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Chapter I.  Geometric foundations. 
 

 Introduction . – In order to be able to characterize the physical state of a world-
location by numbers: 
 
 1. The neighborhood of that location must be referred to coordinates. 
 3. Certain units of measurement must be established. 
 
 Up to now, Einstein’s theory of relativity has addressed only the first point – i.e., the 
arbitrariness of coordinate systems.  However, it is important to ascribe just as prominent 
of a position to the second point – i.e., the arbitrariness of the units of measurement.  We 
shall speak about that in what follows. 
 The world is a four-dimensional continuum, and for that reason, can be referred to 
four coordinates x0, x1, x2, x3 .  The transition to another coordinate system ix  will be 

mediated by continuous transformation formulas: 
 
(1)    xi = 0 1 2 3( , , , )if x x x x   (i = 0, 1, 2, 3). 

 
There is nothing to distinguish the various possible coordinate systems intrinsically.  The 
relative coordinates dxi of a point P′ = (xi + dxi) that is infinitely close to the point P = (xi) 
are the components of the infinitesimal displacement PP′

����

 (i.e., a “line element” at P).  
Under the transition (1) to another coordinate system ix , they transform linearly: 

 
(2)     dxi = i

k k
k

dxα∑ . 

 
i

kα  are the values of the derivatives /i kf x∂ ∂  at the point P.  The components ξ i of any 

vector at P transform in the same way.  An “axis-cross” at P is linked with a coordinate 
system in the neighborhood of P that consists of the “unit vectors” ei with the components 

0
iδ , 1

iδ , 2
iδ , 3

iδ : 

k
iδ = 

0

1

i k

i k

≠
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It is just that axis-cross that one must use as a basis in order to be able to characterize 
non-scalar quantities.  The transformation formulas: 
 

ie  = k
i k

k

α∑ e , 

 
which are “contragredient” to (2), exist between the unit vectors ei , ie  of two coordinate 

systems at P.  In the special theory of relativity, the ikα  are constants (i.e., independent of 

position), because the transition functions fi in (1) are always linear in it; that is not the 
case in the general theory of relativity. 
 In order to clarify the dependency of the measurement numbers upon the unit of 
measurement, we address the geometric example of the line segment.  Riemann (1) 
assumed that one could compare the measurements of infinitely-small line segments at 
the same place, as well as at different places, with each other, and the Riemannian 
geometry that is based upon that assumption lies at the foundations of Einstein’s theory 
of gravitation when it is applied to the four-dimensional continuum.  If one establishes a 
certain line segment as one’s unit of measurement (and naturally, it is the same 
everywhere) then any line segment will take on a measurement number l that 
characterizes it completely.  However, for a different choice of unit of measurement, one 
will get a different measurement number l  that emerges from l by the linear 
transformation: 

l  = a l. 
 
In this, a, which is the ratio of the units of measurement, is a universal constant 
(independent of position and line segment).  As one sees, in regard to the question of 
units of measurement, this viewpoint corresponds precisely to the one that the special 
theory of relativity assumes in the context of the axis-cross.  In place of it, the general 
theory of relativity postulates only that a is independent of the line segment, but not of 
position.  One must abandon the assumption that “distant comparison” is possible, which 
is not permissible in a purely “local” geometry, anyway.  Only measurements of line 
segments that are found at the same place can be compared with each other.  The gauging 
of line segments must be performed at each individual world-event, so the problem 
cannot be handed over to a central gauging authority.  However, a principle must enter in 
place of Riemannian distant comparison that allows for the congruent transplantation of 
the line segments at a point P to the points that are infinitely-close to P.  With that, I 
believe, the historical process of the detachment of Euclidian rigidity – i.e., the 
overcoming of distant geometry –  has now terminated.  A pure infinitesimal geometry 
will come about that is, in the same sense, a pure local action theory of physics, just as 
Riemannian geometry is the foundation for the physics that is touched upon in the 
context of Einstein’s general theory of relativity.  I shall summarize the main concepts 

                                                
 (1) “Über die Hypothesen, welche der Geometrie zugrunde liegen,” Mathematische Werke, 2nd ed., 
Leipzig, 1892, no. XIII, pp. 272. 
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and facts of infinitesimal geometry here.  A more thorough presentation is contained in 
the third edition of my book Raum, Zeit, Materie (Springer, to be printed) (1). 
 
 Geometry. – A four-dimensional manifold is affinely-connected when one can be 
certain of what vector at a point P′ every vector at a point P will go to under parallel 
translation; in this, P′ means an arbitrary point that is infinitely close to P.  One demands 
that there should exist a coordinate system about the point P (which I call “geodetic” at 
P) such that the components of any vector at P in or will remain unchanged under parallel 
displacement.  If one employs an arbitrary coordinate system xi, and if P = 0( )ix , P′ = 

0( ix + dxi) in it, and if an arbitrary vector at P has the components ξ i, so the vector that 

emerges from it by parallel translation to P′ is ξ i + dξ i, then one will have an equation 
(2): 
(3)      dξ i = − dγ ir ξ r. 
 
The infinitesimal quantities dγ ir , which do not depend upon the vector ξ, are linear 
differential forms: 

dγ ir = Γi
rs dxs , 

 
whose numerical coefficients Γ – viz., the “components of the affine connection” – 
satisfy the symmetry condition Γi

rs = Γi
sr .  (3) expresses the idea that the parallel 

displacement of P to P′ maps the set of vectors at P affinely (or linearly) to the set of 
vectors at P′.  If the coordinate system is geodetic at P then all Γ will vanish there.  There 
is no difference between the various points of the manifold in regard to the nature of their 
affine connection in the vicinity of P. 
 A metric manifold carries a length determination at every point P; i.e., every vector x 

at P determines a line segment, and there is a quadratic form x2 (with index of inertia 3), 

which depends upon the arbitrary vector x, in such a way that two vectors x and y at P 

will determine the same line segment if and only if x
2 = y2.  The form is established only 

up to an arbitrary positive proportionality factor in that way.  If we choose it in a certain 
way then the manifold will be gauged at P, and we then call x2 = l the length of the line 

segment that is determined by x.  If one changes the gauge then the same line segment 

will take on a different length l  that emerges from l by a linear transformation l = a l (a 
is a positive constant).  Relative to a coordinate system, one expresses x2 for the arbitrary 

vector x with the components ξ i by the formula: 

 
x

2 = i k
ik

ik

g ξ ξ∑  (gki = gik). 

 

                                                
 (1) One can also confer the author’s papers in the Sitz. Preuss. Akad. Wiss. (1918), pp. 465, et seq. and 
Math. Zeit. 2 (1918), pp. 384, et seq. 
 (2) One always sums over indices that appear twice.  
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 However, not only does a metric manifold carry a length determination at every point, 
but it is also metrically connected.  That concept is completely analogous to that of the 
affine connection; as far as vectors are concerned, they are like the line segments.  Any 
line segment at P then goes to goes to a well-defined line segment at the infinitely-close 
point P′ under congruent transplantation.  One must again require that the gauging can be 
arranged (it will then be called geodetic at P) such that the length of any line segment at 
P will remain unchanged under congruent transplantation.  If the manifold is gauged in 
some way, and l is the length of a line segment of P, so l + dl is the length of the line 
segment that arises from it by congruent transplantation to P′, then one will have: 
 
(4)      dl = − l dϕ 
 
as a result, in which dϕ does not depend upon the line segment.  This equation expresses 
the idea that any transplantation will define a similarity map of the line segments at P to 
the line segments at P′.  Secondly, the principal demand that was imposed will teach us 
that dϕ depends linearly upon the shift PP′

����

 (with the components dxi): 
 

dϕ = i i
i

dxϕ∑ . 

 
There is no difference between the various points of the manifold in regard to the nature 
of the length determination that is based at each of them and its metric connection in its 
neighborhood. 
 
 The linear and quadratic fundamental forms: 
 

dϕ = ϕi dxi and ds2 = gik dxi dxk 
 
describe the metric of the manifold relative to a reference system (= coordinate system + 
gauge).  They remain invariant under coordinate transformation, while the second one 
will take on a factor α that is a positive, continuous function of position (viz., the “gauge 
ratio”) under a change of gauge, and the first one will be reduced by the total differential 
d ln α. 
 
 A metric manifold is also affinely connected with no further assumptions.  That is true 
on the basis of the demand that a vector will remain congruent to the line segment that is 
determined by the vector under parallel displacement.  That is the fundamental fact of 
infinitesimal geometry.  If we clarify the process of the lowering of an index i for a 
system of numbers ai (regardless of whether further indices do or do not appear in 
addition to i) once and for all by the equations: 
 

ai = gij a j 
 
(and the opposite process, by their inverses) then the affine connection of a metric 
manifold can be inferred from the formulas: 
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 Γi, kr + Γk, ir = ik

r

g

x

∂
∂

+ gik ϕr (Γi, rs = j
ij rsg Γ ), 

 Γr, ik = 
1

2
ir kr ik

k i r

g g g

x x x

 ∂ ∂ ∂+ − ∂ ∂ ∂ 
+ 1

2 (gir ϕk + gkr ϕi − gik ϕr). 

 
 Let us now recall a geometric notion: Two vectors x and y at P are called orthogonal 

to each other when the symmetric bilinear form (x ⋅⋅⋅⋅ y) that belongs to the quadratic form 

x
2 vanishes for them; that reciprocal relationship is independent of the gauge factor. 

 
 Tensor calculus. – A (twice-covariant, simply-contravariant) tensor (of rank 3) at the 
point P is a linear form in the three series of variables ξ, η, ζ: 
 

3

, , 0

l i k
ik l

i k l

a ξ η ζ
=
∑  

 
that depends upon the coordinate system to which one refers the neighborhood of P, 
assuming that its dependency is of the following type: The expressions for the linear form 
in two coordinate system go to each other when one transforms the first two variables 
cogrediently and the last one contragrediently to the differentials [formula (2)].  The 
concept of a tensor is free of any relationship to the metric or affine connection of the 
manifold.  Scalars fit into the system of tensors as tensors of rank 0.  Tensors of rank 1 
are called “vectors”; as before, we understand the term “vector” with no additional 
qualifier to mean a contravariant vector.  The skew-symmetric covariant tensors play a 
special role and shall be called “linear tensors,” for brevity.    The basic operations of 
tensor algebra by which only tensors at one and the same point P are coupled with each 
other are: addition, multiplication, and contraction; they do not assume that the manifold 
is either metrically or affinely connected.  The same thing is still true for the analysis of 
linear tensors, which tells us how a linear tensor of rank v + 1 can be generally produced 
from one of rank v by differentiation: 
 

i

u

x

∂
∂

= ui , i k
ik

k i

u u
u

x x

∂ ∂− =
∂ ∂

, … 

 
However, the components of the affine connection will enter into the differentiation 
process of general tensor analysis (which is not restricted to the linear tensors).  Hence, 
tensor analysis is first developed completely in an affinely-connected space. (By contrast, 
no metric is assumed).  As an example, we mention: 
 

i
i r
kr

k

u
u

x

∂ − Γ
∂

; 

 
hence, a mixed tensor of rank 2 will arise from the vector field ui. 
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 If ∫ W dx is an integral invariant (I shall write dx briefly for the integration element 

dx0 dx1 dx2 dx3) then W will be a function that depends upon the coordinate system that 

will get multiplied by absolute value of the functional determinant | αi 
k | under the 

transition from one coordinate system to the other.  I shall refer to such a quantity as a 
“scalar density.”  The concept of a tensor density (at the point P) is analogous: It is a 
linear form in several series of variables that depends upon the coordinate system, such 
that this linear form, as it reads in the coordinate system xi , is converted into its 
expression in the coordinate system ix  by multiply by the absolute value of the functional 

determinant and transforming the variables according to the same schema as above.  The 
concept is free of any relationship to the metric or affine connection.  The skew-
symmetric contravariant tensor densities play a special role and shall be called linear 
tensor densities.  Tensors = intensities, tensor densities = quantities.  Whereas the 
distinction between these two types of quantities is blurred over in Riemannian 
geometry, here, we are in a position to make a sharp mathematical distinction between 
intensive and quantitative quantities.  The basic operations of the algebra of tensor 
densities are: addition, multiplication of a tensor by a tensor density, and contraction; 
they assume neither a metric nor an affine connection.  The same thing is true for the 
analysis of the linear tensor densities, which shows one how to produce a linear tensor 
density of rank v – 1 from one of rank v by a process that has the character of a 
divergence: 

i

ix

∂
∂
v

= v, 
ik

i

ix

∂ =
∂
v

v , … 

 
However, the components of the affine connection enter into the divergence and 
differentiation processes of the general analysis of tensor densities.  For example: 
 

k
i

i
kx

β α
α β

∂ − Γ
∂
w

w  ; 

 
in that way, a mixed tensor density wi 

k of rank 2 will arise from a vector density. 

 It is in the nature of tensors and tensor densities that the representative linear forms 
depend upon only the coordinate system but not the gauge, as well.  However, we would 
also like to apply those names in an extended and figurative sense when the linear forms 
depend upon the coordinate systems in the way that was depicted above, but also depend 
upon the gauge, as well, and indeed, in such a way that they will be multiplied by a 
power ae of the gauge ratio under re-gauging [viz., tensors (tensor densities, resp.) of 
weight e].  Just the same, we will regard this extension as only a tool that we would like 
to introduce for the sake of computational convenience.  Namely, the following two 
operations will exist in the extended domain (of which one can naturally speak only in a 
metric manifold): 
 
 1. By lowering an index, the components of a tensor of weight e are converted into 
the components of a tensor of weight e + 1. 
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The character of that index will go from contravariant to covariant in that way.  The 
converse is true for the raising of an index. 
 
 2. A tensor density of weight e + 2 will be produced by multiplying a tensor of 

weight e by g (− g is the determinant of the gik, so g  is the positive square root of 

that positive number g). 
 
The latter operation shall be suggested once and for all by saying that one converts the 
Latin letters that denote a tensor into the corresponding German ones. 
 
 Curvature.  – If a line segment advances congruently along a closed curve then upon 
its return to the starting point, it will not coincide with the starting line segment, in 
general.  In order to find a measure of this “non-integrability” of the transfer of line 
segments, one performs a differential decomposition (precisely as one does with the line 
integral in Stokes’s theorem): One spans a surface with the closed curve, which one 
thinks of as being given by a parametric representation, and decomposes it into infinitely-
small parallelograms by means of the coordinate lines.  One must then determine the 
change ∇l that the length of a line segment experiences when the line segment goes 
around such a surface element that is spanned by the two elements dxi and δxi of the 
coordinate lines while remaining congruent to itself, and thus possesses the components: 
 

∆xik = dxi δxk – dxk δxi . 
One finds that: 

∇l = − l ∇ϕ, 
 
and the factor ∇ϕ in this will depend upon the surface element; namely, one has: 
 

∇ϕ = fik dxi δxk = 1
2 fik ∆xik ,  fik = i k

k ix x

ϕ ϕ∂ ∂−
∂ ∂

. 

 
We can correspondingly refer to the linear tensor fik of rank 2 that is determined uniquely 
by the metric as the line segment curvature of the metric manifold.  Its vanishing is the 
necessary and sufficient condition for the transfer of length to be integrable, and therefore 
Riemannian geometry will be valid for the manifold. 
 The vector curvature has precisely the same relationship to the parallel displacement 
of vectors as the line segment curvature that was just constructed has to the congruent 
transplantation of line segments.  The definition of vector curvature, which we shall also 
refer to casually as “curvature,” assumes only an affine connection on the manifold.  An 
arbitrary vector x will suffer only a change ∇x while circumnavigating our infinitely-

small surface element, which emerges from x by a linear map or “matrix” ∇F: 

 
∇x = ∇F(x), in components ∇ξα = α β

β ξ∇ ⋅F . 

 
∇F also depends linearly upon the surface element here: 
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∇F = Fik dxi δxk = 1
2 Fik ∆xik  (Fki = − Fik). 

 
For that reason, the curvature is best referred to as a “linear matrix tensor of rank 2.”  
However, if we look at the coefficients ikFα

β  of the matrix Fik then the curvature will seem 

to be a tensor of rank four; one has: 
 

(5)    ikFα
β  = ( )k i r r

ri k rk i
i kx x

α α
β β α α

β β

 ∂Γ ∂Γ
− + Γ Γ − Γ Γ  ∂ ∂ 

. 

 
 The vector curvature must include the line segment curvature as a component, since 
the parallel displacement of a vector automatically indeed carries with it the congruent 
transplantation of the line segment that it determines.  In fact, if we decompose ∇x into a 

component *∇x that is orthogonal to x and one that is parallel to x then we will get: 

 
 ∇x = *∇x − 1

2 x ∇ϕ. 

 
 Hand-in hand with that, there is a corresponding splitting of the curvature: 
 
(6)     ikFα

β = 1
2* ik ikF fα α

β βδ− , 

 
whose first component must consequently be called the “direction curvature.”  The 
numbers * ikFα

β  are not only skew-symmetric in the indices i and k, but also in the α and 

β. 
 For later calculations, we shall use the tensor i kFα

α  = Fik that arises by contraction and 

the scalar of weight – 1, i
iF = F, that arises from it by another contraction.  The 

Riemannian curvature quantities that emerge from them by setting the ϕi to zero might 
be denoted by – Rik (− R, resp.).  One then has: 
 

(7)     − F = R + 3
2

( )3
( )

i
i

i
i

g

xg

ϕ ϕ ϕ∂
+

∂
. 

 
 The linear tensor density fik (of weight 0) will arise from the linear tensor fik (in the 

four-dimensional world), and one will get the scalar density: 
 

l = 1
4  fik f

ik 

 
from both of them.  ∫ l dx is the simplest integral invariant that one can construct from the 

metric, and an integral invariant of such a simple structure can exist only in a four-

dimensional manifold.  Naturally, the integral g dx∫  that appears in Riemannian 

geometry has no meaning here. 
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 The static case. – The metric field in the four-dimensional world is a static one when 
one can choose the coordinate system and gauge in such a way that the fundamental 
linear form is equal to ϕ dx0 , and the quadratic form is equal to 2 2

0c dx  – dσ2.  In them, ϕ 

and c (> 0) are functions of only x1, x2, x3, and dσ2 is a positive-definite quadratic form in 
the variables x1, x2, x3 .  x0 is the time coordinate, and x1, x2, x3 are the space coordinates.  
The special form of the fundamental form will not be perturbed by coordinate 
transformations and changes of gauge only when the time coordinate x0 suffers a linear 
transformation in its own right, and, at the same time, the gauge ratio is constant.  In the 
static case, we then get a three-dimensional Riemannian space with the fundamental 
metric form dσ2 and the two scalar fields c and ϕ in that space.  One then chooses the 
units of length and time (cm, sec) as arbitrary units of measurement.  dσ 2 has the 
dimension cm2, the speed of light c has the dimension cm ⋅⋅⋅⋅ sec−1, and ϕ has the 
dimension sec−1.  Namely, one must observe that the three-dimensional space is 
presented, not as an arbitrary metric space (in which the transfer of line elements proves 
to be non-integrable), but as a Riemannian one. 

 
 

 Chapter II.  Field laws and conservation laws. 
 

 Transition to physics. – The special theory of relativity teaches that the world-
geometry that prevails in the four-dimensional world is not based upon a “Galilean” 
metric, but a “Euclidian one.”  However, a disharmony arises from this, since the laws of 
local action of modern physics will then have Euclidian distance geometry at their 
foundations.  In this, one can glimpse a speculative basis for replacing the Euclidian 
world-geometry with the Riemannian one and ultimately with the pure local geometry 
that was just discussed.  Einstein remains rooted in Riemannian geometry.  However, 
two more notions are characteristic of his “general theory of relativity,” along with the 
transition from Euclidian distance geometry to Riemannian local geometry: 
 
 1. The metric is not given a priori, by depends upon the distribution of matter. 
 
In connection with this, the relativity of motion is the only argument by which the theory 
becomes persuasive. 
 
 2. The properties of gravitation (e.g., equality of gravitational and inertial mass) that 
are known from experiment and not understood up to now will become tangible when 
one attributes the gravitational phenomena to the deviation of the metric from the 
Euclidian one, and not to certain forces that act “in” in the metric world. 
 
 Although on first glance its structure deviates completely from the Newtonian theory, 
the theory of gravitation that comes about in that way is in complete agreement with all 
astronomical experiments, as one will see by pursuing its consequences under certain 
simplifying assumptions. 
 The new extension that is presented here is likewise initially concerned with only the 
world-geometric foundations of physics, and as such, represents a consistent expansion of 
relativistic ideas.  However, with just the same power that the relativity of motion 



Weyl – A new extension of the theory of relativity. 10 

compels us towards Einstein’s theory, the belief in the relativity of magnitude will 
compel us to take that additional step.  Just as we were given gravitation by the former 
theory, we are now given electromagnetism.  If we combine the potentials of the 
gravitational field into a quadratic differential form, as Einstein did, then we will know 
that the potentials of the electromagnetic field define the coefficients of an invariant 
linear differential form.  Therefore, it stands to reason that one can identify the 
fundamental linear form that appears along with the quadratic one in the pure local 
geometry with the potential form of the electromagnetic field.  Not only the gravitational 
forces, but also the electromagnetic ones, would then arise from the world metric, and 
since other truly primordial force effects than those two are simply not known to us, the 
theory that would emerge in that way would fulfill the dream of Descartes of a purely-
geometrical physics in a remarkable way that was, admittedly, not at all foreseen by him 
by showing: The conceptual content of physics does not overlap with geometry in any 
way, but only the metric field manifests itself in matter and natural forces.  Gravitation 
and electricity would then be explained by a unifying source.  The entire wealth of 
experiments by which Maxwell’s theory is established speaks for those ideas.  Here (in 
infinitesimal geometry), as there (in Maxwell’s theory), the linear form ϕi dxi is then 
determined only up to an additive total differential, and it is only the “field” (= line 
segment curvature) that is derived from it: 
 

fik = i k

k ix x

ϕ ϕ∂ ∂−
∂ ∂

, 

and which satisfies the equations: 

kl li ik

i k l

f f f

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

 = 0, 

 
that will be free of arbitrariness.  The electromagnetic quantity of action that Maxwell’s 
theory obeys: 

dx∫ l  = 1
4

ik
ikf dx∫ f , 

 
is also obtained here as an invariant, and in fact, as the simplest integral invariant that 
exists at all.  Not only does it lead to a deeper understanding of Maxwell’s theory, but 
even the fact that the world is four-dimensional, which was always accepted as 
“coincidental” up to now, will become understandable.  The cited basis seems to me to be 
perhaps rigorously equivalent to the one that led Einstein to with his general theory of 
relativity, and its speculative character might also emerge as even more blatant to us.   
 At first, it might be suspicious (1) that in pure local geometry the transfer of line 
segments is not integrable when an electromagnetic field is present.  Is that not in flagrant 
contradiction to the behavior of rigid bodies and clocks?  However, the functioning of 
those measuring instruments is a physical process whose evolution is determined by the 
laws of nature, and as such has nothing to do with the ideal process of the “congruent 
transplanting of world-line segments” that we appealed to as the mathematical structure 

                                                
 (1) For an objection to the theory that is proposed here that Einstein formulated, cf., the Addendum to 
the author’s aforementioned note to the Akademie. 
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of world-geometry.  Even in the special theory of relativity, the connection between the 
metric field and the behavior of yardsticks and clocks will become entirely opaque as 
soon as one does not restrict oneself to quasi-stationary motion.  Hence, those 
instruments also play a role that is indispensible in practice as indicators of the metric 
field (simpler processes – e.g., the spreading of light – would be theoretically preferable 
for that purpose), so it would obviously be wrong to define the metric field by the 
information that is extracted from them directly.  We must return to that question after we 
have presented the laws of nature. 
 The implementation of the theory must show whether it is confirmed.  The Maxwell-
Lorentz theory was characterized by the duality of matter and the electromagnetic field.  
That was eliminated by Mie’s theory (1) (based upon the special theory of relativity).  
However, the juxtaposition of the electromagnetic field (“matter in the extended sense,” 
as Einstein said) with the gravitational field appeared in its place by considering 
gravitation.  He showed that most clearly by splitting the Hamilton  function that 
Einstein’s theory is based upon into two pieces (2).  That splitting will also be avoided in 
our theory.  The integrand of the quantity of action ∫ W dx must be a scalar density that 

arises from the metric, and the laws of nature must be summarized in Hamilton ’s 
principle: For any infinitesimal change δ of the world-metric that vanishes outside of a 
finite domain, the change in the total quantity of action: 
 

dxδ ∫W  = dxδ∫ W  

 
will be equal to zero. (The integral extends over all of the world, or – what amounts to the 
same thing – over a finite domain, outside of which the variation δ vanishes.)  The 
quantity of action is necessarily a pure number in our theory; indeed, it could not be 
otherwise if a quantum of action were to exist.  We assume that W is a second-order 

expression; i.e., it is, on the one hand, constructed from the gik and their derivatives of 
first and second order, and on the other hand, from the ϕi and their first-order derivatives.  
The simplest example is the Maxwell action density l.  However, in this chapter, we 

would not like to make any special Ansatz for W, but to investigate what one can 

conclude from only the fact that ∫ W dx is a coordinate-invariant and gauge-invariant 

integral.  We shall then appeal to a method that was given by F. Klein (3). 
 
 Consequences of the invariance of the quantity of action. 
 
 a) Gauge invariance.  If we give infinitely-small increases δϕi , δgik to the quantities 
ϕi , gik that describe the metric relative to a reference system, and if X means a finite 

world-domain then the effect of partial integration is that the integral of the associated 

                                                
 (1) Ann. Phys. (Leipzig) 37, 39, 40 (1912/13).  
 (2) Cf., Einstein, “Hamilton’s Prinzip und allgemeine Relativitätstheorie,” Sitz. Preuss. Akad. Wiss. 
(1916), pp. 1111. 
 (3) Nachr. d. Ges. d. Wiss. zu Göttingen, Session on 19 July 1918.  
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change δ W in W over the domain X will split into two parts: a divergence integral and 

an integral whose integrand is only a linear combination of δϕi and δgik : 
 

(8)   dxδ∫
X

W  = 1
2

( )
( )

k
i ik

i ik
k

dx g dx
x

δ δϕ δ∂ + +
∂∫ ∫

X X

v
w W  {Wki = Wik}. 

 
In this, wi, δ vi are the components of contravariant vector densities, but i

kW  is a mixed 

tensor density of rank 2 (in the proper sense).  The components δ vi are linear 

combinations of: 

δϕi , δgik and δgik, r ,
ik

ik r
r

g
g

x

 ∂= ∂ 
. 

 

 We now express the idea that dx∫
X

W  does not change when the gauge of the world 

changes infinitesimally.  If α = 1 + π is the ratio of the varied gauge to the original one 
then π will be an infinitesimal scalar field that characterizes the process that can be given 
arbitrarily.  The fundamental quantities will experience the increments: 
 

(9)    δgik  = π ⋅⋅⋅⋅ gik ,  δϕi = − 
ix

π∂
∂

 

 
under that process.  If we substitute these values in δ vi then the expression: 

 

(10)    s
k (π) = π ⋅⋅⋅⋅ sk +

xα

π∂
∂

⋅⋅⋅⋅ hkα 

 
might emerge.  The variation (8) of the action integral must vanish for (9): We then 
formulate the fact of gauge invariance as: 
 

1
2

( )
( )

k
i i

i
k i

dx dx
x x

π π π∂ ∂+ − +
∂ ∂∫ ∫

X X

s
w W = 0. 

 
If one converts the first term in the second integral by partial integration then one can 
write: 

(11)   1
2

( ( ) )k k i
i
i

k i

dx dx
x x

π π π
 ∂ − ∂+ + ∂ ∂ 

∫ ∫
X X

s w w
W  = 0 

 
in place of this.  That will next imply the identity: 
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(12)     1
2

i
i
i

ix

∂ +
∂
w

W = 0 

 
in the way that is well-known from the calculus of variations: If this function of position 
were non-zero at a location (xi) – say, positive – then one could delimit a neighborhood X 

of that location that is small enough that the function would remain positive in all of X.  

If one chooses that domain to be X in (11), but π is a function that vanishes outside of X 

and is consistently ≥ 0 inside of X then the first integral will vanish, but the second one 

will prove to be positive, which contradicts equation (11).  Once that is known, (11) will 
yield the further equation: 

( ( ) )k k

k

dx
x

π π∂ −
∂∫

X

s w
 = 0. 

 
For a given scalar field π, this must be true for any finite domain X, and as a result, one 

must have: 

(13)     
( ( ) )k k

kx

π π∂ −
∂

s w
 = 0. 

 
If we substitute this in (10) and observe that the values of: 
 

π,    
ix

π∂
∂

,    
2

i kx x

π∂
∂ ∂

 

 
can be given arbitrarily at a location then that formula will split into the following 
identities: 

 1. 
k

kx

∂
∂
s

 = 
k

kx

∂
∂
w

, 2. si +
i

x

α

α

∂
∂
h

= wi, 3. hαβ + hβα = 0. 

 
 Since ∂π / ∂xi are the components of a covariant vector field that arises from the 
scalar field π, the fact that si (π) is a vector density will imply that si is a vector density, 

and hik is a tensor density, and indeed, from 3, a linear tensor density of rank 2.  Due to 

the skew-symmetry of h, (1.) will be a consequence of (2.), since one has: 

 
2

x x

αβ

α β

∂
∂ ∂
h

= 0. 

 
 b) Coordinate invariance.  We subject the world-continuum to an infinitesimal 
deformation, under which the individual point (xi) will experience a shift with the 
components ξ i (x); the metric will be unchanged under the deformation.  δ will denote 
the change in any quantity that is affected by the deformation when one remains at the 
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same space-time location, while δ′ will be its change when one displaces the space-time 
location along with it.  One has: 
 

(14)   

,

.

r
rr

i r
i i i

r k
rik

ik ir kr ik
k i r

x x x

g
g g g g

x x x

ϕξ πδϕ ϕ ξ

ξ ξδ ξ π

  ∂∂ ∂− = + +  ∂ ∂ ∂  


 ∂∂ ∂ − = + + −  ∂ ∂ ∂ 

 

 
In this, π means an infinitesimal scalar field that is unaffected by the conditions that we 
have established.  The invariance of the quantity of action under coordinate 
transformations and changes of gauge is expressed by this variational formula (which 
includes five arbitrary functions ξ i and π): 
 

(15)   dxδ ′∫
X

W  = 
( )

k

dx
x

ξ δ
 ∂ + ∂ 
∫

k

X

W
W  = 0. 

 
If one wishes to express only the coordinate invariance of that expression then one must 
choose π = 0; however, the variational formulas (14) would have no invariant character.  
In fact, that condition would mean: The two fundamental forms shall be varied by the 
deformation in such a way that length l of a line element that is carried by the 
deformation must remain invariant: δ′ l = 0.  However, that equation does not express the 
process of the congruent transplanting of a line segment, as opposed to: 
 

δ′ l = − l (ϕi δ′ xi) = − l (ϕi ξ i). 
 
If invariant formulas are to come about then we must not choose π = 0 in (14), but π = − 
(ϕi ξ i), namely: 

(16)   

,

.

r
i ir

r r
rik

ik ir kr ik r
k i r

f

g
g g g g

x x x

δϕ ξ

ξ ξδ ϕ ξ

 − =


    ∂∂ ∂− = + + +    ∂ ∂ ∂  

 

 
The variation of the two fundamental forms that it expresses is such that the metric is 
carried along unchanged by the deformation and every line element will be transplanted 
congruently.  One can also recognize the invariant character of equations (16) 
analytically.  It will be revealed in the second one when one introduces the mixed tensor: 
 

i
i r
kr

kx

ξ ξ∂ − Γ
∂

= i
kξ . 

It will then read: 
− δgik = ξik + ξki . 
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Once the gauge invariance is exploited under a), it will suffice to make any particular 
choice for π ; from the standpoint of invariance, the π = − (ϕi ξ i) that leads to (16) is the 
only one possible. 
 For the variation (16), let: 

Wξ i + δ vk = Sk(ξ). 

 
S

k(ξ) is a linear differential vector density that depends upon the arbitrary vector field ξ i;  
I write it explicitly: 

S
k(ξ) = 

2
1
2

i i i
k k k

i i i
kx x x x

α αβ

α α β

ξ ξ ξ∂ ∂ ∂+ +
∂ ∂ ∂ ∂

S H H . 

 
(Naturally, the last coefficient is symmetric in the indices αβ.)  If we introduce the 
expressions (8), (16) into (15) then that will produce an integral whose integrand reads: 
 

1
2

( )k i
k k
i ki i

k k i

g
f g

x x x
αβ αβ

αβ
ξ ξ ϕ

 ∂ ∂ ∂  − − + +  ∂ ∂ ∂   

S
W w W . 

 
Since: 

i
i

g
g

x
αβ

αβϕ
∂

+
∂

= Γα, β i + Γβ,α i , 

 
and due to the symmetry of Wαβ, one will have: 

 

1
2 i

i

g
g

x
αβ αβ

αβϕ
∂ 

+ ∂ 
W  = Γα, β i W

αβ = i
α β
β αΓ W . 

 
If we perform yet another partial integration on the second term of our integrand then we 
will get: 

( ( ) )k k i k
k ii i

i ik
k k

dx f dx
x x

α β
β α

ξ ξ ξ
 ∂ − ∂+ − Γ + ∂ ∂ 

∫ ∫
X X

S W W
W w  = 0. 

 
 The identities: 

(17)    
k
i

i
kx

α β
β α

 ∂ − Γ ∂ 

W
W  + fik w

k = 0 

and 

(18)    
( ( ) )k k i

i

kx

ξ ξ∂ −
∂

S W
 = 0 

 
arise from this, by the argument that was applied above.  The last one decomposes into 
the four following ones: 
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 I. 
k

i

kx

∂
∂
S

= 
k

i

kx

∂
∂
W

, II. 
k

k i
i x

α

α

∂+
∂
H

S = k
iW , 

 

 III. ( ) i
i i x

γαβ
αβ βα

γ

∂+ +
∂
H

H H = 0, IV. i i i
αβγ βγα γαβ+ +H H H  = 0. 

 
If one replaces: 

i
γαβH  with − i i

αβγ βαγ−H H  

 
in III and IV then it will emerge that: 
 

i
i x

αβγ
αβ

γ

∂−
∂
H

H = i
αβH  

 
is skew-symmetric in the indices αβ.  If we introduce i

αβH , in place of i
αβH , then III and 

IV will include merely statements of symmetry, but II will go to: 
 

(II *)    
2k k

k i i
i x x x

α αβ

α α β

∂ ∂+ +
∂ ∂ ∂
H H

S = k
iW .  

 
I follows from this, because due to the symmetry conditions: 
 

2 k
i

x x

αβ

α β

∂
∂ ∂
H

= 0, so one will have 
3

i

x x x

αβγ

α β γ

∂
∂ ∂ ∂
H

 = 0. 

 
The invariance character of the coefficients S and H of Sk (ξ) (in particular, that of the 

quantities Si
k) can be described most simply and completely by the saying that Sk(ξ) is a 

vector density (but ξ i is a vector).  It will then emerge from this that Si
k are not the 

components of a mixed tensor density; in this case, we speak of a “pseudo-tensor 
density.” 
 
 Example.  For W = l, as one sees immediately, one has: 

 
δ vk = fik δϕi , 

so as a result: 
 

s
i = 0, hik = fik, Si

k = k
iδ l  − fiα fik, and the quantities H = 0. 

 
Our identities then imply that: 
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 w
i = 

i

x

α

α

∂
∂
f

, 
i

ix

∂
∂
w

= 0, i
iW = 0, 

 

 k
iW = k

iS , 
1

2

k
i

i
k i

g
f

x x x

βα
αβ αβ

α
β

∂ ∂ ∂− + ∂ ∂ ∂ 

S f
S = 0. 

 
 The two formulas in the last row are confirmed by calculation in Maxwell’s theory.  
In it, the components k

iS  define the tensor density of the energy of the electromagnetic 

field, and the last equation says that the ponderomotive force will arise from that tensor 
density by taking its divergence. 
 
 Field laws and conservation laws. – If one takes δ in (8) to be an arbitrary variation 
that vanishes outside of a finite domain and takes X to be the entire world or a domain 

such that δ = 0 outside of it then that will give: 
 

dxδ∫ W = 1
2( )i ik

i ikgδϕ δ+∫ w W dx. 

 
It emerges from this that the following invariance laws are included in Hamilton’s 
principle ∫ δ W dx = 0: 

w
i = 0,   k

iW = 0. 
 
The first of these are the electromagnetic laws, while the second ones are the 
gravitational laws.  Five identities exist between the left-hand sides of these equations 
that are specified above in (12) and (17).  Five of the equations in the system of field 
equations are therefore superfluous, corresponding to the transition from a reference 
system to any other one, which depends upon five arbitrary functions.  si is the vector 

density of electric four-current, k
iS  is the pseudo-tensor of energy, and hik is the 

electromagnetic field density.  In the case of Maxwell’s theory, which is indeed only 
valid in the ether (as it must be), si = 0, hik = fik, and the k

iS  are the classical expressions.  
From (1.) and (I.), one generally has the conservation laws: 
 

i

ix

∂
∂
s

= 0, 
k
i

kx

∂
∂
S

= 0. 

 
Indeed, the conservation laws follow from the field laws in two ways; namely, not only 
does: 

 
i

ix

∂
∂
s ≡ 

i

ix

∂
∂
w

, but it also ≡ − 1
2

i
iW , 

and not only does: 
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k
i

kx

∂
∂
S ≡ 

k
i

kx

∂
∂
W

, but it also ≡ i k
i ikfα

βΓ −i W w . 

 
 The close relationship that exists between the conservation laws for energy-impulse 
and the coordinate invariance has been pursued by various authors in Einstein’s theory 
(1).  However, a fifth conservation law gets added to these four, namely, the conservation 
of electricity, and it must consequently correspond to an invariance property that also 
brings with it a fifth arbitrary function; in our theory, it is seen to be gauge invariance.  
Moreover, the older investigations into the energy-impulse theorem never led to an 
entirely transparent result.  One then makes no special assumption about the quantity of 
action in Einstein’s theory that could, however, appeal in any way to the law of 
conservation of energy and impulse, since it does not reduce to it in the classical cases.  
That has left me very uneasy for quite some time already.  However, we get its complete 
explanation here: One must couple the coordinate invariance with the gauge invariance in 
such a way that our theory – viz., formula (16) – will be implied by that in its own right 
in order to lead to the correct conservation laws.  That complete connection is obviously a 
very strong argument for the validity of our theory, namely, that the laws of nature are 
not only coordinate-invariant, but also gauge-invariant. 
 Let us add this: From (2.) [viz., the equations into which (13) decompose], the 
electromagnetic equations read as follows: 
 

ik

kx

∂
∂
h

= si and 0kl li ik

i k l

f f f

x x x

 ∂ ∂ ∂+ + = ∂ ∂ ∂ 
. 

 
Without specializing the quantity of action, we can read off the entire structure of 
Maxwell’s theory from gauge invariance alone.  The only laws that will be affected by 
the special form of the Hamilton  function W are the ones by which the current si and 

field density hik are determined from the fundamental quantities ϕi , gik . 

 From (13) and (18), the field laws and the conservation laws that belong to them can 
be summarized most clearly in the two simple equations: 
 

( )i

ix

π∂
∂
s

 = 0, 
( )i

ix

ξ∂
∂
S

 = 0 

 
(viz., the Hilbert-Klein  form of the field laws). 

 
 
  

                                                
 (1) Such as H. A. Lorentz, Hilbert , Einstein, Klein , and the author.  
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Chapter III – Implementing a special action principle. 
 
 The Ansatz for W. – I shall base the further discussion upon the action principle that 

allows one to survey its analytical consequences most easily: 
 

W = − 21
4 F g + β l. 

 
The meanings of l and F are gathered from the foregoing, while the constant β is a pure 

number.  That gives: 

δ W = − 21 1
2 4( )F F g F gδ δ+ + β δ l. 

 
 It will simplify the calculations greatly when we fix the gauge of the world uniquely 
by the requirement that – F must be equal to a (given positive) constant α ; that is 
possible, because F is an invariant of weight – 1.  In that way, we arrive at the fact that 
the field laws are second-order differential equations.  If we drop a divergence: 
 

( )i

i

g

x

ϕ
δ

∂
∂

, 

  
which will indeed vanish upon integration over the world, then δ W will become: 

 
2 3

( )
4 4 2

i
i

g g g
R

α α αδ β ϕ ϕ
 

+ − −  
 
l . 

 

If we then divide by α, set β / α = λ, and convert the world-integral of 1
2( )R gδ  into 

the integral of δ G by partial integration, in which G depends upon only the gik and their 

first derivatives (1), then we will come to the action principle: 
 

(19)    
3( )

4

i
i g

α ϕ ϕδ λ
 −− + 
 
∫ l G dx = 0. 

 
The structure of the integrand is clear: λ l and – G are the classical terms in Maxwell’s 

theory of electromagnetism and Einstein’s theory of gravitation.  The “cosmological 

term” (α / 4) g  is included in it, which appears here of necessity, along with the 

simplest term that can be added to the Maxwellian action density according to Mie’s 

theory and which the existence of matter makes possible: i.e., (ϕi ϕ i) g .  In this, one 

must observe that according to our theory, this Ansatz is one of a very limited number of 
possibilities (cf., the conclusion of the paper on this), and is, in any case, the only one that 

                                                
 (1) G is the quantity that was denoted by 1

2 G
* on pp. 114 of the cited paper of Einstein.  
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leads to differential equations of order no higher than two.  In particular, it is not at all up 
to our discretion to assign the sign of the term (ϕi ϕ i) to be anything but the one in (19).  
From what was said, it is already clear that the principle (19) agrees with the laws of the 
electromagnetic and gravitational field that are accessible to experimental confirmation 
outside of matter. 
 Varying the ϕi will yield Maxwell’s equations: 
 

(20)    
ik

kx

∂
∂
f

 = − 
3

2
ig ϕ

λ
. 

 
The electromagnetic field density is therefore equal to f

ik here, and the expression on the 

right-hand side is the current density si.  The divergence equation: 

 

(21)    
( )i

i

g

x

ϕ∂
∂

= 0 

 
follows from this.  Varying the gik will yield the gravitational equation: 
 
(22)    − Rik + ρ gik = 3

2 ϕi ϕk + ikSλ ∗ , 

 
in which ikS∗  are the components of the Maxwellian energy-impulse, and: 

 

ρ = 1
2

3( )

4

i
iR

α ϕ ϕ− ++ . 

 
If we contract then it will follow that: 
 

R – α + 3
2 (ϕi ϕ i) = 0 and from that ρ = 

4

α
. 

 
Since – F = α, the first relation will once more yield (21) – viz., the conservation of 
electricity – which, as one confirms, is a double consequence of the field laws.  The right-
hand side of (22) is equal to: 

λ ( ikS∗  − ϕi sk), 
 
in complete agreement with Mie’s theory.  In the ether, the first term outweighs the 
second one, which is relevant only in the interior of material particles (e.g., atomic nuclei 
or electrons). 
 Our theory is based upon a certain unit of electricity.  I call: 
 

0

e

c

κ
 



Weyl – A new extension of the theory of relativity. 21 

(κ is Einstein’s gravitational constant, and c0 is the speed of light in ether) the 
gravitational radius of the charge e, so one can characterize this unit, as would follow 

from (22) by saying: It is the charge whose gravitational radius is equal to 1
2 λ .  That 

length must certainly be enormous, since otherwise equation (20) would contradict 
experiments; when the number β = 1, it will have the order of magnitude of the radius of 
the world.  Our unit of electricity, and likewise the unit of action, will then be of cosmic 
magnitude, in any event.  The “cosmological” moment that Einstein first introduced into 
his theory heuristically is attached to our theory as a result of its first principles. 
 Let us make two remarks about the static case!  The static world is gauged inherently. 
(cf., Chap. I)  One asks whether its natural gauge F = const. is valid as a result of that.  
The answer is yes.  If we gauge the world by the demand that F = const. then the 
fundamental metric form will take on the factor F, and dϕ = ϕ dx0 must be replaced with: 
 

ϕ dx0 − 
dF

F
. 

Equation (21) will then imply that: 
 

1 2 3

1 2 3x x x

∂ ∂ ∂+ +
∂ ∂ ∂
F F F

= 0  i
i

F
F

x

 ∂= ∂ 
, 

 
and it will follow from this that F = const. 
 The second remark is this: In the static case, the (00)th gravitational equation (22) 
reads: 

4
c c c

α ∆ + 
 

= 23
002 Sϕ λ ∗+ . 

 
In this, ∆ is the spatial Poisson operator that belongs to the fundamental metric form dσ 2.  
The right-hand side is positive here.  Our action principle actually leads to a positive 
mass, and therefore an attractive force between them, a not repulsive one. 
 
 Mechanics – The Ansätze that originate in the presence of substances, and by which 
one accomplishes the transition from the energy-impulse principle to the mechanical 
equations that govern the motion of a material particle, prove to be impossible in our 
theory, since they contradict the required invariance properties.  Moreover, as I have 
remarked here in passing, they will lead to a false value of the mass, just as they do in 
Einstein’s theory on the very same basis and for the sake of which we must dismiss them 
completely here.  The only tenable path that can lead to an actual derivation of the 
mechanical equations when one assumes the existence of material particles was proposed 
in Part 3 of Mie’s trailblazing “Grundlagen einer Theorie der Materie” (1), and was 
recently trodden by Einstein in order to prove the integral conservation laws for an 
isolated system (2).  One imagines the material particles as being in a bounded volume Ω 

                                                
 (1) Ann. Phys. (Leipzig) 40 (1913), pp. 1.  
 (2) Sitz. Preuss. Akad. Wiss. (1918).  
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whose dimensions are large compared to the actual nucleus of concentration of the 
particles, but small in comparison to any dimensions in which the external field varies 
noticeably.  By its motion, Ω will describe a channel in whose interior the current 
filament flows.  The coordinate system, which consists of the “time coordinate” x0 = t and 
the “spatial coordinates” x1, x2, x3 are so arranged that the “space” x0 = const. cuts 
through the channel (the cross-section is the aforementioned volume).  The pseudo-tensor 
density of total energy will be denoted by Si

k.  The integrals Ji of Si
0 over the domain Ω 

in the space x0 = const. are the energy (i = 0) and the impulse (i = 1, 2, 3) of the particle.  
If one integrates each of the four conservation laws: 
 

(23)     
k

i

kx

∂
∂
S

= 0, 

 
which were proved above in general, in the same way then the first term (k = 0) will yield 
the temporal derivative dJi / dt.  However, from Gauss’s theorem, the integrals of the 
other three terms will yield a “force flux” through the outer surface of Ω, which is 
expressed by an integral that is taken over that surface: viz., the components of the field 
force that acts upon the particle from the outside.  The separation that comes about as a 
result of the splitting of space and time yields the juxtaposition of the inertial force dJi / 
dt and the field force that is characteristic of mechanics. 
 The integrand of the action principle (19), whose implications we shall now pursue, 
shall be called B.  Since ∫ B dx is not an invariant, the argument that was applied in 

Chap. II in order to prove the conservation laws cannot be maintained with no further 
assumptions.  However, we also have δ′ ∫ B dx = 0 now for a variation δ that, from (14), 

is produced by an infinitely-small displacement in the true sense of the word: viz., π = 0, 
ξ i constant.  As far as that is concerned, we must make no assumptions about B 

whatsoever.  If we set: 
δ G = Gik δgik + Gαβ,i δgαβ,i  

then the formulas: 

(24)   
( )k i

i

kx

ξ∂
∂
S

= 0 with  k
iS = ,k k k

i
i i

g

x x

α
αβ αβ αϕδ λ

∂ ∂+ +
∂ ∂

B G f  

 
will follow from this on the basis of the validity of Hamilton ’s principle.  However, 
these are not the conservation laws for energy and impulse.  Moreover, in order to get 
them, we must next write down Maxwell’s equations in the form: 
 

k k

k

x

x

α

α

ππ ∂∂ + ∂ 
∂

s f

= 0, 

 
in which we set π = − (ϕi ξ i) and add the equation that comes about, when multiplied by 
λ, to (24).  Equations (23) then arise, and indeed, one will have: 
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Si
k = ,k k k k

i i i
i

g
f

x
αβ αβ α

αδ λ λϕ
∂

+ − −
∂

B G f s . 

 
 This energy density is composed of three parts: 
 
 1. The term that is noticeable only in the interior of the material particle: 
 

λ{ }1
2 ( )r k k

r i iϕ δ ϕ−s s . 

 
 2. The one that belongs to Maxwell’s field: 
 

λ{ }k k
i if

α
αδ −l f . 

 3. The gravitational energy: 
 

,

4
k k
i

i

gg

x
αβ αβα δ

  ∂
− +   ∂ 
G G . 

 
 We think of the range of values for the gik outside of the channel as being extended 
over the channel by constants when we “flatten out” and “bridge over” the fine, deep 
furrow that the path of the material particle digs in the metric face of the world and treat 
that current filament as a line in that flattened metric field.  Let ds be the associated 
proper-time differential.  We can introduce a coordinate system about a location along the 
current filament such that one has: 
 

ds2 = 2 2 2 2
0 1 2 3( )dx dx dx dx− + +  

 
there, the direction of the current filament is given by: 
 

dx0 : dx1 : dx2 : dx3 = 1 : 0 : 0 : 0, 
 

and the derivatives ∂gαβ / ∂xi vanish.  For the cross-section x0 = const. of the current 
filament that one makes through that location, one will then have (approximately): 
 

J1 = J2 = J3 = 0, 
 

as in the static case, assuming that the internal structure of the particle is the same as 
when it remained at rest in that coordinate system; that assumption is admissible for 
quasi-stationary acceleration.  Likewise, of the integrals: 
 

1 2 3
i dx dx dx∫ s  

 
that are extended over the cross-section of the current filament, only the 0th one does not 
have the value 0 there, but is equal to the charge e of the particle (which is an invariant 
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that is independent of time, from the conservation law).  Under such circumstances, the 
“force fluxes,” which represent the portion that arises from (3.), will drop out of the 
integral that are taken over the outer surface of the cap Ω at the moment considered.  In 
order for that to be true, it is essential that the expressions (3.) depend not only linearly, 
but also quadratically, upon the differential quotients ∂gαβ / ∂xi .  The part that arises from 
(1.) can be neglected, since si = 0 outside of the particle.  Only (2.) remains, and that part 

yields the ponderomotive force of the electromagnetic field according to Maxwell’s 
theory: viz., e f0i (fik is the external field here; the assertion is correct at least when that 
field does not vary too strongly in time relative to the particles).  We get the equations: 
 

idJ

dt
= e f0i . 

 
If we revert to an arbitrary coordinate system then the following formulas will enter in 
place of the ones that were obtained: 
 

Ji = m ui , in which ui = idx

ds
 

 
and a proportionality factor m of “mass” will appear; furthermore: 
 

(25)    
( ) 1

2
i

i

gd mu
mu u

ds x
αβ α β∂

−
∂

= m ⋅⋅⋅⋅ fki u
k. 

 
Here, the gik , like the fik , refer to the flattened metric.  The charge e is constant.  If one 
multiplies the last equation by ui and sums over i then one will find that: 
 

dm

ds
= 0, 

 
so the mass will likewise be constant.  It depends upon the choice of constant α in such a 

way that m = m α ( m  is independent of α). 

 The connection with the ordinary formulas has been achieved.  It is essential for their 
validity that the gauge is normalized by F = const.  For quasi-stationary acceleration, a 
clock will measure the integral ∫ ds of the proper time that corresponds to that 
normalization.  However, that result is linked with the action principle that is used as a 
basis here. 
 
 The problem of matter. – The fact that the conservation laws imply constant charge 
and mass for a material particle still does not explain the fact that all electrons possess the 
same charge and mass and consistently maintain them.  The particles are never 
completely isolated from each other then since considerable deviations should not arise in 
the course of long periods of time.  Moreover, that must rest upon the fact that the world-
laws must admit only a discrete number of static solutions that would represent stable 
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corpuscles.  With that, we come to true problem of matter: Can it be solved on the basis 
of the action principle that we have assumed here?  It seems that the answer to that 
question might be “no,” since Mie has shown that the addition of a term to the 

Maxwellian action density (which is, by the way, a function of q = i
iϕ ϕ ) will certainly 

make matter impossible when that function does not vanish to at least fifth order for q = 0 
(1).  However, for him, that knowledge arose from the fact that he required the regularity 
of the static spherically-symmetric solution at infinity.  Here, however, those solutions 
will undoubtedly lead, not to an infinite space, but a closed one, so completely different 
regularity demands must be posed. 
 I must touch upon yet another point before I go on to explicit calculations.  It is a fact 
that for the electron, pure numbers appear whose orders of magnitude are completely 
different from 1, such as the ratio of the electron radius to the gravitational radius of its 
mass, which has order to magnitude 1040; the ratio of the electron radius to the world-
radius might have a similar order of magnitude.  That would seem to demand that a pure 
number with an enormous value must be included in Hamilton ’s principle from the 
outset, which is what happened with our Ansatz: viz., the constant β.  On the other hand, 
one must then concede that the structure of the world should be based upon certain pure 
numbers with fortuitous numerical values that are abstract entities.  A way around that 
dilemma is probably possible only when one assumes that a world-law does not prescribe 
a specific value for the number β, but demand only that it must be constant.  In other 
words, it must read: Any virtual variation of the metric that vanishes outside of a finite 
world-domain for which δ ∫ l dx vanishes will also make the variation of: 

 
21

4 F g dx∫  

 
vanish.  In that way, the problem of matter will become an “eigenvalue” problem: Only 
certain discrete values of β will belong to regular solutions.  They correspond to possible 
particles that nonetheless all exist in the same world, whether next to each other or inside 
of each other, which would impose reciprocal fine modifications of their internal 
structures.  Noteworthy consequences for the organization of the universe seem to come 
to light then, along with the possibility of an explanation for the fact that it is globally at 
rest, but locally in a state of unrest. 
 In the static, spherically-symmetric case, we have two scalar fields c and ϕ, which 

depend upon only the distance r = 2 2 2
1 2 3x x x+ + , and the spatial line element dσ 2, which 

can, with the use of a suitable scale of distance, be conferred the form: 
 

2 2 2 2
1 2 3 1 1 2 2 3 3( ) ( )dx dx dx p x dx x dx x dx+ + + + + , 

 
in which p is also a function that depends upon only r.  I set: 
 

                                                
 (1) Ann. Phys. (Leipzig) 39 (1912), pp. 14.  
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w = h2 = 1 + p r2, ∆ = g  = hc;  
ϕ
∆

= u, 
r ϕ′
∆

= v . 

 
(The prime means differentiation with respect to r.)  The spatial coordinate system is 
fixed up to a rotation by the normalization that has been performed, while the functions c 
and ϕ are fixed up to a common constant factor, and u, v, w are determined completely.  
The action principle (that one writes down with no further assumptions) implies the 
differential equations: 

(26)   

2 2

3 2 2 2 2 2

2 2 2

2 2

3
,

4

3 1
,

1 4 4 2

3
0.

2

w r

pr r wr r

pr

r wr

ϕ

α ϕ ϕ

ϕ ϕ
λ


 ′∆∆ =

 ′ ′  = + −  + ∆ ∆ 
 ′′  + =  ∆ ∆ 

 

 
 The problem is of order four and of such a type that the mathematician will hopefully 
sweep the sails before him.  All the same, I can reduce order by one when I introduce the 
functions that were previously denoted by u, v, w.  Instead of r, I shall employ the square 
r2 = ρ for a variable, and find that: 
 

(Dv)  
3

2
2

dv uw
v

d

ρρ
ρ λ

+ +  = 0, 

 

(Dw)  
2

2 ( 1)
4

dw w
w w

d
ρ

ρ
+ − − (α ρ + 3u2 w ρ – 2λ v2)  = 0. 

 
In addition, one has r (u ∆)′ = v ∆; if I substitute the expression for ∆′ / ∆ that is implied 
by (26) in this then that will give: 
 

(Du)  
3

2
4

du

d
ρ

ρ
+ ρ u3 w2 − v = 0. 

 
These differential equations (D) determine u, v, w; one will get ∆ from a quadrature of: 
 

(27)     
lnd

dρ
∆

=
3

8
(u w)2. 

 
If one prescribes the initial values: u arbitrary, v = 0, w = 1 then one will get power-series 
solutions that satisfy the equations formally.  In the theory of differential equations, it is 
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shown that they converge (1).  We will then get ∞1 solutions that are regular at the “pole” 
ρ = 0. 
 A solution that represents the evolution of the field in a material particle that is 
capable of existing will lead to a closed space.  The equator of that space will be defined 
by ρ = ρ0 .  In the vicinity of the equator, one must employ the quantity z that is 
introduced by way of: 

ρ = ρ0 (1 – z2) 
 

for the purpose of uniformization.  w must then become infinite to order 2 for z = 0, while 
c and ϕ will remain regular, and c will certainly not vanish for z = 0.  ∆ will become 
infinite to order 1, while u and v will then take on zero loci of order 1 when z = 0.  If I set: 
 

u

z
= u ,  

v

z
= v ,  w ⋅⋅⋅⋅ z2 = w  

 
then u , v , w  will become regular, as well as even, functions of z.  Let me point out that 
from (27), ln ∆ is a monotone-increasing function of ρ.  The sign in this equation is 
fortunately arranged such that it allows a growth in ∆ beyond all limits to be possible.  If 
I employ z2 = t as the independent variable then that will produce the differential 
equations: 

( )D   

3 2
0

0

2 2
2

0 0

3
2 (1 ) 0,

4 1
31 2

2 0,
1 2

( 3 2) 2
2 3 0,

1 4 1

du t v
t u t u w

dt t
dv t

t v u w
dt t

dw w w t w tv
t u w

dt t t

ρ

ρ
λ

λαρ ρ


+ − − − =

−
 −+ − = −
  − +− + + − =  + − 

 

and 

(28)    
lnd

dt

∆
= − 203

( )
8

u w
t

ρ
. 

 
 By comparing the constant terms in the power series development, one will get the 
following initial values for t = 0: 
 

u = 0

0

4

2 3

α ρ
ρ
−

,  v = 03ρ
λ

, w  = 
0

4

4α ρ −
. 

 
As would follow from the existence theorem that was stated above, they are associated 
with a single regular solution of the system ( )D , along with a ∆ that will become infinite 

like 1/ t  [if the power-series development on the right-hand side of (28) begins with 

the term – 1 / 2t].  Every value of ρ0 will then correspond to a solution to the problem that 

                                                
 (1) Picard, Traité d’Analyse, 3, pp. 21.  
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is regular on the equator, and when one varies ρ0 , one will get a family of ∞1 such fields.  
Only those of them that belong to values: 
 

ρ0 > 
4

α
 0

2
r

α
 

>  
 

 

 
can come under consideration, since w must be positive; hence, the radius must have a 
cosmic magnitude!  In the three-dimensional manifold of all solutions to the system of 
equations (D), we will then have the one-dimensional manifold of all fields that are 
regular at the pole and the one-dimensional manifold of all fields that are regular at the 
equator.  These two manifolds will generally “intersect” as rarely as two lines in space.  
However, one should probably expect that there are isolated special values of λ – viz., 
eigenvalues – for which such an intersection comes about; i.e., a solution – viz., an 
“eigenfunction” – exists that remains regular at the pole, as well as at the equator.  The 
present-day tools of analysis are hardly sufficient to prove the actual existence of those 
eigenvalues. 
 
 The putative world-law. – In Mie’s theory of gravitation, when regarded as an 
extension of Einstein’s, in the form that Hilbert  presented it (1), the Hamilton  function 

W ( = B g ) was constrained by only the demand that it had to be invariant under 

coordinate transformations.  That demand allowed one considerable latitude.  That 
latitude will be restricted rather sharply by our postulate that W must be an invariant of 
weight – 2 under changes of gauge, but still not to such a degree that W would be 
determined uniquely by it.  If we assume that W is constructed rationally from the 
curvature components then, as far as I can see, that will suggest only the following five 
possibilities: 
 
 1. The Maxwellian one: l = 1

4 fik f 
ik. 

 
 2. According to the same model, one can define 1

4 Fik F
ik from the vector curvature. 

 
In this, multiplication is to be interpreted as the composition of matrices.  The expression 
it itself a matrix, but its trace L is a scalar of weight – 2: 
 

L = 1
4

ik
ikF Fα β

β α . 

 
If * L is the analog of the invariant that is defined by the direction curvature then one will 
have L = *L + l. 
 
 3. One permutes the indices β and i in the second factor ikF β

α  of the expression for L. 

 

                                                
 (1) D. Hilbert , Nachr. Ges. Wiss. zu Göttingen (1915), pp. 395. 
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 4. The scalar Fik F
ik arises from the contracted tensor i kFα

α  = Fik . 

 
 5. The invariant F2 that was employed above. 
 
 The assertion that was made means that any invariant of the given kind can be 
composed from these five quantities linearly with constant coefficients. 
 The action principle that was implemented in the previous sections is constituted as 
follows: Its Hamilton  function was a linear combination of (1.) and (5.).  I believe that 
one can assert that this action principle implies everything that Einstein’s theory has 
implied up to now, but in the more far-reaching questions of cosmology and the 
constitution of matter, it exhibits a clear superiority.  Nevertheless, I do not believe that 
the laws of nature that are exactly applicable in reality are resolved by it.  In regard to the 
actual character of the magnitude of the curvature, it seems to me that, in fact, the 
invariants (3.)-(5.) are artificial constructions, compared to the two natural ones, viz., the 
“principal invariants” (1.) and (3.).  If I am not deceived by this faith in aesthetics (which 
correctly gives the four-dimensionality of the world) then the world-law would read: Any 
virtual change in the metric that vanishes outside of a finite domain, and for which 

dxδ ∫ l = 0, will also fulfill the equation δ ∫ L dx = 0.  I think that I will pursue the 

consequences of that action principle in a continuation of this paper. 
 The fruitfulness of the new viewpoint of gauge invariance has shown itself, above all, 
in the problem of matter.  However, the decisive conclusions in that context are fortified 
behind a wall of mathematical complexities that I have not been able to break through up 
to now. 
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