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 1. Introduction. – A concept that was first suggested by G. Sannia [12] and later 
developed by E. Kruppa in vector notation [6] was that of a “natural geometry” of ruled 
surfaces in three-dimensional Euclidian space, which employed an orthonormal moving 
triad that is attached to the central point Z and generates the surface and consists of the 
generating vector e1 , the surface normal e2 , and the central tangent e3 = e1 × e2 .  If z = 

( )sz  is the vectorial representation of the line of striction or throat curve that goes 

through the central point Z, when referred to the arc length s, then the ruled surface Φ can 
be described by means of the independent parameters s and t : 
 
(1.1)     x = z (s) + t ⋅⋅⋅⋅ e1 (s) . 
 
Assuming that they are suitably differentiable, the derivatives of the triad vectors with 
respect to s will satisfy the fundamental differential equations: 
 
(1.2)   1′e  = κ e2 , 2′e = − κ e2 + τ e3 , 3′e  = − τ e2 . 

 
The invariants of motion κ = and τ = 2 3′e e  = − 3 1′e e  that appear in them are called the 

natural curvature (torsion, resp.) of the ruled surface Φ.  As a third invariant, one can add 
the angle of striction σ = 1 ′∢ e z  that the generator makes with the line of striction k ; it is 
defined by: 
 
(1.3)    z′′′′ = e1 cos σ + e2 sin σ , 
 
and will usually be restricted to the interval – π / 2 < s ≤ π / 2 . 
 The surface Φ is determined completely, up to motions (and thus, in form), by the 
“natural equations” κ = κ (s), τ = τ (s), and σ = σ (s) [6]. One has σ ≡ 0 for the torse (†) Φ 
that is defined by the tangents to the space curve k, and the differential equations (1.2) are 

                                                
 (†) Translator: Apparently, the German word Torse refers to a developable surface.  
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the well-known formulas of F. Frenet, in which κ means the curvature of k, and τ means 
the torsion. 
 The ruled surface Ψ that is defined by the central tangents will be referred to as the 
band of striction of Φ, as long as not all central tangents coincide, which is what happens 
for the erect conoid.  With the exception of those surfaces, as well as the conoidal 
surfaces, which are characterized by τ ≡ 0 (and their generators are parallel to a fixed 
plane of directions, such that their central tangents fill up a cylinder), Φ and the band of 
striction Ψ that is represented by: 
 
(1.4)     y = z (s) + t ⋅ e3 (s) 
 
have the throat curve k in common, and have a reciprocal relationship; i.e., Φ is the band 
of striction of Ψ [2, 3, 7].  If σ ≡/  0, moreover (and therefore Φ is not developable), and σ 
≡/  π / 2 (Ψ is not developable) then the two surfaces will contact each other along their 
common line of striction k.  The possibility of osculation along k, which has not been 
observed up to now, was examined in [14]; the identity: 
 
(1.5)     κ cos σ + τ sin σ = 0 
 
is definitive for that phenomenon. 
 Finally, another important invariant for ruled surfaces is the so-called twist, which 
represents a measure for the winding of the surface strips along a generator and can be 
described as the limiting value for the quotient of the distance and angle between two 
generators as they move closer together.  According to [2, 6], two corresponding 
generators of the surfaces Φ (1.1) and Ψ (1.4) have the following values for their twists: 
 

(1.6)     p = 
sinσ

κ
, q = 

cosσ
τ

. 

 
One will have the relation p + q = 0 for osculating pairs of surfaces as a result of (1.5).  
As was shown in [14], the possibility of hyperosculation is characterized by fixed values 
of the twists p and q = − p.  That fact immediately raises the question of whether there are 
pairs of surfaces Φ, Ψ with mutually-independent constant values of their twists p and q, 
in general.  That problem is the topic of the present investigation, which is naturally 
based in the conditions (1.6) with p = const. and q = const.  The results will possibly 
make a welcome contribution to the sphere of questions that relate to constantly-twisted 
ruled surfaces, which were expressed many times in connection with J. Krames [5, 7], 
and above all, H. Brauner and his students [1]. 
 
 
 2. Pairs of surfaces with prescribed direction cones at the central torse. – A 
prescribed central torse Γ that contacts a skew ruled surface Φ (and its band of striction 
Ψ) along the throat curve k is especially significant for all metric-related questions that 
pertain to that surface.  As the envelope of the family of central planes, it is determined 
by: 
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(2.1)    (x – z (s)) ⋅⋅⋅⋅ e2 (s) = 0 . 
 
As differentiation with respect to the parameter s of the family will show, its generator 
will have the direction vector: 
 
(2.2)    d = e2 × 2′e = τ e1 + κ e3 . 

 
That is the so-called Darboux rotation vector, with whose help, the differentiation 
formulas (1.2) can be combined into i

′e  = d × ei (i = 1, 2, 3).  It has a magnitude: 

 

(2.3)     | d | = 2| |′e  = 2 2κ τ+  = λ , 

 
which is referred to as Lancretian or “total” curvature [2].  d plays the role of 
instantaneous axes for motion of the triad (e1 , e2 , e3) that is attached to the origin O that 
results when the central point Z moves along the throat curve k. 
 The aforementioned collective motion from O can be regarded in terms of the 
elements of spherical kinematics as the rolling of the plane that is spanned by e1 and e3 on 
the direction cone of the central torse Γ that is filled up by the instantaneous axes d .  Its 
trace curve g on the unit cone at O will be described by the vector g = d / λ, which is 
normalized to have unit length.  g is “polar” to the spherical image of the normals c2 : e2 
= e2 (s), in the sense of spherical geometry, while the spherical image of the generators 
c3: e3 = e3 (s), of Φ appears as the spherical evolvent of g. 
 As was mentioned before in [14], if one is then given the spherical image of the 
central torse g, referred to its arc length u, by way of: 
 
(2.4)    g = g (u) with g2 = 2

ɺg  = 1 
 
then one will have the following representation of the triad vectors: 
 
(2.5)  e1 = g cos u − ɺg  sin u, e2 = ɺg × g, e3 = g sin u + ɺg cos u . 
 
One has: 
 
(2.6)  1ɺe  = − (g + ɺɺg ) sin u, 2ɺe  = ɺɺg × g, 3ɺe  = − (g + ɺg ) cos u 
 
for the derivatives with respect to u .  One easily convinces oneself that g + ɺɺg  has the 
same direction as e2 with the help of the relations ɺg g = 0, ɺ ɺɺg g = 0, which follow from the 

conditions (2.1), and ɺɺg g  = − 1 .  If one has: 
 
(2.7)     g + ɺɺg = − µ e2 , 
 
accordingly, then one will see from: 
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(2.8)   2ɺe  = − µ e2 × g = µ g × ( ɺg × g) = µ ɺg  

 
that: 
 
(2.10)     µ = (g, ɺg , ɺɺg ) 
 
means the conical curvature of the central torse Γ.  With consideration given to 1ɺe  = 

1′ ⋅ ɺe s , a comparison of the differential formulas (1.2) and (2.6) will then yield the 

relations: 
 
(2.10)   µ ɺs  = µ sin u,  τ ɺs  = µ cos u,  λ ɺs  = µ . 
 
 With the use of the prescribed (constant) values of the twists p and q, (1.6) then yield 
the following relations for the angle of striction σ : 
 
(2.11) sin σ = p κ = p λ sin u, cos σ = q τ = p λ cos u, tan σ = (p / q) tan u . 
 
That implies the following expressions for the curvature and torsion: 
 

(2.12)  κ = λ sin u, τ = λ cos u, with λ = 2 2 2 21/ sin cosp u q u+ . 

 
 The form of the desired ruled surface Φ will be determined once the basic invariants 
κ, τ, and σ are known as functions of u and the connection between the auxiliary 
parameter u and the arc length s of the throat curve is given by sɺ= µ / λ, with µ as in 
(2.9).  The spatial position is also fixed, up to translations, on the basis of the prescribed 
direction cone (2.4) of the central torse.  In order to ascertain Φ, it is, above all, necessary 
for one to know the tangent vector to the throat curve, and according to (1.3) and (2.5), it 
will be represented by: 
 
(2.13)    z′ = g cos (σ – u) + ɺg  sin (σ – u) . 
 
Eliminating σ by means of (2.11) then yields: 
 
(2.14)  zɺ = s′ ɺz = [(p sin2 u + q cos2 u) g + (p – q) sin u cos u ⋅⋅⋅⋅ ɺg ] sλ ɺ , 
 
and finally when one integrates this, while keeping (2.10) in mind, one will get the line of 
striction k : 
 

(2.15)  z = 1
2 {[( ) ( ) cos2 ] ( )sin 2 }p q p q u p q u+ − − + − ⋅∫ ɺg g  µ du ; 

 
µ is as it is in (2.9) in this. – A parametric representation of the desired ruled surface Φ 
with (1.1) as a model will then read: 
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(2.16)   x = z (u) + t ⋅⋅⋅⋅ e1 (u), with e1 = g cos u – ɺg sin u . 
 
One can simply replace e1 with e1 = g sin u + ɺg  cos u for the band of striction Ψ. 
 
 
 3. Special cases. – If the twist quotient p / q assumes one of the distinguished values 
0, , + 1, or – 1 then that will define ratios of a special kind. 
 
 a) p = 0, q ≠ 0.  As a result of (2.11), the ruled surface Φ is a torse (σ = 0) with a 
ridge line (†) k of constant torsion τ = 1/ q and the band of striction Ψ is its binormal 
surface.  The curve k is the geodetic line of the central torse Γ and will be represented 
according to (2.15) by: 
 

(3.1)    z = ( cos sin )cosq u u u duµ −∫ ɺg g . 

 
 b) q = 0, p ≠ 0.  Conversely, Φ is the binormal surface of a curve of constant torsion 
1 / p in this, and Ψ is its tangent surface. 
 
 c) p = q > 0.  As a result of (2.12), Φ and Ψ are ruled surfaces of constant 
Lancretian curvature λ = 1 / p with the throat curve k : z = p ∫ µ g du .  Due to (2.11), one 
has σ = u for the angle of striction, such that from (2.13), one will have z′ = g .  That 
means that the generator of the central torse always coincides with the tangent to the line 
of striction k, so the throat curve is the line of osculation of the surfaces Φ and Ψ, which 
agrees with the criterion κ cos σ = τ sin σ that E. Kruppa [6] gave for an asymptotic line 
of striction. – If the generators of the surface Φ are carried along with the flattening 
(Verebnung) of the central torse Γ then from a known theorem of G. Darboux [2, 4, 6], it 
would go to the rays of a pencil of parallels.  That property – viz., that the generators of 
the surface are geodetically parallel along the line of striction – is characteristic of the 
line of striction.  If all generators of Φ were rotated through the same angle α in the 
central plane around its central point then that property would still be true, and a new 
ruled surface Φα would arise that would have the throat curve k and the central torse Γ in 
common with Φ = Φ0 .  Since the surface normal e2 has not changed, the Lancretian 
curvature λ (2.3) will also be preserved.  All that will change is that σ will change to σ  = 
σ + α, and corresponding to the rotation of e1 to 1e  = e2 cos α – e3 sin α, the curvature κ 

will go to κ  = κ cos α + τ sin α .  In the present case, in agreement with a remark of J. 
Krames [7, pp. 147] and a formula for the twist of Φα that H. Sachs [10] derived, that will 
imply that all derived surfaces Φα possess the same constant twist p (including the band 
of striction Ψ = Φπ /2 ). 
 
 d) p = − q < 0.  In this case, the ruled surfaces Φ and Ψ also have constant 
Lancretian curvature λ = 1 / q, as a result of (2.12).  Furthermore, due to (2.11), one will 
have σ = − u for the angle of striction, such that the osculation condition (1.5) is fulfilled.  

                                                
 (†) Translator: If a torse is a developable surface then presumably its ridge line is its edge of regression.  
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As was proved in [14], one will even have hyper-osculation between the surfaces Φ and 
Ψ as a result of the constant twist. – From (2.15), the throat curve k will be represented 
by: 
 

(3.2)    z = ( cos 2 sin 2 )q u duµ µ −∫ ɺg g . 

 
 
 4. Pairs of surfaces with a central torse of constant slope (Böschung). – In order 
to illustrate the developments in Section 2, we will further invoke the assumption that the 
central torse Γ is a slope torse.  The direction cone is then a right cone with a well-
defined vertex angle 2ω, in which we will assume that 0 < ω < 2π, in order to exclude Φ  
that are cylinders or planes.  The spherical image of the torse g will then be a minor circle 
of the unit sphere that might be set to: 
 

(4.1)   g = cos , sin ,
u u

n n m
n n

 
 
 

, with n = sin ω,  m = cos ω . 

 
The conical curvature of the central torse has the value µ = m / n = cot ω . 
 With the use of the abbreviation: 
 
(4.2)     v = u / n, 
 
one will find the following components for the tangent vector ɺz  = 1 2 3( , , )z z zɺ ɺ ɺ  to the line 

of striction: 
 

  1zɺ  = 
2

m
(p + q) cos v + 

4

m

n
(p – q) [(1 – n) cos (v + 2u) – (1 + n) cos (v – 2u)], 

 

(4.3) 2zɺ  = 
2

m
(p + q) sin v + 

4

m

n
(p – q) [(1 – n) sin (v + 2u) – (1 + n) sin (v – 2u)], 

 

  3zɺ  = 
2

2

m

n
(p + q) − 

2

2

m

n
(p – q) cos 2u . 

 
 If one interprets the parameter u as time then (4.3) will represent the velocity diagram 
of the central point Z as it moves along the throat curve k .  According (2.14), the end 
point of the velocity vector moves on a circle in the tangent plane to the right cone of 
revolution that is spanned by the orthogonal vectors g and ɺg : 
 

(4.4)  ɺz  = 
2

m

n
[(p + q) – (p – q) cos 2u] g +

2

m

n
( p – q) sin 2u ⋅⋅⋅⋅ ɺg  
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with constant angular velocity 2, while as a result of (4.1) that plane will rotate around 
the axis of the cone with angular velocity 1 / n .  One then sees that the curve of the 
diagram is a spherical cycle.  It moves on the cone: 
 

(4.5)    
2

2 2 2
1 2 3 3 2

p q m
z z z z pq

n n

++ + − +ɺ ɺ ɺ ɺ  = 0, 

 
and it will arise when one rolls a cone of revolution with vertex angle π – 2ω on a cone of 
revolution with vertex angle 4ω . 
 If one integrates (4.3), while recalling (4.2), then one will arrive at the throat curve k: 
 

  z1 = 
2

mn
(p + q) sin v + 

1 1
( ) sin ( 2 ) sin ( 2 )

4 1 2 1 2

m n n
p q v u v u

n n

− + − + − − + − 
, 

 

(4.6) z2 = −
2

mn
(p + q) cos v − 1 1

( ) cos ( 2 ) cos( 2 )
4 1 2 1 2

m n n
p q v u v u

n n

− + − + − − + − 
, 

 

  z3 = 
2

2

m
(p + q) v − 

2

4

m

n
(p – q) sin 2u, in which u = n v . 

 
It will generally be assumed that n ≠ 1/2 in this.  The assumption that n = 1/2 requires 
special treatment and shall not be pursued further here. – In the case of n ≠ 1/2, one can 
read off from the complex combination: 
 

(4.7)  z1 + i z2 = − 2 21 1
2 ( ) ( )

4 1 2 1 2
iv iu iuim n n

e n p q p q e e
n n

− − +  + + − −  + −  
 

 
that the line of striction k generally traverses a helicoid, which will be described in terms 
of the independent parameters u and v by the representation (4.6).  It will arise, perhaps, 
by screwing the profile curve v = 0 around the x3-axis, and thus an ellipse that moves in 
the plane: 
 
(4.8)    m (1 – 4n2) z1 + 2n (1 + 2n2) z3 = 0, 
 
which is independent of p and q.  The pitch of the screw has the value c = m2 (p + q) / 2.  
Under a uniform screwing motion, the central point that describes the throat curve will 
also move on the profile ellipse with constant surface velocity. 
 With the use of the normal vector e2 = ɺg  × g = (m cos v, m sin v, − n) that is 
established by (2.5), in which v once more stands for u / n, one will get the equation: 
 

(4.9)  x1 cos v + x1 sin v – 
n

m
x3 = 

2

3 ( )

4(1 4 )

m p q

n

−
−

 sin 2u – 
2

m
(p + q) u 
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for the central plane (2.1).  If one again sets u = n v on the right-hand side then one will 
see (in general, and always under the assumption that n ≠ 1/2) that the family (4.9) will 
run through a plane that has been subjected to a “progressive harmonic reversal.”  That is 
a motion that is composed of a uniform screwing motion around the x3-axis (with the 
aforementioned pitch c) and a harmonic oscillation along that axis (with frequency 2n) 
[13].  With the name that O. Obůrka [8] introduced, the central torse Γ that is enveloped 
by the planes will then be a vibratory torse. 
 As was shown in [13], the ridge line of such a vibratory torse appears in outline as the 
parallel curve of an epicycloid or hypocycloid and will likewise go to another such curve 
when one develops the torse.  In the present case (although we shall not go further into 
the basis for this), under the assumption that n ≠ 1/2 , as the outline of a parallel curve 
that moves at a distance mn (p + q) / 2, it will be a cycloid of the family (1 – 2n) : (1 + 
2n) with an azimuthal radius of 3mn (p – q) / 2 (1 – 4n2), while as a flattening, it will 
always be a parastroid, namely, a parallel curve that runs at a distance m (p + q) / 2n 
from an astroid (viz., a hypocycloid with four vertices) with an vertex circle of radius of 
m (p – q) / 2n.  Under the flattening of the central torse, the throat curve k (4.6) will go to 
an ellipse with a semi-axes mp / n and mq / n that contacts the parastroid at the four 
vertices. 
 Finally, the desired ruled surface Φ of constant twist, as well as its band of striction 
Ψ, can be written down with no difficulty on the basis of the representation (2.16), 
although we shall go into that.  From Darboux (cf., Section 3c), under flattening of the 
central torse, the generators of the two surfaces will go to mutually orthogonal families of 
parallels whose directions will be those of the axes of the aforementioned ellipse. 
 
 a) p = 0, q ≠ 0.  Here, the line of striction k (4.6) is a curve of constant torsion with a 
fixed inclination of the principal normal, which occasionally appeared in E. Salkowski 
[11]; it is a geodetic line of the vibratory torse Γ (4.9).  The associated ruled surface Φ is 
developable and consists of the tangents to k ; the band of striction Ψ is the binormal 
surface of k. 
 
 b) q = 0, p ≠ 0.  Here, the roles of the surfaces Φ and Ψ in a) are switched. 
 
 c) p = q ≠ 0.  In this case, the throat curve k (4.6) takes the form of a helix: 
 
(4.10)  z1 = mnp sin v,  z2 = − mnp cos v, z3 = m2 p v, 
 
which is simultaneously the ridge of the central torse Γ (4.9).  The ruled surface Φ then 
belongs to surfaces that were investigated by J. Krames [4], which have a helical torse for 
their central torse and one of the helices that belong to it as the throat curve.  One is then 
dealing with the most general ruled surfaces that are congruent to all of the ones that are 
derived from them by rotating the generators.  The fact that each special case of them 
whose line of striction coincides with the ridge of the helical torse is distinguished by 
constant twist was pointed out in [4].  The value of the twist p = c / m2 is equal to the 
radius of torsion of the ridge helix, which agrees with more general facts (cf., [7, pp. 
147], [1], [10]). 
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 d) p = − q < 0.  In this case, the pitch c vanishes, such that (for n ≠ 1/2) a reversal 
torse (with frequency 2n), which W. Kautny [3] considered, will appear in place of the 
vibratory torse (4.9) as the central torse: 
 

(4.11)   x1 cos v + x2 sin v – 
n

m
x3 = 

2

3

2(1 4 )

mq

n−
sin 2nv . 

 
The ridge line of such a torse is the slope line of a quadric of rotation and appears in 
outline as an epicycloid or a hypocycloid and goes to an astroid under flattening of the 
torse.  The throat curve k, which is described by: 
 

   z1 = − 1 1
sin ( 2 ) sin ( 2 )

2 1 2 1 2

mq n n
v u v u

n n

− + + − − + − 
, 

 

(4.12)  z2 =   1 1
cos ( 2 ) cos ( 2 )

2 1 2 1 2

mq n n
v u v u

n n

− + + − − + − 
, 

 

   z3 =   
2

2

m q

n
sin 2u, (with u = nv), 

 
traverses a quadric of rotation and maps to a cycloid (but with no vertex) under horizontal 
projection.  Due to the fact that σ = − u, one finds the constant value γ  = 1/sɺ  = λ / µ = 

/n mq for its geodetic curvature from (2.10).  The line of striction k then goes to a circle 
of radius mq / n under the flattening of the central torse, and indeed to the vertex circle of 
the aforementioned astroid. – The associated ruled surfaces Φ and Ψ belong to the ruled 
surfaces that were recently studied by G. Pillwein [9], which have fixed Lancretian 
curvature, a constantly-inclined central torse, and throat curve of constant geodetic 
curvature.  The ones that appear here are distinguished by hyper-osculating bands of 
striction, and are noteworthy for that reason, since algebraic surfaces belong to them, 
namely, for rational n ≠ 1/2 .  The algebraic character was remarked in [14]; the simplest 
example occurs as a surface of degree seven when n = 1 / 4. 
 
 
 5. Pairs of surfaces with conical central torse. – If the vertex of the central cone G 
that is now assumed is employed as the coordinate origin then the throat curve k can be 
set to: 
 
(5.1)  z = r ⋅⋅⋅⋅ g, with  r = r (u), g = g (u), g2 = 2

ɺg  = 1, 
 
based upon (2.4).  A comparison of the tangent vector: 
 
(5.2)     ɺz  = r r+ ɺɺ g g  
 
with the decomposition (2.13) will lead to: 
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(5.3)   
r

r

ɺ
= cot (σ – u) = 

cos cos sin sin

sin cos cos sin

u u

u u

σ σ
σ σ

+
−

. 

 
With hindsight of (2.11), one will then have for p ≠ q : 
 

(5.4) 
r

r

ɺ
= 

2 2cos sin

( )sin cos

q u p u

p q u u

+
−

= m tan u + n cot u, with m = 
p

p q−
, n = 

q

p q−
. 

 
Now, with: 
 
(5.5)    r = c sinn u / cosm u (whereby m – n = 1), 
 
integration will yield the polar equation for the flattened line of striction k.  After going to 
Cartesian coordinates x = r cos u, y = r sin u, it can be represented by: 
 
(5.6)    xm y1−m = c or y = c′ ⋅⋅⋅⋅ xp/q . 
 
As a result of (5.3), the generators of the surface-pair Φ, Ψ will take on the directions of 
the x-axis (y-axis, resp.) under the flattening of the central cone. 
 One finds that the conical curvature µ = sλ ɺ  of the still-to-be-determined central cone 
Γ, with 2sɺ = 2zɺ = r2 + 2rɺ  = r2 / sin2 (σ – u), is: 
 

(5.7)  µ = 
sin ( )

r

u

λ
σ

±
−

 = 
( )sin cos

r

p q u u

±
−

 = 
2

1

sin

cos

m

m

c u

p q u

−

+

± ⋅
−

. 

 
If one imagines that u means the arc length of the spherical image of the central cone g : 
viz., g = g (u) and µ means its geodetic curvature then the form of the natural equation µ 
= µ (u) of that curve g that is known from (5.7) will be determined.  An explicit 
coordinate representation is not generally possible, even in special cases.  In order to 
arrive at a definite picture for the course of the spherical curve g, one might first ascertain 
the plane curve g  that is established by the dependency of its curvature µ on the arc 
length s.  It can be described in Cartesian coordinates in a known way by: 
 

(5.8)  x = cos duϕ ⋅∫ , y  = sin duϕ ⋅∫  with ϕ = duµ∫ , 

 
which can each be established by means of graphical or numerical integration.  If one 
then imagines a narrow strip of paper with a midline g  being “ironed onto” the unit 
sphere then it will assume the form of g, which can be quite complicated. 
 J. Krames [5] carried out the determination of constantly-twisted ruled surfaces with 
central cones by starting from the polar equation r = r (u) of the flattened throat curve, 
and he addressed numerous examples. – In regard to the special cases that were 
mentioned in Section 3, it should be remarked that: 
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 a) p = 0, q ≠ 0 (m = 0).  Consistent with the rectilinear flattening (5.6) of their throat 
curve k, the surface Φ will be the tangent surface to a geodetic cone of constant torsion τ 
= 1 / q, and as such, it will circumscribe a cone.  The band of striction Ψ will be the 
binormal surface of k. 
 b) q = 0, p ≠ 0.  The roles of the surfaces Φ and Ψ in a) are switched here. 
 
 d) p = − q (m = 1/2).  The surface-pair Φ, Ψ that is distinguished by hyper-osculation 
was mentioned already in [14], where the flattening of the line of striction was known to 
be an equilateral hyperbola, which is also in agreement with (5.6). 
 
 
 6. Surface-pairs with cylindrical central torses. – Under the assumption of a 
central cylinder Γ, the image of the central torse will contract to a point, and the spherical 
image of the generators c1 of the ruled surface Φ will be a circle.  Its moving triad can be 
exhibited by: 
    e1 = (   a sin ϕ, − a cos ϕ, b), 
(6.1)   e2 = (     cos ϕ,        sin ϕ, 0), 
    e3 = (− b sin ϕ,    b cos ϕ, a),  in which a2 + b2 = 1, 
 
with non-vanishing constants a and b.  A comparison of the derivatives (1.2) with respect 
to the arc length s of the throat curve with the ones with respect to ϕ, namely: 
 
(6.2)   1ɺe = a e2 , 2ɺe = − a e1 + b e3 , 3ɺe = − b e2 , 

 
will yield the relations: 
 
(6.3)    sκ ɺ = a, sτ ɺ= b . 
 
With the conditions (1.6), the demand of constant twist for the surface-pair Φ, Ψ will lead 
to: 
 
(6.4)    tan σ = pκ / qτ = ap / bq = const., 
 
and thus, to the constancy of the angle of striction σ.  However, and again with hindsight 
of (1.6), one will also have: 
 
(6.5)    κ = sin σ / p = const., τ = cos σ / q = const. 
 
However, the constancy of all three basic invariants implies that the surface Φ, and 
therefore, its band of striction Ψ, as well, will generally be ruled helicoids.  With the use 
of (13), and if one recalls that sɺ sin σ = ap and sɺ cos σ = bq, their throat helices k will be 
represented by: 
 
(6.6)  z1 = ab (p – q) cos ϕ ,      z2 = ab (p – q) sin ϕ ,      z3 = (a2 p + b2 q) ϕ . 
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 In regard to the special cases that were cited in Section 3, it should be pointed out 
that: 
 
 a) p = 0, q ≠ 0. Φ is a screw torse, Ψ is the binormal surface of the ridge helix. 
 b) q = 0, p ≠ 0. Φ and Ψ switch roles here. 
 
 c) p = q ≠ 0. The line of striction k (6.6) coincides with the screw axis, so Φ and Ψ 
are then (skew) closed ruled helicoids. 
 
 d) p = − q ≠ 0.  Here, one is dealing with the hyper-osculation of the pair of ruled 
surfaces Φ, Ψ that was mentioned in [14]. 
 
 The exceptional case of vanishing pitch (a2 p + b2 q = 0) that one can abstract from 
(6.6) should be emphasized.  In that case, the throat curve k will be a circle, and the 
surface-pair Φ, Ψ will consist of two hyperboloids of rotation of one sheet, which will 

even merge together in the special case d) (p = − q, a = b = 1/ 2 , σ = 1/4). 
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