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§ 1.  Introduction. On the relationship between geometry and physics. 
 

The real world in which our consciousness is forced to reside is not there, all at a 
single moment, but happens; it elapses, being destroyed and born anew in each moment, 
a continuous one-dimensional sequence of states in time.  The arena of this timelike 
happenstance is a three-dimensional Euclidian space.  Its properties are examined by 
geometry; on the other hand, it is the problem of physics that real things exist in space to 
be regarded conceptually and to be founded on lasting laws, despite the ephemeral nature 
of phenomena.  Physics is thus a science that has geometry at its foundations; however, 
the concepts by which it represents reality – matter, electricity, force, energy, 
electromagnetic field, gravitational field, etc. – belong to a completely different sphere 
from geometry. 

This old insight regarding the relationship between form and content in reality, 
between geometry and physics, has been overturned by Einsteinian relativity theory 1).  
The special theory of relativity leads to the knowledge that space and time are melded 
into an indissoluble unified entity that we will call the world; as a consequence of this 
theory, the world is a four-dimensional Euclidian manifold – Euclidian, with the 
modification that the quadratic form that is the basis for the world-metric is not positive-
definite, but has an index of inertia equal to 1.  The general theory of relativity says – 
entirely in the spirit of modern local action physics – that this is valid only 
infinitesimally, and takes the world metric to then be the general concept that was 
presented by Riemann in his Habilitation lecture in which he claimed that such a measure 
was based on a quadratic differential form.  His principal innovation was the following 
insight: The metric is not a property of the world in itself; rather, spacetime as a 
phenomenon takes the form of a completely formless four-dimensional continuum, in the 
sense of Analysis Situs, but the metric expresses something real that exists in the world, 
that physical actions are exerted on matter through centrifugal and gravitational forces, 
and conversely, the state of the metric is naturally determined by the distribution and 
properties of matter.  Since I wanted to liberate Riemannian geometry, which we will 
regard as “local geometry,” from one of its currently unresolved inconsistencies, a last 
global geometric element emerges that is suggested by its very Euclidian past itself, I 
arrived at a world metric from which not only gravitational, but also electromagnetic 
effects, emerge, which, as one may with good reason assume, thus account for all 

                                                
 1 ) I refer to the presentation in my book “Raum, Zeit, Materie,” Springer 1918 (denoted by RZM, in the 
sequel), and the literature that was cited in it. 
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physical phenomena 2).  In this theory, all real events that occur in the world are 
manifestations of the world metric; the physical concepts are nothing but geometric ones.  
The single difference between geometry and physics consists of the fact that geometry 
generally begins with a set of axioms that the metric concept essentially embodies 3), but 
physics must arrive at these laws and pursue their consequences in order to distinguish 
the real world among all possible four-dimensional metric spaces 4). 

In this note, I would like to develop that pure infinitesimal geometry of which I am 
convinced the physical world is understood to be a special case.  The construction of 
local geometry is properly performed in three steps.  At the first step, one finds a 
continuum, in the sense of Analysis Situs, that is barren of all measurements – physically 
speaking, this is the vacuum.  At the second step one finds the affinely connected 
continuum – which is what I call a manifold in which the concept of the infinitesimal 
parallel displacement of vectors has meaning; in physics, the affine connection appears in 
the form of the gravitational field.  Finally, at the third step, one finds the metric 
continuum – physically, this is the “ether,” whose states are manifested by the 
phenomena of matter and electricity. 

 
 

§ 2.  Topological space (vacuum). 
 
As a result of the difficulty involved with grasping the intuitive character of 

continuous connections through a purely logical construction, a completely satisfactory 
analysis of the concept of an n-dimensional manifold is not possible at present 5).  The 
following shall suffice: An n-dimensional manifold may be described by n coordinates x1, 
x2, …, xn, each of which take on a definite numerical value at each point of the manifold; 
different points correspond to different systems of values for the coordinates.  If1x , 2x , 

…, nx is a second system of coordinates then there are specified relations: 

 
xi = fi ( 1x , 2x , …, nx ),   (i = 1, 2, …, n) 

 
between the x andx coordinates of the same arbitrary point, in which the fi are purely 
logico-arithmetically constructed functions; about them, we assume only that they are 
continuous and that they possess continuous derivatives: 
 

αik = i

k

f

x

∂
∂

 

 

                                                
 2 ) A first communication on this matter appeared with the title of “Gravitation and Elektrizität,” in 
Sitzungsber. d. K. Preuß. Akad. d. Wissenschaften 1918, pp. 465. 
 3 ) Traditional geometry immediately goes freely from this particular problem to a lesser one, in 
principle, by no longer making the space itself the object of one’s investigation, but the special classes of 
possible structures in space that are suggested by the space metric. 
 4 ) I am sufficiently audacious as to believe that the totality of all physical phenomena may be derived 
from a single universal law of Nature of the utmost mathematical simplicity. 
 5 )  On this, cf., H. Weyl, Das Kontinuum (Leipzig 1918), in particular, pp. 77 et seq. 
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whose determinant does not vanish.  The last condition is necessary and sufficient for 
affine geometry to be valid in the infinitesimal limit and for the coordinate differentials in 
both systems to be related by invertible linear relations: 
 
(1)     dxi = ik k

k

dxα∑ . 

 
We assume the existence and continuity of higher derivatives whenever it becomes 
necessary in the course of our investigation.  Thus, in each case the concept of continuous 
and continuously differentiable functions of position, as well as 2, 3, … times continuous 
differentiability, has an invariant sense that is independent of the coordinates; the 
coordinates themselves are such functions.  We shall call an n-dimensional manifold, 
about which we shall consider no other properties than the ones that are intrinsic to n-
dimensional manifolds – to use physical terminology – an (n-dimensional) vacuum. 

The relative coordinates dxi of one of the infinitesimally close points P′= (xi + dxi) to 
a point P = (xi) are the components of a line element at P, or an infinitesimal 
displacement PP′

����

 of P.  When we transform to another coordinate system these 
components satisfy formulas (1), in which αik means the values of the appropriate 
derivatives at the point P.  In general, any n given numbers ξ i (i = 1, 2, …, n) in a 
definite sequence at a point P – when one establishes a particular coordinate system for 
the neighborhood of P – characterize a vector (or a displacement) at P;  the components 
ξ i ( iξ , resp.) of the same vector in any two coordinate systems - the “unprimed” and the 
“primed” systems – are connected by the same linear transformation formulas (1): 

 
ξ i = k

ik
k

α ξ∑ . 

 
One can add vectors at P and multiply them with numbers; they therefore define a 
“linear” or “affine” collection.  There are n “unit vectors” ei at P that are associated with 

any coordinate system, namely, the ones that possess the components: 
 

1

2

1, 0, 0, , 0

0, 1, 0, , 0

0, 0, 0, , 1n

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

e

e

e

 

 
in the chosen coordinate system. 

Any two (linearly independent) line elements at P with the components dxi (δxi, resp.) 
span a (two-dimensional) surface element at P with the components: 

 
dxi δxk  − dxk δxi = ∆xik ; 

 
any three (independent) line elements dxi, δxi, dxi at P span a (three-dimensional) volume 
element with the components: 
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i k l

i k l

i k l

dx dx dx

x x x

x x x

δ δ δ
d d d

 = ∆xik ; 

 
etc.  A linear form at P that depends upon an arbitrary line, (surface, volume, …, resp.) 
element at P is called a linear tensor of rank 1 (2, 3, …,resp.).  By the use of a chosen 
coordinate system the coefficients a of these linear forms: 
 

i
k

a∑ dxi   (
1

2! ik
ik

a∑ ∆xik , 
1

3! ikl
ikl

a∑ ∆xikl , …, resp.) 

 
can be normalized uniquely by the alternation requirement; it says that in the last-
described case − viz., the index triple (ikl) – when the triple is subjected to an even 
permutation one obtains the same coefficient aikl, whereas the sign of the coefficient 
changes under an odd permutation.  Hence: 
 

aikl = akli = alik = − akil = − alki = − ailk . 
 
The coefficients, thus normalized, will be referred to as the components of the tensor in 
question.  By differentiation, to a scalar field f there corresponds a linear tensor field of 
rank 1 with the components: 

fi =
i

f

x

∂
∂

; 

 
to a linear tensor field of rank 1 fi there corresponds a second rank tensor field: 
 

fik = i k

k i

f f

x x

∂ ∂−
∂ ∂

; 

 
to a linear a second rank tensor field there corresponds a tensor field of rank 3: 
 

fikl = ik li ik

l k l

f f f

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

; 

 
etc.  These operations are independent of the coordinate system used 6). 

A linear tensor of rank 1 at P may be referred to as a force that acts on it.  By 
choosing a particular coordinate system, such a tensor will therefore be characterized by 
n numbers ξi that transform contragediently to the displacement components under the 
transition to another coordinate system: 

 

iξ = ki
k

α∑ ξk . 

                                                
 6 )  RZM, § 13.  
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If ηi are the components of an arbitrary displacement at P then i
k

ξ∑ ηi is an invariant.  

We will generally understand a tensor at P to mean a linear form of one or more arbitrary 
displacements and forces at P.  For example, if one is dealing with a linear form 
composed of three arbitrary displacements ξ, η, ζ and two arbitrary forces ρ, σ : 
 

pq i k l
ikl p qa ξ η ζ ρ σ∑ , 

 
then we speak of a tensor of rank 5 that is covariant in the indices ikl and contravariant in 
the indices pq of the components of a.  A displacement is itself a contravariant tensor of 
rank 1 and a force is a covariant tensor of rank 1.  The fundamental operations of tensor 
algebra are 7): 
 1.  Addition of tensors and multiplication by a number; 
 2.  Multiplication of tensors; 
 3.  Contraction. 
 
Tensor algebra may thus be established in the vacuum – it assumes no measurements – 
but, by contrast, only the “linear” tensors of tensor analysis can be defined. 

A “motion” in our manifold is given when each value s of a real parameter is 
associated with a point in a continuous manner; by the use of a coordinate system xi the 
motion is expressed by formulas xi = xi(s), in which the xi on the right are understood to 
symbolize functions.  If we assume continuous differentiability then we obtain, 
independent of the coordinate system, a vector at each point P = P(s) of the motion that 
has the components: 

ui = idx

ds
, 

 
namely, the velocity.  Two motions that transform between themselves by means of a 
continuous monotone transformation of the parameter s describe the same curve. 
 
 

§ 3.  Affinely connected manifolds (world with a gravitational field). 
 

I.  Concept of an affine connection. 
 

If P′ is infinitely close to the fixed point P thenP′ is affinely connected with P when 
one establishes how each vector at P goes to a vector atP′by a parallel displacement of P 
toP′ .  It is self-explanatory that the parallel displacement of all the vectors at P toP′must 
therefore satisfy the following requirement: 

 
A.  The transplantation of all vectors at P to the infinitely close pointP′by parallel 

displacement yields a map of the vectors at P to the vectors atP′ . 
 

                                                
 7 )  RZM, § 6. 
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If we use a coordinate system in which P has the coordinates xi , P′has the 
coordinates xi + dxi , an arbitrary vector at P has the components ξ i, and the vector 
atP′ that it goes to under parallel displacement has components ξ i + dξ i then dξ i must 
therefore depend upon the ξ i linearly: 

 
dξ i = − i r

r
r

dγ ξ∑ . 

 
the dγ ir are infinitesimal quantities that depend only upon the point P and the 
displacementPP′

����

whose components are dxi , but not on the vector that ξ that is been 
subjected to the parallel displacement.  From now on, we consider only affinely 
connected manifolds; in such a manifold each point P is affinely connected with all of its 
infinitesimally neighboring points.  We must place yet another requirement upon the 
concept of parallel displacement, that of commutativity: 
 

B.  If P1, P2 are two points that are infinitely close to P and if the infinitesimal vector  

1PP′
����

 goes to 2 21P P′
������

 under a parallel displacement of P to P2 , but 2PP′
����

 goes to 1 12PP′
�����

 

under a parallel displacement to P1 then P12 and P21 must coincide.  (They define an 
infinitely small parallelogram.) 

 

If we denote the components of 1PP′
����

 by dxi and those of 2PP′
����

 by δxi then this 

requirement obviously says that: 
(2)     dδxi = − i

r
r

dγ∑ ⋅ δxr  

 
is a symmetric function of both line elements d and δ.  As a result, dγ ir must be a linear 
form in the differentials dxi : 

dγ ir = i
rs

s

Γ∑ dxs , 

 
in which the coefficients Γ, which depend only upon P and are called the “components of 
the affine connection,” must satisfy the symmetry condition: 
 

i
srΓ = i

rsΓ . 

 
Due to the manner by which we formulated requirement B in terms of infinitesimal 

quantities, it can be argued that it lacks a precise meaning.  For that reason, we would like 
to establish explicitly by a rigorous proof that the symmetry condition of (2) is 
independent of any coordinate system.  To this end, we consider a (twice continuously 
differentiable) scalar field f.  From the formula for the total differential: 

 

df = i
i i

f
dx

x

∂
∂∑ , 
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we extract the fact that when ξi are the components of an arbitrary vector at P then: 
 

df = i

i i

f

x
ξ∂

∂∑  

 
is an invariant this is independent of any coordinate system.  We define a change in it by 
means of a second infinitesimal displacement δ, under which the vector ξ will be 
displaced parallel to it from P to P2, and we obtain: 
 

δdf =
2

i i i
k r

ik iri k i

f f
x

x x x
ξ δ δγ ξ∂ ∂− ⋅

∂ ∂ ∂∑ ∑ . 

 
If we again replace ξi in this equation with dxi and switch d and δ then this yields the 
invariant: 

∆f = (δd – dδ)f = ( )i i
r r r r

i ri

d x dx
x

γ δ δγ
 ∂ − ∂ 

∑ ∑ . 

The relations: 

r
∑ (δγ ir δxr − δγ ir dxr ) = 0 

 
yield the necessary and sufficient condition for this, that any scalar field must satisfy the 
equation ∆f = 0. 

In physical terminology, an affinely connected continuum refers to a universe that is 
ruled by a gravitational field.  The quantities i

rsΓ are the components of the gravitational 

field.  We will not need to give the formulas by which these components transform under 
a transition to another coordinate system here.  Under linear transformations, 
the i

rsΓ behave like the components of a tensor that is covariant in r and s and 

contravariant in i, but they lose this character under nonlinear transformations.  However, 
the variations i

rsδΓ that the quantities Γ experience when one varies the affine connection 

of the manifold arbitrarily are actually the components of a generally invariant tensor of 
the assumed character. 

What we are to understand by the parallel displacement of a force at P to an infinitely 
close pointP′ is a result of the requirement that the invariant product of this force and an 
arbitrary vector at P remains invariant under parallel displacement.  If ξi are the 
components of the force and ηi those of the displacement then from 8): 

 
d(ξi ηi) = (dξi ⋅ ηi) + ξr dηr = (dξi − dγ ri ξr) = 0 

 
and we deduce the formula: 

                                                
 8 )  In the sequel, we employ the Einstein convention that one always sums over indices that appear twice 
in a term of a formula, because without it, it would be deemed necessary for us to place a summation sign 
in front of each one. 
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dξi = 
r
∑ dγ ri ξr . 

 
One can introduce a coordinate system xi – which I call geodetic at P – at each 

location P in such a way that the components Γi
rs of the affine connection vanish at the 

location P in such a coordinate system.  Next, if xi are arbitrary coordinates that vanish at 
P and Γi

rs mean the components of the affine connection at the location P in this 
coordinate system then one obtains a geodeticix by the transformation: 

 
(3)     xi = 1

2
i

i rs r s
rs

x x x− Γ∑ . 

 
Namely, if we consider the ix  to be the independent variables and their differentials idx  

to be constants then we have, in the Cauchy sense, at the location P ( ix = 0): 

 
dxi = idx , d2xi  = − i

rs r sdx dxΓ ; 

hence: 
d2xi + Γi

rs dxr dxs = 0 . 
 
Due to its invariant nature, the latter equation reads like: 
 

2 i
i rs r sd x dx dx+ Γ  = 0 . 

 
However, for arbitrary constant idx  it is satisfied only when all of the irsΓ  vanish.  The 

gravitational field can therefore always be made to vanish at a single point for a certain 
choice of coordinate system.  By the requirement of “geodesy” at P, coordinates in the 
neighborhood of P are determined up to third order when one is given any linear 
transformation; i.e., if xi, ix  are two geodetic coordinate systems at P and the xi, as well 

as the ix , vanish at P then by neglecting terms of third and higher order inix one has 

linear transformation formulas  xi = ik k
k

xα∑  with constant coefficients αik . 

 
II.  Tensor analysis.  Straight line. 

 
Tensor analysis may first be completely established in an affinely connected space.  

For example, if k
if are the components of a tensor field of rank 2 that is covariant in i and 

contravariant in k then we make use of an arbitrary displacement ξ and a force η, 
construct the invariant: 

k
if ξ i ηk 

 
and its variation under an infinitely small shift d of the argument point P, under which ξ 
and η will be parallel displaced along with P.  One has: 
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d( k
if ξi ηk) = 

k
i

l

f

x

∂
∂

ξi ηk dxl − k
rf ηk dγ ri ξi  + r

if ξi dγ kr ηk , 

hence: 

k
ilf  = 

k
r k k ri
il r rl i

l

f
f f

x

∂ − Γ + Γ
∂

 

 
are the components of a tensor field of rank 3 that is covariant in l and contravariant in k 
that arises from the given second rank tensor field in a manner that is independent of the 
coordinate system. 

In an affinely connected space the concept of a straight or geodetic line takes on a 
precise meaning.  A line comes about when one consistently displaces a vector parallel to 
itself in its own direction and follows the motion of the initial point of this vector; it can 
thus be characterized as the only curve that leaves its direction unchanged.  If ui are the 
components of such a vector then in the course of its motion the equations: 

 
dui + Γi

αβ u
α dxβ = 0 , 

dx1 : dx2 : … : dxn = u1 : u2 : … : un 
 

are consistently valid.  If we then represent the curve in terms of the parameter s then we 
can normalize it in such a way that one has: 
 

idx

ds
= ui 

 
identically in s , and the differential equations of the straight line then read: 
 

wi =
2

2
ii

dxd x dx

ds ds ds
βα

αβ+ Γ  = 0 . 

 
For any arbitrary motion xi = xi (s) the left-hand sides of these equations are the 
components of a vector that is invariantly linked with the motion at the point s, the 
acceleration.  In fact, when ξi is an arbitrary force at some point that is parallel displaced 
by a transition to the point s + ds, one has: 
 

( )i
id u

ds

ξ
 = wiξi . 

 
A motion whose acceleration vanishes identically is called a translation.  A straight line – 
as one can also understand from our explanation above – is to be understood as the path 
of motion of a translation. 
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III.  Curvature. 
 

If P and Q are two points that are connected by a curve with a given initial vector 
then one can displace it from P to Q parallel to itself along the curve.  The vector 
translation thus obtained is generally non-integrable; i.e., the vector that one obtains at Q 
is dependent upon the path of displacement along which the transition took place.  Only 
in the special case where integrability exists is there any sense to speaking of the same 
vector at two different points P and Q; one would then understand such vectors to the 
ones that go to each other under parallel displacement.  In that case, one calls the 
manifold Euclidian.  One may introduce special “linear” coordinate systems in such a 
manifold that are distinguished by the fact that in such systems equal vectors at distinct 
points have equal components.  Any two such linear coordinate systems are connected by 
linear transformation formulas.  The components of the gravitational field vanish 
identically in a linear coordinate system. 

In the infinitesimal parallelogram that was constructed above (§ 3, I., B.) we took an 
arbitrary vector with the components ξi at a point P, displaced it parallel to itself first to 
P1 and then to P12, and another time from P to P2 and then to P21 .  Since P12 coincides 
with P21 we can take the difference of these two vectors at that point and thus obtain a 
vector whose components are obviously: 

 
∆ξ i = δdξ i – dδξ i . 

From: 
dξ i = − i k

kdγ ξ = − Γi
kl dxl ξ k 

it follows that: 

δdξ i = 
i

k i k i r kkl
l m kl l k k

m

dx x dx d
x

δ ξ δ ξ γ δγ ξ∂Γ− − Γ ⋅ +
∂

, 

 
and due to the symmetry of δdxl : 
 

∆ξ i = ( )
i i

i r r ikm kl
l m r k k r

l m

dx x d d
x x

δ γ δγ γ δγ
  ∂Γ ∂Γ − + −  ∂ ∂   

ξk . 

We thus obtain: 
∆ξ i = ∆Ri

k ξ k , 
 
in which ∆Ri

k is the linear form of the two shifts d and δ, which are independent of the 
displaced vector ξ, or furthermore, of the surface element that they span, which has the 
components: 

∆xlm = dxl δxm – dxm δxl , 
namely: 
(4)  ∆Ri

k = Ri
klm dxl δxm = 1

2 Ri
klm ∆xlm ,   (Ri

kml = − Ri
klm ), 

(5)  Ri
klm = ( )

i i
i r i rkm kl
lr km mr kl

l mx x

 ∂Γ ∂Γ− + Γ Γ − Γ Γ ∂ ∂ 
. 
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If the ηi are components of an arbitrary force at P then ηi ∆xi is an invariant.  It follows 
that Ri

klm are the components of a tensor of rank 4 at P that is covariant in klm and 
contravariant in i, namely, the curvature.  The vanishing of the curvature identically is 
the necessary and sufficient condition for the manifold to be Euclidian.  Along with the 
“skew” symmetry described in (4) that the components of the curvature satisfy, they also 
satisfy the “cyclic” identity: 

Ri
klm + Ri

lmk + Ri
mkl = 0 . 

 
In essence, the curvature at a point P is a linear map, or transformation, ∆P that 

associates each vector ξ with a vector ∆ξ ; this transformation itself depends linearly 
upon the surface element at P: 

 
∆P =  Pik dxi δxk = 1

2 Pik ∆xik   (Pki = − Pik ) . 

 
The curvature is therefore best understood as a “linear transformation tensor of rank 2.” 

In order to rigorously prove the invariance of the curvature tensor beyond objections 
of the sort that might perhaps be raised for the infinitesimal changes described above, one 
employs a force field fi , defines the change d(fi ξi) of the invariant product fi ξi in such a 
manner that under the infinitesimal shift d the vector ξ will be displaced parallel to itself.  
If one replaces the infinitesimal shift dx with an arbitrary vector ρ at P in the resulting 
expression then one obtains an invariant bilinear form in two arbitrary vectors ξ and ρ at 
P.  With it, one defines the change that arises from a second infinitesimal shift δ and 
takes the vectors ξ, ρ along with it in a parallel fashion, and then replaces the second shift 
with a vector σ at P.  One finds the form: 

 
δd(fi ξ i ) = δdfi ⋅ ξ i + dfi δξ i + δfi dξ i + fi δdξ i . 

 
Due to the symmetry of δdfi , switching d and δ and then subtracting yields the invariant: 
 

∆(fi ξ i ) = fi  ∆ξ i , 
 

and one thus achieves the desired proof. 
 
 

§ 4.  Metric manifold (the ether). 
 

I.  Concept of a metric manifold. 
 

A manifold carries a measure at the point P when the lengths of line elements at P 
can be compared; we thus assume the validity of the Pythagorean-Euclidian law in the 
infinitesimal domain.  Therefore, a number ξ ⋅ η shall correspond to any two vectors ξ, η 
at P, namely, the scalar product, which is a symmetric bilinear form in its dependence 
upon both of them; this bilinear form is clearly not absolutely determined, but only up to 
an arbitrary proportionality factor this different from 0.  Therefore, it is not actually the 
form ξ ⋅ η, but the equation ξ ⋅ η = 0 that is given; two vectors that satisfy it will be called 
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perpendicular.  We assume that this equation is non-degenerate; i.e., that the only vector 
at P that is perpendicular to all of the vectors at P is the vector 0.  However, we do not 
assume that the associated quadratic form ξ ⋅ ξ is positive-definite.  If it has an index of 
inertia q and one has n – q = p then we say briefly that the manifold is (p + q)-
dimensional at the point in question; due to the arbitrariness of the proportionality factor, 
the two numbers p, q are defined only up to their ordering.  We now assume that our 
manifold carries a measure at every point.  In order to facilitate the goal of the analytical 
representation, we imagine: 1. a choice of coordinate system has been made and 2. a 
choice of arbitrary proportionality factor in the scalar product has been made at each 
location; one thus arrives at a “reference system” 9) for the analytical representation.  If 
the vector ξ at the point P with the coordinates xi has the components ξi, and η has the 
components ηi then one will have: 

 
(ξ ⋅ η) = ik

ik

g∑ ξ i ηk     (gki = gik ), 

 
in which the coefficients gik are functions of the xi .  The gik shall not only be continuous, 
but twice continuously differentiable.  Since they are continuous and their determinant g, 
by assumption, is nowhere vanishing the quadratic form (ξ⋅ξ) has the same index of 
inertia q at every location; we can therefore regard the manifold as (p + q)-dimensional in 
all of its aspects.  If we keep the same coordinate system, but make a different choice of 
the undetermined proportionality factor then, instead of gik , we arrive at the new 
quantities: 

ikg′ = λ ⋅ gik 

 
for the coefficients of the scalar product, where λ is a nowhere-vanishing continuous (and 
twice continuously differentiable) function of position. 

As a result of the foregoing assumptions, the manifold is only endowed with an angle 
measure; the geometry that this alone will support is called “conformal geometry.”  As is 
well known, in the realm of two-dimensional manifolds (“Riemann spheres”), due to its 
importance in the theory of complex functions, it has attained a far-reaching level of 
development.  If we make no further assumptions, then the individual points of the 
manifold remain completely isolated from each other in the metric context.  A metric 
connection from point to point will then be first introduced in it when one proposes a 
principle for comparing the length unit at a point P with the ones at infinitely close 
points.  Instead of this, Riemann made the very far-reaching assumption that the unit 
lengths of line elements could be compared with each other, not only at the same 
location, but also at any two finitely distant locations.  The possibility of such a “global 
geometrical” comparison can, however, not exist at all in a purely infinitesimal 
geometry.  The Riemannian assumption is also carried over into the Einsteinian world 
geometry of gravitation.  Here, this inconsistency shall be removed. 

Let P be a fixed point and let P* be an infinitely close point that one arrives at by 
means of the displacement whose components are dxi.  We choose a particular coordinate 

                                                
 9 )  I thus distinguish between “coordinate system” and “reference system.” 
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system.  In terms of the length unit that was established at P (as well as the remaining 
points of the space), the square of the length of an arbitrary vector at P will be: 

 

ik
ik

g∑ ξ i ξ k . 

 
However, the square of the length of an arbitrary vector ξ* at P* will be, when we 
transform the unit length that was chosen at P to P*,  as we assumed would be possible, 
given by: 

(1 + dϕ ) * *( ) i k
ik ik

ik

g dg ξ ξ+∑ , 

 
where 1 + dϕ means a proportionality factor that deviates from 1 by an infinitely small 
quantity; dϕ must be a homogeneous function of the differentials dxi of order 1.  Namely, 
if we transplant the chosen length unit at the point P to a point along a curve that goes 
from P to the finitely distant point Q then, upon establishing the unit length at Q, we 
obtain the expression gik ξi ξk for the square of the length of an arbitrary vector at Q, 
multiplied by a proportionality factor, that one obtains from the product of infinitely 
many factors of the form 1 + dϕ, which will take the form: 
 

Π (1 + dϕ ) – Π edϕ = eΣdϕ  =
Q

P
d

e
ϕ∫  

 
under the transition from one point of the curve to the next.  In order for the integral that 
appears in the exponent to be meaningful, dϕ must be a function of the differentials of the 
sort described above. 

If one replace gik with ikg′ = λ gik then, instead of dϕ, another quantitydϕ′ will appear.  

If λ is the value of this factor at the point P then one must have: 
 

(1 +dϕ′ )( ikg′ + a gik) = λ (1 + dϕ )(gik + dgik ), 

which yields: 

(6)     dϕ′ = dϕ  − 
dλ
λ

. 

 
Of the next possible assumptions about dϕ, that it is a linear differential form, the square 
root of a quadratic form, the cube root of a cubic form, etc., as we now see from (6), only 
the first one is meaningful.  We have arrived at the following result: 
 

The metric of a manifold is based on a quadratic differential form and a linear 
differential form: 
(7)   ds2 = gik dxi dxk and dϕ = ϕi dxi . 
 
Conversely, if the metric is not, however, absolutely established by these forms, but by 
any pair of forms 2ds′ ,dϕ′ that originates in (7) by way of the equations: 
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(8)   2ds′ = λ ⋅ ds2 ,  dϕ′ = dϕ − dλ
λ

, 

 
then these are equivalent to the former pair in the sense that both of them express the 
same metric.  In this, λ is an arbitrary, nowhere-vanishing, continuous (more precisely: 
twice continuously differentiable) function of position.  In all quantities or relations that 
analytically represent metric phenomena, the functions gik, ϕi must therefore be 
introduced in such a manner that one has invariance: 1. under arbitrary coordinate 
transformations (“coordinate invariance”), and 2. under the replacement of (7) with (8) 

(“scale invariance”).  
dλ
λ

= d lnλ is a total differential.  Thus, whereas an arbitrary 

proportionality factor for the quadratic form ds2 remains at every location, there exists an 
indeterminacy in dϕ of an additive total differential. 

We give a physical expression to a metric manifold by regarding it as a world full of 
ether.  The particular metric that resides in the manifold represents a particular state of 
the ether-filled world.  This state is therefore to be described, relative to a reference 
system, by being given the (arithmetic construction of the) functions gik, ϕi . 

From (6), it follows that the linear tensor of rank 2 with the components: 
 

Fik = i k

k ix x

ϕ ϕ∂ ∂−
∂ ∂

 

 
is uniquely determined by the metric on the manifold; I call it the metric rotation.  It is, I 
believe, the same thing as what one calls the electromagnetic field in physics.  It satisfies 
the “first system of Maxwell equations:” 
 

kl il ik

l k l

F F F

x x x

∂ ∂ ∂+ +
∂ ∂ ∂

= 0 . 

 
Its vanishing is the necessary and sufficient condition for the change in length unit to be 
integrable, and therefore any assumption that Riemann based metric geometry upon to be 
valid.  We thus understand, as Einstein did in his world geometry by directing his 
mathematical hindsight to Riemann, that only the gravitational phenomena, but not the 
electromagnetic ones, could be accounted for. 
 
 

II.  Affine connection on a metric manifold. 
 

In a metric space, in place of the requirement A for the concept of infinitesimal 
parallel displacement that was posed in § 3, I., one has the far-reaching requirement: 

 
A*: that the parallel displacement of all of the vectors at a point P to an infinitely 

close pointP′must be not only an affine, but also a congruent transplantation of this 
collection of vectors. 
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By the use of the previous notations, this requirement yields the equation: 
 

(9)   (1 + dϕ )(gik + dgik )(ξ i + dξ i ) (ξ k + dξ k ) = gik ξ i ξ k . 
 
For any quantities ai that carry an upper index (i), we define the “lowering” of this index 
by the equation: 

ai = ik
k

g∑ ai 

 
(and the inverse process of raising of an index by the inverse equations).  For (9), we can 
write, in terms of these symbols: 
 

(gik ξ i ξ k ) dϕ + ξ i ξ k dgik + 2 ξi dξ i = 0 . 
The last term is: 

= − 2 ξi ξ k dγ ik = − 2 ξ i ξ k dγik = − 2 ξ i ξ k (dγik + dγki ) ; 
 
one must therefore have: 
(10)    dγik + dγki = dgik + gik dϕ . 
 
This equation may be solved for certain only when dϕ is a linear differential form; an 
assumption that we already insisted above was the only reasonable one.  From (10), or: 
 

(10*)    Γi, kr + Γk, ir = ik

r

g

x

∂
∂

+ gik ϕr , 

 
it follows, by taking into account the symmetry property Γr, ik = Γr, ki that: 
 

(11)  Γr, ik = 1
2

ir kr ik

k i r

g g g

x x x

 ∂ ∂ ∂+ − ∂ ∂ ∂ 
+ 1

2 (gir ϕk + gkr ϕi − gik ϕr ) 

(Γr, ik = grs Γr
 ik ). 

 
This shows that in a metric space the concept of infinitesimal parallel displacement of a 
vector is uniquely established by the given requirement 10).  I consider it to be the 
fundamental fact of infinitesimal geometry that when not only a metric, but also an affine 
connection, is given on a manifold the principle of unit length displacement, with nothing 
else, leads to the displacement of directions, or physically speaking, the state of the ether 
determines the gravitational field. 

When the quadratic form gik dxi dxk is indefinite, among the geodetic lines one can 
distinguish the null lines, along which this form vanishes.  Since this depends only upon 

                                                
 10 )  On this, cf., Hessenberg, Vectorielle Begründung der Differentialgeometrie, Math. Ann Bd. 78 
(1917), pp. 187-217, especially pp. 208. 
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the behavior of the gik, but not at all on the ϕi , these are therefore conformal geometric 
structures 11). 

We have placed certain axiomatic requirements on the concept of parallel 
displacement and showed that in a metric manifold they can be satisfied in one and only 
one way.  It is, however, also possible to define these concepts explicitly in a simpler 
way.  If P is a point of our metric manifold then we would like call a reference system 
geodetic at the point P when the ϕi vanish and the gik assume stationary values in such a 
system: 

ϕi = 0 ,  ik

r

g

x

∂
∂

= 0 . 

 
D.  There is a geodetic reference system at each point P.  If ξ is a given vector at P 

andP′ is, however, an infinitely close point, then we understand the parallel displacement 
of ξ to the corresponding vector atP′ to mean that vector atP′ that possesses the same 
components as ξ in the geodetic reference system associated with P.  This definition is 
independent of the choice of geodetic coordinate system. 

It is not difficult to prove the claim that was uttered in this statement independently of 
the line of reasoning that was followed here by direct computation, and in the same way, 
to show that the process of parallel displacement so defined will be described in an 
arbitrary coordinate system by the equations: 

 
(12)     dξr = − Γr

ik ξi dxk , 
 
with the coefficients Γ being taken from (11) 12).  Here, however, where the invariant 
meaning of equation (12) is already certain, we can conclude this in a simpler way.  From 
(11), the Γr

ik vanish in a geodetic reference system, and equations (12) reduce to dξr = 0 .  
The concept of parallel displacement that we deduced from an axiomatic requirement 
therefore agrees with the one that was defined in D.  It only remains for us to prove the 
existence of a geodetic reference system.  To this end, we choose a geodetic coordinate 
system xi at P that has the point P itself for its origin (xi = 0).  If the unit length at P and 
in its neighborhood is chosen arbitrarily and ϕi then means the values of these quantities 
at P then one needs only to carry out the transition from from (7) to (8) with: 
 

λ =
i i

i

x

e
ϕ∑

 
 
in order to arrive at the fact that, along with the Γi

rs , also the ϕi , vanish at P.  From this – 
see (10*) – the geodetic nature of the reference system thus obtained follows.  The 
coordinates of a geodetic reference system at P are defined up to terms of third order in 
the immediate neighborhood of P when one is freely given a linear transformation, but 
the unit length is given up to terms of second order as long as the addition of a constant 
factor is given freely. 

                                                
 11 )  With this remark, I would like to correct an oversight on page 183 of my book “Raum, Zeit, 
Materie.” 
 12 )  One can thus follow the path that I took in RZM § 14. 
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III.  Computationally convenient extension of the concept of a tensor. 
 

The quantities that we introduced in § 2 as tensors are dimensionless; their 
components depend completely upon the choice of coordinate system, but not on the 
choice of unit length.  In metric geometry, an extension of this concept proves to be 
preferable: by a tensor of weight e, we shall understand a linear form of one or more 
displacements and forces at a point that are independent of the coordinate system, but 
depend on the unit length in such a way that the form takes on the factor λe under the 
replacement of (7) with (8).  The gik themselves are the components of a covariant tensor 
of rank 2 and weight 1.  Incidentally, we regard this extended concept of a tensor only as 
an aid that we introduce merely for the sake of computational convenience; we ascribe an 
objective meaning only to the tensors of weight 0.  Therefore, in the sequel whenever we 
speak of tensors with no additional mention of their weight, the concept is always to be 
understood in its original sense. 

Any computational convenience resides in the following fact: If we perform the 
process of raising one or more indices in the components aik of a covariant tensor of 
weight e then we obtain the mixed components of a tensor of weight e – 1 in the case of 
ai

k or ai
k, and a contravariant tensor of weight e – 2 in the case of aik.  We cannot decide, 

as would usually be the case, how to identify the resulting tensors with the original ones 
since, along with depending upon those tensors, they also depend upon the metric – the 
state of the world ether – and we will not consider this to be given a priori in the slightest, 
but leave open the possibility of subjecting it to arbitrary virtual variations. 

 
 

IV.  Curvature in metric spaces. 
 

If ξi, ηi are two arbitrary displacements at the point P, but fi are the components of a 
force field, then it follows that: 

fi ηi = f i ηi ; 
∆(fi ηi ) = fi ∆ηi  = ∆( f i ηi ) = f i ∆ηi ; 

hence: 
(13)     ξi ∆ηi = ξ i ∆ηi . 
 
On the other hand, when the vectors are, as always, parallel displaced by virtual 
displacements one has: 

d(ξ iηi ) + (ξ iηi ) dϕ = 0 , 
δd(ξ iηi ) + δ(ξ iηi ) dϕ  + (ξ iηi ) δdϕ  = 0 . 

 
The middle term in the latter equation is: 
 

= − (ξ iηi ) δϕ dϕ  , 
and the first one is: 

= ηi δdξi + δηi dξ i + dηi δ ξ i + ξ i δdηi . 
 
If one exchanges d and δ and subtracts then this yields: 
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(ηi ∆ξ i + ξ i ∆ηi ) + (ξ iηi ) ∆ϕ = 0 , 
or, on account of (13): 

(ηi ∆ξ i + ξi ∆ηi
 ) + (ξ i ηi ) ∆ϕ = 0 . 

Thus, if we set: 
(14)     ∆ξ i = iξ∆ − 1

2 ξ i ∆ϕ  
 
then we have decomposed ∆ξ i into components that are perpendicular to ξ i and 
components that are parallel to ξ i .  One has: 
 

∆ϕ = 1
2 Fik ∆xik , 

and we write: 
iξ∆ = i k

kR ξ∆ ,  i
kR∆ = 1

2
i
klm lmR x∆ . 

One then has: 

(15)    Ri
klm = 1

2
i i
klm k lmR Fδ− ,   i

kδ =
1 ( )

0 ( ).

i k

i k

=
 ≠

 

 
If we lower the index i then the quantities are skew-symmetric, not only in l and m, but 
also i and k.  In the decomposition (15), we refer to the first summand as the direction 
curvature and the second one as the length curvature.  Length curvature = metric rotation.  
By the nature of the corresponding decomposition (14) of ∆ξ i, a theorem follows that 
justifies our terminology: The tensorRof direction curvature vanishes when and only 
when the parallel displacement of a vector subjected to a change of direction is 
integrable; the tensor F of length curvature vanishes when and only when the likewise 
altered length is integrable. 

Here, we give the explicit expression for the direction curvature.  We introduce, as 
usual, the Christoffel three-index symbols and the Riemannian curvature components by 
the equations: 

ik

r

 
 
 

=
1

2
ir kr ik

k i r

g g g

x x x

 ∂ ∂ ∂+ − ∂ ∂ ∂ 
,  

ik

r

 
 
 

= rs
s

ik
g

s

 
 
 

∑ , 

 

Gi
klm = 

l m

km kl lr km mr kl

i i i r i rx x

         ∂ ∂− + −         ∂ ∂         
, 

 
and further set, for an arbitrary quadratic system of numbers aik: 
 

(gil akm + gkm ail − gim akl − gkl aim ) = iklma  

and define: 

l
r

k

ik

rx

ϕ ϕ ∂ −  ∂  
= Φik , 

ϕi ϕk – 1
2 gik (ϕr ϕ r ) = ϕik , 

which makes: 
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iklmR = Giklm − 1
2iklm iklmϕΦ + ɶ . 

 
One observes here that the individual terms on the right-hand side have no intrinsic 
significance: they clearly possess “coordinate” invariance, but not “scale” invariance.  
For the contracted tensors: 

i
kimR = kmR ,  Gi

kim = Gkm 

one has: 

ikR = Gik –
2

2

n−
(Φik – 1

2 ϕik) − 1
2 gik (Φ – 1

2 ϕ ), 

where: 

Φ = i
iΦ =

( )1 i

i

g

xg

ϕ∂
∂

, ϕ  = i
iϕ  = − 2

2

n−
 (ϕi ϕ i ) . 

When we set: 
i
iR = R= R,  i

iG = G, 

another contraction yields: 

R = G – (n – 1)
2

( )
4

i
i

n ϕ ϕ− Φ + 
 

. 

 
One can derive a tensor from the directional curvature that depends only upon the gik 

in the following manner: 
 

*Riklm = (n – 2)
1

( ) ( )
1iklm il km km il im kl kl im il km im klR g R g R g R g R g g g g R

n
− + − − + −

−
. 

 
These numbers *Riklm are analogous to the *Giklm that one defines by means of Giklm; thus, 
if one raises the index i again then *Gi

klm = *Ri
klm are the components of an invariant 

tensor of conformal geometry.  This tensor always vanishes for n = 2 and n = 3, and first 
plays a role for n ≥ 4.  Its vanishing is a necessary (but not sufficient) condition for the 
manifold to be mapped to a Euclidian one in a manner that preserves angles. 
 
 

§ 5.  Scalar and tensor densities. 
 

I.  In topological space. 
 

If  ∫ W dx – I briefly write dx for the integration element dx1 dx2 … dxn – is an 

integral invariant then W is a quantity that depends upon the coordinate system in such a 

way that under a transition to another coordinate system it is multiplied by the absolute 
value of the functional determinant.  If we regard this integral as a measure on an 
integration domain that is filled with quantum matter then W is its density.  For that 

reason, a quantity of the sort described may be referred to as a scalar density.  This is an 
important concept that stands on a par with that of “scalar” and does not reduce to it in 
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the slightest 13).  Analogously, we will call a linear form in one or more displacements 
and forces that depends upon the coordinate system in such a way that it gets multiplied 
by the absolute value of the functional determinant under a coordinate transition a tensor 
density.  We are justified in thinking of tensors as intensities and tensor densities as 
quantities.  The covariant and contravariant expressions will be employed for tensors.  
The general concept of tensor density belongs to pure topology.  However, in this type of 
geometry the basis for the analysis of tensor densities may be constructed only to an 
analogous degree compared to the analysis of tensors. 

In § 2, we called a tensor linear when it is covariant and its components satisfy the 
requirement that they be alternating.  We shall call a tensor density linear when it is 
contravariant and possesses alternating components.  A linear tensor density of rank 1 can 
be regarded as a “current strength.”  If wi is such a tensor density then: 

 

(16)     
i

ix

∂
∂
w

 = w 

 
is a scalar density that is coupled with it; if wik is a linear density of rank 2 then: 

 

(17)     
ik

kx

∂
∂
w

 = wi 

 
is a linear tensor density of rank 1, etc.  One proves (16) in a well-known manner by 
showing that the left-hand side represents the source strength that is associated with the 

current strength.  From this, one obtains (17) with the aid of a force field fi =
i

f

x

∂
∂

that 

arises from a potential f, and defines the divergence of wik fi : 

 
( )ik

i

k

f

x

∂
∂
w

 = 
ik

kx

∂
∂
w ⋅ fi , 

etc. 
 
 

II.  In affinely connected and in metric spaces. 
 

In an affinely connected manifold one can not only define the divergence of linear 
tensor densities, but also arbitrary ones.  We shall consider a vector field ξ i at a point P 
to be stationary when the vectors ξ in the neighboring pointsP′ to P go over to the vector 
ξ at P under parallel displacement, i.e., when there are total differential equations: 

                                                
 13 )  The comparison between scalars and scalar densities corresponds completely to that of functions and 
Abelian integrals in the theory of algebraic functions. 
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dξi + Γi
rs ξr dxs = 0 or 0

i
i r
rs

sx

ξ ξ
 ∂ + Γ = ∂ 

 

 
at P.  Obviously, there is a vector field that is stationary at P that is associated with any 
arbitrary given vector ξ at the point P.  One can define an analogous concept for force 
fields.  If one now defines, e.g., the divergence of a mixed tensor density k

iw  of rank 2 

then one makes use of a vector field ξ that is stationary at P and constructs the divergence 
of the tensor density ξi k

iw : 

 

( )i k
i

kx

ξ∂
∂
w

= 
kr

k i r
r

k kx x

ξ ξ ∂∂ +
∂ ∂

w
w  = ξi

k
r k r
ik r

kx

 ∂−Γ + ∂ 

w
w . 

 
This quantity is a scalar density, and therefore: 
 

k
r si
is r

kx

∂ − Γ
∂
w

w  

 
is a tensor density of rank 1 that arises from k

iw  in a manner that is independent of the 

coordinate system. 
However, one can not only construct a tensor density that has a rank that is less by 

one from such a tensor density by taking its divergence, but also construct another tensor 
density that has a rank that is higher by one from it by differentiation.  Next, if s means a 

scalar density, which we can regard as the density of a substance that fills the manifold, 
and if dV = dx1 dx2 … dxn is an infinitely small volume element then s dV is the quantum 

of the substance that fills this element.  We now subject dV to the infinitesimal 
displacement δ (with the components δxi ); by this, we understand a process by which the 
individual points of dV experience infinitesimal displacements that take them to new 
points by parallel displacement.  The difference between the matter quanta that fill up dV 
and those that fill the displacement of dV to the surrounding neighborhood amounts to: 

 
(δs – s r

irΓ dxi) dV = (δs – s r
rγ  ) dV . 

One thus has that: 

(18)     
ix

∂
∂
s

 − r
irΓ s 

 
are the components of a covariant tensor density of rank 1 that arises from the scalar 
density s in a manner that is independent of the coordinate system.  Its vanishing at a 

location shows that the substance itself is uniformly distributed.  Moreover, (18) can also 
be derived in a more computational fashion as follows:  One makes use of a vector field 
ξi that is stationary at P and takes the density of the current strength sξi : 
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( )i

ix

ξ∂
∂
s

 = 
ix

∂
∂
s ξ i + s 

i

ix

ξ∂
∂

= r
ir

ix

 ∂ − Γ ∂ 

s
s ξ i . 

 
In order to facilitate the transition from the differentiation of scalar tensor densities to 
arbitrary ones − e.g., mixed tensor densities kiw  of rank 2 − one takes, in a now familiar 

sort of way, a vector ξ i that is stationary at P and a stationary force field ηi , and 
differentiates the scalar density kiw ξ i ηk .  Contracting the tensor density that results from 

differentiation over the differentiation index and a contravariant one gives one the 
divergence. 

The analysis of tensor densities is therefore already accomplished in affine geometry.  
What metric geometry now provides is merely the following method of generating tensor 

densities: one multiplies an arbitrary tensor of weight −
2

n
by g , where g is the 

determinant of gik .  − Example:  The real world is a (3 + 1)-dimensional manifold; g is, 
however, negative, and we use the positive – g in place of it.  From the covariant metric 
rotation tensor Fik, which has weight 0, we obtain the contravariant Fik of weight – 2, and 

from it, upon multiplication by g− , we obtain: 

 

g− Fik = Fik . 

 
These are therefore the components of a certain linear tensor density of rank 2 that is 
invariant of the state of the ether; we will refer to it as the metric rotation density 
(electromagnetic field density). 

(19)     
ik

kx

∂
∂
F

 = si 

 
is thus a current strength (linear density of rank 1).  In (19), we have the second system of 
Maxwell equations before us, which admittedly first takes on a definite meaning when 
the “electrical current” si is expressed in yet another way in terms of the state of the 

ether.  In any event, from our interpretation of the electromagnetic field, it can, however, 
give anything like an electromagnetic field density and an electrical current only in a 
four-dimensional world.  The integral of 
 

S = 1
4 Fik F

ik , 

 
which can be taken over any world domain, appears in physics as the quantity of 
electromagnetic action that is contained in this domain.  Its meaning is based on the fact 
that the infinitely small change that it experiences under an infinitesimal variation δgik , 
δϕi of the state of the ether that vanishes on the boundary of the domain is: 
 

 =  ∫ (siδϕi + 1
2S

ikδgik ) dx   (Ski = Sik ), 
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in which si are the components of the current strength that are defined by (19), and the 

mixed tensor density of rank 2 with the components: 
 

k
iS  = k kr

i irFδ −S F  

 
represents the energy-momentum tensor density of the electromagnetic field.  The 
existence of all of these quantities is completely linked with the dimension number 4.  In 
the first place, the interpretation of physical phenomena that is advocated here gives us 
reasonable grounds for recognizing that the world is four-dimensional. 
 

∆ϕ  = Fik dxi δxk 
 
is the “trace” of any transformation: 

∆P = Pik dxi δxk 

 
that the curvature defines.  From the form of S, we can define the transformation: 

 
1
4 g− Pik P

ik  

 
(in which multiplication means concatenation).  The trace of M itself is a scalar density 

that is uniform near S. 

 
 

III.  The quantity of action and its variation. 
 

We now return to pure mathematics.  If W is any scalar density that is uniquely 

defined by the state of the ether (independently of the coordinate system) then we shall 
(from the example of Maxwellian theory) refer to the integral invariant  ∫ W dx as the 

quantity of action that is contained in the domain of integration.  Under an arbitrary 
variation of the state of the ether of the type that was described, we set: 

 
(20)   δ ∫ W dx =  ∫ (wi δϕi + Wik δgik ) dx   (Wki = Wik ). 

 
The wi are the components of a contravariant tensor density of rank 1 and the k

iW  are 

those of a mixed tensor density of rank 2.  There exist n + 1 identities between these 
“Lagrangian derivatives” of the action function W that arise from the invariance of the 

quantity of action.  First, one must have invariance when one replaces gik with λgik and, at 

the same time, ϕ with ϕi −
1

ix

λ
λ

∂
∂

; in this, we take λ to be a quantity 1 + δλ that deviates 

from 1 by an infinitely small amount then (20) must vanish for: 
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δgik = δgik δλ ,  δϕi = − ( )

ix

δλ∂
∂

. 

 
This yields the first n + 1 identities: 
 

(21)     1
2 0.

i
i
iix

∂ + =
∂
w

W   

 
Secondly, we employ the invariance of the quantity of action under coordinate 

transformations by an infinitesimal deformation of the ether 14).  We displace the point P 
= (xi) of the ether to the pointP  = ( )ix .  However, the displacement PP must vanish on 

the boundary of the region in question in such a way that this displaced region is still 
filled with the same quantum of ether.  In a second coordinate system, we ascribe the 
coordinates xi to point P .  If we displace the ether without changing its state then the 
metric at the point will be defined by: 

 
gik (x) dxi dxk and ϕi (x) dxi 

 
after displacement in these coordinates, or, when we transform back to the old 
coordinates, by: 

( )ik i kg x dx dx  and ( )i ix dxϕ ; 

hence, at the point P by: 
( )ik i kg x dx dx  and ( )i ix dxϕ . 

 
For the state of the ether thus obtained, the quantity of action, due to its invariance, must 
possess the same values as it originally did.  If this deformation is infinitesimalix = xi + 

δxi then this yields: 

  δgik = ( )ikg x − gik (x)  = − ( ) ( ) ikr r
ir kr r

k i r

gx x
g g x

x x x

δ δ δ
 ∂∂ ∂+ + ∂ ∂ ∂ 

 

  δϕi = ( )i xϕ − ϕi (x)  = − ( ) ir
r r

k r

x
x

x x

ϕδϕ δ
 ∂∂ + ∂ ∂ 

. 

 
(20) must vanish for these variations.  If one ignores the derivatives of the components 
δxi of the shift by partial integration then one obtains the equations: 
 

( )1

2

k k
rsi rs i k

k
k i k i

g

x x x x

ϕ ϕ   ∂ ∂ ∂ ∂− + −   ∂ ∂ ∂ ∂   

W w
W w  = 0 . 

 
If we use (21) then we find that the second of the two terms in curly brackets is: 
                                                
 14 )  Weyl, Ann. d. Physik Bd 54 (1917), pp. 117 (§ 2); F. Klein, Nachr. d. K. Gesellsch. d. Wissensch. zu 
Göttingen, math.-physik. Kl. Sitzung v. 25 Jan. 1918. 
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− grs ϕi ⋅ Wrs + Fik w
k . 

Now, one has: 

1

2
rs

rs i
l

g
g

x
ϕ

 ∂ + ∂ 
W

rs = 1
2 (Γr, is + Γs, ir) W

rs , 

 
due to the symmetry of Wrs: 

= Γr, is W
rs = r s

is rΓ W  . 

 
Thus, the equations take the final form, in which their invariant character is evident: 
 

(22)    0.
k

r s ki
is r ik

k

F
x

 ∂ − Γ + = ∂ 

W
W w  

 
 

IV.  Transition to physics. 
 

In a metric manifold whose ether is found in a state of extremal action, such that in 
any region of the world that is subjected to arbitrary infinitesimal variations of ϕi and gik 
that vanish on the boundary one has: 
(23)     δ ∫ W dx = 0, 

one has the Lagrangian equations: 
(24)     w

i = 0 , k
iW  = 0 . 

 
In physics, the first equation is referred to as the law of electromagnetism and the second 
one as the law of gravitation.  As in mechanics, physics also states a Hamiltonian 
principle 15):  The real world is such that its ether is found in a state of extremal action.  
We know the laws of Nature, which are summarized by Hamilton’s principle (23), that 
govern it when we know how the action density W depends upon the state of the ether.  

Equations (24) are independent of each other, but five (n = 4) identities (21), (22) exist 
between them.  In fact, the quantities gik, ϕi can be determined by the law (24) only to the 
extent that one can freely transform from a reference system to any another arbitrary 
system; however, such a transition depends upon five arbitrary functions.  The vanishing 

of the divergence 
i

ix

∂
∂
w

, which is defined by the left-hand side of the electromagnetic 

equation, is therefore a consequence of the law of gravitation, and conversely, the 
vanishing of the divergence: 

k
r si
is r

kx

∂ − Γ
∂
W

W  

                                                
 15 )  On this, cf., G. Mie, Annalen der Physik, Bd. 37, 39, 40 (1912/13), or the representation of Mie’s 
theory in RZM § 25; D. Hilbert, Die Grundlagen der Physik (1. Mitteilung), Nachr. d. K. Gesellsch. d. 
Wissensch. zu Göttingen, Sitzung of 20 Nov. 1915. 
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is a result of the law of electromagnetism.  These five identities are closely connected 
with the so-called conservation laws, namely, the (one-component) law of the 
conservation of electricity and the (four-component) law of the energy-momentum 
principle.  They teach us: the conservation law (upon whose validity mechanics rests) 
follows in two ways from the electromagnetic equations, as well as the gravitational 
equations; one would thus like to refer to it as the simultaneous validity of both groups of 
laws. 

The only Ansatz for the action density in a (3 + 1)-dimensional world that one must 
reasonably consider is the following one: 

 
W = M + αS, 

 
in which α is a numerical constant, and the meaning of M and S is to be taken from part 

II of this section.  Depending on the scope of that arena, one sees which of them is 
allowed by our theory of the laws of the world.  In fact, as a first approximation, by 
restricting to the linear terms, Hamilton’s principle gives the Maxwellian law of the 
electromagnetic field and the Newtonian law of gravitation.  Thus, since the quantity of 
action is a pure number, there arises the possibility of a quantum of action, whose 
existence is regarded by the contemporary physics as the fundamental atomic structure of 
the cosmos. 

Here, we shall not go any further into the physical implications of the theory, which 
only treats the systematic development of pure infinitesimal geometry and its associated 
analysis of tensors and tensor densities.  Once more, we emphasize the points at which it 
departs from the usual theory.  They are: the step-wise construction in the three levels of 
topology, affine geometry, and metric geometry, the liberation of the latter from one of 
the global-geometric inconsistencies that has stuck to it since its Riemannian conception, 
and the extension of the theory of tensors (intensities) to its opposite, the theory of tensor 
densities (or quantities). 

 
(Received on 8 June 1918.) 

 
 


