Conditions on a flexible, inextensible surface

Note by ALÉXANDER WUNDHEILER
Presented by Élie Cartan

Translated by D. H. Delphenich

We consider the problem: How to recognize whether a one-parameter family of m-dimensional spaces that is embedded in an n-dimensional Riemannian space represents a sequence of positions of a flexible and inextensible space (a sequence of applicable spaces). The method employed is a generalization of the tensor calculus and will permit us to write out the desired conditions in a form that is independent of the mode of representation of the family.

The equations of our family are:

$$
\begin{equation*}
y_{\alpha}=f_{\alpha}\left(x_{k}, t\right) \quad(\alpha=1, \ldots, n ; k=1, \ldots, m) . \tag{1}
\end{equation*}
$$

Moreover, that representation establishes a correspondence between the various $V_{m}(t)$ of the family (for equal values of x_{k}), which generally has no relationship with the isometry that possibly exists between all the (1). Here, one is dealing with a property that is independent of the chosen representation and persists for the kinematical transformations:

$$
\begin{equation*}
\bar{x}_{i}=x_{i}\left(x_{k}, t\right) \quad(i=1, \ldots, m) . \tag{2}
\end{equation*}
$$

We say that a vector is strongly-contravariant when it consists of a system of m functions u^{i} that transform under (2) according to the well-known formulas:

$$
\begin{equation*}
\bar{u}^{i}=\frac{\partial \bar{x}_{i}}{\partial x_{k}} u^{k}, \tag{3}
\end{equation*}
$$

which do not depend upon t, like (2). One defines strongly-covariant and strongly-contravariant tensors analogously.

The sequence $V_{m}(t)$ generates an $(m+1)$-dimensional Riemannian space V_{m+1} whose metric form can be written:

$$
\begin{equation*}
d s^{2}=a_{i k} d x_{i} d x_{k}+2 h_{i} d x_{i} d t+k d t^{2} \tag{4}
\end{equation*}
$$

$\left(x_{i}, t\right)$ define a coordinate system in V_{m+1}, so (2) is a change of coordinates that does not alter the spaces $t=$ const. The metric in V_{m+1} for a given value of t will be given by $d s^{2}=a_{i k} d x_{i} d x_{k}$. We let ∇ denote the covariant derivative that corresponds to the form (always for a given t).

Fundamental theorem:

The system:

$$
\begin{equation*}
W_{i k}=\frac{\partial a_{i k}}{\partial t}-\nabla_{k} h_{i}-\nabla_{i} h_{k} \tag{5}
\end{equation*}
$$

is a strong tensor.

One can prove that theorem by direct calculation.

Theorem:

The necessary and sufficient condition for the spaces in the sequence (1) to all be isometric is the existence of a system e_{i} that satisfies the equation:

$$
\begin{equation*}
\nabla_{k} e_{i}+\nabla_{i} e_{k}=W_{i k} \tag{6}
\end{equation*}
$$

Proof: If there exists an isometry between the $V_{m}(t)$ then one can take the t-lines to be the curves that pass through the corresponding points under that isometry. That amounts to a "kinematical" transformation of the coordinates (2). In such a coordinate system, one will have $\partial a_{i k} / \partial t=0$, and therefore:

$$
\begin{equation*}
-\nabla_{k} h_{i}-\nabla_{i} h_{k}=W_{i k} \tag{7}
\end{equation*}
$$

Now let e_{i} denote the strong vector whose components in the system that was just described are $-h_{i}$. It will verify the invariant relation (6). Conversely, if (6) have a solution e_{i} then one can choose the coordinate system in V_{m+1} in such a way that one will get $-h_{i}=e_{i}$, which is obviously possible. One will then have $\partial a_{i k} / \partial t=0$.

As an application of that, one sees that one will always have an isometry when $W_{i k}=0$. The solution of (6) is $e_{i}=0$, and one establishes an isometry for $h_{i}=0$, which means that the t-lines are orthogonal to the spaces $V_{m}(t)$. We call that isometry "orthogonal," and we can state the following theorem:

The necessary and sufficient condition for there to exist an orthogonal isometry between the spaces $V_{m}(t)$ is that $W_{i k}=0$.

Observe that this is a completely-explicit condition that demands only differentiations.

Infinitesimal isometries. - In order for the space $V_{m}(0)$ to be isometric to the infinitely-close spaces in the sequence (1), it is necessary and sufficient that (6) must be true for at least $t=0$. Suppose that this condition is fulfilled. Since the spaces in the sequence (1) are well-defined, the only arbitrary step in establishing the isometry is choosing the angle that the t-lines in V_{m+1} form with $V_{m}(0)$, which amounts to a convenient choice of h_{i}. One will then get other isometries from the possible values of h_{i}. Let h_{i}^{\prime} and $h_{i}^{\prime \prime}$ be two of those values. Obviously, one can assume that the change of coordinates that takes h_{i}^{\prime} to $h_{i}^{\prime \prime}$ does not alter the coordinates on $V_{m}(0)$, i.e., it reduces to an identity for $t=0$. Consequently, e_{i} will have the same coordinates in the two systems in which (6) will become:

$$
-\nabla_{k} h_{i}^{\prime}-\nabla_{i} h_{k}^{\prime}=-\nabla_{k} h_{i}^{\prime \prime}-\nabla_{i} h_{k}^{\prime \prime}=\nabla_{k} e_{i}+\nabla_{i} e_{k},
$$

respectively, so:

$$
\nabla_{k}\left(h_{i}^{\prime}-h_{i}^{\prime \prime}\right)+\nabla_{i}\left(h_{k}^{\prime}-h_{k}^{\prime \prime}\right)=0,
$$

which is the well-known Killing equation, which is the condition for $h_{i}^{\prime}-h_{i}^{\prime \prime}$ to represent a rigid motion in $V_{m}(0)$. We have obtained the theorem:

One gets all of the infinitesimal isometries between one space and a sequence of infinitesimally-close spaces by superimposing just one of them with all the rigid motions in that space.

One sees the close link between the infinitesimal transformation and the rigid motions of a space into itself. Furthermore, (6) is a type of generalization of the Killing equation.

Observe, moreover, that if there exists an orthogonal infinitesimal isometry then one will determine it by means of a total differential equation with just one unknown if $n=m+1$.

