“Reine Infinitesimalgeometrie,” Math. 2.(1918), 384-411.
Pureinfinitesimal geometry.
By

Hermann Weyl in Zirich

8 1. Introduction. On therelationship between geometry and physics.

The real world in which our consciousness is forced taleesinot there all at a
single moment, bubtappensit elapses, being destroyed and born anew in each mpment
a continuous one-dimensional sequence of statésna The arena of this timelike
happenstance is a three-dimensional Euclidipace Its properties are examined by
geometry;on the other hand, it is the problempdiysicsthat real things exist in space to
be regarded conceptually and to be founded on lasting lagiieléhe ephemeral nature
of phenomena. Physics is thus a science that haseggoat its foundations; however,
the concepts by which it represents reality — matteectetity, force, energy,
electromagnetic field, gravitational field, etc. — beldaga completely different sphere
from geometry.

This old insight regarding the relationship between forrd aantent in reality,
between geometry and physics, has been overturned bieiBias relativity theory).
The special theory of relativityeads to the knowledge that space and time are melded
into an indissoluble unified entity that we will calletworld; as a consequence of this
theory, the world is a four-dimensional Euclidian maladf — Euclidian, with the
modification that the quadratic form that is the bdsisthe world-metric is not positive-
definite, but has an index of inertia equal to 1. Gbaeeral theory of relativitgays —
entirely in the spirit of modern local action physics katt this is valid only
infinitesimally, and takes the world metric to then the general concept that was
presented by Riemann in his Habilitation lecture in whicklaened that such a measure
was based on a quadratigferential form. His principal innovation was the following
insight: The metric is not a property of the world iself; rather, spacetime as a
phenomenon takes the form of a completely formlegsdamensional continuum, in the
sense of Analysis Situs, but the metric expressestbomgeeal that exists in the world,
that physical actions are exerted on matter througtritegal and gravitational forces,
and conversely, the state of the metric is naturdditermined by the distribution and
properties of matter. Since | wanted to liberate Riengangieometry, which we will
regard as “local geometry,” from one of its currentfyesolved inconsistencies, a last
global geometric element emerges that is suggested bgrigsEuclidian past itself, |
arrived at a world metric from which not only gravitatipnaut also electromagnetic
effects, emerge, which, as one may with good reasammassthus account for all

1) I refer to the presentation in my book “Raum, Zefaterie,” Springer 1918 (denoted by RZM, in the
sequel), and the literature that was cited in it.
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physical phenomend). In this theory,all real events that occur in the world are
manifestations of the world metrithe physical concepts are nothing but geometric ones.
The single difference between geometry and physics cersighe fact that geometry
generally begins with a set of axioms that the mewiwcept essentially embodids but
physics must arrive at these laws and pursue their conseguenorder to distinguish
the real world among all possible four-dimensional mepices).

In this note, | would like to develop thptire infinitesimal geometrgf which | am
convinced the physical world is understood to be a speasd. The construction of
local geometry is properly performed in three steps. hat first step, one finds a
continuum in the sense of Analysis Situs, that is barrenlahaasurements — physically
speaking, this ighe vacuum At the second step one finds th#inely connected
continuum — which is what | call a manifold in which thencept of the infinitesimal
parallel displacement of vectors has meaning; in physiesaffine connection appears in
the form of thegravitational field Finally, at the third step, one finds theetric
continuum — physically, this is the “ether,” whose etatare manifested by the
phenomena of matter and electricity.

8 2. Topological space (vacuum).

As a result of the difficulty involved with grasping thetuitive character of
continuous connections through a purely logical construcdotompletely satisfactory
analysis of the concept of andimensional manifolds not possible at preseft The
following shall suffice: Am-dimensional manifold may be describedrbgoordinates;,
X2, ..., Xn, €ach of which take on a definite numerical valueaghepoint of the manifold;
different points correspond to different systems otigalfor the coordinates. Af,X,,

..., X,is a second system of coordinates then there ardispaeilations:

X = (X, %, ....X.), (=12 .0

between thex andx coordinates of the same arbitrary point, in which fih@re purely
logico-arithmetically constructed functions; about there, agsume only that they are
continuous and that they possess continuous derivatives:

i =—-
“Tox,

2) A first communication on this matter appeared with title of “Gravitation and Elektrizitat,” in
Sitzungsber. d. K. Preuf3. Akad. d. Wissenschaften 1918, pp. 465.

%) Traditional geometry immediately goes freely fromstipiarticular problem to a lesser one, in
principle, by no longer making the space itself the objecnefs investigation, but the special classes of
possible structures in space that are suggested by the spiaice m

*) | am sufficiently audacious as to believe that titality of all physical phenomena may be derived
from a single universal law of Nature of the utmosthmmatical simplicity.

®) On this, cf., H. Weyl, Das Kontinuum (Leipzig 1918) particular, pp. 77 et seq.
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whose determinant does not vanish. The last condisiarecessary and sufficient for
affine geometry to be valid in the infinitesimal limit afad the coordinate differentials in
both systems to be related by invertible linear relations

(1) dx :zaikd)_(k -

We assume the existence and continuity of higher derestwhenever it becomes
necessary in the course of our investigation. Thusadh ease the concept of continuous
and continuously differentiable functions of positionwedl as 2, 3, ... times continuous
differentiability, has an invariant sense that is incelemt of the coordinates; the
coordinates themselves are such functions. We shélhial-dimensional manifold,
about which we shall consider no other properties tharotles that are intrinsic o
dimensional manifolds — to use physical terminology —naglirhensionalyvacuum.

The relative coordinatasx of one of the infinitesimally close poin® = (x + dx) to
a point P = (x) are the components of ne elementat P, or an infinitesimal
displacementPP of P. When we transform to another coordinate systemethes
components satisfy formulas (1), in whiehk means the values of the appropriate
derivatives at the poinP. In general, any given numbersf' (i = 1, 2, ...,n) in a
definite sequence at a poiat— when one establishes a particular coordinate system f
the neighborhood d? — characterize gector (or adisplacementat P; the components
&' (&', resp.) of the same vector in any two coordinate systéhes“unprimed” and the
“primed” systems — are connected by the same linearforamstion formulas (1):

&=>a, "

One can add vectors & and multiply them with numbers; they therefore define
“linear” or “affine” collection. There ara “unit vectors”e; at P that are associated with

any coordinate system, namely, the ones that possessinponents:

e, |1 0 0 -, O
e, |0, 1 0, -, 0
¢, |0, 0, 0, -, 1

in the chosen coordinate system.
Any two (linearly independent) line elementsawith the componentdx (o, resp.)
span a (two-dimensional) surface elemerR atith the components:

dx I — X I = AXic ;

any three (independent) line elemeaixs Jx, dx atP span a (three-dimensional) volume
element with the components:
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dx dx dx
OX 0% OX| =DX;
dx dx dx

etc. A linear form aP that depends upon an arbitrary line, (surface, volumesesp.)
element alP is called dinear tensorof rank 1 (2, 3, ...,resp.). By the use of a chosen
coordinate system the coefficiet®f these linear forms:

1 1
> a dx (5281,( AXi 5281,(, NXiq , ..., resp.)
k = ik

+ ikl

can be normalized uniquely by the alternation nexjnent; it says that in the last-
described case viz., the index triple ikl) — when the triple is subjected to an even
permutation one obtains the same coefficiagt whereas the sign of the coefficient
changes under an odd permutation. Hence:

Aikl = Akl = Ak =~ il = — ki = — dilk -

The coefficients, thus normalized, will be refertedas thecomponent®f the tensor in
guestion. By differentiation, to a scalar fidlthere corresponds a linear tensor field of
rank 1 with the components:

to a linear a second rank tensor field there cpards a tensor field of rank 3:

fi :%-}-%-}-%-

ox 0% 0%’

etc. These operations are independent of the icavedsystem used.

A linear tensor of rank 1 & may be referred to asfarce that acts on it. By
choosing a particular coordinate system, such sotewill therefore be characterized by
n numbersé that transform contragediently to the displaceneamhponents under the
transition to another coordinate system:

Q?i:zaki Sk -

) RZM, § 13.
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If 7 are the components of an arbitrary displacemer ti{tenZg‘i 7 is an invariant.
k

We will generally understandtansorat P to mean a linear form of one or more arbitrary
displacements and forces Bt For example, if one is dealing with a linear form
composed of three arbitrary displacemefiitg, ¢ and two arbitrary forces, o

Y alén*'p,o,,

then we speak of a tensor of rank 5 that is covanmtite indiceskl and contravariant in
the indicegq of the components & A displacement is itself a contravariant tensbr
rank 1 and a force is a covariant tensor of rank 1. fthéamental operations of tensor
algebra aré):

1. Addition of tensors and multiplication by a number;

2. Multiplication of tensors;

3. Contraction.

Tensor algebra may thus be established in the vacuumssuings no measurements —
but, by contrast, only the “linear” tensors of tersoalysis can be defined.

A “motiorf in our manifold is given when each valgeof a real parameteis
associated with a point in a continuous manner; by thetaecoordinate system the
motion is expressed by formulgs= x(s), in which thex; on the right are understood to
symbolize functions. If we assume continuous diffaadiity then we obtain,
independent of the coordinate system, a vector at eanheiP(s) of the motion that
has the components:

g=3
ds’

namely, thevelocity. Two motions that transform between themselves bgnsi@f a
continuous monotone transformation of the paransdescribe the sanwirve

8 3. Affinely connected manifolds (world with a gravitational field).

I. Concept of an affine connection.

If P'is infinitely close to the fixed poir® thenP'is affinely connectedvith P when
one establishes how each vectoPa@oes to a vector Bt by a parallel displacement Bf
toP'. It is self-explanatory that the parallel displaest of all the vectors & toP’ must
therefore satisfy the following requirement:

A. The transplantation of all vectors at P to the infinitely close @by parallel
displacement yields a map of the vectors at P to the vectBfs at

") RZM, § 6.
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If we use a coordinate system in whiéh has the coordinates , P'has the
coordinates; + dx , an arbitrary vector @ has the component§', and the vector
atP'that it goes to under parallel displacement has compeder d¢' thendé' must
therefore depend upon ti§e linearly:

dé'=->dy,& .

the dy', are infinitesimal quantities that depend only upon the p&ntand the

displacemenPP whose components ad , but not on the vector thatthat is been
subjected to the parallel displacement. From now o@, censider only affinely
connected manifolds; in such a manifold each pBiist affinely connected with all of its
infinitesimally neighboring points. We must place yatother requirement upon the
concept of parallel displacement, thacommutativity:

B. If P4, P2 are two points that are infinitely close to P ahdhie infinitesimal vector
PE goes toP,P, under a parallel displacement of P to Pbut PE goes toPF,

under a parallel displacement to, Bhen R; and B1 must coincide. (They define an
infinitely small parallelogram.)

If we denote the components &R by dx and those ofPE by & then this
requirement obviously says that:
2) dox == dy, 0

is a symmetric function of both line elemedtandd As a resultdy’, must be a linear
form in the differentialslx :

dyif = zrirs dXS’

in which the coefficient§, which depend only updd and are called tHeomponents of
the affine connection,imust satisfy the symmetry condition:

riSr:ril’S :

Due to the manner by which we formulated requirenBeim terms of infinitesimal
guantities, it can be argued that it lacks a precise meafingthat reason, we would like
to establish explicitly by a rigorous proof that the syrmgnecondition of (2) is
independent of any coordinate system. To this end, wadesrs (twice continuously
differentiable) scalar fielfl From the formula for the total differential:

df:Z((:—;dxi :
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we extract the fact that whethare the components of an arbitrary vectd? tten:
of
df = —¢&
2o ¢

is an invariant this is independent of any coordinateesys We define a change in it by
means of a second infinitesimal displaceméntunder which the vectof€ will be
displaced parallel to it fror to P,, and we obtain:

at=y Ot asx 5 Nz 8
i 0%0% T 0%

If we again replace® in this equation withdx and switchd and & then this yields the
invariant:

Af = (A - df = Z{a%z(drréx -3, dx)}-

The relations: _ _
Y (& -dydx)=0

r

yield the necessary and sufficient condition for tthat any scalar field must satisfy the
equatiomAf = 0.

In physical terminology, an affinely connected continuefens to a universe that is
ruled by agravitational field The quantitieE' _are the components of the gravitational
field. We will not need to give the formulas by whichsd&omponents transform under
a transition to another coordinate system here. Undwerarli transformations,
thel  behave like the components of a tensor that is camarin r and s and
contravariant in, but they lose this character under nonlinear transfasnsat However,
the variationgl™' _that the quantitief experience when one varies the affine connection
of the manifold arbitrarily are actually the componesfta generally invariant tensor of
the assumed character.

What we are to understand by trerallel displacement of a fora P to an infinitely
close poinP'is a result of the requirement that the invariant prodéithis force and an
arbitrary vector atP remains invariant under parallel displacement. ¢lfare the
components of the force amfithose of the displacement then frm

d&A)=dE0) +&df =(@d&-dy'i & =0

and we deduce the formula:

%) In the sequel, we employ the Einstein conventiohdha always sums over indices that appear twice
in a term of a formula, because without it, it woulddleemed necessary for us to place a summation sign
in front of each one.
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d&=3 dyié&.
r

One can introduce a coordinate system- which | callgeodeticat P — at each
locationP in such a way that the componehtg of the affine connection vanish at the
locationP in such a coordinate system. Next;ifre arbitrary coordinates that vanish at
P and I''s mean the components of the affine connection at thatitm P in this
coordinate system then one obtains a geogdiicthe transformation:

3) X=X 1> T.XX%.

Namely, if we consider th& to be the independent variables and their differenta|
to be constants then we have, in the Cauchy sens$e latcatiorP (X = 0):

dx = dx,  d=-T" dxd;
hence: _
d?x +Msdx dx=0.

Due to its invariant nature, the latter equation reads like
d*X +T, dx dx = 0.

However, for arbitrary constardX it is satisfied only when all of th€!_ vanish. The

gravitational field can therefore always be madesémish at a single point for a certain
choice of coordinate systenBy the requirement of “geodesy” Bt coordinates in the
neighborhood ofP are determined up to third order when one is given any linear
transformation; i.e., ik, X, are two geodetic coordinate system®and thex;, as well

as theX,, vanish atP then by neglecting terms of third and higher ordét, one has
linear transformation formulas; =Zaik7k with constant coefficientsi .
k

II. Tensor analysis. Straight line.

Tensor analysisnay first be completely established in an affinely @mted space.
For example, iff “are the components of a tensor field of rank 2 thadvarant ini and

contravariant ink then we make use of an arbitrary displacemg&mtnd a forces,
construct the invariant:

fikfi /7k

and its variation under an infinitely small shifof the argument poir®, under whiché
and 7 will be parallel displaced along with One has:
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. of* . . o
(1€ 09 = 38 k= 1Emdy €+ 1 Edpt

hence:

k
i_rl‘ fk +rkf|’
0%

fk_
i il 'r il

are the components of a tensor field of rank 3 thabvariant inl and contravariant ik
that arises from the given second rank tensor fiel nmnner that is independent of the
coordinate system.

In an affinely connected space the concept sfraight or geodetic linetakes on a
precise meaning. A line comes about when one condisthsplaces a vector parallel to
itself in its own direction and follows the motion thie initial point of this vector; it can
thus be characterized as the only curve that leavedrdtstion unchanged. If are the
components of such a vector then in the course afat®n the equations:

du + M pu?dxs= 0,
dxg :dX ... :dX%, =U1 Uz ... 1Un

are consistently valid. If we then represent theyeum terms of the parametethen we
can normalize it in such a way that one has:

identically ins, and the differential equations of the straight limentread:

. dz)g . d)g dx
W =—L+T" £ =0
d¢ “ ds ds

For any arbitrary motiorx, = x (S) the left-hand sides of these equations are the
components of a vector that is invariantly linked with thetion at the poins, the
acceleration In fact, wher{; is an arbitrary force at some point that is paralisplaced

by a transition to the poist+ ds one has:

d(ué i
() _ s
ds
A motion whose acceleration vanishes identicallyalted aranslation A straight line —
as one can also understand from our explanatiomeabas to be understood as the path
of motion of a translation.



H. Weyl. Pure infinitesimal geometry 10

[11. Curvature.

If P andQ are two points that are connected by a curve withvanginitial vector
then one can displace it frof to Q parallel to itself along the curve. Thector
translationthus obtained is generaiiypn-integrable;.e., the vector that one obtainsGat
is dependent upon the path of displacement along whictrahsition took place. Only
in the special case where integrability exists is tlagne sense to speaking of tkame
vector at two different pointB and Q; one would then understand such vectors to the
ones that go to each other under parallel displacemémtthat case, one calls the
manifold Euclidian. One may introduce special “linear” coordinate systemsuch a
manifold that are distinguished by the fact that in suckesys equal vectors at distinct
points have equal components. Any two such linear coordizgatems are connected by
linear transformation formulas. The components of gnavitational field vanish
identically in a linear coordinate system.

In the infinitesimal parallelogram that was constructieova (§ 3, I.B.) we took an
arbitrary vector with the componenfsat a pointP, displaced it parallel to itself first to
P, and then td?1,, and another time frorR to P, and then tdP,;. SinceP:2 coincides
with P,; we can take the difference of these two vectorsatt point and thus obtain a
vector whose components are obviously:

AE'= &E -daE' .
From:
dé' =—dyi& =T dx &
it follows that:
ar',

djfi = —mdxﬁ&fk—rikﬁd)@‘” Cyikéyrkfk’

and due to the symmetry dadx :

i arikm _ari ki i _ j
AE' = {—a)(l —aXn jd)gcfxn +(dy/,. 9/ dykcfyr)}gk.
We thus obtain:

AE' = AR\ &,

in which AR is the linear form of the two shiftsand J which are independent of the
displaced vectog, or furthermore, of the surface element that tsggn, which has the
components:

AXim = dX K — dXm K,
namely: _ _
(4) ARy = Rium dX Hm =1 Riam AXim Rimi == Rim),

i arim arl i-r i r
(5) Rim :[ 6): _a_)g:lj-i_(rlrrkm_rmrrkl)'
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If the 77 are components of an arbitrary forcePathens; Ax is an invariant. It follows
that Rym are the components of a tensor of rank 4 dhat is covariant irkim and
contravariant in, namely, thecurvature. The vanishing of the curvature identically is
the necessary and sufficient condition for the mdahifo be Euclidian. Along with the
“skew” symmetry described in (4) that the components ottieature satisfy, they also
satisfy the “cyclic” identity: _ _ _

Rum + Rimk + Rma =0 .

In essence, the curvature at a pdiis a linear map, or transformatioAP that
associates each vectdrwith a vectorA¢; this transformation itself depends linearly
upon the surface elementrat

AP = Py dX o =3 Pk AXi (Pui =—Px) .

The curvature is therefore best understood as a “lin@asformation tensor of rank 2.”

In order to rigorously prove the invariance of the cuneatensor beyond objections
of the sort that might perhaps be raised for the iefsnibal changes described above, one
employs a force field, , defines the changdff; &) of the invariant produdt & in such a
manner that under the infinitesimal shdfthe vectoré will be displaced parallel to itself.

If one replaces the infinitesimal shd with an arbitrary vectop at P in the resulting
expression then one obtains an invariant bilinear fiortwo arbitrary vectorg and p at
P. With it, one defines the change that arises frose@nd infinitesimal shifd and
takes the vector§ p along with it in a parallel fashion, and then replatessecond shift
with a vectoroatP. One finds the form:

A(f £') = M OF' + df; ' + &K dE' +f HE'.
Due to the symmetry aidf;, switchingd anddand then subtracting yields the invariant:
Afi ') =fi AE",

and one thus achieves the desired proof.

84. Metric manifold (the ether).
I. Concept of a metric manifold.

A manifold carries a measure at the pointwhen the lengths of line elementskat
can be compared; we thus assume the validity of thieaBgrean-Euclidian law in the
infinitesimal domain. Therefore, a numhgiry; shall correspond to any two vectds?
at P, namely, thescalar product which is a symmetric bilinear form in its dependence
upon both of them; this bilinear form is clearly not@btely determined, but only up to
an arbitrary proportionality factor this different frodn Therefore, it is not actually the
form £ [y, but the equatiod (17 = O that is given; two vectors that satisfy it will tedled
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perpendicular We assume that this equation is non-degenerateahe¢ the only vector
at P that is perpendicular to all of the vectordPas the vector 0. However, we do not
assume that the associated quadratic féfr4 is positive-definite. If it has an index of
inertia g and one has — q = p then we say briefly that the manifold ip ¢ Q)-
dimensional at the point in question; due to the arhitess of the proportionality factor,
the two number®, g are defined only up to their ordering. We now assumedbat
manifold carries a measure at every point. In ordldadilitate the goal of the analytical
representation, we imagine: 1. a choice of coordingséesn has been made and 2. a
choice of arbitrary proportionality factor in the seapaoduct has been made at each
location; one thus arrives at eeference system® for the analytical representation. If
the vectoré at the pointP with the coordinates; has the componentd, and 7 has the
componentg; then one will have:

(55’7):_2%( & @« =Gk ),

in which the coefficientgjk are functions of th& . Thegy shall not only be continuous,
but twice continuously differentiable. Since they avatmuous and their determinagmt
by assumption, is nowhere vanishing the quadratic fofif) has the same index of
inertiaq at every location; we can therefore regard the mih&s 0 + g)-dimensional in
all of its aspects. If we keep the same coordinatesydtut make a different choice of
the undetermined proportionality factor then, insteadgef, we arrive at the new
guantities:

i = A [k

for the coefficients of the scalar product, whéiie a nowhere-vanishing continuous (and
twice continuously differentiable) function of position

As a result of the foregoing assumptions, the manifotthig endowed with aangle
measurethe geometry that this alone will support is cafieahformal geometry.” As is
well known, in the realm of two-dimensional manifold®igmann spheres”), due to its
importance in the theory of complex functions, it lined a far-reaching level of
development. If we make no further assumptions, thenindividual points of the
manifold remain completely isolated from each othethm metric context. A metric
connection from point to point will then be first iottuced in it when one proposes a
principle for comparing the length unit at a poiRt with the ones at infinitely close
points. Instead of this, Riemann made the very far-reaching gg&nmthat the unit
lengths of line elements could be compared with each otiwronly at the same
location, but also at any two finitely distant locago The possibility of such a “global
geometrical” comparison can, however, not exist alt in a purely infinitesimal
geometry. The Riemannian assumption is also carried over moBinsteinian world
geometry of gravitation. Here, this inconsistencyldb@removed.

Let P be a fixed point and Id®« be an infinitely close point that one arrives at by
means of the displacement whose componentdxaraVe choose a particular coordinate

°) 1thus distinguish between “coordinate system” anfétemce system.”
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system. In terms of the length unit that was estadtisatP (as well as the remaining
points of the space), the square of the length of atrampiector aP will be:

2.9 & E"

However, the square of the length of an arbitrary veétoat P~ will be, when we
transform the unit length that was chosen at Ptpd3 we assumed would be possible,
given by:

(1+dp) Y (g, +dg )&

where 1 +d¢ means a proportionality factor that deviates frbioy an infinitely small
guantity;d¢ must be a homogeneous function of the differestialof order 1. Namely,

if we transplant the chosen length unit at the pBito a point along a curve that goes
from P to the finitely distant poinQ then, upon establishing the unit lengthCatwe
obtain the expressiogy & & for the square of the length of an arbitrary veebQ,
multiplied by a proportionality factor, that onetains from the product of infinitely
many factors of the form 1 ¢, which will take the form:

N (1+dg)-Ne’=ev —eh

under the transition from one point of the curveéh® next. In order for the integral that
appears in the exponent to be meaningf@glmust be a function of the differentials of the
sort described above.

If one replacegi with g, = A gi then, instead adg, another quantitgig’ will appear.

If A is the value of this factor at the poithen one must have:

(1 +d¢")(gi+a g =A (1 +dg )(gi + dgi ),
which yields:
dA

(6) dg'=dg - —=

Of the next possible assumptions abdgtthat it is a linear differential form, the square
root of a quadratic form, the cube root of a cubren, etc., as we now see from (6), only
the first one is meaningful. We have arrived atftilowing result:

The metric of a manifold is based on a quadratifedential form and a linear
differential form: _ _
(7) ds’ = gy dX dX* and dg=¢ dx.

Conversely, if the metric is not, however, abstyuestablished by these forms, but by
any pair of formsls?, d¢’ that originates in7) by way of the equations:
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. dA

(8) ds?= ) [0, d¢:d¢—7ﬁ

then these are equivalent to the former pair in the sense that bétieraf express the
same metric. In this} is an arbitrary, nowhere-vanishing, continuogmsore precisely:
twice continuously differentiabldunction of position.In all quantities or relations that
analytically represent metric phenomena, the funstigyx, ¢ must therefore be

introduced in such a manner that one has invariance: 1.r wmbérary coordinate
transformations (“coordinate invariance”), and 2. underrégplacement of (7) with (8)

(“scale invariance”). d)l—)lz d InA is a total differential. Thus, whereas an arbitrary

proportionality factor for the quadratic foris’ remains at everlpcation, there exists an
indeterminacy irdg of an additive total differential.

We give a physical expression to a metric manifold byroBgg it as a world full of
ether The particular metric that resides in the manifolot@sents a particular state of
the ether-filled world. This state is therefore todmscribed, relative to a reference
system, by being given the (arithmetic construction ef tnctionsyi, @ .

From (6), it follows that the linear tensor of rank Bhwvthe components:

Fik :%—%

0%, 0x

is uniquely determined by the metric on the manifold; Il icéhe metric rotation. It is, |
believe, the same thing as what one callsetketromagnetic fielth physics. It satisfies
the “first system of Maxwell equations:”

al:kl +6Fil +6Fik =0.
ox 0% 0%

Its vanishing is the necessary and sufficient comlitiw the change in length unit to be
integrable, and therefore any assumption that Riemarad mastric geometry upon to be
valid. We thus understand, as Einstein did in his worldngéy by directing his
mathematical hindsight to Riemann, that only the graenat phenomena, but not the
electromagnetic ones, could be accounted for.

Il. Affine connection on a metric manifold.

In a metric space, in place of the requiremantor the concept of infinitesimal
parallel displacement that was posed in 8§ 3, I., osgh®far-reaching requirement:

A*: that the parallel displacement of all of the vestat a point P to an infinitely
close poinfP'must be not only an affine, but also a congrueahdplantation of this
collection of vectors.
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By the use of the previous notations, this requiremaityithe equation:

(9) (1 +dg)(gr +dg)(&' +d&') (EX+dE* ) =gu &' ¢,

For any quantitieisti that carry an upper index (we define the “lowering” of this index
by the equation:

a; :zgik d
k

(and the inverse process of raising of an index by the iewsggations). For (9), we can
write, in terms of these symbols:

(g &' E¥)dp+ &' E¥dge+2&dE'=0.
The last term is: _ _ _
=-24 ¢ dy=-28" ¢ dpe=-2&" ¢ (du+ dia) ;

one must therefore have:
(10) dyk + dyi = dgk + gi d@ .

This equation may be solved for certain only widgnis a linear differential form; an
assumption that we already insisted above was therea$pnable one. From (10), or:

00.
(10%) Ciokr + M ir =% Ok &r ,
ox,

it follows, by taking into account the symmetry propéity = I, « that:

_ (99, 09, 0g,
11 rri—l T+ - - +3 ir + O @ — Ok &
(11) ik Z[GXk ox axj 3 (Or &+ 0 & — Gk &)
(Cr ik =0rs T k).

This shows that in a metric space the concept of ieBmital parallel displacement of a
vector is uniquely established by the given requirent®nt | consider it to be the
fundamental fact of infinitesimal geomethat when not only a metric, but also an affine
connection, is given on a manifalde principle of unit length displacement, withimng
else, leads to the displacement of directiamrgphysically speakinghe state of the ether
determines the gravitational field.

When the quadratic formgy dx dx is indefinite, among the geodetic lines one can
distinguish thenull lines along which this form vanishes. Since this depends only upon

19y On this, cf., Hessenberg, Vectorielle Begriindung Diéferentialgeometrie, Math. Ann Bd. 78
(1917), pp. 187-217, especially pp. 208.
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the behavior of thegi, but not at all on the, , these are therefore conformal geometric
structures?).

We have placed certain axiomatic requirements on thecepd of parallel
displacement and showed that in a metric manifold tagybe satisfied in one and only
one way. It is, however, also possible to define tloeseepts explicitly in a simpler
way. IfP is a point of our metric manifold then we would like calieference system
geodeticat the pointP when theg, vanish and thegi, assume stationary values in such a
system:

ag;
=0, 2k =0
¢ M

D. There is a geodetic reference system at each poinf £ is a given vector at P
andP'is, however, an infinitely close point, then we ensthnd the parallel displacement
of £ to the corresponding vector Btto mean that vector & that possesses the same
components ag in the geodetic reference system associated withTRis definition is
independent of the choice of geodetic coordinattesy.

It is not difficult to prove the claim that was ugdrin this statememdependently of
the line of reasoning that was followed here by direcbutation, and in the same way,
to show that the process of parallel displacementdefmed will be described in an
arbitrary coordinate system by the equations:

(12) dé =-T"x & dx,

with the coefficientd” being taken from (1139). Here, however, where the invariant
meaning of equation (12) is already certain, we can conthislén a simpler way. From
(11), thel"i vanish in a geodetic reference system, and equationsedi2ye tod& = 0 .
The concept of parallel displacement that we deduced &omxiomatic requirement
therefore agrees with the one that was defined.int only remains for us to prove the
existence of a geodetic reference system. To this emahaose a geodetic coordinate
systemx; at P that has the poirR itself for its origin & = 0). If the unit length a® and

in its neighborhood is chosen arbitrarily appdhen means the values of these quantities
at P then one needs only to carry out the transitiomffaom (7) to (8) with:

> 4%
A=e’

in order to arrive at the fact that, along with flig, also theg,, vanish aP. From this —
see (10*) — the geodetic nature of the reference systamdhtained follows. The
coordinates of a geodetic reference system ate defined up to terms of third order in
the immediate neighborhood Bfwhen one is freely given a linear transformation, but
the unit length is given up to terms of second ordeomg &s the addition of a constant
factor is given freely.

1y With this remark, | would like to correct an ovehgign page 183 of my book “Raum, Zeit,
Materie.”
12) One can thus follow the path that | took in RZM § 14.
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[11. Computationally convenient extension of the concept of a tensor.

The quantities that we introduced in 8 2 as tensors arendionless; their
components depend completely upon the choice of coordayatem, but not on the
choice of unit length. In metric geometry, an extensof this concept proves to be
preferable: by a tensor of weight we shall understand a linear form of one or more
displacements and forces at a point that are indeptendd¢he coordinate system, but
depend on the unit length in such a way that the form takese factorA® under the
replacement of (7) with (8). Thi themselves are the components of a covariant tensor
of rank 2 and weight 1. Incidentally, we regard this eoésl concept of a tensor only as
an aid that we introduce merely for the sake of comjmunzitconvenience; we ascribe an
objective meaning only to the tensors of weight 0. Theeein the sequel whenever we
speak of tensors with no additional mention of theirghe the concept is always to be
understood in its original sense.

Any computational convenience resides in the following féicive perform the
process of raising one or more indices in the compsranbf a covariant tensor of
weight e then we obtain the mixed components of a tensor @hwve — 1 in the case of
aXor d\, and a contravariant tensor of weight 2 in the case . We cannot decide,
as would usually be the case, how to identify the negutensors with the original ones
since, along with depending upon those tensors, they alsodlepen the metric — the
state of the world ether — and we will not consider tihise given a priori in the slightest,
but leave open the possibility of subjecting it to arbytrartual variations.

V. Curvaturein metric spaces.

If & 1§ are two arbitrary displacements at the p&inbutf; are the components of a
force field, then it follows that:

figd =t n;
Af 7)) =fian =A(f ) =f' A
hence: _ _
(13) &GAn=¢&"0Dni.

On the other hand, when the vectors are, as alwaysllgd displaced by virtual
displacements one has:

A E'm) +(E'm)dg=0,
a(&'m) + AE'm) dg +(E'm) g =0.
The middle term in the latter equation is:

=—(&'m) dpdg
= A&+ A dE +d OE + & &y

and the first one is:

If one exchanged anddand subtracts then this yields:
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(m D+ E D) +(E'm) Ag =0,

(MAE + &0 )+ (E'm)Dp=0.

or, on account of (13):

Thus, if we set:

(14) AE' =N -1E NG

then we have decomposaﬁnl;‘_i into components that are perpendicular & and
components that are parallel§6. One has:

A@ = 3 Fi Axi
and we write:
A& =AR\ &, AR, =3 R\, AX,.
One then has:
i _ . (1 (i=k)
(15) Rkim =Ry =3 9 Fins 5||<:{0 (i 2K).

If we lower the index then the quantities are skew-symmetric, not onlyamdm, but
alsoi andk. In the decomposition (15), we refer to the first smand as the direction
curvature and the second one as the length curvaturgthLeurvature = metric rotation.
By the nature of the corresponding decomposition (14)f a theorem follows that
justifies our terminology: The tensBiof direction curvature vanishes when and only
when the parallel displacement of a vector subjected tohange of direction is
integrable; the tensdf of length curvature vanishes when and only when the likewise
altered length is integrable.

Here, we give the explicit expression for the dimttcurvature. We introduce, as
usual, the Christoffel three-index symbols and the Rigtiaa curvature components by

the equations:
ik :E agir +ag«r _agk ik :Z ik
r| 2{ox. ox ox ) r Sgrss’

oo &P

and further set, for an arbitrary quadratic system ofbarsay:

(il &m + Okm &l = Oim &1 — Okl @im) =8,

o [k _
0%, {f}ﬂ P

G d— 10k (B ") = P,

and define:

which makes:
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Eklm = Gikim _cT)ikIm +%¢ik|m .

One observes here that the individual terms on the-hightl side have no intrinsic
significance: they clearly possess “coordinate” invarég but not “scale” invariance.
For the contracted tensors:

leim: |-:\>km’ C;ikim: ka
one has:
D — n-2 1 1 1
R, = Gik — 5 (Pk—35 Pik) 59k (P—39),
where:
.~ 1 0Wo¢ =2
CD:(Di:_M, ¢:¢i:_n—(¢i¢)-
Jog o ox 2
When we set:

R =R=R, G =G,
another contraction yields:

R=G—(n—1){¢+”f;2(¢i¢i)}.

One can derive a tensor from the directional cumeathat depends only upon tfe
in the following manner:

*Rigm = (M= 2)Rym (4 Rt Gn R~ & RB- g_ﬁ)+n—f1( 08- 949

These numbersRim are analogous to thé&m that one defines by means@fm; thus,

if one raises the indekagain then Gy, = *Rym are the components of an invariant
tensor of conformal geometry. This tensor alwagsishes fon = 2 andn = 3, and first
plays a role fon > 4. Its vanishing is a necessary (but not suffigieondition for the
manifold to be mapped to a Euclidian one in a matire preserves angles.

8 5. Scalar and tensor densities.

I. Intopological space.

If | 20 dx — | briefly write dx for the integration elememnbq dx, ... dx, — is an
integral invariant theflJ is a quantity that depends upon the coordinateesys such a
way that under a transition to another coordingitesn it is multiplied by the absolute
value of the functional determinant. If we regdhds integral as a measure on an
integration domain that is filled with quantum nesitthen2s is its density. For that
reason, a quantity of the sort described may kerned to as acalar density This is an
important concept that stands on a par with thdscdlar” and does not reduce to it in
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the slightest®). Analogously, we will call a linear form in one oore displacements
and forces that depends upon the coordinate system in suay that it gets multiplied
by the absolute value of the functional determinant undeoedmate transition gensor
density We are justified in thinking of tensors mensitiesand tensor densities as
guantities. The covariant and contravariant expressions will ingleyed for tensors.
The general concept of tensor density belongs to puréogppoHowever, in this type of
geometry the basis for the analysis of tensor dessitiay be constructed only to an
analogous degree compared to the analysis of tensors.

In 8 2, we called a tensor linear when it is covariant #s components satisfy the
requirement that they be alternating. We shall aalénsor density linear when it is
contravariant and possesses alternating componeriiseah tensor density of rank 1 can
be regarded as a “current strength.vlfis such a tensor density then:

(16) ow _
Xi

is a scalar density that is coupled with itplf is a linear density of rank 2 then:

(17)

is a linear tensor density of rank 1, etc. One proves i(i&) well-known manner by
showing that the left-hand side represents the saireagth that is associated with the

current strength. From this, one obtains (17) withaigeof a force fieldf; :ithat

0%
arises from a potenti&l and defines the divergenceraf f; :
ik ik
(o™ f.) _ O 7
0X, 0X,

etc.

[1. In affinely connected and in metric spaces.

In an affinely connected manifold one can not only definedikiergence of linear
tensor densities, but also arbitrary ones. We shaBider a vector field' at a pointP
to be stationary when the vectdri the neighboring point8' to P go over to the vector
& atP under parallel displacement, i.e., when there aréddterential equations:

13) The comparison between scalars and scalar derwitiesponds completely to that of functions and
Abelian integrals in the theory of algebraic functions.
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dé +T's & dx =0 [orgﬁ‘mf’ =0j
0%

at P. Obviously, there is a vector field that is statrynat P that is associated with any
arbitrary given vecto¥ at the pointP. One can define an analogous concept for force

fields. If one now defines, e.g., the divergence ofixedhtensor densityo* of rank 2

then one makes use of a vector fiéldhat is stationary & and constructs theéivergence
of the tensor densit§ to:

a(fimli(): afrmk+5ia_t’0|: :E'r o mk+6mf .
an an r an ik *Mr an

This quantity is a scalar density, and therefore:

k
ami - rris.m

0%,

S
r

is a tensor density of rank 1 that arises frafhin a manner that is independent of the

coordinate system.

However, one can not only construct a tensor densdi hhas a rank that is less by
one from such a tensor density by takingditeergence but also construct another tensor
density that has a rank that is higher by one from diffgrentiation Next, ifs means a
scalar density, which we can regard as the density obstance that fills the manifold,
and ifdV =dx; dx ... dx, is an infinitely small volume element themV is the quantum
of the substance that fills this element. We now extbflV to the infinitesimal
displacemen®d (with the componentsx; ); by this, we understand a process by which the
individual points ofdV experience infinitesimal displacements that takenthie new
points by parallel displacement. The difference betvibe matter quanta that fill @/
and those that fill the displacementdM to the surrounding neighborhood amounts to:

(B—s T dx)dV=(&—-s y )dV.
One thus has that:
0s

18 — =TI
(18) ox o rf

are the components of a covariant tensor densityak 4 that arises from the scalar
densitys in a manner that is independent of the coordinate syst&ranishing at a
location shows that the substance itself is uniforadigyributed. Moreover, (18) can also
be derived in a more computational fashion as follo@ste makes use of a vector field
& that is stationary @ and takes the density of the current stremdth
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0(s¢) 05 g1, 08 (05 v Vo
ox  0x ox \ox )

In order to facilitate the transition from the diéatiation of scalar tensor densities to
arbitrary ones- e.g., mixed tensor densities of rank 2— one takes, in a now familiar
sort of way, a vectog' that is stationary aP and a stationary force fielg , and
differentiates the scalar density &' . Contracting the tensor density that results from

differentiation over the differentiation index and antavariant one gives one the
divergence.

The analysis of tensor densities is therefore alreadpmplished in affine geometry.
What metric geometry now provides is merely the followimgthod of generatingensor

densities: one multiplies an arbitrary tensor of weighgby\/a, where g is the

determinant ofk . — Example: The real world is a (3 + 1)-dimensional maahjfg is,
however, negative, and we use the positigeir- place of it. From the covariant metric
rotation tensoFy, which has weight 0, we obtain the contravarfehof weight — 2, and

from it, upon multiplication by/-g , we obtain:

HFik :Sik )

These are therefore the components of a certainr lieegor density of rank 2 that is
invariant of the state of the ether; we will referitoas themetric rotation density
(electromagnetic field density)

ik )
(19) 93 =g
0%,

is thus a current strength (linear density of rank 1)1®), we have the second system of
Maxwell equations before us, which admittedly firdtets on a definite meaning when
the “electrical current”s' is expressed in yet another way in terms of the statbeof
ether. In any event, from our interpretation of trecebmagnetic field, it can, however,
give anything like an electromagnetic field density and lant®cal current only in a
four-dimensional world. The integral of

S =1Fy 3,

which can be taken over any world domain, appears in phgsicthe quantity of
electromagnetic actiothat is contained in this domain. Its meaning is basetth@fact
that the infinitely small change that it experienoesler an infinitesimal variatiodgi ,
og; of the state of the ether that vanishes on the bovyrddhe domain is:

— J‘ (5i%i +%6ikd‘3ik ) dx (Gki — Gik ),
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in whichs' are the components of the current strength that diredeby (19), and the
mixed tensor density of rank 2 with the components:

S =63 -F,§“

1 1 Ir

represents thesnergy-momentum tensor densiy the electromagnetic field. The
existence of all of these quantities is completely linked witdithension number 4. In
the first place, the interpretation of physical phenomena that is advobatedyives us
reasonable grounds for recognizing that the world is four-dimensional

Ag =Fi dx o
is the “trace” of any transformation:

AP = Pk dx K«

that the curvature defines. From the forne&gofwe can define the transformation:

1. J-g P p*

(in which multiplication means concatenation). Trecé of)t itself is a scalar density
that is uniform nea6.

II1. The quantity of action and itsvariation.

We now return to pure mathematics. 2f is any scalar density that is uniquely

defined by the state of the ether (independently of tleedinate system) then we shall
(from the example of Maxwellian theory) refer tetmtegral invariant] 20 dx as the

guantity of actionthat is contained in the domain of integration. Underagbitrary
variation of the state of the ether of the type thas$ described, we set:

(20) ol Wdx= | (w' o + 20" gy ) dx Ut = ™).

The ' are the components of a contravariant tensor deositgnk 1 and thes* are

those of a mixed tensor density of rank Phere exist n +1 identities between these
“Lagrangian derivatives” of the action functio?U that arise from the invariance of the

guantity of action.First, one must have invariance when one replgeegth Agx and, at

the same timeg with ¢, —%Z—A; in this, we takel to be a quantity 1 8/ that deviates
)(i

from 1 by an infinitely small amount then (20) muahish for:
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_0(AM)

Ak = Wik AN , op; =
x

This yields the firsh + 1 identities:

o' -
21 —+197' =0.
( ) aXI 2 [

Secondly, we employ the invariance of the quantifyaction under coordinate
transformations by an infinitesimal deformatiortioé ether”). We displace the poift

= (%) of the ether to the poiRt = (X). However, the displacemeRP must vanish on

the boundary of the region in question in such & that this displaced region is still
filled with the same quantum of ether. In a secoadrdinate system, we ascribe the

coordinatesx to point P. If we displace the ether without changing itatestthen the
metric at the point will be defined by:

Oik (X) dx dxc and ¢ (X) dx

after displacement in these coordinates, or, when transform back to the old
coordinates, by:

O (X)dxdx and @ (X)dx;
hence, at the poirR by:
G (¥dxdx and & (x)dx.

For the state of the ether thus obtained, the gyasftaction, due to its invariance, must
possess the same values as it originally did hi$f deformation is infinitesim&] = x +

ox then this yields:

[ aex) . 8, | dg,
d\:llk gik(x) g|k(X) {gir an 0. 6>g +a)§ 5)$}

[ aex) 0
3 =50 4 () {¢r On), 20 5&}.

(20) must vanish for these variations. If one igsothe derivatives of the components
ox of the shift by partial integration then one obsaihe equations:

k k
ow! 10g, .|, fO00'g) | 0k g
X, 2 0x 0% X

If we use (21) then we find that the second oftth@ terms in curly brackets is:

14) Weyl, Ann. d. Physik Bd 54 (1917), pp. 117 (§ 2); F. Klein, NaghK. Gesellsch. d. Wissensch. zu
Géttingen, math.-physik. Kl. Sitzung v. 25 Jan. 1918.
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— Ois ¢ (U™ + Fy ok
Now, one has:
1

2[%'{' grs¢ijmrs =2(Mris+ Tsir) 20",

0%

due to the symmetry @i":
= rr’is Qnrs :r:SQUI,S .

Thus, the equations take the final form, in which theiariant character is evident:

(22)

k
["ﬂ—r;wf}ﬁkmk - 0.

0,

V. Transtion to physics.

In a metric manifold whose ether is found in a statexdfemal action, such that in
any region of the world that is subjected to arbitrarinitdsimal variations o#; andgi
that vanish on the boundary one has:

(23) ol 0 dx=0,
one has the Lagrangian equations: _
(24) n'=0, W =0.

In physics, the first equation is referred to asléheof electromagnetisand the second
one as thdaw of gravitation. As in mechanics, physics also states a Hamiltonian
principle *®): The real world is such that its ether is found in a state of esirantion

We know the laws of Nature, which are summarized by ildam's principle (23), that
govern it when we know how the action den$iiydepends upon the state of the ether.

Equations (24) are independent of each other, but five 4) identities (21), (22) exist
between them. In fact, the quantitggs ¢ can be determined by the law (24) only to the
extent that one can freely transform from a refeeegystem to any another arbitrary
system; however, such a transition depends upon fiveasbiunctions. The vanishing

of the divergence%ﬂ, which is defined by the left-hand side of the electroratign
)(i

equation, is therefore a consequence of the law of gtant and conversely, the

vanishing of the divergence:
k
OB
0%,

15y On this, cf., G. Mie, Annalen der Physik, Bd. 37, 3®,(4912/13), or the representation of Mie’s
theory in RZM § 25; D. Hilbert, Die Grundlagen der Phygik Mitteilung), Nachr. d. K. Gesellsch. d.
Wissensch. zu Géttingen, Sitzung of 20 Nov. 1915.
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is a result of the law of electromagnetism. Thige identities are closely connected
with the so-calledconservation laws namely, the (one-component) law of the
conservation of electricity and the (four-componertyv lof the energy-momentum
principle. They teach us: the conservation law (uptwse validity mechanics rests)
follows in two ways from the electromagnetic equatjoms well as the gravitational
equations; one would thus like to refer to it as theuiameous validity of both groups of
laws.
The only Ansatz for the action density in a (3 + 1)-dimamai world that one must

reasonably consider is the following one:

W =9 + a6,

in which a is a numerical constant, and the meanin®iénd& is to be taken from part

Il of this section. Depending on the scope of that arena sees which of them is
allowed by our theory of the laws of the world. Intfags a first approximation, by
restricting to the linear terms, Hamilton’s principleveg the Maxwellian law of the
electromagnetic field and the Newtonian law of graatat Thus, since the quantity of
action is a pure number, there arises the possibility gbi@antum of actionwhose
existence is regarded by the contemporary physics dgrnilamental atomic structure of
the cosmos.

Here, we shall not go any further into the physicallicapions of the theory, which
only treats the systematic development of pure infimtasgeometry and its associated
analysis of tensors and tensor densities. Once m@remphasize the points at which it
departs from the usual theory. They are: the step-wisstriction in the three levels of
topology, affine geometry, and metric geometry, therdiben of the latter from one of
the global-geometric inconsistencies that has stucksiodge its Riemannian conception,
and the extension of the theory of tensors (intewitio its opposite, the theory of tensor
densities (or quantities).

(Received on 8 June 1918.)



