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A new extension of the theory of relativity
By H. WEYL

Translated by D. H. Delphenich

Chapter I. Geometric foundations.

Introduction . — In order to be able to characterize the physicaé siha world-
location by numbers:

1. The neighborhood of that location must be refetoeoordinates.
3. Certairunits of measurememnust be established.

Up to now, Einstein’s theory of relativity has addressely the first point — i.e., the
arbitrariness of coordinate systems. However,imngortant to ascribe just as prominent
of a position to the second point — i.e., the arbitrasimésthe units of measurement. We
shall speak about that in what follows.

The world is a four-dimensional continuum, and for tiegtson, can be referred to
four coordinatesi, xi, X, X3 . The transition to another coordinate systgnwill be

mediated by continuous transformation formulas:
(1) X = (%, %, %, %) (=0 1,23)

There is nothing to distinguish the various possible coatdisystems intrinsically. The
relative coordinatedx of a pointP’ = (x; + dx) that is infinitely close to the poift = (x)
are the components of the infinitesimal displacerrié—ﬁ’t (ie., a “line element” aP).
Under the transition (1) to another coordinate syskenthey transform linearly:

(2) dx = > a, dx,.

a, are the values of the derivativé /dX_at the pointP. The component§ ' of any
vectorat P transform in the same way. An “axis-cross’Pais linked with a coordinate
system in the neighborhood Bfthat consists of the “unit vectorg”with the components

5iO’5il,5iZ, 53:
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It is just that axis-cross that one must use as & lagirder to be able to characterize
non-scalar quantities. The transformation formulas:

¢ = zaikek ,
K

which are “contragredient” to (2), exist between the uectorse;, & of two coordinate

systems aP. In the special theory of relativity, thg, are constants (i.e., independent of

position), because the transition functidng (1) are always linear in it; that is not the
case in the general theory of relativity.

In order to clarify the dependency of the measuremembers upon the unit of
measurement, we address the geometric example dinthesegment. Riemann (%)
assumed that one could compare the measurementamatelgfismall line segments at
the same place, as well as at different placed) waéch other, and thRiemannian
geometry that is based upon that assumption lies dotimelations oEinstein’s theory
of gravitation when it is applied to the four-dimensior@ahtchuum. If one establishes a
certain line segment as one’s unit of measurement (atdrally, it is the same
everywhere) then any line segment will take on a measemt numberl that
characterizes it completely. However, for a déf&rchoice of unit of measurement, one

will get a different measurement numbér that emerges froml by the linear
transformation:

| =al.

In this, a, which is the ratio of the units of measurement, isinversal constant
(independent of position and line segment). As one, seeggard to the question of
units of measurement, this viewpoint corresponds precisethie one that the special
theory of relativity assumes in the context of thes-®ross. In place of it, the general
theory of relativity postulates only thatis independent of the line segment, but not of
position. One must abandon the assumption that tdistamparison” is possible, which
is not permissible in a purely “local” geometry, anywa@nly measurements of line
segments that are found at the same place can be @@hwith each other. The gauging
of line segments must be performed at each individualdeerént, so the problem
cannot be handed over to a central gauging authority. Hawa\principle must enter in
place ofRiemannian distant comparison that allows for the congruent plamsation of
the line segments at a poiRtto thepoints that are infinitely-close to PWith that, |
believe, the historical process of the detachment oflidac rigidity — i.e., the
overcoming of distant geometry — has now terminatedpour® infinitesimal geometry
will come about that is, in the same sense, a puré &mt@n theory of physics, just as
Riemannian geometry is the foundation for the physics that is tedchpon in the
context ofEinstein’s general theory of relativity. | shall summarizes tmain concepts

() “Uber die Hypothesen, welche der Geometrie zugrunetgeti,” Mathematische Werke?™ ed.,
Leipzig, 1892, no. XIlI, pp. 272.
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and facts of infinitesimal geometry here. A morertlugh presentation is contained in
the third edition of my booRaum, Zeit, Materi¢Springer, to be printed)(

Geometry. — A four-dimensional manifold iaffinely-connectedvhen one can be
certain of what vector at a poiRt every vector at a poir® will go to under parallel
translation; in thisP' means an arbitrary point that is infinitely closé’to One demands
that there should exist a coordinate system about tme Bdwhich | call “geodetic” at
P) such that the components of any vectd? at or will remain unchanged under parallel

displacement. If one employs an arbitrary coordirsgtgemx;, and ifP = (x°), P =
(x°+ dx) in it, and if an arbitrary vector & has the component{?s‘, so the vector that
ezmerges from it by parallel translationRbis &'+ dé&', then one will have an equation
(): _ .

3) dé'=—-dy' &'

The infinitesimal quantitiesly’, , which do not depend upon the vecthrare linear
differential forms: _ _
dylr = dxs,

whose numerical coefficients — viz., the “components of the affine connection” —
satisfy the symmetry conditiof''s = s, . (3) expresses the idea that the parallel
displacement oP to P maps the set of vectors Rtaffinely (or linearly) to the set of
vectors aP'. If the coordinate system is geodetidahen alll” will vanish there. There
is no difference between the various points of thaifola in regard to the nature of their
affine connection in the vicinity d?.

A metric manifold carries dength determinatiomt every poin®; i.e., every vectot
at P determines #ne segmentand there is a quadratic for(with index of inertia 3),
which depends upon the arbitrary vectpin such a way that two vectorsandy at P
will determine the same line segment if and only i n°. The form is established only
up to an arbitrary positive proportionality factor imthwvay. If we choose it in a certain
way then the manifold will bgaugedat P, and we then cajf’ = | thelength of the line
segment that is determined py If one changes the gauge then the same line segment
will take on a different length that emerges fromby a linear transformatioh=a | (a
is a positive constant). Relative to a coordinate systemexpressas for the arbitrary

vectory with the componenté' by the formula:

1= z gy &' & (O = Gik)-

() One can also confer the author’s papers in the Bituss. Akad. Wiss. (1918), pp. 466seqand
Math. Zeit.2 (1918), pp. 384et seq.
() One always sums over indices that appear twice.
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However, not only does a metric manifold carry a lenigiermination at every point,
but it is alsometrically connected.That concept is completely analogous to that of the
affine connection; as far as vectors are concerney,ateelike the line segments. Any
line segment aP then goes to goes to a well-defined line segmeriteaintinitely-close
point P' under congruent transplantation. One must again esthat the gauging can be
arranged (it will then be called geodeticRatsuch that the length of any line segment at
P will remain unchanged under congruent transplantatiérihel manifold is gauged in
some way, andl is the length of a line segmentBf sol + dl is the length of the line
segment that arises from it by congruent transplamtatiP’, then one will have:

(4) di=-1d¢

as a result, in whictlg does not depend upon the line segment. This equation eegress
the idea that any transplantation will define a sintijamap of the line segments Rtto
the line segments &. Secondly, the principal demand that was imposed ealth us

thatdg depends linearly upon the shiP (with the componentdx):
d¢ = z¢| dx .

There is no difference between the various pointh@fmanifold in regard to the nature
of the length determination that is based at eacheshtand its metric connection in its
neighborhood.

The linear and quadratic fundamental forms:
dg=¢dx and ds =gk dx dx

describe the metric of the manifold relative toeference systesx coordinate system +
gauge). They remain invariant under coordinate transforroati while the second one
will take on a factomr that is a positive, continuous function of posit{wiz., the “gauge
ratio”) under a change of gauge, and the first one wilidzhiced by the total differential
dina.

A metric manifold is also affinely connected withfarther assumptionsThat is true
on the basis of the demand that a vector will remangeeent to the line segment that is
determined by the vector under parallel displacement. i§hdie fundamental fact of
infinitesimal geometry. If we clarify the process of the lowering of aneémd for a
system of numbers! (regardless of whether further indices do or do mgear in
addition toi) once and for all by the equations:

a=gal

(and the opposite process, by their inverses) then thme atbnnection of a metric
manifold can be inferred from the formulas:
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00, .
Cijkr + Miir = P 4 gk (Mis=0; ),
X,

— 1 agir ag«r agk
rri - = + - +1 ir + Okr @i — O r)-
ik 2[6xk ox axj 7 (G &<+ ke i — G &)

Let us now recall a geometric notion: Two vectoandy atP are calledbrthogonal
to each other when the symmetric bilinear fognil{) that belongs to the quadratic form
t? vanishes for them; that reciprocal relationship igpehdent of the gauge factor.

Tensor calculus.— A (twice-covariant, simply-contravariangnsor(of rank 3) at the
point P is a linear form in the three series of varialfies, ¢

> &, &0,

i,k,=0

that depends upon the coordinate system to which one tefmseighborhood oP,
assuming that its dependency is of the following type:é&xXpeessions for the linear form
in two coordinate system go to each other when one transfthe first two variables
cogrediently and the last one contragrediently to tfiterdntials [formula (2)]. The
concept of a tensor is free of any relationship tortie¢ric or affine connection of the
manifold. Scalars fit into the system of tensorsessors of rank 0. Tensors of rank 1
are called “vectors”; as before, we understand the teeuator” with no additional
gualifier to mean a contravariant vector. The skewrsginic covariant tensors play a
special role and shall be called “linear tensors,” favily.  The basic operations of
tensor algebraby which only tensors at one and the same g@iate coupled with each
other are: addition, multiplication, and contractioreytldo not assume that the manifold
is either metrically or affinely connected. The sahirg is still true for the analysis of
linear tensors, which tells us how a linear tensor of narkl can be generally produced
from one of ranks by differentiation:

ou _

ou _ oy _0u _
ox

X, 0%

ik

However, the components of the affine connection esiter into the differentiation
process of generdénsor analysigwhich is not restricted to the linear tensors). d¢égn
tensor analysis is first developed completely in aimelff-connected space. (By contrast,
no metric is assumed). As an example, we mention:

— -
an kr

hence, a mixed tensor of rank 2 will arise from theaefield u'.
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If | 20 dx is an integral invariant (I shall writgx briefly for the integration element
dx dx dx dxs) then2U will be a function that depends upon the coordinate sydtam

will get multiplied by absolute value of the functiordgterminant |o; k | under the
transition from one coordinate system to the otHeshall refer to such a quantity as a
“scalar density.” The concept oftansor densityat the pointP) is analogous: It is a
linear form in several series of variables that depenps the coordinate system, such
that this linear form, as it reads in the coordinateesyst, , is converted into its

expression in the coordinate syst&mby multiply by the absolute value of the functional

determinant and transforming the variables accordingegsame schema as above. The
concept is free of any relationship to the metric dmafconnection. The skew-
symmetric contravariant tensor densities play a specia and shall be called linear
tensor densities. Tensors= intensities, tensor densities quantities. Whereas the
distinction between these two types of quantities grrétd over inRiemannian
geometry, here, we are in a position to make a sharpematical distinction between
intensive and quantitative quantities. The basic operatdrihe algebra of tensor
densitiesare: addition, multiplication of a tensor by a tendensity, and contraction;
they assume neither a metric nor an affine connectibine same thing is true for the
analysis of thdinear tensor densities, which shows one how to produce a lieagor
density of rankv — 1 from one of rank/ by a process that has the character of a
divergence:

W'
0%

ik
0 ov' i

However, the components of the affine connection emtr the divergence and
differentiation processes of the genenadlysis of tensor densitie$-or example:

k
a

oo” _ Ff;mﬂ :
0%,

in that way, a mixed tensor density* of rank 2 will arise from a vector density.

It is in the nature of tensors and tensor densitiesthigatepresentative linear forms
depend upon only the coordinate system but not the gaugellasHowever, we would
also like to apply those names in an extended and figaragiise when the linear forms
depend upon the coordinate systems in the way that wagebkpbove, but also depend
upon the gauge, as well, and indeed, in such a way thatwitiebe multiplied by a
power a° of the gauge ratio under re-gauging [viz., tensors (tedsosities, resp.) of
weight ¢. Just the same, we will regard this extension ag anbol that we would like
to introduce for the sake of computational conveniencemdWa the following two
operations will exist in the extended domain (of which oze naturally speak only in a
metric manifold):

1. By lowering an index, the components of a tensoresfilit e are converted into
the components of a tensor of weight 1.
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The character of that index will go from contravariém covariant in that way. The
converse is true for the raising of an index.

2. A tensor density of weigle + 2 will be produced by multiplying a tensor of
weighte by /g (- g is the determinant of thgx, so /g is the positive square root of
that positive numbey).

The latter operation shall be suggested once and for aajyng that one converts the
Latin letters that denote a tensor into the correspgrn@erman ones.

Curvature. — If a line segment advances congruently along a claseg then upon
its return to the starting point, it will not coincideith the starting line segment, in
general. In order to find a measure of this “non-irdbdity” of the transfer of line
segments, one performs a differential decomposipioaci{sely as one does with the line
integral in Stokess theorem): One spans a surface with the closed cwheh one
thinks of as being given by a parametric representatiahdacomposes it into infinitely-
small parallelograms by means of the coordinate linege Qust then determine the
changell that the length of a line segment experiences wherlinbesegment goes
around such a surface element that is spanned by thelémergsdx and o« of the
coordinate lines while remaining congruent to itself, and ffossesses the components:

DXy = dX I —dXc O
One finds that:
Ol =-10g,

and the factorlg in this will depend upon the surface element; namelyhase

00. 0
0¢ = fi d% o = fic Axic, fo= 2099
ox, 0%

We can correspondingly refer to the linear terigaf rank 2 that is determined uniquely
by the metric as thkne segmenturvatureof the metric manifold. Its vanishing is the
necessary and sufficient condition for the tranefdength to be integrable, and therefore
Riemannian geometry will be valid for the manifold.

Thevector curvaturehas precisely the same relationship to the paraiplatement
of vectors as the line segment curvature that wascusstructed has to the congruent
transplantation of line segments. The definition aftee curvature, which we shall also
refer to casually as “curvature,” assumes only an afforenection on the manifold. An
arbitrary vectory will suffer only a changélx while circumnavigating our infinitely-

small surface element, which emerges fioloy a linear map or “matrix’IF:

Or =0F(x), in component&l& = OF; (£

[F also depends linearly upon the surface element here:
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OF =Fi dx & = 3 Fik A (Fki == Fi).

For that reason, the curvature is best referred to “dBemr matrix tensor of rank 2.”
However, if we look at the coefficients:, of the matrixFi then the curvature will seem

Bik
to be a tensor of rank four; one has:
ore ore
a pk _ pi arr _rarr
(5) F o _(W W}-(rﬂ Ca —Tala)-

The vector curvature must include the line segneeintature as a component, since
the parallel displacement of a vector automaticaitjeed carries with it the congruent

transplantation of the line segment that it deteasi In fact, if we decompo$g into a
component Fly that is orthogonal te and one that is parallel tahen we will get:

Op =*0r =3¢ 09
Hand-in hand with that, there is a correspondpitsg of the curvature:
(6) F[gk = F[Zk —%53 fic s

whose first component must consequently be calted “tirection curvature.” The
numbers*Fg are not only skew-symmetric in the indideandk, but also in ther and

B
For later calculations, we shall use the teri§r = Fi, that arises by contraction and
the scalar of weight — 1F'= F, that arises from it by another contraction. The

Riemannian curvature quantities that emerge from them byirgethe ¢; to zero might
be denoted by Rk (- R, resp.). One then has:

0 —F:R+%@+g(¢i¢‘).

The linear tensor densiW (of weight 0) will arise from the linear tensfy (in the
four-dimensionalvorld), and one will get the scalar density:

[ = % fik fik

from both of them.] [ dx is the simplest integral invariant that one canstaict from the
metric, and an integral invariant of such a simgtleicture can exist only in a four-
dimensional manifold. Naturally, the integrél\/ﬁ dx that appears irRiemannian

geometry has no meaning here.
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The static case— The metric field in the four-dimensional world is atist one when
one can choose the coordinate system and gauge in swealy that the fundamental

linear form is equal t@ dx , and the quadratic form is equaldtdx —dd. Inthem,¢

andc (> 0) are functions of onby, Xo, s, anddd? is a positive-definite quadratic form in
the variablex, Xo, X3. Xo IS thetime coordinate andx;, X, X3 are thespace coordinates.
The special form of the fundamental form will not perturbed by coordinate
transformations and changes of gauge only when the timelinatex, suffers a linear
transformation in its own right, and, at the sameetithe gauge ratio is constant. In the
static case, we then get a three-dimensidtiaimannian spacevith the fundamental
metric formdd?® and the two scalar fieldsand ¢ in that space. One then chooses the
units of length and time (cm, sec) as arbitrary units oAsmement. do? has the
dimension cf the speed of light has the dimension criisec?, and ¢ has the
dimension se¢. Namely, one must observe that the three-dimenisispace is
presented, not as an arbitrary metric space (in whickraéinsfer of line elements proves
to be non-integrable), but a&kéemannian one.

Chapter Il. Field laws and conservation laws.

Transition to physics. — The special theory of relativity teaches that tharldv
geometry that prevails in the four-dimensional world &¢ based upon a “Galilean”
metric, but a “Euclidian one.” However, a disharmonges from this, since tHaws of
local action of modern physics will then havEuclidian distance geometrat their
foundations. In this, one can glimpse a speculatigsbiar replacing thdsuclidian
world-geometry with th&Riemannian one and ultimately with the pure local geometry
that was just discussecEinstein remains rooted ilRiemannian geometry. However,
two more notions are characteristic of his “generabmth@f relativity,” along with the
transition fromEuclidian distance geometry tRiemannian local geometry:

1. The metric is not givea priori, by depends upon the distribution of matter.

In connection with this, theelativity of motionis the only argument by which the theory
becomes persuasive.

2. The properties of gravitation (e.g., equality of gramitat! and inertial mass) that
are known from experiment and not understood up to now edbime tangible when
one attributes the gravitational phenomena to the demiadi the metric from the
Euclidian one, and not to certain forces that act “in” in thetric world.

Although on first glance its structure deviates compldtem theNewtonian theory,
the theory of gravitation that comes about in thay ¥gain complete agreement with all
astronomical experiments, as one will see by pursusmgansequences under certain
simplifying assumptions.

The new extension that is presented here is likewwigally concerned with only the
world-geometric foundations of physics, and as such, septe a consistent expansion of
relativistic ideas. However, with just the same powet tthe relativity of motion
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compels us towardg&instein’s theory, the belief in theelativity of magnitudewill
compel us to take that additional step. Just as we wee@ gravitation by the former
theory, we are now giveelectromagnetism If we combine the potentials of the
gravitational field into a quadratic differential fornsg Binstein did, then we will know
that the potentials of the electromagnetic field defime coefficients of an invariant
linear differential form. Therefore, it stands toagen that one can identify the
fundamental linear form that appears along with the quadoaie in the pure local
geometry with the potential form of the electromagnééld. Not only the gravitational
forces, but also the electromagnetic ones, would #nee from the world metric, and
since other truly primordial force effects than those are simply not known to us, the
theory that would emerge in that way would fulfill thee@m ofDescartesof a purely-
geometrical physics in a remarkable way that was, aghhytt not at all foreseen by him
by showing: The conceptual content of physics does netlagy with geometry in any
way, but only the metric field manifests itself in matter and naturale®rdGravitation
and electricity would then be explained by a unifying seurcThe entire wealth of
experiments by whiciMaxwell’s theory is established speaks for those ideas. Here (i
infinitesimal geometry), as there (Maxwell’s theory), the linear forng; dx is then
determined only up to an additive total differential, andsionly the “field” (= line
segment curvature) that is derived from it:

Kk = %—% ,
0% 0x
and which satisfies the equations:
oty O O _
ox 0% o0x

that will be free of arbitrariness. The electrongignquantity of action thatlaxwell’s
theory obeys:

[rdx =3[ f, f*dx,

is also obtained here as an invariant, and in facthesimplest integral invariant that
exists at all. Not only does it lead to a deeper undetstg of Maxwell’s theory, but
even the fact that the world is four-dimensional, Wwhwas always accepted as
“coincidental” up to now, will become understandablée cited basis seems to me to be
perhaps rigorously equivalent to the one thatHetstein to with his general theory of
relativity, and its speculative character might alsem® as even more blatant to us.

At first, it might be suspicious that in pure local geometry the transfer of line
segments is not integrable when an electromagnetetii present. Is that not in flagrant
contradiction to the behavior of rigid bodies and k& However, the functioning of
those measuring instruments is a physical process wkosgien is determined by the
laws of nature, and as such has nothing to do withddal iprocess of the “congruent
transplanting of world-line segments” that we appeatedst the mathematical structure

() For an objection to the theory that is proposed hHeeEinstein formulated, cf., the Addendum to
the author’s aforementioned note to the Akademie.
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of world-geometry. Even in the special theory of et the connection between the
metric field and the behavior of yardsticks and clocks belcome entirely opaque as
soon as one does not restrict oneself to quasi-stagiomotion. Hence, those
instruments also play a role that is indispensible intm@a@s indicators of the metric
field (simpler processes — e.g., the spreading of lighbuldvbe theoretically preferable
for that purpose), so it would obviously be wrongdefine the metric field by the
information that is extracted from them directly.e\Wust return to that question after we
have presented the laws of nature.

The implementation of the theory must show whettisrconfirmed. Théviaxwell-
Lorentz theory was characterized by the duality of matter ardetectromagnetic field.
That was eliminated bivie’s theory {) (based upon the special theory of relativity).
However, the juxtaposition of the electromagnetitdfi@matter in the extended sense,”
as Einstein said) with the gravitational field appeared in its pldme considering
gravitation. He showed that most clearly by splittitge Hamilton function that
Einstein’s theory is based upon into two piec&s (That splitting will also be avoided in
our theory. The integrand of the quantity of acfié® dx must be a scalar density that

arises from the metric, and the laws of nature mestsiommarized irHamilton’s
principle: For any infinitesimal chang®of the world-metric that vanishes outside of a
finite domain, the change in the total quantity of action

5jzndx:j5zndx

will be equal to zero. (The integral extends over athefworld, or — what amounts to the
same thing — over a finite domain, outside of which theatian o vanishes.) The
guantity of action is necessarily a pure number in ouorthendeed, it could not be
otherwise if a quantum of action were to exist. Weuagsthat?l is a second-order

expression; i.e., it is, on the one hand, constructaa thegyx and their derivatives of
first and second order, and on the other hand, frongitaed their first-order derivatives.
The simplest example is thdaxwell action densitf. However, in this chapter, we

would not like to make any special Ansatz fif, but to investigate what one can
conclude from only the fact th4t20 dx is a coordinate-invariant and gauge-invariant
integral. We shall then appeal to a method that wasndiyF. Klein ().

Consequences of the invariance of the quantity of action

a) Gauge invariance.If we give infinitely-small increasedp, , i to the quantities
@ , gk that describe the metric relative to a referenctesy, and ifX means a finite
world-domain then the effect of partial integrationhattthe integral of the associated

() Ann. Phys. (LeipzigB7, 39, 40 (1912/13).

(®) Cf., Einstein, “Hamilton’s Prinzip und allgemeine Relativitatsthiegr Sitz. Preuss. Akad. Wiss.
(1916), pp. 1111.

() Nachr. d. Ges. d. Wiss. zu Géttingen, Session on|¢99a8.
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changed?J in 20 over the domaiX will split into two parts: a divergence integral and
an integral whose integrand is only a linear combinasfody; and Jgi

(8) jaandx = j%xik)dxﬂ(m‘éﬂ +19p%5g,) dx {204 =20,

X

In this, ', Jv' are the components of contravariant vector denshias2y; is a mixed
tensor density of rank 2 (in the proper sense). Thepoaentsdv' are linear
combinations of:

opi , A and A, r {gik,r :ag—'k}
0%,

We now express the idea thfﬂﬂ dx does not change when the gauge of the world
X

changes infinitesimally. I&r = 1 + /7is the ratio of the varied gauge to the original one
then 7zwill be an infinitesimal scalar field that chara@es the process that can be given
arbitrarily. The fundamental quantities will experietice increments:

9 ik = 71, opi = - g—ﬂ
Xi

under that process. If we substitute these valués'ithen the expression:

(10) < (1) = m* £ 97 e
ox

a

might emerge. The variation (8) of the action integnaist vanish for (9): We then
formulate the fact of gauge invariance as:

ds () 07T i
——=dx+ | (-w' —+120' ) dx= 0.
I 0%, i 0% °

X

If one converts the first term in the second intedmalpartial integration then one can
write:

(11) ja(sk(”)_”mk)dx+jn o' L 1on dx=0
o 0% ¢ Lox 2

in place of this. That will next imply the identity:
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o' -
12 —+199'=0
(12) 0X; 2=

in the way that is well-known from the calculus ofigdions: If this function of position
were non-zero at a locatior)(— say, positive — then one could delimit a neighbort#®od

of that location that is small enough that the functiould remain positive in all Gt.
If one chooses that domain to ¥en (11), butsris a function that vanishes outsideXf
and is consistentlg O inside ofX then the first integral will vanish, but the secon@ on

will prove to be positive, which contradicts equation (1Once that is known, (11) will
yield the further equation:

A o
T 0%, '

For a given scalar field; this must be true for any finite domaih and as a result, one
must have:

k _ k
(13) o(s" () —mmo7) _ o
0%,
If we substitute this in (10) and observe that the valies

omr  o°m
ox  0x 0%

can be given arbitrarily at a location then that fdemwill split into the following
identities:
k k ) ai )
L N L N L ey
ox, 0%, 0x,

Sincedrr/ 0% are the components of a covariant vector field thses from the
scalar field7z the fact that' (7) is a vector density will imply that is a vector density,

andh™® is a tensor density, and indeed, from 3, a linear teffsosity of rank 2. Due to
the skew-symmetry df, (1.) will be a consequence of (2.), since one has:

azbaﬂ
ox, 0%,

b) Coordinate invariance. We subject the world-continuum to an infinitesimal
deformation, under which the individual point)(will experience a shift with the
componentst' (x); the metric will be unchanged under the deformati@nwill denote
the change in any quantity that is affected by the defiwmahen one remains at the
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same space-time location, whidéwill be its change when one displaces the space-time
location along with it. One has:

-op =| @, o0& +—a¢r ' +_677,
ox  0x 0Xx
- &' & og
-9g9, =| g L _
glk (gw axk + g<r 6)§ + 0)$ QZ j ﬂg&

In this, 7means an infinitesimal scalar field that is unaffedigdhe conditions that we
have established. The invariance of the quantity ofomctunder coordinate
transformations and changes of gauge is expressed by thasovel formula (which
includes five arbitrary functions' and 7):

(15) Jjﬁndx:.[{a(;LXjE)+5ﬁn}dx:0.

If one wishes to express only the coordinate invariandbatfexpression then one must
chooserr= 0; however, the variational formulas (14) would hageinvariant character.

In fact, that condition would mean: The two fundamefaais shall be varied by the
deformation in such a way that lengthof a line element that is carried by the
deformation must remain invariar¥:l = 0. However, that equation does not express the
process of the congruent transplanting of a line segrasmpposed to:

FI==1(pIx)==1(¢&).

If invariant formulas are to come about then we mustchobserr= 0 in (14), butr= -
(¢ &), namely:
_%i = fir 5rl

(16) o (as o)), (0g, :
5gik _[gir axk + g« a)ﬂ j+(a)§ + g<¢rj<( :

The variation of the two fundamental forms thatxpresses is such th#tte metric is
carried along unchanged by the deformation and every line element will spkrated
congruently. One can also recognize the invariant character of tiegsa (16)
analytically. It will be revealed in the second evien one introduces the mixed tensor:

a ! i i
f _rkrfr = C/(k'
0,
It will then read:

- ik = ik + i -
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Once the gauge invariance is exploited uraerit will suffice to make any particular
choice for7r; from the standpoint of invariance, the= — (¢ ¢') that leads to (16) is the
only one possible.
For the variation (16), let:
WE + Ik =K.

Gk(é) is a linear differential vector density that depends uperarbitrary vector field';
| write it explicitly:
i . .
S = Gikgﬂ_ﬁﬁ”gﬁﬁik"ﬂ ¢ .
0X, 0x, 0%, 0%

(Naturally, the last coefficient is symmetric in thdices af.) If we introduce the
expressions (8), (16) into (15) then that will producenéegral whose integrand reads:

06"(£) 23 ag, a
T_mka_ fkimk+% axﬂ+g”ﬂ¢i W7

Since:

09, :
a; +0,50 =T api+Tpai,

and due to the symmetry 8% one will have:

9
%( gaﬂ +gaﬂ¢ijw”ﬂ =ap WY =T 0],
X

If we perform yet another partial integration oe second term of our integrand then we

will get:

k _ k zi k '

J-G(6 () -2 5)dx+.|"(aﬂ_r;m]f+ fikm"jf' dx = 0.
3 0X, 0%

The identities:

oW _ . _
(17) [ o, —Fﬂim}fj + fik X =0
and |
(18) G ()-W'S) _

28

arise from this, by the argument that was applieava. The last one decomposes into
the four following ones:
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k k = ak
L 95 TR L e -y oy

0%, 0%, 0x,

zaB | & Ba aﬁimﬂ — ap B B —
1. (ﬁ. +~6i )+ —01 V. ﬁi y+~6i W'*'ﬁiW =0.

0Xx

14

If one replaces:
ﬁ}yﬂﬂ with _ﬁ'ﬂﬂy _ﬁ'ﬂﬂy

in 11l and IV then it will emerge that:

_ 05 %
R e B
& ox

14

[

is skew-symmetric in the indicegs. If we introduce$”, in place of$,”, then Ill and
IV will include merely statements of symmetry, buill go to:

ak 2 ~ apfk
+a”6i +65:)i =0k

() Ch ="
ox, 0x,0%

| follows from this, because due to the symmetry caomkt

2 & apk 3¢ apy
09, =0, so one will have _9HT
ox, 0%, 0x, 0%, 0X,

The invariance character of the coefficie@tsand$ of &* (&) (in particular, that of the
quantitiesS) can be described most simply and completely by abing thatS*(é) is a
vector density (buk‘i is a vector). It will then emerge from this th@f* are not the

components of a mixed tensor density; in this case, wek spea “pseudo-tensor
density.”

Example. For20 =1, as one sees immediately, one has:

5Uk — ](ik %i ,

SO as a result:
s =0, h* =X Gi“= [ —fi,f*,  and the quantitie® = 0.

Our identities then imply that:
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afai ami B

o' = , —=0, 2,'=0,
0x, 0X,
W=k @_lag_”ﬂgﬂﬂ +f ﬂ: 0.
I [ axk 2 a)q a

The two formulas in the last row are confirmed bycghktion inMaxwell’s theory.
In it, the componentss* define the tensor density of the energy of the elewgmetic

field, and the last equation says that the ponderomidree will arise from that tensor
density by taking its divergence.

Field laws and conservation laws- If one take®) in (8) to be an arbitrary variation
that vanishes outside of a finite domain and takdés be the entire world or a domain

such thatd = 0 outside of it then that will give:
jdﬁﬂdxz j(mi5¢i +190% g, ) dx

It emerges from this that the following invarianzavs are included in Hamilton’s
principle] 520 dx = 0:

' =0, 25 = 0.

The first of these are thelectromagnetic lawswhile the second ones are the
gravitational laws. Five identities exist between the left-hand sidéshese equations
that are specified above in (12) and (17). Fivehef equations in the system of field
equations are therefore superfluous, correspontiinthe transition from a reference
system to any other one, which depends upon fibérary functions. s' is the vector
density of electric four-current&* is the pseudo-tensor of energy, ahli is the
electromagnetic field densityln the case oMaxwell’'s theory, which is indeed only
valid in the ether (as it must be),= 0,5 = {*, and theS* are the classical expressions.
From(1.) and(l.), one generally has the conservation laws:

ox X,

Indeed, the conservation laws follow from the fi@lds in two waysnamely, not only
does:

3 _ o'
ox 0%
and not only does:

but it also=- 1927/,
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05 _ 095
0% 0%

., butitalso= 20 - f,w".

The close relationship that exists between the cortsemviaws for energy-impulse
and the coordinate invariance has been pursued by variouwsautlkinstein’s theory
(*). However, a fifth conservation law gets added tseHeur, namely, the conservation
of electricity, and it must consequently correspond tanaariance property that also
brings with it a fifth arbitrary function; in our theory,is seen to be gauge invariance.
Moreover, the older investigations into the energy-impulseorem never led to an
entirely transparent result. One then makes no spassalmption about the quantity of
action in Einstein's theory that could, however, appeal in any way to the oOf
conservation of energy and impulse, since it does mhiceeto it in the classical cases.
That has left me very uneasy for quite some timeadly. However, we get its complete
explanation here: One must couple the coordinate im@iwith the gauge invariance in
such a way that our theory — viz., formula (16) — willito@lied by that in its own right
in order to lead to the correct conservation laws.t Thmplete connection is obviously a
very strong argument for the validity of our theorgmely, that the laws of nature are
not only coordinate-invariant, but also gauge-invariant.

Let us add this: From (2.) [viz., the equations into whitB) decompose], the
electromagnetic equations read as follows:

ik
ai:gi and%.{.%.{.%: 0.
ox 0% 0X%

Without specializing the quantity of action, we can read off the estrecture of
Maxwell's theory from gauge invariance alonghe only laws that will be affected by
the special form of thélamilton function2J are the ones by which the currehiand
field densityh’® are determined from the fundamental quantifiesi .

From (13) and (18), the field laws and the conservatias that belong to them can
be summarized most clearly in the two simple equations

50 _, 98 _,

0x 0x,

(viz., theHilbert-Klein form of the field laws).

() Such a#i. A. Lorentz, Hilbert, Einstein, Klein, and the author.
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Chapter Il — Implementing a special action principle.

The Ansatz for23. — | shall base the further discussion upon the agtimtiple that
allows one to survey its analytical consequences megy.ea

W=-1F%/g+pL

The meanings of andF are gathered from the foregoing, while the consfaista pure
number. That gives:

W =-1F3(F[g)+1F?3 g+ Bl
It will simplify the calculations greatly when we the gauge of the world uniquely
by the requirement that F must be equal to a (given positive) constanf that is

possible, becaude is an invariant of weight — 1. In that way, we arratehe fact that
the field laws are second-order differential equatidhse drop a divergence:

5900/9¢)
0

which will indeed vanish upon integration over the worldntb&5J will become:

5{/3”” ﬁ—mfg(w)—”—f%}.

If we then divide bya, setS/ a = A, and convert the world-integral @¥(3 R\/_g) into
the integral ofo® by partial integration, in whict depends upon only thg and their
first derivatives b then we will come to the action principle:

(19) 5]{)1[—@%@}@:0.

The structure of the integrand is cleart and —& are the classical terms Maxwell’s
theory of electromagnetism ariinstein’s theory of gravitation. The “cosmological
term” (a / 4)\/5 is included in it, which appears here of necesslgng with the
simplest term that can be added to khaxwellian action density according tdie’s
theory and which the existence of matter makesilpless.e., @ ¢i)\/E. In this, one

must observe that according to our theory, thisa#ng one of a very limited number of
possibilities (cf., the conclusion of the paperthbis), and is, in any case, the only one that

() & is the quantity that was denoted %xﬁ* on pp. 114 of the cited paperkihstein.
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leads to differential equations of order no higher tim tin particular, it is not at all up
to our discretion to assign the sign of the tegmng(') to be anything but the one in (19).
From what was said, it is already clear that theggrla (19) agrees with the laws of the
electromagnetic and gravitational field that are adles$o experimental confirmation
outside of matter.

Varying theg; will yield Maxwell’s equations:

afik __i i
(20) Foal Z)I\/E¢.

The electromagnetic field density is therefore equéltoere, and the expression on the
right-hand side is the current density The divergence equation:

(21) —a(‘/aa¢i) =0
%

follows from this. Varying thei will yield the gravitational equation:
(22) Rk +p0k=3¢ d+ 1S,

in which S are the components of tMaxwellian energy-impulse, and:

R+_a+3(¢i ¢I)
—4 .

N

pP=
If we contract then it will follow that:

R-a+3(¢¢") =0 andfrom thatp=

ENJEN

Since —F = a, the first relation will once more yield (21) —zyi the conservation of
electricity — which, as one confirms, is a doulda@sequence of the field laws. The right-
hand side of (22) is equal to:

A (S - ¢ ),

in complete agreement withlie’s theory. In the ether, the first term outweighe
second one, which is relevant only in the inteabmaterial particles (e.g., atomic nuclei
or electrons).

Our theory is based upon a certain unit of eleityri | call:

8T

Co
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(x is Einstein’s gravitational constant, and, is the speed of light in ether) the
gravitational radiusof the charges, so one can characterize this unit, as would follow

from (22) by saying: It is the charge whose gravitationalugat equal to,/ 24 . That

length must certainly be enormous, since otherwise equ##0) would contradict
experiments; when the numb8r= 1, it will have the order of magnitude of the radius of
the world. Our unit of electricity, and likewise the urfitagtion, will then be of cosmic
magnitude, in any evenfThe “cosmological” moment that Einstein first introduced into
his theory heuristically is attached to our theory as a result dirdsprinciples.

Let us make two remarks about the static case! Htie storld is gauged inherently.
(cf., Chap. 1) One asks whether its natural gaageconst. is valid as a result of that.
The answer is yes. If we gauge the world by the demhadFt = const. then the
fundamental metric form will take on the factgranddg = ¢ dx must be replaced with:

dF
- —.
¢ dx =
Equation (21) will then imply that:
1 2 3
0¥ +6$ +63 -0 E:a—F ,
ox, 0%, 0% 0x

and it will follow from this that = const.
The second remark is this: In the static case, thé"(@@vitational equation (22)
reads:

C(AC+% cj =3¢°+18,.

In this, A is the spatialPoissonoperator that belongs to the fundamental metrinfbo?.
The right-hand side is positive here. Our actiomgple actually leads to a positive
mass, and therefore an attractive force between,taenot repulsive one.

Mechanics— The Ansatze that originate in the presence b$tsunces, and by which
one accomplishes the transition from the energyiis® principle to the mechanical
equations that govern the motion of a materialigartprove to be impossible in our
theory, since they contradict the required invargaproperties. Moreover, as | have
remarked here in passing, they will lead to a faisleie of the mass, just as they do in
Einstein’s theory on the very same basis and for the skériwh we must dismiss them
completely here. The only tenable path that cad ® an actual derivation of the
mechanical equations when one assumes the existénuaterial particles was proposed
in Part 3 ofMie’s trailblazing “Grundlagen einer Theorie der Ma&r(*), and was
recently trodden byEinstein in order to prove the integral conservation laws dn
isolated systenf). One imagines the material particles as being flmunded volum@

() Ann. Phys. (Leipzig#0 (1913), pp. 1.
(®) Sitz. Preuss. Akad. Wiss. (1918).



Weyl — A new extension of the theory of relativity. 22

whose dimensions are large compared to the actual nuofeasncentration of the
particles, but small in comparison to any dimensionghich the external field varies
noticeably. By its motionQ will describe a channel in whose interior the current
filament flows. The coordinate system, which consi$te “time coordinate¥, =t and
the “spatial coordinatesX;, X, X3 are so arranged that the “spacg’= const. cuts
through the channel (the cross-section is the aforeomed volume). The pseudo-tensor
density of total energy will be denoted Gyf. The integrals; of &;° over the domai®

in the spaceo = const. are thenergy(i = 0) and thempulse(i = 1, 2, 3) of the particle.

If one integrates each of the four conservation laws:

06" _
0%,

(23) 0,

which were proved above in general, in the same wayttigefirst term k = 0) will yield
the temporal derivativeld / dt. However, fromGausss theorem, the integrals of the
other three terms will yield a “force flux” through tlmeiter surface of2, which is
expressed by an integral that is taken over that sun@ce the components of thesld
force that acts upon the particle from the outside. The a@parthat comes about as a
result of the splitting of space and time yields tnggposition of thenertial forcedJ; /
dt and the field force that is characteristic of mechanics

The integrand of the action principle (19), whose ingtiens we shall now pursue,
shall be calledB. Since| B dx is not an invariant, the argument that was applied in
Chap. Il in order to prove the conservation laws caneotniintained with no further
assumptions. However, we also haV¢ % dx = 0 now for a variatio@ that, from (14),
is produced by an infinitely-smadisplacementn the true sense of the word: vizz= 0,
&' constant. As far as that is concerned, we must makessumptions abouB
whatsoever. If we set: _ _

56 - lek @ik + ®aﬂl @aﬂ,i
then the formulas:
_'k i _ 0 a
0%, 0x, 0x%

will follow from this on the basis of the validity ddamilton’s principle. However,
these are not the conservation laws for energy apdlga. Moreover, in order to get
them, we must next write dowwlaxwell’s equations in the form:

6(ﬂ5k+g:fk”j
:O,

a

0,

in which we set7= - (¢ ¢') and add the equation that comes about, when multiplied by
A, to (24). Equations (23) then arise, and indeed, one awié:h
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)
& ‘=B7J" +—§”ﬂ GPE =15 - Ag s,
X

This energy density is composed of three parts:

1. The term that is noticeable only in the interibthe material particle:
Mis',)d -9}
2. The one that belongs keaxwell’s field:

Mror - 1,5}

3. The gravitational energy:
a9 —® |5+ 09,5 sy
4 0X

We think of the range of values for thg outside of the channel as being extended
over the channel by constants when we “flatten @utd “bridge over” the fine, deep
furrow that the path of the material particle digshe metric face of the world and treat
that current filament as a line in that flattenedtme field. Letds be the associated
proper-time differential. We can introduce a caoaitk system about a location along the
current filament such that one has:

ds’ = dx¢ = (dx + d§ + d¥)
there, the direction of the current filament isegi\by:
dxo:dxg:dx :dxs=1:0:0:0,

and the derivativeg8g.s / 9% vanish. For the cross-sectiag = const. of the current
filament that one makes through that location, witlethen have (approximately):

Jl = Jz = J3 = 0,
as in the static case, assuming that the intetnattsre of the particle is the same as

when it remained at rest in that coordinate systdat assumption is admissible for
guasi-stationary acceleration. Likewise, of thegnals:

jsi dx, dx, dx

that are extended over the cross-section of theufilament, only the Hone does not
have the value O there, but is equal to the charglethe particle (which is an invariant
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that is independent of time, from the conservatiav).laUnder such circumstances, the
“force fluxes,” which represent the portion that asideom (3.), will drop out of the
integral that are taken over the outer surface ot#pg) at the moment considered. In
order for that to be true, it is essential that tkgressions (3.) depend not only linearly,
but also quadratically, upon the differential quotigitigs/ dx;. The part that arises from
(1.) can be neglected, singe= 0 outside of the particle. Only (2.) remains, and piaat

yields the ponderomotive force of the electromagnetdd fiaccording toMaxwell’s
theory: viz.,e % (fik is the external field here; the assertion is coratdeast when that
field does not vary too strongly in time relative to plagticles). We get the equations:

dJ
—=efh.
dt b

If we revert to an arbitrary coordinate system then ftilowing formulas will enter in
place of the ones that were obtained:

J=mu, in whichuy; = ?j—x

S

and a proportionality factan of “mass” will appear; furthermore:

d(my) _ 1099,

mu’ u"=m|:fki uk.
ds 2 0dx

(25)

Here, thegi , like thefy, refer to the flattened metric. The chamis constant. If one
multiplies the last equation ly and sums ovearthen one will find that:

d_rn: O,
ds

so the mass will likewise be constant. It depends up®ihoice of constamnt in such a
way thatm = m,/a (M is independent of).

The connection with the ordinary formulas has bedmeaed. It is essential for their
validity that the gauge is normalized By= const. For quasi-stationary acceleration, a
clock will measure the integrdl ds of the proper time that corresponds to that
normalization. However, that result is linked witle taction principle that is used as a
basis here.

The problem of matter. — The fact that the conservation laws imply cortstéarge
and mass for a material particle still does not explanfact that all electrons possess the
same charge and mass and consistently maintain thdine particles are never
completely isolated from each other then since cordidedeviations should not arise in
the course of long periods of time. Moreover, thastmast upon the fact that the world-
laws must admit only a discrete number of static smistithat would represent stable



Weyl — A new extension of the theory of relativity. 25

corpuscles. With that, we come to true problem of ma@tan it be solved on the basis
of the action principle that we have assumed here®edins that the answer to that
guestion might be “no,” sincéie has shown that the addition of a term to the

Maxwellian action density (which is, by the way, a functidme / ¢, ¢' ) will certainly

make matter impossible when that function does not vaaishleast fifth order fogq = 0
(*). However, for him, that knowledge arose from thé faat he required the regularity
of the static spherically-symmetric solution at irtfini Here, however, those solutions
will undoubtedly lead, not to an infinite space, buta@set one, so completely different
regularity demands must be posed.

| must touch upon yet another point before | go on tdi@ixpalculations. It is a fact
that for the electron, pure numbers appear whose ordaeragnitude are completely
different from 1, such as the ratio of the electradius to the gravitational radius of its
mass, which has order to magnitudé®1éhe ratio of the electron radius to the world-
radius might have a similar order of magnitude. Thatldvgeem to demand that a pure
number with an enormous value must be includedHamilton’s principle from the
outset, which is what happened with our Ansatz: viz., tmstant5. On the other hand,
one must then concede that the structure of the wbhddld be based upon certain pure
numbers with fortuitous numerical values that are alisemaiities. A way around that
dilemma is probably possible only when one assumes thatld-law does not prescribe
a specific value for the numbg but demand only that it must be constant. In other
words, it must read: Any virtual variation of the methat vanishes outside of a finite
world-domain for whichd [ dx vanishes will also make the variation of:

HFZ\/de

vanish. In that way, the problem of matter will beccane“eigenvalue” problem: Only
certain discrete values @fwill belong to regular solutions. They correspond tcsjibs
particles that nonetheless all exist in the samedyarhether next to each other or inside
of each other, which would impose reciprocal fine modifans of their internal
structures. Noteworthy consequences for the organizafitme universe seem to come
to light then, along with the possibility of an exméion for the fact that it is globally at
rest, but locally in a state of unrest.

In the static, spherically-symmetric case, we have deadar fieldsc and ¢, which

depend upon only the distance ./ x* + X2 + X, and the spatial line elemeaw?, which
can, with the use of a suitable scale of distancepbéerred the form:

(¢ +d¢+df)+ o x dx+ x dxr x d¥,

in whichp is also a function that depends upon anly set:

() Ann. Phys. (LeipzigB9 (1912), pp. 14.
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w=h=1+pr, A=.,g =hg Py oy
A A

(The prime means differentiation with respectrtp The spatial coordinate system is
fixed up to a rotation by the normalization that has h@sformed, while the functiors
and ¢ are fixed up to a common constant factor, and w are determined completely.
The action principle (that one writes down with no Hert assumptions) implies the
differential equations:

3
AN ==wWg?r,
4 ¢
3 Y 2 2 12,2
(26) pr 2 _ar +§¢2\Nzl’ __1¢2r2 |
1+ pr 4 4 A 2 A

A 24 A

1]

The problem is of order four and of such a type that tdematician will hopefully
sweep the sails before him. All the same, | can reduter by one when | introduce the
functions that were previously denoteduhy, w. Instead of, | shall employ the square
r? = pfor a variable, and find that:

dv 3uwp _ 0

(D) 2p—+v+ :
do
(Dw) 2,03—\2/+W(W—1)—¥(a,0+ 3Pwp—24V) =0.

In addition, one has (u A)' =v A; if | substitute the expression faf / A that is implied
by (26) in this then that will give:

(Dy) 2pﬂ+§pu3wz—v:0.
dpo 4

These differential equationB) determineu, v, w; one will getA from a quadrature of:

dinA _3
dpo 8

(27) (uw?

If one prescribes the initial valuasarbitrary,v = 0, w = 1 then one will get power-series
solutions that satisfy the equations formally. tha theory of differential equations, it is
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shown that they convergd ( We will then geto® solutions that are regular at the “pole”
p=0.

A solution that represents the evolution of the figlda material particle that is
capable of existing will lead to a closed space. The eqgo#that space will be defined
by p = @ . In the vicinity of the equator, one must employ thentjtya z that is
introduced by way of:

p=m(1-2)

for the purpose of uniformizationv must then become infinite to order 2 for 0, while
¢ and ¢ will remain regular, anad will certainly not vanish foz = 0. A will become
infinite to order 1, whilau andv will then take on zero loci of order 1 wher 0. If | set:

=, =V, wi¥=w

(N

\%
y4

thent, v, w will become regular, as well as even, functiong. oLet me point out that
from (27), InA is a monotone-increasing function pof The sign in this equation is
fortunately arranged such that it allows a growth ibeyond all limits to be possible. If
| employ Z =t as the independent variable then that will produce tFereltial
equations:

du 3 tv
2—+0-=p,(1-t)T°'W-——=0,
dt 4p°( ) 1-t
(D) ad 172y 30 ggm g,
dt  1-t 24
dw WWw-3t+2) W . 2T
- A v =y + - =
tht 1+t +4(ap° 3P 0
and
dinA 30, ,— >
28 =——2(uw".
(28) " 8t( W)

By comparing the constant terms in the power seriesla@vent, one will get the
following initial values fort = O:

J30, 4

0',00_4 V= , W= 7
ap,—

230, A

As would follow from the existence theorem that vgéasted above, they are associated
with a single regular solution of the systém), along with aA that will become infinite

like 1/ﬁ [if the power-series development on the right-hamt® of (28) begins with
the term — 1 /@. Every value ojx will then correspond to a solution to the problkai

u=

() Picard, Traité d’Analyse3, pp. 21.
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is regular on the equator, and when one vamie®ne will get a family ofo* such fields.
Only those of them that belong to values:

4 2
Po>— fy>——
a { ﬁj

can come under consideration, sineenust be positive; hence, the radius must have a
cosmic magnitude! In ththree-dimensionamanifold of all solutions to the system of
equations D), we will then have thene-dimensionamanifold of all fields that are
regular at the pole and tlmme-dimensionamanifold of all fields that are regular at the
equator. These two manifolds will generally “irgect” as rarely as two lines in space.
However, one should probably expect that thereisarated special values df — viz.,
eigenvalues- for which such an intersection comes about; aesolution — viz., an
“eigenfunction” — exists that remains regular & fole, as well as at the equator. The
present-day tools of analysis are hardly sufficienprove the actual existence of those
eigenvalues.

The putative world-law. — In Mie’s theory of gravitation, when regarded as an
extension oEinstein’s, in the form thaHilbert presented it'f, the Hamilton function
W (= 8./g) was constrained by only the demand that it hadetcinvariant under

coordinate transformations. That demand allowed oansiderable latitude. That
latitude will be restricted rather sharply by owrspulate that’v must be an invariant of
weight — 2 under changes of gauge, but still nosuoh a degree tha would be
determined uniquely by it. If we assume thEtis constructed rationally from the
curvature components then, as far as | can seewthhauggest only the following five
possibilities:

1. TheMaxwellian onel =4f; f ™.
2. According to the same model, one can defifig F* from the vector curvature.

In this, multiplication is to be interpreted as ttemposition of matrices. The expression
it itself a matrix, but its track is a scalar of weight — 2:

If *L is the analog of the invariant that is definedtltgy direction curvature then one will
havelL =*L +1.

3. One permutes the indicsaandi in the second factoF/* of the expression fdr.

() D. Hilbert, Nachr. Ges. Wiss. zu Géttingen (1915), pp. 395.
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4. The scalaFy F* arises from the contracted tengeff, = Fi .

5. The invarianE? that was employed above.

The assertion that was made means that any invasfatite given kind can be
composed from these five quantities linearly with coristagefficients.

The action principle that was implemented in the previsections is constituted as
follows: Its Hamilton function was a linear combination of (1.) and (5.).elidve that
one can assert that this action principle impliesyheng thatEinstein’s theory has
implied up to now, but in the more far-reaching questionscadgmology and the
constitution of matter, it exhibits a clear superiorityevertheless, | do not believe that
the laws of nature that are exactly applicable intyealie resolved by it. In regard to the
actual character of the magnitude of the curvature, inset® me that, in fact, the
invariants (3.)-(5.) are artificial constructions, congmhto the two natural ones, viz., the
“principal invariants” (1.) and (3.). If I am not deceivegdthis faith in aesthetics (which
correctly gives the four-dimensionality of the worldgn the world-law would readny
virtual change in the metric that vanishes outside of a finite domain,f@ndhich

5j[dx= 0, will also fulfill the equationd | £ dx = 0. | think that | will pursue the

consequences of that action principle in a continuatfdhis paper.

The fruitfulness of the new viewpoint of gauge invarianas shown itself, above all,
in the problem of matter. However, the decisive comzhssin that context are fortified
behind a wall of mathematical complexities that | hagebeen able to break through up
to now.
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