates

of the lineXx' = )//\z (up to a factor). Q. E. D.

Theorem 2: A system of six quantitiég, that do not all vanish and that satisfy the
Pltcker identity is the system of line coordinates of a welhdédfiine.

4. Ray coordinates and axial coordinatesIn the definition of line coordinates, the
line was regarded as a locus of points, up to now. Thalicabes thus-defined will also
be calledray coordinateghen. Theaxial coordinateof a line are defined dually. One
then understands the coordina®asof the line of intersection of the plangsv to mean

the two-rowed determinants of the matrix:

U U U U
Vo i Vo V5 ’
SO
(17) { Ao; = UV~ UyVy, A= UgVm WYy A o= UVs WY,
g = U V3~ UsV,y, A 5= UV UV, A 7= Vs WY

Everything that we said about ray coordinates up to nawbeacarried over to axial
coordinates dually. Here, we will next be interestethe connection between the ray
and axial coordinates of one and the same line.

Letx, y be two different points, and laet v be two distinct planes through one and the
same line, such that:

(18) ux =0, ¥ =0, ¥ =0, iy =0.

Furthermore, leg, Z be two variable points, and et w be two variable planes. From
the multiplication theorem, the four-rowed determinarthen:
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(xu) (xV) (xwy (xwW
n_| (YU (YY) (YW (YW
CyzAMVWIZ 0y (29 (2w (29
(Zw(zy(zw(zW

(19 so, from (18):

={OxwCyw) —( x( yR{( 20 3 Xv'Bu

We set:
(20) KW (y W) — X w) (yw = (xy, ww),

to abbreviate. (19) can then be written in thenfor
(21) X yz2) Ouvw w) = (xy, ww) duy, z2).

In this, we now fixww/, and indeed, in such a way that eithew (v w) or (xy, ww) will
vanish. These two expressions will then be noo-remerical factors. An identity in

27 remains. The coefficients Gf = z 7 — 7 7z in the expressionx(y z z) and (v,
z2) will thus be proportional to each other:

Xo1 1 Xo2: Xoz: X2z Xa1: X12
= Aoz Aoz : Aoz : A2zt Azp: As2.

On the grounds of this relationship, it is not gatlg necessary to use ray and axial
coordinate together. In what follows, if we speskline coordinates with no further
qualifiers then we will mean ray coordinates.

5. Line and plane With thesepreliminaries, we can easily dualize what was said
no. 3 about a line and a point. From (13) and Theorenwe find thatthe point of
intersection of a liné& with the plane us:

%= 7 TuX, —uXy —uX g,
X = WXy —UX 55 + UX o
%= WXy tUX g * —UX
%= WX, ~UX g tuX,

(22)
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One will obtainthe necessary and sufficient condition for the plane u to run through the
line X when one demands that the point of intersecti@mould remain undetermined,

and thus, when one se¢s= 0 in (22).

6. Line and line. It remains for us to exhibit the condition for twieels X and®) to
be incident. LefX be the connecting line of the poixsx, and let)) be the connecting

line of the pointy, y”. Should the two lines intersect, the four points wanalde to lie in
a plane:

(28) (xX yy)=0.

However, if one develops the left-hand side accordingajgace’s rule along the first
two rows then it will follow that:

(24) X012+ X231+ Xo3 Y12+ X23YPo1 + X31 Vo2 + X12 Yoz = 0.
One denotes the left-hand side of this expressioxX By
Theorem 4:The condition for two line&¥ and?) to intersect read§x 2)) = 0.

The Plucker expression can be written in the forg(XX) with the recently-
introduced notations.
§ 2. The linear complex.

7. Definition of the linear complex. If one fixes the lin€) in the equation:

(1) xP)=0

then one will get the condition for a variable lieo intersect the fixed ling), viz., the
equation of the lin@). This equation is linear in the line coordinalgs but it is not the

most general relationship that is linear in the line cootdsmaEquation (1) must exist
between the coefficienli, namely, thePliicker relation.

We shall now consider the most general linear reldd@ween line coordinatéy:
(2) @X)=Cor X3+ Co2 Xz + ...+ 12 X03= 0.

We call the locus of all line€ whose coordinates satisfy the equation (2)naar
complex. A linear complex containe® lines. [Thew* lines inR; are subject to one
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condition (2).] There areo® linear complexes, corresponding to the six homogeneous
coordinate< of the complex.
The relation (¢ ¢) = 0 will not generally exist between titg . If that relation

exists then we will call the complesingular. One is then dealing with treomplex of
lines that meet the lin€. In the other cases, we shall speak @gular complex.

8. The null system. Our next problem is to gain an overview of the mutuaikipos
of the? lines of a regular linear complex. To that end, wekttuif the lineXj as being

the connecting line of the poimtsaandy in (2):

3 (¢xAy) =Co1(X2Yzs—X3Y2) +Co2 (a1 —X1Y3) + ... +&€12 (X0 Y3 —X3Yo) = 0.

Here, one has aaiternating bilinear formin x, y on the left-hand side (i.e., the form will
change sign when one switcheandy). The equation then represents a skew-symmetric
correlative relationship. If one fixes the poxthen the locus of all poingsthat produce

a line of the complex when linked with(viz., the locus of all lines of the complex that
run throughx) will be the plane whose equation is (3) and whosedioates are:

Uy = * _¢23 X _¢31X2 _¢12X3
(4) u, = €23.)(0 * _¢03X2 +¢02X3
u, = ¢31)(0 +€03 Xy * -¢ 01 X3

u; = ¢12)(0 _¢02X1 +¢01X2

This system of equations is identical with the system {13 1, except that we now
assume that the complex is regular, and therefaettie determinans (€¢)]” of the

system is non-zero. The relationship (4) will tHe:regular and will be called raull
system.

Theorem 5: A null system belongs to a regular, linear complex that asso@atyy
point X with a plane u that goes through it (viz., the null plane) and i®tus of all
lines of the complex (viz., null lines) that go through x

The null lines that go through a point then definglanar pencil, and thus the lines of
the complex that lie in a plane will fill up a pénsince the relationship is regular, every
plane will be associated withraull poinf). In order to obtain the relationship that assign
an associated null point to every plane, one mustely regardX as the line of

intersection of two planes in (2):

(5) (C )?\y) =Con (Uo Vi —U Vo) + Cpo (Uo Vo —Uo Vo) + ...+ (Ul Vo —Uo Vl) =0.

It will follow immediately from the skew symmetiy equation (3) that:
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Theorem 6: If x lies on the null plane of y then y will lie on the null plang. of

Thus, if a point runs through a plane then its nulh@lill rotate about the null point
of the plane. If a point runs along a lie(which can be regarded as the intersection of

two planes) then its null plane will rotate aroundne &' (which can be regarded as the
connecting line of the null points of those planeBhe lines®, &' are calledhull polar

to each otherThe null lines are the lines that are null polar to themsel\eger on (no.
11), we will learn how to determine the null polar tdiree analytically (i.e., to describe
the null system in line coordinates).

In the case} (¢ €) = 0, we would like to call (4) aingular null system A singular

null system is determined by a lide namely, theyuiding line of the complexAny point
that does not lie o will be associated with its connecting line w&h A point of &
itself will not correspond to any well-defined plane.

9. M0bius’s pair of tetrahedra. A simple application of the (regular) null systesn i
the derivation oM&bius’s pair of tetrahedra’. One makes a tetrahedron that consists
of the pointsp®, p, p% p° [(p° p* p° p°) # 0] and the faced’, a', &, a° subordinate to a
null system. A second tetrahedron will arise whosedaareh?, b', b?, b® and whose
vertices are’, ', o, g°. g will then lie ina (as the null point of) andb; will run

throughp; (as the null plane gf).

Theorem 7: When one applies a null system to a tetrahedron, a second tetrahedron
will arise that is in MObius position with respect to the fose: i.e., the two tetrahedra
are inscribed and circumscribed equilaterally to each other.

10. The pencil of complexes.Two different complexe8l and® span a pencil of

linear complexes:
(6) CX) =& X)+&B X)=0.

We would like to look for the singular complexes of {encil. To that end, we set the
Plicker expression that is defined by the compdegqual to zero:

(7 €)= E A A) + 255 B) + E(B B) =0.
This equation shows:

Theorem 8: The pencil of complexes that is spanned by the two distinct linear
complexe®l and®B contains:

() A. F. Mbbius, “Kann von zwei dreiseitigen Pyramiden eine jede in bemfgdie andere um- und
eingeschrieben zugleich heil3en?” Crelle’s JouBr(@B29), pp. 273.
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1. For (A) (BB) — @B)*# 0: Two distinct singular complexes (regular pencil)

2. For (22) (BB) — AB)?> =0, Two coincident singular complexes (singular pencil).
but €¢) # 0 {¢}:

3. For (¢¢) # 0 {&}: o' singular complexes. It is the pencil of lines
that is spanned by the incident lirg¢sand 5.

Theregular pencilscan be spanned by two of the singular complexesd &’ that

are contained in them:
(8) €X)=m (&X) +n(6'X) =0.

Thus, since®®) = (&'&’) = 0, one will have:
9) €Q) =2mn. (68",

and it will follow from this that &') # 0: The lines® and®' do not intersect; they are

skew.
From (8), one sees that a liftethat cuts® and®’ will be common to all complexes

of the pencil:
Theorem 9: The complexes of a regular pencil generate a “regular linear

congruence,” namely, the manifold ® common lines of intersection of two skew lines
® and®’ (the guiding lines of the congruence).

The guiding lines themselves do not belong to the congruence

The singular pencilscan be spanned by a regular complexf the pencil and the
double-counted singular compléxof the pencil:

(10) CX)=m QAX) + 7 (BX) = 0.
One will then have:

(11) € &) = 7 (A A) + 27172(A &) = of U(AA) + 27(AB)}.
This time, the discriminant of the quadratic form waiwsh. It will then follow that:

(12) RI®) = 0.
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Theorem 10: The complexes of a singular pencil generate a “singular linear
congruence,” namely, the manifold of &f null lines of a regular complex that cut a
line & of this complex (guiding line of the congruence).

The guiding line itself belongs to the congruence. Latefno.22), we will learn
about an intuitive construction of a singular congruence

11. The null system in line coordinatesFor a line®, one can find the null polar of
& relative to the null system that is coupled to a rmgabmplexl. We consider the
pencil that is spanned B and®. Of the two singular complexes that are contained in
it, we know one of then® from the outset. The second one can be determined from
equation:

(13) mRRA) + 27, (*S) = 0, m: =2 @) — (AA),
as:
(14) ©'X) = 2@6) OAX) - (AA) OSX) = 0.

We now state:

Theorem 11: The null polar®’ of a line® relative to a null system that is coupled
to a regular complexX! is the second guiding line in the linear congruence that is
determined by and2l.

Proof: A common line of intersection of two null polines® and®’ is a null line of
the complex (since the null plane of a pointofuns through®'). Conversely: A null
line that meets will also meet®’ (since the null system switché&s with &', while

transforming the null line into itself, and — like anyrratation — leaving incidence
unchanged). Q. E. D.

Thus, (14) represents thall system in line coordinates.
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12. Conjugate complexes. The expressionA®B) that is defined by two regular
complexes?(, B appears in (7) for the first time. Two complexes tbatisfy the

equation:
(15) QIB) =0

are calledconjugate. We have already interpreted the vanishingR6Bj in the case for
which the two complexed andB are singular: The lined andB are then incident. We
have also already interpreted the equatiif3 = O in the case where one of the
complexes?l is regular and the other o8 is singular: The linéB belongs to the
complex?. The equation shall now be interpreted in the caserevthe complexed
and®B are both regular. The pencil that they span:

(16) €x)= 6 (AX) + 4 (BX) =0
is then regular; the quadratic form:

17) €Q) = & (AA) + & (BD)

will then have a discriminant that is, by assumptimn-zero:
(18) D = (AA) (BB) £ 0.

The pencil has two distinct, skew, guiding lir@@nd®’. In the binary domaid; : & of
the pencil of complexes, the equation of the pair ahmlexes®, B will now be
achieved by setting the quadratic form:

(19) % &

equal to zero. The harmonic invariaft ¢f the quadratic forms (17) and (19) will then
vanish.

Theorem 12: Two conjugate, regular complexes lie in the (regular) pencil that they
span harmonically to the pair of singular complexes of the pencil.

() Theharmonic invarianif the two quadratic forms:

allf: —2a;5¢> 51"’322512 ;
bllf: -2b ¢ 51+b22<(12

readsay; by, — 2 a5, byy + a5, by . Its vanishing is the necessary and sufficient ¢mndfor the pair of zero
loci of the two forms to be harmonic to each other.
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We would like to illustrate this theorem by an immesliednsequence of it. A pencil
of null systems is coupled to the pencil of complexes:

(20) E(AXY) +E(BXY =0,

by which, a pointx in general position (viz., one that does not leaoguiding line) is
associated with a pencil of planes. The axis @f pencil is the common line of
intersection of®, &' that runs throughkx. Now, that pencil of planes will be related
projectively to the pencil of complexes by the idigrof the parameters:

Theorem 13: Let two regular complexe¥ and®B be conjugate. The two planes that
are associated with a point x in general position by the null systamstlinked to them
will then lie harmonically to the connecting planes of the point x \Withskew guiding
line &, &' of the intersection congruencefB.

We will learn about two further geometric interatéons of the important relation
(AB) =0 later on (no13, 19).



Chapter Two

Line geometry as geometry irRs
§ 3. M7 as the image of the line continuum.

13. Pliicker's MZ. The situation that was treated in the last paragralptvecome

much more intuitive when one appeals to the following rffx One interprets the six
coordinates® of a linear complex as homogeneous point coordinat&s. inA linear

complex inRs then corresponds to a point Ry. The «* singular complexes then
correspond to the* distinguished points whose coordinates fulfill EHécker identity:

(1) %(Qg) = ¢Ol ¢23 + ¢02 ¢3l + ¢03 ¢12 = 0

These points then lie on a four-dimensional quadratic foldn{M?) that we shall call
the Pliicker manifold. M} is regular; by the substitution:

@ Co =X FiX,, C,=X+iX, € = X5HiX,
Cho=X—IX,, € =X—1X, €= X iXg

(i.e., by the introduction of the so-calléein coordinatey one can then bring its
equation into the form:

(3) X A% +6+ X+ K+ 6 =0.

Theorem 1: If one interpret the coordinates of a linear complex as homogeneous
coordinates in Rthen the singular complexes (i.e., the lines) will be mapped to thespoi

of aregularM? (viz., PluckersMm?).

The results of the previous paragraph can now be esqat@s an especially simple
form in the new language. A pencil of linear complexdshe mapped to a line iRs.
In place of Theorem 8 in Chapter I, one will now have:

Theorem 2: A line in R either cuts PluckersM} at two distinct points, or it cuts it

at two coincident ones (i.e., it contacts it), or it lies insfieM ; entirely. (Line inM}:
Image of a pencil of lines insR

If one further observes that the relati@iy) = 0 arises from (1) by polarization then
one will have:

(") The idea of the map goes backtdKlein, “Uber Liniengeometrie und metrische Geometrie,” Math
Ann.5 (1872) = Werke I, pp. 106: “Die Liniengeometrie is wie deofaetrie auf eineM42 in Rs.”
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Theorem 3: Two complexe8l and 5 are conjugate when their image points are
conjugate relative tM .

14. Linear manifolds on M7. We have just seen that?, includes lines as the
image of pencils of lines. There are then just as rtiney onM; as there are pencils of
lines inRs, viz., ©°.

We now ask about linear manifolds of higher dimensionhf. They would

correspond to line manifolds Rs of such a kind that any line of the manifold could be
linked to any other line of the manifold by a pencil of linés other words: Any line of
the manifold must cut any other line of the manifold. ®®es directly that there are two
types of manifolds of that kind iRs: thebundles of linegmanifolds of all lines through a
point) andline fields(manifolds of all lines in a plane). These two-dimenaldinear

line manifolds will then be mapped to planesMij:

Theorem 4: Pliicker's M? contains two families of® planes of the “first” and
“second” kind, which correspond to the points and planessin R

We investigate the relative position of these plaoesath other and assert:

Theorem 5: Two distinct planes of the same kind always cut at one and only one
point. Planes of different kinds will generally be skew. Hewel/they have a point in
common then they will cut along a line.

Proof: Two bundles of lines always have a line in commnmamely, the connecting
line of their vertices. Two line fields always hawdine in common, namely, the line of
intersection of their planes. By contrast, a buradtid a field have no line in common, in
general. However, in the special case for which thexe a line in common, the vertex
of the bundle will lie in the plane of the field, atie® bundle will have a pencil of lines in
common with the field. Q. E. D.

15. Automorphic collineations of M. A collineation ofRs:

(4) X = YA k=0,1,2,3) %0

induces a transformation of straight lines. One willtgetinduced transformation when
one associates the connecting line of two poxtg with the connecting line of the
transformed pointg’, y'. One will then have, e.g.:

(5) Xor = (Y= X W)
= (00X + @01 X1 + ...)( w0 Yo + a1 Y1 + ...)
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—(aoXotaixs+...) (8o Yo+ amy1 + ...)
= (@ooaur —ap1a10) dXoy1 =X y1 + ...)
= (@go &1 — @01 &10) Xo1 + ...

A transformation of the regular complé&x will also be induced by a transformation
of the lineXix : The totality of lines of a comple&i will be transformed into the totality
of lines of the associated comple€X by the collineation. One will obtain the induced
transformation quite simply when one replaces the kcoordinateski in (5) with

complex coordinate@i .

It is essential for us that the transformation equistiprove to be linear in these
formulas. It will then follow from this that the iga of a collineation iR; will be a
collineation inRs . The same thing will be true for correlationdRaf. They will also be
mapped to certain collineations Bg.

Since a projective transformation Rf transforms lines to lines, its imageRg will

fix the image manifoldM? of lines: One will be dealing with amutomorphic
collineation of M?:

Theorem 6: Plucker's M} admits a laminated group @& o™ collineations. The

main sheet consists of collineations that transform the planes of eadly fiam
themselves (i.e., the images of collineations). The othet sbesists of collineations
that switch the planes of the first kind with planes of the secowd(ke., the images of
correlations).

§ 4. Involutory, automorphic collineations of M}

16. Involutory collineations inR, . It follows from the last theorem that was proved
that the involutory projectivities oR; will be mapped to the involutory, automorphic

collineations of M7. In order to arrive at all types of involutory, autaptuc

collineations of M}, we shall start with the general problem of findingialolutory

collineations of a spacR, of arbitrary dimension. The basis for that invegtigais
defined by the theorem:

Theorem 7: The fixed points of an involutory collineation gf9pan all of R.

Proof: A fixed line of the collineation runs through a padthat is not a fixed point,
namely, the connecting line with the associated poifgince the collineation transforms

the line xX to the Iinei'\x). However, an involution will be “cut out” from ttixed line
by the involutory collineation; i.e., the points of theeliwill be permuted by the
involutory collineation in such a way that an involutiodharise in the binary domain of
the line. It will always have two distinct fixed pasnt One will arrive ah + 1 linearly-
independent fixed points by a suitable choice of the fixed IeE. D.
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If one now picksh + 1 linearly-independent fixed points of the involutory caation
to be the vertices of theoordinate simplexwhich is how we refer to the figure that is
determined by the points1:0:...:0,0:0:...:0, ... 0:0.: 0) then the equations of
the involutory collineation will be:

(1) X 80X, X =&11X1, ..., X, = 8mnXn .

Since the collineation is involutory, one must have:

2

(@) 8= 7 = ... = 8.

One can sea,®> = 1 and find thatg; =+ 1. One then finds that there are as many

different types of involutory collineations as there @ossible combinations of signs.
For example, in the spaéy, the following cases are possible:
1 X =+X, X =+X, X =+X, X =+Xs,
2. X ==X, X =+X, X =+X, X =+Xs,
3.

I

X =~ Xo, X ==X, X, = +Xo, X, = +X3.

Case 1 is omitted, since it gives the identlly (n case 2, the plang = 0 is fixed point-
wise, as well as the poipt= (1, 0, 0, 0). The fixed lines are the lines through thet po
(except for the lines in the plamg= 0). In order to transform a poixitwe conneck to
p, intersect the connecting line with the plage= 0 (pointq), and look for the fourth
harmonic poink’ to x relative to the point-pap, q (viz., perspective involution).

In case 3, the line® : xo = 0,x; = 0 and®’ : xo = 0, %3 = 0 remain point-wise fixed.

Fixed lines are, in addition, the line of intersectio®adnd®’. In order to find the point
X' that is associated with we draw the common line of intersection®fand®’ through
X (viz., the line of intersection of the connecting elsx® andx®') and look for the four

harmonic points tx relative to the two points of intersection (i.a.skew involution
We summarize the results in the theorem:

Theorem 8: There are two types of involutory collineations in the spagette
perspective involutions and the skew involutions.

More generally, one gets, in the same way:

Theorem 9: There are just as many different types of involutory collineatioRs &s
there are distinct possibilities for spanning With two subspaces Bnd R4 that have
no common point. A fixed line of the collineation runs through a point xdtdest not lie
on the “incidence domains” iRand R4, namely, the common line of intersection pf R
and R4 (i.e., the line of intersection of the domains; Rnd R4 that connect x to the

() We do not count the identity among the involutory sfarmations.
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incidence domains). The collineation cuts out an involution along that lineevilxes
points are the points of intersection with the two incidence manifolds.

With this theorem, we can give the types of involutoojlimeations in any space
immediately. Here, we are especially interestederthieorem:

Theorem 10: There are three distinct types of involutory collineations 4n Rrhis
incidence domains are:

1. A pointand R.

2. Alineand R.

3. Two planes.

17. Applications to the automorphic collineations ofM 7. In order to derive all

types of involutory, automorphic, collineations M from the result that we just found,
imagine that an involutory collineatiod is determined completely by its incidence
domains. Now, should fix M?, J would also have to fix the polar systéthat is

coupled toM 7.

However, it follows from this thalt andP commute, and in turri), thatP must fix
the collineationJ; i.e., it must fix the figure that consists of the incidedomains of that
collineation. That can happen either in such a way Fhatermutes the incidence
domains or in such a way thattransforms each of those domains into itself. Hawev
sinceP is a correlation, the latter case can occur onlynathe incidence domains have
the same dimension numbers. From this and Theorem 1@inav¢hat the following
possibilities exist for the incidence domains:

Point and polaR, .
Line and polaR; .
Plane and pold&; .

Two generating planes ™ ;.

i\

We will now treat these four cases in successionthédtsame time, that examination will
give us an opportunity to get to known about all the tygfelsnear manifolds of linear
complexes.

§ 5. Complex and forest of complexes.

18. Classification of forests of complexes.Let 2 be the notation for a linear
complex and, at the same time, for its image poifin The locus:

(1) @e) =0

() If follows from P = J'PJ thatJP = PJ and from this thal = P"XJP.
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of all complexe< that are conjugate t is a four-dimensional linear complex manifold;
the image manifold is aR4 that lies inRs , namely, the polaR,; of the pointl.
Conversely, if arR4 in Rs is given then a well-defined po% will belong to it. We can
then say:

Theorem 11: A four-dimensional linear manifold of complexes consists of all linear
complexe¥ that are conjugate to a fixed compl#x

Corresponding to the regular and singular compl&xekere are regular and singular

forests of complexes.
A singular forest of complexes that is the locus of all cometethat contain a fixed

line & will be mapped to the tangentR) in M? at the points. It will intersectM? in
a M2 for which & is a singular point (since it is conjugate to all poirftRg). M? is
therefore a cone of rank 4 that one can obtain byegtiog anM? that lies regularly in
R; from &.

A regular forest of complexasill be mapped to aR, that does not contadtl?, and

will therefore intersect it in a regulavi?. The points of thisv? are the images of the
lines that belong to the regular complex. Therefore:

Theorem 12:The lines of a regular, linear complex will be mapped to the poiras of
regular MZ. It containse® lines (corresponding to the® pencils of complexes). The
lines (like the points of Rand unlike the planes iM}) define a continuum, namely, a
guaternary domain.

The last assertion follows from the fact that lihe manifold of M2 can be mapped

to the quaternary domain of the pointsRfin a single-valued way by means of the
pencil that is contained in the complex.

19. The image of the null system. From no.17, an involutory, automorphic
collineation of M is determined by a poirt that does not lie oM} and its polaR,
(which does not go througt). It is the image of an involutory projectivity 8 . In

order to establish what kind of projectivity we are dealinthwe examine its fixed
elements iR; . InRy, it fixes:
1. The regular compleg, as the image of the poieit

2. lts intersectionM} with the linear complex that is conjugate @ and in

particular, the lines of the complex, as the imagéefoints of the polaR, .
Thus:
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Theorem 13:The null system in Rwill be mapped to the involutory collineation of
M2 with a point and its polar Ras the incidence domains.

We now consider two mutually-conjugate regular compleXeand 9 and their

image points. The one image point lies in the pBlasf the other one, and a point-polar
R4 pair is then fixed by the involutory collineation that @ipled with the other one. The
two collineations then commute with each other. Wentlhave arrived at a new
interpretation of the relationship of conjugacy of two raglihear complexes:

Theorem 14: Two regular linear complexes are conjugate if and only if the null
systems that are coupled with them commuf€or an analytical proof, see Chap. lll,
Theorem 2.)

The product of two commuting, involutory transformationsgsin involutory {).
The product of commuting null systems is also involutory thed indeed, an involutory
collineation, as the product of two correlations.

In Rs, the composition of the two involutory collineationslliwin turn, give an
involutory collineation, for which the intersectidRs of the two polarRs and the
connecting line of the point¥ and®B will remain fixed. The image of this collineation
will be a skew involution iRz with the lines that are contained in the peggil + &8

as its guiding lines. The second type of involutory nedition (in Theorem 8) that
comes under scrutiny fixes a bundle of lines and a igie ih R; line-wise, and therefore

a pair of planes iRs of different types inM; will be fixed point-wise. The following
theorems are then proved:

Theorem 15: Under the map of the line continuum kb; in Rs, a skew involution

will be mapped to an automorphic, involutory collineationMf with a line and its
polar R; as the incidence domains. A perspective involution will correspond to an
automorphic, involutory collineation with two planes of different typeMipas their
incidence domains.

Theorem 16:The product of two commuting null systems is a skew involution.

8 6. Pencil of complexes and bush of complexes.

20. Classification of the pencils of complexesWe already saw in nd.3 that the
pencil of complexes oR; is mapped to lines iRks and that three different kinds of
pencils of complexes correspond to three differentikiaf linesRs according to their

position relative toM ;. Under the polarity oM?, a line will correspond to a spaBe
as the locus of all points that are conjugate to alltpodd the line relative toM?.

() It follows fromS?=1,T?=1, andST=TSthat 8T)?=STTS=SS= 1.
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Correspondingly, a three-dimensional linear manifoldirefar complexes — viz., laush
of complexes- will consist of all complexes that are conjugate nhy &wo distinct
complexes of a pencil (and therefore, to all of theiffe three different kinds of pencils
of complexes correspond to three types of pencils optexas:

1. The regular bush of complexe3his kind corresponds to the regular pencil of
complexes. The imag®; cuts M? in an M2, and thus, a second-order surface, which
we would like to show is regular (of rank 4). In fable M’ is the image of all lines that

are common to all complexes of the regular pencit adl be the image of the lines of a
regular, linear congruence. However, that congruendecwisist of the common lines
of intersection of two skew guiding line® and &', and it will follow from an

examination of the line pencils that are containedhéncongruence that:
Theorem 17:

A regular, linear congruence contains tWoThe image M? contains two different
different kinds of pencils of lines: Penc'l?amilies ofeo! generators.

of lines that connect a point @ with all
the points of&’' and pencils of lines that
connect a point ob’ with all points ofd.

Two pencils of the same kind have no |in

in common. Two pencils of different kind erwo generators of the same kind are
. Iwop skew. Two generators of different kinds
have one line in common.

are incident.

With that, we have shown:

Theorem 18: A regular bush of complexes consists of all complexes that contain two
fixed, skew lines. The guiding lines of the singular complexé&e dfuish fill up a linear
congruence that is determined the two lines. That congruence will be dn&pre

regular M?.

2. The singular bush of complexe3he singular bush of complexes consists of all
complexes that are conjugate to the complexes of a aingehcil. The guiding lines of
the singular complex of such a bush then fill up a sindulaar congruence. We look

for the image of such a congruenceM.

If a line contactsM? then the point of contaet will be conjugate to all points of the
line. The polaR, of the point will then include the line. One will thehtain the polar
R; of the line when one intersects that pdtawith the polarR, of any other point of the
line. It will run through the point of contaét, in such a way that the pol&g contains
the tangent to the point of contact. That poinRg{as a point of the tangent) will then
be conjugate to all points & (relative toM;, and therefore) relative to thd? along
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which theR; intersectsM 7. & will then be a singular point df12, and indeed, the only
singular point:

Theorem 19: A singular linear complex is mapped to a cavé (of rank 3) by the
map of the line continuum tl 7 .

One will obtain a second-order cone when one progstscond-order curve from a
point that does not lie on the plane of that curvartlag from that remark, we shall give
an intuitive construction of a singular linear congruemasdpng as we know the image of

a conic section oM} in R (no. 22).

3. The most-singular bush of complexdsis bush will be defined by all complexes
that contain a given pencil of lines. The manifold ofgalar complexes that are
contained in the bush decomposes into: The manifold| direjular complexes whose
guiding lines run through the vertex of the pencil and ianifold of all singular
complexes whose guiding lines lie in the plane of theipeftie two manifolds of lines
generate the given pencil. It will then follow that:

Theorem 20:The image Rof a most-singular bush of complexes — viz., the pajar R
of a line G that lies ilM? — cuts M7 in a pair of planes. That pair consists of a plane of

the first kind and a plane of the second kind, and the line of intersectiba tfio planes
will be the line G.

8 7. Bundle of complexes.

21. Classification of bundles of complexesA bundle of complexes can be spanned
by three linearly-independent compleess, ¢:

(1) X1 (AX) + % (BX) +x3 (€X) =0,

and will therefore be mapped to a plandrin. A second plane is polar to it relative to
MZ. The planes iiRs will then be associated with pairs b .

The plane (1) cutd1? (when it does not belong to it completely) in a seeoruer
curve:
(2) X2 (AA) + X (BB) + X5 (€C) + 2 X3 (BE) + 2 X1 (EA) + 2 X (AB) = 0.

The bundles can be distinguished by the rank of thatecuand thus, the rank of the
matrix:

(AA) (ADB) (AC)
(3 (BA) (BB) (BY) |
(€A) (€B) (€0)
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Singular bundles of complexegVe will call a bundle for which the rank of (3)ris
3 “singular.” There are the following three cases tardjsiish:

1. r=0. The bundle is a bundle of lines or a fieldioés$, and will be mapped to a
plane of the first or second kind M, resp. Such a plane is polar to itself.

2. r=1. The image plaré cutsM? in a doubly-counted line. A plane of the first
kind and a plane of the second kindNy runs through it (as the image line of a pencil

of lines). One gets the plake that is polar t&E as the fourth harmonic té relative to
the two planes iM .

3. r=2. The image plangé cuts M} in a pair of distinct lines. The guiding lines of

the singular complexes of the bundle then define tegiricted pencils of linegtwo
pencils with a common lines) with two different vertige p' and two different planes
a'. Any line of the pair of restricted pencils of lineattis determined by, & : p' , a will
cut every line of the first pair. Thus, the pldfethat is polar t&E will also cutM? in a

pair of distinct lines. The point of intersection béttwo pairs of lines will be common
to the plane& andE'.

22. Regular bundles of complexesin the case& = 3, the bundle of complexes will
be mapped to a plaethat cutsM? in a regular second-order curve. The polar piahe

will also cut it in a regular, second-order curve themgesi from no21, there is no other
possibility. Thew lines that correspond to the points of such a curve areviss skew.
Two distinct points of a regular, second-order curvereneer conjugate to each other
then. Just as the plak& can be spanned by three points of its intersecting c&aigon,
the bundle of complexds can be spanned by three pair-wise skew lines, and therefo
the polar bundle of complex&scan be characterized as the bundle of all compleas
contain three pair-wise skew lines. The conic sectiahltes inE will then be the image
of the manifold of all common lines of intersectiortlnfee pair-wise skew lines. We call
the figure of theseo! lines aregulus. Just as a conic section is the locus of its poants,
regulus is dinary domain as the locus of its lines. We summarize the rgsult

Theorem 21:The regular bundles of complexes are paired together as pairs of polar
bundles of complexes. Each of the bundles can be characterized as theflatus
complexes that contain three pair-wise skew lines of the other.guitimg lines of the
singular complexes of each of the two bundles fill up a regulus. Theduwb define a
“pair of polar reguli”: Any line of one regulus will cut every lirgé the other one.

Once we know the image of a conic section Mf in Rs;, we can give the
construction of the singular congruentt&at was suggested at the end of2®.
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Theorem 22:Let a regulus be given, along with a lige(of the polar regulus) that
cuts all lines of that regulus. We connéctith each generator of the given regulus by a
pencil of lines: The locus of all lines of that pencil is a singuiagar complex.

A complex cuts a regulus (when it does not contaiometely) in two lines, since
the polarR, of its image points cuts the image conic section efrdgulus in two points.
In particular, a line in general position will also cubtgenerators of a regulus then. A
pair of polar reguli, as the locus of points in questwati,then define a surface that is cut
by a line in general position at two points, namely, a mayder surface. The
generators of the surface will then be fixed individualtger the polarity. Therefore:

Theorem 23: Under the map of the line continuum onkb?, the polarity on a

regular, second-order surface will be mapped to an involutory, automorphiceation
with two polar planes as its incidence domains.

23. Orientation of a second-order surface.In no.20, we mapped arM’ to a
linear congruence. There, we saw that the differentveclea the two types of generators
of M2 corresponded to the difference between the two typeguidling line for the

congruence. IRs, that distinction leads to the difference between tihio points of
intersection of a line (viz., the image line pencil lofes that runs through the

congruence) with thévl?, and thus, to the convention on the sign of the robtshe
g

discriminant of a binary form. In geometry, the coni@mntegarding the sign of a root is
called amorientation The distinction (separation) between the two la@s\of generators

of a regularM? is then an “orientation process.” That processatsm be interpreted as

a splitting of the two image planés E' onto whose conic section the reguli of the
second-order surface will be mapped.

In order to orient a reguldvl> that is given by its equatiof){

(4) axtaxX+ax+ ax=0, D=ayaaas?0,

we next seek théine equation for the surfacéVe setx = &y + & z in (4), set the
discriminant of the binary quadratic form that arises etpuakro, and introduce the line

coordinates of the Iin@'Az =X. That will produce an equation that is quadrati&it

(5) a,8X5, + 83X+ ... + aaX], =

(viz., a special quadratic complex), which is the equéatwan the tangents to the surface
will satisfy. If we polarize that equation then wellviiave theequation of the polar

() We choose a special example, since we shall not gdhiateymbolic calculus that is requisite for a
proper treatment of the general case.
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system of the surface in line coordinataad when we interpret the line coordinates as
point coordinates ifiRs, we will have the representation of the involutory,oaudrphic

collineations ofM ? with two incidence planes andE':

(6) aag Xo1Yor+ragar Xo2Yoz2 + ... tar & X12YP12=0.

In order to find the planeg, E' analytically, we must look for the fixed points of that
collineation. To that end, we must repla€e with p Xi in the equations:

(7) { %;)1 = aZaS‘% 23 %’02: aSag 31 %' 03: apg 12
%'23 = a0a1% or %’31: aoag 02 %' 12: a@g 04

It follows that:

(8) O Xik = 8 83 X23 = 80 & & & Xo1,

and therefore:

©) p=aaaa =D.

Thus:
Y, a0"5'1%01'*'\/ a, 23~ 0, \ aoa;{ ol aza$ 25 0,
(10) A, aoazfoz'*'\/ a331% 31~ 0, A aoaz;{ 02 aeax 3T 0,
Y, aoa3%os+\j a 12201 Y aoasﬁ{ 03 a1a$ 12:0

are the equations for the desired incidence domain:

Theorem 24:The orientation of a regular, second-order surfadee., the separation
of its families of generators — requires a convamton the sign of the root of the
determinant of the surfagef., no.26).

In the special case of a sphere of radius-squéred
(11) —rPaxg X+ X+ X =0,
one will haveD = - r?. The orientation of a sphere requires a conventinritee sign of
its radius.

8 8. The second-order surface as a double-binary domain.

24. Parametric representation of a second-order surface.The fact that was
derived in no.22 - viz., that the regular, second-order surface, as thercaf its two
reguli, is a binary domair leads to a parametric representation of that surfaldee
equations:
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(1) Xo=6&T1, X1=&T2, Xo=&T1, Xz =&T o,

in which é and 7 independently run through the points of two different birdoynains,
give a parametric representatiorRnof the second-order surface of rank 4:

(2) (XX):Z(OX]_—Z(]_XZZO; D=+1#0.

One will obtain the most general parametric repregem of an arbitrary, regular,
second-order surface when one subjects (1) to a collinead®m when one sets the
coordinates; equal to four linearly-independent bilinear formsiand 7.

If one fixest in (1) then one will obtain the parametric represaéontadf a line (i.e.,
the generator is of the first kind), while if one fixeg then one will likewise obtain a
line (i.e., the generataf is of the second kind).The generators of the one regulus cut
those of the other in projective point sequences.

25. Automorphic collineations of regular, second-order sudces. A collineation
transforms lines into lines, so an automorphic collioeatif a second-order surface will
transform generators into generators, and since inadesnpreserved by collineations,
the generators of one family will be transformed itite generators of another family.
There are thus two cases to distinguish, according tetheh the two families are
transformed into themselves (viz., proper, automorphitneakions) or permuted with
each other (viz., improper, automorphic collineation). neOwill obtain certain
automorphic collineations when one subjects each of theybd@wmainsé and rto a
projective transformation:

(3) X =& = (@1 & +tan ) (bl +bia 1)

man b éiritan b éirotan b ST+ an b bory,
=a11 biiXo+ a1 bio Xa+ @rp biiXo + @2 bioxs, *, %, *

(i.e.,»? binary relationships) or transforms the one domammtiné other one:
(4) X = &1 = (@nn +ann) (bué1+bia &) = ..., % % %,
and one can show that one obtains all automorphic catioves in that way:

Theorem 25: A regular, second-order surface admits a group? @b°® automorphic
collineations. They will be induced by the projective transfownatiof the binary
domains of the two families of generators. Any family of generattigsentransformed

into itself by a proper, automorphic collineation, while the two fasiigl be permuted
by an improper, automorphic collineation.

26. Projective equivalence of point-quadruples on a second-ordgurface. There
is a conversion principlethat is based upon the parametric representation (1)sand i
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completely analogous to théessianof the plane®). We will not treat that principle
thoroughly, but only derive an equation that will be importanthat follows. When are

two pointsx = (¢, 1), y = (17, 0) of the surface conjugate to each other? We define:

(5) XY) =X Yz +X3Yo—X1Y2—Xo V1
= &T 10 + &ET 2o — ET210201 — ST 10
=(¢n) (ro).

That equation contains the theorem:

Theorem 26: Two points of a second-order surface are conjugate if and only if they
belong to the same generator (of the first or second kind).

Equation (5) will play the role of an auxiliary formutathe following investigation.

We consider two point-quadruples 0, 1, 2, 3 ahd1Q 2, 3 on a second-order
surface. Should it be possible to take one point-quadrapldne other one by an
automorphic collineation of the surface, then it wouldeh& be possible to find two
binary projectivities that take the four generators of fire# and second kind that go
through the points of the first quadruple to the four genesatiothe first and second kind
(or second first, resp.) that go through the points ofsdmnd quadruple. However, a
necessary and sufficient condition for this is tlhyadity of the double ratios of the
corresponding line quadruples of the surface. That witigbone to the problem of
determining the double ratios of the quadruples of generators that run through a
quadruple of pointsexxy, Xz, Xs (%). |

Let &', 7' be the parameters of the poirts We set:

() { ) =(£ENEE),  (U)=(EENET), (B)=(EENESH,
W) =7, (W=CT)T) (G)=CT)t),

such that:
(7) 1) + (Up) + (Us) = 0, (u) + (W) + () =0,

and demand that the expressions (6) must all be non-germo two points of the
guadruple can lie on one and the same generator. @menislealing with the calculation
of the binary, absolute invarianty:(

d]_:(UZ)a d2:(u3)’ d3:@,
(W) (w) (W)

d = (uz) d, = (W) d’3:(_”1),
(u) CY) (W)

(8)

() Cf., L. Bieberbach, Einleitung in die héhere Geometrieeipzig 1933, Chap. IL.
(® E. Study, “Betrachtungen iiber Doppelverhéltnisse,” Leipziger Begi¢h896), pp. 200.

() The double ratios are the expressiong:, -d’.
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in terms of the simplest quaternary, absolute invariarasjely, the quotients that are
defined with the help of the expressions:

(9) U= 0OxN0EX), U= 0Cx)0EXY,  Us= (3,

and take the form:

(10) D=2, p= p=Y
U, U, U,

Therefore, from (5), the following relations:

(11) Ui = (u) O(u)

will exist between th&J; andu; .
Now, the two invariantd, and d; are the roots of the equation:

(12) P-difA-d}=0,
whose coefficients can be expressed in terms dDthene will then have, first of all:

(13) oo = L) dw) Y,
(u) (W) U,

and secondly:
(14) g+ @ = W) () _ ()W) + ()W)
Tw) (W) (ug)(W;)

However, due to (7), one will have:

+| ) + (W) + (Us) | (U3)
(15) + [ () + (W) + (Ug) | (U3)

+ | () + (uy) +(u3) | () =0
here, so:

(16) U2) (ug) + (Us) (U3) = (Ua) (uy) — (U2) (ug) — (us) (u3),

and it will then follow that:

(17) dy+d = %a7Y2"Ys

3

Equation (12) can now be written in the form:

(18) A=)

Its discriminant will be:



28 Chapter Two: Line geometry as geometriRn

(19) A =-4U, Uz + (U —Up —U3)?

:U12+U22+U§_2Up3_1)y1_1jp2

0 (%%) (%%) (%%
_| (%) 0 (x%) (X%

(%%) (%) 0  (%x%)|

(%%) (%%) (%% O

One can change the form of this determinant’,|&', a% a® are the polar planes of
the points®, x*, %4, X2 then one will have:

(20) K x) = (X &),

and from the multiplication theorem, the determin@®) can be written as a produs! (

X x3) 0 & a' a®a’). However, one has:

(21) (ata?a’) = D X xH 2 ),
in whichD denotes the determinant of the surface. One will bizene:
(22) A =D X x x2x3)2

We assume thdt is non-zero), and thus demand that the four starting points do not
lie in a plane. However, a choice of sign f\qSE will, at the same time, differ from the

choice of the sign faf D. Thus,d; will differ from d;; i.e., the two families of

generators of the surface will be separate. (The suwidtbe “oriented.” Cf., no23).
Finally, the solution of equation (18) will yield:

_U,-U,-U,+./A

(23) dy Od! o

This result shows that tle Od are determined completely from tble:

() If A vanishes then one will hawk = d : The two quadruples of lines that are determined by a

guadruple of points are projective (in the sequence trdgtesmined by the points) if and only if the four
points of the quadruple belong to a plane® } x*x%)] = 0.] The plane mediates a projective relationship
between the two families of generators, under wigengrators will correspond when they intersect on the
plane. — From Theorem 17, a conversion of this theantoline space will yieldThe product of two
projective point sequences on skew carriers is a regulus.



Projective equivalence of point-quadruples of a second-suteace 29

Theorem 27: A quadruple of linearly-independent points of a regular, second-order
surface, no two of which belong to the same generator, is charactergative to the
automorphic collineations of that surface, by the values of the expressions:

_ (XM (EX) _ (X)X ) _ (Ox)(x¢X)
(24) D1 = ) () D2 = OXDOER) Ds = X)) (¢ %)

(i.e., the “double ratios of four points on the seed-order surface”). The (binary)
double ratios of the generators that run througle tquadruple of points can be
calculated from these quaternary, absolute invasgan

The proof of that theorem, in particular, the dation of the equation (5) is linked
with the special parametric representation (1).weleer, since the result is present in an

3
invariant form, one will havez a, x % = 0 for any regular, second-order surface. One
i,k=0

merely has to set:

(25) €= axy.

i,k=0

8 9. Classification of quadruples of lines.

27. The common lines of intersection of four linesFour lines®g, &1, -, &3 will

first be classified by theirank; viz., the rank of the matrix that their coordesdefine.
Four lines of rank 4 span a bush of complexes.reltdl then be three different kinds of
bushes (since there are three different possdslitior the conjugate pencil), so
corresponding to them, the following cases canioccu

Theorem 28:Four lines of rank 4 can have two distinct, twonmdent, or a pencil
of common lines of intersection.

If one omits two opposite edges of a tetrahedham the four remaining edges will
give example of a quadruple of lines of the firgsidk The omitted edges are the two
common lines of intersection. The generator ofrdgulus of the first kind of a second-
order surface and a tangent to the surface wiérdahe a quadruple of the second kind.
The generator of the second kind that goes thrabglpoint of contact is the doubly-
counted common line of intersection. Finally, thrinearly-independent lines of a
bundle, together with a line that does not belanthe bundle, will define a quadruple of
the third kind. The pencil of lines of intersecti® the pencil of lines of the four lines
that are contained in the bundle.

In order todistinguish the three cases analyticalfsom § 6, we must examine the

intersectionM? of the image points of tHe; that is spanned by the four lines:

(1) Xo Bp + X1 B1 + X G + X3 B3
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with the M :
(2) (X X) =2 X]_(@o Qjo) + 2% X2(Q50 sz) + ...+ 2 )(’3(@52 @3) =0

in regard to its rank. That rank will be the rank & teterminant:

o (68) (68) (68)
6&,) * (68) (68)
©8,) L) * (68)|
(6360) (Q§ 3Q§ l) (Q§ 36 2) *

(4)

Theorem 29: Four lines®; of rank 4 have two different, two coincident, or a pencil

of common lines of intersection, according to whether the determinahag4ank 4, 3,
or 2, respectively.

28. Projective equivalence of quadruples of linesTwo quadruples of lines that
belong to a class in the classification that was migpounded do not need to be
projectively equivalent, for that very reason. Here, we would tikeaddress only the
projective equivalence of two quadruples of lines that bosisgss two different common
lines of intersection. Since the linear congruences dre determined by these lines of
intersection are certainly projectively equivalent, ¢ine of them can then be taken to the
other one by a collineation or correlation, so it giliffice to investigate the projective
equivalence of quadruples of lines of one and the same looegruence. Under our
map, that problem will be converted into the problem weatsolved already in n@6 of
classifying the quadruples of points of a regular, second-stattce projectively.

If X and®) are two complexes of the bush (1), ang are its image points in the

imageR; then, from (2), one will have:
(5) &y =X D).
From the quantities in (24) in 8§ 8, one will then have:

© D= EB)E8) 5, = (6866 5. = (68)(®.6)
) 2 ) 3 .
(6,6,)(6.6) (6,6)(6,6.) (6,6,)6 %)

These absolute invariants of the four lines areeda&rassmannian double ratios of the
lines. The translation of Theorem 27 yields:

Theorem 30: A quadruple of pair-wise skew, linearly-independent lines of a regular,
linear congruence will be characterized completely in regard to pregcti
transformations by its Grassmannian double ratios.
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Moreover, the double ratiosd; —d’ of the generators of the first and second kind,

resp., that run through the four points of the secondrauidace will be mapped to the
double ratios that the four lines single out by their comiinzes of intersection. From §
8, (23), one will then have:

~U, +U,+U,+ /A
(7) —d, -d'= Y, +U, +U, \/_ resp.,
2U3
in which one sets:
(8) Ui = (B &1) (&2 B3), Uz = (B &) (B3 By), Us = (B B3) (&1 B),

as one of these pairs of double ratios. 1A itlenotes the determinant (4). In the limiting
case of the singular congruence, (7) yields a double ratleedur points at whicko,

31, B, B3 cut their single common line of intersection.

Four lines determine si@rassmanniandouble ratios, in all: viz., the expressions (6)
and their reciprocals. As in the binary case, one camme the question of what
situation will lead to less than six different doublgas ().

29. A spatial analogue of Desargues’s theorenkFromDesargue% theorem, two
associatedrianglesin the plane (Triangle = figure composed of a threeeanfjrank 3
and the trilateral of rank 3 that is coupled with it)tthee perspective as three-angles (i.e.,
the connecting lines of corresponding points run througbimat) will also be perspective
as trilaterals (i.e., the points of intersectiorcofresponding sides lie along a line). We
would like to prove an analogous theorem for tenahedrawhose points and planes are
X, a andy', b, resp.:

Theorem 31 f): Let the connecting lines of corresponding points of two associated
tetrahedra be pair-wise skew and of rank 4. The lines of interseatioarresponding
planes of the two tetrahedra will also be pair-wise skew and of raakd4the quadruple
of lines of intersection is projective to the quadruple of the comgedines. In
particular, if the common lines of intersection of the connecting lofethe points
coincide then the lines of intersection of the lines of intersecfidhe planes will also
coincide.

In order to prove this, we shall need an auxiliary foemtflone sets the four-rowed
determinant equal to:

() H. Mohrmann, “Uber die GraRmannschen Doppelverhéltnisse von viedgerhinien im Raume,”
Math. Ann.79 (1919).

() E. Study, “Beweis und Erweiterung eines vdh HeR angegebenen Satzes,” Ber. d. Oberhess.
Naturf. Ges. (1900).
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(x°u?) (Xu) (X)) (Xu)
9) (xoxlx2x3)(u0ulu2u3): (xXu%) (Xu) (X)) (Xu)

(xu°) (XU) (xXu) (X )
W) (Cu) (XU (Xu)

—
(10) W= XX
in the equation for the multiplication theorem thewill follow that:
(xuh) (Xu?) (Xu)

(11) ) xS, ut P ) = 6C W) | (0CUY) (W) (W) |,
(Cul) (4w (XW)

and therefore, since that identity is true 5¢ru’) # 0, in particular:
(xu) (Xu?) (xu)

(12) 3 Ut 0) = | CUY) (6CWD) (W) |.
(Cul) (W) (XW)

Now, letx be the points of a tetrahedrd®’ x* x* x°) # 0, and le be the planes of a

tetrahedron, such that:

— — — —
(13) a’ = @, al= X0, at=x°xx, a’= xxx¥.
From (12), one will then have:
(14) @atuy) = (3 X E U, v)

(X)) (XY (XY
= (°XXX) (X9 (XY
X% X) (XY (XY

=— &3¢, uy) O x> B, etc.
If one now sets:

(15) Xi=xy, sh=ab,

in whichy', b' represents a second tetrahedron, then one wii:hav
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(16) (o 1) = @ ba'bY) = - (a° a b°b?)
== (8 YY) DO YY) TV )
=+ (@ XY) DOV V) TV YY)
= (2 %) IO X YY) TV Y YY),
Finally, if one introduces the quantities:
(17) Botl) (Ua8ls) = (Ko X1) (X2X3) (X YY) OV Y Y Y92 %, *
then it will follow for the quantities that are definadalogously to (6) with thel; (X,
resp.) that:
(18) D" =D.

From nos27, 28, that will give the theorem that was to be proved.

20. Lines in hyperboloidal position. Four different lines of rank 3 are said to be in
hyperboloidal positior{since they will belong to a one-sheeted hyperbolottiencase of
pair-wise skew, real lines). One proves, in a mannendisamilar to what was just done:

Theorem 32: If the connecting lines of corresponding vertices of two associated
tetrahedra are found to be in hyperboloidal position then the lines of intenseaf
corresponding planes will also be in hyperboloidal position, and conve3ely

The two tetrahedra are then said to be in “hyperbolgdaltion.” A theorem of
Chaslesthat is analogous to one Blucker (no. 89) states:

Theorem 33: Two tetrahedra that are polar relative to a second-order surface are
found to be in hyperboloidal positigh.

If the surface class of the surface degenerates immn@ section (which will be
chosen to be the absolute conic section of the Eaalidietric) then the polar tetrahedron
will degenerate into a rectangle in the imaginary plane the theorem gt Steinerwill
then ariseThe altitudes of a tetrahedron are found to be in hyperboloidal pos(fitrey
do not go through a point, in general.)

8§ 10. Generating linear complexes,

31. Chasles’s method of generationUnder the map of the linear complexes to the
points ofRs, a regular, linear complex will be mapped to a point tleegts not belong to

M?Z. Its polarRs will cut M in a regularM? whose points are the images of the lines

() Cf., the papers df. Berzolari andL. Brusotti in Palermo Rendiconf0 (1905). Furthermoré.
A. Weiss Math. Zeit.33 (1931).
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of the complex. In order to generate the complexsingle out a pencil oR; in the
polarR, . That pencil will fill upRs completely: i.e., a well-definelds of the pencil will
run through every point d&, that is in general position. The points of the bdaaeof
the pencil will contain alRs; in the pencil.

For our purposes, we can now choose that base plawe different ways relative to

MZ: as a pland that cutsM? in a regular, second-order curve or one that cuts i
pair of lines. We first consider the former case.e Pblar planéE’ to E relative toM?
will also cutM? in a regular, second-order curve, and the pend&ofill be polar to a

pencil of planes in the plan&S. That pencil will cut out an involution on the second
order curve. Lef3 and' be two distinct associated points of that involutiome polar

R4 will then intersect in aiRz of our initial pencil. If we Iet@ run through the lines

of our pencil then the pold; to the pencil oRs will run throughE.
If we now translate this construction into the languaige; then the involution of the
point pair3, B’ will be a regulus for the involution of the line pgk; B'. Just as the

M?Z that theRs of the pencil cut out oM? fillup M7 completely, the linear complexes

will generate linear congruences whose guiding lines arelitle-pairs of the image
involution.

Theorem 34: Let an involution be given in a regulus. The common lines of
intersection of associated lines of the involutions will then genexategular linear
complex.

The lines of intersection of the fixed lines of thealion (which indeed do not all
belong to the linear complex) merit a special invesoga A fixed line will be the
guiding line of a singular congruence of complexes, and indeedatigruence that one
obtains (from Theorem 22) when one links the guiding linék the generators of the
polar regulus by pencils. In fact: AR is polar to a tangent to a conic section in the

planeE’ that cutsM? in a coneM? that contains the conic section of the pl&neOne

then obtains the cone when one connects the vertex ,-thazpoint of contact of the
tangent — with every point of that conic section willna. Q. E. D.

32. Sylvester's method of generationWe now start with a base plaBan R, that
cuts M2 in two different lines. The plarg that is polar to it relative tov; will cut
M in two distinct lines (no21), and as before, a pencil of linesEhwill correspond to

the pencil olR; . The two lines will be related to each other proyedy by the pencil of
lines inE'. Let‘B and‘B’ be the associated points of the two lines. Their pRlar

intersect in aR; of our pencil. If@ runs through the lines of the pencil in the plane
E then the polar spaces will run through the pendisah E':

Theorem 35: Let two restricted pencils of lines be related to each other gtiogly
in such a way that their common line corresponds to itself. The loweggruences that
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have corresponding lines of the two pencils for their guiding linestelh generate a
linear complex.(The lines of intersection of the lines that are owmn to the two pencils
deserve a special investigation.)

33. Constructing a complex from five lines.Just as aR in Rs is determined by
five linearly-independent points, a linear complex isedmined by five linearly-
independent lines. If five lines are given then one eailyegive aChaslesor Sylvester
generator for the complex. In the former case, thnes will determine a regulus, and
the remaining two will establish the involution on the patgulus. In the latter case,
one can then begin to construct two null polar linethefcomplex as the common line of
intersection of four of the given lines of the complene of those lines will then
determine the two pencils with the pair that was founche Tive lines will cut out
associated lines from the two pencils and will thus estalbhe projective relationship
between them.

Once the product of the two projective pencils of litlest are found in special
position is known, one can ask what the product of twmeptive pencils of lines in
general position would be. The product will be a so-da#é&rahedral complexwhich is
the locus of all lines that cut the planes of a tetdron with a constant double ratio. Due
to the aforementioned special position of the two pgndhat complex (which is
guadratic; cf., no54) will decompose into a regular complex and the compfdines of
intersection of the common lines to the pencils.
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Weitzenbdck's complex symbolism.

§ 11. The product of two null systems.
34. Weitzenbodck chains. In the previous chapter, we learned about the
relationships, point loci, and plane loci that are linkeithviinear systems of linear
complexes. In order to be able to represent theseefiqunoperly, we shall require some

new analytical tools.
We write the equation of a linear complex in the form:

(1) opxy =0.

In this, p and p shall be symbols that possess no real meaning in theirrigh
However, p 3, shall represent a coefficient, and indeed, one bhak:

(2) PR =-PP =3P
Due to the convention (2), the symbols are said @lteenating One will then have:
3) PPXY) = (PP~ PR (2Ys =X ¥2) + ... =Po1 Xoz + ...

On the basis of (20) in § 1, one will now have:

(4) PP, uy =PEu(pv) - (EW(PU) =2 UP(PVY) .
We now set:
(5) tp(pv) =[uP V]

to abbreviate, and call the expressioweitzenbéck chaiff). When the chain (5) is set
equal to zero, it will represent the linear compgléxhat is linked with the null system.

In order to be able to write down the dual equatiomrdives to benecessary to
distinguish between ray coordinates and axial cowtks. We denote the axial
coordinates of the complég by ', such that:

(6) &o)(P'Y) =[xPByl =0

will be the new representation of the null system thabupled to the complex in point
coordinates.

() R. Weitzenbdck “Zum Formensystem von linearen Komplexen Ra,” Jahresbericht der
Deutschen. Mathematiker-Vereiniguf§ (1910).
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With the use of the chain symbolism, the invariant af twear complexe8l and‘}3
can also be written in the new form:

(7) @ %) = (aa, ¢ P) = (ap)(aP) - (a@p)(a p)
=2(ap)(Pa =-2[A ]

35. The skew involution. Now, let two linear complexe¥ and®s be given that are
associated with the null relationships:

®) [xA'y] =0, [xB'y} =0,
[u2av =0, [uB\ =0.

These can be combined in two different sequen&wuld the relationships commute,
one of the following two identities must exist:

(9) XAB Ul £ [xB'Uul =0, {x u}

We first treat the case of the lower sign. Oni¢ vaive:

(10) AB U] =% a3 b b b= F{- X0 Aoz Bo1 o
+ b, u, + %o A23 B2 Uy
+ b, u, — Xo 223 B31 Uz
+ a,bhu, = Xo 31 Boz Uo
+ b u, = Xo A31 B2 Uy
+ b, u, + Xo A31 Bz Us
+ abhy — %o 212 Boz Uy
+ b u, + Xo 12 B3z Ly
+ b, u, — Xo 212 Bz Up
¥ v

= —3{Xo Up [A23Bo1 + Az1 Boz + A12 Bog]
+ Xo U [Az1 B2 — A2 Bag] + Xo U [A12Boz — A3 B12)
+Xo Uz [A23 Bz — As1 Bog] + ...}

The expansion of:
(11) KA B u] — [xB" AU
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then shows that the coefficients»@fu (i # k) are the twelve two-rowed determinants of
the matrix:

(12)

H Ry gy RAgg A 25y %A o,
Boy B, Bos BB By

namely, all possible determinants with the exceptio®l@®B23 — A23B01, *, *, while the
coefficients ofx u; are linear combinations of these three missing deternsmant

Theorem 1: The necessary and sufficient condition that two compl@xesd B
should be identical is (in quaternary form) the identical vanishing of toeiariant(11).

We now assume th& and®B are different, and treat the case of the identity (9),

except with the upper sign.
With consideration given to (7), equation (10) will give:

(13) KAB u] + [xB'A u] = [A"B] X u).

Theorem 2: The null systems of two different complexes commute if and dahéy if
complexes are conjugatéCf., Chap. Il, Theorem 14)

From Chap. Il, Theorem 16, and under the assumptiofAta = 0, the equation:
(14) k2AB ul =0

represents the skew involution that is coupled with thaptexes and®B. It follows
from this that:

Theorem 3:If 2 and B are two distinct complexes of a regular pencil of complexes
then the equation:
(15) KAB Ul - [xB'Au =0

will represent the skew involution that is coupled to the two guidnes lof the pencil.

Proof: The expression on the left-hand side of (15) gzsgs thecombination
property: viz., it will not change when one replac#sand® with two other complexes

of the pencil. If one replac@ and® with — e.g.,n A + B — then the left-hand side of
(15) will become:

(16) n[XABU + R[xXBAU — [xXB'A U — & [XAB U]
= [ xA"B u] - [xB'A uj}.
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If we now assume th& and®B are conjugate [which is always possible, since the

pencil always contains two distinct conjugate compldirefact, «* pairs of them)] then,
from (13), we will have:

a7 = [xB'A u] =[x A"DB u],
and from (15), we will have:
(18) 2kAB ul=0.

However, this equation represents [cf., (14)] the skewlinn that is coupled with
20 and®3, and therefore with the guiding lines of the pencil. EQD.

36. Point of intersection of two lines.From Theorem 3, equation (15) is implied in
the case of a regular pencil of complexes. In the o&sisingular pencil of complexes,
the skew involution will degenerate. The case of pkacil of linesis particularly
noteworthy:

Theorem 4:1f 2 andB are two distinct, incident lines then the left-hand sidEL6j
will split into the product of two linear forms:

(19 KA B Ul —[xB'Au =(vxOsu

that will yield the connecting line and point of intersection of thelitves when they are
set to zero.

We remark that the fact that the null system is lmway leads to the equation:

(20) k2B u] = 4[] Ox u),
which is implied by (13).

§ 12. The product of three null systems.

37. Equation of the second-order surface that is determideby three lines. Let a
regulus be determined by three pair-wise skew lhgs®,, &3 . If X is a point of the

surface that is determined by the regulus then therdw/#l generator of the second kind
®" thoughx that cuts®;, &5, 3. We now conneck to &, intersect the connecting

plane with&,, and then connect the point of intersection thus-nethwith ;. The
connecting plane contains the lin®s, and thus the point, in particular. The point

then satisfies the equation:
1) [X&, 6,8, % =0.
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The chain on the left-hand side of (1) is a combinatibthe bundle of complexes
that is spanned b$,, &,, &3 . In fact, if one replace®; with y;$1 + yoB, + y3B3 then

one will get:
(2) Yi[XB, B, +Y2[XE, 6,84 +y3[XE, 6,84
=y1[x6, 6,654 ;
one will then have:
Q) [x8,6,8,4 =4[6,6;] [Ix&] =0 {x} [§ 11, (20)]

and
@ { [X&,6,8,0 = x&BH 3+ 6 B x5 )

- 168 X6 +1 6 g Dxek o x L ()

The three lines can then be replaced with any thnearlly-independent complexes of the
bundle that they span.

Theorem 5: Let 2;, Ay, A3 be three linearly-independent complexes of a regular

bundle. The second-order surface and the surface of class two that ameideteby the
regulus of the bundle will then have the equations:

(5) [X20 2,2, % =0, (UL, 2,2,4] =0,
resp.

8§ 13. The Kummer configuration.

38. Polar hexatope ofM 2. Just as one can constracttetrahedra that are polar to
a second-order surface, there @f@ hexatopes ifRs that are polar tdvl ;. —i.e., systems

of six points that are pair-wise conjugate relativévtg . InRs, such a hexatope (of rank

6) will go to a system of six linear complexes (of r&)kthat are pair-wise conjugate.
Such a system of six pair-wise conjugate complexes heti lepend upon 15 constants.
Let 25, 2y, Az, Ag, As, As be one such system. The bundle that is spanned, By,

23 is polar to the bundle that is spanned?y s, 2ls. The surfaces of order two and
class two that are spanned by the bundles, namely:

(1) XA A, A0 =0, [u,ALAu =0,
2) [X2A, A AN =0, [uA, AAu =0

will then be identical, and one will then get the idgnithen one composes the polarities
that they determine. For that reason, there exisidestity of the form:

(3) [x20 20,450, A ' ul = p0Oxu),
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in which p denotes a factor that depends upon only the comp®gxasd which we shall
not elaborate upon.

Theorem 6: The product of six linearly-independent, pair-wise commuting null
systems is the identity.

39. The group®is. We shall denote the six null systems by [1], [2], [8], [5],

[6], to abbreviate, as one does in the theory of thetations {). We will obtain 15
skew involutions[x2 A, ul = 0 by composing these null systems in pairs. We would

like denote the skew involution that arises upon compobmaull systems] and ] by
(ik).

The 15 involutions iK), together with the identity [for which, we introduceeth
notation (0)], define a groufss of 16 two-sided 4, commuting collineations. In fact:
The equation (3) shows directly that one will obtae;haps by composing:

(12) and (34), the skew involution (56),
while naturally, the composition of:
(12) and (23) will yield the involution (13), trivially.

Theorem 7: One will obtain a group & of two-sided, commuting collineations by
composing any two null systems of a system of six linearly-indepemaantyise
conjugate linear complexes.

40. Commuting, skew involutions. The latter argument shows that we have to
distinguish between two kinds of commuting, skew involutiolmsthe case for which the
symbols of the two involutions have no index in comimthe guiding lines of the one
involution will intersect the guiding lines of the otlware. Any involution will leave the
guiding lines of the other one individually fixed; we nheall such involutions
+commuting In the case for which the symbols have a commdaxrje.g., (12) and
(23)], the guiding lines will belong to a regulus, and (siheeitvolutions commute) they
will define two harmonic pairs on that regulus. One invofluwvill permute the guiding
lines of the other one; we then call such involutioc@mmuting

Theorem 8: Any skew involution of the groupd3ds +commuting with six other ones
and —commuting with eight other ones.

() H. Weber, Crelle’s Journa84 (1877).
() Since we did not call the identity an involution, weed a term that will combine the identity
transformation with the involutory transformations.
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41. The groupGs, . Twenty polar systems [ k] will arise from composing the
three null systems]| [j], kl. We already showed above that these polar sysheensair-
wise identical. For instance, the polar systems [188][456] are equal to each other.

If one composes a polar system with a null systetwormolar systems then one will
obtain a transformation @5 — e.9.:

(4) [123]01] = (23),  [123]04] = (56),  [123](]124] = (34),

and when one composes a polar system or a null systéma wollineation of5;6, one of
these polar or null systems:

(5) [123]012) = [3], [123]034) =[124], [1]O23) =[123]
will again arise. Therefore:

Theorem 9: A group G, of two-sided, pair-wise commuting, projective
transformations belongs to a system of six linearly-independent, pairesigagate,
linear complexes that contains six null syst¢ifisl6 collineationq0) and (ik), and 10
polar systemgikl] = [mnd.

42. The(16s, 165 configuration. We now subject a point to all 32 transformations
of the group and thus obtain a system of 16 points and béglavhich we denote with
the symbols of the transformation that produced th&he 16 points are then:

(6) (0), (12), (13), (14), (15), (16), (23), (24), (25), (26), (34),
(35), (36), (45), (46), (56),
while the 16 planes are:

(7) [1], [2], [3], [4], [3], [6], [123], [124], [125], [26], [134],
[135], [136], [145], [146], [156].
This shows that:

Theorem 10: The 16 points(6) and the 16 planeq7) define a (165 16)
configuration Any point contains six of the planes, and any plane contains six of the
point. This “Kummer configuration” will be transformed into itskeif the group .

In fact: It follows from the existence of the poand plane systems that the figure is
transformed into itself b¢s,. It is then clear that the point:

(0) lies on its null planes [1], [2], [3], [4], [5], [6].
However, if one applies the null system [1] to this fegthien it will follow that the plane:

[1] contains the points (0), (12), (13), (14), (15), (16),
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and furthermore, when one applies the null systeno[#jis figure:
(12) will lie on the planes [2], [1], [123], [124], [125], [126],
and finally, that the plane:
[123] = [456] will contains the points (23), (31), (12), (5&®%), (45).

In regard to the relative positions of these points @lades, one has the theorem
(which is easily proved by means Béscals theorem) that the six points that lie in a
plane of the configuration belong to a conic sectiod, the six planes that run through a
point of the configuration belong to a second-order cone.

Since the system of six pair-wise conjugate, linear ¢exegs depends upon 15
constants, and a point in space depends upon 3 congtaes,will bec'® Kummer
configurations Since a system of six points also depends upon 18 ca)stenat can
assume that the six points determine a finite numbdfushmer configurations. H.
Weber has determined that number: Six points in general posiionbe extended to a
Kummer configuration in 12 different ways.

43. Mobius’s tetrahedra. We mention that one can regard tHeimmer
configuration in different ways assystem of four tetrahedra that are found to be pair-
wise in Mdbius positionCf., no.9).

In order to prove this, we start with the tetrahedra:

. (12), (13), (14), (56), [134], [124], [123], [],

and subject them to the null systems [1], [5], [6], itcession. We will obtain the
tetrahedra:

1. (34), (24), (23), (0), (2], [3], [4], [156],
10 (26), (36), (46), (15), [125], [135], [145], [6].
IV, (25), (35), (45), (16), [126], [136], [146], [5].

The four tetrahedra subsume all points and planes afathigguration. By construction,
| is found to be in M6bius position with 11, 1II, IV. lgoes to Ill by [6] and to IV by [5],
and Ill goes to IV by means of [1]. Q. E. D.

8§ 14. Multi-term chains.

44. The four-term chain. We would like to treat only two types of multi-term
chains. We subject the four complexes of the chain:

(1) KA B ¢ D U
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to all permutations and endow them with a positive gatiee sign according to whether
one is dealing with an even or odd permutation, respectividlg expression:

2) D EXA B ¢ D,

which is similar to a determinant, will arise. Thigpeession is a combination of the bush
that is spanned i1, B, &, © (in case they are linearly-independent). If we repliac
with four, pair-wise conjugate, linear complexes then (#)reduce to a single term, due
to (13)in § 11.

The geometric interpretation of the equation thatarsy setting (2) equal to zero is
obtained from Theorem 6. According to it, in the geheaae, one will be dealing with
skew involutions of the two lines in which the four coexgs intersect. In the case
where the four complexes are linearly-dependent, these Will be undetermined, and
with them, the skew involution that they determine.

Theorem 11:The existence of the identity:
(3) DA B DU=0  {x U}

gives the necessary and sufficient condition (in quaternary form) fdothhecomplexes
A, B, €, D to be linearly-independent.

If the identity(3) does not exist, and the four complexes span a regular bush then the
equation:

(4) DAEXA B DU=0

will represent the skew involution on both lines that have the four eaegln common.
This relationship will degenerate when the two lines coincide.

In the case where the complexes have a pencil of lines in commdefi-thend side
will split into a product of two linear forms that represent the eserand plane of the
pencil of lines when they are set equal to zéAnalogue of Theorem 4).

45. The six-chain. The condition for six complexe®;, 2, As, As, As, As to be
linearly-dependent is the vanishing of the six-rowed detemifl; A, A3 A4 As Ag) Of

its coordinates. The equations of the complexes dhatconjugate to five linearly-
independent complex& — in particular, the complexes that run through five IiRies

then reads:
©)) QL Az A3 Ay As Ag) = 0.

The form of this equation is taken from the geometriRpf The invariant property of
the expression on the left-hand side under quaternarycpueje¢ransformations will not
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be evident by this notation. That will first come abatien the determinant is expressed
with the help of chains. We give the result without p(dp

2 I I I
(6) (9112[22[3914915916) :—aZi[QllleQlﬂlﬂlsQle]

= [2 2, ALA A A J A A A A 2A )

() B. L. van der Waerden “Uber Determinanten aus Formenkoefficienten,” K. Ak.\Wet. t.
Amsterdam, Proc. XXV (1922).
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The line-sphere transformation

8 15. Map of a line-pair in the space of a linear complex
to a second-order surface on aM .

46. Trace of a point and a plane.One application of the map of the projective line
continuum to theM? in Rs is Lie’s line-sphere transformatiof}).

We single out a regular, linear compl&xn R; (i.e., line space) as thmasic complex
It will correspond to a4 in Rs that cutsM? in a regularM?. The pencils of lines of
the complex will be mapped to the lines &l 7 in a one-to-one and invertible way.

Now, an arbitrary plane iR; contains a pencil of lines @f, just as an arbitrary point

of Rz does. In both cases, we would like to call the pesfdihes thetrace of the plane
or the point in the linear complex. Points and plaméde mapped to generating planes

of the first and second kind, resp., i, and both of them will cut out one line from
MZ in Rs, namely, theitraceon M.

Points and planes determine unique traces in a lineaplea. However, the initial
element will not, conversely, be determined uniquely bytridee.

A pencil of lines of¢ determines a poirit A plane of the first kind and a plane of the
and a plane. second kind inM? run through a line of

M2,

In order to make the map uniquely invertiblee cover the tracéand therefore, the
pencil of lines of¢ and the line ofM}) with two sheets.The first sheet shall be the

points that correspond to the second of the plan&s in One will then have, without
exception, a single-valued, invertible correspondence:

Point ofRs Line of the first sheet of1?

Plane oRs Line of the second sheet bf}

Application of the null system that |is Switching of lines of both sheets that
linked with¢ “overlap” each other

Points and planes are incident (i.e., theiLines of the first sheet and lines of the
traces have a common line) second sheet are incident.

() The presentation that follows here goes back.t&tudy, “Vereinfachte Begriindung von S. Lies
Geraden-Kugeltransformation,” Sitzungsber. Preuf3. Ak. ds\WiL926).
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In this, we also refer to two lines on the rightdhagide as “incident” when they
“overlap,” which is a case that will occur when thenp®iand planes on the left-hand side
are related as null points and null planes.

47. The image of a line.We now consider an arbitrary lirg in R; that does not
belong to the compleg to be the locus of its points and planes.cdtpoints correspond
to a system ofo’ lines of the first sheet iM2, and itseo® planes will correspond te*
lines of the second sheet. Since every point of tieedi is incident with every plane of

the line®, every line of the first sheet will intersect evéine of the second one. The

two families of lines then define the two families ohgeators of a regular, second-order
surface, and indeed, an oriented surface, since the tmibefa of generators can be put
into a well-defined sequence, namely, in the well-definagl that the two sheets of lines

are distributed oM’ (no.23).

A line that is not a null line Regular, oriented, seconder surface on
Mg
Its null polar ‘ Oppositely-oriented second-order surface

By contrast, a null line corresponds to a point\éf. The null lines that it intersects

will define a singular linear congruence, which, as we k(@hap. 1, Theorem 19), will
be mapped to a second-order cone. Any generator of thatneast be regarded as a line
of the first sheet and a line of the second sheet:

Null line (as the locus of points and planegecond-order cone oMl ? (simultaneously

the locus of lines of the first and second
sheets)

8 10. The relationship as a contact transformation.

48. Surface element and leafUp to now, under our map, lines and pencils of lines
(as spatial elements in line space) appearedgnas points and lines, resp. We shall
now consider the map to be an association of spdeiaents of a different kind.

With S. Lie, we call the figure that consists of a point and aglarunited position in
R; a surface element Under our map, such a surface element will corresporitiet

figure that consists of two incident lines ®A>, namely, a line of the first sheet and a
line of the second one (which can also overlap), whkicBtudy called aleaf. Our map
will then give a single-valued and invertible corresponderetevéen thex® surface
elements oR; and thex leaves onMZ. The application of the null system to a surface
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element corresponds to a re-orientation of the assdclaaf (i.e., the two lines of the
leaf will be simultaneously subjected to a change oét3he

Surface element Leaf

Surface element of the null system (PoinSingular leaf (The lines of the leaf
and plane are related as null points and patiterlap.)
plane.)

49. The line as a locus of surface elementdust as a line is the locuscot surface
elements, an oriented second-order surfacégnwill be the locus ofo” leaves. Any

tangential plane to the surface will contain such & leBherefore, one will have the
correspondence:

Line that does not belong to the basi®Oriented, second-order surface, as the
complex ¢, as the locus of its surfagdocus of its leaves

elements

If one maps theo® surface elements of a null line M? then one will get a leaf that

corresponds to that surface element, and that willabo@tny arbitrary generator of the
image cone as a line of the first and second kind. llfpreduce the manifold of ath?
leaves that go through the vertex of the cone.

Null line, as the locus of surface elements  Pointhadocus of leaves

The only way that one can speak of a well-defined deggnefa geometric figure
is when one is given the figure that it will degenerate as a locus of spatial elements.
For instance, a conic section will degenerate into agddines as a locus of points and a
pair of points as a locus of lines. Similarly, we hé&ege: If a line in general position

goes to a null line in line space then the surface tha¢sponds to the lines dv ?, as a
locus of points, will go to a second-order cone, asasl@f surface elements at a point.

50. Unions.Let the point coordinates, as well as the plane coordinatesbe
analytically dependent upon a certain number of parametedsindeed, in such a way
that the equation:

1) ux=0

will be fulfilled identically. One will then havéné equation:

(2) G dy=0,

and since (1) makes this equivalent to the equation:
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3) & dy =0,

one will call the manifold of elements that is defifr®dequations (1)-(3) in the domain
of existence of the functionsumion (S. Lie). We say that every element of a union is
“united” with eachconsecutivene.

One easily sees that only one and two-dimensional umiansexist inRs . If the
locus of points is an analytical surface patch thenutlion will consist of the tangential
element to that surface (i.e., tangential planes aed tbntact points). If the locus of
points is an analytical curve segment then a surfeeeest of the union will consist of a
point of the curve segment, together with a tangentgaiepto the curve segment at that
point. If the locus of points is a point then the unigt consist of elements through that
point. Along with the unions that were enumerated gtlaee also the unions that are dual
to them.

51. Contact transformations. A transformation of surface elements that takes
unions to unions is calleda@ntact transformationtt will take unions thatontact each
other — i.e., have an element in common — to unions thatacongéach other.
Collineations and correlations are very special examplf contact transformations, as
well as the “extended point transformations”; i.be transformations of surface elements
that are induced by point transformations.

Now, a contact transformation is also the relatiimbetween surfaces elements in
line space and leaves (viz., “oriented surface elemeints¥l? that we have considered.

It associates unions of surface elements with uniorleasfes. We communicate that
result without proofE. Study, Math. Ann.91 (1924), 106-107], since we shall not need
it in that generality for the following special case:

Theorem 1: Two incident null-planes will be mapped to two contacting, oriented,
second-order surfaces by the line-sphere transformation.

In fact: The line, as the locus of its surface elesiel a union (viz., any element of
the line is united with any other one), and the orierdgedond-order surface, as the locus
of its leaves, is a union (viz., consecutive leavesuaited). Furthermore: Two incident
lines, when regarded as unions of elements, will havaramon surface element, and it
will be associated with a common leaf of the two esponding, oriented, second-order
surface by the relationship. We shall pass over any ieggion of the special cases.

§ 17. Stereographic projection ofM? to R; .

52. Stereographic projection of the cone. The relationship that we have been
dealing with up to now mediates the connection betweenefigara certaif; (viz., line

space) and other figures orM& in Ry . It is possible to go from this12 to a secondRs
by “stereographic projection,” and in that way, estaldisalationship between twis .
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Before we treat the projection &7 ontoRs, it will be convenient to examine the

corresponding relationship in one less dimension: We dvitke to project a real, regular
cone stereographically — i.e., from one of its reah{sp — onto a plane. As long as one
restricts oneself to real points, that projectiol s uniquely invertible, and as long as
one establishes that the liGealong which the tangential planegauts the image plane
shall be referred to as @tcessory point.The real projective planB will then be the
Gaussian plane.

In the complex domajrhowever, the one-to-one character can no longerdstuced
by such a convention on the terminology. In fact, tb#owing elements will
correspond:

Center of projectiop All points of the lineG

Arbitrary points of the generator of the“Absolute points” of the first (second,
first (second, resp.) kind throughthat are resp.) kind
different fromp

A non-decomposable section of the sphere — and thugudarecircle — will be
mapped to a circle or a line in the image plane accgrdirwhether it does or does not
include the center of projectign resp., and which one can refer to as the “circleuttin

the accessory point.” The projectionMf ontoR; behaves similarly.

53. Stereographic projection ofM2. We next arrive, by a (necessarily imaginary)
collineation, at the fact that tHd ? that is cut out of th@ltickerian M7 by Rs, namely:

(1) Xo1 Xo3 + Xo2 X1+ X03X12=0,

is a spherical manifold (viz., one whose the equationxs+ x. + X+ X+ X = 0). The
Rs-sections of thatM? will then be spheres, and those spheres will once morto

spheres or planes under the stereographic projedtioronto R;. However, we now

obtain a map of lines in line space to oriented spherésahdianR; that is no longer
free of singularities.

The tangentiaRs's at the center of projection ci’ in a second-order cone that
meets the imag®&s; in a conic section, in its own right. That conic sectwill be the
absolute conic sectiothat is common to all spheres in EuclidiRg . Its lines of
intersection (viz.minimal line$, which are projections of lines ikl 2, will be images of
the points in line space. The points of Euclidign which are projections of points of
M2, will be images of the null lines in line space.

We now go on to a more precise treatment of the singetathat might appear: It
will then be clear that the nucleus of the line-sphesasformation is contained in the
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relationship between line space and spheridl that we have presented, and that the

singularities will first come about when we wish to wert that relationship artificially
into a relationship between twigs (but not considered from the viewpoint that was
assumed here, since it was anthropocentrically infle)

8 18. The Dupin cyclide as the image of a second-order suréac

54. Definition of the cyclide. One will get the equation ofquadratic line complex
by setting a quadratic form in line space equal to zerowasspointed out on pp. ?, the
lines of such a complex that lie in a plane will envelapeurve of class 2, while the
complex lines through a point will define a second-ordeec

If one now intersects a quadratic complex in line spatke the basic complex then
one will obtain a congruence (2, 2), namely, a system?dines such that two lines of
the system will run through any point in general positiwhile two lines of the system
will lie in any plane in general position. The imagetlmat congruence iR, is the
(general) M -section of two quadratic manifolds. The intersecticanifolds that are

obtained in that way, and likewise, their projectiondts, will be surfaces of order 4 or
3 that contain the absolute conic section, when countied tw once, resp., and that will
be calledcyclides.

If one starts with the tangent complex to a secod@tosurface in line space, in
particular, then one will obtain@upin cyclide.

55. Map of a second-order surface in general positionWe apply the line-sphere
transformation to a second-order surf&ehat is in general position with respect to the
basic complex; i.e., the basic complex shall cut ed¢he two families of generators of
F? in two distinct generator¥, 2, andINy, M, (cf., no.75).

The lines of the basic complex that cut two skew li@$ are not null polar to each

other define a regulus (n@2). In the limiting case, the null lines that contBtlong a
generator will also define a regulus. Such a circle ballmapped to a conic section on

MZ, and thus, to a circle, when we assume tatis spherical. The image 6f — viz.,
aDupin cyclide— will go to two families ofo* circles that correspond to two families of
generators, and just as any surface tangent cuts eachtgermdrdoth families, and
otherwise no generator, two circles of the same fawiilybe disjoint, while any circle of
the one family will cut any circle of the other famdy a point.

Among the circles, one finds, in particular, ones tdwarespond to the null line8,,

9, of the first family of generators afd,, 91,, of the second one. Sind& cuts the
null lines9,, 91, , the regulus will decompose into the null lines drat tangent tA1; in
the pair of restricted pencils afdh 9, and91:9t,. Correspondingly, the cyclide will

contain two circles in each of its two families afttes that decompose into pairs of lines
(in Rs: pairs of minimal lines). They collectively definespatial quadrilateral. The
cyclide does not contain more than those four linese$i* possesses no more than four
pencils of tangent null lines.
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The vertices of the spatial quadrilatedal, 91;; 9%, 9, (viz., the double points of

the cyclide) correspond to the four null generator§of Since any generator of the
second kind cuts the lin@€%,;, 91, each of the circles of second kind will run through the

point 911, 91;, and likewise, each of the circles of the first kindl run through the
points,, M.

56. Construction of the cyclide. The two families of generators &f will be
mapped to two simply-infinite families of oriented speer From Theorem 1, every
sphere of the one family will contact every spher¢heffamily. Just ab? as the locus
of the common lines of intersection of three genesattan contain one and same family,
the Dupin cyclidecan be obtained as the envelope of all spheres dmiaat the three
spheres of one of the two families.

Theorem 2: Under the line-sphere transformation, a Dupin cyclide M3 will be

the image of an ¥that cuts the basic complex in a spatial quadrilateral of generators.
That cyclide will be a fourth-order surface with four double points. fble double
points are the vertices of a spatial quadrilateral whose four sidesharertly lines in the
cyclide. The cyclide is the envelope of two simply-infiniteliesof spheres, and will be
covered by two families @6 circles that run through two opposite points of the four
double points.

57. Lines of curvature and asymptotic lines.“Consecutive” spheres from one of
the two families intersect in circles of the corraging family of circles. The surface
normals along one such circle will (obviously) define aeco The circles are thus the
lines of curvature of the cyclide. Under the map, thdyasrrespond to the generators
of F?, and thus to the asymptotic linesk5f We then have the simplest examplé.iefs
theorem, which says thatincipal tangent curves in line space and lines of curvature in
sphere space will correspond under the line-sphere transformation.

Lines of curvature and asymptotic lines cannot be regarddaciaef points for a
rigorous formulation of that theorem, but as lociwfface elements.



Special cases 53

58. Special caseslf F? assumes a special position with respect to the basiples
then a degenerate case will appear in place of thergddepin cyclide. In the case
where the complex cuts out a pair of coincident limesnfone of the two families of
generators, the points of a pair of double points wilhcidie. In the case where the basic
complex contains the two generating reguliFdfcompletely, the cyclide will split into
two second-order cones as a locus of point&{inhey will beminimal conesi.e., cones
that contain the absolute conic section) and the caoclatersection of those two cones
as a locus of leaves.

With that, we have exhausted the cases in which a regelemnd-order surface will
appear in line space. In the case of a cone, ongetith fourth-order ruled surfac.(

§ 19. Study’s double-five.

59. Heuristic process.As a further application of the line-sphere transation, we
would like to derive (this time, starting in sphere spacespecial configuration of two-
times-five lines:

with the property that every line cuts four other onasely, the ones that are not in the
same row or column; that configuration is a so-calledble-five.

It is not difficult to construct a double-five: One ssawith five lines 1, 2, 3, 4, 5 in
general position and constructs one of the two commoas bhéntersection to any four
of them. The existence of a double-five, upon which oq®msges no other demands, is in
no way remarkable then. (By contrast, the existerficedouble-sixwill rest upon the
validity of a closing theorem.)

However, the existence of a double-five whose pailgme$ are pairs of polar lines
relative to a null system is remarkable. Such a doueshall be called &tudy double-
five, sinceStudy (%) found it in the following way:

If one draws three smaller spheres in a large onedherwill see that one can find
yet a fifth one (upon which, the three smaller spheréise larger one will lie), in such a
way that the spheres thus-obtained will contact w&e. If one orients these spheres
then one will obtain a double-five of oriented spheres:

in such a way that every sphere will contact the rotmes that are not in the same row
and column.

If one now subjects that figure to the line-sphere foainsation then a pair of null-
polar lines will arise from a pair of associated, aeeinspheres. Hence:

() E. A. Weiss “Zykliden als Bilder von Flachen 2. Ordnung in der Geradgeltransformation,”
Mathematica8 (1933).
() E. Study, in the beginning of the paper that was cited in4éo.
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Theorem 3: If one subjects a quintuple of non-oriented spheres that contact pair-
wise to the line-sphere transformation then a double-five will avisese line-pairs are
pairs of null-polar lines in a regular null system

60. Projective derivation of the double-five. One can pose the problem of
constructing such a double-five in projective space (hdgpendently of the line-sphere
transformation) ]0 For that, it is convenient to consider the figure diib points on
Plicker's M? that correspond to the[® lines of the double-five.

Since the line-pairs are pairs of lines that are pelative to a fundamental complex
¢, a point¢ in Rs that does not lie oM ? is singled out in such a way that the connecting
lines of the image points of associated line§ 11, 53 run through¢ (no.19). We
consider two of these lines'ldnd 22. They span a plari that cutsM? in a second-

order curve. However, that curve will decompose inpaiaof lines.
We now consider the poings andp, that the lines 1land 22 cut out of theR, that is
polar to the poin€. Its line of intersection will be the line of intecdion of the plan&

with the polarR, and (as the polar to the po#étrelative to the pair of lines) will run
through the vertex of the pair of lines. The Imep; is then a tangent to tHd? that the
polarR, cuts out oPliicker's M7 .

Theorem 4: The connecting lines of the image points of associated lines of a Study
double-five cut out a tangent pentatopeNt? from the image Rof the fundamental
complex.

61. Tangent pentatope toM?. Up to now, we have inferred the fact that a tangent

pentatope to aM exists only intuitively: We started with five spheréatt contacted
pair-wise. The existence of a tangent pentatope, anefdihe, aStudy double-five, shall
now be proved. To that end, we seek to inscribe thedr@te simplex iR, in an M

(1) a11X12+...+a55X52+ 2810 X1 Xo + ... + 2aus Xu X5 = 0,
in such a way that the ten edge lines will be tangentd ;. For example, should the
connecting line:

(2) é(1,0,0,0,0) % (0,1,0,0,0)

be tangent tdV 2, then the discriminant of the form:

(3) a1+ 210 & & + apéy)

() A. Maurer, “Doppelvieren und Dopplefiinften,” Diss. Bonn, 1929.
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would have to vanish, and thus the two-rowed determinant:

(4) a1l dgo — 61122-

One sees in the same way that all ten two-rowed rdetants that one can select from
the matrix of theM? that are symmetric about the main diagonal must var@te can

then calculate the remaining ones from the given valfi¢gse diagonal elements of that
matrix. If one sets:

(5) ai=a’

then one will have:

(6) ai ak—ak” =0, thusai aw=ax’, (%K)
(7) ax =+ a [Lag.

It is clear that one cannot take all of the signs endbterminant to be positive, since the
M2 would then be a doubly-count&d. One can then ask how many ways that the signs

in the matrix can be assigned if one is to obtaingallee M. We shall pass over that

question, and establish only that there are regMlar One of them corresponds to the
following sign arrangement:

- + + + +
+ - + + +
+ + - + +
+ + + - +
+ + + + -
and the simplesM of that type is:
(8) =X = X DXt .+ 2uXs = 0.

At the same time, we see that thE that one can inscribe in a given simplex such
that it becomes a tangent pentatope will depend upon fesgngal constants. A
pentatope iR, depends upon B = 20 constants, so the figure that consists ofgn
with a tangent pentatope will depend upon 24 constants, aoel tiere areo™ M? in
Rs, one can circumscribe’® tangent pentatopes to a givite.

That fact defines the foundation for the enumeratiotine Study double-fives: Since
the Ry, and therefore the compleX can be chosen in® different ways, one will have:

Theorem 5: There arex'® Study double-fives.

In conclusion, we mention yet another remarkable dofilde-namely, the double-
five of B. Segre Any line of such a double-five is the single line of iséetion of the
associated quadruple. The lines of the double-five belomgliteear complex, and will
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be mapped to a pentatope that is, at the same timeibag@nd circumscribed in the
image M? of the linear complex.

() B. Segre “Le piramidi inscritte e circoscritte alle quadrictieS; e una notevole configurazione di
rette dello spazio ordinario,” Memorie della R. Acc. deicei (6)2 (1927).
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Metric line geometry

8 20. Basic formulas of non-Euclidian geometry.

62. The three kinds of non-Euclidian geometry irR; . The geometry of the group
of automorphic collineations of a regular quadratic manifolg, is callednon-Euclidian
geometryin R, . The automorphic collineations themselves will alsochlled “non-
Euclidian motions” and “transfers” in connection witlath From the standpoint of real,
projective geometry, one distinguishes just as many stypk real, non-Euclidian
geometries as there are different types of real, nofiekarc manifolds. Thus, in the
plane, the real conic sections with and without realtgowill correspond to two kinds of
non-Euclidian geometry, namely, hyperbolic and ellipiéspectively, but in space, there
will be three kinds: the real, regular, second-ordefasas without real points, the ones
with real points, but no real lines, and finally, the ribat also have real lines.
Therefore, whenever we are concerned with questioreatify at all in what follows, we
shall treat elliptic (absolute surface without real pgirdr hyperbolic (absolute surface
with real points, but no real lines) geometry exclusi8ly

63. Distance between two pointsA so-calledCayley metric will be defined by a
basic second-order surface in space that assigns stenab between two points and
dually the angle between two planes to two points and tweglaespectively.

One defines the distance between two poingswith the help of the double ratio that
the two points determine, along with two other ones athwtiieir connecting line:

(1) z=6 X+ &y
cuts the absolute surfacex) = 0:

(2) €1d=8xN+24 &)+ & (YY) =0.

64. Double ratio of two points and a point-pair. We next pose the problem of
determining the double ratio that two poidisand &, determine with the zero locus of a
guadratic form:

(3) €19=(a"Had 9.

It follows immediately that the discriminant of tHarm is:

(4) D=COa'd)?,

() For a thorough presentation of non-Euclidian geometeyrefer tal. L. Coolidge, The elements of
non-euclidian geometpyOxford, 1909.
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in which C denotes a yet-to-be-determined constant. The disamhiwill then be
guadratic in the coefficients of the form, and will vénisand only if the zero locus of
the form is a point. However, if one sets:

(5) ala,=1:0, a’af=0:1,

(6) @ HdO& d=-&05,

in particular, then one will have:

(7) D=-1, (@d®)=1, so c=-

N[

and one will ultimately have:
(8) D =-1(a'd?)>.

Furthermore, one will have:
9) €€ =H{(a'&) (&2 + (a&X)(aPEN).
Equations (8) and (9) suffice to derive the desired doubte rati

(@*&)(a*E?)
(@*&) (@’
_H(a'E)(a¥) H(adNa %+ abfEEY
H(a@ENa ) Ha Y a ¥ -{abyécy
_ (&1€9+1D 0g'¢?)
(€165 -i/D Oge?)

(10) DV (a'd?&'¢?) =

This invariant contains the roots of the discriamn of the quadratic form. It is
therefore not a rational invariant, but the simpé&e@mple of an irrational invariant.

The fact that an expression for the double ratistnappear that is capable of taking
on two different values was clear from the outsigice one must still decide between the
two sequences of zero loci of the quadratic forfrhe quadratic form{ | §) will be

oriented by choosing the sign ¢fD .

65. Distance and angle in elliptic geometrylf we substitute the expression (2) for
(£]1 & in (10) and the points 1 : 0 and 0 : 1 frand &2 then it will follow that:

(12) oV (i ¢y = PO TN (A -(9°
(xy) — i/ (9 YY) — (XY
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However, we shall not take this double ratio itself (Whiedeed already represents an
invariant of motion) to be the “distance” between plntsx, y in elliptic geometry, but
define:

(12) distxy = %m DV (a*d? £1&9).

We would like to explain the consequences of thjs (If &Y, &2 &2 are the
parameters of three points that lie on the liges?* then:

(13) DV (a'a” §'€%) DV (a'd? %% DV (a'd? £3¢H) = 1,
SO
(14) DV (a'd? ELE2) DV (ard? E283) =DV (atd? 163 .

Adjacent segments of a line are then multiplied. By, if we desire that such
segments should be added as in elementary geometry éheillvihave to introduce the
logarithm.

In the case of elliptic geometry, the (real) conmertine of two real pointg, y will
cut the absolute surface at two complex-conjugate pamts”. The double ratio (11)
will then be a complex number of absolute value 1, tsolagarithm will be pure
imaginary. In order to obtain a real value for thetahce between two real points, one
must divide byi.

Finally, the factor 1 / 2 is explained as follows: éfliptic geometry, the angle
between two planas v:

(15) angu v= %m DV (a'd? £162)

is dual to the distance between two points, in wifith&? are the parameters ofv in
the pencil of planes that they span, afidda? are the parameters of the absolute planes
that are contained in the pencil.

We now take (as we do in elementary geometry) two pléméoeorthogonalwhen
they are conjugate to each other relative to the absdiutdige:

(16) Uy =0.
However, in that case, one will hab®/ (a'd? £'é%) =~ 1, and:

1_. 7
17 angu v=— =
(17 2 2

We have then included the factor 1 / 2, in order to olit@nanglerz/ 2 in the case of
orthogonal planes, just as in elementary geometry.
From equation (11), and with the help of the formula:

() F. Klein, “Uber die sogenannte Nichteuklidische Geometrie,” Matim.4 (1871) = Ges. Werke |,
(1921), pp. 254.
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(18) =in="'% - arc tary,

we will derive the equation:

_ 0y~ (%9

(19) tan disky
(xy)
and from that:
- (xy)
cos distxy = ————,
S 000 (v
(20) -
sin distxy = \/(XX)( -y :

V (X (YY)

Dual equations are true for the angle between tawgs.

66. Distance and angle in hyperbolic geometryThe complete duality between the
distance between two points and the angle betweenplanes no longer exists in
hyperbolic geometry. Namely, in the real approtcthe absolute surface, the manifold
of real points will split into two parts. Equatigh2) shows that the distance from a point
that does not lie on the absolute surface to aolatiespoint will be infinite. The absolute
points can therefore also be calledinitely-distant. A person inside of the absolute
surface (which one can imagine to be a sphere)gbes forth with a finite velocity in
one and the same direction for a finite lengthimetwill not reach the absolute surface.
We therefore distinguish threachable domaitdinside of the absolute surface) from the
unreachable domajrand from now on, we shall restrict ourselvestreatment of the
reachable domain.

The connecting line between two reachable poimays cuts the absolute surface in
two real points. The double ratio (10) will them teal, and in fact positive, and one will
thereforenot need to divide byin the definition of distance.

Things are different for the angle between twaefathat intersect in a reachable
line. The two lines in these planes that lie oa #bsolute surface will be conjugate
imaginary (as in the case of elliptic geometryheTactor 1 i must then be introduced.

67. The common normals to two linesIn non-Euclidian geometry, as in Euclidian
geometry, two lines are called mutually orthogofia., perpendicular) when they are
conjugate relative to the absolute structure, dnw,twhen one line cuts the absolute
polar of the other one. We would now like to fitle common normals to two lin€s,

$; i.e., the lines that mea and $) perpendicularly. These normals will then be the
common lines of intersection &f, £, and their absolute pola€s, $', resp.

For that, we assume th#tis not the absolute polar t6 and that® and$ do not
contact the absolute surface, such thét, $H$" will be two distinct pairs of skew lines
that define a line system of rank 3.
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Since the four lines define a figure that is polar telfitselative to the absolute
surface, the figure of its lines of intersection wibabe polar to itself relative to the
absolute surface. In the caserof 4, one will then (no27) be dealing with two
mutually-polar lines, which can also coincide with theeyators of the absolute surface

or a pencil of tangents to the absolute surface. Tdse will occur when th& and$
intersect at a point of the absolute surface®sand $’ will then be two lines of the

tangential plane to the point of intersection (or al

In the case = 3, one deals with a regulus that corresponds to itse¢lie absolute
polar system. The polarity will induce an involution thiat regulus that has two fixed
lines. Those fixed lines will be the generators of theo&ite surface, and indeed, since

they are skew, they will be generators of the samé. kin that case, the lings §, &',
H" will intersect the regulus of the absolute surfacpamits of one and the same pair of

generators.

If the generators of the pair coincide then the regwillsdegenerate into a pair of
polar restricted pencils with one generator as themmaon line.

If we restrict ourselves to real, reachable linesyperbolic geometrghen we will
have merely two cases to distinguish. A generatohefaibsolute surface has, in fact,
one and only one real point, namely, its point of sgetion with the complex-conjugate
generator that lies in the other family of generatdraio real, reachable lines that do not
intersect on the absolute plane will then cut the labssurface in points of different
generators, and will then have two distinct, mutually-potamals. However, if the two
lines do intersect on the absolute surface then thdyhawle no common normal in the
reachable domain, but the pencil of tangents to the painintersection in the
unreachable domain can qualify as a pencil of common ri&rma

Now, a real pair of lines can be a pair of complenjagate lines or a pair of real
lines. One has the following theorem here:

Theorem 1: A real pair of skew polars in hyperbolic geometry is a pair of lieals,
one of which is reachable and the other of which is not.

Proof: The real pair of polars cuts the absolute surfaca real “elementary
quadrilateral’” that consists of two generats Ry of the first kind and two generators

£x, £y of the second kind. Since the complex-conjugate gensratorthe absolute
surface belong to different families of generators, wilehave — say- £, = R, £, =
STiy, such that the point£,Rx and £,2%y will be real, and will yield a real, reachable line

when they are connected, while the poidft, and £,% will be complex-conjugate,
and when they are connected they will yield an unrddeHme. We summarize this as:

Theorem 2: Two real, reachable lines that do not intersect on the absolute surface
have a real, reachable, common normal in hyperbolic geometry.

There are no real absolute point&lliptic geometry Two real lines cannot intersect
on the absolute surface then. If they intersecointp of one and the same genera&gor
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then they will also intersect the complex-conjugateegator R that belongs to the same
family. There are thus, in turn, two possible cases:

Theorem 3: In elliptic geometry, two real lines that are not absolute polalshave
either a real pair or a real regulus of common normals.

In order to clarify the reality behavior, we prove theorem:
Theorem 4: A real polar pair in elliptic geometry is a pair of real lines.

Proof: The real pair, which is always a pair of skewedi cuts the absolute surface in
a real elementary quadrilateral that consists of tmemggorsi?, %% of the first kind and

the generators, £ of the second kind. The poi&C, :RE and RE, RE are pairs of
complex-conjugate points, and thus yield a real connedtiag Q. E. D.

It then follows from the theorem that was just mowvhat the regulus that was
mentioned in Theorem 3 (which indeed consists of reargmdirs) will also possess a
real character.

68. Clifford parallels. In non-Euclidian geometry, two lines are said tqarallel
to each other when they intersect at an absolute pé¢iriie angle between two parallel
lines will be zero, to the extent that it is defined/yhereas there are real, reachable,
parallel lines in hyperbolic geometry (viz., two parallsa line through a point that
does not lie on it), there are no real parallels ipt&lgeometry.

One can, however, still introduce the concept of perates of a different kind, such
that real parallels will be possible in elliptic geometag, well, and therefore certain
properties of Euclidian parallels will remain preserved.

Two real lines that cut the absolute surface in the same (comphgxgate, resp.)
left (right, resp.) generator shall be called left (right, regpayatactic (i.e., “parallel in
the Clifford sense”).

There are then two congruences of lines that areguéiato a real lin®. & cuts the

absolute surface in two complex-conjugate generatorstbfkmds. Since one can draw
one and only one line of the two congruences through lapoat (and therefore it
certainly does not belong to any generator), it will felismmediately that:

Theorem 5: In elliptic geometry, there is a well-defined left-sided kamel a well-
defined right-sided line that is paratactic to a given line through a gooamt.

This already exhibits an analogy to the situation inliian geometry, which the
following theorem further emphasizes:

Theorem 6: Two paratactic lines have® common normals.
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The fact that two lines that hawe' common normals cut the absolute surface in
points of one and the same pair of generators was sabeady above. The converse is

also true. Namely, we assume that the gi@difford parallels® and $ cut the
generator$i, R, of the same family at the poings )5 andni, 7., resp. Their absolute
polars then cut the generat®s andfR, in any event. Let the points of intersection be
Vi, Voi iy N, Ifwe now perform the absolute polarity then the oy 771, ), , 77, Will

be transformed into four planes, and indeed, the plaaésahnect’; with &', $', &, $,
resp., and thus intersect in the poips 77, , )5, 172, resp. One therefore has:

WY, n O Vo ez O YallaVol,.

However, four lines that determine the same daAstrf) from two skew, common lines of
intersection will belong to a regulus (cf., i&7, rem.). Q. E. D.

A one-parameter group of elliptic motions, and thus autpimo collineations of the
absolute surface, will be defined (r2b) by the two distinguished generatéfs, R, of

the absolute surface. They will be induced by the binanjggtieities that leave the lines
M, and R, in the family of generator®t invariant individually, and each line of the

families of generators individually fixed. Each of th&lines in the congruence that is
determined byRi, SR, will then be translated into itself. Since the grou fix the lines

of aparatactic congruencendividually, we shall speak ofgroup of displacementsOne
must distinguish right-sided displacements form lefediones.

Theorem 7: A paratactic congruence admits a one-parameter group of
displacements.

The common normals to two paratactic lines will be pgewoh transitively by the
associated group of displacements; i.e., it will besiides to take each of the' normals
to each of the other ones by a displacement. Simlispdacement (as a motion) leaves
the distance between two points invariant, it wilia#tely follow that:

Theorem 8: Two paratactic lines will cut out the same segment on all of their
common normals.

One can call that segment the “distance” betwkenwo lines.

69. Distance between two linesOne refers to the segment that is cut out from a
common normal to two line¥, ) that are in general position as tiistance between

them Since the two lines have two common normals, &eddistance along each of
those normals is determined only up to sign, one mustegpguadratic equation for the
square of the distance. The convention on the sign abtits of the discriminant of that

equation must distinguish the two normals. The digoamt must then agree (up to a
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numerical factor) with the determinant (4) in § 9 tisatlefined by the lineg, 2), and
their absolute polar¥’, 2)'.

We would like to determine the distance between twa lhe)) in elliptic geometry.
For that, we denote the line equation of the absolufacgi{no.23) by (X | X) = 0, and
the intersection points of the liné5 2) with their common normals by, y andx, v/,
resp., such that:

(21) x=xxX, D=yy, X)=&y)=ExX)=@y)=0.

The squares of the cosings d, = [cos dist¥ 9)]° of the distance, when measured along
the normals, will then be [from (20)]:

(xy)? (Xy)?
22 d; = , d=—.
(22 O T

These expressions shall now be expressed as fosatibthe coordinates ¢ and%)

alone. For the sake of simplicity, we assume is tihat the determinant of the absolute
surface possesses the value 1. One will then havéact, the following auxiliary
formula:

(23) Q(l 2 x3 X4)2 — (Xl 2 3 X4) I:(ul AT u4),

in whichu' denotes the absolute polar plane(it[n:f., no.26, (20), (21)], and furthermore,
from the multiplication theorem for determinantsyill equal:

=1 U =1€X .
Moreover:
(24) 0 XX = (¢HE U uh)
= " u) (¢ u’) - (X uh) ¢ U (&8 1, (20)]

= (A 06X = () 08X .

With the use of these auxiliary formulas, one Wwéle:

(25) E %) =&KX |xX) = (xx|XX), (22), (24),
(26) @ 19) =y lyy) =bylyy),

(27) X 19) =& |yy) = xy[xy),

and

(xx) (xy) O 0
2 _ 2_|(Y) (yy O 0
(28) XY)" = (X |yy)" = 0 0 (xX) (LY) (23)

0 0 (¥yX) (YY)
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={XXN YN -&YH(XX) Y y)-Ky)}
=@ X))+ &) (25), (26), (27)
=000 (YY) (X Y'Y =X X) (Y YY) (xy)>

It will then follow that:

29) G, = OO (XIYF
MOV (X1X)QD19)
30) o+ dy = OO NI+ (XYY vy
(0U(yW(KA( YY)
_ (XD I+ E 1Y - €YY
(X[0)Q 1) |
SO:
(31) @-d)d-d
s B -EOQI-E P, EIYF
(x1)Q[2) (*1)Q19)

The desired equation will then read:

(32) @ %) (D |9) [cos distx V]*
+H{(XYY - (X %) D D) - (X |D)*} [cos distX P]* + (X Y)*= 0.

For [cos distx 9)]? itself, one finds from this that:

(33) [cos distt 9]? = LX)+ EQF - &YF+/D |
2 X[X)Q19)

In this, A means the discriminant of equation (32), whichas,we would expect, the
determinant:

(XY (X]3) (x|
@D 10919
(x]%) x[9) * (X
(x19) @19 @x) =

(34)

One derives the formula for sin di) from (33) with the help of the formula $in+
cost=1. One finds that:

(35) @ %) (V1Y) [sin distx Y]*
+H{(X D)= (X1X) (D D) - (X D)7} [sin distX P]* + (X V)*= 0.

Theangle between two linesgill be defined dually to the distance between tives.
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§ 21. Passing to the limit of Euclidian geometry.

70. Degeneracy of the absolute surfaceln order to carry out the passage to the
limit of Euclidian geometry in the formulas of the preicg paragraphs, we put the
absolute surface into the form:

(1) xX) = x5 +k*(x*+ %+ %) =0,
(2) (U U)EkZUOZ_i_LhZ_*_uZZ_*_ L%Z:O’

in which k is real or imaginary, an# can correspondingly be positive or negative
according to whether one is dealing with an elliptic gpdampolic metric, respectively.
Under the passage to the lirkit- O, the absolute surface will go to the doubly-counted
imaginary planex; = 0 as a locus of points and the absolute conic section:

(3) [ud =u?+ui+u’=0
as a locus of planes.
The line equation for the absolute surfajerfamely:

@ (12) = 2 (XA XE+ XY +hE 5 X 34X D =0,
will become:
(5) [X[X] = X5+X5+X5=0

under the passage to the limit, which is the compleknes of intersection with the
absolute conic section.

71. Distance between two points. Angle between two planéNe would now like
to pass to the limit in the formulas of elliptic georget To that end, we alter our
definition up to now and writk Cdist xy for what we previously denoted ly= distxy.
From (20) in § 20, one will then have:

e L s N Ty (%)
(6) sink distxy =k d 3!k3d + . T
Thus:

I
(7) IkmE sink distxy=d

LY O +IEE+ YO+ K+ ) Oyt Kxyr)?

=lim=

k-0 K IR+ o+ KNPt

() In the derivation of the formulas for the distaacel angle between two lines in 168, we assumed
that the absolute surface had the determinant 1. FRorelson, the factdein (X | X) must be arranged as
it is (4).
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1
=y VO =% Y2+ 06 %o % W2 +( % ¥ %32,
0

This is the Euclidian distance between the two goiny (when written in homogeneous
coordinates).

One can apply the passage to the limit to theeabgtween two planas v with no
further preparations and get:

_JIudivi u?

[uv sind uv=

JIudJTvy JIudJ[ vy

(8) cost] uv=

72. Distance and angle between two lineslf one introduces (4), and sekd in
place of distxQ), as in no71, then equation (35) in 8 20 will become:

o[ EIRADI +(d)

) {k—lz[aem]Z—k—lz[ﬂx][m @1+---j(k2d2+---)
+(XY)’ =0,

and when one passes to the likit: O:

(10) - [ X[XIDIV] - XV} + (XD)* =0,
SO
(11) d* = (X -

(x| X[ D1-1%|D]

In order to obtain thé&uclidian anglebetween the line&, %), we start with the
formula that is dual to (35) in § 20:

(12)  &%)®Y) [sin angxY]*
+{(X|9)? - (X10)®DD) - (X)}sin ang XY] * + (XY)*> = 0,

multiply it by k%, and letk — 0. It will then follow that:
(13) BEIXI[(D] [sin O x9]* + {{X19]* - [X|X][DDNsin O XY]*=0,

and thus, when one splits off [dihX9)]*



68 Chapter Five: Metric line geometry

(%] XYV (X2

- A
4 N RN

It will follow from this that:

_ X191
15 codl xX9) =

4o K JIX 121191 2]

and

(16) () xy = VXKD DX 20

[X]2]

Finally, the formulas that we derived yield thdldwing relations, which will be
important in the sequel:

i (X9)
17 distx2) Dan X2) = —==
) SEYHAE Y g
and
(18) distx®) Dsin0 X9 = —— D)

NEIESNDIPIR

With these formulas, formulas (14)-(16), which degp@pon only the angle, will take on
their geometric interpretations in regard to trensformations of an enveloping group,
namely, the group of similarity transformations.

73. The group of similarity transformations. The group of non-Euclidian motions
and transfers is characterized completely as theupgrof (real and imaginary)
automorphic collineations of a regular, second-osleface. Corresponding to the®
collineations and the® second-order surfaces R, we will havew!® : ©® = ©® non-
Euclidian motions and transfers. The grogpshs of Euclidian motions and transfers
will then arise from these groups by passing tolitmé&. However, that group will no
longer be characterized by saying that their tamsétions fix the absolute conic section.
Indeed, there areo® singular surfaces of class two, and therefere automorphic
collineations of a conic section. They define gheupgy of similarity transformations:

X = %,

X =axtA(a; Xt a, %t a;x,
X = 3,% tA(3 X+ &, %+ a3,
X = apX tA(a Xt &, %t agX),

(1)

in which, theay define an orthogonal matrix. (Cf., 03
The group of motions and transfers is contained.)n It comes about when one sets
A=1.
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Now, let g be a subgroup of an arbitrary gro@ We subject an arbitrary
transformationt of g to a transformatio of G; i.e., we formt' = T1T. When the
resulting transformatioti is once more a transformationgyfindependently of howand
T are chosen, one will cajlaninvariant subgroupof G.

One confirms directly thags is contained invariantly igy .

One will now obtain all similarity transformationshen one composes the motions
(and transfers) with the one-parameter grougtr@tchings from the origin:

(2)

!

{ X = %,
X EAX, X% =A%, k=A%
These stretchings fix the origin and every point of thaginary plane individually.

The manifold of stretchings (vizperspective similarity transformationef all points
in space — together with the displacements — definesugp gso

X5 = %

X =ax+tAx,
(3) )

X, = 3,%+ A X%,

X3 = 8%+ A X,

which is likewise contained invariantly ig;. gs and g4 intersect in the grougs of
displacements:

Xy = X5

I: + ,
@ S

X, = 8%+ X%,

X = 8%t X%,

whose transformations commute pair-wigg.is contained invariantly igs andgs.
We clarify the relationship between the four groups witbiagram, in which a
double line shall represent the relationship of being coedainvariantly:

g7
7N
Ny’

8 22. The axes of a linear complex.

74. Definition of an axis-pair in non-Euclidian geometry. A linear complext is
linked invariantly with the polar comple¥, relative to the absolute surfaE& namely,
the locus of all polars to the lines that are containetl Under the map tBs, the reguli
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of F2 will be mapped to two conic sections in plafeandE’, resp., and one will obtain
the image points of the polar complexesoithen one subjects the image point€db

the involutory collineations that are determinedBbgndE’ as incidence domains.
Now, the complexe€ and¢’ span a pencil of linear complexes that generally belong

to two distinct singular complexes. Its guiding lineg aalled axes of the linear
complex.
Since the pencil of complexes that is spannedCpy’ goes to itself under the

absolute polarity, the pair of axes will also be fixedthgt polarity. It will then consist
of a pair of polar linesE. Study has called the figure that consists of two mutuallyapol
lines aline-cross. We shall then speak of th&is-cross of a linear complex.

One can also arrive at the figure of the axis-croskarfollowing way: The complex

¢ cuts each of the two reguli 6f in two distinct lines. They determine afementary
quadrilateral that goes to itself under polarity ¥f. The generators of the elementary
quadrilateral will also belong to the polar comp&xthen, and thus, to the intersection
congruence of the pencil of complexes that is spann&dnd¢’. The guiding lines of

the congruence, which are the missing counterparts t@fdrementioned elementary
quadrilateral, are the mutually-polar axes of the comglexe

75. Classification of the figures that consist of a linear coplex and a regular,
second-order complex. In the previous number, we assumed a general casesthat

characterized by the fact that the compiesuts the two generating reguli of the absolute
surface in two distinct generators. Rg, the connecting lin€¢’ will cut M/ at two

distinct points in this case.Should these points coincidee., should the axis-pair
become a doubly-counted axis, which must then be polarsédf iand therefore a
generator of the absolute surface), then the connectiegg@' would have to contact

M/ at a point ofE (or E'). The polarR, would then have to contadtl/ at the same

point. It would then contact the conic sectionMry that lies in the plang (or E'), but

not the one that lies in the other plane. The eleangntjuadrilateral would then
degenerate oR? accordingly: The two generators of the one family \abkn coincide
with the axis of the complex, while the other two wondchain distinct.

Should the ling¢’ belong toM;/ completelythen¢ would have to be a tangent to
F? that is different from a generator¢’ would then be a tangent to a pencil that is
determined by, and the entire pencil of tangents would consist of ate.

The line¢c’ will be undeterminewvhen¢ coincides withe'. That will happen if and
only if € belongs to one of the plan&sor E'. The polarR, will then containE’ (E,
resp.), while the comple® will contain one of the two reguli ¢7. We shall then call it

a “generating complex.” Such a complex can be regulaingular. In the latter case, its
guiding line will be a generator &f.
In summary, we must then distinguish between tHeviathg cases:
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I. Complexes in general position(Regular or singular complexes) Each of the
reguli of F? intersect in two distinct generators, which willtbe skew polar axes.

II. Contact complexes:

a) Regular complex.One of the two reguli intersects in two coincidentegators,
while the other one intersects in two distinct on@&se doubly-counted generators will
be doubly-counted axes.

b) Singular complexes.The guiding line is a tangent (that cuts both regulinat t
coincident generators). One will hawd axes that fill up the pencil of tangents that is
determined by the given tangent.

[ll. Generating complexesThey contain one of the two reguli. The axes wdl b
undetermined.

a) Regular complexesThe second regulus intersects in two distinct genexator

b) Singular complex.The second regulus intersects in one doubly-counted generat
namely, the guiding line of the given complex.

76. Axes in elliptic and hyperbolic geometry.Since the absolute surface does not
possess real generators in elliptic and hyperbolic gegnait a real complex cuts the
absolute surface in a real generator figure, possibiliteeand Il1b will no longer apply
to either geometry. Since there are no real abstdngents in elliptic geometry, I1b will
also drop out for elliptic geometry. Finally, the cdHa is rejected in hyperbolic
geometry, since two complex-conjugate generators ofpthers will belong to different
families of generators. We summarize the resultshé extent that they are concerned
with hyperbolic geometry:

Theorem 9: A real, regular, linear complex always has a well-defined reachabte axi
in hyperbolic geometry. A real, singular complex with a reachable guidiagvill have
that guiding line for a reachable axis. All of the lines of the pendihgents that are
determined by the given tangents will belong to an absolute tangent as axes.
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77. Axes in Euclidian geometry. If the absolute surface degenerates into the
absolute conic then the axis-pair of the complex (irstese of non-Euclidian geometry)
will become the axis-pair in the sense of Euclidian genmeHowever, that axis-pair is
linked invariantly with the complex with respect to simtlatransformations, as well.

As in non-Euclidian geometry, a polar compl&xis coupled to a comple® in the
geometry of similarity transformations. K[| X] = O is the line equation of the absolute
conic then the polar complex will have the equation:

(1) E[X]=0.

It will then have the coordinates:
(2) 0:0:0¢C01:C02: €03,

and it will itself be singular. Its guiding line will bealled theauxiliary axis of the
complex€. It can also be obtained as the polar to the nulltpoin

(3) 0 ‘Co1:Co2: o3

to the imaginary plane relative to the absolute conithe auxiliary axis will be
undetermined if and only & is an imaginary line.

Under the assumption thdtis not an imaginary line¢ will be different from its
auxiliary axis. Both of them collectively span the pénci

4) EX)=&CEX)+&[C]X]=0.

Since one of the singular complexes of the pend&h®vn already, the other one can be
determined linearly. The equation:

(5) ©D) =&{ () + & [C[C]}=0
yields:
(6) &S:&E=-2[C|C]:(C0).

The equation of the second axisyiz., theprincipal axisof the complext — will then

read:
(7) Bx) =-[€| ] (€X) +3(€Q) [€ | X] = 0.

From no.11, the principal axisp is the null polar to the auxiliary axis. It will
coincide with the auxiliary axis when the expressién| [€] vanishes for the regular
complex&, so whert is a regularisotropic complex

If ¢ is a singular, isotropic complex then the minimal léhevill cut the auxiliary
axis, and both of them will span a pencil of axes otthraplex.
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We summarize the results, to the extent that thegancerned with real figures:

Theorem 10: A real, regular, linear complex always possesses a well-definal], re
proper line as its principal axis: viz., the null polar of its awami axis.

A real, singular, linear complex with a proper guiding line has that ggidine for
its principal axis.

A singular linear complex with an imaginary line has no well-defined axis.

78. Metric properties of linear complexes.Let (€ X) = 0 be a regular complex in a
real domain, and let (7) be its axis. Now})ifis a line of the compleg, so:

(8) €9)=0, but E[|P]£0,
then one will have:
9) BY) =2 x)0C|Y], [BIV]I=-[¢|c]OC|D]
and it will follow from this that:
(10) _ Y @€ _
[B|D] [€]|¢]

This equation is also true for the lines with|[2)] = O that were excluded above, on the

grounds of continuity.
By assumption, the constakit— namely, theparameter of the linear complexis
non-zero. It is an absolute invariant of the maticince:

(FY) __ 4 _
11 -r=L = Qand PY =k 21, (17)],
(11) T IStPY Lanll BY [§ 21, (17)]

one will now have:

Theorem 11:If 3 is the principal axis of a real, regular, linear compl&xand X is
a proper, real line of the complex then the proditstance betweefd and X) times
(tangent of the angle betweghand X) will be constant.

This theorem allows us to illustrate the distribntof real lines of a real, linear
complex from the standpoint of real, metric geometif we think of dist39) as being

constant then it will follow that tad 39) is also constant; i.e.:

Theorem 12:Lines of the linear complex with the same distance from the painci
axis define the same angle with that principal axis.
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Now, the larger that dispQ) becomes, the smaller that tan3Q) will be, and the

smaller that the angle that the lines of the lineanglex make with the principal axis
will be, as well. For dis§3Q) = 0, that angle will becomg/ 2: i.e., thetransverse lines

will be perpendicular to the main axis.
It also follows directly from Theorem 11 that:

Theorem 13: A linear complext admits an arbitrary rotation around its principal

axis and an arbitrary displacement along that principal axis; hence (when coahpare
arbitrary screw around that principal axis.
8 23. The axis surface of a pencil of linear complexes.

79. The axis surface in non-Euclidian geometryWe consider a regular, second-
order surfacé? in space of a regular pencil of linear complexes pésyl and lla. (Cf.,
no.75) The locus of axis-crosses of the linear complexaled theaxis surface of the
pencil of complexes.The properties of the axis surface are obtained mogilys by
mapping it toRs .

The pencil of complexes will be mapped to a laghat meets neither of the two
polar image planeg, E' to the generating complex &f relative to M/. In order to

obtain the image point of the axis, one must subjectptiiets of the lineG to the
involutory collineations that are determinedbandE’ and intersect the connecting line
of corresponding points witM,>. However, upon transforming the point sequenc&on

one will obtain a projective point sequence on a secardli. By assumption, the lines
G andG' are skew, and they span Bathat intersect®liicker's M,? in anM.?. In the
sequel we shall assume that it is regular. The two gregepoints sequences of the lines
G andG' generate a regulus whose lines 8§ in the image points of the desired axis

surface. Those image points will then fill up the cuo¥antersection of two second-
order surfaces, which is a fourth-order cuB/eof the first kind.

80. Fourth-order space curves. The fact that the curve of intersection of two
second-order surfaces is a fourth-order curve, and will ititessect any plane at four
points, is explained thusly: Any plane will intersectleatthe two second-order surfaces
in a second-order curve, and these two second-order cuitv@stersect at four points,
namely, the points of intersection of the curves whinplane. With the first two second-
order surfaces, the curve will also contain all sudamiethe pencil that they span, and in
particular, the four cones of the pencil. As the basiwve of a pencil of second-order
surfaces, the fourth-order curve of the first kind i®éocontrasted with the fourth-order
curve of the second kind, which contains omhesecond-order surface. The latter curve
is rational — i.e., capable of a rational parametejreésentation — while the former is
elliptic. A more precise treatment of these curvesldvoequire the theory of elliptic
functions, which would fall beyond the scope of thisko
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81. Fourth-order ruled surfaces of the first kind. An R, cuts the connectings of
G andG' in a plane, and thus cu@$ in four points. Therefore, the axis surfacéirwill
be cut by a line (that hereafter meets four generatbfgyapoints. The axis surface will
then be a fourth-order ruled surface. As the image foligh-order curve of the first
kind, it is called théourth-order ruled surface of the first kind.

Since the image manifold of the generators of our siface is contained in &,
the generators will belong to a linear complexd it is easy to give its guiding lines. To
that end, we think of the imad®& as being spanned by the four points at which the lines

G and G’ cut the M,?. These four points are the image points of the twagudar

complexes of the pencil of complexes that we stantighl and the pencil of complexes
that is polar to it. The desired guiding lines are then the two, mutually-polar, common
lines of these four singular complexe3he guiding lines of the congruence are also
called the guiding lines of the ruled surface.

A (2, 2)-correspondence between the generators ofMlje that is the image

manifold of our congruence is defined by & A generator of the first kind cuts the
regulus, and therefore ti@&, at two points, and two generators of the second kifld w
emanate from those two points, and conversely. Wetlven have a relationship that
associates one generator of the one kind with two gtarsrof the other kind. Since the

generators of thel,> correspond to the points of the guiding lines of our comgmiewe

will find that the ruled surface is generated by a (2, 2)espondence between the points
of its guiding lines.

Theorem 14: A regular pencil of linear complexes of type | and lla (cf., TH),
together with the pencil that is polar to it relative to a given, regé?, will span a
regular pencil of complexes. The axis surface of the pencil of erewpis then a fourth-
order ruled surface of the first kind with two skew guiding linesyéen which, the
generators define €, 2)correspondence.

A more precise examination would teach us that th@)(2prrespondence is not the
most general one. We shall pass over the examinafidheospecial cases and an
analytical presentation of our results that would lea@legant formulas by the use of
WeitzenbdcKs complex symbolism.

82. The cylindroid. If the absolute conic appears in place of the absolutacgun
the construction of the axis surface then the axis ainfall decompose into a plane —
namely, the imaginary plane — and a third-order ruled seirfaamely, theRlicker)
cylindroid.

The axes of a linear complex relative to the absolotgcovere explained in n@.7.
The null points of the imaginary plane relative to thdl system of the pencil of
complexes define a point sequence in the imaginary pteamaely, the polar complexes
(or auxiliary axes) of the complexes of the pencil tkdahe polar pencil of lines relative
to the absolute conic.

We once more apply the mapRg! The pencil of complexes will be mapped to a

line G, and the pencil of the polar complexes, to a gene@itof M. We once more
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assume that the two lines spanRarthat cuts a regulak,? out of M,?. The regulus that

is generated by the lin€s andG', which are related projectively to each other, nove cut
M, in aC*, from which, the generat@' will split off. The remaining intersection is a
cubic space curve®,

We would like to call the lings' a generator of the first kind of tve?. Any
generator of the first kind will then c@ at two points, and any generator of the second
kind, at a single point. (The second point of inteisacof the generator with the
decomposablec® will lie on the lineG'.) The C mediates a1, 2)<correspondence
between the generators of the first and second kind dfitfe

Just as th€* decomposes into a line and a third-order space curve in ispEge,
the ruled surface will decompose into a pencil of lines anhdird-order ruled surface.

Since theC® belongs to aiiRs, the ruled surface will belong to a linear congruencee O
of the guiding lines of the congruence will be imaginatdy.will be the guiding line

whose pencil of lines will be mapped to the generatotheiecond kind of thé/ ?;

any generator of the second kind will then, in fact, catlitne G'. Every pencil of lines
that corresponds to a generator of the second kind ill tbntain an imaginary line.

Just as th€? defines a (1, 2)-correspondence between the lines ofvtheeguli of
M, the generators of the ruled surface will mediate 2)ttprrespondence between the

points of the two guiding lines: Every point of the rgalding line will correspond to
two points of the imaginary one.

Theorem 15: A regular pencil of linear complexes contains no imaginary lines and
no minimal lines, and it spans a regular bush of complexes, togethetheirencil that
is polar to it relative to the absolute conic. The axis surfaicéhe pencil will then
decompose into a pencil of imaginary lines and a “cylindroid”: viz., aduerface of
order and class 3 with two skew guiding lines that define a line-crébe. generators
mediate g1, 2)correspondence between the real and imaginary guiding lines.

A simple construction of the cylindroid then gives:

Theorem 16: One constructs the common normals to a fixed and a variable
generator in a regulus. The result will be a cylindroid.

The theorem is proved easily with the help of the todg; .
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Ray geometry

§ 24. Study’s conversion principle ).

83. The mapping equations.Let Xix be the coordinates of a real complex, which are
themselves real. The equations:

xl = %01'*' i%23’
(1) X, =X,+iX,,
xs = %03'*' i%u

will then give a map of a poif in a complex plane to a real, linear compleRin If
we multiply the coordinates (1) by a complex fagber o+ i T

PX, =(0X )~ TX,)+i(0X ,+TX ),
(2) PX, = (0%, —TX ) +i(0X ,+TX ),
PX,=(0X - TX ) +i(0X ,+TX )

then the mapped poit will remain the same, due to homogeneity. Howevenniage
will change; it will consist of a pencil of real, limeeomplexes. We would like to replace
this somewhat non-intuitive figure with a simpler one.

The aforementioned pencil will be spanned by the two cexegt

(3) { Kl: %Ol: %02: %03: %23: %31 % 1z
Koo =X, =X50 X0 X of X r X g

We see thaK; andK; are polar relative to the second-order surface:

(4) (%|%):%021'*'%022'*'%:3_%223_%;1_%12::0;
if we polarize:
©)) X 19) = X01Do1 + X0V o2 + X030z — X253V 23— X31YP31 — X12Y12=0

and fix X then that will yield the equation fét .
(4) is the line equation of thenit sphere:

() E. Study, Geometrie der DynamenLeipzig, 1903, § 23. “Uber Nichteuklidische und
Liniengeometrie,” Jahresb. d. Deutschen Mathematiker-nNgaig11 (1902), pp. 342t seq.
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(6) =X X7+ X+ =0,

which will play a distinguished role in what followsWe are then dealing with
hyperbolic geometry in the image space.

SinceK; andK; are polar to each other relative to the absoluteaserfall of the
complexes of the pencil that they span will have ghme axis. We then speak of a
pencil of coaxial complexes.

From Chap. V, Theorem 9, we now have two cases tmglissh. In the first case,
one is dealing with a pencil with two real, two-dimensiomalitually-polar, skew axes,
one of which is reachable, while the other one is wiaale, and in the second case, one
is dealing with a real pencil of tangents.

If we now restrict ourselves to the reachable donaairnbefore then we (witk.
Study) will call the reachable piece of a reachable liner@per rayand a point of the
absolute sphere amproper ray. A pencil of the first kind will determine a proper ray i
a one-to-one and invertible way, while a pencil of theosdckind will determine an
improper ray will one-to-one and invertible manner:

Theorem 1: The points of the complex plane are mapped to the (proper and
improper) rays in hyperbolic space by equati¢hs

84. Ray coordinates. A ray will then be characterized by six coordinatgs. The

ray coordinates of a line are distinguished fronPiiscker coordinates by the fact that
the former do not need to satisfy tRkicker identity. One can thus assume that there are
«° rays, whileR; contains only«® lines. However, we must imagine that the ray
coordinates possess an extended homogengityill not change when one multiplies
then by a complex number, which will contaimo real quantities. One can always
obtain the Plucker coordinates of a line from its ray coordinates by albdeithoice of

that factor.

85. The fundamental conic section. Which points of the complex plane now
correspond to the improper rays in hyperbolic space?rderdo answer that question,
we consider the expression:

(7) KY)=X1 Y1+ X2 Y2 + X3 Y3,

and substitute it into (1). It will then follow that:

(8) XY =&X[2) +i(XD).
The two equations:
9) ®[19)=0, &9)=0

between real quantities follow from the one equatiry = 0 between complex lines;
le.:
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Theorem 2: Two points XY that are conjugate with respect to the “fundamental
conic section”(X X) = 0 will be mapped to two rays that intersect each other at right
angles.

The figure that consists of two proper rays thatrggtet at right angles does not need
to be clarified further. In order to find a geometritenpretation in the remaining cases,

we propose to lex and?Q) be thePlicker coordinates of straight lines by multiplying by
suitable factors. If, say¥ were then an absolute tangent, and should equations (9) be
verified then?), as well asx, would also have to be the polarX®fand they would then

cut a line that belongs to the same pencil of tanges®§ and would then have to run
through the vertex of the pencil. Finally, should #egentsx and?) be simultaneously
conjugate and incident, then they would need to have the santact point.

Theorem 3: A proper ray will intersect an improper ray at right angles when it
contains the point of the improper ray. Two improper rays willrgget at right angles
when they coincide.

The improper ray is characterized by the equatighg ¥) = 0, XX) = 0. The
desired result will then follow from that:

Theorem 4:The points of the fundamental conic will be mapped to improper rays.

We make the following remark in regard to that map: fthrelamental conic is a
binary domain as the locus of its points, which, just likarary domain of points on a
line, can be mapped to tli@aussianplane or theRiemann sphere in a one-to-one and
invertible way. The map that one obtains in this way Wl identical to the one in
Theorem 4, which we assert without proof. Hence, oneatso obtain the map of the
points in the complex plane to the rays of hyperbolicsges follows?):

Point of the complex plane- point-pair on the fundamental coni¢tigssés
conversion principle)- point-pair on th&Riemann sphere- ray.

86. Rays of the second sheelNow, let one of two conjugate poiXsY — e.g. X —
be fixed, and le¥ run through the polars %6. The image ray oY will then run through
the normal congruencef the rayX. We now consider only the axis of that congruence.
We can then sayA line of the complex will be mapped to the axis of a normal
congruence.However, that axis is, at the same time, alsartfage ray of the polX of
the line that we are considering. If one would wisdigtinguish image rays from points
and lines therthat would imply the necessity of doubly-covering the hyperbolic ray
space:From now on, we shall distinguish between rXyshat are the image rays of
points in the complex plane and rayshat are the image rays of lines in it.

(*) F. Klein, “Eine Ubertragung des Pascalschen Satzes auf Raumgeghidath. Ann.22 = Ges.
Werke I, pp. 406.



80 Chapter Six: Ray geometry

87. The group of dual collineations.The conversion principle allows us to convert
theorems and figures in the complex plane to ones inpages Under it, properties of
points that are invariant under the group of complexradiiions in the plane:

Xi = A11X1+ A2X2+ Aisxa
(10) X; = A21X1+ Azz X2+ Ahsxs |Aik |¢ 0
Xé = %1X1+ A22X2+ A§3x3

will correspond to properties of rays of the first shdwat are invariant under the
transformations of the grouis of dual collineations in hyperbolic spad@at will
follow from (10) by means of the conversion principle.

The conversion formulas yield:

(11) X +iX'y = (A +i &, )(Xor +i X29)
+@u+i a,)(Xo+iXs) + (@ +i a,)(Xoz+i X10)

and two analogous equations, and after splitting thenthetoreal and imaginary parts:

%;)1:811%014' alzﬁ{ o2t algt 03 dg 23 ég 31 é.% 1

(12)

Just as the collineation (10) induces a contragrediansformation of the linéJ,
(12) will also induce aontragredient transformation of the rays of the second sheet
such a way that two rays$ andX that intersect at right angles — vidJ X) = 0 — will go
to two raysU’, X' of the same kind.

By contrast, the property of two rays from the saneet intersecting at right angles
is obviously not invariant under dual collineations. Intipalar, the property of a ray
being proper or improper will not be invariant under thasmsformations, since a
collineation (10) does not also, in fact, fix the fundatakconic, in general: The three-
parameter group of automorphic collineations of the fundéaheonic corresponds to
thegroupGs of hyperbolic motions.

One obtains the family dfansfersfrom the group of motions when one composes a
transformation of the group with a special transf®ne special transfer is the reflection
through the center of the sphere:

(13) Xy == Xo, X = Xi, X, = Xo, X, =X,

which will give:
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(14) %102: +X oz %'03: +X 5
%'31: %'12:

-X 37 -X 12

{ %:)1 = +%01’
%'23 ==X 23

in line coordinates, so in point coordinates, one willd@njugation:
(15) Xj= X X=X, X=X,

which associates every point of the complex plank istcomplex-conjugate point.
If one composes the group (10) with conjugation then oh@btain the family:

x]’. = Ail>__(l+ Ai27_<2+ A3_1<3
(16) X; = A21X1+ A22 X2+ 'AZB XS
XC:; = A31X1+ A?Z X2+ %3X3

of anti-collineations. An anti-collineation (16) induces a contragretiamti-collineation
of the lineU in such a way that one will have)'(X) = (U X). Therefore, a pair of
mutually-perpendicular intersecting rays of differsheets will also go to a pair of the
same kind under a pair of contragredient, dual;@ilineations. The anti-collineations
that fix the fundamental conic will be mapped te typerbolic transfers.

We summarize:

Theorem 5: Under the conversion principle, the groups of emhtions and anti-
collineations of the complex plane will correspordthe groups G, His of dual
collineations and anti-collineations of hyperbolgpace, resp. The subgroups of
automorphic collineations and anti-collineationsliwhen correspond to the subgroups
Gs , He of hyperbolic motions and transfers.

The dual collineations and anti-collineations arassociated pair-wise as
contragredient transformations. A pair of contradrent transformations will take a
pair of perpendicular rays of different sheets tpadr of the same kind.

8 25. The configuration of Petersen and Morley.

88. The common normal to two rays.If we wanted to find the common normal ray
to two given rays by the methods of ordinary anedytgeometry then we would have to
perform some rather cumbersome calculations. Wiihhelp of ray coordinates, we can
write down the result directly: Just as two difigr@ointsX andY of the complex plane
produce a connecting ling = XY without exception, one will have:

Theorem 6: Two different rays X and Y will always have one anty one common
normal ray U with the coordinates:

(6) Ur=X2Y3-X3Y2, Ux=X3Y1—X1Ys, U3=X1Y2-X>Y:.
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89. Pluckers theorem. We now consider a figure that arises by repeated
construction of the common normals to three giversliné/e start with a theorem from
elementary geometry.

The altitude theorem says that the altitudes of aglaaintersect in a point. That
theorem is capable of being generalized to non-Eucligeemmetry and can be expressed
as follows:

Theorem 7: Two triangles that are polar with respect to a conic section are
perspective.

The connecting lines of corresponding points of the tiiamgles are the altitudes of
each of the two triangles, in the sense of the métat refers to the conic section. Two
lines are then said to be orthogonal to each oth#remon-Euclidian sense when they
are conjugate relative to the absolute conic.

When two triangles are perspective, frdbesargues theorem, the points of
intersection of corresponding sides of the two triasglill lie along a line, namely, the
axis of the perspectivity. The figure that consistdvad triangles and their sides, the
center of perspectivity and the axis of perspectivity, thiersection points of
corresponding sides, and the connecting lines of corrdsppwertices defines a (3,0
10;) configuration — i.e., each of the ten points of tigeike contains three of the lines,
and each of the ten lines of the figure contains thifeéh® points — which is the
Desargues configurationOne can easily show that the configuration thatosiged by
Plicker’s theorem (viz., Theorem 7) is polar with respect sahsolute conic: The two
starting triangles by which the configuration is determhicempletely are switched by
the polarity. Any line of the configuration will then bleetpolar to a point of the
configuration.

90. The Petersen-Morley configuration {). The map that is mediated by the
conversion principlewill take the Desarguesconfiguration that was just described
(which is polar to itself with respect to the fundamaégonic) to a figure that consists of
ten rays (each ray of which is, at the same tintayaof the first and second sheet) such
that each ray will intersect three other ones dit ragngles.

Theorem 8:1n hyperbolic geometry, there exists a figure of ten rays sucleé#wdt of
the rays cuts three other ones at right angles (viz.Pdbersen-Morley figure).

Just as the existence of tBesarguesfigure is based upon @osing theoremthe
existence of thePetersen-Morley configuration is, as well. The theorem reads:
Construct the common normals to each two of threergiays 1, 2, 3, and obtain the rays
1', 2, 3. Then, construct the common normals to the rays2?1 33. Those three rays
will admit a common normal. The aforementioned teys idefine aPetersen-Morley
configuration. Naturally, the starting rays must beiass] to be in “general position” in

() T. Kubota, “An application of binary quadratic forms to geométSgience Rep. Téhuku Imp. Un.
6. H. Beck “Uber einen Satz von Herrn Kubota,” Téhuku Math. JoR41(1925).
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such a way that the given construction would make seHs&vever, we shall pass over
the task of presenting the assumptions as inequalities.

The figure in Theorem 8 is invariant under hyperbolic matiand transfers, but not
under all dual collineations and anti-collineations. Inggel, if rays that overlap each
other on different sheets are separated by the apphcatia general collineation or anti-
collineation (just as a pair of distinct, mutually-polesarguesfigures will arise from
the Desarguesconfiguration that has a special relationship to theldamental conic by
an application of a general collineation or anti-colitien in the plane) thenfagure that
consists of two systems of ten rays such that every ray of tisgsiam cuts three rays of
the other system at right angledl come about in space.

§ 26. Chains.

91. Chains in the complex planeThe complex plane is four-dimensional as a locus
of its points. If one counts the real parameters thetill contain «* points that will be
mapped to theo? rays of hyperbolic space by the conversion principlecutve that lies
in the complex plane is two-dimensional as a locupahts. Its image will be an
(entirely special) ray congruence.

One-dimensional point manifolds in the complex plarexe calledstrings by the
founder of complex geometfy. Segre The simplest of them is tlehain.

In the complex projective geometry of lines ©f. v. Staudt one understands a
chain to mean the locus of all points that define &deable ratio with three given fixed
points. Since one can always take the three pointhre® real points by a suitable
collineation, that definition will be equivalent to tfelowing one:A chain is a locus of
points that is projectively equivalent to a sequence of real lifde real sequence of
lines is itself a simple example of a chain.

The latter definition of a chain leads to a simpkgsresentation of the chain in the
complex plane, as wellLet p andq be two distinct, real points in the plane, andélet
& be their parameters. The expression:

1) ap+éq [P=P,q=17]

will then represent the real sequence of connecting figesf one performs an arbitrary,
complex collineation then (1) will give:

(2) &p + &,

in which &, & will be real parameters, as before, pytq” will be two arbitrary complex
points. Any chain in the plane can be represented in thm {@). (Here, a chain seems
to be determined by two points. However, in order lfier parametric representation to
make sense, one must demand thaandq should be homogeneous in the same way,
and thus obtain the third poipt+ " for the parameter pafi, & =1:1.)

() A chain will be mapped to a circle under the maghef complex line to th€aussianplane of the
Riemann sphere.
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A chain of linegs defined dually.

92. Chains of rays. Under the conversion, a point-chain will become a-one
dimensional locus of rays that is callectlaain of rays. The image of (2) will then
become a real sequence in a real pencil of linear caegple One seeks the axis-pair
(axis-pencil, resp.) in each of those complexes, andtbelyeachable axis in each pair,
and only the reachable part of it will be consideredwill then follow that:

Theorem 9: A chain of rays is the part of the axis surface of a real pencil of
complexes that lies in the absolute sphere.

We immediately derive some simple theorems about cludirsys by means of the
conversion principle:

Theorem 10: There arex’ chains of rays.

Proof: There areo® straight lines in the complex plane. Thereafehains on each
of those lines. Thus, there aré chains in the plane, and just as many chains of rays in
space.

Theorem 11:Any chain of rays belongs to a normal congruence.

In fact: A normal congruence is the image of thesliatong which the corresponding
point-chains lie.

Since a point-chain is determined by three distinct paita line, it will ultimately
follow that:

Theorem 12: A chain of rays will be determined by three distinct rays of anabr
congruence.

Just as the “binary” chain is defined to be a figure thatomplex-projectively equivalent to a
sequence of real lines, the “ternary” line is definedeaathe locus of points that is complex-projectively
equivalent to a sequence of real planes. Such a chdibemhapped to a certain ray congruence. We
cannot concern ourselves with these figures in morel dhetiee, but refer t&e. Study's ground-breaking
book Geometrie der Dynameheipzig, 1903 for the Euclidian geometry of loci of rajr the hyperbolic
theory, we refer tdd. Beck, “The Strahlenketten im hyperbolischen Raume,” DissnrB 1905. For
elliptic geometry, we refer td. L. Coolidge “Die dual-projektive Geometrie im elliptischen und
sphérischen Raum,” Diss. Greifswald, 1904.

§ 27. Passing to the limit of Euclidian geometry.

93. Dual numbers. The complex numbea + ib is composed of the two units i1,
with real coefficients, b, in which one has the convention tifat — 1. One can make a
more general convention and §et - k%, in whichk represents a non-zero real number.
The system of complex numbers that one obtains invwhg will not differ essentially
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from the system of ordinary complex numbers. Howev@ne goes to the limk - 0
then one will obtain a number system with new propertiasyely, thesystem of dual
numbers:

(1) a+eb [a, breal,& = 0].

Dual numbers are added and multiplied like ordinary complembers (while observing
the convention that® = 0). Division by a dual number involves calculating réiprocal
to the dual number. The equation:

(2) @t+teb)x+ey) =1
will then lead to the system of equations:
(3) ax=1; ay +bx=0,

which possess a solution only whee# 0. It will then follow that:

(4) x+£y:(a+£b)‘1:$(a—£b).

94. The conversion formulas of Euclidian geometry.We now pass to the limit in
the conversion formulas of (1) in § 24, as well. Orgairg the equations:

xl = %Ol+£% 23
(5) XZ = %02 + 8% 30
x3 = %O3+£%12

will give a map of the poinX in the dual plane to a real linear complexRin However,

whereas the map of complexes to points is single-sdakgoint will be associated with

o' complexes that one obtains when one multiplies dberdinatesX; by a dual

proportionality factopp= o+ € 1:

pxl = 0-%014_ 8(0-%234_ T% 0])’
(6) PX,=0X,+&(0%X,,+7X ),
PX;=0X 3+ E(0X,+TX ).

In general, a pencil of linear complexes that are spalbyélde complexes:

(7) { Kit Xopt Xt X gt X g X gy Xy

K,: 0: 0: 0:X,:X,:X,

will come about. K is theauxiliary axisof the compleX; in the sense of theuclidian
metricthat refers to the absolute conic:
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(8) [}: | %] = %012 + %022 + %032 =0.

As we know (Chap. V, Theorem 10), the compiexis undetermined if and only if
K1 is an improper line. If we exclude that case then weokilain a pencil of coaxial
linear complexes, in the sense of Euclidian geomethyglwdetermines a principal axis
uniquely. We call the figure of such a principal axigp@per ray (of Euclidian
geometry). The coordinaté&s are calleday coordinates They differ, in turn, from the

Plicker line coordinates by the fact that they do not need tefgaliePlucker identity.
Upon multiplying theX; by a suitable dual proportionality factor, however, thel go
to thePlicker coordinates of the corresponding ray.

We shall first speak of improper rays later on, sirfeartintroduction will create
greater difficulties than it does in hyperbolic geometRpr the time being, all rays that
occur will be assumed to be proper. Neverthelessuwenarize the results so far:

Theorem 13:Equations(5) mediate a map of the points in the dual plane to the rays
of Euclidian space.

95. Applications ¢). We now pass to the limit with the figures and thearémt we
derived as applications of the conversion principle ipenlgolic geometry, as well. We
first point out the equation:

(9) KY) =[X ] + £(X):

Theorem 14: Two points of the dual plane that are conjugate relative to the
fundamental coni¢X X) = Owill be mapped to two lines that intersect at right angles, in
the sense of Euclidian geometry.

The? points of a lineU that has the poirX for its pole will then be mapped to the
normal net of the lin&X. As in hyperbolic geometry, it will then prove to cenvenient
to cover the ray manifold with two sheets. For tagsiX andY on the first sheet, one
then obtains the common normal rblyof the second sheet as the image ray of the
connecting linexY.

A Euclidian analogue to theetersen-Morley configuratiowill arise by passing to
the limit ().

Finally, a chain of the dual plane will be mapped t@aychain in Euclidian space,
and just as a chain in the dual plane will generallyaomo point of the fundamental
conic, the chain of lines will also generally containygmoper rays:

Theorem 15: The image of a point-chain in the dual plane that does not meet the
fundamental conic is ray-chain that consists of only proper rays. That figudtentical

() W. Blaschke discussed some applications to differential geometry inVitdesungen uber
Differentialgeometrie [1921), Chap. 7.

() This is the figure thaPetersenandMorley gave originally. CfE. Study, Geometrie der Dynamen
Leipzig, 1903, pp. 107.
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with the figure ofo* real generators of a cylindroid or the figure of a pencil of linith
a proper vertex.

The second case occurs when the pencil of complexaspencil of lines with a
proper vertex.

96. The group of radial collineations. By conversion, the groups of collineations
and anti-collineations of the dual plane will go to theups Gis His of dual
collineations and anti-collineations of Euclidian rgase, resp. Similar to the ones in
(12), § 24, the equations for the collineations will read:

%01 = all% Ol+ alg 02+ alg 08

(10)

Like the collineations and anti-collineations of tpine, they are paired off as
contragredient transformations, and such pairs wilehée property that they take rays
from different sheets that intersect at right asgéerays with the same property.

As opposed to hyperbolic geometry, however, the gr@ipsHis are not the largest
groups of transformations that have that property. A-pamameter group of
transformations that are not containedGys, Hie, but still have the stated property, is
defined by the stretchings about the origin, which are givehdgquations:

(11) X('):XO, Xi:AD(l, X;:AD(z, X;:AD(s,
in point coordinates, and thus by the equations:

(12) { %:)1 = %Ol’ %'02 = % 02 %’03: % 03

%’23 :A%ZS’ %’312A%31’ %’lZZA% 1z

in line coordinates. If one combines these with (10) trewill obtain thegroup G- of
radial collineations:

%01 = all% Ol+ alg 02+ alg 08

(13)
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The transformations of this group are also paired off castragredient, and
contragredient transformation have the property that thke pairs of perpendicular,
incident rays of different sheets to pairs of the skimas.

Gis (as well asGis, Hie) is contained in this group invariantly. Howevé;,
contains yet another invariant subgroup, namelygtbap G of radial collineations that
fix every point of the imaginary plarfany bundle of parallels, as a whole). The first
three equations of such a transformation must havithe

(14) Xy, = Xon, Xy = Xo2, Xy = Xos.

If one setsXo1 = Xo2 = Xo3= 0 (as one must if one is to be dealing with the transdtion
of an improper line) then the last three of equations\ylBjeduce to:

(15) %'23: A Xo3, %'31: A X3, %'12 =1 X1 [A£0].
The equations for the grou@ will then read:

%:)1 = %Ol’ %’02 = % 02 %’03: % 03

%’23 = A%23+ a’lI{ Ol+ aflg 02+ a’lg 03
%;1 = A%3l+ aIZI{ Ol+ alzg 02+ d 2? 03
%Z’LZ = A%lZ + a’31{ Ol+ a'ISg 02+ a’ 3? 03

(16)

One might believe that the general transformationth& group depends upon ten
constants. However, only nine of the constants aentak since the ray coordinat&s

can be replaced with coordinates:

a7 Xo1:Xo2: Xoz: Xoz+ TXo1: Xa1+ T Xo2: X12+ T Xo3
without changing the ray. However, the quantities:

(18) a, +Ar, a,, +Ar, Ay, T AT

will appear in place ofj,, &,,, &, and one can choose the valuag af such a way that
the sum of these quantities will vanish. Therefone, can already assume that:

(19) a, ta,ta;=0
in (16) from the outset.

The groupss:s andGg intersect in the grou@s, whose representation one will obtain
when one setd = 1 in (16). That group will be contained invariantlyGps andGg and
its transformations will commute pair-wise.

We can once more illustrate the connections betweegroups by a diagram:



The group of radial collineations 89

/N

Gie Gy

N/

This diagram not only represents an analogy with igram in no.73, but it is also
a generalization of it, in the sense that the grgsig®ntain the corresponding groups
and will even reduce to them as long as one demandthéhtransformations should not
separate overlapping rays on different sheets.

97. Improper rays. Up to now, we have spoken of only proper rays; i.ewais
assumed that at least one of the ray coordirfé§esXo,, Xo3 was non-zero. In the case

whenXo;: = X2 = Xo3 = 0, it sSeems natural to regard the line:
(20) 0:0:0X23: X31: X12

as the representative of the correspondingroper ray. By that convention, the open
continuum of proper rays (iB. Study's terminology) will be closed into theregular
continuumof proper and improper rays. The radial collineatiorsdafined everywhere
and continuous in that irregular continuum.

The continuum is callenlregular due to the fact that it exhibits remarkable behavior
when one wishes to go from a proper ray to an improper continuously. We shall
exhibit that behavior in the example of a pencil of peisl

Let a pencil of parallels be spanned by the improper0lin® : 0 : X3 : X31 : X12 and

a line?) that is incident with it:

(21) (0:0:0 X23: X31: X12) +t (Dos, Doz Doz, D23, V31, D12).

If one lets a line of the pencil wander about that peheih in the limiting case= 0, it
will fall upon the improper liné&. InPlucker line geometrythat behavior will describe a

line by running through a pencil of parallelsHowever, in ray geometry, things are
different.
We multiply the ray coordinates:
(22) Xp=tQor+ Xz +tPog}, *, *
by the proportionality factop = o(t) + £ 1(t):

(23) PXi=0t)tYor+  At) Xaz+ aAt) tYaz+ 1(t) t Yok, *, *.
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If one now goes to the limit and chooses the arbithangtionso(t), 7(t) in such a way
that:

(24) Itlrrg at) = m, Itlrrg ma=on
then equations (23) will go to:
(25) Xi = X3+ 0Yor}, %, *

ast - 0; i.e., one will obtain an arbitrary ray of thengil that is spanned by the
improper rays:

(26) { 0:0:0:%,,:%,:%,

0:0:0: D1 * Doz - Dos
The second of these two rays will be the absolatari.e., auxiliary axis) of the rdy.

Theorem 16:1f one lets a ray in the irregular ray continuum run through a pencil of
parallels with the vertex p then one will obtain a pencil of impropes tgyon going to
the improper domain. The vertex of the pencil will be the point efsedtion p of the
absolute polar of p with the improper line of the plane of the given pefrzdrallels.

In order to avoid the difficulty that comes frohetfact that a pencil of parallels will
first become a closed continuum when one adds ailpgEhimproper rays to it, one can
agree to combine the' rays of the pencil into a new conceptpoint-ray. One can then
imagine that a ray that runs through a pencil oéfas (just as in hyperbolic geometry)
will become a point (viz., the poipt) when one passes to the limit. The introductibn o
point-rays led t&tudy’s first, regular ray-continuunty,

8§ The invariant (X Y 3.

98. Conversion of the invariant. One of the fundamental invariantd (X) of
projective geometry in the dual plane can be tedadlinto the language of Euclidian ray
geometry using equation (9) of the previous pagagrawe would now like to consider
the second fundamental invariat ¥ 2, when we, in turn, restrict ourselves to proper
rays. Its vanishing says that three pokt¥, Z in a plane belong to a ling¢. Hence:

Theorem 17: The vanishing of the invariarfX Y 2 represents the necessary and
sufficient condition for the three rays X, Y, Z to admit a commoomal.

The conversion of the invariant yields:

() For an analytical representation of this continuumah the second, regular ray continuum, we refer to
E. Study, Geometrie der Dynameheipzig, 1903, § 27.
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(1) XY= 3)+e{x 3}
in which we have set:
%01 %02 %03
(2) XD 3) =D Doz Dos |-
301 302 303
%23 %02 %03 %01%31%03 %01% 02% 1
(3) {%@3}: @23 @02 @03 + @01@02@03-*_ @Ol@ 02@1 *

323 302 303 301302303 3 Ol3 023 1

We would now like to interpret the vanishing of the twwariants (2) and (3)
individually. For that, we shall assume (as would benssible) that the ray coordinates
that occur becomBlicker line coordinates upon multiplication by suitable factors.

The equationX 2 3) = 0 says that the improper points of the three liaes

collinear.

99. A theorem from the metric geometry of second-order suaes. In order to be
able to interpret the equatioX{) 3} = 0, we first make the following remark: If the

3 3
bilinear invariant Za,.k p. vanishes for a second-order cur\E axx% =0 and a
ik=1 ik=1

3
second-class curvE p, 4y = 0 then the order curve will be said to d@olar to the
ik=1

class curve. The' polar triangles of the class curve can then be inedrin the order
curve (and dually). If it is possible to inscribae polar triangle of a class curve in an
order curve then the bilinear invariant of the two curvéswanish, and there will exist
oo triangles of the stated kind.

One can apply this theorem to the metric theoryeobad-order surfaces. A regular,

3
second-order surfacE a, %% = 0 cuts the imaginary plane in the second-order curve
i.k=0

3
z a, %% = 0. We then consider that curve, together with bselate conic:

i k=1

3
> pUY = U+ U’ +ud =0,

ik=1
It then follows immediately that:

Theorem 18:If one can find three generators in a family of gettors of a regular
second-order surface that are pair-wise perpendicthen the regulus will contai®
triples of that kind, and the second regulus wilhtain e triples of the same kind.
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We would like to call a surface with that propestythogonal The condition for the
3
surface 2 a, %% = 0 to be orthogonal is that its imaginary curve afen 2 must be
i,k=0
apolar to the absolute conic, and thus reads:

(4) a1 +apt+azg=0.

100. Interpretation of the equation{X ) 3} = 0. If we assume that the liné5 2),

3 are pair-wise skew then we can consider the second-andaces that is determined by

those lines. We can write down its equation directlihwine help ofWeitzenbdcks
complex symbolism and calculate the coordinatgs azz, ass . It shows that these
coordinates are proportional to the three, three-rowestdaants that enter intax{)

3}. We can then set:

(5) {X9 3} = ag1 + &+ ass.
It will then follow that:

Theorem 19:Let X Q) 3 be three pair-wise-skew proper linegx 2) 3} = 0 is then

the necessary and sufficient condition for the sdemrder surface that is determined by
the three lines to be orthogonal.

Finally, one can ask how it would follow from the sitameous validity of the
equations ¥2)3) = 0 and & 2 3} = O that the linesX, 2), 3 would admit a common

normal. It follows from &) 3) = O that the surface that, %), 3 determines is a
paraboloid that cuts the imaginary plane in a paimnaflsl Since ¥ Q) 3} = 0, that will
be a pair of lines, v that are polar with respect to the absolute coriithellinesX, 9), 3

cut the imaginary plane at points of the lmeghen the generator of the second kind
through the absolute polar ef{which lies onv) will be the desired common norma).(

§ 20. The dual angle.

101. Distance and angle between rays.In the geometry of automorphic
collineations of a regular conic sectioX X) = 0, two pointsX, Y are associated with an
absolute invariant, namely, the distance between tloepoints in the non-Euclidian
geometry that relates to the conic (cf., 66). One can also introduce such a definition
of distance in the non-Euclidian geometry of the duahelthat refers to the fundamental
conic and set:

1) cos disK Y= (XY)

JOXX) (YY)

() The contents of this number go baclkGtoReuschenbach.
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We would now like to carry this absolute invariant oweray space. We will then obtain
an invariant with respect to such collineations thatsdud affect the overlapping of two
rays on two different sheets, so (from 86, conclusion), it will be &uclidian invariant
of motion.

We set:
(2) distX Y=0 + ¢H.
One will then have:
3) cos @ + gH)

2 2 3 3
cos® (1—'9 i-' +.--j—sine [gH—‘g [H +j

COSO —&H sin©.

The right-hand side of (1) converts to:

@ xXy)  _ E9E) I (x9) |
JOX)V Y VIRV VXAV

A comparison with the formulas (15), (18) of § 21 the yields

(XY)

v (XX){ (YY)

and H will be the distance between the rays X, Y.

Theorem 20:1f one setxos @ + ¢ H) =

then® will be the angle,



Chapter Seven
Kinematics ()

8 30. Ternary orthogonal transformations.

102. Connection with ray geometry. Euclidian kinematics is the geometry whose
spatial elements are the motions and transfers of dtaiclispace. Therefore, the
introduction of coordinates for those motions and teassf— i.e., a parametric
representation for those transformatiens fundamental for that geometry. In 18,
we obtained hyperbolic motions by converting the com@etomorphic collineations of
the fundamental conic. A parametric representatiolypérbolic motions will then be
obtained from a parametric representation of thoséneations by the conversion
principle. One would obtain a parametric representatfdéuclidian motions by passing
to the limit of Euclidian geometry.

(We will learn about further connections between ray ggognmand kinematics that
rest upon deeper-lying analogies in 88 34, 35.)

103. Orthogonal matrices. In order to achieve that goal, we must next look for a
parametric representation of the automorphic collineataf the conic section:

(1) KX =x2 + %% +x5° = 0.

We would like to appeal to another, somewhat more inyigeometric interpretation of
that problem by regarding, Xz, X3 as inhomogeneous coordinates for Euclidian space,
not as homogeneous coordinates for the plane. If werdkthat a linear transformation:

X =Xt CuX%t GaX
2 X =Xt CpXt X
X = Cy Xt CpXt CpXs
should imply the identity:
(3) XX KT =G+

then we would be demanding that it should fix the squatéeotlistance of the point
from the origin. We would then characterize it anaion or transfer with the origin as
its fixed point.

If we substitute the value (2) into (3) then it vidllow that:

(4) X2+ ... =X+ CaXe +Csxy)+ ... =X + ...,

() E. Studys investigations into kinematics are found in the Apgentb Geometrie der Dynamen
Leipzig 1903, and in the Berlin lecture “Grundlagen undeZg#r analytischen Kinematik,” Sitz. d. Berl.
Math. Ges12 (1913). The following numberB02to 118 go back to an elaboration up&tudy’s lecture
“Ausgewahlte Kapitel aus der htheren Geometrie” thaatltleor completed in the year 1926.



Orthogonal matrices 95

and from that, by comparing coefficients:

2 2 2 _ —
Cll + CZl + C3l - 1’ C12C'13+ C22C23:+- C32C33‘_ 0’

2 2 2 — —

(5) C12 + C22 + C32 - 1’ C13Cll+ C23C2]-.+- C33C31_ 0’
2 2 2 — —

Cl3 + CZS + C33 - 1 C11C'12+ C21C22+ C31C32_ 0

In words: The inner product of each column witlelitsnust have the value 1, while the
inner product of any two different columns must énalie value 0. A matrix with that
property will be calledrthogonal
From (5), the square of the determinant of anagoimal matrix will have the value 1,
so the determinant itself will have the value +rl—0l. One thus distinguishgsoper
andimproperorthogonal matrices. This distinction arises from the difference betwe
motions and transfers. In what follows, we shafitane proper-orthogonal matrices.
If we denote the algebraic complementdp by Ci then we will get the three
equations:
c:11C:11+ C21C21+ C31C3l: 1’
(6) C12Cll+ CZZC21+ C32C3l: O’
C13Cll+ 023C21+ C33C3l: O

If one regards th€j in them as unknowns then, since the determingp{ |s non-zero,
one will have one and only one system of solutiansl from (5), it will be:

(7) Ci1 =Cyy, Co1 = Cay, Ca1 = Csy;

in general, one will have:
Cik = Cik -

Theorem 1: Any element of a proper orthogonal matrix is equal to its algebraic
complement.

One has the relations:
C11C11+ C12C12+ C13C13: 1’
(8) CZlcll+ C22C12+ C23C13: O'
031C11+ C32C12+ C33C13: O'

corresponding to (6). If one replaces tein them withcy , using Theorem 1, then it
will follow that the inner product of any row wiitself must have the value 1, while the
inner product of two different rows must possessvéilue 0.



96 Chapter Seven: Kinematics

104. Parametric representation of proper orthogonal transformatios ().
Equations (5) impose six independent conditions on the ningigeso, . Only three of
the coefficient are essential then. One then attempts to represeoi #s functions
of three of them. The coefficients;, Cz2, Cs3 Will serve as parameters, in their own right.
In order to represent the remaining coefficients astfans of these parameters, we start
from the equations [cf. (5)]:

-1= _Clzl_ c:122_ Cfai
9 +1:+C122+C§2+ ng*
1= 40+ Gt G

from which, it will follow by addition that:

(10) szs + C§2 =1+ C121 - ng - ng-
We then infer the equation:
(11) 2Cp3C32 == 2C11 + 2022 C33

from Theorem 1, and can now calculate the squalréiseosums and differences of the
quantitiescys, Cz2 :

(12) { (Cps + Caz)z =@~ Cu)z = (Cym 33)2,
(Cp3—Cy)" = (1t €  — (Cpt C"

This representation fatys, Cs2 IS irrational. In order to obtain a representatio
rational form, we set:

4m, =1+ G, + Cyt G,
Am =1+ G+ G~ Gy,
4m, =1- G, + G, ~ Gy
4m, =1-¢, - C,+ Gy

(13)

We will then have:
1=my+m+m+ m,
C,=Mm+m-m- m

(14)
Cpr=M—mM+ m-mn
C=Mmy—-m-m+ m

and

(15) e =2{Jmym e+ my .,

¢ =2{\mym-y m/n}.

() Cf., E. Study, “Die Hauptsatze der Quaternionentheorie,” Mitteilungies nat. Vereins fiir
Neuvorpommern und Riigen. 31 Jahrg. 1899.
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We will obtain all remaining coefficients from (15) bycdlic permutation. Since the
roots have a value that is fixed once and for all, wese&n

(16) Jm =aw, ym=a, Jm=a, Jm =a,

and then represent the orthogonal transformations matianal form (viz., Euler’s
formulas).
Thus, from (14), the relation:

(17) l=at+a’+a’+a’
exists between the; . Thea; are therefore not independent of each other. Howeseer,

can satisfy equation (17) identically when we divide ahby the square root of the sum
of their squares. To that end, we set:

(18) Cik = @ik : 8o
and
(19) an=a;+tal+ai+a;.

The equations:

By =Uota;+a;+as,
_ 2 2 2 2

a,=a,ta;-a;,-ay,

a,=0,-0a;+a;-a;,

8, =0, =07 —a5+as,

(20)

ax =2 {m a3 + oo 1}, a1 = 2{as o + oo a2},
agz2 = 2 {a2 a3 — ao 1}, a3 =2 {azsn — ao a2},
app =2{mm + ao a3},
1 =2 {0’1 a»— o 0'3}

will then give the desiregparametric representation of the coefficients of a proper
orthogonal transformation.

Every quadruple of homogeneous quantities a1 : a» : a3 then corresponds to the
coefficient system of a well-defined proper orthogonatdfarmation. However, does
every proper orthogonal transformation correspond asele to a quadruple of
numbers? That is in fact the case. One can cédctlaa; from the coefficientsy and
find that:

(21)

ap .1 o0) .3
=apotajnntagptass ‘axs—as .31~ a13 . Qg2 — Ay,
= a3 —ag2 o tair —axp—ags ‘apptan . ag1 t+ ags,
=ag1—aus ‘apptan sApo— ay1 + &2 —ag3: a3t asy,

=app—an szt aus .ap3tag Qoo — 11— axp tass.
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It is possible that one of the proportions breaks dosince all terms vanish
simultaneously. However, as one easily shows, nbtfoalr proportions can be
simultaneously useless.

105. Composition of two proper orthogonal transformations. We compose two
proper orthogonal transformatiog S into a third one&s. . How do the parameteysof
the product transformations depend upon the paramaigs8 |If:

A%t a %t a;x= gk S (¥123)
(22) by} +0,%+b.x=R% S ( FL273)
CaXt G Xt Ga%= Gk S (K123

are the three transformations, and the three detentsihay |, |bi |, |Cik | are denoted by
A, Dy, A, respectively, then one will have:

Now, one has:
1 A

(24) Da:_slaiklz_sa:]_’*’*
a00 0

for the determinant of the proper orthogonal transftion that corresponds & .
Thus:

(25) Do =&, Ap=13, Ac=c,.
For that reason, from (23), one will have:
(26) o, B3, = 3.
We can, and would like to, establish that:
(27) @00 oo = Coo
The expressions for the remainingare also bilinear in thayx andby:

(28) auk by + &gk bip + &g iz = Ci .

If one replaces they in (21) with these values then one will obtainrghr functions of
the ay, bi for the corresponding parametgrs
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+c.+C,+C -
poyo - C00 C112 22 3; p]_yo - C232 C32,
-C Coot Cii— Cp— C
poyl - C23 2 32 , ,011/1 - 00 112 22 3;
- +
poy, =2 > s, py, =2 > .
poy, =2 > Py, = 20“’:
(29)
- -C
Py, =B > G, oy =2 B
+cC +
0.Vs :CuTzl; psylzc'slTCﬂ;
—C,+Cp— Cy3tC
,021/1 - C00 C112 22 % , p3y2 - 23 2 32;
+C C,—C.—C.,+ C
p2y3 - C23 2 32; p3y3 - 00 112 22 3;

and thus, quadratic functions of tbeand 4, by means of (20). If one now introduces
the abbreviations:

aby—aBi-aB,~a = (a,p),
aftaf,raf—af,=®(a,p),
ayB,ta BytaBy—aB,=® {a,p),
aBstafytafo-a =@ {a,p)

(30)

then equations (29) can be written in the form:

(31) ,OQMZCDQCDi, le:CDlCDi, pzM:CDzCDi, ,03}4:q33q3i.

Now, not all®d; can vanish here. If ab; = 0 then one would have that glland allci
would vanish, and the product transformation would not beraper orthogonal
transformation. Therefore, at least ofeis non-zero. We can identify it with the
correspondinga and thus obtain:

aBy—afBi—aB,~a =y,
aBtafytaf-af,=y,
aB,taBytaBo-a =y,
QB +afota Bo-a By,

(32)
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Finally, we can state that the choice of proportivypdhctor that made corresponds to the
convention (27).

Theorem 2: The proper orthogonal transformations can be represented exhaustively
as bilinear combinations with the help of a quadruple of homogeneous parameters

§ 31. Quaternions.

106. Fundamental definitions. Hamilton’s quaternions are quadruples of real
numbers &, a1, a», az) with which one can calculate by using certain ruléBwyo
guaternions are said to bgqualwhen they have the same coordinates:

(1) (@0, a1, @2, a3) = (Bo, B, B, 3), whena; = 3 .

Theaddition of two quaternions defined by the formula:

(2) (a0, a1, a2, @3) + (Do, B, o, B3) = (Qo + o, 1 + 1, 02 + B, Q3 + [B3)

and obeys the same rules as the addition of real msmbée quaternion (0, 0, 0, 0) will
be called theero quaternion

We define thanultiplication of the quaterniofao, a1, a2, as) by thescalar factorc
by the equation:
3) ¢ ao, a1, an, a3) = (¢ Oao, ¢ O, € O, € ),

and finally, a third quaternion can be derived from two quatesry the formula:

(4) (@0, o1, a2, a3) U, B, o, 53) = (36, s Vs J6),

in which they are defined by equations (32) of the previous paragraph. Wevats:

®) alB=y

in place of (4), more briefly.The multiplication that is thus defined is not commutative.
In general, one has:

(6) af# fa.

We shall treat commuting quaternions later on.
By contrast, one does have thstributivity laws:

(7) @+a’)p=ab+a’p and a(B+p)=aB+ap,

and the associativity law:

(8) @B y=a By = aBy.
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107. Units. In order to be able to summarize the multiplicatiormulas for two
guaternions more briefly, we shall compose a quaternion fiooir units:

9) (1,0,0,0) =, (0,1,0,0)=, (0,0,1,0)=, (0,0,0,1) ==,

such that:
(10) @, 0, 0, 5) =&+ e+ mes+ aze;.

The quaternionsy e are calledcomponentsf the quaterniona (as opposed to its
coordinates). = The multiplication formulas give thelldwing values for the
multiplication of the units:

(11)

S P @ LD

One infers, e.g., the relaticsm Oes = e; from thismultiplication table. Moreover, it is
clear from this table that the principal usit behaves like 1 under multiplication. No
contradiction will then arise if we identigy with 1 in what follows. The numbers &
will then be set equal to ordinary real numbers. ¥wguaternion can then be
decomposed into the sum of #salarandvectorial components:
a7 a=Sa+Va=m+(ne+me+a;e).

108. The inverse quaternion. Similarly to what we do in the theory of ordinary
complex numbers, we now define:

(13) a=Sa-Voa=m-(ne+me+ ;) (“a circumflex”)

to be theconjugate quaternioand refer tanormof the quaterniom when we are dealing
with its product with its conjugate:

(14) Na=ad =a;+a’+a’+al.

In order be able to calculate timrm of a produgtwe must first look for the
guaternion that is conjugate to the prodai8t The multiplication formulas yield:

(15) ap = pa,
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and thus):
(16) N (af) = aB0afB = aNBd& = ad INB=Na NG

From now on, we shall assume that the norms dofwaternions that occur shall be
non-zero. For such quaternions, one can always saveqmations:

(17) $a=1, an=1,
and one will find that:

a
18 =~ =p,
(18) é NG n

as one can easily confirm.
The quaternion that thus belongs to a quaternion of noishiag norm will be
referred to as thquaternion that is inverser reciprocalto a, and denoted by ™.

109. Commuting quaternions. We now return to the question of commuting
guaternions that we suggested above. We pose the somewteatgeneral question:
Under what assumptions are the two produgksand Sa linearly-dependent upon each
other?

(19) ap=ppa.
We take the norm of both sides:

(20) N(ad =/ N(Ba); /=1

We must then distinguish between the casest1l andpo = -1, and thus speak pfoper
andimproper commuting quaternionaccordingly.

1. p=+1. Should one haves = fa then one would need to havéap) = V(La)
or:

(21) =L L.

2. p=-1. Should one havef = - Ba then the scalar part of the product would
have to vanish:

(22) 0’0,&)—0’1,31—0’2,32—0’3,33:0.
In addition, it would follow that:

(23) bt h=al+aeh=a+as%=0.

Since the rank of this system of equations (case 1 havimg dealt with) is 3, it will
follow that ap = % = 0, and the relationship (22) will assume the simplifogd:

() The symbolsN, S V always refer to only the quaternion that folloWsS, V immediately. If the
norm, the scalar part, or the vectorial part of adpob is intended then the product will be placed in
brackets.
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(24) afr+t+mPr+rasf3=0.
We call two quaternions that satisfy equation (@4hogonal

Theorem 3: Properly commuting quaternions are quaternions with proportional
vectorial parts. Improperly commuting quaternions have orthogonal vectoria. part

§ 32. Rotations.

110. The axis of a rotation. Let x;, X2, X3 be inhomogeneous coordinates in space,
and let:

(1) X= 2 G i=12,3)

be a proper orthogonal transformation. We assertvibaare dealing with @otation
around an axis that runs through the origin. In factrder to find a fixed point, we set

X =X in (1) and obtain the system of equations:

(Cn_l)X1+ CLX* CG3%= 0,
(2) Cu X+ (C22—1)X2+ C3 %= 0,
Cy X+ Cu Xt ((-\33_1) x= 0.

The determinant of this system of equations vanishesndfdevelops it in powers of — 1
then it will follow, with consideration given to Thesn 1, that:

(3) © =D E(_l)o + (Cll + Coot C33) E(—l)l + (Cll + Coot C33) [(—1)2 + (—1)3
= 1— (C11 + Cozt+ Ca3) + (Cr1 + Coot C33) — 1 = 0.

The system will then have, in fact! solutions, in general, which corresponds to a line
that is fixed point-wise.

Theorem 4: A proper orthogonal transformation that is diffetdrom the identity is
a rotation around a well-defined axis.

If denote the imaginary point of the fixed line (viz¢ ttatio of the direction cosines)
by ry : rz @ r3 then we will have [depending upon which row of (2) one tseslculate
with]:

iriry=14C;;=C,~Cyy! CtCoyp Cait Cya
4) = C,+ Gyt 1+ Gyt €y Gyl Cst Cyp
Gy + G5t Coat C3pt 1= €y~ Cyit Cy3
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If one thinks of the parameter as being introduced in place of the, as in (20), 8§
30, then it will follow that:
(3) 1:rar3=m.a>:.0s.

111. Commuting rotations. The composition of two rotations corresponds to the
composition of the corresponding quaternions. Commubtaions then correspond to
commuting quaternions. The relation (5), together withofdén@ 3, allows us to give all
types of commuting rotations directly.

Properly-commuting rotationare then rotations around the same akmproperly-
commuting rotationdhave mutually-orthogonal axes. However, it followstar from
a0 = [ = 0 thatay = ax andby = b . These rotations will then be (cf., Theorem 1)
identical with the corresponding inverse rotations, sg th#l be involutory. We call
involutory rotations (i.e., rotations through the angleeversals. With that, we have the
result:

Theorem 5: There are two types of commuting rotations: Properly-commuting
rotations are rotations around one and the same axis. Improperly-commutingmetat
are reversals around orthogonal axes.

We remark that the product of two commuting reversalsgssss the parameters:

(6) { %=0
" :azﬁa_aaﬁz’ }/220'331—0'183 }/3:0',ﬂ ;a 5 1

From that, one sees that one is again dealing with asadyand indeed one around an

axis that is orthogonal to the first two. The prodhicthree reversals is then the identity.
(That is, one is dealing with the four-group)

112. Representation of rotations by quaternion formulas.In order to write down,
not only the composition of parameters, but the rotakiwmmulas themselves, with the
help of quaternions, we start with the poads a vectorial quaternion:

X=Xx1e+xXoe+Xx363.
The expression:
(7) atxa=x (Na# 0)
is a proper orthogonal transformation. In fact, liofes that:

(8) NX = Na *Nx Na = Nx

The transformation thus-represented is then orthogoridie facts that it is proper
orthogonal and that the group of proper orthogonal toansftions is exhausted in that
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way follow from the fact that (7) merely summarizhe explicit formulas that we used
previously.

The new representation yields an especially simplegssofor the composition of
two rotationsa andgS. It follows from:

(9) a‘xa=x, LXB=xX"
that
(10) Llatxap=x".

If we write a8 = ythen, from nol108 we can write:

(11) yixy=x",
in place of (10).

113. The rotation angle. In particular, every rotation can be written as pheduct
of two reversals ino® ways. In fact, the presence of the rotational avisimply the
existence of a fixed plane through the origin that ip@edicular to the rotational axis.
The plane will be rotated into itself, and indeed iti@ion in space will be determined
completely by that rotation. Now, the rotation in spae@ be decomposed into the
product of two reflections iro' ways. Spatially, such a reflection corresponds to a
reversal around the axis of reflection.

Theorem 6: A rotation can be decomposed into the product of two reversals whose
axes are perpendicular to the rotational axisdhways.

Any of these axes can be chosen arbitrarily. Therathe will then be well-defined:
If Jis the angle between the two reversal axes theartgle of rotation will be 2.

Now, if a and 8 are two reversals — say = % = 0 — thenaf = y will be the
associated rotation, and the quaterniavill take on the coordinates:

Vo=~ —a,B, —a B,
Vi= QB —ayf,
V.= QB —a ),
Vo= afB, —apB,

(12)

This argument allows us to give an expression for ttaioot angle Z of the rotation
d. The anglef between the reversal axes will be determined by [(15)72):

(13) cosd = 0'1,31'*'0'2,32'*'0'333.

JINa NG

If we establish the dependency:
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(14) JNayNB =Ny

between the roots of the norms then we can also:write

(15) cosd= — Lo

NLY

instead of (13). We then further obtain:

(16) singd=4/1-cog 9 :—Vl\ly—yé
JNy

for . Finally, dividing (15) by (16) will give:

a7) cotd = B
Ny-y

for the half-angle# of rotation. With that;- in conjunction with (5) — the ratiog : ) :
J6 . )4 can be interpreted geometrically as the parameftexsotation.

§ 33. Motions and transfers.

114. Parametric representation of motions in point coordinates We combine
two quaterniongr andS into the dual combination oflaquaternion:

(1) A=a+ep

The rules for the addition and multiplication ofjbaternions are obtained from this. We
define:

2) A=a+ep

to be the bigquaternion that is conjugaté&toWe define the norm of the biquaterniano
be:

(3) NA= AA=(a+epf) (@+&B)= aa+e(af+ Ba).

Under the assumption th&ta # 0 (cf., no.108), we find that the reciprocal of the
biquaterniona + £ B is

4) Al=(a+ 5,[))‘1:N—1A(c7+£,[§’).
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If we now apply the conversion principle in 183t to the rotation formula™xa = X
then we will obtain the equation:

(5) At XA=X"

From the remarks that were made at the beginning otti@pter, we can surmise that
this equation represents tBaiclidian motions in ray coordinates. Starting with that
parametric representation, it must then be possibderiee at a parametric representation
of the Euclidian motions in point coordinates with the help of the eigbinogeneous
parametersy, G . Since the calculations that are necessary foptioae to be laborious,

it is preferable to start with the parametric repres@on in point coordinates and then
once more arrive at equation (9).

We deviate from the convention in the previous paragaagiset:

(6) X=X +X1 8 +X € +X363.

In this, xo shall be thenassof the pointx; we exclude points of mass 0. bet: x; : X2 :
x3 be the homogeneous coordinates of the poirlh what follows, they themselves shall
have a geometric interpretation, and not just theiosain order to completely exhaust
the contents of the formulas that will be derived.

It now follows from:

(7) a'xa=x
that:
(8) Sx=S¥; a 'Vxa = Vx [Na # 0].

Hence, the mass of a point will be preserved by thestoamation. The point itself will
experience a rotation around the origin.

We will now obtain a general motion when we compdlsis rotation with a
translation:

(9) Sx= SX; a'Vxa +x E= VX,

In this, £ shall denote a vectorial quaternion. {land a are given then we can always
determineSin such a way that we will have:

(10) f=-2a"p [B=-3ad]

Sinceé is vectorial, the relationship:

(11) @P=apr+apptaelta =0

must exist in this. We shall call a biguaternion whoswdioates satisfy equation (11) a
bound biquaternion The norm of a bound biquaternian + &6 will be Na. By
introducingf and considering (11), formulas (9) will assume the faktguorm:

(12) Sx=SX,  aVxa- 2 Z—i = VX [Na# 0].
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In order to combine these two formulas into a single wojiawe remark that the first
one can also be written as:

(13) a 'Sxa = SX.

However, one further has:

(14) ap+pa = ap+ap = 25(ap) = 2P =0,
and for that reason:
(15) 26B= ap- fa.

Due to (15), the second equation (12) can alsorittewin the form:
-1 L AR Pyl o
(16) aVxa-{ap-pa} NG =VX.

Finally, by composing (13) and (16), we will obtaie new equation:
(17) @+ e (Sx+eVX) (a—egB) =SX + VX [Na # 0].

In fact, expanding the left-hand side will give:
(18) Nia(a + £ (Sx+ V) (a— D)
- L iasxad +-S{ava-a SB+B Sk
Na Na
= glsxa + e{a*an—l\%(ﬁ,[z’—,[?a)} Q. E. D.

Theorem 7: Equation (17) gives an exhaustive representation of all Euclidian
motions in terms of eight homogeneous parametgrs 4 that are coupled by the
equationg af) = 0and the inequality & # 0.

For:
(29) 1:0:0:0:0:0:0:0,

one will get thadentity motion.

115. Composition of two motions.Let a, 5 be the parameters of the first motion,
and leta’, 5’ be the parameters of the second one. The equattbe product of the two
motions will then read:

(20) (@ +eB)H(a+eB ™ (Sx+eVX) (a—€B) (a'—&B’) =S¥ + e VX.

Now, should one have:
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(21) a-ep (a'-gB')=a"—&B”
then one would have to set:

(22) aa’=a”, ap’+ pa’=p"
One would also have:

(23) @+eB)YNa+reP  =[(a+eP(a’+ep)]

=[aa’ +e(af+pa) = (@ +ep)

then, and one would finally hav8:(

(24) (@"B") =s{a'B} =s{ad'(ap + B} (22)
=S{aaBa+aa'a )
=S{a'} (Na +S{a} Na’
=NaOa’B’) + Na’Oap) = 0.

With that, we have shown that the parameters ofrhwtions are composed according to
the formulas (21).

Theorem 8: The composition of two motions corresponds to the composition of the
corresponding (bound) biquaternians

116. Motions in rod and spar coordinates. Since we have concerned ourselves
with mass points up to now, in the representation ofians in line space, we will

employ, not ordinarylicker coordinates, butod coordinates If one setst = )@ and
displaces the pointg andy along the lineX then thePlicker coordinates will be

multiplied by a factor. However, if one keeps theatise between the two points fixed
during the displacement, for which one can introduced &f weight, then the ratios of
the line coordinates will no longer have the only geoimenterpretation, but also the
line coordinates themselves. In that context, we stallithemrod coordinates and
denote them by, p2, ps; 01, Gz, O3, Such that:

(25) PLh+pP2G+ps B =0.

Finally, we combine each of the three rod coordinatetdgtuations:

(26) { P=RE+ Ret Re= SXVy Sy

q=q&+ g6+ ge= Y VK Vy

Now, in order to find the transformation equations toe p and g, we form the
product of the equations that follow from (17):

) Slayd =aya+ajg=a(y+pa
=g [PSy0d = 2SyNa .
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27) { (a+eB) (Sx+eVy(a-ep) = Skre Vx
(@—-€B) (Sx—eV(@ +&B) = SYy-¢ Wy

That yields:

(28) SX + £VX)(SY — £SY) = SX Sy + g Sy VX — Sx Vy'}

= (a+ D) HSx+ eVX) (a—€B) (G —-€B) (Sy —e W) (@ +&B)™
= (a+ 8 7H(Sx+ e VX) (Sy —& V) (G +&B)IN (a—&B)
= (a + g8 (Sx Sy+ {Sy Vx — Sx W a + £3),

and from this:

(29) p=(a+ef ' Oa+ h.

In order to find the transformation equations dpmwe start from the equations (12)
and (14). From that:

VX =a ™\ + 2& [OSx
(30) Na
vy =a vy - 22F sy

Na

and therefore:

(31) VX Dvy

= a Vx Vya+iﬁm/ym[5x—idmvw55y4'\'—ﬁ S% ¢
Na Na Na

(32)  V(VX OVY)
=\(aVx Vya) +i{5m/ym—5ﬁ7w} Sx——l{ YOVYB- 5 Va} €
Na Na

= (VX VY a +——{ BVy(a +a VyB) Sx——{aOvgB+ B va} <
Na Na

_ 1 . ~
(33) o =a'qa+——{apB+ppd .
Na
Equations (29) and (33) can be combined into the equation:

(34) @+ePHp+ea)(a+ B =p +&q,

which we started with at the beginning of the chaptéf, [5), no.114].

Finally, we ask about parametric representation of motions in plane coordinates.
However, here, as well, we shall not stay in thenel coordinates;, but assign a
meaning to the coordinates themselves. That will comatalleen we endow the plane

u with a weight \/u/ +u2+ U, that can be interpreted as the area of an oriented
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parallelogram that lies in the plane. We then speaksplaa In spar coordinates, the
equations of motion will read:

(35) @+ B (Vu+ eSuy(a - g8 = VU + £ SU.

In fact: We will verify that (35) represents the tramgfation that is contragredient to
(17) when we confirm the existence of the identityx) = (u X). One will have:

(36) (% +&VX)(VU — £SY =Sx VU — £{Sx Su - VX VU}
= (a+ D)X Sx+ eVY(Vu-eSu(a + &H
= (a + 07X (Sx Vu- £{SxSu-VxV4}) (a + &8 ,

and therefore (cf., rem., pp. ?):

(37) (U X)=S{SXSU-VX Vu}
=S{Sx Su-Vx Vi = (u X. Q. E. D.

We summarize the three parametric representations/éhpst obtained as:

(a+&B)(Sx+ eVY(a—&B) = Sk & Vx

(38) (a+gB8)(p+eq) (a+&f)=p+ed,
(a+&B) (Vu+eSy(a —&B) = Vi+& Su

117. Parametric representation of transfers. Parametric representations for the
transfers will follow from these formulas when wengose the transformations (38) with
an arbitrary fixed transfer — e.g., tfeflection in the origin:

(39 VX =-Vx p=-p; Su =-Su

If we then replac&/x, p', SU with — VX, — p', — Su on the right-hand sides of (38) then
we will obtain a parametric representation of thensfers. We reorganize them by
replacinge with — £ everywhere and denoting the parameters of a tabgiy, d:

(y—&0)(Sx—eVy(y+£0) = Sx+e VX
(40) ~(y-&0)'(p-€q) (y+e&d)=p+ed,
(y-&0)*(Vu-£SY(y+&d) = Vlit+e Su

By what rules do we compose the moti(88) with the transferg40) now? If we
perform the transfey’, 0’ on the motiora, Sthen we will get:

(41) (/-¢&0)Na - 8™ (Sx— eVX)(a + By + &0')
=SY + VX' = (Y- &) H(Sx— e VX ()" + €07),
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in which we have set:
(42) y'+&0"=(a + Py + &) .

One obtains the remaining composition formulas irstirae way:

(a+eB)a' +gf)=a" + &3,
(a+eB)(y +ed) =y +&d",
(y+ed)a' —eB) =y +&d",
(y+eo)y —-ed)=a"+&B".

(43)

With that, we have also shown analytically that thetions and transfers define a
(laminated) group.
If we are dealing with the problem 6hding the inverse to just a motian S or a

transfery; dthen, as formulas (43) show, we must replacgwith &, 8 andy, dwith
7, 0 we will then have [(14), (19)]:

(a4) { (a+£B)(a+eB) =aa +&{af+pd =Na

(y+ed)(p+ed)=yy+e{lyd+dp =Ny

118. Involutory motions and transfers. We can now easily determine the
involutory motions and transfers. From what we just saglget the proportions:

(45) Q. . . . KH: L B B
Q.- .~ .~z . .. -5~

for involutory motions In this, there are two possibilities to distinguish:

l.a,=a,=a,=6,=6,=6,=0.

It also follows from @) = 0 thatao % = 0, and sinc®la # 0, that will also imply thafs
= 0. We then have thé&entity, which we do not count among the involutory
transformations.

2.a,=3,=0,andsinced8 ¥ O0,alsarf,+a,B,+aL,=

Since we already know one type of involutory motionamely, the reversal (n@11) -
and our derivation shows that only one type exists, we theveonditions for the motion
a, B to be areversal In order to find the reversal axis, we remark that given
condition equation has the form of tR&icker identity. For that reason, we surmise that
the reversal axis possessesPhi&ker coordinates:
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(46) Q... L. B Bs.

In order to prove that, we seek the fixed points of theano The first of equations (38)
yields:

Va+eVPB)H(SxeVI \r—& \B) = Sx& Vx
(Sx+teVR(Wr - \P)=(\r+e \B)( Sxe VYx
VxVa - Va Vx-2 Sx\5 =0,

(X20'3—X30'2)el+()(30'1— XQ’; 6‘2+( x5 )gl & )Gﬂlq'ﬁ zqﬁ 3E:O'

(47)

However, from (14), § 1, that is the condition for gwnt x to lie on the line (46). The
points of that line are therefore fixed points. Q. E. D.

Theorem 9: There is only one kind of involutory motion, namely, the reversal. The
motiona, Fis a reversal when:

a=H=0 and afb+al+a=0.
Its axis then has the Pluckerian coordinates:
. LSS
Forinvolutory transferspne will have the proportion:

(48) N Pl B %%

%
=W NI BB TR ARG,
There are two cases to distinguish here, as well:

1Ly,=y,=y,=0,=0.

We are dealing with geflection through the point:

(49) B:0:%: 0.

Namely, in reference to the first of equations (40), ef ask what the fixed point of the
transfer is then it will follow that:
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(Vo =&V (Sx=eVY(y,+£ D) = Sk e Vx
(Sx+eVR(y, +£\O) = (y,—€ \O)( Sk e X
SxVo+ Vo Sx Vy, -y, V=0,
Sx VO =y, Vx
Vx_ Vo

—_—=— .E.D.
SX ¥ °

(50)

2.y,=6,=5,=5,=0.

We are dealing with geflection in the plane:

(51) [ 7

the first equation in (40) will then yield:

(Sx=eVY(W+EJ) =(W—€9)( Sxe& Ix
-VxVy+9, Sx W Vx 9, Sx0,
20,04+ XY, Xy 5) + 20 %= 0,
O%o T X,y + XY, Xy 5= 0.

(52)

for the fixed point now. Every point of this plane Miilen be fixed individually.Q. E. D.

Theorem 10: There are two types of involutory transfers: Reflections through points
and reflection through planes. The reflection through the pgint, : & : & will have
the coordinates:
H:0:0:0:00:%: 3%,

while the reflection in the plang : )4 : )5 : )5 will have the coordinates:

O:p:p: p:d: 0:0:0.

119. Geometric interpretation of the parameters of motion.From Theorem 9, the
parameters of motion can be interpreted in one speagd in such a way that one can
characterize the motion completely with the helphat interpretation. That shall now be
done in general.

We first ask what theroper fixed line of the motioa + 6 would be. Obviously,
every motion will possessneproper fixed line, which will be either the line with the ra
coordinates:

(53) @+l (Va+eVp (a+ g8 = Va + &Vh) [cf., (38)],
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or (when that line is undetermined) the proper line oftihadle of parallels with the
vertex 0 :4.: % : 3. As we know, the latter case will occur whémvanishes, and thus
when we are dealing with a translation.

If there is no translation present then there b@ltwo cases to distinguish: Either
there is a fixed point on the fixed line, and one is dealiib a rotation around that
point, or there is no fixed point on the fixed axis. Tiaion will then be the product of
a rotation around the axis and a translation along that mamely, ascrew. We would
also like to count the rotations among the screwinganst

Theorem 11:Every motion that is different from the identity that is not a tedioa
is a screwing motion around a well-defined proper axis.

Now, such a screwing motion is characterized by twagthin addition to its axis:
Themagnitude of the translatio?y; and the angle of rotation2 We would like to show
how one calculates these quantities from the coordiratenotion. To that end, we start
with equation (12):

(54) o Vxa - 2698 = vy [Na# 0].

Na
In this, the rotations around the origin are given byfitlsé part of the equation. They are
then characterized by the fact that theanish. Their coordinates are then:

(55) . 1. a:.a3:0:0:0:0.
From (17), § 32, the angle of rotation is given by:

(56) cotd= —Jo__
Na-a;

A translation should be regarded as the product of theitgeatation Va = 0 with a
transformation that is characterized by the quaterglonf one substitute¥a = 0 in
(54), and then, sincexf) = 0, % = 0, one will obtain &ranslation:

(57) :0:0:0:006.: 55

whose magnitude is:

(58) o |9PBa _ At Bt By

(Na)? a,
One sets:
(50) g B BB

and calls 2 themagnitude of translatioof the translation.
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Theorem 12:A motiona + g6 that is different from the identity and hae ¥ 0, % =
O is a translation in the directiof, : £ : /s whose magnitude &7.

We now go on to thescrewing motionsand first consider one whose axis runs
through the origin. It is composed of a rotatwmand a translatiowp + £ Va along the
axis of rotation. The coordinates of that scee(p + £Va) are then:

(60) a0 0 BB B B

S O G Ga.—(Ai+a2+al) a0 ar: A Qs .

Its translation magnitud@andangle of rotatiorare determined by:

[ 2 2 2 '
- al +02+a3 - ﬁO

_0-0 \/a]r-2+0,122+a,;2

(61) ,

—a, —a,

Cow_\/a’zﬂr ‘+al? \/a’2+a +a'?

If one now subjects a given screw to a suitable traasléhen one can always arrange
that the axis of the screw runs through the origimnv@rsely: If one subjects the screw
a + € fto the translatiol : 7, + £ Vrthen one will obtain the most general scEWS =

= a”+ & [” The quaternion product:

(62) a’+eB’=(m+evVD(a+ef (o +eVD

1 7 ’ ] 1 ] ’ r 7
= T_{Toa +£[2(0,0,7,-05T,, 03T, — 00T, 1T, —0,T)) + T ']}
0

will now have the coordinates:

=Ty Bo=TPho

(63) ay = 1., =TSP 2@, a T ),
a, = 1,0, , =T B2, —a'r ),
ay =Ty, =TS+ 200 T ,—a' T ).

The quantities of translation and rotation remanchanged under the transformation.
We can then infer them from formulas (61) and finat:

By 5

\/a12+a +a12 \/a112+anZ+anZ
(64) !
aO aO

cot? =

\/a’2+a +ay’ \/a"2+a"2+a"2



Geometric interpretation of the parameters of motion. 117

It will then follow that:

Theorem 13: The screwa + £6 has an axis with ray coordinateso\d Vg, Its
magnitude of translation and its angle of rotation are determined by:

n= Bai+a;+a;z,
cotd=-ap: . af +ai+a?l.

An immediate consequence of this is that:
Theorem 14:

For % = 0,0ne is dealing with a rotation. Forhx, = 0, one is dealing with an
“unscrewing” (cot 4 =0, =1/ 2, 29 =
7T)

Whenao = 5 = 0,0ne is dealing with a reversé)).

§ 34. Map of motions to the points of aM? in R; .

120. Right-handed and left-handed somasWhen a motion is considered to be a
spatial element, we (witk. Study) would like to call it asoma In order to be able to
link the concept of a soma to something more intuitive pnoceed as follows: We refer
to a dreibein of three mutually-perpendicular unit vectbet ts fixed once and for all
(i.e., a coordinate system) agpetosoma. The protosoma will go to another dreibein
under a motioro + £6, and that dreibein will be associated with the motiox €5 in a
single-valued and invertible way. We would like to call tthagibein asomaand call the
quantitiesap - a1 - > - a5 L K B 5 - B thecoordinatesof the soma. Along with the
right-handed somathat are defined in that way, we shall also condefeihandednes:

W KN Y B Q0.0

that emerge from the protosoma by transfers.

121. Pseudo-somas.We now interpret the coordinates 4 of the soma as the
homogeneous coordinates of a poinRin A regularM{ in it will then be distinguished

by the equation:
1) @)=+t asB=0

() Cf., E. Study, “Von den Bewegungen und Umlegungen,” Math. A3&(1891).
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as the locus of the image points of all (right-handed)as. However, while every soma
corresponds to an image pointihZ, not every point oM will correspond to a soma.

Points for whiciNa = 0 yield no motion.
In order to define the map with no gaps, we then intredihe new concept of
pseudo-somaA pseudo-soma has coordinates of the form:

(2) 0:0:0:00:680:%: 5.

We would like to attempt to associate pseudo-somas withtative figure inRs . For
that, we can be guided by the analogy to line geometry.
A improper lineX in Rs will be illustrated by the proper lines of its compldXioes

of intersection. Those lines will be representech@éimageRs of line space by points in
the tangentiaR, to M at the pointt. We also correspondingly construct the tangential
Rs to the M at the point (2) in the imade; of soma space. In the running coordinates
a”, B it will have the equation:

3) S(Ba") = ay By +ai B+ a B+ d'yB, = 0.
However, this equation is itself satisfied by the somas that one obtains when one

composes a som@+ €8  (with an arbitrary3”) with all unscrewings/a’ + g8’ (cf.,
Theorem 14):

(4) a”+eB"= B+ &B)(Va’'+ &B).

In fact, it follows that:

(5) a’=pVa’,

and thus:

(6) S(Ba") = S(BBVa") =NBRVa’) = 0. Q. E. D.

Theorem 15:1f one subjects a soma to all unscrewings then one will obtain a system
of »° somas that represent a pseudo-soma.

Theorem 16: The manifold of all somas and pseudo-somas can be mapped to the
points of a regulaM in R, in a single-valued and invertible way.

In what follows, we shall restrict ourselves to ssifor the sake of simplicity.
122. Linear spaces in theM? in R; . Just as the manifold of improper lines (as a
field of planes) can be mapped to a pland/ifi, the manifold:

(7) ap =0, m =0, a, =0, az=0
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of all pseudo-somas can be mapped t&gain M?. We shall now direct our attention to
the linear spaces that lie M.

One first sees that linear spaces of higher dimensian R; cannot lie in MZ.
Namely, a point that lies oM must lie on its polaRs, and thus, aR, that lies onM?
must lie on its polaRs-, . For that reason, one must have:

(8) p<6-—p, p<3.

Now, in order to find alRs that lie in M?, we projectM? stereographically [which is a

process thaC. Segre(*) employed] from one of its poingsto anRs (cf., § 17). The
projection is, in general, single-valued and invertible. e Bingle-valuedness breaks

down only for the points of the cord? at which the tangentiaR; to p cutsMZ. The
o' points that lie on a line of that cone that goesughp will be projected to a point of
the regularM? at which the coneM? cutsRs . ThatM; will lie in the Rs at which the
tangentialR; to p cuts throughRs . We would like to call thalRs theimaginaryRs in Rs .
Under projection, theRs in M? will be projected to anR, in Rs that cuts the
imaginaryRs in a plane that lies oM . Conversely, arR, of that kind will correspond
to anR; that lies onM /2. Now, there are obviously two types of spa&&go distinguish:
Ones that cut thé? in planes of the first kind and ones that &4f in planes of the
second kind. There are, correspondinglyo kinds of spacessRn M/ to distinguish,

and indeed, we have® of each kind, since there aré planes of each kind oM ?, and

o : 00® = 00® Ry run through a plane iR .

We would now like to look for thevays that the two kinds ot Ran intersect. Two
R, of the same kindut M? in two planes of the same kind, which will have a pain
common, according to Theorem 5 of Chap. Il. The ®o(which, asR;’s in Rs, will
generally intersect at one and only one point) do noethee need to have a real point of
intersection. Since an imaginary point of intersec(as a point ofM?) would not be
mapped to a well-defined point df1Z, the correspondingR; will be skew to MZ.
However, in the special case where they have a conpmioh that projects to a real point
of R, the correspondindR; will intersect in a line (viz., the connecting line betreal
point with the imaginary point of intersection), and Baen M? will then have a line in
common.

Converselytwo R of different kindswill project onto two R, that cutM? in two

planes of different kinds. From Chap. Il, Theorem 8&ytWill generally be skew. The
R, must then intersect in a real point that correspomdbiée point of intersection of the

() C. Segre “Studio sulle quadriche in uno spazio lineare ad un narmealunque di dimensioni.
Sulla geometria della retta e delle sue serie quadrdtigleen. Acc. Torino (2)36 (1884).
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correspondingR; on MZ. However, if theséRs had even one common lir@ in the
special case (which would then project to a realGhé Rg) then the two planes oM ;

would have a common point (viz., the imaginary poinGOf and thus a common line,
from Chap. Il, Theorem 5. The tw, would then intersect in a real plane, namely, the

connecting plane of the imaginary line that was jusinél with the lineG'. The
correspondindzs; in M2 then have a plane in common.

Theorem 17:The highest-dimensional linear spaces in a regNgf in Ry are Ry's.

An M2 contains=® Rg's . They are divided into two families: Twg Rof the same

family will be skew, in general. However, if they have a gaicbommon then they will
also intersect along a line. Twa'R from different families will generally intersect at a
point. However, if they have a line in common then they williatecsect along a plane.

The method of proof can be easily generalized. Itthdh be possible to arrive at a
statement about regular, quadratic manifalds? in R, . We will see that the highest-
dimensional linear spaces alternately belong to ortemsygconic sectionM? in Ry) or
two different systems (point-pairs, second-order surfd¢ein Rs, M? in R;), and that
on these latter manifolds ;, ,
eveng and incident for odd.

two spaces of different kinds will generally be skiew

123. Linear manifolds of somas'j. The linear point manifolds oN/ correspond
to linear manifolds of somas in soma space. The pofrasiR; that belongs tavi? are
pair-wise conjugate relative tdl>. If we would like to learn more about the manifold of

somas (which corresponds to tRein M?2) then we would first need to examine what

properties of two somas correspond to the conjugate gosifitheir image points. We
assert:

Theorem 18:Conjugate points oM? correspond to somas that can go to each other
by a rotation.

In fact: We will obtain the product:

9) a+ef’=(@+eP T Od +ep).
It will then follow from this that:
1. .., =
(10) B”=—{ap + pa}
Na
and

() Cf.,H. Beck Math. Ann.81(1920),87 (1922).
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(11) 58" = Ni[smﬁ') + gfa] = [(aB)+ Ba).
a Na

Therefore SB” = 0 will mean the same thing as:

(12) @p)+(Ba)=0,

and therefore, from Theorem 14, that will lead to tleopr
An immediate consequence of this is:

Theorem 19: The«® lines in M2 correspond tae®chains of rotations”; i.e., one-

dimensional manifolds of somas that arise when one subjects a somadbrdiations
around an axis (Limiting casex’ translations in a direction) (e axes}®somas =o*°
chains of rotations, each of which is count€dimes, however.)

From the theorem that was just proved, sétxia-are three-dimensional manifolds of
somas with the property that two of the somas camked by a chain of rotations.

We will find asoma-R of the first kindvhen we subject a given soma to all rotations
around a point. There as€ somaRs's of that kind. ¢° points® somas =° soma-
Rs's, each of which is counted”® times, however.)

We will find asoma-R of the second kindthen we subject a given left-handed soma
to all reflections in all planes in space. In facte @an link every right-handed soma that
is obtained in that way to every other one by a chéirotions: The product of two
reflections in a plane is (as one can see immediatelvith the help of the algebra of
guaternions) a rotation around the line of intersectioth® two planes. There are then
«® left-handed somas that correspond to ¢ffesomaRs's of the second kind. It is
interesting to interpret the incidence conditions betwthe two kinds oR; in M? that

was given in Theorem 1id terms of soma geometry.

8 35. Analogies with ray geometry.

124. Parallel, hemi-symmetral, and symmetral somas)( In order to make the
analogy with ray geometry more evident, we set:

(2) 20 = o, Ao =, Aoz = a2, Aoz = a3,

U123 = o, Az = L1, As1 =B, A12 =
and

() E. Study, Geometrie der Dynameheipzig, 1903, pp. 557.



122 Chapter Seven: Kinematics

A) = 52’lO + 89’[123’
'Al = 52’l01+ 891 23
AZ = 52’l02 + 89’[31’
% = Q’l03+£§2112'

(2)

If we let X; denote ray coordinates, for the moment, then, from &33:
(3) AT X A=X’

will represent the motion oA in ray coordinates. We can now do without the
requirement thatA must be a bound biquaternion; the biquatermorepresents this
motion, as does the biquaternian{ £ 7) (A, since the equations:

4) (c+ e XA=AX'(g+ €1) and XA=AX’

are equivalent, due to the dual homogeneity of the rasdatates.

The quantitiesA; can then be regarded as the dual-homogeneous point-caesdina
That will then yield aonnection with the projective geometry of dual R

However, equations (2) further say th@hematics is a generalization of ray
geometryand contains it as a special case.

In order for some analogies to be able to emerggase the problem of finding the
motionA that takes the somé&to the som&. We find that:

(5) A=X1y,
and from it:

A =Xt XY+ XY+ XY
A=XY =~ X% X%+ XY
A =X = X% XYE XY
A= XK= K% XY+ XY

(6)

It will then follow from this that:
(7 A0 = [X D] = X0 Yo + Xo1Yo1 + X02Yo2 + Xo03Yos,

(8) A123 = (X)) =X0D 123+ X01 P23+ X02 Y31+ X3 Y12
+ X123Y0 + X23Do1 + X31 Vo2 + X12Yo3 -

We now call two somaparallel when one of them emerges from the other one by a
translation, hemi-symmetralwhen the one goes to the other by an unscrewing, and
symmetralvhen the second emerges from the first by a reversal.

Should the somax, Y be parallel, then from Theorem 12, one would need te g

=202 =2Ap3 = 0. The would yield the three equations:
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Xo Vo1~ X010~ X 65D ot X 0 07~ 0,
(2) XoDoe = X020~ X 0D oit X o) o7~ 0,

XoDhs~ X 05D~ X 06D 07T X 0D o~ 0,
from which:

(10) Xo: Xo1:X02:X03=Do:DVo1:Doz2:Yos.

Theorem 20: Two somas are parallel when the scalar parts of their coordinates are
proportional.

Should the somas, Y be hemi-symmetral or symmetral, then, from Theoitdnone
would need to hav@y = 0 or2lp =2423= 0. Hence:

Theorem 21: Two somas XY are hemi-symmetral whé¢i | 2)] vanishes. They are
symmetral when:
(11) (XY):XQYO+X1Y1+X2Y2+)Q3Y3
=[X D]+ £(XD)

vanishes.

With that, the analogy to formula (9), 8§ 27 is found.
We already spoke of somas that can go to each otherdiatéon — viz.,conjugate
somas — above.

125. The dual angle between two somasln order to apply the ideas that were
introduced, we define the dual angle between two sofn&din analogy with (1), 8 29]
by the equation:

(XY)
12 cos @ + €H) =
o eren J(XX) /(YY)
=C0SO@ —-£eH[BINO = [X]] +¢ (X9)

NEIE RN PR RNIEIEI NP

In this, it is assumed that the coordinaXeandY; are multiplied by suitable dual factors,
such thaiX, Y become bound biquaternions. One will then have:

(%) =(®9) =0.

From (12), one will now have:
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_ [x1Y] |
JIXI X112

(13) 5
and therefore si® = _‘/[% | X101 2] 1 X| 2]
NEENPE
S0
cot@ = _(X19)] ,
(1 NEETDPEEPE
H (X9)

JEIRDIgHx A

If one now considers that from (7), (8), one will have

(15) [X [D] = 2o, (X)) =Anz3
and
(16) BE | 2] [ 1D] - [% | D]? = Aos® + Aoo” + Aog”

then one will get, on the basis of Theorem 13:
Theorem 22:1f one sets:

(XY)

V (XX)y/ (YY)

then20 will be the angle, an@H will be the magnitude of translation for the motion that
takes the soma X to the soma Y.

cos@+¢&H) =




