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 We consider the problem: How to recognize whether a one-parameter family of m-dimensional 

spaces that is embedded in an n-dimensional Riemannian space represents a sequence of positions 

of a flexible and inextensible space (a sequence of applicable spaces). The method employed is a 

generalization of the tensor calculus and will permit us to write out the desired conditions in a form 

that is independent of the mode of representation of the family. 

 The equations of our family are: 

 

(1)      y = f (xk , t)  ( = 1, …, n ; k = 1, …, m) . 

 

Moreover, that representation establishes a correspondence between the various Vm (t) of the 

family (for equal values of xk), which generally has no relationship with the isometry that possibly 

exists between all the (1). Here, one is dealing with a property that is independent of the chosen 

representation and persists for the kinematical transformations: 

 

(2)      ix  = xi (xk , t)  (i = 1, …, m) . 

 

 We say that a vector is strongly-contravariant when it consists of a system of m functions iu  

that transform under (2) according to the well-known formulas: 

 

(3)      iu  = 
ki

k

x
u

x




, 

 

which do not depend upon t, like (2). One defines strongly-covariant and strongly-contravariant 

tensors analogously. 

 The sequence Vm (t) generates an (m + 1)-dimensional Riemannian space Vm+1 whose metric 

form can be written: 

 

(4)      2ds  = aik dxi dxk + 2 hi dxi dt + k 2dt . 
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(xi, t) define a coordinate system in Vm+1 , so (2) is a change of coordinates that does not alter the 

spaces t = const. The metric in Vm+1 for a given value of t will be given by 2ds  = aik dxi dxk . We 

let  denote the covariant derivative that corresponds to the form (always for a given t). 

 

 Fundamental theorem: 

 

 The system: 

(5)      Wik = ika

t




 − k hi − i hk 

is a strong tensor. 

 

 One can prove that theorem by direct calculation. 

 

 Theorem: 

 

 The necessary and sufficient condition for the spaces in the sequence (1) to all be isometric is 

the existence of a system ei that satisfies the equation: 

 

(6)      k ei + i ek = Wik . 

 

 Proof: If there exists an isometry between the Vm (t) then one can take the t-lines to be the 

curves that pass through the corresponding points under that isometry. That amounts to a 

“kinematical” transformation of the coordinates (2). In such a coordinate system, one will have 

/ika t   = 0, and therefore: 

 

(7)      − k hi − i hk = Wik . 

 

 Now let ei denote the strong vector whose components in the system that was just described 

are – hi . It will verify the invariant relation (6). Conversely, if (6) have a solution ei then one can 

choose the coordinate system in Vm+1 in such a way that one will get – hi = ei , which is obviously 

possible. One will then have /ika t   = 0 . 

 As an application of that, one sees that one will always have an isometry when Wik = 0 . The 

solution of (6) is ei = 0, and one establishes an isometry for hi = 0, which means that the t-lines are 

orthogonal to the spaces Vm (t). We call that isometry “orthogonal,” and we can state the following 

theorem: 

 

 The necessary and sufficient condition for there to exist an orthogonal isometry between the 

spaces Vm (t) is that Wik = 0. 

 

 Observe that this is a completely-explicit condition that demands only differentiations. 
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 Infinitesimal isometries. – In order for the space Vm (0) to be isometric to the infinitely-close 

spaces in the sequence (1), it is necessary and sufficient that (6) must be true for at least t = 0. 

Suppose that this condition is fulfilled. Since the spaces in the sequence (1) are well-defined, the 

only arbitrary step in establishing the isometry is choosing the angle that the t-lines in Vm+1 form 

with Vm (0), which amounts to a convenient choice of hi . One will then get other isometries from 

the possible values of hi . Let ih  and ih  be two of those values. Obviously, one can assume that 

the change of coordinates that takes ih  to ih  does not alter the coordinates on Vm (0), i.e., it reduces 

to an identity for t = 0. Consequently, ei will have the same coordinates in the two systems in which 

(6) will become: 

− k i i kh h  −  = − k i i kh h  −  = k ei + i ek , 

respectively, so: 

( ) ( )k i i i k kh h h h    − + −  = 0 , 

 

which is the well-known Killing equation, which is the condition for i ih h −  to represent a rigid 

motion in Vm (0). We have obtained the theorem: 

 

 One gets all of the infinitesimal isometries between one space and a sequence of 

infinitesimally-close spaces by superimposing just one of them with all the rigid motions in that 

space. 

 

 One sees the close link between the infinitesimal transformation and the rigid motions of a 

space into itself. Furthermore, (6) is a type of generalization of the Killing equation. 

 Observe, moreover, that if there exists an orthogonal infinitesimal isometry then one will 

determine it by means of a total differential equation with just one unknown if n = m + 1. 
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