"Conditions pour une surface flexible inextensible," C. R. Acad. Sci. Paris 193 (1931), 1051-1053.

Conditions on a flexible, inextensible surface

Note by ALÉXANDER WUNDHEILER

Presented by Élie Cartan

Translated by D. H. Delphenich

We consider the problem: How to recognize whether a one-parameter family of *m*-dimensional spaces that is embedded in an *n*-dimensional Riemannian space represents a sequence of positions of a flexible and inextensible space (a sequence of applicable spaces). The method employed is a generalization of the tensor calculus and will permit us to write out the desired conditions in a form that is independent of the mode of representation of the family.

The equations of our family are:

(1)
$$y_{\alpha} = f_{\alpha}(x_k, t)$$
 $(\alpha = 1, ..., n; k = 1, ..., m)$

Moreover, that representation establishes a correspondence between the various V_m (*t*) of the family (for equal values of x_k), which generally has no relationship with the isometry that possibly exists between all the (1). Here, one is dealing with a property that is independent of the chosen representation and persists for the kinematical transformations:

(2)
$$\overline{x}_i = x_i (x_k, t) \qquad (i = 1, \dots, m).$$

We say that a vector is *strongly-contravariant* when it consists of a system of *m* functions u^i that transform under (2) according to the well-known formulas:

(3)
$$\overline{u}^{i} = \frac{\partial \overline{x}_{i}}{\partial x_{k}} u^{k},$$

which do not depend upon t, like (2). One defines strongly-covariant and strongly-contravariant tensors analogously.

The sequence $V_m(t)$ generates an (m + 1)-dimensional Riemannian space V_{m+1} whose metric form can be written:

(4)
$$ds^2 = a_{ik} dx_i dx_k + 2 h_i dx_i dt + k dt^2$$

 (x_i, t) define a coordinate system in V_{m+1} , so (2) is a change of coordinates that does not alter the spaces t = const. The metric in V_{m+1} for a given value of t will be given by $ds^2 = a_{ik} dx_i dx_k$. We let ∇ denote the covariant derivative that corresponds to the form (always for a given t).

Fundamental theorem:

The system:

(5)

$$W_{ik} = \frac{\partial a_{ik}}{\partial t} - \nabla_k h_i - \nabla_i h_k$$

is a strong tensor.

One can prove that theorem by direct calculation.

Theorem:

The necessary and sufficient condition for the spaces in the sequence (1) to all be isometric is the existence of a system e_i that satisfies the equation:

(6)
$$\nabla_k e_i + \nabla_i e_k = W_{ik}$$

Proof: If there exists an isometry between the $V_m(t)$ then one can take the *t*-lines to be the curves that pass through the corresponding points under that isometry. That amounts to a "kinematical" transformation of the coordinates (2). In such a coordinate system, one will have $\partial a_{ik} / \partial t = 0$, and therefore:

(7)
$$-\nabla_k h_i - \nabla_i h_k = W_{ik}.$$

Now let e_i denote the strong vector whose components in the system that was just described are $-h_i$. It will verify the invariant relation (6). Conversely, if (6) have a solution e_i then one can choose the coordinate system in V_{m+1} in such a way that one will get $-h_i = e_i$, which is obviously possible. One will then have $\partial a_{ik} / \partial t = 0$.

As an application of that, one sees that one will always have an isometry when $W_{ik} = 0$. The solution of (6) is $e_i = 0$, and one establishes an isometry for $h_i = 0$, which means that the *t*-lines are orthogonal to the spaces $V_m(t)$. We call that isometry "orthogonal," and we can state the following theorem:

The necessary and sufficient condition for there to exist an orthogonal isometry between the spaces $V_m(t)$ is that $W_{ik} = 0$.

Observe that this is a completely-explicit condition that demands only differentiations.

Infinitesimal isometries. – In order for the space V_m (0) to be isometric to the infinitely-close spaces in the sequence (1), it is necessary and sufficient that (6) must be true for at least t = 0. Suppose that this condition is fulfilled. Since the spaces in the sequence (1) are well-defined, the only arbitrary step in establishing the isometry is choosing the angle that the *t*-lines in V_{m+1} form with V_m (0), which amounts to a convenient choice of h_i . One will then get other isometries from the possible values of h_i . Let h'_i and h''_i be two of those values. Obviously, one can assume that the change of coordinates that takes h'_i to h''_i does not alter the coordinates on V_m (0), i.e., it reduces to an identity for t = 0. Consequently, e_i will have the same coordinates in the two systems in which (6) will become:

$$-\nabla_k h'_i - \nabla_i h'_k = -\nabla_k h''_i - \nabla_i h''_k = \nabla_k e_i + \nabla_i e_k,$$

respectively, so:

$$\nabla_{k}(h_{i}'-h_{i}'')+\nabla_{i}(h_{k}'-h_{k}'')=0,$$

which is the well-known Killing equation, which is the condition for $h'_i - h''_i$ to represent a rigid motion in V_m (0). We have obtained the theorem:

One gets all of the infinitesimal isometries between one space and a sequence of infinitesimally-close spaces by superimposing just one of them with all the rigid motions in that space.

One sees the close link between the infinitesimal transformation and the rigid motions of a space into itself. Furthermore, (6) is a type of generalization of the Killing equation.

Observe, moreover, that if there exists an orthogonal infinitesimal isometry then one will determine it by means of a total differential equation with just one unknown if n = m + 1.