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Foreword 

 
 According to Felix Klein , line geometry is the geometry of a quadratic manifold in a 
five-dimensional space.  According to Eduard Study, kinematics – viz., the geometry 
whose spatial element is a motion – is the geometry of a quadratic manifold in a seven-
dimensional space, and as such, a natural generalization of line geometry.  The geometry 
of multidimensional spaces is then connected most closely with the geometry of three-
dimensional spaces in two different ways.  The present guide gives an introduction to line 
geometry and kinematics on the basis of that coupling. 
 In the treatment of linear complexes in R3, the line continuum is mapped to an 24M  in 

R5.  In that subject, the linear manifolds of complexes are examined, along with the loci 
of points and planes that are linked to them that lead to their analytic representation, with 
the help of Weitzenböck’s complex symbolism.  One application of the map gives Lie’s 
line-sphere transformation.  Metric (Euclidian and non-Euclidian) line geometry will be 
treated, up to the axis surfaces that will appear once more in ray geometry as chains.  The 
conversion principle of ray geometry admits the derivation of a parametric representation 
of motions from Euler’s rotation formulas, and thus exhibits the connection between line 
geometry and kinematics.  The main theorem on motions and transfers will be derived by 
means of the elegant algebra of biquaternions. 
 Maps in the usual sense can be contained in this book only to a lesser degree, since it 
will treat geometry in complex or multidimensional spaces, for the most part.  Symbolic 
figures have been avoided for the sake of saving space. 
 The main facts of our guide are indissolubly coupled with the name of Eduard 
Study.  The treatment of the line-sphere transformation, ray geometry, and kinematics 
here goes back to Study.  We shall refer to the original literature by citations at the 
relevant places.  With those references, we would like to satisfy not only the duty of 
gratitude to our esteemed teacher, but also the point out the path into Study’s world of 
ideas to the reader. 
 I would like to thank W. Brach, H. Peters, and H. Schröder for their assistance in 
the correction, and the publisher for the eagerness that they showed in their decision to 
print this guide. 
 
 Bonn, in January 1935. 
 Ernst August Weiss 
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Chapter One 

 

The linear complex in R3 
 

§ 1.  Plückerian line coordinates. 
 

 1.  Notations.  The basic facts of the geometry of the line, the plane, and space will 
be assumed in what follows.  We denote binary parameters by Greek symbols ξ, η.  The 
parameter ξ has the coordinates ξ1 : ξ2 .  The condition for the binary parameters ξ, η to 
coincide reads: 
(1)     (ξ η) = ξ1η2 − ξ2η1 = 0. 
 
 We denote the homogeneous coordinates of the points x, y, …, p, q, … and the planes 
u, v, … by xi, yi, …, pi, qi, … and ui, vi, …, ai, bi, …, resp. in the quaternary domain (i = 
0, 1, 2, 3).  Like the binary parameters, these coordinates are complex numbers, except 
for the cases in which we expressly restrict ourselves to the real domain.  The equation: 
 
(2)     (u x) = u0 x0 + u1 x1 + u2 x2 + u3 x3 = 0 
 
represents the condition for the point x to be incident with the plane u.  (For fixed u, it is 
the equation of the plane u; for fixed x, it is the equation of the point.) 
 The vanishing of the determinant (x0 x1 x2 x3) of the coordinates of the four points xk 
gives the condition for the four points to be linearly dependent, so they will lie in (at 
least) one plane.  Dually, (u0 u1 u2 u3) = 0 gives the condition for the four planes uk to be 
linearly dependent; i.e., to run through (at least one) common point. 
 
 
 2.  Definition of line coordinates.  A line of R3 can be represented by a parametric 
representation: 
(3)      ξ1 x + ξ2 y 
 
as the connecting line of two points x, y, and by a system of two equations: 
 
(4)     (u x) = 0, (v x) = 0 
 
as the intersection of two planes u, v, and thus, as the carrier of the pencil of planes that is 
spanned by the planes: 
(3)     ξ1 (u x) + ξ2 (v y) = 0 
 
The line will then appear to be a locus of points (viz., a ray) or planes (viz., an axis). 
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 If we, with J. Plücker (1), would now like to introduce the line as a spatial element – 
i.e., regard geometric figures as the loci of straight lines – then we  would need to 
represent the lines by coordinates. 

 We define the Plücker coordinates of the connecting line X = �xy by the six two-

rowed determinants in the matrix: 

0 1 2 3

0 1 2 3

x x x x

y y y y
, 

so 

(6)   01 0 1 1 0 02 0 2 2 0 03 0 3 3 0

23 2 3 3 2 31 3 1 1 3 12 1 2 2 1

, , ,

, , .

x y x y x y x y x y x y

x y x y x y x y x y x y

= − = − = −
 = − = − = −

X X X

X X X
 

 
The quantities are determined by the line only up to a non-zero factor.  Namely, if one 
replaces the points x, y by two other points of the lines: 
 
(7)  x′ = ξ1 x + ξ2 y, y′ = η1 x + η2 y,  (ξ η) ≠ 0 
 
then one will get: 
(8)     ik

′X  = (ξ η) ⋅⋅⋅⋅ Xik 

 

for the coordinates ik
′X  of �x y′ ′ .  One then comes down to only the ratios of the line 

coordinates.  The line coordinates are homogeneous coordinates. 
 It follows from homogeneity that at most five of the coordinates are essential ones.  
However, there are only ∞4 lines in R3 (∞6 point-pairs, but every line contains ∞2 point-
pairs: ∞6 : ∞2 = ∞4).  The line coordinates cannot be independent of each other then; an 
identity relation must exist between them.  One will obtain that relation from the 
equation: 

(9)      (�xy �xy) = 0. 
 
The four-rowed determinant vanishes, because two times two of its rows are the same.  If 
one (with Laplace) develops it in its first two rows then one will get: 
 
(10)    X01 X23 + X02 X31 + X03 X12 = 0. 

 
The expression on the left-hand side is called the Plücker expression, while the identity 
itself is called the Plücker identity. 
 
 Theorem 1: The (homogeneous) Plücker line coordinates satisfy the quadratic 
Plücker identity. 
 
 

                                                
 (1)  J. Plücker, Neue Geometrie des Raumes, gegründet auf die Betrachtung der geraden Linie als 
Raumelement, Leipzig, 1868. 
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 3.  Line and point.  Now, is it also true that conversely, any system of six quantities 
Xik that satisfy the Plücker identity will determine a line?  In order to answer that 

question, we must know the condition for a point x to lie on a line X = �yz. 

 Let x be an arbitrary point, and let X = �yz be an arbitrary line.  The equation of their 

connecting line (in variables point coordinates t) will then read: 
 

(11)     (x �yz t) = 0. 
 
Its coordinates – viz., the coefficients of ti – will be the three-rowed determinants of the 
matrix: 

(12)     
0 1 2 3

0 1 2 3

0 1 2 3

x x x x

y y y y

z z z z

, 

namely: 

(18)   

0 1 23 2 31 3 12

1 0 23 2 03 3 02

2 0 31 1 03 3 01

3 0 12 1 02 2 01

* ,

* ,

* ,

* .

u x x x

u x x x

u x x x

u x x x

= − − −
 = − +
 = + −
 = − +

X X X

X X X

X X X

X X X

 

 
Now, should the point x lie on the line X, the connecting line would be undetermined, so 

the ui would have to vanish.  Therefore, one would have the equations: 
 

(14)   

1 23 2 31 3 12

0 23 2 03 3 02

0 31 1 03 3 01

0 12 1 02 2 01

0 * ,

0 * ,

0 * ,

0 * ,

x x x

x x x

x x x

x x x

= − − −
 = − +
 = + −
 = − +

X X X

X X X

X X X

X X X

 

 
together with the identity: 
 

(15)  (x �yz t) ≡ 0 {t} (viz., “identically zero for all t”), 
 
as the necessary and sufficient conditions for the point x to lie on the line X.  The 

requirement that a point should lie on a line actually represents only two conditions – 
viz., the point must lie on two distinct planes that run through the line – while no 
equation in equations (14) is dispensable, on the grounds of symmetry, and since one or 
the other equation can break down. 
 If one now regards the quantities Xik in the system (14) as arbitrary, but fixed, then 

one will have a system of four linear, homogeneous equations for the xi.  Non-trivial 
solutions will exist if and only if its determinant vanishes.  However, one finds that the 
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determinant of the skew-symmetric is the square of the Plücker expression.  If one then 
assumes that the given Xik satisfies the Plücker identity without all of them vanishing 

then the determinant will vanish, and – as a simple calculation will show – the matrix will 
have rank 2.  There will then be ∞2 solutions, and correspondingly ∞1 points: 
(16)     ξ1 y + ξ2 z 
 
that satisfy the system of equations.  If one connects any two of these points then one will 
obtain a line with the coordinates ik′X .  If one poses the systems of equations for these 

ik
′X  that is analogous to (14) then one will obtain, by construction, a system of equations 

with (16) for its solutions.  The quantities Xik will then be identical with the coordinates 

of the line X′ = �yz (up to a factor).  Q. E. D. 

 
 Theorem 2:  A system of six quantities Xik that do not all vanish and that satisfy the 

Plücker identity is the system of line coordinates of a well-defined line. 
 
 
 4.  Ray coordinates and axial coordinates.  In the definition of line coordinates, the 
line was regarded as a locus of points, up to now.  The coordinates thus-defined will also 
be called ray coordinates then.  The axial coordinates of a line are defined dually.  One 
then understands the coordinates Aik of the line of intersection of the planes u, v to mean 

the two-rowed determinants of the matrix: 
 

0 1 2 3

0 1 2 3

u u u u

v v v v
, 

so 

(17)  01 0 1 1 0 02 0 2 2 0 03 0 3 3 0

23 2 3 3 2 31 3 1 1 3 12 1 2 2 1

, , ,

, , .

u v u v u v u v u v u v

u v u v u v u v u v u v

= − = − = −
 = − = − = −

A A A

A A A
 

 
Everything that we said about ray coordinates up to now can be carried over to axial 
coordinates dually.  Here, we will next be interested in the connection between the ray 
and axial coordinates of one and the same line. 
 Let x, y be two different points, and let u, v be two distinct planes through one and the 
same line, such that: 
 
(18)   (u x) = 0, (v x) = 0, (v x) = 0, (v y) = 0. 
 
Furthermore, let z, z′ be two variable points, and let w, w′ be two variable planes.  From 
the multiplication theorem, the four-rowed determinant is then: 
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(19)  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

so, from (18) :

{( )( ) ( )( )}{( )( ) ( )( )}.

xu xv x w x w

yu y v y w y w
x y z z u v ww

zu z v z w z w

z u z v z w z w

x w y w x w y w zu z v z v z u

′
 ′ ′ ′⋅ =
 ′
 ′ ′ ′ ′ ′


 ′ ′ ′ ′= − −






 

We set: 
(20)   (x w) (y w′) – (x w′) (y w) = (xy, ww′), 
 
to abbreviate.  (19) can then be written in the form: 
 
(21)   (x y z z′) ⋅⋅⋅⋅ (u v w w′) = (xy, ww′) ⋅⋅⋅⋅ (uv, zz′). 
 
In this, we now fix ww′, and indeed, in such a way that either (u v w w′) or (xy, ww′) will 
vanish.  These two expressions will then be non-zero numerical factors.  An identity in 
�z z′  remains.  The coefficients of Zik = i k k iz z z z′ ′−  in the expressions (x y z z′) and (uv, 

zz′) will thus be proportional to each other: 
 
 X01 : X02 : X03 : X23 : X31 : X12 

 = A01 : A02 : A03 : A23 : A31 : A12 . 

 
On the grounds of this relationship, it is not generally necessary to use ray and axial 
coordinate together.  In what follows, if we speak of line coordinates with no further 
qualifiers then we will mean ray coordinates. 
 
 
 5.  Line and plane.  With these preliminaries, we can easily dualize what was said in 
no. 3 about a line and a point.  From (13) and Theorem 3, we find that the point of 
intersection of a line X with the plane u is: 

 

(22)   

0 1 23 2 31 3 12

1 0 23 2 03 3 02

2 0 31 1 03 3 01

3 0 12 1 02 2 01

* ,

* ,

* ,

* .

x u u u

x u u u

x u u u

x u u u

= − − −
 = − +
 = + −
 = − +

X X X

X X X

X X X

X X X
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One will obtain the necessary and sufficient condition for the plane u to run through the 
line X when one demands that the point of intersection x should remain undetermined, 

and thus, when one sets xi = 0 in (22). 
 
 
 6.  Line and line.  It remains for us to exhibit the condition for two lines X and Y to 

be incident.  Let X be the connecting line of the points x, x′, and let Y be the connecting 

line of the points y, y′.  Should the two lines intersect, the four points would have to lie in 
a plane: 

(28)     ��( )x x y y′ ′ = 0. 
 
However, if one develops the left-hand side according to Laplace’s rule along the first 
two rows then it will follow that: 
 
(24)  X01 Y23 + X02 Y31 + X03 Y12 + X23 Y01 + X31 Y02 + X12 Y03 = 0. 

 
One denotes the left-hand side of this expression by (X Y). 

 
 Theorem 4: The condition for two lines X and Y to intersect reads (X Y) = 0. 

 
 The Plücker expression can be written in the form 1

2 (XX) with the recently-

introduced notations. 
 
 

§ 2. The linear complex. 
 

 7.  Definition of the linear complex.  If one fixes the line Y in the equation: 

 
(1)      (X Y) = 0 

 
then one will get the condition for a variable line X to intersect the fixed line Y, viz., the 

equation of the line Y.  This equation is linear in the line coordinates Xik, but it is not the 

most general relationship that is linear in the line coordinates: Equation (1) must exist 
between the coefficients Yik, namely, the Plücker relation. 

 We shall now consider the most general linear relation between line coordinates Xik: 

 
(2)    (C X) = C01 X23 + C02 X31 + …+ C12 X03 = 0. 

 
We call the locus of all lines C whose coordinates satisfy the equation (2) a linear 

complex.  A linear complex contains ∞3 lines.  [The ∞4 lines in R3 are subject to one 
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condition (2).]  There are ∞5 linear complexes, corresponding to the six homogeneous 
coordinates Cik of the complex. 

 The relation 12 (C C) = 0 will not generally exist between the Cik .  If that relation 

exists then we will call the complex singular.  One is then dealing with the complex of 
lines that meet the line C.  In the other cases, we shall speak of a regular complex. 

 
 
 8.  The null system.  Our next problem is to gain an overview of the mutual positions 
of the ∞3 lines of a regular linear complex.  To that end, we think of the line Xik as being 

the connecting line of the points x and y in (2): 
 

(3)  �( )x yC  = C01 (x2 y3 – x3 y2) + C02 (x3 y1 – x1 y3) + … + C12 (x0 y3 – x3 y0) = 0. 

 
Here, one has an alternating bilinear form in x, y on the left-hand side (i.e., the form will 
change sign when one switches x and y).  The equation then represents a skew-symmetric 
correlative relationship.  If one fixes the point x then the locus of all points y that produce 
a line of the complex when linked with x (viz., the locus of all lines of the complex that 
run through x) will be the plane whose equation is (3) and whose coordinates are: 
 

(4)    

0 23 1 31 2 12 3

1 23 0 03 2 02 3

2 31 0 03 1 01 3

3 12 0 02 1 01 2

* ,

* ,

* ,

* .

u x x x

u x x x

u x x x

u x x x

= − − −
 = − +
 = + −
 = − +

C C C

C C C

C C C

C C C

 

 
This system of equations is identical with the system (13) in § 1, except that we now 

assume that the complex is regular, and therefore that the determinant [ ]21
2 ( )CC  of the 

system is non-zero.  The relationship (4) will then be regular and will be called a null 
system. 
 
 Theorem 5:  A null system belongs to a regular, linear complex that associates every 
point x with a plane u that goes through it (viz., the null plane) and is the locus of all 
lines of the complex (viz., null lines) that go through x. 
 
 The null lines that go through a point then define a planar pencil, and thus the lines of 
the complex that lie in a plane will fill up a pencil (since the relationship is regular, every 
plane will be associated with a null point).  In order to obtain the relationship that assigns 
an associated null point to every plane, one must merely regard X as the line of 

intersection of two planes in (2): 
 

(5)  �( )x yC  = C01 (u0 v1 – u1 v0) + C02 (u0 v2 – u2 v0) + … + C12 (u1 v2 – u2 v1) = 0. 
 
 It will follow immediately from the skew symmetry in equation (3) that: 
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 Theorem 6:  If x lies on the null plane of y then y will lie on the null plane of x. 
 
 Thus, if a point runs through a plane then its null plane will rotate about the null point 
of the plane.  If a point runs along a line G (which can be regarded as the intersection of 

two planes) then its null plane will rotate around a line G′ (which can be regarded as the 

connecting line of the null points of those planes).  The lines G, G′ are called null polar 

to each other.  The null lines are the lines that are null polar to themselves.  Later on (no. 
11), we will learn how to determine the null polar to a line analytically (i.e., to describe 
the null system in line coordinates). 
 In the case 12 (C C) = 0, we would like to call (4) a singular null system.  A singular 

null system is determined by a line C, namely, the guiding line of the complex.  Any point 

that does not lie on C will be associated with its connecting line with C.  A point of C 

itself will not correspond to any well-defined plane. 
 
 
 9.  Möbius’s pair of tetrahedra.  A simple application of the (regular) null system is 
the derivation of Möbius’s pair of tetrahedra (1).  One makes a tetrahedron that consists 
of the points p0, p1, p2, p3 [(p0 p1 p2 p3) ≠ 0] and the faces a0, a1, a2, a3 subordinate to a 
null system.  A second tetrahedron will arise whose faces are b0, b1, b2, b3, and whose 
vertices are q0, q1, q2, q3.  qi will then lie in ai (as the null point of ai) and bi will run 
through pi (as the null plane of pi). 
 
 Theorem 7:  When one applies a null system to a tetrahedron, a second tetrahedron 
will arise that is in Möbius position with respect to the first one: i.e., the two tetrahedra 
are inscribed and circumscribed equilaterally to each other. 
 
 
 10.  The pencil of complexes.  Two different complexes A and B span a pencil of 

linear complexes: 
(6)     (C X) ≡ ξ1(A X) + ξ2(B X) = 0. 

 
We would like to look for the singular complexes of the pencil.  To that end, we set the 
Plücker expression that is defined by the complex C equal to zero: 

 
(7)    (C C) ≡ 2

1ξ (A A) + 2ξ1ξ2(A B) + 2
2ξ (B B) = 0. 

This equation shows: 
 
 Theorem 8:  The pencil of complexes that is spanned by the two distinct linear 
complexes A and B contains: 

                                                
 (1) A. F. Möbius, “Kann von zwei dreiseitigen Pyramiden eine jede in bezug auf die andere um- und 
eingeschrieben zugleich heißen?” Crelle’s Journal 3 (1829), pp. 273. 
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1.  For (AA) (BB) – (AB)2 ≠ 0: 

 

 
Two distinct singular complexes (regular pencil) 
 

2.  For (AA) (BB) – (AB)2 = 0,  

but (CC) ≡/  0 {ξ}: 

 

Two coincident singular complexes (singular pencil). 

3.  For (CC) ≡/  0 {ξ}:  ∞1 singular complexes.  It is the pencil of lines 
 that is spanned by the incident lines A and B. 

 
 The regular pencils can be spanned by two of the singular complexes G and G′ that 

are contained in them: 
(8)     (CX) ≡ η1 (GX) + η2 (G′X) = 0. 

 
Thus, since (GG) = (G′G′) = 0, one will have: 

 
(9)     (CC) = 2 η1η2 (GG′), 
 
and it will follow from this that (GG′) ≠ 0: The lines G and G′ do not intersect; they are 

skew. 
 From (8), one sees that a line X that cuts G and G′ will be common to all complexes 

of the pencil: 
 
 Theorem 9:  The complexes of a regular pencil generate a “regular linear 
congruence,” namely, the manifold of ∞1 common lines of intersection of two skew lines 
G and G′ (the guiding lines of the congruence). 

 
 The guiding lines themselves do not belong to the congruence. 
 
 The singular pencils can be spanned by a regular complex A of the pencil and the 

double-counted singular complex G of the pencil: 

 
(10)    (CX) ≡ η1 (AX) + η2 (GX) = 0. 

One will then have: 
 
(11)  (C C) ≡ 2

1η (A A) + 2η1η2(A G) = η1{  η1(AA) + 2η2(AG)}. 

 
This time, the discriminant of the quadratic form will vanish.  It will then follow that: 
 
(12)     (AG) = 0. 
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 Theorem 10:  The complexes of a singular pencil generate a “singular linear 
congruence,” namely, the manifold of all ∞2 null lines of a regular complex that cut a 
line G of this complex (guiding line of the congruence). 

 
 The guiding line itself belongs to the congruence.  Later on (no. 22), we will learn 
about an intuitive construction of a singular congruence. 
 
 
 11.  The null system in line coordinates.  For a line G, one can find the null polar of 

G relative to the null system that is coupled to a regular complex A.  We consider the 

pencil that is spanned by A and G.  Of the two singular complexes that are contained in 

it, we know one of them G from the outset.  The second one can be determined from 

equation: 
 
(13)  η1(AA) + 2η2 (AG) = 0, η1 : η2 = 2 (AG) : − (AA), 

as: 
(14)   (G′X) ≡ 2(AG) ⋅⋅⋅⋅ (AX) − (AA) ⋅⋅⋅⋅ (GX) = 0. 

 We now state: 
 
 Theorem 11:  The null polar G′ of a line G relative to a null system that is coupled 

to a regular complex A is the second guiding line in the linear congruence that is 

determined by G and A. 

 
 Proof: A common line of intersection of two null polar lines G and G′ is a null line of 

the complex (since the null plane of a point of G runs through G′).  Conversely: A null 

line that meets G will also meet G′ (since the null system switches G with G′, while 

transforming the null line into itself, and – like any correlation – leaving incidence 
unchanged).  Q. E. D. 
 
 Thus, (14) represents the null system in line coordinates. 
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 12.  Conjugate complexes.  The expression (AB) that is defined by two regular 

complexes A, B appears in (7) for the first time.  Two complexes that satisfy the 

equation: 
(15)     (AB) = 0 

 
are called conjugate.  We have already interpreted the vanishing of (AB) in the case for 

which the two complexes A and B are singular: The lines A and B are then incident.  We 

have also already interpreted the equation (AB) = 0 in the case where one of the 

complexes A is regular and the other one B is singular: The line B belongs to the 

complex A.  The equation shall now be interpreted in the case where the complexes A 

and B are both regular.  The pencil that they span: 

 
(16)    (CX) ≡ ξ1 (AX) + ξ2 (BX) = 0 

 
is then regular; the quadratic form: 
 
(17)    (CC) = 2

1ξ (AA) + 2
2ξ (BB) 

 
will then have a discriminant that is, by assumption, non-zero: 
 
(18)    D = (AA) (BB) ≠ 0. 

 
The pencil has two distinct, skew, guiding lines G and G′.  In the binary domain ξ1 : ξ2 of 

the pencil of complexes, the equation of the pair of complexes A, B will now be 

achieved by setting the quadratic form: 
 
(19)     2ξ1 ξ2 
 
equal to zero.  The harmonic invariant (3) of the quadratic forms (17) and (19) will then 
vanish. 
  
 Theorem 12:  Two conjugate, regular complexes lie in the (regular) pencil that they 
span harmonically to the pair of singular complexes of the pencil. 
 

                                                
 (3) The harmonic invariant of the two quadratic forms: 
 

 a11
2

2
ξ  − 2a12 ξ 2 ξ 1 + a22

2

1
ξ  , 

 b11
2

2
ξ  − 2b12 ξ 2 ξ 1 + b22

2

1
ξ  

 
reads a11 b22 − 2 a12 b12 + a22 b11 .  Its vanishing is the necessary and sufficient condition for the pair of zero 
loci of the two forms to be harmonic to each other. 
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 We would like to illustrate this theorem by an immediate consequence of it.  A pencil 
of null systems is coupled to the pencil of complexes: 
 

(20)    � �
1 2( ) ( )x y x yξ ξ+A B = 0, 

 

by which, a point x in general position (viz., one that does not lie on a guiding line) is 
associated with a pencil of planes.  The axis of the pencil is the common line of 
intersection of G, G′ that runs through x.  Now, that pencil of planes will be related 

projectively to the pencil of complexes by the identity of the parameters: 
 Theorem 13:  Let two regular complexes A and B be conjugate.  The two planes that 

are associated with a point x in general position by the null system that is linked to them 
will then lie harmonically to the connecting planes of the point x with the skew guiding 
line G, G′ of the intersection congruence of A, B. 
 
 We will learn about two further geometric interpretations of the important relation 
(AB) = 0 later on (no. 13, 19). 

 
_________ 

 
 



  

Chapter Two 
 

Line geometry as geometry in R5 
 

§ 3. 2
4M  as the image of the line continuum. 

 
 13.  Plücker’s 2

4M .  The situation that was treated in the last paragraph will become 

much more intuitive when one appeals to the following map (4): One interprets the six 
coordinates Cik of a linear complex as homogeneous point coordinates in R5.  A linear 

complex in R3 then corresponds to a point in R5.  The ∞4 singular complexes then 
correspond to the ∞4 distinguished points whose coordinates fulfill the Plücker identity: 
 
(1)    1

2 (CC) ≡ C01 C23 + C02 C31 + C03 C12 = 0. 

 
These points then lie on a four-dimensional quadratic manifold 2

4( )M  that we shall call 

the Plücker manifold.  2
4M  is regular; by the substitution: 

 

(2)   01 1 2 02 3 4 03 3 6

23 1 2 31 3 4 12 5 6

, , ,

, ,

x ix x ix x ix

x ix x ix x ix

= + = + = +
 = − = − = −

C C C

C C C
 

 
(i.e., by the introduction of the so-called Klein coordinates), one can then bring its 
equation into the form: 
(3)     2 2 2 2 2 2

1 2 3 4 5 6x x x x x x+ + + + +  = 0. 

 
 Theorem 1: If one interpret the coordinates of a linear complex as homogeneous 
coordinates in R5 then the singular complexes (i.e., the lines) will be mapped to the points 
of a regular 2

4M  (viz., Plucker’s 2
4M ). 

 
 The results of the previous paragraph can now be expressed in an especially simple 
form in the new language.  A pencil of linear complexes will be mapped to a line in R5.  
In place of Theorem 8 in Chapter I, one will now have: 
 
 Theorem 2:  A line in R5 either cuts Plucker’s 2

4M  at two distinct points, or it cuts it 

at two coincident ones (i.e., it contacts it), or it lies inside of 2
4M  entirely.  (Line in 2

4M : 

Image of a pencil of lines in R3 .) 
 
 If one further observes that the relation (AB) = 0 arises from (1) by polarization then 

one will have: 

                                                
 (4) The idea of the map goes back to F. Klein, “Über Liniengeometrie und metrische Geometrie,” Math. 

Ann. 5 (1872) = Werke I, pp. 106:  “Die Liniengeometrie is wie die Geometrie auf einer 2

4
M  in R5.”  
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 Theorem 3:  Two complexes A and B are conjugate when their image points are 

conjugate relative to 2
4M . 

 
 
 14.  Linear manifolds on 2

4M .  We have just seen that 2
4M , includes lines as the 

image of pencils of lines.  There are then just as many lines on 2
4M  as there are pencils of 

lines in R3, viz., ∞5. 
 We now ask about linear manifolds of higher dimension on 2

4M .  They would 

correspond to line manifolds in R3 of such a kind that any line of the manifold could be 
linked to any other line of the manifold by a pencil of lines.  In other words: Any line of 
the manifold must cut any other line of the manifold.  One sees directly that there are two 
types of manifolds of that kind in R3: the bundles of lines (manifolds of all lines through a 
point) and line fields (manifolds of all lines in a plane).  These two-dimensional linear 
line manifolds will then be mapped to planes on 2

4M : 

 
 Theorem 4:  Plücker’s 2

4M  contains two families of ∞3 planes of the “first” and 

“second” kind, which correspond to the points and planes in R3 . 
 
 We investigate the relative position of these planes to each other and assert: 
 
 Theorem 5:  Two distinct planes of the same kind always cut at one and only one 
point.  Planes of different kinds will generally be skew.  However, if they have a point in 
common then they will cut along a line. 
 
 Proof: Two bundles of lines always have a line in common, namely, the connecting 
line of their vertices.  Two line fields always have a line in common, namely, the line of 
intersection of their planes.  By contrast, a bundle and a field have no line in common, in 
general.  However, in the special case for which they have a line in common, the vertex 
of the bundle will lie in the plane of the field, and the bundle will have a pencil of lines in 
common with the field.  Q. E. D. 
 
 
 15.  Automorphic collineations of 2

4M .  A collineation of R3: 

 

(4)    kx′  = 
3

0
ki i

i

a x
=
∑   (k = 0, 1, 2, 3)   | aki | ≠ 0 

 
induces a transformation of straight lines.  One will get the induced transformation when 
one associates the connecting line of two points x, y with the connecting line of the 
transformed points x′, y′.  One will then have, e.g.: 
 
(5) 01′X  = 0 1 1 0( )x y x y′ ′ ′ ′−  

  = (a00 x0 + a01 x1 + …)( a10 y0 + a11 y1 + …) 
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  − (a10 x0 + a11 x1 + …)( a00 y0 + a01 y1 + …) 
  = (a00 a11 – a01 a10) ⋅⋅⋅⋅ (x0 y1 − x1 y1 + …) 
  = (a00 a11 – a01 a10) ⋅⋅⋅⋅ X01 + … 

 
 A transformation of the regular complex Cik will also be induced by a transformation 

of the line Xik : The totality of lines of a complex Cik will be transformed into the totality 

of lines of the associated complex ik
′C  by the collineation.  One will obtain the induced 

transformation quite simply when one replaces the line coordinates Xik in (5) with 

complex coordinates Cik . 

 It is essential for us that the transformation equations prove to be linear in these 
formulas.  It will then follow from this that the image of a collineation in R3 will be a 
collineation in R5 .  The same thing will be true for correlations of R3 .  They will also be 
mapped to certain collineations on R5 . 
 Since a projective transformation of R3 transforms lines to lines, its image in R5 will 
fix the image manifold 2

4M  of lines: One will be dealing with an automorphic 

collineation of 2
4M : 

 
 Theorem 6:  Plücker’s 2

4M  admits a laminated group of 2 ⋅⋅⋅⋅ ∞15 collineations.  The 

main sheet consists of collineations that transform the planes of each family to 
themselves (i.e., the images of collineations).  The other sheet consists of collineations 
that switch the planes of the first kind with planes of the second kind (i.e., the images of 
correlations). 
 
 

§ 4.  Involutory, automorphic collineations of 2
4M  

 
 16.  Involutory collineations in Rn .  It follows from the last theorem that was proved 
that the involutory projectivities of R3 will be mapped to the involutory, automorphic 
collineations of 2

4M .  In order to arrive at all types of involutory, automorphic 

collineations of 2
4M , we shall start with the general problem of finding all involutory 

collineations of a space Rn of arbitrary dimension.  The basis for that investigation is 
defined by the theorem: 
 
 Theorem 7:  The fixed points of an involutory collineation of Rn span all of Rn . 
 
 Proof: A fixed line of the collineation runs through a point x that is not a fixed point, 
namely, the connecting line with the associated point x′ (since the collineation transforms 

the line �xx′  to the line �x x′ ).  However, an involution will be “cut out” from the fixed line 
by the involutory collineation; i.e., the points of the line will be permuted by the 
involutory collineation in such a way that an involution will arise in the binary domain of 
the line.  It will always have two distinct fixed points.  One will arrive at n + 1 linearly-
independent fixed points by a suitable choice of the fixed line.  Q. E. D. 
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 If one now picks n + 1 linearly-independent fixed points of the involutory collineation 
to be the vertices of the coordinate simplex (which is how we refer to the figure that is 
determined by the points 1 : 0 : … : 0, 0: 0 : … : 0, … 0 : 0 : 0 … 1) then the equations of 
the involutory collineation will be: 
 
(1)    0x′  = a00 x0 , 1x′  = a11 x1 , …, nx′  = ann xn . 

 
Since the collineation is involutory, one must have: 
 
(2)     2

00a = 2
11a  = … = 2

nna . 

 
One can set 2

iia  = 1 and find that aii = ± 1.  One then finds that there are as many 

different types of involutory collineations as there are possible combinations of signs.  
For example, in the space R3, the following cases are possible: 
 
 1. 0x′  = + x0 , 1x′  = + x1, 2x′  = + x2 , 3x′  = + x3 , 

 2. 0x′  = − x0 , 1x′  = + x1, 2x′  = + x2 , 3x′  = + x3 , 

 3. 0x′  = − x0 , 1x′  = − x1, 2x′  = + x2 , 3x′  = + x3 . 

 
Case 1 is omitted, since it gives the identity (1).  In case 2, the plane x0 = 0 is fixed point-
wise, as well as the point p = (1, 0, 0, 0).  The fixed lines are the lines through the point p 
(except for the lines in the plane x0 = 0).  In order to transform a point x, we connect x to 
p, intersect the connecting line with the plane x0 = 0 (point q), and look for the fourth 
harmonic point x′ to x relative to the point-pair p, q (viz., perspective involution). 
 In case 3, the lines G : x0 = 0, x1 = 0 and G′ : x2 = 0, x3 = 0 remain point-wise fixed.  

Fixed lines are, in addition, the line of intersection of G and G′.  In order to find the point 

x′ that is associated with x, we draw the common line of intersection of G and G′ through 

x (viz., the line of intersection of the connecting planes xG and xG′) and look for the four 

harmonic points to x relative to the two points of intersection (i.e., a skew involution).  
We summarize the results in the theorem: 
 
 Theorem 8: There are two types of involutory collineations in the space R3: the 
perspective involutions and the skew involutions. 
 
 More generally, one gets, in the same way: 
 
 Theorem 9: There are just as many different types of involutory collineations in Rn as 
there are distinct possibilities for spanning Rn with two subspaces Ri and Rn−i−1 that have 
no common point.  A fixed line of the collineation runs through a point x that does not lie 
on the “incidence domains” Ri and Rn−i−1, namely, the common line of intersection of Ri 
and Rn−i−1 (i.e., the line of intersection of the domains Ri+1 and Rn−i that connect x to the 

                                                
 (1) We do not count the identity among the involutory transformations.  
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incidence domains).  The collineation cuts out an involution along that line whose fixed 
points are the points of intersection with the two incidence manifolds. 
 
 With this theorem, we can give the types of involutory collineations in any space 
immediately.  Here, we are especially interested in the theorem: 
 
 Theorem 10: There are three distinct types of involutory collineations in R5 .  This 
incidence domains are: 
 1. A point and R4 . 
 2. A line and R3 . 
 3. Two planes. 
 
 
 17.  Applications to the automorphic collineations of 2

4M .  In order to derive all 

types of involutory, automorphic, collineations of 24M  from the result that we just found, 

imagine that an involutory collineation J is determined completely by its incidence 
domains.  Now, should J fix 2

4M , J would also have to fix the polar system P that is 

coupled to 2
4M . 

 However, it follows from this that J and P commute, and in turn (1), that P must fix 
the collineation J; i.e., it must fix the figure that consists of the incidence domains of that 
collineation.  That can happen either in such a way that P permutes the incidence 
domains or in such a way that P transforms each of those domains into itself.  However, 
since P is a correlation, the latter case can occur only when the incidence domains have 
the same dimension numbers.  From this and Theorem 10, we find that the following 
possibilities exist for the incidence domains: 
 
 1. Point and polar R4 . 
 2. Line and polar R3 . 
 3. Plane and polar R2 . 
 4. Two generating planes of 2

4M . 

 
We will now treat these four cases in succession.  At the same time, that examination will 
give us an opportunity to get to known about all the types of linear manifolds of linear 
complexes. 
 

§ 5.  Complex and forest of complexes. 
 

 18.  Classification of forests of complexes.  Let A be the notation for a linear 

complex and, at the same time, for its image point in R5 .  The locus: 
 
(1)      (AC) = 0 

 

                                                
 (1) If follows from P = J−1PJ that JP = PJ and from this that J = P−1JP. 
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of all complexes C that are conjugate to A is a four-dimensional linear complex manifold; 

the image manifold is an R4 that lies in R5 , namely, the polar R4 of the point A.  

Conversely, if an R4 in R5 is given then a well-defined pole A will belong to it.  We can 

then say: 
 
 Theorem 11: A four-dimensional linear manifold of complexes consists of all linear 
complexes C that are conjugate to a fixed complex A. 

 
 Corresponding to the regular and singular complexes A, there are regular and singular 

forests of complexes. 
 A singular forest of complexes that is the locus of all complexes that contain a fixed 
line G will be mapped to the tangential R4 in 2

4M  at the point G.  It will intersect 2
4M  in 

a 2
3M  for which G is a singular point (since it is conjugate to all points of R4).  

2
3M  is 

therefore a cone of rank 4 that one can obtain by projecting an 2
2M  that lies regularly in 

R3 from G. 

 A regular forest of complexes will be mapped to an R4 that does not contact 2
4M , and 

will therefore intersect it in a regular 2
3M .  The points of this 2

3M  are the images of the 

lines that belong to the regular complex.  Therefore: 
 
 Theorem 12: The lines of a regular, linear complex will be mapped to the points of a 
regular 2

4M .  It contains ∞3 lines (corresponding to the ∞3 pencils of complexes).  The 

lines (like the points of R3, and unlike the planes in 2
4M )  define a continuum, namely, a 

quaternary domain. 
 
 The last assertion follows from the fact that the line manifold of 2

3M  can be mapped 

to the quaternary domain of the points of R3 in a single-valued way by means of the 
pencil that is contained in the complex. 
 
 
 19.  The image of the null system.  From no. 17, an involutory, automorphic 
collineation of 2

4M  is determined by a point C that does not lie on 2
4M  and its polar R4 

(which does not go through C).  It is the image of an involutory projectivity of R3 .  In 

order to establish what kind of projectivity we are dealing with, we examine its fixed 
elements in R3 .  In R3, it fixes: 
 1. The regular complex C, as the image of the point C. 

 2. Its intersection 2
3M  with the linear complex that is conjugate to C, and in 

particular, the lines of the complex, as the image of the points of the polar R4 . 
 Thus: 
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 Theorem 13: The null system in R3 will be mapped to the involutory collineation of 
2
4M  with a point and its polar R4 as the incidence domains. 

 
 We now consider two mutually-conjugate regular complexes A and B and their 

image points.  The one image point lies in the polar R4 of the other one, and a point-polar 
R4 pair is then fixed by the involutory collineation that is coupled with the other one.  The 
two collineations then commute with each other.  We then have arrived at a new 
interpretation of the relationship of conjugacy of two regular linear complexes: 
 
 Theorem 14: Two regular linear complexes are conjugate if and only if the null 
systems that are coupled with them commute.  (For an analytical proof, see Chap. III, 
Theorem 2.) 
 
 The product of two commuting, involutory transformations is again involutory (1).  
The product of commuting null systems is also involutory then, and indeed, an involutory 
collineation, as the product of two correlations. 
 In R5, the composition of the two involutory collineations will, in turn, give an 
involutory collineation, for which the intersection R3 of the two polar R4 and the 
connecting line of the points A and B will remain fixed.  The image of this collineation 

will be a skew involution in R3 with the lines that are contained in the pencil ξ1A + ξ2B 

as its guiding lines.  The second type of involutory collineation (in Theorem 8) that 
comes under scrutiny fixes a bundle of lines and a line field in R3 line-wise, and therefore 
a pair of planes in R5 of different types in 2

4M  will be fixed point-wise.  The following 

theorems are then proved: 
 
 Theorem 15: Under the map of the line continuum to 24M  in R5, a skew involution 

will be mapped to an automorphic, involutory collineation of 24M  with a line and its 

polar R3 as the incidence domains.  A perspective involution will correspond to an 
automorphic, involutory collineation with two planes of different types in 2

4M as their 

incidence domains. 
 
 Theorem 16: The product of two commuting null systems is a skew involution. 
 
 

§ 6.  Pencil of complexes and bush of complexes. 
 

 20.  Classification of the pencils of complexes.  We already saw in no. 13 that the 
pencil of complexes of R3 is mapped to lines in R5 and that three different kinds of 
pencils of complexes correspond to three different kinds of lines R5 according to their 
position relative to 2

4M .  Under the polarity of 2
4M , a line will correspond to a space R3 

as the locus of all points that are conjugate to all points of the line relative to 2
4M .  

                                                
 (1) It follows from S 2 = 1, T 2 = 1, and ST = TS that (ST) 2 = STTS = SS = 1. 
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Correspondingly, a three-dimensional linear manifold of linear complexes – viz., a bush 
of complexes – will consist of all complexes that are conjugate to any two distinct 
complexes of a pencil (and therefore, to all of them).  The three different kinds of pencils 
of complexes correspond to three types of pencils of complexes: 
 
 1.  The regular bush of complexes.  This kind corresponds to the regular pencil of 
complexes.  The image R3 cuts 2

4M  in an 2
2M , and thus, a second-order surface, which 

we would like to show is regular (of rank 4).  In fact: the 2
2M  is the image of all lines that 

are common to all complexes of the regular pencil, so it will be the image of the lines of a 
regular, linear congruence.  However, that congruence will consist of the common lines 
of intersection of two skew guiding lines G and G′, and it will follow from an 

examination of the line pencils that are contained in the congruence that: 
 
 Theorem 17: 
 
  A regular, linear congruence contains two 
different kinds of pencils of lines: Pencils 
of lines that connect a point of G with all 

the points of G′ and pencils of lines that 

connect a point of G′ with all points of G. 

 
  Two pencils of the same kind have no line 
in common.  Two pencils of different kinds 
have one line in common. 

  The image 2
2M  contains two different 

families of ∞1 generators. 
 
 
 
 
 
  Two generators of the same kind are 
skew.  Two generators of different kinds 
are incident. 

 
With that, we have shown: 
 
 Theorem 18: A regular bush of complexes consists of all complexes that contain two 
fixed, skew lines.  The guiding lines of the singular complexes of the bush fill up a linear 
congruence that is determined the two lines.  That congruence will be mapped to a 
regular 2

2M . 

 
 2.  The singular bush of complexes.  The singular bush of complexes consists of all 
complexes that are conjugate to the complexes of a singular pencil.  The guiding lines of 
the singular complex of such a bush then fill up a singular linear congruence.  We look 
for the image of such a congruence on 2

4M . 

 If a line contacts 2
4M  then the point of contact G will be conjugate to all points of the 

line.  The polar R4 of the point will then include the line.  One will then obtain the polar 
R3 of the line when one intersects that polar R4 with the polar R4 of any other point of the 
line.  It will run through the point of contact G, in such a way that the polar R3 contains 

the tangent to the point of contact.  That point of R3 (as a point of the tangent) will then 
be conjugate to all points of R3 (relative to 2

4M , and therefore) relative to the 22M  along 
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which the R3 intersects 2
4M .  G will then be a singular point of 2

2M , and indeed, the only 

singular point: 
 
 Theorem 19: A singular linear complex is mapped to a cone 2

2M (of rank 3) by the 

map of the line continuum to 2
4M . 

 
 One will obtain a second-order cone when one projects a second-order curve from a 
point that does not lie on the plane of that curve.  Starting from that remark, we shall give 
an intuitive construction of a singular linear congruence, as long as we know the image of 
a conic section of 2

4M  in R3 (no. 22). 

 
 3. The most-singular bush of complexes.  This bush will be defined by all complexes 
that contain a given pencil of lines.  The manifold of singular complexes that are 
contained in the bush decomposes into: The manifold of all singular complexes whose 
guiding lines run through the vertex of the pencil and the manifold of all singular 
complexes whose guiding lines lie in the plane of the pencil.  The two manifolds of lines 
generate the given pencil.  It will then follow that: 
 
 Theorem 20: The image R3 of a most-singular bush of complexes – viz., the polar R4 
of a line G that lies in 2

4M  − cuts 2
4M  in a pair of planes.  That pair consists of a plane of 

the first kind and a plane of the second kind, and the line of intersection of the two planes 
will be the line G. 
 
 

§ 7.  Bundle of complexes. 
 

 21.  Classification of bundles of complexes.  A bundle of complexes can be spanned 
by three linearly-independent complexes A, B, C: 

 
(1)     x1 (AX) + x2 (BX) + x3 (CX) = 0, 

 
and will therefore be mapped to a plane in R5 .  A second plane is polar to it relative to 

2
4M .  The planes in R5 will then be associated with pairs by 24M . 

 The plane (1) cuts 2
4M  (when it does not belong to it completely) in a second-order 

curve: 
(2)  2

1x (AA) + 2
2x (BB) + 2

3x (CC) + 2x2 x3 (BC) + 2x3 x1 (CA) + 2x1 x2 (AB) = 0. 

 
The bundles can be distinguished by the rank of that curve, and thus, the rank of the 
matrix: 

(3)     

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

AA AB AC

BA BB BC

CA CB CC

. 
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 Singular bundles of complexes.  We will call a bundle for which the rank of (3) is r < 
3 “singular.”  There are the following three cases to distinguish: 
 
 1. r = 0.  The bundle is a bundle of lines or a field of lines, and will be mapped to a 
plane of the first or second kind in 24M , resp.  Such a plane is polar to itself. 

 
 2. r = 1.  The image plane E cuts 2

4M  in a doubly-counted line.  A plane of the first 

kind and a plane of the second kind in 24M  runs through it (as the image line of a pencil 

of lines).  One gets the plane E′ that is polar to E as the fourth harmonic to E relative to 
the two planes in 2

4M . 

 
 3. r = 2.  The image plane E cuts 2

4M  in a pair of distinct lines.  The guiding lines of 

the singular complexes of the bundle then define two restricted pencils of lines (two 
pencils with a common lines) with two different vertices p, p′ and two different planes a, 
a′.  Any line of the pair of restricted pencils of lines that is determined by p, a′ : p′ , a will 
cut every line of the first pair.  Thus, the plane E′ that is polar to E will also cut 2

4M  in a 

pair of distinct lines.  The point of intersection of the two pairs of lines will be common 
to the planes E and E′. 
 
 
 22.  Regular bundles of complexes.  In the case r = 3, the bundle of complexes will 
be mapped to a plane E that cuts 2

4M  in a regular second-order curve.  The polar plane E′ 
will also cut it in a regular, second-order curve then, since, from no. 21, there is no other 
possibility.  The ∞1 lines that correspond to the points of such a curve are pair-wise skew.  
Two distinct points of a regular, second-order curve are never conjugate to each other 
then.  Just as the plane E′ can be spanned by three points of its intersecting conic section, 
the bundle of complexes E′ can be spanned by three pair-wise skew lines, and therefore, 
the polar bundle of complexes E can be characterized as the bundle of all complexes that 
contain three pair-wise skew lines.  The conic section that lies in E will then be the image 
of the manifold of all common lines of intersection of three pair-wise skew lines.  We call 
the figure of these ∞1 lines a regulus.  Just as a conic section is the locus of its points, a 
regulus is a binary domain, as the locus of its lines.  We summarize the results: 
 
 Theorem 21: The regular bundles of complexes are paired together as pairs of polar 
bundles of complexes.  Each of the bundles can be characterized as the locus of all 
complexes that contain three pair-wise skew lines of the other.  The guiding lines of the 
singular complexes of each of the two bundles fill up a regulus.  The two reguli define a 
“pair of polar reguli”: Any line of one regulus will cut every line of the other one. 
 
 Once we know the image of a conic section of 24M  in R3, we can give the 

construction of the singular congruence that was suggested at the end of no. 20: 
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 Theorem 22: Let a regulus be given, along with a line G (of the polar regulus) that 

cuts all lines of that regulus.  We connect G with each generator of the given regulus by a 

pencil of lines: The locus of all lines of that pencil is a singular, linear complex. 
 
 A complex cuts a regulus (when it does not contain it completely) in two lines, since 
the polar R4 of its image points cuts the image conic section of the regulus in two points.  
In particular, a line in general position will also cut two generators of a regulus then.  A 
pair of polar reguli, as the locus of points in question, will then define a surface that is cut 
by a line in general position at two points, namely, a second-order surface.  The 
generators of the surface will then be fixed individually under the polarity.  Therefore: 
 
 Theorem 23: Under the map of the line continuum onto 24M , the polarity on a 

regular, second-order surface will be mapped to an involutory, automorphic collineation 
with two polar planes as its incidence domains. 
 
 
 23.  Orientation of a second-order surface.  In no. 20, we mapped an 2

2M  to a 

linear congruence.  There, we saw that the difference between the two types of generators 
of 2

2M  corresponded to the difference between the two types of guiding line for the 

congruence.  In R5, that distinction leads to the difference between the two points of 
intersection of a line (viz., the image line pencil of lines that runs through the 
congruence) with the 2

4M , and thus, to the convention on the sign of the roots of the 

discriminant of a binary form.  In geometry, the convention regarding the sign of a root is 
called an orientation.  The distinction (separation) between the two families of generators 
of a regular 2

2M  is then an “orientation process.”  That process can also be interpreted as 

a splitting of the two image planes E, E′ onto whose conic section the reguli of the 
second-order surface will be mapped. 
 In order to orient a regular 2

2M  that is given by its equation (1): 

 
(4)   2 2 2 2

0 0 1 1 2 2 3 3a x a x a x a x+ + +  = 0,  D = a0 a1 a2 a3 ≠ 0, 

 
we next seek the line equation for the surface: We set x = ξ1 y + ξ2 z in (4), set the 
discriminant of the binary quadratic form that arises equal to zero, and introduce the line 

coordinates of the line �y z = X.  That will produce an equation that is quadratic in Xik : 

 
(5)     2 2

0 1 01 0 2 02a a a a+X X + … + 2
1 2 12a aX  = 0 

 
(viz., a special quadratic complex), which is the equation that the tangents to the surface 
will satisfy.  If we polarize that equation then we will have the equation of the polar 

                                                
 (1) We choose a special example, since we shall not go into the symbolic calculus that is requisite for a 
proper treatment of the general case. 
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system of the surface in line coordinates, and when we interpret the line coordinates as 
point coordinates in R5, we will have the representation of the involutory, automorphic 
collineations of 2

4M  with two incidence planes E and E′: 
 
(6)    a0 a1 X01 Y01 + a0 a2 X02 Y02 + … + a1 a2 X12 Y12 = 0. 

 
In order to find the planes E, E′ analytically, we must look for the fixed points of that 
collineation.  To that end, we must replace ik

′X  with ρ Xik in the equations: 

 

(7)   01 2 3 23 02 3 1 31 03 1 2 12

23 0 1 01 31 0 2 02 12 0 3 03

, , ,

, , .

a a a a a a

a a a a a a

′ ′ ′= = =
 ′ ′ ′= = =

X X X X X X

X X X X X X
 

It follows that: 
(8)     ρ2 Xik = a2 a3 X23 = a0 a1 a2 a3 X01 , 

and therefore: 

(9)      ρ = 0 1 2 3a a a a  = D . 

Thus: 

(10)  

0 1 01 2 3 23 0 1 01 2 3 23

0 2 02 3 1 31 0 2 02 3 1 31

0 3 03 1 2 12 0 3 03 1 2 12

0, 0,

0, 0,

0, 0

a a a a a a a a

a a a a a a a a

a a a a a a a a

 + = − =
 + = − =
 + = − =

X X X X

X X X X

X X X X

 

 
are the equations for the desired incidence domain: 
 
 Theorem 24: The orientation of a regular, second-order surface – i.e., the separation 
of its families of generators – requires a convention on the sign of the root of the 
determinant of the surface (cf., no. 26). 
 
 In the special case of a sphere of radius-squared r2: 
 
(11)    − r2 + 2 2 2 2

0 1 2 3x x x x+ + +  = 0, 

 
one will have D = − r2.  The orientation of a sphere requires a convention on the sign of 
its radius. 
 
 

§ 8.  The second-order surface as a double-binary domain. 
 

 24.  Parametric representation of a second-order surface.  The fact that was 
derived in no. 22 − viz., that the regular, second-order surface, as the carrier of its two 
reguli, is a binary domain − leads to a parametric representation of that surface.  The 
equations: 
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(1)   x0 = ξ1τ 1 , x1 = ξ1τ 2 , x2 = ξ2τ 1 , x3 = ξ2τ 2 , 
 
in which ξ and τ independently run through the points of two different binary domains, 
give a parametric representation in R3 of the second-order surface of rank 4: 
 
(2)    (x x) = 2x0 x1 – 2x1 x2 = 0; D = + 1 ≠ 0. 
 
 One will obtain the most general parametric representation of an arbitrary, regular, 
second-order surface when one subjects (1) to a collineation, so when one sets the 
coordinates xi equal to four linearly-independent bilinear forms in ξ and τ. 
 If one fixes τ in (1) then one will obtain the parametric representation of a line (i.e., 
the generator τ is of the first kind), while if one fixes ξ then one will likewise obtain a 
line (i.e., the generator ξ is of the second kind).  The generators of the one regulus cut 
those of the other in projective point sequences. 
 
 
 25.  Automorphic collineations of regular, second-order surfaces.  A collineation 
transforms lines into lines, so an automorphic collineation of a second-order surface will 
transform generators into generators, and since incidence is preserved by collineations, 
the generators of one family will be transformed into the generators of another family.  
There are thus two cases to distinguish, according to whether the two families are 
transformed into themselves (viz., proper, automorphic collineations) or permuted with 
each other (viz., improper, automorphic collineation).  One will obtain certain 
automorphic collineations when one subjects each of the binary domains ξ and τ to a 
projective transformation: 
 
(3) 0x′  = 1 1ξ τ′ ′  = (a11 ξ1 + a12 ξ2) (b11τ 1 + b12 τ 2) 
 = a11 b11 ξ1τ 1 + a11 b12 ξ1τ 2 + a12 b11 ξ2τ 1 + a12 b12 ξ2τ 2, 
 = a11 b11 x0 + a11 b12  x1 + a12 b11 x2 + a12 b12 x3 , *, *, * 
 
(i.e., ∞2 binary relationships) or transforms the one domain into the other one: 
 
(4) 0x′  = 1 1ξ τ′ ′  = (a11τ1 + a12τ2) (b11ξ 1 + b12 ξ2) = …, *, *, *, 

 
and one can show that one obtains all automorphic collineations in that way: 
 
 Theorem 25: A regular, second-order surface admits a group of 2 ⋅⋅⋅⋅ ∞6 automorphic 
collineations.  They will be induced by the projective transformations of the binary 
domains of the two families of generators.  Any family of generators will be transformed 
into itself by a proper, automorphic collineation, while the two families will be permuted 
by an improper, automorphic collineation. 
 
 
 26.  Projective equivalence of point-quadruples on a second-order surface.  There 
is a conversion principle that is based upon the parametric representation (1) and is 
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completely analogous to the Hessian of the plane (1).  We will not treat that principle 
thoroughly, but only derive an equation that will be important in what follows.  When are 
two points x = (ξ, τ), y = (η, σ) of the surface conjugate to each other?  We define: 
 
(5) (x y) = x0 y3 + x3 y0 − x1 y2 − x2 y1  
 = ξ1τ 1η2σ2 + ξ2τ 2η1σ1 − ξ1τ 2η2σ1 − ξ2τ 1η1σ2  
 = (ξ η) (τ σ). 
 
That equation contains the theorem: 
 
 Theorem 26: Two points of a second-order surface are conjugate if and only if they 
belong to the same generator (of the first or second kind). 
 
 Equation (5) will play the role of an auxiliary formula in the following investigation. 
 We consider two point-quadruples 0, 1, 2, 3 and 0′, 1′, 2′, 3′ on a second-order 
surface.  Should it be possible to take one point-quadruple to the other one by an 
automorphic collineation of the surface, then it would have to be possible to find two 
binary projectivities that take the four generators of the first and second kind that go 
through the points of the first quadruple to the four generators of the first and second kind 
(or second first, resp.) that go through the points of the second quadruple.  However, a 
necessary and sufficient condition for this is the equality of the double ratios of the 
corresponding line quadruples of the surface.  That will bring one to the problem of 
determining the double ratios of the quadruples of generators that run through a 
quadruple of points x0, x1, x2, x3 (

2). 
 Let ξ i, τ i be the parameters of the points xi.  We set: 
 

(6)  
0 1 2 3 0 2 3 1 0 3 1 2

1 2 3
0 1 2 3 0 2 3 1 0 3 1 2

1 2 3

( ) ( )( ), ( ) ( )( ), ( ) ( )( ),

( ) ( )( ), ( ) ( )( ), ( ) ( )( ),

u u u

u u u

ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
τ τ τ τ τ τ τ τ τ τ τ τ

 = = =
 ′ ′ ′= = =

 

 
such that: 
(7)   (u1) + (u2) + (u3) = 0,  1 2 3( ) ( ) ( )u u u′ ′ ′+ +  = 0, 

 
and demand that the expressions (6) must all be non-zero, so no two points of the 
quadruple can lie on one and the same generator.  One is then dealing with the calculation 
of the binary, absolute invariants (3): 
 

(8)    

32 1
1 2 3

1 1 2

32 1
1 2 3

1 1 2

( )( ) ( )
, , ,

( ) ( ) ( )

( )( ) ( )
, , ,

( ) ( ) ( )

uu u
d d d

u u u

uu u
d d d

u u u

 = = =

 ′′ ′ ′ ′ ′= = =
 ′ ′ ′

 

                                                
 (1) Cf., L. Bieberbach, Einleitung in die höhere Geometrie, Leipzig 1933, Chap. II. 
 (2) E. Study, “Betrachtungen über Doppelverhältnisse,” Leipziger Berichte (1896),  pp. 200.  

 (3) The double ratios are the expressions: − di , − i
d′ .  
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in terms of the simplest quaternary, absolute invariants, namely, the quotients that are 
defined with the help of the expressions: 
 
(9)   U1 = (x0 x1)(x2 x3), U2 = (x0 x2)(x3 x1), U3 = (x0 x3)(x1 x2), 
 
and take the form: 

(10)   D1 = 2

3

U

U
, D2 = 3

1

U

U
, D3 = 1

2

U

U
. 

 
Therefore, from (5), the following relations: 
 
(11)     Ui = (ui) ⋅⋅⋅⋅ ( )iu′  

will exist between the Ui and ui . 
 Now, the two invariants d1 and 1d′  are the roots of the equation: 

 
(12)    {λ – d1}{ λ − 1d′ } = 0, 

 
whose coefficients can be expressed in terms of the Di; one will then have, first of all: 
 

(13)    di ⋅⋅⋅⋅ id′  = 2 2

3 3

( ) ( )

( ) ( )

u u

u u

′
⋅

′
 = 2

3

U

U
, 

and secondly: 

(14)   d1 + 1d′  = 2 2

3 3

( ) ( )

( ) ( )

u u

u u

′
+

′
 = 2 3 3 2

3 3

( )( ) ( )( )

( )( )

u u u u

u u

′ ′+
′

. 

 
However, due to (7), one will have: 
 
 + | (u1) + (u2) + (u3) | 2( )u′  

(15) + | (u1) + (u2) + (u3) | 3( )u′  

 + | 1( )u′ + 2( )u′ + 3( )u′ | (u1) = 0 

here, so: 
(16)  (u2) 3( )u′ + (u3) 2( )u′ = (u1) 1( )u′ − (u2) 2( )u′ − (u3) 3( )u′ , 

 
and it will then follow that: 

(17)    d1 + 1d′  = 1 2 3

3

U U U

U

− −
. 

 
 Equation (12) can now be written in the form: 
 

(18)    λ2 – λ 1 2 3 2

3 3

U U U U

U U

− − + = 0. 

Its discriminant will be: 
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(19) ∆  = − 4U2 U3 + (U1 – U2 – U3)
2 

 
 = 2 2 2

1 2 3 2 3 3 1 1 22 2 2U U U U U U U U U+ + − − −  

 

 = 

0 1 0 2 0 3

1 0 1 2 1 3

2 0 2 1 2 3

3 0 3 1 3 2

0 ( ) ( ) ( )

( ) 0 ( ) ( )

( ) ( ) 0 ( )

( ) ( ) ( ) 0

x x x x x x

x x x x x x

x x x x x x

x x x x x x

. 

 
 One can change the form of this determinant.  If a0, a1, a2, a3 are the polar planes of 
the points x0, x1, x2, x3 then one will have: 
 
(20)    (xi xk) = (xi ak), 
 
and from the multiplication theorem, the determinant (19) can be written as a product (x0 
x1 x2 x3) ⋅⋅⋅⋅ ( a0 a1 a2 a3).  However, one has: 
 
(21)    ( a0 a1 a2 a3) = D ⋅⋅⋅⋅ (x0 x1 x2 x3), 
 
in which D denotes the determinant of the surface.  One will then have: 
 
(22)    ∆ = D ⋅⋅⋅⋅ (x0 x1 x2 x3)2. 
 
 We assume that ∆ is non-zero (1), and thus demand that the four starting points do not 

lie in a plane.  However, a choice of sign for ∆  will, at the same time, differ from the 

choice of the sign for D .  Thus, d1 will differ from 1d′ ; i.e., the two families of 

generators of the surface will be separate.  (The surface will be “oriented.” Cf., no. 23). 
 Finally, the solution of equation (18) will yield: 
 

(23)    d1 ⋅⋅⋅⋅ 1d′  = 1 2 3

12

U U U

U

− − ± ∆
. 

 
This result shows that the di ⋅⋅⋅⋅ id′  are determined completely from the Ui : 

 

                                                
 (1) If ∆ vanishes then one will have d1 = 

1
d′ : The two quadruples of lines that are determined by a 

quadruple of points are projective (in the sequence that is determined by the points) if and only if the four 
points of the quadruple belong to a plane.  [(x0 x1 x2 x3)] = 0.]   The plane mediates a projective relationship 
between the two families of generators, under which, generators will correspond when they intersect on the 
plane. – From Theorem 17, a conversion of this theorem into line space will yield: The product of two 
projective point sequences on skew carriers is a regulus. 
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 Theorem 27: A quadruple of linearly-independent points of a regular, second-order 
surface, no two of which belong to the same generator, is characterized, relative to the 
automorphic collineations of that surface, by the values of the expressions: 
 

(24)  D1 = 
0 2 3 1

0 3 1 2

( )( )

( )( )

x x x x

x x x x
, D2 = 

0 3 1 2

0 1 2 3

( )( )

( )( )

x x x x

x x x x
, D3 = 

0 1 2 3

0 2 3 1

( )( )

( )( )

x x x x

x x x x
 

 
(i.e., the “double ratios of four points on the second-order surface”).  The (binary) 
double ratios of the generators that run through the quadruple of points can be 
calculated from these quaternary, absolute invariants. 
 
 The proof of that theorem, in particular, the derivation of the equation (5) is linked 
with the special parametric representation (1).  However, since the result is present in an 

invariant form, one will have 
3

, 0
ik i k

i k

a x x
=
∑  = 0 for any regular, second-order surface.  One 

merely has to set: 

(25)     (x y) = 
3

, 0
ik i k

i k

a x y
=
∑ . 

 
 

§ 9.  Classification of quadruples of lines. 
 

 27.  The common lines of intersection of four lines.  Four lines G0, G1, G2, G3 will 

first be classified by their rank; viz., the rank of the matrix that their coordinates define. 
Four lines of rank 4 span a bush of complexes.  There will then be three different kinds of 
bushes (since there are three different possibilities for the conjugate pencil), so 
corresponding to them, the following cases can occur: 
 
 Theorem 28: Four lines of rank 4 can have two distinct, two coincident, or a pencil 
of common lines of intersection. 
 
 If one omits two opposite edges of a tetrahedron then the four remaining edges will 
give example of a quadruple of lines of the first kind.  The omitted edges are the two 
common lines of intersection.  The generator of the regulus of the first kind of a second-
order surface and a tangent to the surface will determine a quadruple of the second kind.  
The generator of the second kind that goes through the point of contact is the doubly-
counted common line of intersection.  Finally, three linearly-independent lines of a 
bundle, together with a line that does not belong to the bundle, will define a quadruple of 
the third kind.  The pencil of lines of intersection is the pencil of lines of the four lines 
that are contained in the bundle. 
 In order to distinguish the three cases analytically, from § 6, we must examine the 
intersection 2

2M  of the image points of the R3 that is spanned by the four lines: 

 
(1)     x0 G0 + x1 G1 + x2 G2 + x3 G3 
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with the 2
4M : 

(2)   (x x) ≡ 2x0 x1(G0 G0) + 2x0 x2(G0 G2) + … + 2x2 x3(G2 G3) = 0 

 
in regard to its rank.  That rank will be the rank of the determinant: 
 

(4)     

0 1 0 2 0 3

1 0 1 2 1 3

2 0 2 1 2 3

3 0 3 1 3 2

* ( ) ( ) ( )

( ) * ( ) ( )

( ) ( ) * ( )

( ) ( ) ( ) *

G G G G G G

GG GG GG

G G G G G G

G G G G G G

. 

 
 Theorem 29: Four lines Gi of rank 4 have two different, two coincident, or a pencil 

of common lines of intersection, according to whether the determinant (4) has rank 4, 3, 
or 2, respectively. 
 
 
 28.  Projective equivalence of quadruples of lines.  Two quadruples of lines that 
belong to a class in the classification that was just expounded do not need to be 
projectively equivalent, for that very reason.  Here, we would like to address only the 
projective equivalence of two quadruples of lines that both possess two different common 
lines of intersection.  Since the linear congruences that are determined by these lines of 
intersection are certainly projectively equivalent, the one of them can then be taken to the 
other one by a collineation or correlation, so it will suffice to investigate the projective 
equivalence of quadruples of lines of one and the same linear congruence.  Under our 
map, that problem will be converted into the problem that we solved already in no. 26 of 
classifying the quadruples of points of a regular, second-order surface projectively. 
 If X and Y are two complexes of the bush (1), and x, y are its image points in the 

image-R3 then, from (2), one will have: 
 
(5)      (x y) = (X Y). 

 
From the quantities in (24) in § 8, one will then have: 
 

(6)  D1 = 0 2 3 1

0 3 1 2

( )( )

( )( )

G G GG

G G GG
,  D2 = 0 3 1 2

0 1 2 3

( )( )

( )( )

G G GG

G G G G
,  D3 = 0 1 2 3

0 2 3 1

( )( )

( )( )

G G G G

G G GG
. 

 
These absolute invariants of the four lines are called Grassmannian double ratios of the 
lines.  The translation of Theorem 27 yields: 
 
 Theorem 30: A quadruple of pair-wise skew, linearly-independent lines of a regular, 
linear congruence will be characterized completely in regard to projective 
transformations by its Grassmannian double ratios. 
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 Moreover, the double ratios – di, − id′  of the generators of the first and second kind, 

resp., that run through the four points of the second-order surface will be mapped to the 
double ratios that the four lines single out by their common lines of intersection.  From § 
8, (23), one will then have: 

(7)     – di, − id′ = 1 2 3

32

U U U

U

− + + ± ∆
, resp., 

in which one sets: 
 
(8)  U1 = (G0 G1) (G2 G3),  U2 = (G0 G2) (G3 G1),  U3 = (G0 G3) (G1 G2), 

 
as one of these pairs of double ratios.  In it, ∆ denotes the determinant (4).  In the limiting 
case of the singular congruence, (7) yields a double ratio of the four points at which G0, 

G1, G2, G3 cut their single common line of intersection. 

 Four lines determine six Grassmannian double ratios, in all: viz., the expressions (6) 
and their reciprocals.  As in the binary case, one can examine the question of what 
situation will lead to less than six different double ratios (1). 
 
 
 29.  A spatial analogue of Desargues’s theorem.  From Desargues’s theorem, two 
associated triangles in the plane (Triangle = figure composed of a three-angle of rank 3 
and the trilateral of rank 3 that is coupled with it) that are perspective as three-angles (i.e., 
the connecting lines of corresponding points run through a point) will also be perspective 
as trilaterals (i.e., the points of intersection of corresponding sides lie along a line).  We 
would like to prove an analogous theorem for two tetrahedra whose points and planes are 
xi, ai and y i, bi, resp.: 
 
 Theorem 31 (2): Let the connecting lines of corresponding points of two associated 
tetrahedra be pair-wise skew and of rank 4.  The lines of intersection of corresponding 
planes of the two tetrahedra will also be pair-wise skew and of rank 4, and the quadruple 
of lines of intersection is projective to the quadruple of the connecting lines.  In 
particular, if the common lines of intersection of the connecting lines of the points 
coincide then the lines of intersection of the lines of intersection of the planes will also 
coincide. 
 
 In order to prove this, we shall need an auxiliary formula: If one sets the four-rowed 
determinant equal to: 

                                                
 (1) H. Mohrmann , “Über die Graßmannschen Doppelverhältnisse von vier geraden Linien im Raume,” 
Math. Ann. 79 (1919).  
 (2) E. Study, “Beweis und Erweiterung eines von E. Heß angegebenen Satzes,” Ber. d. Oberhess. 
Naturf. Ges. (1900). 
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(9)   (x0 x1 x2 x3)(u0 u1 u2 u3) = 

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

x u x u x u x u

x u x u x u x u

x u x u x u x u

x u x u x u x u

 

 

(10)     u0 = 1 2 3x x x
���

 
 
in the equation for the multiplication theorem then it will follow that: 
 

(11) (x0 u0) ⋅⋅⋅⋅ (x1 x2 x3, u1 u2 u3) = (x0 u0) 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x u x u x u

x u x u x u

x u x u x u

, 

 
and therefore, since that identity is true for (x0 u0) ≠ 0, in particular: 
 

(12)  (x1 x2 x3, u1 u2 u3) = 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x u x u x u

x u x u x u

x u x u x u

. 

 
 Now, let xi be the points of a tetrahedron, (x0 x1 x2 x3) ≠ 0, and let ai be the planes of a 
tetrahedron, such that: 
 

(13)  a0 = 1 2 3x x x
���

, a1 = 0 2 3x x x
���

, a2 = 0 3 1x x x
���

, a3 = 0 1 2x x x
���

. 
 
From (12), one will then have: 
 
(14) (a0 a1 u v) = (x1 x2 x3, x0 x2 u3, u, v) 
 

  = 

1 0 2 3 1 1

2 0 2 3 2 2

3 0 2 3 3 3

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x x x x x u x v

x x x x x u x v

x x x x x u x v

 

 
  = − (x2 x3, u v) ⋅⋅⋅⋅ (x0 x1 x2 u3), etc. 
If one now sets: 

(15)    Xi = �i ix y , Ui = �i ia b , 

 
in which yi, bi represents a second tetrahedron, then one will have: 
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(16) (U0 U1) = (a0 b0 a1 b1) = − (a0 a1 b0 b1) 

  = − (x2 x3 y2 y3) ⋅⋅⋅⋅ (x0 x1 y2 y3) ⋅⋅⋅⋅ (y0 y1 y2 y3) 
  = + (x2 y2 x3 y3) ⋅⋅⋅⋅ (x0 x1 y2 y3) ⋅⋅⋅⋅ (y0 y1 y2 y3) 
  = (X2 X3) ⋅⋅⋅⋅ (x0 x1 y2 y3) ⋅⋅⋅⋅ (y0 y1 y2 y3). 

 
Finally, if one introduces the quantities: 
 
(17)  (U0 U1) (U2 U3) = (X0 X1) (X2 X3) (x

0 x1 y2 y3)2 ⋅⋅⋅⋅ (y0 y1 y2 y3)2, *, * 

 
then it will follow for the quantities that are defined analogously to (6) with the Ui (Xi, 

resp.) that: 
(18)    iD∗  = Di . 

 
From nos. 27, 28, that will give the theorem that was to be proved. 
 
 
 20.  Lines in hyperboloidal position.  Four different lines of rank 3 are said to be in 
hyperboloidal position (since they will belong to a one-sheeted hyperboloid in the case of 
pair-wise skew, real lines).  One proves, in a manner that is similar to what was just done: 
 
 Theorem 32: If the connecting lines of corresponding vertices of two associated 
tetrahedra are found to be in hyperboloidal position then the lines of intersection of 
corresponding planes will also be in hyperboloidal position, and conversely (1). 
 
 The two tetrahedra are then said to be in “hyperboloidal position.”  A theorem of 
Chasles that is analogous to one of Plücker (no. 89) states: 
 
 Theorem 33: Two tetrahedra that are polar relative to a second-order surface are 
found to be in hyperboloidal position (1). 
 
 If the surface class of the surface degenerates into a conic section (which will be 
chosen to be the absolute conic section of the Euclidian metric) then the polar tetrahedron 
will degenerate into a rectangle in the imaginary plane, and the theorem of J. Steiner will 
then arise: The altitudes of a tetrahedron are found to be in hyperboloidal position. (They 
do not go through a point, in general.) 
 
 

§ 10.  Generating linear complexes, 
 

 31.  Chasles’s method of generation.  Under the map of the linear complexes to the 
points of R5, a regular, linear complex will be mapped to a point that does not belong to 

2
4M .  Its polar R4 will cut 2

4M  in a regular 2
3M  whose points are the images of the lines 

                                                
 (1) Cf., the papers of L. Berzolari  and L. Brusotti  in Palermo Rendiconti 20 (1905).  Furthermore, E. 
A. Weiss, Math. Zeit. 33 (1931).  



34 Chapter Two: Line geometry as geometry in R5. 

of the complex.  In order to generate the complex, we single out a pencil of R3 in the 
polar R4 .  That pencil will fill up R4 completely: i.e., a well-defined R3 of the pencil will 
run through every point of R4 that is in general position.  The points of the base plane of 
the pencil will contain all R3 in the pencil. 
 For our purposes, we can now choose that base plane in two different ways relative to 

2
3M : as a plane E that cuts 2

3M  in a regular, second-order curve or one that cuts it in a 

pair of lines.  We first consider the former case.  The polar plane E′ to E relative to 2
4M  

will also cut 2
4M  in a regular, second-order curve, and the pencil of R3 will be polar to a 

pencil of planes in the planes E′.  That pencil will cut out an involution on the second-
order curve.  Let P and P′ be two distinct associated points of that involution.  The polar 

R4 will then intersect in an R3 of our initial pencil.  If we let �′PP  run through the lines 
of our pencil then the polar R3 to the pencil of R3 will run through E. 
 If we now translate this construction into the language of R3 then the involution of the 
point pair P, P′ will be a regulus for the involution of the line pair P, P′.  Just as the 

2
2M  that the R3 of the pencil cut out of 2

3M  fill up 2
3M  completely, the linear complexes 

will generate linear congruences whose guiding lines are the line-pairs of the image 
involution. 
 
 Theorem 34: Let an involution be given in a regulus.  The common lines of 
intersection of associated lines of the involutions will then generate a regular linear 
complex. 
 
 The lines of intersection of the fixed lines of the involution (which indeed do not all 
belong to the linear complex) merit a special investigation.  A fixed line will be the 
guiding line of a singular congruence of complexes, and indeed the congruence that one 
obtains (from Theorem 22) when one links the guiding lines with the generators of the 
polar regulus by pencils.  In fact: An R3 is polar to a tangent to a conic section in the 
plane E′ that cuts 2

3M  in a cone 2
2M  that contains the conic section of the plane E.  One 

then obtains the cone when one connects the vertex – viz., the point of contact of the 
tangent – with every point of that conic section with a line.  Q. E. D. 
 
 
 32.  Sylvester’s method of generation.  We now start with a base plane E in R4 that 
cuts 2

3M  in two different lines.  The plane E′ that is polar to it relative to 2
4M  will cut 

2
4M  in two distinct lines (no. 21), and as before, a pencil of lines in E′ will correspond to 

the pencil of R3 .  The two lines will be related to each other projectively by the pencil of 
lines in E′.  Let P and P′ be the associated points of the two lines.  Their polar R4 

intersect in an R3 of our pencil.  If �′PP  runs through the lines of the pencil in the plane 

E then the polar spaces will run through the pencil of R3 in E′: 
 
 Theorem 35: Let two restricted pencils of lines be related to each other projectively 
in such a way that their common line corresponds to itself.  The linear congruences that 
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have corresponding lines of the two pencils for their guiding lines will then generate a 
linear complex.  (The lines of intersection of the lines that are common to the two pencils 
deserve a special investigation.) 
 
 
 33.  Constructing a complex from five lines.  Just as an R4 in R5 is determined by 
five linearly-independent points, a linear complex is determined by five linearly-
independent lines.  If five lines are given then one can easily give a Chasles or Sylvester 
generator for the complex.  In the former case, three lines will determine a regulus, and 
the remaining two will establish the involution on the polar regulus.  In the latter case, 
one can then begin to construct two null polar lines of the complex as the common line of 
intersection of four of the given lines of the complex.  One of those lines will then 
determine the two pencils with the pair that was found.  The five lines will cut out 
associated lines from the two pencils and will thus establish the projective relationship 
between them. 
 Once the product of the two projective pencils of lines that are found in special 
position is known, one can ask what the product of two projective pencils of lines in 
general position would be.  The product will be a so-called tetrahedral complex, which is 
the locus of all lines that cut the planes of a tetrahedron with a constant double ratio.  Due 
to the aforementioned special position of the two pencils, that complex (which is 
quadratic; cf., no. 54) will decompose into a regular complex and the complex of lines of 
intersection of the common lines to the pencils. 
 

________ 
 

 
 



  

Chapter Three 
 

Weitzenböck’s complex symbolism. 
 

§ 11.  The product of two null systems. 
 

 34.  Weitzenböck chains.  In the previous chapter, we learned about the 
relationships, point loci, and plane loci that are linked with linear systems of linear 
complexes.  In order to be able to represent these figures properly, we shall require some 
new analytical tools. 
 We write the equation of a linear complex in the form: 
 
(1)      (p p x y) = 0. 
 
In this, p and p  shall be symbols that possess no real meaning in their own right.  

However, i kp p  shall represent a coefficient, and indeed, one shall have: 

 
(2)     i kp p  = − k ip p  = 1

2Pik . 

 
Due to the convention (2), the symbols are said to be alternating.  One will then have: 
 
(3)   (p p x y) = 0 1 1 0( )p p p p− (x2 y3 – x3 y2) + … = P01 X23 + … 

 
 On the basis of (20) in § 1, one will now have: 
 
(4)    (p p , uv) = (pu)( p v) − (pv)( p u) = 2 (up)( p v) . 
We now set: 
(5)      (up)( p v) = [u P v] 

 
to abbreviate, and call the expression a Weitzenböck chain (1).  When the chain (5) is set 
equal to zero, it will represent the linear complex P that is linked with the null system. 

 In order to be able to write down the dual equation, it proves to be necessary to 
distinguish between ray coordinates and axial coordinates.  We denote the axial 
coordinates of the complex P by P′, such that: 

 
(6)      (xp′)( p′y) = [x P y] = 0 

 
will be the new representation of the null system that is coupled to the complex in point 
coordinates. 

                                                
 (1) R. Weitzenböck, “Zum Formensystem von linearen Komplexen in R3,” Jahresbericht der 
Deutschen. Mathematiker-Vereinigung 19 (1910). 
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 With the use of the chain symbolism, the invariant of two linear complexes A and P 

can also be written in the new form: 
 
(7) (A P) = ( , )aa p p′ ′  = ( )( )ap a p′ ′ − ( )( )ap a p′ ′  

  = 2( )( )ap p a′ ′  = − 2 [A P′]. 
 
 
 35.  The skew involution.  Now, let two linear complexes A and B be given that are 

associated with the null relationships: 
 

(8)     
[ ] 0, [ ] 0,

[ ] 0, [ ] 0.

x y x y

u v u v

′ ′= =
 = =

A B

A B
 

 
These can be combined in two different sequences.  Should the relationships commute, 
one of the following two identities must exist: 
 
(9)    [x A′B u] ± [x B′U u]  ≡ 0, {x, u}. 

 
 We first treat the case of the lower sign.  One will have: 
 
(10) [x A′B u] = 0 0 1 1 0 0x a a b b u′ ′  = 1

4 { − x0 A23 B01 u0 

   +  2 2b u  + x0 A23 B12 u2 

 + 3 3b u  − x0 A23 B31 u3 

 + 2 2 0 0a b b u′  − x0 A31 B02 u0 

 +  1 1b u  − x0 A31 B12 u1 

 +  3 3b u  + x0 A31 B23 u3 

 + 3 3 0 0a b b u′  − x0 A12 B03 u0 

 +  1 1b u  + x0 A12 B31 u1 

 +  2 2b u  − x0 A12 B23 u2 

 + …  + …} 
 
 = − 1

4 { x0 u0 [A23 B01 + A31 B02 + A12 B03] 

 + x0 u1 [A31 B12 − A12 B31] + x0 u2 [A12 B23 − A23 B12] 

 + x0 u3 [A23 B31 − A31 B23] + …}. 

 
The expansion of: 
(11)    [x A′ B u] – [x B′ A u] 
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then shows that the coefficients of xi uk (i ≠ k) are the twelve two-rowed determinants of 
the matrix: 

(12)    01 02 03 23 31 12

01 02 03 23 31 12

A A A A A A

B B B B B B
, 

 
namely, all possible determinants with the exception of A01B23 – A23B01, *, *, while the 

coefficients of xi ui are linear combinations of these three missing determinants: 
 
 Theorem 1: The necessary and sufficient condition that two complexes A and B 

should be identical is (in quaternary form) the identical vanishing of their covariant (11). 
 
 We now assume that A and B are different, and treat the case of the identity (9), 

except with the upper sign. 
 With consideration given to (7), equation (10) will give: 
 
(13)    [x A′B u] + [xB′A u] = [A′B] ⋅⋅⋅⋅ (x u). 

 
 Theorem 2: The null systems of two different complexes commute if and only if the 
complexes are conjugate.  (Cf., Chap. II, Theorem 14) 
 
 From Chap. II, Theorem 16, and under the assumption that [A′B] = 0, the equation: 

 
(14)     [x A′B u] = 0 

 
represents the skew involution that is coupled with the complexes A and B.  It follows 

from this that: 
 
 Theorem 3: If A and B are two distinct complexes of a regular pencil of complexes 

then the equation: 
(15)    [x A′B u] − [x B′A u] = 0 

 
will represent the skew involution that is coupled to the two guiding lines of the pencil. 
 
 Proof:  The expression on the left-hand side of (15) possesses the combination 
property: viz., it will not change when one replaces A and B with two other complexes 

of the pencil.  If one replaces A and B with − e.g., τ1 A + τ2B − then the left-hand side of 

(15) will become: 
 
(16)  τ1 [x A′B u] + τ2 [xB′A u] − τ1 [xB′A u] − τ2 [x A′B u] 

 = τ1{[ x A′B u] − [x B′A u]}. 
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 If we now assume that A and B are conjugate [which is always possible, since the 

pencil always contains two distinct conjugate complexes (in fact, ∞1 pairs of them)] then, 
from (13), we will have: 
(17)    − [xB′A u] = [x A′B u], 

and from (15), we will have: 
(18)     2 [x A′B u] = 0. 

 
 However, this equation represents [cf., (14)] the skew involution that is coupled with 
A and B, and therefore with the guiding lines of the pencil.  Q. E. D. 

 
 
 36.  Point of intersection of two lines.  From Theorem 3, equation (15) is implied in 
the case of a regular pencil of complexes.  In the case of a singular pencil of complexes, 
the skew involution will degenerate.  The case of the pencil of lines is particularly 
noteworthy: 
 
 Theorem 4: If A and B are two distinct, incident lines then the left-hand side of (15) 

will split into the product of two linear forms: 
 
(19)    [x A′B u] − [x B′A u] = (v x) ⋅⋅⋅⋅ (s u) 

 
that will yield the connecting line and point of intersection of the two lines when they are 
set to zero. 
 
 We remark that the fact that the null system is involutory leads to the equation: 
 
(20)     [x A′B u] = 1

4 [A′A] ⋅⋅⋅⋅ (x u), 

which is implied by (13). 
 
 

§ 12.  The product of three null systems. 
 

 37.  Equation of the second-order surface that is determined by three lines.  Let a 
regulus be determined by three pair-wise skew lines G1, G2, G3 .  If x is a point of the 

surface that is determined by the regulus then there will be a generator of the second kind 
G* though x that cuts G1, G2, G3 .  We now connect x to G1, intersect the connecting 

plane with G2, and then connect the point of intersection thus-obtained with G3.  The 

connecting plane contains the lines G*, and thus the point x, in particular.   The point x 

then satisfies the equation: 
(1)      1 2 3[ ]x x′ ′G G G  = 0. 
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 The chain on the left-hand side of (1) is a combination of the bundle of complexes 
that is spanned by G1, G2, G3 .  In fact, if one replaces G1 with y1G1 + y2G2 + y3G3 then 

one will get: 
(2)    y1 1 2 3[ ]x x′ ′G G G  + y2 2 2 3[ ]x x′ ′G G G  + y3 3 2 3[ ]x x′ ′G G G  

= y1 1 2 3[ ]x x′ ′G G G ; 

one will then have: 
 
(3)  2 2 3[ ]x x′ ′G G G  = 1

2 2 34 [ ] [ ]x x′ ′⋅G G G ≡ 0 {x}    [§ 11, (20)] 

and 

(4)  
1

2 2 3 2 3 3 2 3 32

1 1
3 3 2 2 3 34 2

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] 0{ }.

x x x x x x

x x x x x

′ ′ ′ ′ ′ ′= − + ⋅
 ′ ′ ′ ′= − ⋅ + ⋅ ≡

G G G G G G G G G

G G G G G G
 [§ 11, (13)] 

 
The three lines can then be replaced with any three linearly-independent complexes of the 
bundle that they span. 
 
 Theorem 5: Let A1, A2, A3 be three linearly-independent complexes of a regular 

bundle.  The second-order surface and the surface of class two that are determined by the 
regulus of the bundle will then have the equations: 
 
(5)    1 2 3[ ]x x′ ′A A A  = 0,  1 2 3[ ]u u′A A A  = 0, 

resp. 
 

§ 13.  The Kummer configuration. 
 
 38.  Polar hexatope of 2

4M .  Just as one can construct ∞6 tetrahedra that are polar to 

a second-order surface, there are ∞15 hexatopes in R5 that are polar to 2
4M  − i.e., systems 

of six points that are pair-wise conjugate relative to 2
4M .  In R3, such a hexatope (of rank 

6) will go to a system of six linear complexes (of rank 6) that are pair-wise conjugate.  
Such a system of six pair-wise conjugate complexes will then depend upon 15 constants. 
 Let A1, A2, A3, A4, A5, A6 be one such system.  The bundle that is spanned by A1, A2, 

A3 is polar to the bundle that is spanned by A4, A5, A6 .  The surfaces of order two and 

class two that are spanned by the bundles, namely: 
 
(1)    1 2 3[ ]x x′ ′A A A   = 0, 1 2 3[ ]u u′A A A   = 0, 

(2)    4 5 6[ ]x x′ ′A A A  = 0, 4 5 6[ ]u u′A A A  = 0 

 
will then be identical, and one will then get the identity when one composes the polarities 
that they determine.  For that reason, there exists an identity of the form: 
 
(3)     1 2 3 4 5 6[ ]x u′ ′ ′ ′A A A A A A  = ρ ⋅⋅⋅⋅ (xu), 
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in which ρ denotes a factor that depends upon only the complexes Ai, and which we shall 

not elaborate upon. 
 
 Theorem 6: The product of six linearly-independent, pair-wise commuting null 
systems is the identity. 
 
 
 39.  The group G16 .  We shall denote the six null systems by [1], [2], [3], [4], [5], 

[6], to abbreviate, as one does in the theory of theta functions (1).  We will obtain 15 
skew involutions [ ]i kx u′A A  = 0 by composing these null systems in pairs.  We would 

like denote the skew involution that arises upon composing the null systems [i] and [k] by 
(ik). 
 The 15 involutions (ik), together with the identity [for which, we introduce the 
notation (0)], define a group G16 of 16 two-sided (2), commuting collineations.  In fact: 
The equation (3) shows directly that one will obtain, perhaps by composing: 
 

(12) and (34), the skew involution (56), 
 
while naturally, the composition of: 
 

(12) and (23) will yield the involution (13), trivially. 
 

 Theorem 7: One will obtain a group G16 of two-sided, commuting collineations by 
composing any two null systems of a system of six linearly-independent, pair-wise 
conjugate linear complexes. 
 
 
 40.  Commuting, skew involutions.  The latter argument shows that we have to 
distinguish between two kinds of commuting, skew involutions.  In the case for which the 
symbols of the two involutions have no index in common, the guiding lines of the one 
involution will intersect the guiding lines of the other one.  Any involution will leave the 
guiding lines of the other one individually fixed; we then call such involutions 
+commuting.  In the case for which the symbols have a common index [e.g., (12) and 
(23)], the guiding lines will belong to a regulus, and (since the involutions commute) they 
will define two harmonic pairs on that regulus.  One involution will permute the guiding 
lines of the other one; we then call such involutions –commuting. 
 
 Theorem 8: Any skew involution of the group G16 is +commuting with six other ones 
and –commuting with eight other ones. 

                                                
 (1) H. Weber, Crelle’s Journal 84 (1877).  
 (2) Since we did not call the identity an involution, we need a term that will combine the identity 
transformation with the involutory transformations.  
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 41.  The group G32 .  Twenty polar systems [i j k] will arise from composing the 
three null systems [i], [j], k].  We already showed above that these polar systems are pair-
wise identical.  For instance, the polar systems [123] and [456] are equal to each other. 
 If one composes a polar system with a null system or two polar systems then one will 
obtain a transformation of G16 – e.g.: 
 
(4)   [123] ⋅⋅⋅⋅ [1] = (23), [123] ⋅⋅⋅⋅ [4] = (56), [123] ⋅⋅⋅⋅ [124] = (34), 
 
and when one composes a polar system or a null system with a collineation of G16, one of 
these polar or null systems: 
 
(5)   [123] ⋅⋅⋅⋅ (12) = [3], [123] ⋅⋅⋅⋅ (34) = [124], [1] ⋅⋅⋅⋅ (23) = [123] 
 
will again arise.  Therefore: 
 
 Theorem 9: A group G32 of two-sided, pair-wise commuting, projective 
transformations belongs to a system of six linearly-independent, pair-wise conjugate, 
linear complexes that contains six null systems [i], 16 collineations (0) and (ik), and 10 
polar systems [ikl] = [mno]. 
 
 
 42.  The (166, 166) configuration.  We now subject a point to all 32 transformations 
of the group and thus obtain a system of 16 points and 16 planes, which we denote with 
the symbols of the transformation that produced them.  The 16 points are then: 
 
(6) (0), (12), (13), (14), (15), (16),  (23), (24), (25), (26), (34), 
 (35), (36), (45), (46), (56), 
while the 16 planes are: 
 
(7) [1],   [2],  [3],   [4],  [5],   [6], [123], [124], [125], [126], [134], 
  [135], [136], [145], [146], [156]. 
This shows that: 
 
 Theorem 10: The 16 points (6) and the 16 planes (7) define a (166, 166) 
configuration: Any point contains six of the planes, and any plane contains six of the 
point.  This “Kummer configuration” will be transformed into itself by the group G32 . 
 
 In fact: It follows from the existence of the point and plane systems that the figure is 
transformed into itself by G32 .  It is then clear that the point: 
 

(0) lies on its null planes [1], [2], [3], [4], [5], [6]. 
 

However, if one applies the null system [1] to this figure then it will follow that the plane: 
 

[1] contains the points (0), (12), (13), (14), (15), (16), 
 



Equation of the second-order surface that is determined by three lines 43 

and furthermore, when one applies the null system [2] to this figure: 
 

(12) will lie on the planes [2], [1], [123], [124], [125], [126], 
 
and finally, that the plane: 
 

[123] = [456] will contains the points (23), (31), (12), (56), (64), (45). 
 

 In regard to the relative positions of these points and planes, one has the theorem 
(which is easily proved by means of Pascal’s theorem) that the six points that lie in a 
plane of the configuration belong to a conic section, and the six planes that run through a 
point of the configuration belong to a second-order cone. 
 Since the system of six pair-wise conjugate, linear complexes depends upon 15 
constants, and a point in space depends upon 3 constants, there will be ∞18 Kummer 
configurations.  Since a system of six points also depends upon 18 constants, one can 
assume that the six points determine a finite number of Kummer  configurations.  H. 
Weber has determined that number: Six points in general position can be extended to a 
Kummer  configuration in 12 different ways. 
 
 
 43.  Möbius’s tetrahedra.  We mention that one can regard the Kummer  
configuration in different ways as a system of four tetrahedra that are found to be pair-
wise in Möbius position. (Cf., no. 9). 
 In order to prove this, we start with the tetrahedra: 
 
 I.  (12), (13), (14), (56),  [134], [124], [123], [1], 
 
and subject them to the null systems [1], [5], [6], in succession.  We will obtain the 
tetrahedra: 
 
 II. (34), (24), (23), (0),  [2],     [3],     [4],     [156], 
 III. (26), (36), (46), (15),  [125], [135], [145], [6]. 
 IV. (25), (35), (45), (16),  [126], [136], [146], [5]. 
 
The four tetrahedra subsume all points and planes of the configuration.  By construction, 
I is found to be in Möbius position with II, III, IV.  II goes to III by [6] and to IV by [5], 
and III goes to IV by means of [1].  Q. E. D. 
 
 

§ 14.  Multi-term chains. 
 
  44.  The four-term chain.  We would like to treat only two types of multi-term 
chains.  We subject the four complexes of the chain: 
 
(1)      [x A′ B C′ D u] 
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to all permutations and endow them with a positive or negative sign according to whether 
one is dealing with an even or odd permutation, respectively.  The expression: 
 

(2)      ∑ ± [x A′ B C′ D u], 

 
which is similar to a determinant, will arise.  This expression is a combination of the bush 
that is spanned by A, B, C, D (in case they are linearly-independent).  If we replace it 

with four, pair-wise conjugate, linear complexes then (2) will reduce to a single term, due 
to (13) in § 11. 
 The geometric interpretation of the equation that arises by setting (2) equal to zero is 
obtained from Theorem 6.  According to it, in the general case, one will be dealing with 
skew involutions of the two lines in which the four complexes intersect.  In the case 
where the four complexes are linearly-dependent, these lines will be undetermined, and 
with them, the skew involution that they determine. 
 
 Theorem 11: The existence of the identity: 
 

(3)      ∑ ± [x A′ B C′ D u] ≡ 0 {x, u} 

 
gives the necessary and sufficient condition (in quaternary form) for the four complexes  
A, B, C, D to be linearly-independent. 

 
 If the identity (3) does not exist, and the four complexes span a regular bush then the 
equation: 

(4)      ∑ ± [x A′ B C′ D u] ≡ 0 

 
will represent the skew involution on both lines that have the four complexes in common.  
This relationship will degenerate when the two lines coincide. 
 
 In the case where the complexes have a pencil of lines in common, the left-hand side 
will split into a product of two linear forms that represent the vertex and plane of the 
pencil of lines when they are set equal to zero. (Analogue of Theorem 4). 
 
 
 45.  The six-chain.  The condition for six complexes A1, A2, A3, A4, A5, A6 to be 

linearly-dependent is the vanishing of the six-rowed determinant (A1 A2 A3 A4 A5 A6) of 

its coordinates.  The equations of the complexes that are conjugate to five linearly-
independent complexes Ai – in particular, the complexes that run through five lines Ai – 

then reads: 
(5)      (A1 A2 A3 A4 A5 A6) = 0. 

 
The form of this equation is taken from the geometry of R5 .  The invariant property of 
the expression on the left-hand side under quaternary projective transformations will not 
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be evident by this notation.  That will first come about when the determinant is expressed 
with the help of chains.  We give the result without proof (1): 
 

(6)  (A1 A2 A3 A4 A5 A6) = − 1 2 3 4 5 6

2
[ ]

6!
′ ′ ′±∑ A A A A A A  

 
 = 1 2 3 4 5 6 1 2 3 4 5 6[ ] [ ]′ ′ ′ ′ ′ ′−A A A A A A A A A A A A . 

 
 

___________ 

                                                
 (1) B. L. van der Waerden, “Über Determinanten aus Formenkoefficienten,” K. Ak. d. Wet. t. 
Amsterdam, Proc. XXV (1922). 



  

Chapter Four 
 

The line-sphere transformation 
 

§ 15.  Map of a line-pair in the space of a linear complex 
to a second-order surface on an 2

3M . 
 

 46.  Trace of a point and a plane.  One application of the map of the projective line 
continuum to the 2

4M  in R5 is Lie’s line-sphere transformation (1). 

 We single out a regular, linear complex C in R3 (i.e., line space) as the basic complex.  

It will correspond to an R4 in R5 that cuts 2
4M  in a regular 2

3M .  The pencils of lines of 

the complex C will be mapped to the lines of 2
3M  in a one-to-one and invertible way. 

 Now, an arbitrary plane in R3 contains a pencil of lines of C, just as an arbitrary point 

of R3 does.  In both cases, we would like to call the pencil of lines the trace of the plane 
or the point in the linear complex.  Points and planes will be mapped to generating planes 
of the first and second kind, resp., in 24M , and both of them will cut out one line from 

2
3M  in R4, namely, their trace on 2

3M . 

 Points and planes determine unique traces in a linear complex.  However, the initial 
element will not, conversely, be determined uniquely by the trace. 
 
  A pencil of lines of C determines a point 

and a plane. 

  A plane of the first kind and a plane of the 
second kind in 2

4M  run through a line of 
2
3M . 

 
 In order to make the map uniquely invertible, we cover the trace (and therefore, the 
pencil of lines of C and the line of 2

3M ) with two sheets.  The first sheet shall be the 

points that correspond to the second of the planes in R3 .  One will then have, without 
exception, a single-valued, invertible correspondence: 
 
  Point of R3   Line of the first sheet of 2

3M  

  Plane of R3   Line of the second sheet of 23M  

  Application of the null system that is 
linked with C 

  Switching of lines of both sheets that 
“overlap” each other 

  Points and planes are incident (i.e., their 
traces have a common line) 

  Lines of the first sheet and lines of the 
second sheet are incident. 

 

                                                
 (1) The presentation that follows here goes back to E. Study, “Vereinfachte Begründung von S. Lies 
Geraden-Kugeltransformation,” Sitzungsber. Preuß. Ak. d. Wiss. (1926).  



The image of a line 47 

 In this, we also refer to two lines on the right-hand side as “incident” when they 
“overlap,” which is a case that will occur when the points and planes on the left-hand side 
are related as null points and null planes. 
 
 
 47.  The image of a line.  We now consider an arbitrary line G in R3 that does not 

belong to the complex C to be the locus of its points and planes.  Its ∞1 points correspond 

to a system of ∞1 lines of the first sheet in 2
3M , and its ∞1 planes will correspond to ∞1 

lines of the second sheet.  Since every point of the line G is incident with every plane of 

the line G, every line of the first sheet will intersect every line of the second one.  The 

two families of lines then define the two families of generators of a regular, second-order 
surface, and indeed, an oriented surface, since the two families of generators can be put 
into a well-defined sequence, namely, in the well-defined way that the two sheets of lines 
are distributed on 2

3M  (no. 23). 

 
A line that is not a null line Regular, oriented, second-order surface on 

2
3M  

 
Its null polar 

 
Oppositely-oriented second-order surface 

 
 By contrast, a null line corresponds to a point on 2

3M .  The null lines that it intersects 

will define a singular linear congruence, which, as we know (Chap. II, Theorem 19), will 
be mapped to a second-order cone.  Any generator of that cone must be regarded as a line 
of the first sheet and a line of the second sheet: 
 
Null line (as the locus of points and planes) Second-order cone on 2

3M  (simultaneously 

the locus of lines of the first and second 
sheets) 

 
 

§ 10.  The relationship as a contact transformation. 
 

 48.  Surface element and leaf.  Up to now, under our map, lines and pencils of lines 
(as spatial elements in line space) appeared on 2

3M  as points and lines, resp.  We shall 

now consider the map to be an association of spatial elements of a different kind. 
 With S. Lie, we call the figure that consists of a point and a plane in united position in 
R3 a surface element.  Under our map, such a surface element will correspond to the 
figure that consists of two incident lines on 23M , namely, a line of the first sheet and a 

line of the second one (which can also overlap), which E. Study called a leaf.  Our map 
will then give a single-valued and invertible correspondence between the ∞5 surface 
elements of R3 and the ∞5 leaves on 2

3M .  The application of the null system to a surface 
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element corresponds to a re-orientation of the associated leaf (i.e., the two lines of the 
leaf will be simultaneously subjected to a change of sheet). 
 
  Surface element 
 

  Leaf 

 
  Surface element of the null system (Point 
and plane are related as null points and null 
plane.) 

 
  Singular leaf (The lines of the leaf 
overlap.) 

 
 
 49.  The line as a locus of surface elements.  Just as a line is the locus of ∞2 surface 
elements, an oriented second-order surface on 2

3M  will be the locus of ∞2 leaves.  Any 

tangential plane to the surface will contain such a leaf.  Therefore, one will have the 
correspondence: 
 
  Line that does not belong to the basic 
complex C, as the locus of its surface 

elements 

  Oriented, second-order surface, as the 
locus of its leaves 

 
 If one maps the ∞2 surface elements of a null line to 23M  then one will get a leaf that 

corresponds to that surface element, and that will contain any arbitrary generator of the 
image cone as a line of the first and second kind.  It will produce the manifold of all ∞2 
leaves that go through the vertex of the cone. 
 
Null line, as the locus of surface elements Point, as the locus of leaves 
 
 The only way that one can speak of a well-defined degeneracy of a geometric figure 
is when one is given the figure that it will degenerate into as a locus of spatial elements.  
For instance, a conic section will degenerate into a pair of lines as a locus of points and a 
pair of points as a locus of lines.  Similarly, we have here: If a line in general position 
goes to a null line in line space then the surface that corresponds to the lines on 2

3M , as a 

locus of points, will go to a second-order cone, as a locus of surface elements at a point. 
 
 
 50.  Unions. Let the point coordinates x, as well as the plane coordinates u, be 
analytically dependent upon a certain number of parameters, and indeed, in such a way 
that the equation: 
(1)      (u x) = 0 
 
will be fulfilled identically.  One will then have the equation: 
 
(2)      (u dx) = 0, 
 
and since (1) makes this equivalent to the equation: 
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(3)      (x du) = 0, 
 
one will call the manifold of elements that is defined by equations (1)-(3) in the domain 
of existence of the functions a union (S. Lie).  We say that every element of a union is 
“united” with each consecutive one. 
 One easily sees that only one and two-dimensional unions can exist in R3 .  If the 
locus of points is an analytical surface patch then the union will consist of the tangential 
element to that surface (i.e., tangential planes and their contact points).  If the locus of 
points is an analytical curve segment then a surface element of the union will consist of a 
point of the curve segment, together with a tangential plane to the curve segment at that 
point.  If the locus of points is a point then the union will consist of elements through that 
point.  Along with the unions that were enumerated, there are also the unions that are dual 
to them. 
 
 
 51.  Contact transformations.  A transformation of surface elements that takes 
unions to unions is called a contact transformation: It will take unions that contact each 
other – i.e., have an element in common – to unions that contact each other.  
Collineations and correlations are very special examples of contact transformations, as 
well as the “extended point transformations”; i.e., the transformations of surface elements 
that are induced by point transformations. 
 Now, a contact transformation is also the relationship between surfaces elements in 
line space and leaves (viz., “oriented surface elements”) in 2

3M  that we have considered.  

It associates unions of surface elements with unions of leaves.  We communicate that 
result without proof [E. Study, Math. Ann. 91 (1924), 106-107], since we shall not need 
it in that generality for the following special case: 
 
 Theorem 1: Two incident null-planes will be mapped to two contacting, oriented, 
second-order surfaces by the line-sphere transformation. 
 
 In fact: The line, as the locus of its surface elements, is a union (viz., any element of 
the line is united with any other one), and the oriented, second-order surface, as the locus 
of its leaves, is a union (viz., consecutive leaves are united).  Furthermore: Two incident 
lines, when regarded as unions of elements, will have a common surface element, and it 
will be associated with a common leaf of the two corresponding, oriented, second-order 
surface by the relationship.  We shall pass over any examination of the special cases. 
 
 

§ 17.  Stereographic projection of 2
3M  to R3 . 

 
 52.  Stereographic projection of the cone.  The relationship that we have been 
dealing with up to now mediates the connection between figures in a certain R3 (viz., line 
space) and other figures on a 23M  in R4 .  It is possible to go from this 2

3M  to a second R3 

by “stereographic projection,” and in that way, establish a relationship between two R3 . 
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  Before we treat the projection of 2
3M  onto R3, it will be convenient to examine the 

corresponding relationship in one less dimension: We would like to project a real, regular 
cone stereographically – i.e., from one of its real points p – onto a plane.  As long as one 
restricts oneself to real points, that projection will be uniquely invertible, and as long as 
one establishes that the line G along which the tangential plane to p cuts the image plane 
shall be referred to as an accessory point.  The real projective plane B will then be the 
Gaussian plane. 
 In the complex domain, however, the one-to-one character can no longer be produced 
by such a convention on the terminology.  In fact, the following elements will 
correspond: 
 
  Center of projection p 
 

All points of the line G 

 
  Arbitrary points of the generator of the 
first (second, resp.) kind through p that are 
different from p 

 
  “Absolute points” of the first (second, 
resp.) kind 

 
 A non-decomposable section of the sphere – and thus, a regular circle – will be 
mapped to a circle or a line in the image plane according to whether it does or does not 
include the center of projection p, resp., and which one can refer to as the “circle through 
the accessory point.”  The projection of 23M  onto R3 behaves similarly. 

 
 
 53.  Stereographic projection of 2

3M .  We next arrive, by a (necessarily imaginary) 

collineation, at the fact that the 23M  that is cut out of the Plückerian 2
4M by R4, namely:  

 
(1)     X01 X23 + X02 X31 + X03 X12 = 0, 

 
is a spherical manifold (viz., one whose the equation is 2 2 2 2 2

1 2 3 4 5x x x x x− + + + +  = 0).  The 

R3-sections of that 2
3M  will then be spheres, and those spheres will once more go to 

spheres or planes under the stereographic projection 2
3M  onto R3 .  However, we now 

obtain a map of lines in line space to oriented spheres in Euclidian R3 that is no longer 
free of singularities. 
 The tangential R3‘s at the center of projection cut 2

3M  in a second-order cone that 

meets the image R3 in a conic section, in its own right.  That conic section will be the 
absolute conic section that is common to all spheres in Euclidian R3 .  Its lines of 
intersection (viz., minimal lines), which are projections of lines in 2

3M , will be images of 

the points in line space.  The points of Euclidian R3, which are projections of points of 
2
3M , will be images of the null lines in line space. 

 We now go on to a more precise treatment of the singularities that might appear: It 
will then be clear that the nucleus of the line-sphere transformation is contained in the 
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relationship between line space and spherical 2
3M  that we have presented, and that the 

singularities will first come about when we wish to convert that relationship artificially 
into a relationship between two R3 (but not considered from the viewpoint that was 
assumed here, since it was anthropocentrically influenced). 
 
 

§ 18.  The Dupin cyclide as the image of a second-order surface. 
 

 54.  Definition of the cyclide.  One will get the equation of a quadratic line complex 
by setting a quadratic form in line space equal to zero.  As was pointed out on pp. ?, the 
lines of such a complex that lie in a plane will envelope a curve of class 2, while the 
complex lines through a point will define a second-order cone. 
 If one now intersects a quadratic complex in line space with the basic complex then 
one will obtain a congruence (2, 2), namely, a system of ∞2 lines such that two lines of 
the system will run through any point in general position, while two lines of the system 
will lie in any plane in general position.  The image of that congruence in R4 is the 
(general) 2

4M -section of two quadratic manifolds.  The intersection manifolds that are 

obtained in that way, and likewise, their projections onto R3, will be surfaces of order 4 or 
3 that contain the absolute conic section, when counted twice or once, resp., and that will 
be called cyclides. 
 If one starts with the tangent complex to a second-order surface in line space, in 
particular, then one will obtain a Dupin cyclide. 
 
 
 55.  Map of a second-order surface in general position.  We apply the line-sphere 
transformation to a second-order surface F2 that is in general position with respect to the 
basic complex; i.e., the basic complex shall cut each of the two families of generators of 
F2 in two distinct generators N1, 1′N  and N2, 2′N  (cf., no. 75). 

 The lines of the basic complex that cut two skew lines that are not null polar to each 
other define a regulus (no. 22).  In the limiting case, the null lines that contact F2 along a 
generator will also define a regulus.  Such a circle will be mapped to a conic section on 

2
3M , and thus, to a circle, when we assume that 2

3M  is spherical.  The image of F2 – viz., 

a Dupin cyclide – will go to two families of ∞1 circles that correspond to two families of 
generators, and just as any surface tangent cuts each generator of both families, and 
otherwise no generator, two circles of the same family will be disjoint, while any circle of 
the one family will cut any circle of the other family at a point. 
 Among the circles, one finds, in particular, ones that correspond to the null lines N1, 

1′N   of the first family of generators and N2, 2′N , of the second one.  Since N1 cuts the 

null lines N2, 2′N , the regulus will decompose into the null lines that are tangent to N1 in 

the pair of restricted pencils and N1 N2 and N1 2′N .  Correspondingly, the cyclide will 

contain two circles in each of its two families of circles that decompose into pairs of lines 
(in R3: pairs of minimal lines).  They collectively define a spatial quadrilateral.  The 
cyclide does not contain more than those four lines, since F2 possesses no more than four 
pencils of tangent null lines. 
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 The vertices of the spatial quadrilateral N1, 1′N ; N2, 2′N  (viz., the double points of 

the cyclide) correspond to the four null generators of F2.  Since any generator of the 
second kind cuts the lines N1, 1′N , each of the circles of second kind will run through the 

point N1, 1′N , and likewise, each of the circles of the first kind will run through the 

points N2, 2′N . 

 
 
 56.  Construction of the cyclide.  The two families of generators of F2 will be 
mapped to two simply-infinite families of oriented spheres.  From Theorem 1, every 
sphere of the one family will contact every sphere of the family.  Just as F2, as the locus 
of the common lines of intersection of three generators, can contain one and same family, 
the Dupin cyclide can be obtained as the envelope of all spheres that contact the three 
spheres of one of the two families. 
 
 Theorem 2: Under the line-sphere transformation, a Dupin cyclide on 2

3M  will be 

the image of an F2 that cuts the basic complex in a spatial quadrilateral of generators.  
That cyclide will be a fourth-order surface with four double points.  The four double 
points are the vertices of a spatial quadrilateral whose four sides are the only lines in the 
cyclide.  The cyclide is the envelope of two simply-infinite families of spheres, and will be 
covered by two families of ∞1 circles that run through two opposite points of the four 
double points. 
 
 
 57.  Lines of curvature and asymptotic lines.  “Consecutive” spheres from one of 
the two families intersect in circles of the corresponding family of circles.  The surface 
normals along one such circle will (obviously) define a cone.  The circles are thus the 
lines of curvature of the cyclide.  Under the map, they will correspond to the generators 
of F2, and thus to the asymptotic lines of F2.  We then have the simplest example of Lie’s 
theorem, which says that principal tangent curves in line space and lines of curvature in 
sphere space will correspond under the line-sphere transformation. 
 Lines of curvature and asymptotic lines cannot be regarded as loci of points for a 
rigorous formulation of that theorem, but as loci of surface elements. 
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 58.  Special cases.  If F2 assumes a special position with respect to the basic complex 
then a degenerate case will appear in place of the general Dupin cyclide.  In the case 
where the complex cuts out a pair of coincident lines from one of the two families of 
generators, the points of a pair of double points will coincide.  In the case where the basic 
complex contains the two generating reguli of F2 completely, the cyclide will split into 
two second-order cones as a locus of points (in R3, they will be minimal cones; i.e., cones 
that contain the absolute conic section) and the circle of intersection of those two cones 
as a locus of leaves. 
 With that, we have exhausted the cases in which a regular, second-order surface will 
appear in line space.  In the case of a cone, one will get a fourth-order ruled surface (1). 
 
 

§ 19.  Study’s double-five. 
 

 59.  Heuristic process.  As a further application of the line-sphere transformation, we 
would like to derive (this time, starting in sphere space) a special configuration of two-
times-five lines: 
 1 2 3 4 5 
 1′ 2′ 3′ 4′ 5′ 
 
with the property that every line cuts four other ones, namely, the ones that are not in the 
same row or column; that configuration is a so-called double-five. 
 It is not difficult to construct a double-five: One starts with five lines 1, 2, 3, 4, 5 in 
general position and constructs one of the two common lines of intersection to any four 
of them.  The existence of a double-five, upon which one imposes no other demands, is in 
no way remarkable then.  (By contrast, the existence of a double-six will rest upon the 
validity of a closing theorem.) 
 However, the existence of a double-five whose pairs of lines are pairs of polar lines 
relative to a null system is remarkable.  Such a double-five shall be called a Study double-
five, since Study (2) found it in the following way: 
 If one draws three smaller spheres in a large one then one will see that one can find 
yet a fifth one (upon which, the three smaller spheres in the larger one will lie), in such a 
way that the spheres thus-obtained will contact pair-wise.  If one orients these spheres 
then one will obtain a double-five of oriented spheres: 
 
 1 2 3 4 5 
 1′ 2′ 3′ 4′ 5′ 
 
in such a way that every sphere will contact the other ones that are not in the same row 
and column. 
 If one now subjects that figure to the line-sphere transformation then a pair of null-
polar lines will arise from a pair of associated, oriented spheres.  Hence: 
 

                                                
 (1) E. A. Weiss, “Zykliden als Bilder von Flächen 2. Ordnung in der Geradenkugeltransformation,” 
Mathematica 8 (1933).  
 (2) E. Study, in the beginning of the paper that was cited in no. 46.  
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 Theorem 3: If one subjects a quintuple of non-oriented spheres that contact pair-
wise to the line-sphere transformation then a double-five will arise whose line-pairs are 
pairs of null-polar lines in a regular null system 
 
 
 60.  Projective derivation of the double-five.  One can pose the problem of 
constructing such a double-five in projective space (i.e., independently of the line-sphere 
transformation) (1).  For that, it is convenient to consider the figure of 5 ⋅⋅⋅⋅ 2 points on 
Plücker’s 2

4M   that correspond to the 5 ⋅⋅⋅⋅ 2 lines of the double-five. 

 Since the line-pairs are pairs of lines that are polar relative to a fundamental complex 
C, a point C in R5 that does not lie on 2

4M  is singled out in such a way that the connecting 

lines of the image points of associated lines 11′, …, 55′ run through C (no. 19).  We 

consider two of these lines 11′ and 22′.  They span a plane E that cuts 2
4M  in a second-

order curve.  However, that curve will decompose into a pair of lines. 
 We now consider the points p1 and p2 that the lines 11′ and 22′ cut out of the R4 that is 
polar to the point C.  Its line of intersection will be the line of intersection of the plane E 

with the polar R4 and (as the polar to the point C relative to the pair of lines) will run 

through the vertex of the pair of lines.  The line p1 p2 is then a tangent to the 2
3M  that the 

polar R4 cuts out of Plücker’s 2
4M  . 

 
 Theorem 4: The connecting lines of the image points of associated lines of a Study 
double-five cut out a tangent pentatope in 23M  from the image R4 of the fundamental 

complex. 
 
 
 61.  Tangent pentatope to 2

3M .  Up to now, we have inferred the fact that a tangent 

pentatope to an 2
3M  exists only intuitively: We started with five spheres that contacted 

pair-wise.  The existence of a tangent pentatope, and therefore, a Study double-five, shall 
now be proved.  To that end, we seek to inscribe the coordinate simplex in R4 in an 2

3M : 

 
(1)   a11

2
1x + … + a55

2
5x + 2a12 x1 x2 + … + 2a45 x4 x5 = 0, 

 
in such a way that the ten edge lines will be tangents to 2

3M .  For example, should the 

connecting line: 
(2)     ξ1 (1, 0, 0, 0, 0) + ξ2 (0, 1, 0, 0, 0) 
 
be tangent to 2

3M , then the discriminant of the form: 

 
(3)     a11

2
1ξ + 2a12 ξ1 ξ2 + a22

2
2ξ  

                                                
 (1) A. Maurer , “Doppelvieren und Dopplefünften,” Diss. Bonn, 1929.  
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would have to vanish, and thus the two-rowed determinant: 
 
(4)      a11 a22 − a12

2. 
 
One sees in the same way that all ten two-rowed determinants that one can select from 
the matrix of the 2

3M  that are symmetric about the main diagonal must vanish.  One can 

then calculate the remaining ones from the given values of the diagonal elements of that 
matrix.  If one sets: 
(5)      aii = ai

2 
then one will have: 
(6)    aii akk − aik 

2 = 0, thus: aii akk = aik 
2, (i ≠ k) 

(7)      aik = ± ai ⋅ ak . 
 
It is clear that one cannot take all of the signs in the determinant to be positive, since the 

2
3M  would then be a doubly-counted R3.  One can then ask how many ways that the signs 

in the matrix can be assigned if one is to obtain a regular 2
3M .  We shall pass over that 

question, and establish only that there are regular 2
3M .  One of them corresponds to the 

following sign arrangement: 
 − +  + + + 
 + −  + + + 
 + +  − + + 
 + +  + − + 
 + +  + + − 
 
and the simplest 2

3M  of that type is: 

 
(8)   − 2

1x − … − 2
5x + 2x1 x2 + … + 2x4 x5 = 0. 

 
 At the same time, we see that the 23M  that one can inscribe in a given simplex such 

that it becomes a tangent pentatope will depend upon four essential constants.  A 
pentatope in R4 depends upon 5 ⋅⋅⋅⋅ 4 = 20 constants, so the figure that consists of an 2

3M  

with a tangent pentatope will depend upon 24 constants, and since there are ∞14 2
3M  in 

R4, one can circumscribe ∞10 tangent pentatopes to a given 23M . 

 That fact defines the foundation for the enumeration of the Study double-fives: Since 
the R4, and therefore the complex C, can be chosen in ∞5 different ways, one will have: 

 
 Theorem 5: There are ∞15 Study double-fives. 
 
 In conclusion, we mention yet another remarkable double-five, namely, the double-
five of B. Segre.  Any line of such a double-five is the single line of intersection of the 
associated quadruple.  The lines of the double-five belong to a linear complex, and will 
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be mapped to a pentatope that is, at the same time, inscribed and circumscribed in the 
image 2

3M  of the linear complex (1). 

 
__________ 

 

                                                
 (1) B. Segre, “Le piramidi inscritte e circoscritte alle quadriche di S4 e una notevole configurazione di 
rette dello spazio ordinario,” Memorie della R. Acc. dei Lincei (6) 2 (1927). 



  

Chapter Five 
 

Metric line geometry 
 

§ 20.  Basic formulas of non-Euclidian geometry. 
 

 62.  The three kinds of non-Euclidian geometry in R3 .  The geometry of the group 
of automorphic collineations of a regular quadratic manifold in Rn is called non-Euclidian 
geometry in Rn .  The automorphic collineations themselves will also be called “non-
Euclidian motions” and “transfers” in connection with that.  From the standpoint of real, 
projective geometry, one distinguishes just as many types of real, non-Euclidian 
geometries as there are different types of real, non-Euclidian manifolds.  Thus, in the 
plane, the real conic sections with and without real points will correspond to two kinds of 
non-Euclidian geometry, namely, hyperbolic and elliptic, respectively, but in space, there 
will be three kinds: the real, regular, second-order surfaces without real points, the ones 
with real points, but no real lines, and finally, the ones that also have real lines.  
Therefore, whenever we are concerned with questions of reality at all in what follows, we 
shall treat elliptic (absolute surface without real points) or hyperbolic (absolute surface 
with real points, but no real lines) geometry exclusively (1). 
 
 
 63.  Distance between two points.  A so-called Cayley metric will be defined by a 
basic second-order surface in space that assigns the distance between two points and 
dually the angle between two planes to two points and two planes, respectively. 
 One defines the distance between two points x, y with the help of the double ratio that 
the two points determine, along with two other ones at which their connecting line: 
 
(1)      z = ξ1 x + ξ2 y 
cuts the absolute surface (x x) = 0: 
 
(2)    (ξ | ξ) = 2

1ξ (x x) + 2 ξ1 ξ2 (x y) + 2
2ξ (y y) = 0. 

 
 
 64.  Double ratio of two points and a point-pair.  We next pose the problem of 
determining the double ratio that two points ξ1 and ξ2 determine with the zero locus of a 
quadratic form: 
(3)      (ξ | ξ) = (α1 ξ) ⋅⋅⋅⋅ (α2 ξ). 
 
 It follows immediately that the discriminant of that form is: 
 
(4)      D = C ⋅⋅⋅⋅ (α1α2)2, 
 

                                                
 (1) For a thorough presentation of non-Euclidian geometry, we refer to J. L. Coolidge, The elements of 
non-euclidian geometry, Oxford, 1909.  
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in which C denotes a yet-to-be-determined constant.  The discriminant will then be 
quadratic in the coefficients of the form, and will vanish if and only if the zero locus of 
the form is a point.  However, if one sets: 
 
(5)     1 1

1 2:α α  = 1 : 0, 2 2
1 2:α α  = 0 : 1, 

(6)      (α1 ξ) ⋅⋅⋅⋅ (α2 ξ) = − ξ1 ⋅⋅⋅⋅    ξ2 , 
in particular, then one will have: 
 
(7)    D = − 1

4 , (α1α2) = 1, so c = − 1
4 , 

 
and one will ultimately have: 
(8)      D = − 1

4 (α1α2)2. 

Furthermore, one will have: 
 
(9)    (ξ 1 | ξ 2) = 1

2 {( α1ξ1) (α2ξ 2) + (α1ξ 2)(α2ξ 1)}. 
 
 Equations (8) and (9) suffice to derive the desired double ratio: 
 

(10) DV (α1α2 ξ 1ξ 2) = 
1 1 2 2

1 2 2 1

( )( )

( )( )

α ξ α ξ
α ξ α ξ

 

  = 
1 1 2 2 1 2 2 1 1 2 1 21 1

2 2
1 1 2 2 1 2 2 1 1 2 1 21 1

2 2

{( )( ) ( )( )} ( ) ( )

{( )( ) ( )( )} ( ) ( )

α ξ α ξ α ξ α ξ α α ξ ξ
α ξ α ξ α ξ α ξ α α ξ ξ

+ + ⋅
+ − ⋅

 

  = 
1 2 1 2

1 2 1 2

( | ) ( )

( | ) ( )

i D

i D

ξ ξ ξ ξ
ξ ξ ξ ξ

+ ⋅
− ⋅

. 

 
 This invariant contains the roots of the discriminant of the quadratic form.  It is 
therefore not a rational invariant, but the simplest example of an irrational invariant. 
 The fact that an expression for the double ratio must appear that is capable of taking 
on two different values was clear from the outset, since one must still decide between the 
two sequences of zero loci of the quadratic form.  The quadratic form (ξ | ξ) will be 

oriented by choosing the sign of D  . 

 
 
 65.  Distance and angle in elliptic geometry.  If we substitute the expression (2) for 
(ξ | ξ) in (10) and the points 1 : 0 and 0 : 1 for ξ 1 and ξ 2 then it will follow that: 
 

(11)  DV (α1α2 ξ 1ξ 2) = 
2

2

( ) ( )( ) ( )

( ) ( )( ) ( )

xy i xx yy xy

xy i xx yy xy

+ −

− −
. 
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However, we shall not take this double ratio itself (which indeed already represents an 
invariant of motion) to be the “distance” between the points x, y in elliptic geometry, but 
define: 

(12)    dist xy = 
1

2i
ln DV (α1α2 ξ 1ξ 2). 

 
 We would like to explain the consequences of this (1).  If ξ 1, ξ 2, ξ 3 are the 
parameters of three points that lie on the lines α1, α2  then: 
 
(13)   DV (α1α2 ξ 1ξ 2) ⋅⋅⋅⋅ DV (α1α2 ξ 2ξ 3) ⋅⋅⋅⋅ DV (α1α2 ξ 3ξ 1) = 1, 
so 
(14)   DV (α1α2 ξ 1ξ 2) ⋅⋅⋅⋅ DV (α1α2 ξ 2ξ 3) = DV (α1α2 ξ 1ξ 3) . 
 
Adjacent segments of a line are then multiplied.  However, if we desire that such 
segments should be added as in elementary geometry then we will have to introduce the 
logarithm. 
 In the case of elliptic geometry, the (real) connecting line of two real points x, y will 
cut the absolute surface at two complex-conjugate points α1, α2.  The double ratio (11) 
will then be a complex number of absolute value 1, so its logarithm will be pure 
imaginary.  In order to obtain a real value for the distance between two real points, one 
must divide by i. 
 Finally, the factor 1 / 2 is explained as follows: In elliptic geometry, the angle 
between two planes u, v: 

(15)    ang u v = 
1

2i
ln DV (α1α2 ξ 1ξ 2) 

 
is dual to the distance between two points, in which ξ 1, ξ 2 are the parameters of u, v in 
the pencil of planes that they span, and α1, α2  are the parameters of the absolute planes 
that are contained in the pencil. 
 We now take (as we do in elementary geometry) two planes to be orthogonal when 
they are conjugate to each other relative to the absolute structure: 
 
(16)     (u u) = 0. 
 
However, in that case, one will have DV (α1α2 ξ 1ξ 2) = − 1, and: 
 

(17)    ang u v = 
1

2i
⋅⋅⋅⋅ πi = 

2

π
. 

 
We have then included the factor 1 / 2, in order to obtain the angle π / 2 in the case of 
orthogonal planes, just as in elementary geometry. 
 From equation (11), and with the help of the formula: 

                                                
 (1) F. Klein, “Über die sogenannte Nichteuklidische Geometrie,” Math. Ann. 4 (1871) = Ges. Werke I, 
(1921), pp. 254.  
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(18)     
1 1

ln
2 1

i

i i

ϕ
ϕ

+
−

 = arc tan ϕ, 

we will derive the equation: 

(19)     tan dist xy = 
2( )( ) ( )

( )

xx yy xy

xy

−
, 

and from that: 

(20) 
2

( )
cos dist ,

( ) ( )

( )( ) ( )
sin dist .

( ) ( )

xy
xy

xx yy

xx yy xy
xy

xx yy

 =



− =


 

 
Dual equations are true for the angle between two planes. 
 
 
 66. Distance and angle in hyperbolic geometry.  The complete duality between the 
distance between two points and the angle between two planes no longer exists in 
hyperbolic geometry.  Namely, in the real approach to the absolute surface, the manifold 
of real points will split into two parts.  Equation (12) shows that the distance from a point 
that does not lie on the absolute surface to an absolute point will be infinite.  The absolute 
points can therefore also be called infinitely-distant.  A person inside of the absolute 
surface (which one can imagine to be a sphere) that goes forth with a finite velocity in 
one and the same direction for a finite length of time will not reach the absolute surface.  
We therefore distinguish the reachable domain (inside of the absolute surface) from the 
unreachable domain, and from now on, we shall restrict ourselves to the treatment of the 
reachable domain. 
 The connecting line between two reachable points always cuts the absolute surface in 
two real points.  The double ratio (10) will then be real, and in fact positive, and one will 
therefore not need to divide by i in the definition of distance. 
 Things are different for the angle between two planes that intersect in a reachable 
line.  The two lines in these planes that lie on the absolute surface will be conjugate 
imaginary (as in the case of elliptic geometry).  The factor 1 : i must then be introduced. 
 
 
 67.  The common normals to two lines.  In non-Euclidian geometry, as in Euclidian 
geometry, two lines are called mutually orthogonal (i.e., perpendicular) when they are 
conjugate relative to the absolute structure, and thus, when one line cuts the absolute 
polar of the other one.  We would now like to find the common normals to two lines G, 

H; i.e., the lines that meet G and H perpendicularly.  These normals will then be the 

common lines of intersection of G, H, and their absolute polars G′, H′, resp. 

 For that, we assume that H is not the absolute polar to G and that G and H do not 

contact the absolute surface, such that GG′, HH′ will be two distinct pairs of skew lines 

that define a line system of rank r ≥ 3. 
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 Since the four lines define a figure that is polar to itself relative to the absolute 
surface, the figure of its lines of intersection will also be polar to itself relative to the 
absolute surface.  In the case of r = 4, one will then (no. 27) be dealing with two 
mutually-polar lines, which can also coincide with the generators of the absolute surface 
or a pencil of tangents to the absolute surface.  This case will occur when the G and H 

intersect at a point of the absolute surface, so G′ and H′ will then be two lines of the 

tangential plane to the point of intersection (or dually). 
 In the case r = 3, one deals with a regulus that corresponds to itself in the absolute 
polar system.  The polarity will induce an involution on that regulus that has two fixed 
lines.  Those fixed lines will be the generators of the absolute surface, and indeed, since 
they are skew, they will be generators of the same kind.  In that case, the lines G, H, G′, 
H′ will intersect the regulus of the absolute surface at points of one and the same pair of 

generators. 
 If the generators of the pair coincide then the regulus will degenerate into a pair of 
polar restricted pencils with one generator as their common line. 
 If we restrict ourselves to real, reachable lines in hyperbolic geometry then we will 
have merely two cases to distinguish.  A generator of the absolute surface has, in fact, 
one and only one real point, namely, its point of intersection with the complex-conjugate 
generator that lies in the other family of generators.  Two real, reachable lines that do not 
intersect on the absolute plane will then cut the absolute surface in points of different 
generators, and will then have two distinct, mutually-polar normals.  However, if the two 
lines do intersect on the absolute surface then they will have no common normal in the 
reachable domain, but the pencil of tangents to the point of intersection in the 
unreachable domain can qualify as a pencil of common normals. 
 Now, a real pair of lines can be a pair of complex-conjugate lines or a pair of real 
lines.  One has the following theorem here: 
 
 Theorem 1: A real pair of skew polars in hyperbolic geometry is a pair of real lines, 
one of which is reachable and the other of which is not. 
 
 Proof: The real pair of polars cuts the absolute surface in a real “elementary 
quadrilateral” that consists of two generators Rx, Ry of the first kind and two generators 

Lx, Ly of the second kind.  Since the complex-conjugate generators on the absolute 

surface belong to different families of generators, one will have – say − Lx = xR , Ly = 

yR , such that the points  LxRx and LyRy will be real, and will yield a real, reachable line 

when they are connected, while the points LxRy and LyRx will be complex-conjugate, 

and when they are connected they will yield an unreachable line.  We summarize this as: 
 
 Theorem 2:  Two real, reachable lines that do not intersect on the absolute surface 
have a real, reachable, common normal in hyperbolic geometry. 
 
 There are no real absolute points in elliptic geometry.  Two real lines cannot intersect 
on the absolute surface then.  If they intersect in points of one and the same generator R 
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then they will also intersect the complex-conjugate generator R  that belongs to the same 
family.  There are thus, in turn, two possible cases: 
 
 Theorem 3:  In elliptic geometry, two real lines that are not absolute polars will have 
either a real pair or a real regulus of common normals. 
 
 In order to clarify the reality behavior, we prove the theorem: 
 
 Theorem 4: A real polar pair in elliptic geometry is a pair of real lines. 
 
 Proof: The real pair, which is always a pair of skew lines, cuts the absolute surface in 
a real elementary quadrilateral that consists of the generators R,R  of the first kind and 

the generators L,L  of the second kind.  The points RL, RL  and RL , RL  are pairs of 

complex-conjugate points, and thus yield a real connecting line.  Q. E. D. 
 
 It then follows from the theorem that was just proved that the regulus that was 
mentioned in Theorem 3 (which indeed consists of real polar pairs) will also possess a 
real character. 
 
 
 68.  Clifford parallels.  In non-Euclidian geometry, two lines are said to be parallel 
to each other when they intersect at an absolute point.  (The angle between two parallel 
lines will be zero, to the extent that it is defined.)  Whereas there are real, reachable, 
parallel lines in hyperbolic geometry (viz., two parallels to a line through a point that 
does not lie on it), there are no real parallels in elliptic geometry. 
 One can, however, still introduce the concept of parallel lines of a different kind, such 
that real parallels will be possible in elliptic geometry, as well, and therefore certain 
properties of Euclidian parallels will remain preserved. 
 Two real lines that cut the absolute surface in the same (complex-conjugate, resp.) 
left (right, resp.) generator shall be called left (right, resp.) paratactic (i.e., “parallel in 
the Clifford sense”). 
 There are then two congruences of lines that are paratactic to a real line G.  G cuts the 

absolute surface in two complex-conjugate generators of both kinds.  Since one can draw 
one and only one line of the two congruences through a real point (and therefore it 
certainly does not belong to any generator), it will follow immediately that: 
 
 Theorem 5: In elliptic geometry, there is a well-defined left-sided line and a well-
defined right-sided line that is paratactic to a given line through a given point. 
 
 This already exhibits an analogy to the situation in Euclidian geometry, which the 
following theorem further emphasizes: 
 
 Theorem 6: Two paratactic lines have ∞1 common normals. 
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 The fact that two lines that have ∞1 common normals cut the absolute surface in 
points of one and the same pair of generators was shown already above.  The converse is 
also true.  Namely, we assume that the given Clifford  parallels G and H cut the 

generators R1, R2 of the same family at the points γ1, γ2 and η1, η2 , resp.  Their absolute 

polars then cut the generators R1 and R2 in any event.  Let the points of intersection be 

1γ ′ , 2γ ′ ; 1η ′ , 2η ′ .  If we now perform the absolute polarity then the points γ1, η1, 1γ ′ , 1η ′  will 

be transformed into four planes, and indeed, the planes that connect R1 with G′, H′, G, H, 

resp., and thus intersect in the points 2γ ′ , 2η ′ , γ2, η2, resp.  One therefore has: 

 
γ1η1 1γ ′ 1η ′  ∧  2γ ′ 2η ′ γ2 η2  ∧   γ2 η2 2γ ′ 2η ′ . 

 
However, four lines that determine the same cast (Wurf) from two skew, common lines of 
intersection will belong to a regulus (cf., no. 27, rem.).  Q. E. D. 
 
 A one-parameter group of elliptic motions, and thus automorphic collineations of the 
absolute surface, will be defined (no. 25) by the two distinguished generators R1, R2 of 

the absolute surface.  They will be induced by the binary projectivities that leave the lines 
R1 and R2 in the family of generators R invariant individually, and each line of the 

families of generators individually fixed.  Each of the ∞2 lines in the congruence that is 
determined by R1, R2 will then be translated into itself.  Since the group will fix the lines 

of a paratactic congruence individually, we shall speak of a group of displacements.  One 
must distinguish right-sided displacements form left-sided ones. 
 
 Theorem 7: A paratactic congruence admits a one-parameter group of 
displacements. 
 
 The common normals to two paratactic lines will be permuted transitively by the 
associated group of displacements; i.e., it will be possible to take each of the ∞1 normals 
to each of the other ones by a displacement.  Since a displacement (as a motion) leaves 
the distance between two points invariant, it will ultimately follow that: 
 
 Theorem 8: Two paratactic lines will cut out the same segment on all of their 
common normals. 
 
 One can call that segment the “distance” between the two lines. 
 
 
 69.  Distance between two lines.  One refers to the segment that is cut out from a 
common normal to two lines X, Y that are in general position as the distance between 

them.  Since the two lines have two common normals, and the distance along each of 
those normals is determined only up to sign, one must expect a quadratic equation for the 
square of the distance.  The convention on the sign of the roots of the discriminant of that 
equation must distinguish the two normals.  The discriminant must then agree (up to a 
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numerical factor) with the determinant (4) in § 9 that is defined by the lines X, Y, and 

their absolute polars X′, Y′. 
 We would like to determine the distance between two lines X, Y in elliptic geometry.  

For that, we denote the line equation of the absolute surface (no. 23) by (X | X) = 0, and 

the intersection points of the lines X, Y with their common normals by x, y and x′, y′, 
resp., such that: 
 

(21)  X = �x x′ , Y = �y y′ , (xx′) = (xy′) = (yx′) = (yy′) = 0. 

 
The squares of the cosines d1, d2 = [cos dist X Y]2 of the distance, when measured along 

the normals, will then be [from (20)]: 
 

(22)   d1 = 
2( )

( )( )

xy

xx yy
,  d2 = 

2( )

( )( )

x y

x x y y

′ ′
′ ′ ′ ′

. 

 
These expressions shall now be expressed as functions of the coordinates of X and Y 

alone.  For the sake of simplicity, we assume in this that the determinant of the absolute 
surface possesses the value 1.  One will then have, in fact, the following auxiliary 
formula: 
(23)    (x1 x2 x3 x4)2 = (x1 x2 x3 x4) ⋅⋅⋅⋅ (u1 u2 u3 u4), 
 
in which ui denotes the absolute polar plane to xi [cf., no. 26, (20), (21)], and furthermore, 
from the multiplication theorem for determinants, it will equal: 
 

= | (xi uk) | = | (xi xk) |. 
Moreover: 
(24) (x1 x2 | x3 x4) = (x1 x2, u3 u4) 
  = (x1 u3) (x2 u4) − (x1 u4) (x2 u3)   [§ 1, (20)] 
  = (x1 x3) (x2 x4) − (x1 x4) (x2 x3) . 
 
With the use of these auxiliary formulas, one will have: 
 
(25) (X | X) = (xx′ | xx′) = (xx | x′x′),    (21), (24), 

(26) (Y | Y) = (yy′ | yy′) = (yy | y′y′), 
(27) (X | Y) = (xx′ | yy′) = (xy | x′y′), 
and 

(28) (XY)2 = (xx′ | yy′)2 = 

( ) ( ) 0 0

( ) ( ) 0 0

0 0 ( ) ( )

0 0 ( ) ( )

xx xy

yx yy

x x x y

y x y y

′ ′ ′ ′
′ ′ ′ ′

  (23) 
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  = {(x x) (y y) – (x y)2}{( x′ x′) (y′ y′ ) – (x′ y′ )2} 
  = (X | X) (Y | Y) + (X | Y)2    (25), (26), (27) 

   − (xx) (yy) (x′ y′ )2 – (x′ x′) (y′ y′) (xy)2. 
It will then follow that: 

(29) d1 ⋅⋅⋅⋅ d2  = 
2 2( ) ( )

( )( )( )( )

xy x y

xx yy x x y y

′ ′
′ ′ ′ ′

= 
2( | )

( | )( | )

X Y

X X Y Y
, 

 

(30) d1 + d2  = 
2 2( ) ( )( ) ( ) ( )( )

( )( )( )( )

xy x x y y x y xx yy

xx yy x x y y

′ ′ ′ ′ ′ ′+
′ ′ ′ ′

 

  = 
2 2( | )( | ) ( | ) ( )

( | )( | )

+ −X X Y Y X Y XY

X X Y Y
, 

so: 
(31) (d – d1) (d – d2) 

  = d2 + 
2 2( ) ( | )( | ) ( | )

( | )( | )

− −XY X X Y Y X Y

X X Y Y
 d + 

2( | )

( | )( | )

X Y

X X Y Y
. 

 
The desired equation will then read: 
 
(32) (X | X) (Y | Y) [cos dist X Y]4  

 + {(X Y)2 − (X | X) (Y | Y) − (X | Y)2} [cos dist X Y]2 + (X Y)2 = 0. 

 
For [cos dist X Y]2 itself, one finds from this that: 

 

(33)  [cos dist X Y]2  = 
2 2( | )( | ) ( | ) ( )1

2 ( | )( | )

+ − ± ∆X X Y Y X Y XY

X X Y Y
. 

 
In this, ∆ means the discriminant of equation (32), which is, as we would expect, the 
determinant: 

(34)    ∆ = 

* ( ) ( ) ( )

( ) * ( ) ( )

( ) ( ) * ( )

( ) ( ) ( ) *

XY X|X X |Y

YX Y|X Y|Y

X|X X |Y XY

X|Y Y|Y YX

 . 

 
One derives the formula for sin dist XY from (33) with the help of the formula sin2 t + 

cos2 t = 1.  One finds that: 
 
(35) (X | X) (Y | Y) [sin dist X Y]4 

 + {(X | Y)2 − (X | X) (Y | Y) − (X Y)2} [sin dist X Y]2 + (X Y)2 = 0. 

 
The angle between two lines will be defined dually to the distance between two lines. 
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§ 21.  Passing to the limit of Euclidian geometry. 
 

 70.  Degeneracy of the absolute surface.  In order to carry out the passage to the 
limit of Euclidian geometry in the formulas of the preceding paragraphs, we put the 
absolute surface into the form: 
 
(1) (x x) ≡ 2 2 2 2 2

0 1 2 3( )x k x x x+ + +  = 0, 

(2) (u u) ≡ 2 2 2 2 2
0 1 2 3k u u u u+ + +  = 0, 

 
in which k is real or imaginary, and k2 can correspondingly be positive or negative 
according to whether one is dealing with an elliptic or hyperbolic metric, respectively.  
Under the passage to the limit k → 0, the absolute surface will go to the doubly-counted 
imaginary plane 2

0x  = 0 as a locus of points and the absolute conic section: 

 
(3) [u u] = 2 2 2

1 2 3u u u+ +  = 0 

as a locus of planes. 
 The line equation for the absolute surface (1), namely: 
 

(4)  (X | X) = 2 2 2 2 2 2
01 02 03 23 31 12

1
( ) ( )k

k
+ + + + +X X X X X X  = 0, 

will become: 
(5)   [X | X] ≡ 2 2 2

01 02 03+ +X X X  = 0 

 
under the passage to the limit, which is the complex of lines of intersection with the 
absolute conic section. 
 
 
 71.  Distance between two points.  Angle between two planes.  We would now like 
to pass to the limit in the formulas of elliptic geometry.  To that end, we alter our 
definition up to now and write k ⋅⋅⋅⋅ dist xy for what we previously denoted by d = dist xy.  
From (20) in § 20, one will then have: 

(6)   sin k dist xy = k d – 
1

3!
k3 d 3 ± … = 

2( ) ( ) ( )

( ) ( )

xx yy xy

xx yy

⋅ −
. 

Thus: 

(7)  
0

1
lim
k k→

 sin k dist xy = d 

 = 
2 2 2 2 2 2 2 2
0 1 0 1 0 0 1 1

2 2 2 2 2 20
0 1 0 1

( )( ) ( )1
lim
k

x k x y k y x y k x y

k x k x y k y→

+ + + + − + +

+ + + +

⋯ ⋯ ⋯

⋯ ⋯
 

                                                
 (1) In the derivation of the formulas for the distance and angle between two lines in no. 69, we assumed 
that the absolute surface had the determinant 1.  For that reason, the factor k in (X | X) must be arranged as 
it is (4). 
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 = 2 2 2
0 1 1 0 0 2 2 0 0 3 3 0

0 0

1
( ) ( ) ( )x y x y x y x y x y x y

x y
− + − + − . 

 
This is the Euclidian distance between the two points x, y (when written in homogeneous 
coordinates). 
 One can apply the passage to the limit to the angle between two planes u, v with no 
further preparations and get: 

(8)   cos ∠ uv = 
[ ]

[ ] [ ]

uv

uu vv
, sin ∠ uv = 

2[ ][ ] [ ]

[ ] [ ]

uu vv uv

uu vv

−
. 

 
 
 72.  Distance and angle between two lines.  If one introduces (4), and sets kd in 
place of dist XY, as in no. 71, then equation (35) in § 20 will become: 

 

(9)   

4 4
2

2 2 2
2 2

2

1
[ | ][ | ] ( )

1 1
[ | ] [ | ][ | ] ( )

( ) 0,

k d
k

k d
k k

  + + + 
 

  + − + +  
 

 + =



⋯ ⋯

⋯ ⋯

X X Y Y

X Y X X Y Y

XY

 

 
and when one passes to the limit k → 0: 
 
(10)   − d2{[X|X][Y|Y] – [X|Y]2} + (XY)2 = 0, 

so 

(11)    d2 = 
2

2

( )XY

[X |X][Y|Y]-[X |Y]
. 

 
 In order to obtain the Euclidian angle between the lines X, Y, we start with the 

formula that is dual to (35) in § 20: 
 
(12) (X|X)(Y|Y) [sin ang XY]4  

+ {(X|Y)2 − (X|X)(Y|Y) − (XY)2}[sin ang XY]  2 + (XY)2 = 0, 

 
multiply it by k2, and let k → 0.  It will then follow that: 
 
(13)  [X|X][Y|Y] [sin ∠ XY]4 + {[X|Y]2 − [X|X][Y|Y]}[sin ∠ XY]2 = 0, 

 
and thus, when one splits off [sin ∠ XY]2: 
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(14)   sin ∠ XY = 
2[ | ][ | ] [ | ]

[ | ] [ | ]

−X X Y Y X Y

X X Y Y
. 

 
It will follow from this that: 
 

(15)   cos ∠ XY = 
[ | ]

[ | ] [ | ]

X Y

X X Y Y
 

and 

(16)   tan ∠ XY = 
2[ | ][ | ] [ | ]

[ | ]

−X X Y Y X Y

X Y
. 

 
 Finally, the formulas that we derived yield the following relations, which will be 
important in the sequel: 

(17)   dist XY ⋅⋅⋅⋅ tan ∠ XY = 
( )

[ | ]

XY

X Y
 

and 

(18)   dist XY ⋅⋅⋅⋅ sin ∠ XY = 
( )

[ | ] [ | ]

XY

X X Y Y
. 

 
With these formulas, formulas (14)-(16), which depend upon only the angle, will take on 
their geometric interpretations in regard to the transformations of an enveloping group, 
namely, the group of similarity transformations. 
 
 
 73.  The group of similarity transformations.  The group of non-Euclidian motions 
and transfers is characterized completely as the group of (real and imaginary) 
automorphic collineations of a regular, second-order surface.  Corresponding to the ∞15 
collineations and the ∞9 second-order surfaces in R3, we will have ∞15 : ∞9 = ∞6 non-
Euclidian motions and transfers.  The groups g6, h6 of Euclidian motions and transfers 
will then arise from these groups by passing to the limit.  However, that group will no 
longer be characterized by saying that their transformations fix the absolute conic section.  
Indeed, there are ∞8 singular surfaces of class two, and therefore ∞7 automorphic 
collineations of a conic section.  They define the group g7 of similarity transformations: 
 

(1)     

0 0

1 1 0 11 1 12 2 13 3

2 2 0 21 1 22 2 23 3

3 3 0 31 1 32 2 33 3

,

( ),

( ),

( ),

x x

x a x a x a x a x

x a x a x a x a x

x a x a x a x a x

λ
λ
λ

′ =
 ′ = + + +
 ′ = + + +
 ′ = + + +

 

 
in which, the aik define an orthogonal matrix.  (Cf., no. 103) 
 The group of motions and transfers is contained in (1).  It comes about when one sets 
λ = 1. 
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 Now, let g be a subgroup of an arbitrary group G.  We subject an arbitrary 
transformation t of g to a transformation T of G; i.e., we form t′ = T−1tT.  When the 
resulting transformation t′ is once more a transformation of g, independently of how t and 
T are chosen, one will call g an invariant subgroup of G. 
 One confirms directly that g6 is contained invariantly in g7 . 
 One will now obtain all similarity transformations when one composes the motions 
(and transfers) with the one-parameter group of stretchings from the origin: 
 

(2)     0 0

1 1 2 2 3 3

,

, , .

x x

x x x x x xλ λ λ
′ =

 ′ ′ ′= = =
 

 
These stretchings fix the origin and every point of the imaginary plane individually. 
 The manifold of stretchings (viz., perspective similarity transformations) of all points 
in space – together with the displacements – defines a group g4: 
 

(3)     

0 0

1 1 0 1

2 2 0 2

3 3 0 3

,

,

,

,

x x

x a x x

x a x x

x a x x

λ
λ
λ

′ =
 ′ = +
 ′ = +
 ′ = +

 

 
which is likewise contained invariantly in g7. g6 and g4 intersect in the group g3 of 
displacements: 

(4)     

0 0

1 1 0 1

2 2 0 2

3 3 0 3

,

,

,

,

x x

x a x x

x a x x

x a x x

′ =
 ′ = +
 ′ = +
 ′ = +

 

 
whose transformations commute pair-wise.  g3 is contained invariantly in g6 and g4 . 
 We clarify the relationship between the four groups with a diagram, in which a 
double line shall represent the relationship of being contained invariantly: 
 

 g7 

g6 g4 
 

g3  
 
 

§ 22.  The axes of a linear complex. 
 

 74.  Definition of an axis-pair in non-Euclidian geometry.  A linear complex C is 

linked invariantly with the polar complex C′, relative to the absolute surface F2, namely, 

the locus of all polars to the lines that are contained in C.  Under the map to R5, the reguli 
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of F2 will be mapped to two conic sections in planes E and E′, resp., and one will obtain 
the image points of the polar complexes of C when one subjects the image points of C to 

the involutory collineations that are determined by E and E′ as incidence domains. 
 Now, the complexes C and C′ span a pencil of linear complexes that generally belong 

to two distinct singular complexes.  Its guiding lines are called axes of the linear 
complex. 
 Since the pencil of complexes that is spanned by C, C′ goes to itself under the 

absolute polarity, the pair of axes will also be fixed by that polarity.  It will then consist 
of a pair of polar lines.  E. Study has called the figure that consists of two mutually-polar 
lines a line-cross.  We shall then speak of the axis-cross of a linear complex. 
 One can also arrive at the figure of the axis-cross in the following way: The complex 
C cuts each of the two reguli of F2 in two distinct lines.  They determine an elementary 

quadrilateral that goes to itself under polarity in F2.  The generators of the elementary 
quadrilateral will also belong to the polar complex C′ then, and thus, to the intersection 

congruence of the pencil of complexes that is spanned by C and C′.  The guiding lines of 

the congruence, which are the missing counterparts to the aforementioned elementary 
quadrilateral, are the mutually-polar axes of the complexes. 
 
 
 75.  Classification of the figures that consist of a linear complex and a regular, 
second-order complex.  In the previous number, we assumed a general case that is 
characterized by the fact that the complex C cuts the two generating reguli of the absolute 

surface in two distinct generators.  In R5, the connecting line CC′ will cut 2
4M  at two 

distinct points in this case.  Should these points coincide (i.e., should the axis-pair 
become a doubly-counted axis, which must then be polar to itself and therefore a 
generator of the absolute surface), then the connecting line CC′ would have to contact 

2
4M  at a point of E (or E′).  The polar R4 would then have to contact 2

4M  at the same 

point.  It would then contact the conic section in 24M  that lies in the plane E (or E′), but 

not the one that lies in the other plane.  The elementary quadrilateral would then 
degenerate on F2 accordingly: The two generators of the one family would then coincide 
with the axis of the complex, while the other two would remain distinct. 
 Should the line CC′ belong to 2

4M  completely, then C would have to be a tangent to 

F2 that is different from a generator.  C′ would then be a tangent to a pencil that is 

determined by C, and the entire pencil of tangents would consist of axes of C. 

 The line CC′ will be undetermined when C coincides with C′.  That will happen if and 

only if C belongs to one of the planes E or E′.  The polar R4 will then contain E′ (E, 

resp.), while the complex C will contain one of the two reguli of F2.  We shall then call it 

a “generating complex.”  Such a complex can be regular or singular.  In the latter case, its 
guiding line will be a generator of F2. 
 In summary, we must then distinguish between the following cases: 
 



Classification of the figures that consist of a linear complex and a regular, second-order surface 71 

 I.  Complexes in general position.  (Regular or singular complexes)  Each of the 
reguli of F2 intersect in two distinct generators, which will be two skew polar axes. 
 
 II. Contact complexes: 
 
 a) Regular complex.  One of the two reguli intersects in two coincident generators, 
while the other one intersects in two distinct ones.  The doubly-counted generators will 
be doubly-counted axes. 
 
 b) Singular complexes.  The guiding line is a tangent (that cuts both reguli at two 
coincident generators).  One will have ∞1 axes that fill up the pencil of tangents that is 
determined by the given tangent. 
 
 III. Generating complexes.  They contain one of the two reguli.  The axes will be 
undetermined. 
 
 a) Regular complexes.  The second regulus intersects in two distinct generators. 
 
 b)  Singular complex.  The second regulus intersects in one doubly-counted generator, 
namely, the guiding line of the given complex. 
 
 
 76.  Axes in elliptic and hyperbolic geometry.  Since the absolute surface does not 
possess real generators in elliptic and hyperbolic geometry, but a real complex cuts the 
absolute surface in a real generator figure, possibilities IIa and IIIb will no longer apply 
to either geometry.  Since there are no real absolute tangents in elliptic geometry, IIb will 
also drop out for elliptic geometry.  Finally, the case IIIa is rejected in hyperbolic 
geometry, since two complex-conjugate generators of the sphere will belong to different 
families of generators.  We summarize the results, to the extent that they are concerned 
with hyperbolic geometry: 
 
 Theorem 9: A real, regular, linear complex always has a well-defined reachable axis 
in hyperbolic geometry.  A real, singular complex with a reachable guiding line will have 
that guiding line for a reachable axis.  All of the lines of the pencil of tangents that are 
determined by the given tangents will belong to an absolute tangent as axes. 
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 77.  Axes in Euclidian geometry.  If the absolute surface degenerates into the 
absolute conic then the axis-pair of the complex (in the sense of non-Euclidian geometry) 
will become the axis-pair in the sense of Euclidian geometry.  However, that axis-pair is 
linked invariantly with the complex with respect to similarity transformations, as well. 
 As in non-Euclidian geometry, a polar complex C′ is coupled to a complex C in the 

geometry of similarity transformations.  If [X | X] = 0 is the line equation of the absolute 

conic then the polar complex will have the equation: 
 
(1)      [X | X] = 0. 

It will then have the coordinates: 
 
(2)     0 : 0 : 0 : C01 : C02 : C03 , 

 
and it will itself be singular.  Its guiding line will be called the auxiliary axis of the 
complex C.  It can also be obtained as the polar to the null point: 

 
(3)      0 : C01 : C02 : C03  

 
to the imaginary plane relative to the absolute conic.  The auxiliary axis will be 
undetermined if and only if C is an imaginary line. 

 Under the assumption that C is not an imaginary line, C will be different from its 

auxiliary axis.  Both of them collectively span the pencil: 
 
(4)     (DX) ≡ ξ1 (CX) + ξ2 [C | X] = 0 . 

 
Since one of the singular complexes of the pencil is known already, the other one can be 
determined linearly.  The equation: 
 
(5)     (DD) ≡ ξ1{ ξ1(CC) + ξ2 [C | C]} = 0 

yields: 
(6)      ξ1 : ξ2 = − 2 [C | C] : (CC) . 

 
The equation of the second axis, − viz., the principal axis of the complex C – will then 

read: 
(7)     (PX) ≡ − [C | C] (CX) + 1

2 (CC) [C | X] = 0. 

 
 From no. 11, the principal axis P is the null polar to the auxiliary axis.  It will 

coincide with the auxiliary axis when the expression [C | C] vanishes for the regular 

complex C, so when C is a regular, isotropic complex. 

 If C is a singular, isotropic complex then the minimal line C will cut the auxiliary 

axis, and both of them will span a pencil of axes of the complex. 
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 We summarize the results, to the extent that they are concerned with real figures: 
 
 Theorem 10: A real, regular, linear complex always possesses a well-defined, real, 
proper line as its principal axis: viz., the null polar of its auxiliary axis. 
 A real, singular, linear complex with a proper guiding line has that guiding line for 
its principal axis. 
 A singular linear complex with an imaginary line has no well-defined axis. 
 
 
 78.  Metric properties of linear complexes.  Let (C X) = 0 be a regular complex in a 

real domain, and let (7) be its axis.  Now, if Y is a line of the complex C, so: 

 
(8)     (C Y) = 0, but  [C | Y] ≠ 0, 

then one will have: 
 
(9)   (P Y) = 1

2 (C X) ⋅⋅⋅⋅ [C | Y], [P | Y] = − [C | C] ⋅⋅⋅⋅ [C | Y], 

 
and it will follow from this that: 

(10)     − 
( )PY

[P|Y]
 = 

1
2 ( )CC

[C |C]
= k. 

 
This equation is also true for the lines with [C | Y] = 0 that were excluded above, on the 

grounds of continuity. 
 By assumption, the constant k − namely, the parameter of the linear complex − is 
non-zero.  It is an absolute invariant of the motion.  Since: 
 

(11)   − 
( )PY

[P|Y]
 = − dist PY ⋅⋅⋅⋅ tan ∠ PY = k  [§ 21, (17)], 

one will now have: 
 
 Theorem 11: If P is the principal axis of a real, regular, linear complex C, and X is 

a proper, real line of the complex then the product (distance between P and X) times 

(tangent of the angle between P and X) will be constant. 

 
 This theorem allows us to illustrate the distribution of real lines of a real, linear 
complex from the standpoint of real, metric geometry.  If we think of dist PY as being 

constant then it will follow that tan ∠ PY is also constant; i.e.: 

 
 Theorem 12: Lines of the linear complex with the same distance from the principal 
axis define the same angle with that principal axis. 
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 Now, the larger that dist PY becomes, the smaller that tan ∠ PY will be, and the 

smaller that the angle that the lines of the linear complex make with the principal axis 
will be, as well.  For dist PY = 0, that angle will become π / 2: i.e., the transverse lines 

will be perpendicular to the main axis. 
 It also follows directly from Theorem 11 that: 
 
 Theorem 13: A linear complex C admits an arbitrary rotation around its principal 

axis and an arbitrary displacement along that principal axis; hence (when combined), an 
arbitrary screw around that principal axis. 

§ 23.  The axis surface of a pencil of linear complexes. 
 

 79.  The axis surface in non-Euclidian geometry.  We consider a regular, second-
order surface F2 in space of a regular pencil of linear complexes of types I and IIa.  (Cf., 
no. 75)  The locus of axis-crosses of the linear complex is called the axis surface of the 
pencil of complexes.  The properties of the axis surface are obtained most simply by 
mapping it to R5 . 
 The pencil of complexes will be mapped to a line G that meets neither of the two 
polar image planes E, E′ to the generating complex of F2 relative to 2

4M .  In order to 

obtain the image point of the axis, one must subject the points of the line G to the 
involutory collineations that are determined by E and E′ and intersect the connecting line 
of corresponding points with 2

4M .  However, upon transforming the point sequence on G 

one will obtain a projective point sequence on a second line G′.  By assumption, the lines 
G and G′ are skew, and they span an R3 that intersects Plücker’s 2

4M  in an 2
2M .  In the 

sequel we shall assume that it is regular.  The two projective points sequences of the lines 
G and G′ generate a regulus whose lines cut 22M  in the image points of the desired axis 

surface.  Those image points will then fill up the curve of intersection of two second-
order surfaces, which is a fourth-order curve C4 of the first kind. 
  
 
 80.  Fourth-order space curves.  The fact that the curve of intersection of two 
second-order surfaces is a fourth-order curve, and will thus intersect any plane at four 
points, is explained thusly: Any plane will intersect each of the two second-order surfaces 
in a second-order curve, and these two second-order curves will intersect at four points, 
namely, the points of intersection of the curves with the plane.  With the first two second-
order surfaces, the curve will also contain all surfaces of the pencil that they span, and in 
particular, the four cones of the pencil.  As the basic curve of a pencil of second-order 
surfaces, the fourth-order curve of the first kind is to be contrasted with the fourth-order 
curve of the second kind, which contains only one second-order surface.  The latter curve 
is rational – i.e., capable of a rational parametric representation – while the former is 
elliptic.  A more precise treatment of these curves would require the theory of elliptic 
functions, which would fall beyond the scope of this book. 
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 81.  Fourth-order ruled surfaces of the first kind.  An R4 cuts the connecting R3 of 
G and G′ in a plane, and thus cuts C4 in four points.  Therefore, the axis surface in R3 will 
be cut by a line (that hereafter meets four generators) at four points.  The axis surface will 
then be a fourth-order ruled surface.  As the image of a fourth-order curve of the first 
kind, it is called the fourth-order ruled surface of the first kind. 
 Since the image manifold of the generators of our axis surface is contained in an R3, 
the generators will belong to a linear complex, and it is easy to give its guiding lines.  To 
that end, we think of the image R3 as being spanned by the four points at which the lines 
G and G′ cut the 2

2M .  These four points are the image points of the two singular 

complexes of the pencil of complexes that we started with and the pencil of complexes 
that is polar to it.  The desired guiding lines are then the two, mutually-polar, common 
lines of these four singular complexes.  The guiding lines of the congruence are also 
called the guiding lines of the ruled surface. 
 A (2, 2)-correspondence between the generators of the 2

2M  that is the image 

manifold of our congruence is defined by the C4: A generator of the first kind cuts the 
regulus, and therefore the C4, at two points, and two generators of the second kind will 
emanate from those two points, and conversely.  We will then have a relationship that 
associates one generator of the one kind with two generators of the other kind.  Since the 
generators of the 2

2M  correspond to the points of the guiding lines of our congruence, we 

will find that the ruled surface is generated by a (2, 2)-correspondence between the points 
of its guiding lines. 
 
 Theorem 14: A regular pencil of linear complexes of type I and IIa (cf., no. 75), 
together with the pencil that is polar to it relative to a given, regular F2, will span a 
regular pencil of complexes.  The axis surface of the pencil of complexes is then a fourth-
order ruled surface of the first kind with two skew guiding lines, between which, the 
generators define a (2, 2)-correspondence. 
 
 A more precise examination would teach us that the (2, 2)-correspondence is not the 
most general one.  We shall pass over the examination of the special cases and an 
analytical presentation of our results that would lead to elegant formulas by the use of 
Weitzenböck’s complex symbolism. 
 
 
 82.  The cylindroid.  If the absolute conic appears in place of the absolute surface in 
the construction of the axis surface then the axis surface will decompose into a plane – 
namely, the imaginary plane – and a third-order ruled surface, namely, the (Plücker) 
cylindroid. 
 The axes of a linear complex relative to the absolute conic were explained in no. 77.  
The null points of the imaginary plane relative to the null system of the pencil of 
complexes define a point sequence in the imaginary plane, namely, the polar complexes 
(or auxiliary axes) of the complexes of the pencil that is the polar pencil of lines relative 
to the absolute conic. 
 We once more apply the map to R5 !  The pencil of complexes will be mapped to a 
line G, and the pencil of the polar complexes, to a generator G′ of 2

4M .  We once more 
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assume that the two lines span an R3 that cuts a regular 2
2M  out of 2

4M .  The regulus that 

is generated by the lines G and G′, which are related projectively to each other, now cuts 
2

2M  in a C4, from which, the generator G′ will split off.  The remaining intersection is a 

cubic space curve C3. 
 We would like to call the line G′ a generator of the first kind of the 2

2M .  Any 

generator of the first kind will then cut C3 at two points, and any generator of the second 
kind, at a single point.  (The second point of intersection of the generator with the 
decomposable C4 will lie on the line G′.)  The C3 mediates a (1, 2)-correspondence 
between the generators of the first and second kind of the 2

2M . 

 Just as the C4 decomposes into a line and a third-order space curve in image space, 
the ruled surface will decompose into a pencil of lines and a third-order ruled surface.  
Since the C3 belongs to an R3, the ruled surface will belong to a linear congruence.  One 
of the guiding lines of the congruence will be imaginary.  It will be the guiding line 
whose pencil of lines will be mapped to the generators of the second kind of the 2

2M ; 

any generator of the second kind will then, in fact, cut the line G′.  Every pencil of lines 
that corresponds to a generator of the second kind will then contain an imaginary line. 
 Just as the C3 defines a (1, 2)-correspondence between the lines of the two reguli of 

2
2M , the generators of the ruled surface will mediate a (1, 2)-correspondence between the 

points of the two guiding lines: Every point of the real guiding line will correspond to 
two points of the imaginary one. 
 
 Theorem 15: A regular pencil of linear complexes contains no imaginary lines and 
no minimal lines, and it spans a regular bush of complexes, together with the pencil that 
is polar to it relative to the absolute conic.  The axis surface of the pencil will then 
decompose into a pencil of imaginary lines and a “cylindroid”: viz., a ruled surface of 
order and class 3 with two skew guiding lines that define a line-cross.  The generators 
mediate a (1, 2)-correspondence between the real and imaginary guiding lines. 
 
 A simple construction of the cylindroid then gives: 
 
 Theorem 16: One constructs the common normals to a fixed and a variable 
generator in a regulus.  The result will be a cylindroid. 
 
 The theorem is proved easily with the help of the map to R5 . 
 
 

__________ 
 

 



  

Chapter Six 
 

Ray geometry 
 

§ 24.  Study’s conversion principle (1). 
 

 83.  The mapping equations.  Let Xik be the coordinates of a real complex, which are 

themselves real.  The equations: 
 

(1)     
1 01 23

2 02 31

3 03 12

,

,

X i

X i

X i

= +
 = +
 = +

X X

X X

X X

 

 
will then give a map of a point X in a complex plane to a real, linear complex in R3 .  If 
we multiply the coordinates (1) by a complex factor ρ = σ + iτ: 
 

(2)    
1 01 23 23 01

2 02 31 31 02

3 03 12 12 03

( ) ( ),

( ) ( ),

( ) ( )

X i

X i

X i

ρ σ τ σ τ
ρ σ τ σ τ
ρ σ τ σ τ

= − + +
 = − + +
 = − + +

X X X X

X X X X

X X X X

 

 
then the mapped point X will remain the same, due to homogeneity.  However, its image 
will change; it will consist of a pencil of real, linear complexes.  We would like to replace 
this somewhat non-intuitive figure with a simpler one. 
 The aforementioned pencil will be spanned by the two complexes: 
 

(3)    1 01 02 03 23 31 12

2 23 31 12 01 02 03

: : : : : :

: : : : : :

K

K


 − − −

X X X X X X

X X X X X X
 

 
We see that K1 and K2 are polar relative to the second-order surface: 
 
(4)   (X | X) = 2 2 2 2 2 2

01 02 03 23 31 12+ + − − −X X X X X X  = 0; 

if we polarize: 
 
(5)   (X | Y) = X01Y01 + X02Y02 + X03Y03 − X23Y23 − X31Y31 − X12Y12 = 0 

 
and fix X then that will yield the equation for K2 . 

 (4) is the line equation of the unit sphere: 
 

                                                
 (1) E. Study, Geometrie der Dynamen, Leipzig, 1903, § 23.  “Über Nichteuklidische und 
Liniengeometrie,” Jahresb. d. Deutschen Mathematiker-Vereinigung 11 (1902), pp. 342, et seq.  
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(6)     − 2 2 2 2
0 1 2 3x x x x+ + + = 0, 

 
which will play a distinguished role in what follows.  We are then dealing with 
hyperbolic geometry in the image space. 
 Since K1 and K2 are polar to each other relative to the absolute surface, all of the 
complexes of the pencil that they span will have the same axis.  We then speak of a 
pencil of coaxial complexes. 
 From Chap. V, Theorem 9, we now have two cases to distinguish.  In the first case, 
one is dealing with a pencil with two real, two-dimensional, mutually-polar, skew axes, 
one of which is reachable, while the other one is unreachable, and in the second case, one 
is dealing with a real pencil of tangents. 
 If we now restrict ourselves to the reachable domain as before then we (with E. 
Study) will call the reachable piece of a reachable line a proper ray and a point of the 
absolute sphere an improper ray.  A pencil of the first kind will determine a proper ray in 
a one-to-one and invertible way, while a pencil of the second kind will determine an 
improper ray will one-to-one and invertible manner: 
 
 Theorem 1:  The points of the complex plane are mapped to the (proper and 
improper) rays in hyperbolic space by equations (1). 
 
 
 84.  Ray coordinates.  A ray will then be characterized by six coordinates Xik .  The 

ray coordinates of a line are distinguished from its Plücker coordinates by the fact that 
the former do not need to satisfy the Plücker identity.  One can thus assume that there are 
∞5 rays, while R3 contains only ∞4 lines.  However, we must imagine that the ray 
coordinates possess an extended homogeneity: X will not change when one multiplies 
then by a complex number, which will contain two real quantities.  One can always 
obtain the Plücker coordinates of a line from its ray coordinates by a suitable choice of 
that factor. 
 
 
 85.  The fundamental conic section.  Which points of the complex plane now 
correspond to the improper rays in hyperbolic space?  In order to answer that question, 
we consider the expression: 
(7)     (X Y) = X1 Y1 + X2 Y2 + X3 Y3 , 
 
and substitute it into (1).  It will then follow that: 
 
(8)     (X Y) = (X | Y) + i (XY). 

The two equations: 
(9)     (X | Y) = 0, (XY) = 0 

 
between real quantities follow from the one equation (X Y) = 0 between complex lines; 
i.e.: 
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 Theorem 2: Two points X, Y that are conjugate with respect to the “fundamental 
conic section” (X X) = 0 will be mapped to two rays that intersect each other at right 
angles. 
 
 The figure that consists of two proper rays that intersect at right angles does not need 
to be clarified further.  In order to find a geometric interpretation in the remaining cases, 
we propose to let X and Y be the Plücker coordinates of straight lines by multiplying by 

suitable factors.  If, say, X were then an absolute tangent, and should equations (9) be 

verified then Y, as well as X, would also have to be the polar of X, and they would then 

cut a line that belongs to the same pencil of tangents as X, and would then have to run 

through the vertex of the pencil.  Finally, should the tangents X and Y be simultaneously 

conjugate and incident, then they would need to have the same contact point. 
 
 Theorem 3: A proper ray will intersect an improper ray at right angles when it 
contains the point of the improper ray.  Two improper rays will intersect at right angles 
when they coincide. 
 
 The improper ray is characterized by the equations (X | X) = 0, (XX) = 0.  The 

desired result will then follow from that: 
 
 Theorem 4: The points of the fundamental conic will be mapped to improper rays. 
 
 We make the following remark in regard to that map: The fundamental conic is a 
binary domain as the locus of its points, which, just like a binary domain of points on a 
line, can be mapped to the Gaussian plane or the Riemann sphere in a one-to-one and 
invertible way.  The map that one obtains in this way will be identical to the one in 
Theorem 4, which we assert without proof.  Hence, one can also obtain the map of the 
points in the complex plane to the rays of hyperbolic space as follows (1): 
 Point of the complex plane → point-pair on the fundamental conic (Hesse’s 
conversion principle) → point-pair on the Riemann sphere → ray. 
 
 
 86.  Rays of the second sheet.  Now, let one of two conjugate points X, Y – e.g., X – 
be fixed, and let Y run through the polars to X.  The image ray of Y will then run through 
the normal congruence of the ray X.  We now consider only the axis of that congruence.  
We can then say: A line of the complex will be mapped to the axis of a normal 
congruence.  However, that axis is, at the same time, also the image ray of the pole X of 
the line that we are considering.  If one would wish to distinguish image rays from points 
and lines then that would imply the necessity of doubly-covering the hyperbolic ray 
space: From now on, we shall distinguish between rays X that are the image rays of 
points in the complex plane and rays U that are the image rays of lines in it. 
 

                                                
 (1) F. Klein, “Eine Übertragung des Pascalschen Satzes auf Raumgeometrie,” Math. Ann. 22 = Ges. 
Werke I, pp. 406. 
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 87.  The group of dual collineations.  The conversion principle allows us to convert 
theorems and figures in the complex plane to ones in ray space.  Under it, properties of 
points that are invariant under the group of complex collineations in the plane: 
 

(10)  
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 22 2 33 3

,

,

,

X A X A X A X

X A X A X A X

X A X A X A X

′ = + +
 ′ = + +
 ′ = + +

 | Aik | ≠ 0 

 
will correspond to properties of rays of the first sheet that are invariant under the 
transformations of the group G16

* of dual collineations in hyperbolic space that will 
follow from (10) by means of the conversion principle. 
 The conversion formulas yield: 
 
(11) 01 23i′ ′+X X  = (a11 + i 11a′ )(X01 + i X23)  

    + (a12 + i 12a′ )(X02 + i X31) + (a13 + i 13a′ )(X03 + i X12) 

 
and two analogous equations, and after splitting them into their real and imaginary parts: 
 

(12)  

01 11 01 12 02 13 03 11 23 12 31 13 12

23 11 01 12 02 13 03 11 23 12 31 13 12

,

.....................................................................................

,

...............

a a a a a a

a a a a a a

′ ′ ′ ′= + + − − −

′ ′ ′ ′= + + + + +

X X X X X X X

X X X X X X X

......................................................................








 

 
 Just as the collineation (10) induces a contragredient transformation of the line U, 
(12) will also induce a contragredient transformation of the rays of the second sheet in 
such a way that two rays U and X that intersect at right angles – viz., (U X) = 0 – will go 
to two rays U′, X′ of the same kind. 
 By contrast, the property of two rays from the same sheet intersecting at right angles 
is obviously not invariant under dual collineations.  In particular, the property of a ray 
being proper or improper will not be invariant under those transformations, since a 
collineation (10) does not also, in fact, fix the fundamental conic, in general: The three-
parameter group of automorphic collineations of the fundamental conic corresponds to 
the group G6

* of hyperbolic motions. 
 One obtains the family of transfers from the group of motions when one composes a 
transformation of the group with a special transfer.  One special transfer is the reflection 
through the center of the sphere: 
 
(13)  0x′  = − x0, 1x′  = x1, 2x′  = x2, 3x′  = x3, 

 
which will give: 
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(14)  01 01 02 02 03 03

23 23 31 31 12 12

, , ,

, ,

′ ′ ′= + = + = +
 ′ ′ ′= − = − = −

X X X X X X

X X X X X X
 

 
in line coordinates, so in point coordinates, one will have conjugation: 
 
(15)    1X ′ = 1X , 2X ′ = 2X , 3X ′ = 3X , 

 
which associates every point of the complex plane with its complex-conjugate point. 
 If one composes the group (10) with conjugation then one will obtain the family: 
 

(16)    
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 22 2 33 3

,

,

X A X A X A X

X A X A X A X

X A X A X A X

′ = + +
 ′ = + +
 ′ = + +

 

 
of anti-collineations.  An anti-collineation (16) induces a contragredient anti-collineation 
of the line U in such a way that one will have (U′ X′) = ( )U X .  Therefore, a pair of 
mutually-perpendicular intersecting rays of different sheets will also go to a pair of the 
same kind under a pair of contragredient, dual, anti-collineations.  The anti-collineations 
that fix the fundamental conic will be mapped to the hyperbolic transfers. 
 We summarize: 
 
 Theorem 5: Under the conversion principle, the groups of collineations and anti-
collineations of the complex plane will correspond to the groups G16

*, H16
* of dual 

collineations and anti-collineations of hyperbolic space, resp.  The subgroups of 
automorphic collineations and anti-collineations will then correspond to the subgroups  
G6

*, H6
* of hyperbolic motions and transfers. 

 The dual collineations and anti-collineations are associated pair-wise as 
contragredient transformations.  A pair of contragredient transformations will take a 
pair of perpendicular rays of different sheets to a pair of the same kind. 
 
 

§ 25.  The configuration of Petersen and Morley. 
 

 88.  The common normal to two rays.  If we wanted to find the common normal ray 
to two given rays by the methods of ordinary analytical geometry then we would have to 
perform some rather cumbersome calculations.  With the help of ray coordinates, we can 
write down the result directly: Just as two different points X and Y of the complex plane 
produce a connecting line U = XY without exception, one will have: 
 
 Theorem 6: Two different rays X and Y will always have one and only one common 
normal ray U with the coordinates: 
 
(6)   U1 = X2 Y3 – X3 Y2, U2 = X3 Y1 – X1 Y3, U3 = X1 Y2 – X2 Y1 . 
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 89.  Plücker’s theorem.  We now consider a figure that arises by repeated 
construction of the common normals to three given lines.  We start with a theorem from 
elementary geometry. 
 The altitude theorem says that the altitudes of a triangle intersect in a point.  That 
theorem is capable of being generalized to non-Euclidian geometry and can be expressed 
as follows: 
 
 Theorem 7: Two triangles that are polar with respect to a conic section are 
perspective. 
 
 The connecting lines of corresponding points of the two triangles are the altitudes of 
each of the two triangles, in the sense of the metric that refers to the conic section.  Two 
lines are then said to be orthogonal to each other in the non-Euclidian sense when they 
are conjugate relative to the absolute conic. 
 When two triangles are perspective, from Desargues’s theorem, the points of 
intersection of corresponding sides of the two triangles will lie along a line, namely, the 
axis of the perspectivity.  The figure that consists of two triangles and their sides, the 
center of perspectivity and the axis of perspectivity, the intersection points of 
corresponding sides, and the connecting lines of corresponding vertices defines a (103, 
103) configuration – i.e., each of the ten points of the figure contains three of the lines, 
and each of the ten lines of the figure contains three of the points – which is the 
Desargues configuration.  One can easily show that the configuration that is provided by 
Plücker’s theorem (viz., Theorem 7) is polar with respect to the absolute conic: The two 
starting triangles by which the configuration is determined completely are switched by 
the polarity.  Any line of the configuration will then be the polar to a point of the 
configuration. 
 
 
 90.  The Petersen-Morley configuration (1).  The map that is mediated by the 
conversion principle will take the Desargues configuration that was just described 
(which is polar to itself with respect to the fundamental conic) to a figure that consists of 
ten rays (each ray of which is, at the same time, a ray of the first and second sheet) such 
that each ray will intersect three other ones at right angles. 
 
 Theorem 8: In hyperbolic geometry, there exists a figure of ten rays such that each of 
the rays cuts three other ones at right angles (viz., the Petersen-Morley figure). 
 
 Just as the existence of the Desargues figure is based upon a closing theorem, the 
existence of the Petersen-Morley configuration is, as well.  The theorem reads: 
Construct the common normals to each two of three given rays 1, 2, 3, and obtain the rays 
1′, 2′, 3′.  Then, construct the common normals to the rays 11′, 22′, 33′.  Those three rays 
will admit a common normal.  The aforementioned ten rays define a Petersen-Morley 
configuration.  Naturally, the starting rays must be assumed to be in “general position” in 

                                                
 (1) T. Kubota, “An application of binary quadratic forms to geometry,” Science Rep. Tôhuku Imp. Un. 
6.  H. Beck, “Über einen Satz von Herrn Kubota,” Tôhuku Math. Journ. 24 (1925). 
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such a way that the given construction would make sense.  However, we shall pass over 
the task of presenting the assumptions as inequalities. 
 The figure in Theorem 8 is invariant under hyperbolic motions and transfers, but not 
under all dual collineations and anti-collineations.  In general, if rays that overlap each 
other on different sheets are separated by the application of a general collineation or anti-
collineation (just as a pair of distinct, mutually-polar Desargues figures will arise from 
the Desargues configuration that has a special relationship to the fundamental conic by 
an application of a general collineation or anti-collineation in the plane) then a figure that 
consists of two systems of ten rays such that every ray of the one system cuts three rays of 
the other system at right angles will come about in space. 
 
 

§ 26.  Chains. 
 

 91.  Chains in the complex plane.  The complex plane is four-dimensional as a locus 
of its points.  If one counts the real parameters then it will contain ∞4 points that will be 
mapped to the ∞4 rays of hyperbolic space by the conversion principle.  A curve that lies 
in the complex plane is two-dimensional as a locus of points.  Its image will be an 
(entirely special) ray congruence. 
 One-dimensional point manifolds in the complex plane were called strings by the 
founder of complex geometry C. Segre.  The simplest of them is the chain. 
 In the complex projective geometry of lines of Ch. v. Staudt, one understands a 
chain to mean the locus of all points that define a real double ratio with three given fixed 
points. Since one can always take the three points to three real points by a suitable 
collineation, that definition will be equivalent to the following one: A chain is a locus of 
points that is projectively equivalent to a sequence of real lines.  The real sequence of 
lines is itself a simple example of a chain. 
 The latter definition of a chain leads to a simpler representation of the chain in the 
complex plane, as well.  Let p and q be two distinct, real points in the plane, and let ξ1 : 
ξ2 be their parameters.  The expression: 
 
(1)      ξ1 p + ξ2 q  [p = p , q = q ] 
 
will then represent the real sequence of connecting lines pq.  If one performs an arbitrary, 
complex collineation then (1) will give: 
 
(2)      ξ1 p

* + ξ2 q
*, 

 
in which ξ1, ξ2 will be real parameters, as before, but p*, q* will be two arbitrary complex 
points.  Any chain in the plane can be represented in the form (2).  (Here, a chain seems 
to be determined by two points.  However, in order for the parametric representation to 
make sense, one must demand that p* and q* should be homogeneous in the same way, 
and thus obtain the third point p* + q* for the parameter pair ξ1, ξ2 = 1 : 1.)(1) 

                                                
 (1) A chain will be mapped to a circle under the map of the complex line to the Gaussian plane of the 
Riemann sphere. 
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 A chain of lines is defined dually. 
 
 
 92.  Chains of rays.  Under the conversion, a point-chain will become a one-
dimensional locus of rays that is called a chain of rays.  The image of (2) will then 
become a real sequence in a real pencil of linear complexes.  One seeks the axis-pair 
(axis-pencil, resp.) in each of those complexes, and only the reachable axis in each pair, 
and only the reachable part of it will be considered.  It will then follow that: 
 
 Theorem 9: A chain of rays is the part of the axis surface of a real pencil of 
complexes that lies in the absolute sphere. 
 
 We immediately derive some simple theorems about chains of rays by means of the 
conversion principle: 
 
 Theorem 10: There are ∞7 chains of rays. 
 
 Proof: There are ∞4 straight lines in the complex plane.  There are ∞3 chains on each 
of those lines.  Thus, there are ∞7 chains in the plane, and just as many chains of rays in 
space. 
 
 Theorem 11: Any chain of rays belongs to a normal congruence. 
 
 In fact: A normal congruence is the image of the lines along which the corresponding 
point-chains lie. 
 Since a point-chain is determined by three distinct points of a line, it will ultimately 
follow that: 
 
 Theorem 12: A chain of rays will be determined by three distinct rays of a normal 
congruence. 
 
 Just as the “binary” chain is defined to be a figure that is complex-projectively equivalent to a 
sequence of real lines, the “ternary” line is defined to be the locus of points that is complex-projectively 
equivalent to a sequence of real planes.  Such a chain will be mapped to a certain ray congruence.  We 
cannot concern ourselves with these figures in more detail here, but refer to E. Study’s ground-breaking 
book Geometrie der Dynamen, Leipzig, 1903 for the Euclidian geometry of loci of rays.  For the hyperbolic 
theory, we refer to H. Beck, “The Strahlenketten im hyperbolischen Raume,” Diss. Bonn, 1905.  For 
elliptic geometry, we refer to J. L. Coolidge, “Die dual-projektive Geometrie im elliptischen und 
sphärischen Raum,” Diss. Greifswald, 1904. 
 
 

§ 27.  Passing to the limit of Euclidian geometry. 
 

 93.  Dual numbers.  The complex number a + ib is composed of the two units 1, i 
with real coefficients a, b, in which one has the convention that i2 = − 1.  One can make a 
more general convention and set i2 = − k2, in which k represents a non-zero real number.  
The system of complex numbers that one obtains in that way will not differ essentially 
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from the system of ordinary complex numbers.  However, if one goes to the limit k → 0 
then one will obtain a number system with new properties, namely, the system of dual 
numbers: 
(1)      a + ε b  [a, b real, ε2 = 0]. 
 
Dual numbers are added and multiplied like ordinary complex numbers (while observing 
the convention that ε2 = 0).  Division by a dual number involves calculating the reciprocal 
to the dual number.  The equation: 
(2)      (a + ε b) ⋅⋅⋅⋅ (x + ε y) = 1 
 
will then lead to the system of equations: 
 
(3)      ax = 1;  ay + bx = 0, 
 
which possess a solution only when a ≠ 0.  It will then follow that: 
 

(4)     x + ε y = (a + ε b)−1 = 
2

1

a
(a – ε b). 

 
 
 94.  The conversion formulas of Euclidian geometry.  We now pass to the limit in 
the conversion formulas of (1) in § 24, as well.  Once again, the equations: 
 

(5)      
1 01 23

2 02 31

3 03 12

,

,

X

X

X

ε
ε
ε

= +
 = +
 = +

X X

X X

X X

 

 
will give a map of the point X in the dual plane to a real linear complex in R3 .  However, 
whereas the map of complexes to points is single-valued, a point will be associated with 
∞1 complexes that one obtains when one multiplies the coordinates Xi by a dual 
proportionality factor ρ = σ + ε τ : 
 

(6)     
1 01 23 01

2 02 31 02

3 03 12 03

( ),

( ),

( ).

X

X

X

ρ σ ε σ τ
ρ σ ε σ τ
ρ σ ε σ τ

= + +
 = + +
 = + +

X X X

X X X

X X X

 

 
In general, a pencil of linear complexes that are spanned by the complexes: 
 

(7)     1 01 02 03 23 31 12

2 01 02 03

: : : : : :

: 0 : 0 : 0 : : :

K

K





X X X X X X

X X X
 

 
will come about.  K2 is the auxiliary axis of the complex K1 in the sense of the Euclidian 
metric that refers to the absolute conic: 
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(8)     [X | X] ≡ X01
2 + X02

2 + X03
2 = 0. 

 
 As we know (Chap. V, Theorem 10), the complex K2 is undetermined if and only if 
K1 is an improper line.  If we exclude that case then we will obtain a pencil of coaxial 
linear complexes, in the sense of Euclidian geometry, which determines a principal axis 
uniquely.  We call the figure of such a principal axis a proper ray (of Euclidian 
geometry).  The coordinates Xik are called ray coordinates.  They differ, in turn, from the 

Plücker line coordinates by the fact that they do not need to satisfy the Plücker identity.  
Upon multiplying the Xi by a suitable dual proportionality factor, however, they will go 
to the Plücker coordinates of the corresponding ray. 
 We shall first speak of improper rays later on, since their introduction will create 
greater difficulties than it does in hyperbolic geometry.  For the time being, all rays that 
occur will be assumed to be proper.  Nevertheless, we summarize the results so far: 
 
 Theorem 13: Equations (5) mediate a map of the points in the dual plane to the rays 
of Euclidian space. 
 
 
 95.  Applications (1).  We now pass to the limit with the figures and theorems that we 
derived as applications of the conversion principle in hyperbolic geometry, as well.  We 
first point out the equation: 
(9)     (X Y) = [X | Y] + ε (XY): 

 
 Theorem 14: Two points of the dual plane that are conjugate relative to the 
fundamental conic (X X) = 0 will be mapped to two lines that intersect at right angles, in 
the sense of Euclidian geometry. 
 
 The ∞2 points of a line U that has the point X for its pole will then be mapped to the 
normal net of the line X.  As in hyperbolic geometry, it will then prove to be convenient 
to cover the ray manifold with two sheets.  For two rays X and Y on the first sheet, one 
then obtains the common normal ray U of the second sheet as the image ray of the 
connecting line XY. 
 A Euclidian analogue to the Petersen-Morley configuration will arise by passing to 
the limit (2). 
 Finally, a chain of the dual plane will be mapped to a ray-chain in Euclidian space, 
and just as a chain in the dual plane will generally contain no point of the fundamental 
conic, the chain of lines will also generally contain only proper rays: 
 
 Theorem 15:  The image of a point-chain in the dual plane that does not meet the 
fundamental conic is ray-chain that consists of only proper rays.  That figure is identical 

                                                
 (1) W. Blaschke discussed some applications to differential geometry in his Vorlesungen über 
Differentialgeometrie I (1921), Chap. 7.  
 (2) This is the figure that Petersen and Morley  gave originally.  Cf. E. Study, Geometrie der Dynamen, 
Leipzig, 1903, pp. 107.  
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with the figure of ∞1 real generators of a cylindroid or the figure of a pencil of lines with 
a proper vertex. 
 
 The second case occurs when the pencil of complexes is a pencil of lines with a 
proper vertex. 
 
 
 96.  The group of radial collineations.  By conversion, the groups of collineations 
and anti-collineations of the dual plane will go to the groups G16, H16 of dual 
collineations and anti-collineations of Euclidian ray space, resp.  Similar to the ones in 
(12), § 24, the equations for the collineations will read: 
 

(10)  

01 11 01 12 02 13 03

23 11 01 12 02 13 03 11 23 12 31 13 12

,

,

....................................................................................

a a a

a a a a a a

′ = + +

′ ′ ′ ′= + + + + +

X X X X

........................................

X X X X X X X

.








 

 
 Like the collineations and anti-collineations of the plane, they are paired off as 
contragredient transformations, and such pairs will have the property that they take rays 
from different sheets that intersect at right angles to rays with the same property. 
 As opposed to hyperbolic geometry, however, the groups G16, H16 are not the largest 
groups of transformations that have that property.  A one-parameter group of 
transformations that are not contained in G16, H16, but still have the stated property, is 
defined by the stretchings about the origin, which are given by the equations: 
 

(11)   0x′  = x0 ,  1x′  = λ ⋅ x1 , 2x′  = λ ⋅ x2 , 3x′  = λ ⋅ x3 , 

 
in point coordinates, and thus by the equations: 
 

(12)   01 01 02 02 03 03

23 23 31 31 12 12

, ,

, ,λ λ λ
′ ′ ′= = =

 ′ ′ ′= = =

X X X X X X

X X X X X X
 

 
in line coordinates.  If one combines these with (10) then one will obtain the group G17 of 
radial collineations: 
 

(13)  

01 11 01 12 02 13 03

23 11 01 12 02 13 03 11 23 12 31 13 12

,

{ },

.................................................................................

a a a

a a a a a aλ

′ = + +

′ ′ ′ ′= + + + + +

X X X X

........................................

X X X X X X X

........
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The transformations of this group are also paired off as contragredient, and 
contragredient transformation have the property that they take pairs of perpendicular, 
incident rays of different sheets to pairs of the same kinds. 
 G16 (as well as G16, H16) is contained in this group invariantly.  However, G17 
contains yet another invariant subgroup, namely, the group G9 of radial collineations that 
fix every point of the imaginary plane (any bundle of parallels, as a whole).  The first 
three equations of such a transformation must have the form: 
 
(14)   01′X = X01, 02′X = X02, 03′X  = X03 . 

 
If one sets X01 = X02 = X03 = 0 (as one must if one is to be dealing with the transformation 

of an improper line) then the last three of equations (13) will reduce to: 
 
(15)   23′X = λ X23, 31′X = λ X31, 12′X  = λ X12   [λ ≠ 0]. 

 
The equations for the group G9 will then read: 
 

(16)   

01 01 02 02 03 03

23 23 11 01 12 02 13 03

31 31 21 01 22 02 23 03

12 12 31 01 32 02 33 03

, , ,

,

,

.

a a a

a a a

a a a

λ
λ
λ

′ ′ ′= = =
 ′ ′ ′ ′= + + +
 ′ ′ ′ ′= + + +
 ′ ′ ′ ′= + + +

X X X X X X

X X X X X

X X X X X

X X X X X

 

 
One might believe that the general transformation of the group depends upon ten 
constants.  However, only nine of the constants are essential, since the ray coordinates Xik 

can be replaced with coordinates: 
 
(17)  X01 : X02 : X03 : X23 + τ X01 : X31 + τ X02 : X12 + τ X03 

 
without changing the ray.  However, the quantities: 
 
(18)   11a′  + λτ, 22a′  + λτ, 33a′  + λτ 

 
will appear in place of 11a′ , 22a′ , 33a′ , and one can choose the value of τ in such a way that 

the sum of these quantities will vanish.  Therefore, one can already assume that: 
 
(19)    11a′  + 22a′  + 33a′  = 0 

in (16) from the outset. 
 The groups G16 and G9 intersect in the group G8, whose representation one will obtain 
when one sets λ = 1 in (16).  That group will be contained invariantly in G16 and G9 and 
its transformations will commute pair-wise. 
 We can once more illustrate the connections between the groups by a diagram: 
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G16 

G17 

G8 

G9 

 
 
 This diagram not only represents an analogy with the diagram in no. 73, but it is also 
a generalization of it, in the sense that the groups G contain the corresponding groups g, 
and will even reduce to them as long as one demands that the transformations should not 
separate overlapping rays on different sheets. 
 
 
 97.  Improper rays.  Up to now, we have spoken of only proper rays; i.e., it was 
assumed that at least one of the ray coordinates X01, X02, X03 was non-zero.  In the case 

when X01 = X02 = X03 = 0, it seems natural to regard the line: 

 
(20)    0 : 0 : 0 : X23 : X31 : X12 

 
as the representative of the corresponding improper ray.  By that convention, the open 
continuum of proper rays (in E. Study’s terminology) will be closed into the irregular 
continuum of proper and improper rays. The radial collineations are defined everywhere 
and continuous in that irregular continuum. 
 The continuum is called irregular due to the fact that it exhibits remarkable behavior 
when one wishes to go from a proper ray to an improper one continuously.  We shall 
exhibit that behavior in the example of a pencil of parallels. 
 Let a pencil of parallels be spanned by the improper line 0 : 0 : 0 : X23 : X31 : X12 and 

a line Y that is incident with it: 

 
(21)  (0 : 0 : 0 : X23 : X31 : X12) + t (Y01, Y02, Y03, Y23, Y31, Y12). 

 
If one lets a line of the pencil wander about that pencil then in the limiting case t = 0, it 
will fall upon the improper line X.  In Plücker line geometry, that behavior will describe a 

line by running through a pencil of parallels.  However, in ray geometry, things are 
different. 
 We multiply the ray coordinates: 
 
(22)   X1 = t Y01 + ε{X23 + t Y23}, *, * 

 
by the proportionality factor ρ = σ(t) + ε τ(t): 
 
(23)  ρ X1 = σ(t) t Y01 + ε{ σ(t) X23 + σ(t) t Y23 + τ(t) t Y01}, *, *. 
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If one now goes to the limit and chooses the arbitrary functions σ(t), τ(t) in such a way 
that: 
(24)   

0
lim
t→

σ(t) = σ0 ,  
0

lim
t→

τ(t) ⋅⋅⋅⋅ t = τ0  

 
then equations (23) will go to: 
 
(25)    X1

* =  ε{ σ0 X23 + τ0 Y01}, *, * 

 
as t → 0; i.e., one will obtain an arbitrary ray of the pencil that is spanned by the 
improper rays: 

(26)    23 31 12

01 02 03

0 : 0 : 0 : : :

0 : 0 : 0 : : :





X X X

Y Y Y
 

 
The second of these two rays will be the absolute polar (i.e., auxiliary axis) of the ray Y. 

 
 Theorem 16: If one lets a ray in the irregular ray continuum run through a pencil of 
parallels with the vertex p then one will obtain a pencil of improper rays upon going to 
the improper domain.  The vertex of the pencil will be the point of intersection p′ of the 
absolute polar of p with the improper line of the plane of the given pencil of parallels. 
 
 In order to avoid the difficulty that comes from the fact that a pencil of parallels will 
first become a closed continuum when one adds a pencil of improper rays to it, one can 
agree to combine the ∞1 rays of the pencil into a new concept of point-ray.  One can then 
imagine that a ray that runs through a pencil of parallels (just as in hyperbolic geometry) 
will become a point (viz., the point p′) when one passes to the limit.  The introduction of 
point-rays led to Study’s first, regular ray-continuum (1). 
 
 

§ The invariant (X Y Z). 
 

 98.  Conversion of the invariant.  One of the fundamental invariants (U X) of 
projective geometry in the dual plane can be translated into the language of Euclidian ray 
geometry using equation (9) of the previous paragraph.  We would now like to consider 
the second fundamental invariant (X Y Z), when we, in turn, restrict ourselves to proper 
rays.  Its vanishing says that three points X, Y, Z in a plane belong to a line U.  Hence: 
 
 Theorem 17:  The vanishing of the invariant (X Y Z) represents the necessary and 
sufficient condition for the three rays X, Y, Z to admit a common normal. 
 
 The conversion of the invariant yields: 

                                                
 (1) For an analytical representation of this continuum and the second, regular ray continuum, we refer to 
E. Study, Geometrie der Dynamen, Leipzig, 1903, § 27.  
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(1)     (X Y Z) = (X Y Z) + ε {X Y Z}, 

in which we have set: 

(2)     (X Y Z) = 
01 02 03

01 02 03

01 02 03

X X X

Y Y Y

Z Z Z

, 

(3)   {X Y Z} = 
23 02 03 01 31 03 01 02 12

23 02 03 01 02 03 01 02 12

23 02 03 01 02 03 01 02 12

+ +
X X X X X X X X X

Y Y Y Y Y Y Y Y Y

Z Z Z Z Z Z Z Z Z

 . 

 
 We would now like to interpret the vanishing of the two invariants (2) and (3) 
individually.  For that, we shall assume (as would be permissible) that the ray coordinates 
that occur become Plücker line coordinates upon multiplication by suitable factors. 
 The equation (X Y Z) = 0 says that the improper points of the three lines are 

collinear. 
 
 
 99. A theorem from the metric geometry of second-order surfaces.  In order to be 
able to interpret the equation {X Y Z} = 0, we first make the following remark: If the 

bilinear invariant 
3

, 1
ik ik

i k

a p
=
∑  vanishes for a second-order curve 

3

, 1
ik i k

i k

a x x
=
∑  = 0 and a 

second-class curve
3

, 1
ik i k

i k

p u u
=
∑  = 0 then the order curve will be said to be apolar to the 

class curve.  The ∞1 polar triangles of the class curve can then be inscribed in the order 
curve (and dually).  If it is possible to inscribe one polar triangle of a class curve in an 
order curve then the bilinear invariant of the two curves will vanish, and there will exist 
∞1 triangles of the stated kind. 
 One can apply this theorem to the metric theory of second-order surfaces.  A regular, 

second-order surface
3

, 0
ik i k

i k

a x x
=
∑  = 0 cuts the imaginary plane in the second-order curve 

3

, 1
ik i k

i k

a x x
=
∑  = 0.  We then consider that curve, together with the absolute conic: 

3

, 1
ik i k

i k

p u u
=
∑ = u1

2 + u2
2 + u3

2  = 0. 

 
It then follows immediately that: 
 
 Theorem 18: If one can find three generators in a family of generators of a regular 
second-order surface that are pair-wise perpendicular then the regulus will contain ∞1 
triples of that kind, and the second regulus will contain ∞1 triples of the same kind. 
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 We would like to call a surface with that property orthogonal.  The condition for the 

surface 
3

, 0
ik i k

i k

a x x
=
∑  = 0 to be orthogonal is that its imaginary curve of order 2 must be 

apolar to the absolute conic, and thus reads: 
 
(4)     a11 + a22 + a33 = 0. 
 
 
 100. Interpretation of the equation {X Y Z} = 0.  If we assume that the lines X, Y, 

Z are pair-wise skew then we can consider the second-order surface that is determined by 

those lines.  We can write down its equation directly with the help of Weitzenböck’s 
complex symbolism and calculate the coordinates a11, a22, a33 .  It shows that these 
coordinates are proportional to the three, three-rowed determinants that enter into {X Y 

Z}.  We can then set: 

(5)      {X Y Z} = a11 + a22 + a33 . 

It will then follow that: 
 
 Theorem 19: Let X Y Z be three pair-wise-skew proper lines.  {X Y Z} = 0 is then 

the necessary and sufficient condition for the second-order surface that is determined by 
the three lines to be orthogonal. 
 
 Finally, one can ask how it would follow from the simultaneous validity of the 
equations (XYZ) = 0 and {X Y Z} = 0 that the lines X, Y, Z would admit a common 

normal.  It follows from (XYZ) = 0 that the surface that X, Y, Z determines is a 

paraboloid that cuts the imaginary plane in a pair of lines.  Since {X Y Z} = 0, that will 

be a pair of lines u, v that are polar with respect to the absolute conic.  If the lines X, Y, Z 

cut the imaginary plane at points of the line u then the generator of the second kind 
through the absolute polar of u (which lies on v) will be the desired common normal (1). 
 
 

§ 20.  The dual angle. 
 

 101.  Distance and angle between rays.  In the geometry of automorphic 
collineations of a regular conic section (X X) = 0, two points X, Y are associated with an 
absolute invariant, namely, the distance between the two points in the non-Euclidian 
geometry that relates to the conic (cf., no. 65).  One can also introduce such a definition 
of distance in the non-Euclidian geometry of the dual plane that refers to the fundamental 
conic and set: 

(1)     cos dist X Y = 
( )

( ) ( )

XY

XX YY
. 

                                                
 (1) The contents of this number go back to G. Reuschenbach.  
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We would now like to carry this absolute invariant over to ray space.  We will then obtain 
an invariant with respect to such collineations that does not affect the overlapping of two 
rays on two different sheets, so (from no. 96, conclusion), it will be a Euclidian invariant 
of motion. 
 We set: 
(2)     dist X Y = Θ + ε H. 
One will then have: 
(3)  cos (Θ + ε H) 

 =  cos Θ 
2 2

1
2!

Hε ⋅− + 
 

⋯  – sin Θ 
3 3

3!

H
H

εε ⋅− + 
 

⋯  

 = cos Θ – εH sin Θ. 
 
The right-hand side of (1) converts to: 
 

(4)   
( )

( ) ( )

XY

XX YY
 = 

[ | ] ( )

[ | ] [ | ] [ | ] [ | ]
ε+X Y XY

X X Y Y X X Y Y
. 

 
A comparison with the formulas (15), (18) of § 21 the yields: 
 

 Theorem 20: If one sets cos (Θ + ε H) = 
( )

( ) ( )

XY

XX YY
 then Θ will be the angle, 

and H will be the distance between the rays X, Y. 
 
 

__________ 
 



  

Chapter Seven 
 

Kinematics (1) 
 

§ 30.  Ternary orthogonal transformations. 
 

 102.  Connection with ray geometry.  Euclidian kinematics is the geometry whose 
spatial elements are the motions and transfers of Euclidian space.  Therefore, the 
introduction of coordinates for those motions and transfers – i.e., a parametric 
representation for those transformations − is fundamental for that geometry.  In no. 87, 
we obtained hyperbolic motions by converting the complex, automorphic collineations of 
the fundamental conic.  A parametric representation of hyperbolic motions will then be 
obtained from a parametric representation of those collineations by the conversion 
principle.  One would obtain a parametric representation of Euclidian motions by passing 
to the limit of Euclidian geometry. 
 (We will learn about further connections between ray geometry and kinematics that 
rest upon deeper-lying analogies in §§ 34, 35.) 
 
 
 103.  Orthogonal matrices.  In order to achieve that goal, we must next look for a 
parametric representation of the automorphic collineations of the conic section: 
 
(1)     (x x) ≡ x1

2 + x2
2 + x3

2 = 0. 
 
We would like to appeal to another, somewhat more intuitive, geometric interpretation of 
that problem by regarding x1, x2, x3 as inhomogeneous coordinates for Euclidian space, 
not as homogeneous coordinates for the plane.  If we demand that a linear transformation: 
 

(2)     
1 11 1 12 2 13 3

2 21 1 22 2 23 3

3 31 1 32 2 33 3

,

,

x c x c x c x

x c x c x c x

x c x c x c x

′ = + +
 ′ = + +
 ′ = + +

 

should imply the identity: 
(3)     2 2 2

1 2 3x x x′ ′ ′+ +  = 2 2 2
1 2 3x x x+ +  

 
then we would be demanding that it should fix the square of the distance of the point x 
from the origin.  We would then characterize it as a motion or transfer with the origin as 
its fixed point. 
 If we substitute the value (2) into (3) then it will follow that: 
 
(4)    2

1x′ + … = (c11 x1 + c12 x2 + c13 x3)
2 + … = 2

1x  + …, 

                                                
 (1) E. Study’s investigations into kinematics are found in the Appendix  to Geometrie der Dynamen, 
Leipzig 1903, and in the Berlin lecture “Grundlagen und Ziele der analytischen Kinematik,” Sitz. d. Berl. 
Math. Ges. 12 (1913).  The following numbers 102 to 118 go back to an elaboration upon Study’s lecture 
“Ausgewählte Kapitel aus der höheren Geometrie” that the author completed in the year 1926. 
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and from that, by comparing coefficients: 
 

(5)    

2 2 2
11 21 31 12 13 22 23 32 33
2 2 2
12 22 32 13 11 23 21 33 31
2 2 2
13 23 33 11 12 21 22 31 32

1, 0,

1, 0,

1 0.

c c c c c c c c c

c c c c c c c c c

c c c c c c c c c

 + + = + + =
 + + = + + =
 + + = + + =

 

 
In words: The inner product of each column with itself must have the value 1, while the 
inner product of any two different columns must have the value 0.  A matrix with that 
property will be called orthogonal. 
 From (5), the square of the determinant of an orthogonal matrix will have the value 1, 
so the determinant itself will have the value + 1 or – 1.  One thus distinguishes proper 
and improper orthogonal matrices.  This distinction arises from the difference between 
motions and transfers.  In what follows, we shall assume proper-orthogonal matrices. 
 If we denote the algebraic complement to cik by Cik then we will get the three 
equations: 

(6)     
11 11 21 21 31 31

12 11 22 21 32 31

13 11 23 21 33 31

1,

0,

0.

c C c C c C

c C c C c C

c C c C c C

+ + =
 + + =
 + + =

 

 
If one regards the Cik in them as unknowns then, since the determinant | cik | is non-zero, 
one will have one and only one system of solutions, and from (5), it will be: 
 
(7)    C11 = c11,  C21 = c21, C31 = c31; 
 
in general, one will have: 

Cik = cik . 
 

 Theorem 1: Any element of a proper orthogonal matrix is equal to its algebraic 
complement. 
 
 One has the relations: 

(8)     
11 11 12 12 13 13

21 11 22 12 23 13

31 11 32 12 33 13

1,

0,

0,

c C c C c C

c C c C c C

c C c C c C

+ + =
 + + =
 + + =

 

 
corresponding to (6).  If one replaces the Cik in them with cik , using Theorem 1, then it 
will follow that the inner product of any row with itself must have the value 1, while the 
inner product of two different rows must possess the value 0. 
 
 



96 Chapter Seven: Kinematics 

 104.  Parametric representation of proper orthogonal transformations (1).  
Equations (5) impose six independent conditions on the nine quantities cik .  Only three of 
the coefficients cik are essential then.  One then attempts to represent the cik as functions 
of three of them.  The coefficients c11, c22, c33 will serve as parameters, in their own right.  
In order to represent the remaining coefficients as functions of these parameters, we start 
from the equations [cf. (5)]: 

(9)     

2 2 2
11 12 13
2 2 2
12 22 32
2 2 2
13 23 33

1 ,

1 ,

1 ,

c c c

c c c

c c c

 − = − − −
 + = + + +
 + = + + +

 

 
from which, it will follow by addition that: 
 
(10)    2 2

23 32c c+  = 1 + 2 2 2
11 22 33c c c− − . 

We then infer the equation: 
(11)    2 c23 c32 = − 2c11 + 2c22 c33  
 
from Theorem 1, and can now calculate the squares of the sums and differences of the 
quantities c23, c32 : 

(12)    
2 2 2

23 32 11 22 33
2 2 2

23 32 11 22 33

( ) (1 ) ( ) ,

( ) (1 ) ( ) .

c c c c c

c c c c c

 + = − − −
 − = + − +

 

 
 This representation for c23, c32 is irrational.  In order to obtain a representation in 
rational form, we set: 

(13)    

0 11 22 33

1 11 22 33

2 11 22 33

3 11 22 33

4 1 ,

4 1 ,

4 1 ,

4 1 .

m c c c

m c c c

m c c c

m c c c

= + + +
 = + + −
 = − + −
 = − − +

 

We will then have: 

(14)    

0 1 2 3

11 0 1 2 3

22 0 1 2 3

33 0 1 2 3

1 ,

,

,

,

m m m m

c m m m m

c m m m m

c m m m m

= + + +
 = + − −
 = − + −
 = − − +

 

and 

(15)    
{ }
{ }

23 2 3 0 1

32 2 3 0 1

2 ,

2 .

c m m m m

c m m m m

 = +


= −

 

 

                                                
 (1) Cf., E. Study, “Die Hauptsätze der Quaternionentheorie,” Mitteilungen des nat. Vereins für 
Neuvorpommern und Rügen. 31 Jahrg. 1899.  
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We will obtain all remaining coefficients from (15) by cyclic permutation.  Since the 
roots have a value that is fixed once and for all, we can set: 
 

(16)  0m  = α0 , 1m  = α1 , 2m  = α2 , 3m  = α3 , 

 
and then represent the orthogonal transformations in a rational form (viz., Euler’s 
formulas). 
 Thus, from (14), the relation: 
 
(17)    1 = 2 2 2 2

0 1 2 3α α α α+ + +  

 
exists between the αi .  The αi are therefore not independent of each other.  However, we 
can satisfy equation (17) identically when we divide the αi by the square root of the sum 
of their squares.  To that end, we set: 
 
(18)     cik = aik : a00 
and 
(19)    a00 = 2 2 2 2

0 1 2 3α α α α+ + + . 

 The equations: 

(20)    

2 2 2 2
00 0 1 2 3

2 2 2 2
11 0 1 2 3

2 2 2 2
22 0 1 2 3

2 2 2 2
33 0 1 2 3

,

,

,

,

a

a

a

a

α α α α
α α α α
α α α α
α α α α

 = + + +
 = + − −
 = − + −
 = − − +

 

 
 a23 = 2 {α2 α3 + α0 α1}, a31 = 2 {α3 α1 + α0 α2}, 
 a32 = 2 {α2 α3 − α0 α1}, a13 = 2 {α3 α1 − α0 α2}, 
 a12 = 2 {α1 α2 + α0 α3}, 
 a21 = 2 {α1 α2 − α0 α3} 
 
will then give the desired parametric representation of the coefficients of a proper 
orthogonal transformation. 
 Every quadruple of homogeneous quantities α0 : α1 : α2 : α3  then corresponds to the 
coefficient system of a well-defined proper orthogonal transformation.  However, does 
every proper orthogonal transformation correspond conversely to a quadruple of 
numbers?  That is in fact the case.  One can calculate the αi from the coefficients aik and 
find that: 
(21) 
  α0  : α1  : α2  : α3   
= a00 + a11 + a22 + a33  : a23 − a32 : a31 − a13 : a12 − a21, 
= a23 − a32 : a00 + a11 − a22 − a33  : a12 + a21 : a31 + a13, 
= a31 − a13  : a12 + a21 : a00 − a11 + a22 − a33 : a23 + a32, 
= a12 − a21  : a31 + a13 : a23 + a32 : a00 − a11 − a22 + a33 . 
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It is possible that one of the proportions breaks down, since all terms vanish 
simultaneously.  However, as one easily shows, not all four proportions can be 
simultaneously useless. 
 

 105.  Composition of two proper orthogonal transformations.  We compose two 
proper orthogonal transformations Sa, Sb into a third one Sc .  How do the parameters γi of 
the product transformations depend upon the parameters αi, βi?  If: 
 

(22)   
1 1 2 2 3 3 00

1 1 2 2 3 3 00

1 1 2 2 3 3 00

, ( 1,2,3)

, ( 1,2,3)

, ( 1,2,3)

i i i i a

j j j j b

k k k k c

a x a x a x a x S i

b x b x b x b x S j

c x c x c x c x S k

′+ + = =
 ′′+ + = =
 ′′′+ + = =

 

 
are the three transformations, and the three determinants | aik |, | bik |, | cik | are denoted by 
∆a, ∆b, ∆c, respectively, then one will have: 
 
(23)     ∆a ∆b = ∆c . 
Now, one has: 

(24)    Da = 
3
00

1

a
| aik | = 

3
00

a

a

∆
 = 1, *, * 

 
for the determinant of the proper orthogonal transformation that corresponds to Sa .  
Thus: 
(25)    ∆a = 3

00a , ∆b = 3
00b , ∆c = 3

00c . 

 
For that reason, from (23), one will have: 
 
(26)     3

00a ⋅⋅⋅⋅ 3
00b = 3

00c . 

 
We can, and would like to, establish that: 
 
(27)     a00 ⋅⋅⋅⋅ b00 = c00 . 
 
 The expressions for the remaining cik are also bilinear in the aik and bik: 
 
(28)    a1k bi1 + a2k bi2 + a3k bi3 = cik . 
 
If one replaces the aik in (21) with these values then one will obtain bilinear functions of 
the aik, bik for the corresponding parameters γi : 
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(29) 

            

00 11 22 3 23 32
0 0 1 0

23 32 00 11 22 3
0 1 1 1

31 13 12 21
0 2 1 2

31 1312 21
0 3 1 3

31 13 12 21
2 3 3 0

31 3112 21
2 3 3 1

00 11 22
2 1

; ;
2 2

; ;
2 2

; ;
2 2

; ;
2 2

; ;
2 2

; ;
2 2

c c c c c c

c c c c c c

c c c c

c cc c

c c c c

c cc c

c c c c

ρ γ ρ γ

ρ γ ρ γ

ρ γ ρ γ

ρ γ ρ γ

ρ γ ρ γ

ρ γ ρ γ

ρ γ

+ + + −= =

− + − −= =

− += =

+−= =

− −= =

++= =

− + −= 3 23 32
3 2

23 32 00 11 22 3
2 3 3 3

; ;
2 2

; ;
2 2

c c

c c c c c c

ρ γ

ρ γ ρ γ



















 +=


+ − − + = =  

  
and thus, quadratic functions of the αi and βi, by means of (20).  If one now introduces 
the abbreviations: 
 

(30)  

0 0 1 1 2 2 3 3 0

0 1 1 0 2 3 3 2 1

0 2 2 0 2 0 1 3 2

0 3 3 0 2 0 2 1 3

( , ),

( , ),

( , ),

( , )

α β α β α β α β α β
α β α β α β α β α β
α β α β α β α β α β
α β α β α β α β α β

− − − = Φ
 + + − = Φ
 + + − = Φ
 + + − = Φ

 

 
then equations (29) can be written in the form: 
 
(31) ρ0γi = Φ0 Φi ,  ρ1γi = Φ1 Φi ,  ρ2γi = Φ2 Φi ,  ρ3γi = Φ3 Φi . 
 
Now, not all Φi can vanish here.  If all Φi = 0 then one would have that all γi and all cik 
would vanish, and the product transformation would not be a proper orthogonal 
transformation.  Therefore, at least one Φi is non-zero.  We can identify it with the 
corresponding ρi and thus obtain: 
 

(32)  

0 0 1 1 2 2 3 3 0

0 1 1 0 2 3 3 2 1

0 2 2 0 2 0 1 3 2

0 3 3 0 2 0 2 1 3

,

,

,

.

α β α β α β α β γ
α β α β α β α β γ
α β α β α β α β γ
α β α β α β α β γ

− − − =
 + + − =
 + + − =
 + + − =
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Finally, we can state that the choice of proportionality factor that made corresponds to the 
convention (27). 
 
 Theorem 2: The proper orthogonal transformations can be represented exhaustively 
as bilinear combinations with the help of a quadruple of homogeneous parameters αi . 
 
 

§ 31.  Quaternions. 
 

 106.  Fundamental definitions.  Hamilton ’s quaternions are quadruples of real 
numbers (α0, α1, α2, α3) with which one can calculate by using certain rules.  Two 
quaternions are said to be equal when they have the same coordinates: 
 
(1)   (α0, α1, α2, α3) = (β0, β1, β2, β3),  when αi = βi .  
 
The addition of two quaternions is defined by the formula: 
 
(2)   (α0, α1, α2, α3) + (β0, β1, β2, β3) = (α0 + β0, α1 + β1, α2 + β2, α3 + β3) 
 
and obeys the same rules as the addition of real numbers.  The quaternion (0, 0, 0, 0) will 
be called the zero quaternion. 
 We define the multiplication of the quaternion (α0, α1, α2, α3) by the scalar factor c 
by the equation: 
(3)    c ⋅⋅⋅⋅ (α0, α1, α2, α3) = (c ⋅⋅⋅⋅ α0, c ⋅⋅⋅⋅ α1, c ⋅⋅⋅⋅ α2, c ⋅⋅⋅⋅ α3), 
 
and finally, a third quaternion can be derived from two quaternions by the formula: 
 
(4)    (α0, α1, α2, α3) ⋅⋅⋅⋅ (β0, β1, β2, β3) = (γ0, γ1, γ2, γ3), 
 
in which the γi are defined by equations (32) of the previous paragraph.  We also write: 
 
(5)      α ⋅⋅⋅⋅β = γ 
 
in place of (4), more briefly.  The multiplication that is thus defined is not commutative.  
In general, one has: 
(6)      αβ ≠ βα . 
 
We shall treat commuting quaternions later on. 
 By contrast, one does have the distributivity laws: 
 
(7)   (α + α′ ) β = αβ + α′ β and α (β + β′ ) = αβ + αβ′, 
 
and the associativity law: 
(8)      (αβ) γ = α (βγ) = αβγ. 
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 107.  Units.  In order to be able to summarize the multiplication formulas for two 
quaternions more briefly, we shall compose a quaternion from four units: 
 
(9) (1, 0, 0, 0) = e0, (0, 1, 0, 0) = e1, (0, 0, 1, 0) = e2, (0, 0, 0, 1) = e3, 
 
such that: 
(10)   (α0, α1, α2, α3) = α0 e0 + α1 e1 + α2 e3 + α3 e3 . 
 
The quaternions αi ei are called components of the quaternion α (as opposed to its 
coordinates).  The multiplication formulas give the following values for the 
multiplication of the units: 

(11)    

0 1 2 3

0 0 1 2 3

1 1 0 3 2

2 2 3 0 1

3 3 2 1 0

e e e e

e e e e e

e e e e e

e e e e e

e e e e e

− −
− −

− −

 

 
One infers, e.g., the relation e2 ⋅⋅⋅⋅ e3 = e1 from this multiplication table.  Moreover, it is 
clear from this table that the principal unit e0 behaves like 1 under multiplication.  No 
contradiction will then arise if we identify e0 with 1 in what follows.  The numbers α0 e0 
will then be set equal to ordinary real numbers.  Every quaternion can then be 
decomposed into the sum of its scalar and vectorial components: 
 
(17)   α = Sα + Vα = α0 + (α1 e1 + α2 e2 + α3 e3). 
 
 
 108.  The inverse quaternion.  Similarly to what we do in the theory of ordinary 
complex numbers, we now define: 
 
(13)  αɶ  = Sα – Vα = α0 − (α1 e1 + α2 e2 + α3 e3)  (“α circumflex”) 
 
to be the conjugate quaternion and refer to norm of the quaternion α when we are dealing 
with its product with its conjugate: 
 
(14)    Na = ααɶ  = 2 2 2 2

0 1 2 3α α α α+ + + . 

 
 In order be able to calculate the norm of a product, we must first look for the 
quaternion that is conjugate to the product αβ.  The multiplication formulas yield: 
 

(15)     	αβ  = β αɶ ɶ , 
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and thus (1): 

(16)   N (αβ) = αβ ⋅⋅⋅⋅ 	αβ  = Nα β αɶ  = ααɶ ⋅⋅⋅⋅ Nβ = Nα ⋅⋅⋅⋅ Nβ. 
 
 From now on, we shall assume that the norms of all quaternions that occur shall be 
non-zero.  For such quaternions, one can always solve the equations: 
 
(17)    ξα = 1,  αη = 1, 
and one will find that: 

(18)     ξ = 
N

α
α
ɶ

 = η, 

as one can easily confirm. 
 The quaternion that thus belongs to a quaternion of non-vanishing norm will be 
referred to as the quaternion that is inverse or reciprocal to α, and denoted by α−1. 
 
 
 109.  Commuting quaternions.  We now return to the question of commuting 
quaternions that we suggested above.  We pose the somewhat more general question: 
Under what assumptions are the two products αβ and βα linearly-dependent upon each 
other? 
(19)     αβ = ρ βα. 
We take the norm of both sides: 
 
(20)    N (αβ) = ρ2 N (βα); ρ2 = 1. 
 
We must then distinguish between the cases ρ = +1 and ρ = −1, and thus speak of proper 
and improper commuting quaternions, accordingly. 
 
 1. ρ = +1.  Should one have αβ = βα then one would need to have V(αβ) = V(βα) 
or: 
(21)    α1 : α2 : α3 = β1 : β2 : β3 . 
 
 2. ρ = −1.  Should one have αβ = − βα then the scalar part of the product would 
have to vanish: 
(22)    α0 β0 − α1β 1 − α2 β 2 − α3 β 3 = 0. 
 
In addition, it would follow that: 
 
(23)   α0 β1 + α1 β0 = α0 β2 + α2 β0 = α0 β3 + α3 β0 = 0. 
 
Since the rank of this system of equations (case 1 having been dealt with) is 3, it will 
follow that α0 = β0 = 0, and the relationship (22) will assume the simplified form: 

                                                
 (1) The symbols N, S, V always refer to only the quaternion that follows N, S, V immediately.  If the 
norm, the scalar part, or the vectorial part of a product is intended then the product will be placed in 
brackets.  
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(24)    α1β 1 + α2 β 2 + α3 β 3 = 0 . 
 
We call two quaternions that satisfy equation (24) orthogonal. 
 
 Theorem 3: Properly commuting quaternions are quaternions with proportional 
vectorial parts.  Improperly commuting quaternions have orthogonal vectorial parts. 
 
 

§ 32.  Rotations. 
 

 110.  The axis of a rotation.  Let x1, x2, x3 be inhomogeneous coordinates in space, 
and let: 

(1)      ix′ = 
3

1
ik k

k

c x
=
∑     (i = 1, 2, 3) 

 
be a proper orthogonal transformation.  We assert that we are dealing with a rotation 
around an axis that runs through the origin.  In fact, in order to find a fixed point, we set 

ix′  = xi in (1) and obtain the system of equations: 

 

(2)    
11 1 12 2 13 3

21 1 22 2 23 3

31 1 32 2 33 3

( 1) 0,

( 1) 0,

( 1) 0.

c x c x c x

c x c x c x

c x c x c x

− + + =
 + − + =
 + + − =

 

 
The determinant of this system of equations vanishes.  If one develops it in powers of – 1 
then it will follow, with consideration given to Theorem 1, that: 
 
(3) D  = D ⋅⋅⋅⋅ (−1)0 + (C11 + C22+ C33) ⋅⋅⋅⋅ (−1)1 + (c11 + c22+ c33) ⋅⋅⋅⋅ (−1)2 + (−1)3 

 = 1 − (c11 + c22+ c33) + (c11 + c22+ c33) – 1 = 0. 
 
The system will then have, in fact, ∞1 solutions, in general, which corresponds to a line 
that is fixed point-wise. 
 
 Theorem 4: A proper orthogonal transformation that is different from the identity is 
a rotation around a well-defined axis. 
 
 If denote the imaginary point of the fixed line (viz., the ratio of the direction cosines) 
by r1 : r2 : r3 then we will have [depending upon which row of (2) one uses to calculate 
with]: 

(4)   
1 2 3 11 22 33 12 21 31 13

12 21 11 22 33 23 32

31 13 23 32 11 22 33

: : 1 : : :

: 1 : :

: : 1 :

r r r c c c c c c c

c c c c c c c

c c c c c c c

= + − − + +
 = + + + − +
 = + + − − +
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 If one thinks of the parameter αi as being introduced in place of the cik , as in (20), § 
30, then it will follow that: 
(3)      r1 : r2 : r3 = α1 : α2 : α3 . 
 
 
 111.  Commuting rotations.  The composition of two rotations corresponds to the 
composition of the corresponding quaternions.  Commuting rotations then correspond to 
commuting quaternions.  The relation (5), together with Theorem 3, allows us to give all 
types of commuting rotations directly. 
 Properly-commuting rotations are then rotations around the same axis.  Improperly-
commuting rotations have mutually-orthogonal axes.  However, it follows further from 
α0 = β0 = 0 that aik = aki and bik = bki .  These rotations will then be (cf., Theorem 1) 
identical with the corresponding inverse rotations, so they will be involutory.  We call 
involutory rotations (i.e., rotations through the angle π) reversals.  With that, we have the 
result: 
 
 Theorem 5: There are two types of commuting rotations: Properly-commuting 
rotations are rotations around one and the same axis.  Improperly-commuting rotations 
are reversals around orthogonal axes. 
 
 We remark that the product of two commuting reversals possesses the parameters: 
 

(6)   0

1 2 3 3 2 2 3 1 1 3 3 1 2 2 1

0,

, , .

γ
γ α β α β γ α β α β γ α β α β

=
 = − = − = −

 

 
From that, one sees that one is again dealing with a reversal, and indeed one around an 
axis that is orthogonal to the first two.  The product of three reversals is then the identity.  
(That is, one is dealing with the four-group) 
 
 
 112.  Representation of rotations by quaternion formulas.  In order to write down, 
not only the composition of parameters, but the rotation formulas themselves, with the 
help of quaternions, we start with the point x as a vectorial quaternion: 
 

x = x1 e1 + x2 e2 + x3 e3 . 
The expression: 
(7)      α−1 x α = x′    (Nα ≠ 0) 
 
is a proper orthogonal transformation.  In fact, it follows that: 
 
(8)     Nx′ = Nα−1Nx Nα = Nx. 
  
The transformation thus-represented is then orthogonal.  The facts that it is proper 
orthogonal and that the group of proper orthogonal transformations is exhausted in that 
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way follow from the fact that (7) merely summarizes the explicit formulas that we used 
previously. 
 The new representation yields an especially simple process for the composition of 
two rotations α and β.  It follows from: 
 
(9)     α−1xα = x′,  β−1x′β = x″ 
that 
(10)     β−1α−1 x α β = x″. 
 
If we write αβ = γ then, from no. 108, we can write: 
 
(11)     γ−1xγ = x″, 
in place of (10). 
 
 
 113.  The rotation angle.  In particular, every rotation can be written as the product 
of two reversals in ∞1 ways.  In fact, the presence of the rotational axis will imply the 
existence of a fixed plane through the origin that is perpendicular to the rotational axis.  
The plane will be rotated into itself, and indeed the motion in space will be determined 
completely by that rotation.  Now, the rotation in space can be decomposed into the 
product of two reflections in ∞1 ways.  Spatially, such a reflection corresponds to a 
reversal around the axis of reflection. 
 
 Theorem 6: A rotation can be decomposed into the product of two reversals whose 
axes are perpendicular to the rotational axis in ∞1 ways. 
 
 Any of these axes can be chosen arbitrarily.  The other one will then be well-defined: 
If ϑ is the angle between the two reversal axes then the angle of rotation will be 2ϑ. 
 Now, if α and β are two reversals – so α0 = β0 = 0 – then αβ = γ will be the 
associated rotation, and the quaternion γ will take on the coordinates: 
 

(12)    

0 1 1 2 2 3 3

1 2 3 3 2

2 3 1 3 1

3 1 2 2 1

,

,

,

.

γ α β α β α β
γ α β α β
γ α β α β
γ α β α β

= − − −
 = −
 = −
 = −

 

 
 This argument allows us to give an expression for the rotation angle 2ϑ of the rotation 
ϑ.  The angle ϑ between the reversal axes will be determined by [(15), no. 72]: 
 

(13)    cos ϑ = 1 1 2 2 3 3

N N

α β α β α β
α β

+ +
. 

If we establish the dependency: 
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(14)     N Nα β  = Nγ  

 
between the roots of the norms then we can also write: 
 

(15)     cos ϑ = 0

N

γ
γ

−
 

 
instead of (13).  We then further obtain: 
 

(16)   sin ϑ = 21 cos ϑ−  = 
2
0N

N

γ γ
γ
−

 

 
for ϑ.  Finally, dividing (15) by (16) will give: 
 

(17)     cot ϑ = 0

2
0N

γ
γ γ

−
−

 

 
for the half-angle ϑ of rotation.  With that, − in conjunction with (5) – the ratios γ0 : γ1 : 
γ2 : γ3 can be interpreted geometrically as the parameters of a rotation. 
 
 

§ 33.  Motions and transfers. 
 

 114.  Parametric representation of motions in point coordinates.  We combine 
two quaternions α and β into the dual combination of a biquaternion: 
 
(1)      A = α + ε β. 
 
The rules for the addition and multiplication of biquaternions are obtained from this.  We 
define: 

(2)      Aɶ  = α εβ+ ɶɶ  
 
to be the biquaternion that is conjugate to A.  We define the norm of the biquaternion A to 
be: 
(3)    NA = AAɶ  = (α + ε β) ( )α εβ+ ɶɶ = ( )αα ε αβ βα+ +ɶɶ ɶ . 
 
Under the assumption that Nα ≠ 0 (cf., no. 108), we find that the reciprocal of the 
biquaternion α + ε β  is 

(4)     A−1 = (α + ε β)−1 = 
1

( )
NA

α εβ+ ɶɶ . 
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 If we now apply the conversion principle in no. 94 to the rotation formula α−1xα = x′ 
then we will obtain the equation: 
(5)      A−1 X A = X′. 
 
From the remarks that were made at the beginning of this chapter, we can surmise that 
this equation represents the Euclidian motions in ray coordinates.  Starting with that 
parametric representation, it must then be possible to arrive at a parametric representation 
of the Euclidian motions in point coordinates with the help of the eight homogeneous 
parameters αi , βi .  Since the calculations that are necessary for that prove to be laborious, 
it is preferable to start with the parametric representation in point coordinates and then 
once more arrive at equation (9). 
 We deviate from the convention in the previous paragraph and set: 
 
(6)     x = x0 + x1 e1 + x2 e2 + x3 e3 . 
 
In this, x0 shall be the mass of the point x; we exclude points of mass 0.  Let x0 : x1 : x2 : 
x3 be the homogeneous coordinates of the point x.  In what follows, they themselves shall 
have a geometric interpretation, and not just their ratios, in order to completely exhaust 
the contents of the formulas that will be derived. 
 It now follows from: 
(7)      α−1xα = x′ 
that: 
(8)    Sx = Sx′; α−1Vxα = Vx′  [Nα ≠ 0]. 
 
Hence, the mass of a point will be preserved by the transformation.  The point itself will 
experience a rotation around the origin. 
 We will now obtain a general motion when we compose this rotation with a 
translation: 
(9)    Sx = Sx′; α−1Vxα + x0 ξ = Vx′. 
 
In this, ξ shall denote a vectorial quaternion.  If ξ and α are given then we can always 
determine β in such a way that we will have: 
 
(10)     ξ = − 2α−1β  [β = − 1

2 α ξ]. 

Since ξ is vectorial, the relationship: 
 
(11)    (αβ) = α0 β0 + α1 β1 + α2 β2 + α3 β3 = 0 
 
must exist in this.  We shall call a biquaternion whose coordinates satisfy equation (11) a 
bound biquaternion.  The norm of a bound biquaternion α + εβ will be Nα.  By 
introducing β and considering (11), formulas (9) will assume the following form: 
 

(12)   Sx = Sx′, α−1Vxα − 2x0 
N

αβ
α
ɶ

 = Vx′  [Nα ≠ 0]. 
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In order to combine these two formulas into a single equation, we remark that the first 
one can also be written as: 
(13)     α−1Sxα = Sx′. 
However, one further has: 
 

(14)   αβ βα+ ɶɶ  = 	αβ αβ+ɶ ɶ  = 2S( )αβɶ  = 2(αβ) = 0, 
and for that reason: 

(15)     2αβɶ = αβ βα− ɶɶ . 
 
Due to (15), the second equation (12) can also be written in the form: 
 

(16)    α−1Vxα − { αβ βα− ɶɶ } 0x

Nα
 = Vx′. 

 
Finally, by composing (13) and (16), we will obtain the new equation: 
 
(17)  (α + ε β)−1 (Sx + ε Vx) (α – εβ) = Sx′ + ε Vx′  [Nα ≠ 0]. 
 
In fact, expanding the left-hand side will give: 
 

(18) 
1

Nα
(α + ε β)−1 (Sx + ε Vx) (α – εβ) 

 = 
1

{ } { }Sx Vx Sx Sx
N N

εα α α α α β β α
α α

+ − + ɶɶ ɶ ɶ  

 = α−1Sxα + ε{ α−1Vxα − 0x

Nα
(αβ βα− ɶɶ )}  Q. E. D. 

 
 Theorem 7: Equation (17) gives an exhaustive representation of all Euclidian 
motions in terms of eight homogeneous parameters αi , βi that are coupled by the 
equations (αβ) = 0 and the inequality Nα ≠ 0. 
 
 For: 
(19)     1 : 0 : 0 : 0 : 0 : 0 : 0 : 0, 
 
one will get the identity motion. 
 
 
 115.  Composition of two motions.  Let α, β be the parameters of the first motion, 
and let α′, β′ be the parameters of the second one.  The equation of the product of the two 
motions will then read: 
 
(20) (α′ + ε β′ )−1 (α + ε β)−1 (Sx + ε Vx) (α – εβ) (α′ – εβ′ ) = Sx′ + ε Vx′. 
 
Now, should one have: 
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(21)     (α – εβ) (α′ – εβ′ ) = α″ – εβ″ 
then one would have to set: 
(22)     αα′ = α″; αβ′ + βα′ = β″. 
One would also have: 
(23)    (α′ + ε β′ )−1(α + ε β)−1 = [(α + ε β)(α′ + ε β′ )]−1 

= [αα′  + ε (αβ′ + βα′)]−1 = (α″ + ε β″)−1 
 
then, and one would finally have (1): 
 

(24) (α″ β″ ) = S { }α β′′ ′′ɶ = S 
{ }[ ]αα αβ βα′ ′ ′+    (22) 

  = S { }αα β α αα α β′ ′ ′ ′+ɶ ɶɶ ɶ  

  = S { }α β′ ′ɶ ⋅⋅⋅⋅ Nα + S { }αβɶ ⋅⋅⋅⋅ Nα′ 
  = Nα ⋅⋅⋅⋅ (α′ β′ ) + Nα′ ⋅⋅⋅⋅ (αβ) = 0. 
 
With that, we have shown that the parameters of two motions are composed according to 
the formulas (21). 
 
 Theorem 8:  The composition of two motions corresponds to the composition of the 
corresponding (bound) biquaternions. 
 
 
 116.  Motions in rod and spar coordinates.  Since we have concerned ourselves 
with mass points up to now, in the representation of motions in line space, we will 

employ, not ordinary Plücker coordinates, but rod coordinates.  If one sets X = �xy and 

displaces the points x and y along the line X then the Plücker coordinates will be 

multiplied by a factor.  However, if one keeps the distance between the two points fixed 
during the displacement, for which one can introduce a kind of weight, then the ratios of 
the line coordinates will no longer have the only geometric interpretation, but also the 
line coordinates themselves.  In that context, we shall call them rod coordinates, and 
denote them by p1, p2, p3; q1, q2, q3, such that: 
 
(25)    p1 q1 + p2 q2 + p3 q3 = 0. 
 
Finally, we combine each of the three rod coordinates by the equations: 
 

(26)   1 1 2 2 3 3

1 1 2 2 3 3

,

( ).

p p e p e p e Sx Vy Sy Vx

q q e q e q e V Vx Vy

= + + = ⋅ − ⋅
 = + + = ⋅

 

 
 Now, in order to find the transformation equations for the p and q, we form the 
product of the equations that follow from (17): 
                                                
 (1)   2S{ }αγαɶ  = αγα αγα+ɶ ɶ ɶ = ( )α γ γ α+ ɶ ɶ  

    = α ⋅⋅⋅⋅ 2Sγ ⋅⋅⋅⋅ αɶ = 2Sγ Nα . 
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(27)   
1

1

( ) ( )( ) ,

( ) ( )( ) .

Sx Vx Sx Vx

Sx Vx Sy Vy

α εβ ε α εβ ε
α εβ ε α εβ ε

−

−

′ ′ + + − = +
 ′ ′− − + = −

ɶ ɶɶ ɶ
 

That yields: 
(28)  (Sx′ + ε Vx′)(Sy′ – ε Sy′) = Sx′ Sy′ + ε{ Sy′ Vx′ − Sx′ Vy′} 
 = (α + εβ)−1(Sx + ε Vx) (α – εβ) ( )α εβ− ɶɶ (Sy – ε Vy) 1( )α εβ −+ ɶɶ  

 = (α + εβ)−1(Sx + ε Vx) (Sy – ε Vy) 1( )α εβ −+ ɶɶ ⋅⋅⋅⋅ N (α – εβ) 

 = (α + εβ)−1(Sx Sy + ε { Sy Vx – Sx Vy})( α + εβ), 
 
and from this: 
(29)    p′ = (α + εβ)−1⋅⋅⋅⋅ p ⋅⋅⋅⋅ (α + εβ). 
 
 In order to find the transformation equations for q, we start from the equations (12) 
and (14).  From that: 

(30) 

1

1

2 ,

2 ,

Vx Vx Sx
N

Vy Vy Sy
N

βαα α
α

αβα α
α

−

−

 ′ = + ⋅

 ′ = − ⋅


ɶ

ɶ
 

and therefore: 
 
(31)   Vx′ ⋅⋅⋅⋅ Vy′  

   = α−1Vx Vy α +
2 2

4
N

Vy Sx Vx Sy Sx Sy
N N N

ββ α α β
α α α

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅ɶ ɶ , 

 
(32) V(Vx′ ⋅⋅⋅⋅ Vy′)  

   = V(α−1Vx Vy α) + 	{ } 	{ }1 1
Vy Vy Sx Vy Vx Sy

N N
β α α β α β β α

α α
⋅ ⋅ − − ⋅ ⋅ −ɶ ɶɶ ɶ , 

 

   = α−1V(Vx Vy)α + { } { }1 1
Vy Vy Sx Vy Vx Sy

N N
β α α β α β β α

α α
⋅ ⋅ + − ⋅ ⋅ +ɶ ɶɶ ɶ , 

 

(33)  q′ = α−1qα + 
1

{ }p p
N

α β β α
α

+ ɶɶ . 

 
Equations (29) and (33) can be combined into the equation: 
 
(34)     (α + εβ)−1(p + ε q)(α + εβ) = p′ + ε q′, 
 
which we started with at the beginning of the chapter. [Cf., (5), no. 114]. 
 Finally, we ask about a parametric representation of motions in plane coordinates.  
However, here, as well, we shall not stay in the plane coordinates ui, but assign a 
meaning to the coordinates themselves.  That will come about when we endow the plane 

u with a weight 2 2 2
1 2 3u u u+ +  that can be interpreted as the area of an oriented 
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parallelogram that lies in the plane.  We then speak of a spar.  In spar coordinates, the 
equations of motion will read: 
 
(35)     (α + εβ)−1(Vu + ε Su)(α  − εβ) = Vu′ + ε Su′. 
 
In fact: We will verify that (35) represents the transformation that is contragredient to 
(17) when we confirm the existence of the identity (u′ x′) = (u x).  One will have: 
 
(36)  (Sx′ + ε Vx′)(Vu′ − ε Su) = Sx′ Vu′ − ε {Sx′ Su′ − Vx′ Vu′} 
 = (α + εβ)−1(Sx + ε Vx)(Vu − ε Su)(α  + εβ) 
 = (α + εβ)−1(Sx Vu − ε { Sx Su − VxVu}) (α  + εβ) , 
 
and therefore (cf., rem., pp. ?): 
 
(37) (u′ x′) = S {Sx′ Su′ − Vx′ Vu′} 
  = S {Sx Su – Vx Vu} = (u x).   Q. E. D. 
 
 We summarize the three parametric representations that we just obtained as: 
 

(38)   

1

1

1

( ) ( )( ) ,

( ) ( ) ( ) ,

( ) ( )( ) .

Sx Vx Sx Vx

p q p q

Vu Su Vu Su

α εβ ε α εβ ε
α εβ ε α εβ ε
α εβ ε α εβ ε

−

−

−

′ ′ + + − = +
 ′ ′+ + + = +
 ′ ′+ + − = +

 

 
 
 117.  Parametric representation of transfers.  Parametric representations for the 
transfers will follow from these formulas when we compose the transformations (38) with 
an arbitrary fixed transfer – e.g., the reflection in the origin: 
 
(39)     Vx′ = − Vx; p′ = − p; Su′ = − Su. 
 
If we then replace Vx′, p′, Su′ with – Vx′, − p′, − Su′ on the right-hand sides of (38) then 
we will obtain a parametric representation of the transfers.  We reorganize them by 
replacing ε with – ε everywhere and denoting the parameters of a transfer by γi , δi : 
 

(40)   

1

1

1

( ) ( )( ) ,

( ) ( ) ( ) ,

( ) ( )( ) .

Sx Vx Sx Vx

p q p q

Vu Su Vu Su

γ εδ ε γ εδ ε
γ εδ ε γ εδ ε
γ εδ ε γ εδ ε

−

−

−

′ ′ − − + = +
 ′ ′− − − + = +
 ′ ′− − + = +

 

 
 By what rules do we compose the motions (38) with the transfers (40) now?  If we 
perform the transfer γ′, δ′ on the motion α, β then we will get: 
 
(41) (γ′ − εδ′ )−1(α  − εβ)−1 (Sx − ε Vx)(α  + εβ)(γ′ + εδ′ ) 

= Sx″ + ε Vx″ = (γ″ − εδ″ )−1(Sx − ε Vx)(γ″ + εδ″ ), 
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in which we have set: 
(42)    γ″ + εδ″ = (α  + εβ)(γ′ + εδ′ ) . 
 
One obtains the remaining composition formulas in the same way: 
 

(43)   

( )( ) ,

( )( ) ,

( )( ) ,

( )( ) .

α εβ α εβ α εβ
α εβ γ εδ γ εδ
γ εδ α εβ γ εδ
γ εδ γ εδ α εβ

′ ′ ′′ ′′+ + = +
 ′ ′ ′′ ′′+ + = +
 ′ ′ ′′ ′′+ − = +
 ′ ′ ′′ ′′+ − = +

 

 
With that, we have also shown analytically that the motions and transfers define a 
(laminated) group. 
 If we are dealing with the problem of finding the inverse to just a motion α, β or a 

transfer γ, δ then, as formulas (43) show, we must replace α, β with αɶ , βɶ  and γ, δ with 

γɶ , δɶ ; we will then have [(14), (19)]: 
 

(44)   
( )( ) { } ,

( )( ) { } .

N

N

α εβ α εβ αα ε αβ βα α
γ εδ γ εδ γ γ ε γ δ δ γ γ

 + + = + + =


+ + = + + =

ɶ ɶɶ ɶ ɶ

ɶ ɶɶ ɶ ɶ
 

 
 
 118.  Involutory motions and transfers.  We can now easily determine the 
involutory motions and transfers.  From what we just said, we get the proportions: 
 
(45) α0 :   α1 :   α2 :   α3 : β0 :   β1 :   β2 :   β3 
 α0 : −α1 : −α2 : −α3 : β0 : −β1 : −β2 : −β3  
 
for involutory motions.  In this, there are two possibilities to distinguish: 
 

1 2 3 1 2 31. 0.α α α β β β= = = = = =  

 
It also follows from (αβ) = 0 that α0 β0 = 0, and since Nα ≠ 0, that will also imply that β0 
= 0.  We then have the identity, which we do not count among the involutory 
transformations. 
 

0 0 1 1 2 2 3 32. 0, and since  ( ) 0, also   0.α β αβ α β α β α β= = = + + =  

 
Since we already know one type of involutory motion − namely, the reversal (no. 111) − 
and our derivation shows that only one type exists, we have the conditions for the motion 
α, β to be a reversal.  In order to find the reversal axis, we remark that the given 
condition equation has the form of the Plücker identity.  For that reason, we surmise that 
the reversal axis possesses the Plücker coordinates: 
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(46)  α0 : α1 : α2 : β1 :   β2 :   β3 . 
 
In order to prove that, we seek the fixed points of the motion.  The first of equations (38) 
yields: 

(47)      

1

2 3 3 2 1 3 1 1 3 2 1 2 2 1 3 0 1 1 2 2 3 3

( ) ( )( ) ,

( )( ) ( )( ),

2 0,

( ) ( ) ( ) ( ) 0.

V V Sx Vx V V Sx Vx

Sx Vx V V V V Sx Vx

VxV V Vx SxV

x x e x x e x x e x e e e

α ε β ε α ε β ε
ε α ε β α ε β ε

α α β
α α α α α α β β β

− + + − = +
 + − = + +
 − − =
 − + − + − − + + =

 

 
However, from (14), § 1, that is the condition for the point x to lie on the line (46).  The 
points of that line are therefore fixed points. Q. E. D. 
 
 Theorem 9: There is only one kind of involutory motion, namely, the reversal.  The 
motion α, β is a reversal when: 
 

α0 = β0 = 0 and α1β1 + α2β2 + α3β3 = 0. 
 

Its axis then has the Plückerian coordinates: 
 

α1 : α2 : α3 : β1 : β2 : β3 . 
 

 For involutory transfers, one will have the proportion: 
 
(48)      γ0 :    γ1 :    γ2 :    γ3 :    δ0 : δ1 : δ2 : δ3  
    = γ0 : − γ1 : − γ2 : − γ3 : − δ0 : δ1 : δ2 : δ3 . 
 
There are two cases to distinguish here, as well: 
 

1 2 3 01. 0.γ γ γ δ= = = =  

 
We are dealing with a reflection through the point: 
 
(49)     γ0 : δ1 : δ2 : δ3 . 
 
Namely, in reference to the first of equations (40), if we ask what the fixed point of the 
transfer is then it will follow that: 
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(50) 

1
0 0

0 0

0 0

0

0

( ) ( )( ) ,

( )( ) ( )( ),

0,

,

. Q.E.D.

V Sx Vx V Sx Vx

Sx Vx V V Sx Vx

Sx V V Sx Vx Vx

Sx V Vx

Vx V

Sx

γ ε δ ε γ ε δ ε
ε γ ε δ γ ε δ ε

δ δ γ γ
δ γ

δ
γ

− − − + = +
 + + = − +
 + − − =


=


=


 

 

0 1 2 32. 0.γ δ δ δ= = = =  

 
We are dealing with a reflection in the plane: 
 
(51)     δ0 : γ1 : γ2 : γ3 ; 
 
the first equation in (40) will then yield: 
 

(52)  

0 0

0 0

1 1 2 2 3 3 0 0

0 0 1 1 2 2 3 3

( )( ) ( )( ),

0,

2( ) 2 0,

0.

Sx Vx V V Sx Vx

VxV Sx V Vx Sx

x x x x

x x x x

ε γ εδ γ εδ ε
γ δ γ δ
γ γ γ δ
δ γ γ γ

− + = − −
 − + − + =
 + + + + =
 + + + =

 

 
for the fixed point now.  Every point of this plane will then be fixed individually.Q. E. D. 
 
 Theorem 10: There are two types of involutory transfers: Reflections through points 
and reflection through planes.  The reflection through the point γ0 : δ1 : δ2 : δ3 will have 
the coordinates: 

γ0 : 0 : 0 : 0 : 0 : δ1 : δ2 : δ3 , 
 
while the reflection in the plane δ0 : γ1 : γ2 : γ3 will have the coordinates: 
 

0 : γ1 : γ2 : γ3 : δ0 :  0 : 0 : 0. 
 
 

 119.  Geometric interpretation of the parameters of motion.  From Theorem 9, the 
parameters of motion can be interpreted in one special case in such a way that one can 
characterize the motion completely with the help of that interpretation.  That shall now be 
done in general. 
 We first ask what the proper fixed line of the motion α + εβ would be.  Obviously, 
every motion will possess one proper fixed line, which will be either the line with the ray 
coordinates: 
(53)  (α + εβ)−1 (Vα + εVβ) (α + εβ) = (Vα + εVβ)  [cf., (38)2], 
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or (when that line is undetermined) the proper line of the bundle of parallels with the 
vertex 0 : β1 : β2 : β3 .  As we know, the latter case will occur when Vα vanishes, and thus 
when we are dealing with a translation. 
 If there is no translation present then there will be two cases to distinguish:  Either 
there is a fixed point on the fixed line, and one is dealing with a rotation around that 
point, or there is no fixed point on the fixed axis.  The motion will then be the product of 
a rotation around the axis and a translation along that axis, namely, a screw.  We would 
also like to count the rotations among the screwing motions. 
 
 Theorem 11: Every motion that is different from the identity that is not a translation 
is a screwing motion around a well-defined proper axis. 
 
 Now, such a screwing motion is characterized by two things in addition to its axis: 
The magnitude of the translation 2η and the angle of rotation 2ϑ.  We would like to show 
how one calculates these quantities from the coordinates of motion.  To that end, we start 
with equation (12): 

(54)    α−1 Vx α – 2x0
N

αβ
α
ɶ

 = Vx′  [Na ≠ 0]. 

 
In this, the rotations around the origin are given by the first part of the equation.  They are 
then characterized by the fact that the βi vanish.  Their coordinates are then: 
 
(55)    α0 : α1 : α2 : α3 : 0 : 0 : 0 : 0. 
 
From (17), § 32, the angle of rotation is given by: 
 

(56)     cot ϑ = 0

2
0N

α
α α

−
−

. 

 
A translation should be regarded as the product of the identity rotation Vα = 0 with a 
transformation that is characterized by the quaternion β.  If one substitutes Vα = 0 in 
(54), and then, since (αβ) = 0, β0 = 0, one will obtain a translation: 
 
(57)    α0 : 0 : 0 : 0 : 0 : β1 : β2 : β3 
whose magnitude is: 

(58)    
2

2
( )N

αββα
α
ɶɶ

= 2 ⋅⋅⋅⋅ 
2 2 2

1 2 3

0

β β β
α

+ +
. 

One sets: 

(59)     η = 
2 2 2

1 2 3

0

β β β
α

+ +
−

 

 
and calls 2η the magnitude of translation of the translation. 
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 Theorem 12: A motion α + εβ that is different from the identity and has Vα = 0, β0 = 
0 is a translation in the direction β1 : β2 : β3 whose magnitude is 2η. 
 
 We now go on to the screwing motions and first consider one whose axis runs 
through the origin.  It is composed of a rotation α and a translation σ0 + ε Vα along the 
axis of rotation.  The coordinates of that screw α (σ0 + ε Vα) are then: 
 
(60)    0α ′  : 1α ′  : 2α ′  : 3α ′  : 0β ′  : 1β ′ : 2β ′ : 3β ′  

= σ0 α0 : σ1 α1 : σ2 α2 : σ3 α3 : − 2 2 2
1 2 3( )α α α+ + : α0 α1 : α0 α2 : α0 α3 . 

 
Its translation magnitude and angle of rotation are determined by: 
 

(61)   

2 2 2
1 2 3 0

2 2 2
0 1 2 3

0 0

2 2 2 2 2 2
1 2 3 1 2 3

,

cot .

α α α βη
σ α α α
α αϑ

α α α α α α

 + + ′
 = =

− ′ ′ ′ + +


′− − = = ′ ′ ′ ′ ′ ′+ + + +

 

 
If one now subjects a given screw to a suitable translation then one can always arrange 
that the axis of the screw runs through the origin.  Conversely: If one subjects the screw 
α + ε β to the translation Σ : τ0 + ε Vτ then one will obtain the most general screw Σ−1 S Σ 
= α″ + ε β″.  The quaternion product: 
 
(62)   α″ + ε β″ = (τ0 + ε Vτ)−1 (α + ε β) (τ0 + ε Vτ) 

= 
0

1

τ
{ τ0 α′ + ε [2 (0, 2 3 3 2α τ α τ′ ′− , 3 1 1 3α τ α τ′ ′− , 1 2 2 1α τ α τ′ ′− ) + τ0 β′ ]} 

 
will now have the coordinates: 
 

(63)   

0 0 0 0 0 0

1 0 1 1 0 1 2 3 3 2

2 0 2 2 0 2 3 1 1 3

3 0 3 3 0 3 1 2 1 1

, ,

, 2( ),

, 2( ),

, 2( ).

α τ α β τ β
α τ α β τ β α τ α τ
α τ α β τ β α τ α τ
α τ α β τ β α τ α τ

′′ ′ ′′ ′= =
 ′′ ′ ′′ ′ ′ ′= = + −
 ′′ ′ ′′ ′ ′ ′= = + −
 ′′ ′ ′′ ′ ′ ′= = + −

 

 
The quantities of translation and rotation remain unchanged under the transformation.  
We can then infer them from formulas (61) and find that: 
 

(64)   

0 0

2 2 2 2 2 2
1 2 3 1 2 3

0 0

2 2 2 2 2 2
1 2 3 1 2 3

,

cot .

β βη
α α α α α α

α αϑ
α α α α α α

′ ′′ = = ′ ′ ′ ′′ ′′ ′′+ + + +
 ′ ′′− − = =
 ′ ′ ′ ′′ ′′ ′′+ + + +
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It will then follow that: 
 
 Theorem 13: The screw α + εβ has an axis with ray coordinates Vα + ε Vβ.  Its 
magnitude of translation and its angle of rotation are determined by: 
 

 η =   β0 :
2 2 2
1 2 3α α α+ + , 

 cot ϑ = −α0 : 
2 2 2
1 2 3α α α+ + . 

 
An immediate consequence of this is that: 
 
 Theorem 14: 
 
For β0 = 0, one is dealing with a rotation. For β0 = 0, one is dealing with an 

“unscrewing” (cot ϑ = 0, ϑ = π / 2, 2ϑ = 
π.) 

 
When α0 = β0 = 0, one is dealing with a reversal (1). 
 
 

§ 34.  Map of motions to the points of an 2
6M  in R7 . 

 
 120.  Right-handed and left-handed somas.  When a motion is considered to be a 
spatial element, we (with E. Study) would like to call it a soma.  In order to be able to 
link the concept of a soma to something more intuitive, we proceed as follows: We refer 
to a dreibein of three mutually-perpendicular unit vectors that is fixed once and for all 
(i.e., a coordinate system) as a protosoma.  The protosoma will go to another dreibein 
under a motion α + εβ, and that dreibein will be associated with the motion α + εβ in a 
single-valued and invertible way.  We would like to call that dreibein a soma and call the 
quantities α0 : α1 : α2 : α3 : β0 : β1 : β2 : β3 the coordinates of the soma.  Along with the 
right-handed somas that are defined in that way, we shall also consider left-handed ones: 
 

γ0 : γ1 : γ2 : γ3 : δ0 : δ1 : δ2 : δ3 
 
that emerge from the protosoma by transfers. 
 
 
 121.  Pseudo-somas.  We now interpret the coordinates αi, βi of the soma as the 
homogeneous coordinates of a point in R7 .  A regular 2

6M  in it will then be distinguished 

by the equation: 
(1)     (α β) = α0 β0 + α1 β1 + α2 β2 + α3 β3 = 0 

                                                
 (1) Cf., E. Study, “Von den Bewegungen und Umlegungen,” Math. Ann. 39 (1891).  
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as the locus of the image points of all (right-handed) somas.  However, while every soma 
corresponds to an image point in 26M , not every point of 2

6M  will correspond to a soma.  

Points for which Nα = 0 yield no motion. 
 In order to define the map with no gaps, we then introduce the new concept of 
pseudo-soma.  A pseudo-soma has coordinates of the form: 
 
(2)     0 : 0 : 0 : 0 : β0 : β1 : β2 : β3 . 
 
We would like to attempt to associate pseudo-somas with an intuitive figure in R3 .  For 
that, we can be guided by the analogy to line geometry. 
 A improper line X in R3 will be illustrated by the proper lines of its complex of lines 

of intersection.  Those lines will be represented in the image R5 of line space by points in 
the tangential R4 to 2

4M  at the point X.  We also correspondingly construct the tangential 

R6 to the 2
6M  at the point (2) in the image R7 of soma space.  In the running coordinates 

α″, β″, it will have the equation: 
 

(3)    ( )S βα ′′ɶ  = 0 0 1 1 2 2 3 3α β α β α β α β′′ ′′ ′′ ′′+ + +  = 0. 

 
However, this equation is itself satisfied by the ∞5 somas that one obtains when one 
composes a soma β + εβ * (with an arbitrary β *) with all unscrewings Vα′ + εβ′ (cf., 
Theorem 14): 
(4)     α″ + ε β″ = (β + εβ *)(Vα′ + εβ′). 
In fact, it follows that: 
(5)      α″ = β ⋅⋅⋅⋅ Vα′, 
and thus: 

(6)    ( )S βα ′′ɶ  = ( )S Vββ α ′′ɶ  = Nβ ⋅⋅⋅⋅ S(Vα′ ) = 0.  Q. E. D. 
 
 Theorem 15: If one subjects a soma to all unscrewings then one will obtain a system 
of ∞5 somas that represent a pseudo-soma. 
 
 Theorem 16: The manifold of all somas and pseudo-somas can be mapped to the 
points of a regular 2

6M  in R7 in a single-valued and invertible way. 

 
 In what follows, we shall restrict ourselves to somas, for the sake of simplicity. 
 
 
 122.  Linear spaces in the 2

6M  in R7 .  Just as the manifold of improper lines (as a 

field of planes) can be mapped to a plane in 2
4M , the manifold: 

 
(7)    α0 = 0,  α1 = 0,  α2 = 0,  α3 = 0 
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of all pseudo-somas can be mapped to an R3 in 2
6M .  We shall now direct our attention to 

the linear spaces that lie in 26M . 

 One first sees that linear spaces of higher dimension than R3 cannot lie in 2
6M .  

Namely, a point that lies on 2
6M  must lie on its polar R6, and thus, an Rp that lies on 2

6M  

must lie on its polar R6−p .  For that reason, one must have: 
 
(8)     p ≤ 6 – p, p ≤ 3. 
 
Now, in order to find all R3 that lie in 2

6M , we project 2
6M  stereographically [which is a 

process that C. Segre (1) employed] from one of its points p to an R6 (cf., § 17).  The 
projection is, in general, single-valued and invertible.  The single-valuedness breaks 
down only for the points of the cone 25M  at which the tangential 6R∗  to p cuts 2

6M .  The 

∞1 points that lie on a line of that cone that goes through p will be projected to a point of 
the regular 2

4M  at which the cone 2
5M  cuts R6 .  That 2

4M  will lie in the R5 at which the 

tangential 6R∗  to p cuts through R6 .  We would like to call that R5 the imaginary R5 in R6 . 

 Under projection, the R3 in 2
6M  will be projected to an 3R′  in R6 that cuts the 

imaginary R5 in a plane that lies on 2
4M .  Conversely, an 3R′  of that kind will correspond 

to an R3 that lies on 2
6M .  Now, there are obviously two types of spaces 3R′  to distinguish: 

Ones that cut the 2
4M  in planes of the first kind and ones that cut 24M  in planes of the 

second kind.  There are, correspondingly, two kinds of spaces R3 on 2
6M  to distinguish, 

and indeed, we have ∞3 of each kind, since there are ∞3 planes of each kind on 2
4M , and 

∞6 : ∞3 = ∞3 R3 run through a plane in R6 . 
 We would now like to look for the ways that the two kinds of R3 can intersect.  Two 

3R′  of the same kind cut 2
4M  in two planes of the same kind, which will have a point in 

common, according to Theorem 5 of Chap. II.  The two 3R′  (which, as 3R′ ’s in R6, will 

generally intersect at one and only one point) do not therefore need to have a real point of 
intersection.  Since an imaginary point of intersection (as a point of 2

4M ) would not be 

mapped to a well-defined point of 2
6M , the corresponding R3 will be skew to 2

6M .  

However, in the special case where they have a common point that projects to a real point 
of R6, the corresponding 3R′  will intersect in a line (viz., the connecting line of the real 

point with the imaginary point of intersection), and the R3 in 2
6M  will then have a line in 

common. 
 Conversely, two R3 of different kinds will project onto two 3R′  that cut 2

4M  in two 

planes of different kinds.  From Chap. II, Theorem 5, they will generally be skew.  The 

3R′  must then intersect in a real point that corresponds to the point of intersection of the 

                                                
 (1) C. Segre, “Studio sulle quadriche in uno spazio lineare ad un numero qualunque di dimensioni.  
Sulla geometria della retta e delle sue serie quadratiche,” Mem. Acc. Torino (2) 36 (1884).  
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corresponding R3 on 2
6M .  However, if these R3 had even one common line G in the 

special case (which would then project to a real line G′ in R6) then the two planes on 2
4M  

would have a common point (viz., the imaginary point of G′), and thus a common line, 
from Chap. II, Theorem 5.  The two 3R′  would then intersect in a real plane, namely, the 

connecting plane of the imaginary line that was just found with the line G′.  The 
corresponding R3 in 2

6M  then have a plane in common. 

 
 Theorem 17: The highest-dimensional linear spaces in a regular 2

6M  in R7 are R3’s.  

An 2
6M  contains ∞6 R3’s .  They are divided into two families: Two R3’s of the same 

family will be skew, in general.  However, if they have a point in common then they will 
also intersect along a line.  Two R3’s from different families will generally intersect at a 
point.  However, if they have a line in common then they will also intersect along a plane. 
  
 The method of proof can be easily generalized.  It will then be possible to arrive at a 
statement about regular, quadratic manifolds 21nM −  in Rn .  We will see that the highest-

dimensional linear spaces alternately belong to one system (conic section, 2
3M  in R4) or 

two different systems (point-pairs, second-order surface 2
4M  in R5, 

2
6M  in R7), and that 

on these latter manifolds 2
2qM , two spaces of different kinds will generally be skew for 

even q and incident for odd q. 
 
 
 123.  Linear manifolds of somas (1).  The linear point manifolds on 2

6M  correspond 

to linear manifolds of somas in soma space.  The points of an R3 that belongs to 2
6M  are 

pair-wise conjugate relative to 2
6M .  If we would like to learn more about the manifold of 

somas (which corresponds to the R3 in 2
6M ) then we would first need to examine what 

properties of two somas correspond to the conjugate position of their image points.  We 
assert: 
 
 Theorem 18: Conjugate points of 2

6M  correspond to somas that can go to each other 

by a rotation. 
 
 In fact: We will obtain the product: 
 
(9)     α″ + ε β″ = (α + ε β)−1 ⋅⋅⋅⋅ (α′ + ε β′) . 
 
It will then follow from this that: 

(10)     β″ = 
1

{ }
N

αβ βα
α

′ ′+ ɶɶ  

and 
                                                
 (1) Cf., H. Beck, Math. Ann. 81 (1920), 87 (1922).  
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(11)  Sβ″ = 
1

[ ( ) ( )]S S
N

αβ βα
α

′ ′+ ɶɶ  = 
1

Nα
[(α β′ ) + (β α′)]. 

 
Therefore, Sβ″  = 0 will mean the same thing as: 
 
(12)     (α β′ ) + (β α′) = 0, 
 
and therefore, from Theorem 14, that will lead to the proof. 
 An immediate consequence of this is: 
 
 Theorem 19: The ∞9 lines in 2

6M  correspond to ∞9“chains of rotations”; i.e., one-

dimensional manifolds of somas that arise when one subjects a soma to the ∞1 rotations 
around an axis (Limiting case:  ∞1 translations in a direction).  (∞4 axes ⋅⋅⋅⋅ ∞6 somas = ∞10 
chains of rotations, each of which is counted ∞1 times, however.) 
 
 From the theorem that was just proved, soma-R3’s are three-dimensional manifolds of 
somas with the property that two of the somas can be linked by a chain of rotations. 
 We will find a soma-R3 of the first kind when we subject a given soma to all rotations 
around a point.  There are ∞6 soma-R3’s of that kind.  (∞3 points ⋅⋅⋅⋅ ∞6 somas = ∞9 soma- 
R3’s, each of which is counted ∞3 times, however.) 
 We will find a soma-R3 of the second kind when we subject a given left-handed soma 
to all reflections in all planes in space.  In fact, one can link every right-handed soma that 
is obtained in that way to every other one by a chain of rotations: The product of two 
reflections in a plane is (as one can see immediately or with the help of the algebra of 
quaternions) a rotation around the line of intersection of the two planes.  There are then 
∞6 left-handed somas that correspond to the ∞6 soma-R3’s of the second kind.  It is 
interesting to interpret the incidence conditions between the two kinds of R3 in 2

6M  that 

was given in Theorem 17 in terms of soma geometry. 
 
 

§ 35.  Analogies with ray geometry. 
 

 124.  Parallel, hemi-symmetral, and symmetral somas (1).  In order to make the 
analogy with ray geometry more evident, we set: 
 
(1) A0 = α0 , A01 = α1 , A02 = α2 , A03 = α3 ; 

 A123 = β0 , A23 = β1 , A31 = β2 , A12 = β3 

and 

                                                
 (1) E. Study, Geometrie der Dynamen, Leipzig, 1903, pp. 557.  
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(2)    

0 0 123

1 01 23

2 02 31

3 03 12

,

,

,

.

A

A

A

A

ε
ε
ε
ε

= +
 = +
 = +
 = +

A A

A A

A A

A A

 

 
If we let Xi denote ray coordinates, for the moment, then, from (34), § 33: 
 
(3)     A−1 X A = X′ 
 
will represent the motion of A in ray coordinates.  We can now do without the 
requirement that A must be a bound biquaternion; the biquaternion A represents this 
motion, as does the biquaternion (σ + ε τ) ⋅⋅⋅⋅ A, since the equations: 
 
(4)  (σ + ε τ) XA = AX′ (σ + ε τ)  and XA = AX′  
 
are equivalent, due to the dual homogeneity of the ray coordinates. 
 The quantities Ai can then be regarded as the dual-homogeneous point-coordinates.  
That will then yield a connection with the projective geometry of dual R3 . 
 However, equations (2) further say that kinematics is a generalization of ray 
geometry and contains it as a special case. 
 In order for some analogies to be able to emerge, we pose the problem of finding the 
motion A that takes the soma X to the soma Y.  We find that: 
 
(5)      A = X−1 Y, 
and from it: 

(6)     

0 0 0 1 1 2 2 3 3

1 0 1 1 0 2 3 3 2

2 0 2 2 0 3 1 1 3

3 0 3 3 0 1 2 2 1

,

,

,

.

A X Y X Y X Y X Y

A X Y X Y X Y X Y

A X Y X Y X Y X Y

A X Y X Y X Y X Y

= + + +
 = − − +
 = − − +
 = − − +

 

 
It will then follow from this that: 
 
(7) A0  = [X | Y] = X0 Y0 + X01 Y01 + X02 Y02 + X03 Y03 , 

 
(8) A123  = (X Y) = X0 Y123 + X01 Y23 + X02 Y31 + X03 Y12  

 + X123 Y0 + X23 Y01 + X31 Y02 + X12 Y03  . 

 
We now call two somas parallel when one of them emerges from the other one by a 
translation, hemi-symmetral when the one goes to the other by an unscrewing, and 
symmetral when the second emerges from the first by a reversal. 
 Should the somas X, Y be parallel, then from Theorem 12, one would need to have A0 

= A02 = A03 = 0.  The would yield the three equations: 
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(2)    
0 01 01 0 02 03 03 02

0 02 02 0 03 01 01 03

0 03 03 0 01 02 02 01

0,

0,

0,

− − =
 − − =
 − − =

X Y X Y X Y +X Y

X Y X Y X Y +X Y

X Y X Y X Y +X Y

 

from which: 
(10)   X0 : X01 : X02 : X03 = Y0 : Y01 : Y02 : Y03 . 

 
 Theorem 20: Two somas are parallel when the scalar parts of their coordinates are 
proportional. 
 
 Should the somas X, Y be hemi-symmetral or symmetral, then, from Theorem 14, one 
would need to have A0 = 0 or A0 = A123 = 0.  Hence: 

 
 Theorem 21: Two somas X, Y are hemi-symmetral when [X | Y] vanishes.  They are 

symmetral when: 
(11) (X Y) = X0 Y0 + X1 Y1 + X2 Y2 + X3 Y3  
  = [X | Y] + ε (XY) 

vanishes. 
 
 With that, the analogy to formula (9), § 27 is found. 
 We already spoke of somas that can go to each other by a rotation – viz., conjugate 
somas – above. 
 
 
 125.  The dual angle between two somas.  In order to apply the ideas that were 
introduced, we define the dual angle between two somas X, Y [in analogy with (1), § 29] 
by the equation: 

(12) cos (Θ + ε Η) = 
( )

( ) ( )

XY

XX YY
 

 

= cos Θ – ε H ⋅⋅⋅⋅ sin Θ = 
[ | ]

[ ] [ | ]

X Y

X|X Y Y
+ ε 

( )

[ | ] [ | ]

XY

X X Y Y
. 

 
In this, it is assumed that the coordinates Xi and Yi are multiplied by suitable dual factors, 
such that X, Y become bound biquaternions.  One will then have: 
 

(XX) = (YY) = 0. 

 From (12), one will now have: 
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(13) 
2

[ | ]
cos ,

[ ] [ | ]

[ ][ | ] [ | ]
and therefore sin ,

[ ] [ | ]

 Θ =



− − Θ =


X Y

X|X Y Y

X|X Y Y X Y

X|X Y Y

 

so 

(14)   
2

2

[ | ]
cot ,

[ ][ | ] [ | ]

( )
.

[ ][ | ] [ | ]

− Θ = −

 Η =
 −

X Y

X|X Y Y X Y

XY

X|X Y Y X Y

 

 
If one now considers that from (7), (8), one will have: 
 
(15)  [X | Y] = A0,  (XY) = A123  

and 
(16)  [X | X] [Y | Y] – [X | Y]2 = A01

2 + A02
2 + A03

2 

 
then one will get, on the basis of Theorem 13: 
 
 Theorem 22: If one sets: 
 

cos (Θ + ε H) = 
( )

( ) ( )

XY

XX YY
 

 
then 2Θ will be the angle, and 2H will be the magnitude of translation for the motion that 
takes the soma X to the soma Y. 
 

___________ 
 

 
 


