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1. Introduction. — A concept that was first suggested by G. Sart¥hdnd later
developed by E. Kruppa in vector notati@h \vas that of a “natural geometry” of ruled
surfaces in three-dimensional Euclidian space, whicpleyad an orthonormahoving
triad that is attached to the central pathind generates the surface and consists of the
generating vectoe, , the surface norma, , and the central tangees=e; x e, . Ifz=
z(s) is the vectorial representation of the line ofc$ion or throat curve that goes
through the central poidt, when referred to the arc lengththen the ruled surface can
be described by means of the independent paranssad :

(1.2) X=z( +tE (9.

Assuming that they are suitably differentiable, teFivatives of the triad vectors with
respect te will satisfy the fundamentalifferential equations:

U

(1.2) € =Ke, €=—Ke& +Tes, €& =-Te.

The invariants of motio = and7r = €,e, = — e, e, that appear in them are called the
naturalcurvature(torsion resp.) of the ruled surfage As a third invariant, one can add
theangle of strictiono= < e Z that the generator makes with the line of strickg it is
defined by:

(1.3) Z’=e coso+esing,

and will usually be restricted to the intervatr: 2 <s< 77/ 2 .

The surfaced is determined completely, up to motions (and thadprm), by the
“natural equationsk = « (), 7= 7(s), ando= o (s) [6]. One haso= 0 for the torse'j ®
that is defined by the tangents to the space dyraad the differential equations (1.2) are

(") Translator: Apparently, the German wdrdrserefers to a developable surface.
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the well-known formulas of F. Frenet, in whigthmeans the curvature kf andr means
the torsion.

The ruled surfac& that is defined by the central tangents will be referoedst the
band of strictionof ®, as long as not all central tangents coincide, whievhat happens
for the erect conoid. With the exception of those aaa$, as well as the conoidal
surfaces, which are characterized b¥ O (and their generators are parallel to a fixed
plane of directions, such that their central tangahtsd a cylinder),® and the band of
striction¥ that is represented by:

(1.4) y=2z(s) +tle3(9

have the throat curdein common, and have a reciprocal relationship; dels the band
of striction ofW [2, 3, 7]. If o # 0, moreover (and therefode is not developable), and
# 1/ 2 W is not developable) then the two surfaces will conéacth other along their

common line of strictiork. The possibility ofosculationalongk, which has not been
observed up to now, was examinedld|| the identity:

(1.5) kKcoso+rsinog=0

is definitive for that phenomenon.

Finally, another important invariant for ruled surfaceshe so-calledwist, which
represents a measure for the winding of the surface stiopg a generator and can be
described as the limiting value for the quotient of theadist and angle between two
generators as they move closer together. According2td], two corresponding
generators of the surfacés(1.1) and¥ (1.4) have the following values for their twists:

sino coso
(1.6) p=——, q= )
K T

One will have the relatiop + q = O for osculating pairs of surfaces as a result &) (1.
As was shown in14], the possibility of hyperosculation is characterizedibgd values
of the twistsp andq = - p. That fact immediately raises the question of wésethere are
pairs of surface®, W with mutually-independertonstant values of their twistsgmdq,

in general. That problem is the topic of the present tigagn, which is naturally
based in the conditions (1.6) with= const. andy = const. The results will possibly
make a welcome contribution to the sphere of questiwatsrelate to constantly-twisted
ruled surfaces, which were expressed many times in coonegith J. Krames¥§, 7],
and above all, H. Brauner and his studeti}s [

2. Pairs of surfaces with prescribed direction cones at the central torse. — A
prescribedcentral torsel” that contacts a skew ruled surfaggand its band of striction
W) along the throat curvke is especially significant for all metric-related queass that
pertain to that surface. As the envelope of the faofilgentral planes, it is determined
by:
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(2.1) k-2(9)E(9=0.

As differentiation with respect to the parametef the family will show, its generator
will have the direction vector:

(2.2) d=exe=re +kKe;.

That is the so-calledarboux rotation vectqgr with whose help, the differentiation
formulas (1.2) can be combined itb=dx e (i = 1, 2, 3). It has a magnitude:

(2.3) d|=|€|=+K*+1% =2,

which is referred to adancretian or “total” curvature [2]. d plays the role of
instantaneous axes for motion of the triad, €, 3) that is attached to the origi that
results when the central poiitmoves along the throat curke

The aforementioned collective motion fro@ can be regarded in terms of the
elements of spherical kinematics as the rolling ofpla@e that is spanned kyande; on
the direction cone of the central torgethat is filled up by the instantaneous ageslts
trace curveg on the unit cone & will be described by the vectgr=d / A, which is
normalized to have unit lengthg is “polar” to the spherical image of the normals e
=& (9), in the sense of spherical geometry, while the spdleincage of the generators
Cs. €3 =3 (), of d appears as the spherical evolveng.of

As was mentioned before ii4], if one is then given the spherical image of the
central torsey, referred to its arc length by way of:

(2.4) g=g(u) with g°=¢g>=1

then one will have the following representation oftited vectors:

(2.5) € =g cosu— ¢ sinu, e =(0xq, e =gsinu+ gcosu.
One has:
(2.6) € =-(9+g)sinu, & =g§xg, & =-(9+g)cosu

for the derivatives with respect to. One easily convinces oneself tigat ¢ has the
same direction as with the help of the relationg g = 0, § g = 0, which follow from the
conditions (2.1), andyg =— 1. If one has:

(2.7) g+ 0=-ue,

accordingly, then one will see from:
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(2.8) & =-puexg=ugx(gxg) =449
that:
(2.10) “=@ g, 9)

means theconical curvature of the central torde With consideration given t@ =
e [$, a comparison of the differential formulas (1.2) and)2wvill then yield the
relations:

(2.10) MS = usinu, TS = ucosu, AsS=u.

With the use of the prescribed (constant) values ofviistsp andq, (1.6) then yield
the following relations for thangle of strictiono :

(2.11) sinc=p k=p Asinu, coso=q r=pAcosu, tano= (p/qg) tanu.

That implies the following expressions for th@vatureandtorsion:

(2.12) K=Asinu, Tr=Acosu, with A= 1/\/ p®sin®u+ o cos u.

The form of the desired ruled surfa®ewill be determined once the basic invariants
k, 17, and o are known as functions af and the connection between the auxiliary
parameteis and the arc length of the throat curve is given by= x/ A, with i as in
(2.9). The spatial position is also fixed, up tanslations, on the basis of the prescribed
direction cone (2.4) of the central torse. In otdeascertain®, it is, above all, necessary
for one to know the tangent vector to the throaveuand according to (1.3) and (2.5), it
will be represented by:

(2.13) zZ’=gcosg—-U +g sin(c—u).
Eliminating o by means of (2.11) then yields:
(2.14) z=Zs=[(psifu+qcosu)g+ (p—0sinucosulf]As,

and finally when one integrates this, while keepiad.0) in mind, one will get thigne of
striction k:

(2.15) z=3[{l(p+Qq « p-9cos2ug+(p- dsin2ug} #du;

Mis as it is in (2.9) in this. — A parametric regaatation of the desiredled surfaced
with (1.1) as a model will then read:
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(2.16) x=2z(u)+t¥k (U, with e =gcosu— gsinu.

One can simply replacg with e; =g sinu + § cosu for theband of strictiorn.

3. Special cases. — If the twist quotienp / g assumes one of the distinguished values
0,, + 1, or — 1 then that will define ratios of a spiddrad.

a) p=0,9g#0. Asaresult of (2.11), the ruled surfakdas atorse (o = 0) with a
ridge line () k of constant torsiomr = 1/ q and the band of strictio¥ is its binormal
surface. The curvk is thegeodetic line of the central tordeand will be represented
according to (2.15) by:

(3.1) zZ= qj,u(gcosu—g sinu ) cosu du.

b) q=0,p# 0. Converselyp is thebinormal surface of a curve of constant torsion
1 /pin this, and¥ is its tangent surface.

¢ p=q9g>0. As a result of (2.12)p and W are ruled surfaces of constant
Lancretian curvaturel = 1 /p with the throat curv&: z=pJ #gdu. Due to (2.11), one
has o = u for the angle of striction, such that from (2.18he will havez’=g . That
means that the generator of the central torse alwaincides with the tangent to the line
of strictionk, so thethroat curve is the line of osculatiaf the surface® andW¥, which
agrees with the criterior coso = 7 sin gthat E. Kruppa§] gave for an asymptotic line
of striction. — If the generators of the surfabeare carried along with the flattening
(Verebnuny of the central torsgé then from a known theorem of G. Darbo@x4, 6], it
would go to the rays of a pencil of parallels. Theoperty — viz., that the generators of
the surface are geodetically parallel along the tf striction — is characteristic of the
line of striction. If all generators ab were rotated through the same anglén the
central plane around its central point then thatpprty would still be true, and a new
ruled surfaceb, would arise that would have the throat cukwend the central tordein
common with® = ®, . Since the surface normal has not changed, the Lancretian
curvatured (2.3) will also be preserved. All that will chang thatowill change tog =
o+ a, and corresponding to the rotationepfto € = e cosa —e; sin a, the curvaturec

willgoto K = kcosa + rsina. Inthe present case, in agreement with a remwfdk
Krames [, pp. 147] and a formula for the twist @f, that H. Sachsl] derived, that will
imply thatall derived surface®, possess the same constant twigihpluding the band
of strictionW = ®,).

d p=-9g<0. In this case, the ruled surfacesand W also haveconstant
Lancretian curvaturel = 1 /q, as a result of (2.12). Furthermore, due to (2.dde will
haveo = - u for the angle of striction, such that th&culation conditior{1.5) is fulfilled.

(") Translator: If a torse is a developable surface finesumably its ridge line is its edge of regression.
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As was proved inJ4], one will even havéyper-osculatiorbetween the surfaces and
W as a result of the constant twist. — From (2.15) thheat curvek will be represented
by:

(3.2) zZ= qj,u(gcosZu—g sin2 du.

4. Pairs of surfaces with a central torse of constant dope (B6schuny — In order
to illustrate the developments in Sectiyrwe will further invoke the assumption that the
central torsd™ is aslope torse. The direction cone is then a right cone with dl-we
defined vertex angle@ in which we will assume that 0 @< 27z in order to exclud&®
that are cylinders or planes. The spherical in@dbe torseg will then be a minor circle
of the unit sphere that might be set to:

4.1) g= (ncosE n sinE mj, withn = sin m= cosw.
n n

The conical curvature of the central torse has/étheez/=m/n = cot w.
With the use of the abbreviation:

(4.2) v=ul/n,

one will find the following components for the tamg vectorz = (z, z, ) to the line
of striction:

, = g(p+q) cosv + 4_”r‘l(p_q [(1 —n) cos ¢+ 2u) — (1 +n) cos ¢ — )],

(4.3) 2= Z(p+a)sinv+ 2 (p -0 [(1-n) sin -+ 20) - (1 +n) sin - 2]

2 2

, M LU
23—2n(p+q) 2rl(|o g cos 2.

If one interprets the parameteas time then (4.3) will represent thelocity diagram
of the central poinZ as it moves along the throat cutkve According (2.14), the end
point of the velocity vector moves on a circle Ire ttangent plane to the right cone of
revolution that is spanned by the orthogonal vegyand §:

(4.4) 2=[(p+0) — (P—0) cos 2] g +—= (p— 9 sin A1 00g
2n 2n
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with constant angular velocity 2, while as a resul{4o1) that plane will rotate around
the axis of the cone with angular velocity h /[ One then sees that the curve of the
diagram is apherical cycle.lt moves on the cone:

(4.5) Z+g+4-—— %+ﬁ2 pi=0,

and it will arise when one rolls a cone of revolutwith vertex angler— 2«won a cone of
revolution with vertex anglea.
If one integrates (4.3), while recalling (4.2), then ornleasrive at thethroat curve k:

zl——(p+q) sinv + —(p q)[ 2nsln(v+ 2u)- 1+2hsin(v— ZU)]
(4.6) zz-——(p+q)cosv——(p q)[ 2ncos(v ZJ)— thos(/— 21},
23=ﬂz(p+q)v—ﬂz(p—c)sinzu, in which u=nv.
2 an

It will generally be assumed thatz 1/2 in this. The assumption that= 1/2 requires
special treatment and shall not be pursued futibeg. — In the case of# 1/2, one can
read off from the complex combination:

(4.7) 7 +i zzz—i?e‘ {2n(p+ 9+ ( p- q(1+2n a' - 11+n é‘“ﬂ

that the line of strictiok generally traverseskheelicoid which will be described in terms
of the independent parameterandv by the representation (4.6). It will arise, pg$a
by screwing the profile curve = 0 around thes-axis, and thus an ellipse that moves in
the plane:

(4.8) ml-4a)zan+2n(l+0’)z=0,

which is independent gf andg. The pitch of the screw has the vatue n? (p +q) / 2.
Under a uniform screwing motion, the central pahdt describes the throat curve will
also move on the profile ellipse with constant @cefvelocity.

With the use of the normal vectes = § x g = (m cosv, m sinv, — n) that is

established by (2.5), in whichonce more stands far/ n, one will get the equation:

(4.9) Xt COSV + X Sinv — L xg = SM(P= @

m
m 41— mﬂsnm_5m+®u
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for the central plane (2.1). If one again setsn von the right-hand side then one will
see (in general, and always under the assumptiomthét/2) that the family (4.9) will
run through a plane that has been subjected to a “progréggmonic reversal.” That is
a motion that is composed of a uniform screwing motiaumd thexs-axis (with the
aforementioned pitcls) and a harmonic oscillation along that axis (with freqye2m
[13]. With the name that O. Qlkka [8] introduced, thecentral torsel” that is enveloped
by the planes will then bewdbratory torse.

As was shown in13], the ridge line of such a vibratory torse appears inreuts the
parallel curve of an epicycloid or hypocycloid and wikklwise go to another such curve
when one develops the torse. In the present caseyglihve shall not go further into
the basis for this), under the assumption th&t1/2 , as the outline of a parallel curve
that moves at a distancen (p + q) / 2, it will be a cycloid of the family (1 —2: (1 +
2n) with an azimuthal radius off3h (p — g / 2 (1 — 4°), while as a flattening, it will
always be garastroid namely, a parallel curve that runs at a distand@ + q) / 2n
from an astroid (viz., a hypocycloid with four verticeg)h an vertex circle of radius of
m(p — g / 2n. Under the flattening of the central torse, the ahicurvek (4.6) will go to
an ellipse with a semi-axesnp/ n andmgq/ n that contacts the parastroid at the four
vertices.

Finally, the desired ruled surfade of constant twist, as well as its band of striction
W, can be written down with no difficulty on the basf the representation (2.16),
although we shall go into that. From Darboux (cf.,t®ec3c), under flattening of the
central torse, the generators of the two surfaces wilbgoutually orthogonal families of
parallels whose directions will be those of the adfahe aforementioned ellipse.

a) p=0,g#0. Here, the line of strictioki(4.6) is acurve of constant torsion with a
fixed inclination of the principal normalvhich occasionally appeared in E. Salkowski
[11]; it is a geodetic line of the vibratory torEg4.9). The associated ruled surfazés
developable and consists of the tangentk tadhe band of strictiod is the binormal
surface ok.

b) q=0,p#0. Here, the roles of the surfaceandW¥ in a) are switched.
¢) p=q#0. Inthis case, the throat cuvé4.6) takes the form oflzelix:
(4.10) z = mnpsiny, Z = — MNPCosYV, z=nfpy,

which is simultaneously the ridge of the central tdr94é.9). The ruled surfac® then
belongs to surfaces that were investigated by J. Krfheshich have a helical torse for
their central torse and one of the helices thatrigeto it as the throat curve. One is then
dealing with the most general ruled surfaces that argraent to all of the ones that are
derived from them by rotating the generators. The faat ¢lach special case of them
whose line of striction coincides with the ridge of tical torse is distinguished by
constant twist was pointed out i4][ The value of the twisp = c / n? is equal to the
radius of torsion of the ridge helix, which agrees witbrengeneral facts (cf.,7] pp.
147], [4], [20Q]).
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d) p=-9g<0. Inthis case, the pitahvanishes, such that (forz 1/2) areversal
torse (with frequency 8), which W. Kautny 8] considered, will appear in place of the
vibratory torse (4.9) as tleentral torse

(4.11) X1 COSV + X2 SINV — ﬂx3 = 3mg sin 2nv.

m 2(1-4n%)

The ridge line of such a torse is the slope lineafuadric of rotation and appears in
outline as an epicycloid or a hypocycloid and gtwean astroid under flattening of the
torse. Thehroat curvek, which is described by:

mg[ 1-n . 1+ n .
=—— sin(v+ 2u)—- sinfv— 1),
' Lo UF AT sind )}
mq[ 1-n 1+ n
4.12 = — cosf+ cosy- 21),
( ) z 2 1+ 2n v )_1— X ¢ }
m’q _. .
Z3= sin Ay, (withu =nv),
2n

traverses a quadric of rotation and maps to a oy¢hut with no vertex) under horizontal
projection. Due to the fact that= - u, one finds the constant valye=1/$ = A/ u =
n/ mq for its geodetic curvature from (2.10). The lwfestrictionk then goes to eircle
of radiusmq/ n under the flattening of the central torse, an@@wlto the vertex circle of
the aforementioned astroid. — The associatéet surfacesb andW belong to the ruled
surfaces that were recently studied by G. PillWg&h which have fixed Lancretian
curvature, a constantly-inclined central torse, @mbat curve of constant geodetic
curvature. The ones that appear here are disshgdibyhyper-osculating bands of
striction, and are noteworthy for that reason, since algelmarfaces belong to them,
namely, for rationah # 1/2 . The algebraic character was remarked4h fhe simplest
example occurs as a surface of degree seven mhen/ 4.

5. Pairsof surfaceswith conical central torse. — If the vertex of theentral coneG
that is now assumed is employed as the coordirraa ahen the throat curvie can be
set to:

(5.1) z=r [, with r=r (u), g=g (), P=g2=1
based upon (2.4). A comparison of the tangentovect
(5.2) z7=rg+rg

with the decomposition (2.13) will lead to:
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COSU cosi+ Sim Sin
sing cosu— cog sim

(5.3) 2: cot (0— 1) =

With hindsight of (2.11), one will then have fo¥ q:

(5.4) f_ gcos uj_L psirf u_ mtanu+ncoty, with m=—P_, n=_9_
r (p—-g)sinucosu p-q p-q

Now, with:

(5.5) r=csif'u/cos'u (wherebym — n= 1),

integration will yield the polar equation for tfiattened line of striction.k After going to
Cartesian coordinates=r cosu, y =r sinu, it can be represented by:

(5.6) X"yM=¢c or y=c ¥,

As a result of (5.3), the generators of the surfzaie®, ¥ will take on the directions of
thex-axis {/-axis, resp.) under the flattening of the centoalec
One finds that theonical curvatureu = As$ of the still-to-be-determined central cone

[, with 8= Z2=r2+ 1% =r?/ sirf (g— ), is:

_ xAr +r _ *c sin™*u
(57) /'l_ . - . - +1 .
sinc-u) (p-q)sinucosu p-qg cos" u

If one imagines thal means the arc length of the spherical image otémral coney :
viz., g =g (u) andy means its geodetic curvature then the form ohtiteral equationu

= u (u) of that curveg that is known from (5.7) will be determined. Anpégit
coordinate representation is not generally possiéen in special cases. In order to
arrive at a definite picture for the course of spberical curveg, one might first ascertain
the plane curve@ that is established by the dependency of its cureat on the arc

lengths. It can be described in Cartesian coordinatesknown way by:
(5.8) X= jcos¢ [du, y = jsin¢ [du with ¢ = '[,udu,

which can each be established by means of grapbicabmerical integration. If one
then imagines a narrow strip of paper with a mallip being “ironed onto” the unit
sphere then it will assume the formgyfwhich can be quite complicated.

J. Krames [5] carried out the determination ofstantly-twisted ruled surfaces with
central cones by starting from the polar equatienr (u) of the flattened throat curve,
and he addressed numerous examples. — In regattetspecial caseshat were
mentioned in Sectio8, it should be remarked that:
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a) p=0,9#0 (m=0). Consistent with the rectilinear flattening (506}heir throat
curvek, the surfaceb will be thetangent surface to a geodetic cone of constant torsion

= 1/q, and as such, it wiltircumscribe a cone.The band of strictiot¥ will be the
binormal surface o.

b) q=0,p#0. The roles of the surfacésandW¥ in a) are switched here.

d p=-qg(m=1/2). The surface-pa®, W that is distinguished by hyper-osculation
was mentioned already id4], where the flattening of the line of striction waokm to
be an equilateral hyperbola, which is also in agreemint(5.6).

6. Surface-pairs with cylindrical central torses. — Under the assumption of a
central cylinder”, the image of the central torse will contract tooa and the spherical
image of the generatocs of the ruled surfac® will be a circle. Its moving triad can be
exhibited by:

et =( asing, —acosg,b),
(6.1) e=( cosy, sing, 0),
es=(-bsing, bcosg,a), in which a+b’=1,

with non-vanishing constanésandb. A comparison of the derivatives (1.2) with respect
to the arc lengtl of the throat curve with the ones with respeap,toamely:

(6.2) g=ae, ég=-ae thes, &=-be,
will yield the relations:
(6.3) KS=a, rs=hb.

With the conditions (1.6), the demand of constant tieisthe surface-pai, ¥ will lead
to:

(6.4) tano=pk/ qr=ap/bqg=const.,

and thus, to theonstancy of the angle of strictian However, and again with hindsight
of (1.6), one will also have:

(6.5) k=sing/ p = const.,T= coso/ q = const.

However, the constancy of all three basic invariantglies that the surfac®, and
therefore, its band of strictioH, as well, will generally beuled helicoids. With the use
of (13), and if one recalls thatsin o= ap and scoso = bq, theirthroat helices kwvill be

represented by:

(6.6) zn=ab(p-gcosp, z=ab(p-9gsing, z=@Ep+b’ .
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In regard to thespecial caseshat were cited in Sectiod it should be pointed out
that:

a) p=0,q%0.dis ascrew torseW is the binormal surface of the ridge helix.
b) q=0,p#0.®P andW¥ switch roles here.

¢) p=qg#0. The line of strictiork (6.6) coincides with the screw axis, ®oand¥
are then (skewglosed ruled helicoids.

d p=-q9g#0. Here, one is dealing with tigper-osculatiorof the pair of ruled
surfacesp, W that was mentioned iri4].

Theexceptional casef vanishing pitch@ p + b q = 0) that one can abstract from
(6.6) should be emphasized. In that case, the throaée &uwill be a circle, and the
surface-pair®, W will consist of twohyperboloids of rotatiorof one sheet, which will

even merge together in the special djsp=—-g,a=b = 1/ﬁ, o=1/4).
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