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In the year 1926l evi-Civita (‘) generalized the Jacobi formula for the geodetic
deviation in two dimensions to arbitraRfemannian spaces.Vranceanu (?) andSynge
(®) then adapted it to non-holonomic, but always Riemannspaces. Vranceanu
worked with congruences and obtained rather opaque fortmatasannot be generalized
to affine spaces, and they are very hard to understarttidaeader that is familiar with
Schouteris symbolism. In 1928Syngegave a much simpler tensorial form to the non-
holonomic variational equations of geodetics that coutdbeoadapted to affine spaces,
either. The dynamical applications are restrictedusi the case of a conservative,
scleronomic system of given total energy, so thesdat theorem of Jacobi that
identifies the trajectories under such a constraint with geodetics of a Riemannian
space can be employed.

In the present paper, we will:

1. Derive the equations of deviation for geodetic linas&ogeneralaffine non-
holonomic space from a new viewpoitf).( The derivation is very simple, and the
desired equations are obtained almost immediately fhencommutation formula for the
covariant differential. Thanks to the introductionaodurvature tensor that did not occur
to any of the cited authors (not evBohouter), the equations of deviation will take on
precisely the same form in the non-holonomic casethiey have in the holonomic case.
The method will then be applied $oleronomiadynamical systems.

2. A connection between the geodetics of a suitably-chosgtidimensional space
and the motions of an arbitrary rheonomic, linear, holenomic dynamical system will

() T. Levi-Civita, “Sur I'écart géodésique,” Math. An8i7 (1926).

() G. Vranceanu “Studio geometrico dei sistemi anolonomi,” Ann. di Md).6 (1928-29). Summary
of the author’s results on non-holonomic spaces.

() J. L. Synge “Geodesics in non-holonomic geometry,” Math. A8 (1928).

() A. Wundheiler, “Une simple démonstration de la formule de I'écart géqdés’ Rend. dei Lincei
12 (1930), pp. 644.
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be presented on aifine foundatiorthat is entirely independent of Jacobi’'s theorem. In
that way, the stability problem for arbitrary system# lae reduced to the equations of
geodetic variation.

The treatment of the problem will be carried out imreection with Schouteris
symbolism ). In§§ 1and2, we present the concepts that are necessary foedder to
understand the definitions and theorems on non-holongpaices, which are unknown to
the rel%vant work byschouten However, the presentation is rather differentmany
places ).

8 1. — Generalities on non-holonomic spaces.

1. Definitions of a constrained A!". — A, denotes am-dimensional affine space in

which asymmetric(’) parallel displacement is given by means of its camepts r,

which are otherwise-arbitrary functions of position.e \denote thaunit affinor in this
space byA*, which is then:
pe= { 1 (i=k)

0 (#k).

Now let anm-direction be defined arbitrarily at every point of that That is known
to happen when one is givem linearly-independent vectors at that point. Any linear
combination of those vectors is a vector that falls atbagdirection. We assign an' =
(n — m-direction to every point of thé, that has no 1-direction in common with the
previously-definedn-direction and call it th@seudo-orthogonadirection.

Now, any vector can be decomposed into two componentfombich falls along
the localm-direction, while the other one falls along the pseudbegonal direction.
We call the first of those components tbedjection of the vectors into the local m-
directionand the other onéhe projection along the pseudo-orthogonal directigks an
image of those projections, one can now define an afiadollows:

If i is a vector i, then:

u/k = Blkui

() J. A. Schouten Der Ricci-Kalkii] Berlin, 1924; “Uber nichtholonome Ubertragungen in elper’
Math. Zeit.30 (1929) (cited as “Schouten”).

The last paper of that authad: A. Schoutenand E. R. van Kampen “Zur Einbettungs- und
Krimmungstheorie nichtholonomer Gebilde,” Math. A403 (1930), can remain unconsidered for our
purposes.

() Cf., e.g., Formulas (4), (8.1), (15), the derivatiorfid).

() That restriction is entirely inessential. Howevércs the equation for geodetic lines:

d*x e dx dx _

d ' ds ds
depends upon only the symmetric parf&ljﬁf, SO upon:

1 k k
2 M+,
the consideration of asymmetric displacements wouldiperfiuous for our purposes.
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will be its projection onto the locat-direction. The components of the affinBf can

be calculated easily as soon as one is gmerectors that span the-direction andm’
vectors that span the pseudo-orthogonal directjon (

We call the totality of local m-directions ai™". If a pseudo-orthogonal direction is
given at each point then we will speak ofanstrainedA™ and callB¥ its unit affinor

If that unit affine B is known then the locah-direction, as well as the constrained

direction will be given at each point.

If certain integrability conditions?( are fulfiled then themrelements can be
assembled into am (- m-parameter family of, that are embedded A, . If that is not
true then we will be dealing with the general case, aadmwill call the totality ofm-

elements aon-holonomic m-dimensional spagd’ that is embedded in,A

If a vector falls in the locah-direction then we say thathlongs toA". We call a
curve whose tangent vector at each point belong§t@curve in A’

The totality of pseudo-orthogonai-directions defines al\™, in its own right, and
we can consider the original loaatdirection to be its constraint direction; i.e., tA&'
can be constrained by th&" in their own right. That constraint defines a uffiinar on
the A™, which we would like to denote bg¥. If u“ denotes a vector iA™ and v
denotes a vector il , then we will obviously have:

3ku| = uk, Clkul = 0’
BV =0, CHV =,
Hence:
A|k - Blk + Clk .

2. Projection relative to a given index— Just like the contravariant vectors, the
covariant vectors can also be projected iAfbby means of the affinoB|*:

By =u.
Corresponding formulas are true for the projectioa if :

cu =u’*, Clu=u".

() Schouten pp. 156, (31).
() Schouten pp. 157, (35).
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However, higher affinors can also be projected into Afe and indeedelative to
arbitrary indices For example:
Ti’k = Bi Tik

is the projection of the affinof,“ into A" relative to the indek. Likewise, one has,

e.g.:
T =B/ T

for its projection intoA" relative to the indek We can also project the affinor in#"
relative to the indiceb, i and into A" relative to the indek

T =ByB/Cl TY.

i
If such a projection is equal to the affinor itsetf, 8.g.:
BiT! =T,

then we will say that this affindres in A" with respect to that indexr more simply,

thatthe index liesA". The projection of that affinor into the consttaspace relative to
that index is then obviously zero, so:
CiT! =0.

In particular, the unit affinor with two indices lie@sthe space to which it belongs, so:
BXB! =B), CKC'=Cf, CSB'=C[B=0.

We [like Schouten(})] shall employ the symbols, ..., g exclusively for indices that
lie in A" and the symbolp, ..., w for the ones that lie i}" . The indiced, ..., | can be
employed without any restriction.

3. The parallel translation that is induced in A". — The covariant differential of an
arbitrary vector inA;":
(1) Su=du'+ rfu' dx
can be decomposed into its two projections into each cdpages:

ou = & U+ o"u

() Schouten-Kampen pp. 760.
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where

(2) ou“=Brau,
and

3) o"u=Clau.

For higher-rank affinors, we set, e.g.:
OT* =By B/ JTS,

etc. We now calculate the components of the inducetsiation. Let* be an arbitrary
vector in A;". We then have:

& U = BfoU'= By (du"+T " U dX)
= d(BFU") - U dB + BT 4 dx

4 0
=duk+(B|frijh—6]- BK)U dx (aj=a7j
If we now set {):
(4) r'ijk = Brlw(rijh_ajak
then that will give:
(5) Fu=du'+ Mu' dx.
If we set:
(6) I« =B"ry +0,B"
then we will find, analogously:
(7) O'u=du - Ty dxX.

) e treatment of thsle’ijk for the induced translation iSchoutenis different from ours, since he

employed non-holonomic coordinates in fie. We have avoided the rewriting of our formula for non-
holonomic coordinates in order to get around inesdemtenplications in the derivation of the
commutation formula (27). The reader that is familighwchouten’s work will easily find the alteration
that must be made to the affinor (15) when one has nlambraic coordinates A, .
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§ 2. — Curvature affinors and the commutation formula for A".
1. Some fundamental formulas— One first has:

OA“ = 0B +dG“=0,

SO
OoB¥=-oC*.

One further has:

(8) 5’B|k == 5’Cik: 0.

In fact:

®.1) OB" =B/ B 0B =- BB 9G =B C = 0.

In a sensedB* gives the change in direction i§" when it moves to a neighboring
point. From (8), the “intrinsic” change in direction &' is then zero, soA" is
autoparallel with respect to itself.

2. The induced curvature.— As always, we set:

oB“= 0, B*ox!.

Now, if one projects both indicdsandi of that affinor into A" then, from (8), one

will get zero. By contrast, if one projects only arfethe indices then one will get the
two affinors:

9) H'j'ki = Bjj’Bli(’ Oy B, L'j'im = Bjj’Bll' 0 B,

which one can employ as a measure of the relativegehm A". Note that the first two
indices of these two affinors lie i", but, from (8), the last one lies iA™. One can
L2 .

In parallel with that, we introduce the following quaietitthat are referred t4"™ :

then write: H':!

ba ?

nk _— el k [ - el k'
(10) H* =c/c'D, ¢, L', =c/cio, gv.

Following Schouten we call those affinorghe induced curvature affinars
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3. Holonomity condition. — The following equation is true for vectors Af', which
justifies the name of, e.g., curvature affinors for t-h’g" :

(11) Su‘= U +H" U dx .

In fact:
Su‘=J(Bfu)= Bou+SB [ = Su*+0, BB UOB du.

Similarly, one has:
(12) ou=0u +L"5u dx,

Equation (11) allows us to say when tAB is holonomic. By definition, that will be
the case when therdirection elements can be combined intonadimensional space,
which will then give aim®~parameter family. In order for that to be true, ihécessary
and sufficient that any curve that lies A" (so one whose direction is always included in
the localm-direction) lies completely in aA, . If we then displace a vector parallel to
A" along a path that lies i then it must always belong to the safae. In particular,

in the holonomic case, an infinitesimal parallelogrébat is constructed in aA" must
lie completely in oné\,,, soit must be closed.

We now seMM’ = X MN’ = dx, M’ N”||M N’, N’ N || MM relative to A
Now, N”andN " must coincide in the holonomic case, so we must lda¥g —d ox* =
0. On the one hand, we have:

0ox=0, JIx=0,
and on the other hand, from (11):
90X = X +H*oXoX, JOxX = 9 ox“ + H'*oxd X,
It will then follow that:
(00 -09)x = (H' =H'*)dx'ox’.
Should that be true fafx“ and dx then one must have:

(13) H" = H'X

I 1

That is the desired holonomity condition. It is adsdficient ).

() Schouten pp. 161, (61).
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4. Commutation formula for A. — We shall adapt the well-known commutation
formula:
(00-00)u" = Ri*dX dxu

to A,. Inregard to the chosen notations, we establishthbdirst index of the curvature

affinor refers to the first differentiation, the sed index, to the second differentiation,
and third one is linked with the vector index.

As always,dand d will denote two displacements that commuteéin(but not A™!).

We recall that this assumption is equivalenttdx’ = d dX. We calculate, in the usual
way: ~
O Fu=d(u)+Iau dx
d (AU +T (@ )+ dd+T & o) b
ddu+0, I U dX dk+ifo, G+ & dx o

+ rratJ) uaa de + r;)TaJ LP d){ _dk+ réf r'at] a dk_d

The doubly-underlined terms are symmetridiand d . The same thing will be true for
the sum of the singly-underlined terms. If we now faha difference(d’ 0’ - d')u°
then the aforementioned terms will cancel, and thihgwe:

(14) (55 -55)u= R:°dx dx @,

jla

when we set:
/..C rc Ic rbprrc I'brr c
lea - ai raj _aj rai +raj rbi _rai rbj .

As the notations for the indices would suggest, thetiive indices of that affinor lie
in A, , while the last two lie inA". It has, so to speak, an intermediate position Etwe
A, and A", and we have that to thank for the simplicity of deenmutation formula that
we obtain. We remark that this does not occur in ettieicited works o¥Yranceaunu
or Schouten The latter author skipped over a commutation forrfaiadl” completely
(). We suggest that it will offer a great advantageHergroblem of geodesic deviation.

§ 3. — Deviation equations in a4;".

1. Two arbitrary curves in A". — LetC andC’ be two curves inA; i.e., their

directions fall into the locatt+direction at each point. We relate them to eatieroby a
one-to-one correspondence of their points and now asdhate the curves are

() Schouten pp. 162, line 13 from the bottom.
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neighboring;i.e., that corresponding points are infinitely closeM is an arbitrary point
of the curveC then we denote the corresponding poinEolby M “and set:

MM’ = Jx~.

We generally letd denote the covariant differential that correspondiealisplacement
O x*; we shall call it thecovariant variation
If the A" is holonomic ther€, as well a<C’, will fall in an Ay, . However,dx* will

no longer lie in theA", in generalj(), since theA,, of C andC’would be different then.
However, if Ox* lies in A" for a particulaM then it will already lie inA™ along all of

C, andC andC’would have to fall in the san®g,. That is not true in the non-holonomic
case. In fact, it follows directly from the conditionahit must lie inA":

Crox=0

(0 means the covariant differential that corresponds tdisplacement alon@ that
commutes withd x*) that:

(16) CK3 3% +5C %= 0.
We setdx“= £ and decomposé® into two componentss’®, which is in A", and
&% which is in A :
Q(/k — Bikgzi , g(//k — CikQ(i .
If we observe thabandd commute and we employ (16) then we will get:
(17) 3"*= O(CfE') =ClIIX +3C¢E'=~ OC[IX +0CKE!
=-0,ClEIoX +0, CKE'OX.
However, we represen, CY in terms of the curvature affinor:

(18) 0, Cr= (B +Ch(El + O, &
- (H rj.i.k +L1J[E)(H "“..k+Ln[k

ji jo/ -

If we then seti® = 9%/ ds in whichu ¥ means the tangent vector@othen we will get:

() The discovery of that almost-banal fact has its ovistoly. Cf., Vranceanu, “Sur I'écart
géodésique dans les espaces non-holonomes,” Ann. Scient.Jdssyl5 (1928), pp. 7 and pp. 309, as
well askE. Cartan, “Sur I'écart géodésique et quelques notions connexes,” Rendincei5 (1927), pp.
609.
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5 gll k

) = [(Hy - HY) & —(LE+ LD &

We have substituted (18) in (17), then &ét= &% + &7 and finally multiplied out
the parentheses, while observing the position of the isdicethe curvature affinor.
Products like:

(20) H rij.k i , H ni]:.kJXi , Ll k g(II Lni,l[(ﬂ JX] , etc,
in which an index fromA™ is concatenated with one frol" , will vanish.

We now ask what the condition would be for the Mainig of 7% for everys to
follow from the vanishing of; * for a certairs = s . In order for that to be true, it is
obviously necessary and sufficient tifaf must not enter into equations (19); i.e.:

HrJIk _ Hri.j.k: O,
which implies the holonomity condition (13). If t&" are not holonomic thed; “=

can follow fromé&”* = 0 only in exceptional cases.

(19) represents only — m independent equations for the deviag6ithat are true for
arbitrary pairs ofC andC’. We shall give some more equations of deviation thabean
useful in many investigations.

We can rewrite (16) in the form:

"k
% -0C— 24 =-0CudX.
ds ds .
Hence, from (18)%:
1 gk
(21) S = -Len.
ds

We further have:
5//5/<(k: Chké(Blkégi) — CthjakagziéXj,
5/5//<(k: Bhké(c;lkagzl) — &ijqk&(iJXj.

Hence:

(22) o' é =H 'J:i'kJ’E"Ju‘
and

(23) 00" & = -L; KIEIU'.

() Those are essentially egs. (6.42) Synge (Geodesics, etc.) and (#3of Vranceanu (Studio
geometrico, etc.)
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2. Geodetic lines inA". — We call a curve iry" whose direction with respect to the
A" does not change (so it is autoparallel relative toAfi¢ a geodetic line inA". Ift

denotes a parameter on a cufvghenu® = Jx* / dt will be its tangent vector. If its
direction does not change then we must have:

5’Uk_ K
=au.
dt

For a certain choice of parameset f (t), that equation will go to:

out _

(24) ds

0.

How does one describe a geodetic A" relative to the translation i,? We
immediately get from (11) that:
ou* _ ouk
ds  ds

+Hu'd’,

SO:

A geodetic inA™ is then a curve whose curvature liesAfi for a suitable choice of
parametes. We call that parameter thdfine parameter.

3. Geodetic deviation— Now letC andC’ be two infinitely-close geodetic lines in
A". In that way, their directions shall also diffefimitely little when we relate them to

each other in a suitable one-to-one way. If the gdimf C corresponds to the poiM’
of C’then we call the vectdviM’, which we denote by x* = &¥ as in §3, no. 1, the
geodesic deviation As we said before, we shall call the covariantedéhtial that
corresponds to the displacement* thecovariant variation

Along with that covariant variation, we shall indikece the differential alon@ (C/,
resp.), which corresponds to the displacem&xit The displacementd and & shalll
commute; i.e., ilo moves fronM to N alongC thend will move fromM“to N”alongC”.
If M corresponds to the parameter vatuen C andM’, to the parameter valig on C’
then we will have:

ds’=ds+0J ds= (1 +4) ds
in which have set:
(25) u=2%
ds

M is infinitely small.

We first have:
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) :55x" _ dsd oX -5 %o ds_ o

ou u,
ds ds ds H

since one ha® dx“= Jdx* = &fX. We project intoA™ and get:

(26) ouk =

since B“u' = U,

4. The Levi-Civita formula. — We seu © equal to the tangent vectdix © / ds of our
geodetic in the commutation formula (14):

(50 -0du=R:°UJ XX,

jia

in which we recall (24). Due to (26), we will get:

5,[5’5 _’uucj = Rr...c uagzjax'

jia

ds
or (:

5’25(: _d_,U c _ ~CZj i
(27) e dsu =R;E'U .

That is theLevi-Civita formula for non-holonomic spaces.
For the special case of Riemannian space, so wheAthierm aV, , we can get the

formula for i that Levi-Civita gave directly with the help of covariant variatiéh (It is
then known that the affine paramesas the arc-length, so:

dds’ = (g, dxX dx),
or
dsd ds= g, OXI X,
or after dividing byds*
Jds . OFk
28 S Y B S
(28) H=s ~ %Y gs

() Compare the simplicity of this to formulas (6.32) and 254 Syngeand (44) ofVranceanu. In
the latter, one must consider the defining equationthésymbols that enter into them.
() Levi-Civita, pp. 314, (39.
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5. Dynamical equations of deviation for scleronomic systems. As is known J()
the Lagrange equations of motion for a scleronomic systéim a vis vivaof 2T =

g, X ¥ that is acted upon by the generalized fa@cewhich are the equations:

doT oT_
aa_)é a_QI,
can be written in the form:
oV I OX
dt dt dt =Q =0 Q.

in which d means the covariant differential in the Riemannian spattethe fundamental
form ds’ = gy dX dX’. Thex are the independent parameters of the system then.

If scleronomic and non-holonomic constraints aildea to the system then we can
replace them with a constraint force. The constsadefine am-direction field in which

the velocity vector must fall. We denote the unit affiof theV," that is defined in that
way and constrained orthogonally . The aforementioned constraint force, which
must be perpendicular to the virtual displacement, sindedas no work, must fall along
the orthogonal constraint direction. If we denoteyiR* then we will also hav8'R =

0. We now project the equations of motion:

Ve

M R
dt Q
into V™ and obtain):
5Vk K
29 —=Q""
(29) i Q

We now relate two neighboring paths of the systesatth other in a one-to-one way,
while preserving the notation of footnot®, (except that we writg instead of. If we
once more apply the commutation formula, but this tinthe vecton* = 5X¢/ dt, then
we will get:

a‘[i‘: —,uv°j—5’(Q’Cdt) = Rj;°¢'0X V,

since & v ¥ = Q’ ¥ dt, from the equations of motion (29). If we perform the
differentiations, once more repladev® with Q”*dt, and divide bydt then that will give:

d,U C — C Tivj (I C
(30) T VRISV AU G4

() See, e.gE. Cartan, Lecons sur la géométrie des espaces de Rienamis, 1928, pp. 42.
() Schouten pp. 171, (115).Vranceanuy, “Sopra le equazioni del moto di un sistema anolonomi,”
Rend. dei Lince#t (1926), pp. 508.
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If the curvesC andC’ are “isochronously” related to each other,&sdt = 0, i/ = 0,
then (30) will take the simple form:

512 C i _ .
(30.1) d—t‘::Rﬁ; IV +8 O

Remark— (27), as well as (30) represemly m independent equations, since the two
sides of those equations will fall in th&". The remainingh — mequations are then
obtained by the equations (21), which are trueafoy curve in A", among which, there

are similarly onlyn — mof them.
2 ¢k

0 .
However, how do we calculate thgtT themselves? We first have:

525k: 5/2€(k+ 5//5/€(k+ 5/5//€(k+ 5//2<(k.
We obtain the first three summands on the right &), (22), and (23), resp. As far as
the fourth one is concerned’-differentiating (21) will give:
51125k
ds’

(31) = C: D|(H'ji'h - L’;i..h) [Flu'd,

since the other summands that arise from differeatiavill vanish due to (20). Adding
(27), (22), (23), and (31) will yield the formula:

525k
ds’

_/luk — (H rji.h _Lrj.i.h)f_sluj +[sz”...h+ qkl:’ ( Hri..h_ I.‘;rh)]gju d

8 4. — Motions as geodetic lines.
Deviation equations for arbitrary dynamical systems

1. — We understand motionof a dynamical system witlhdegrees of freedom whose
position is determined by the parametéto mean a curve in the ¢ 1)-dimensional
space ¥ t) that is defined by the equatiom = x* (t) that satisfy the differential
equations of motion. That curve then determindsonty the path, but also the way that
it is traversed.

The problem of reducing the examination of a dyicahsystem to the examination
of the geodetics of a suitably-chosen multidimemsicspace has been taken up several
times before. We first recall the classical theoref Jacobi, according to whichthe
trajectory of a scleronomic, conservative systenwelf-defined total energig given by
the geodetics of Riemannian space with:
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d¥=2h-\) Tdt

in which h means the total energy akdmeans the potential. Obviously, that space is
still not determined by the system itseff).( Should the corresponding space be
associated with the system in a one-to-one way, thevould have to haven + 1
dimensions. Namely, the totality of the motions isg@neral) B-dimensional, whereas
the totality of the geodetics in amdimensional space is only r(2- 2)-dimensional.
Eisenhart (%) gave such a Riemannian space, but onlgémservative, scleronomic, and
holonomic systemsUnfortunately, itsrf + 1) coordinate is not time, bat parameter
that is not holonomic for the systémhich is therefore not determined by the position of
the system), namely, a linear combination of the Jaeolaction and time. For
rheonomic (but always holonomic and conservative systethere is ann( + 2)-
dimensional Riemannian space that achieves the desirectio®jf).

In these paragraphs, we shall indeed dispense wittotigruction of &Riemannian
space that solves the problem, and satisfy ourselvesawilffine one ). However, in
return, the problem will be solved farbitrary, but onlylinear, non-holonomic systems
that can otherwise be subject to rheonomic and arbitvacgs.

2. Holonomic systems— We consider an arbitrary holonomic system witthegrees
of freedom that is referred to the paramet&iand is given by its kinetic energy:

T=1g,, % ¥

and the generalized forces that act upon it. Moreaverestablish in these paragraphs
that Greek indices range through the values 0, 1, 2, and Latin indices range through
only the values 1, 2, ..n.

We understand® to mean the time; x°then stands for 1, the form faris generally
inhomogeneous. We first specify the Lagrange equations timel@ssumption that the
dap also depend upad =t. We have:

oT doT | oT
— =0 )-(a, ——— =g X +0 Dg)g, — =100 D(”Xﬂ,
a).(| gm dt 6)6 gu B ga 6X' 2 |gm
SO:
doT 0T o L e
Qi - aa_)d_a_)( - gii X +[|,O'ﬂ] Xaxﬂ’ [y, 0’,@ = %(aa gﬂy+aﬂ gyﬂ_ay gﬂﬂ)

t f., e.9.,P. Appell, Traité de mécanique rationelle Il, Paris, 1923, pp. 453.

() C
() L. P. Eisenhart, “Dynamical Trajectories and Geodesics,” Ann. M&H(1929), pp. 603.
(3) L. P. Eisenhart, loc. cit., pp. 593.

() Cf., alsol. L. Synge “On the Geometry of Dynamics,” Phil. Trans. Roy. Samdon, vol.226, pp.
35, line 17 from the top.

The fact that such a Riemannian space cannot exiatlfdrary systems is self-evident. However, we
hope to prove on another occasion that it does not fexist conservative, scleronomic system either, in
general.
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If we letg® denote the-dimensional matrix that is reciprocal @p (but not togys !')
then we can rewrite that equation in the form:

(32) X+ g laBl s =qf Q=g Q).
We now define an affinen(+ 1)-dimensional translation as follows:
(33) ry=9'liid  rg=d'[,00, g =0

It is easy to verify that the geodetics that belanthts translation are the motions of
our system. In fact, it follows from the equations:

dzx”+ , adxX d¥ 0
d  “? ds ds

that forA = 0, one has:

(34)

d2x°+ s dX d>€:d2t:0,
d * ds ds d¢ ’

hences=kt+s . We now choose =t, precisely. That will allow us to write the
remaining equations in the form:

dzx"+  dX dX _
dt> % dt dt

We further specify this by introducing the values (33) rfcig, and then get equations

(32).

The geodetic lines of the translation (33) can coincidé whe equations of an
arbitrary holonomic system.

If we vary the forces that act upon the system thentranslation must also vary if
the equations are to remain geodetic lines, as befoagnely, if forcesR* are added to
the Q“ then, from (33), tha™¥, must be diminished big. The equations of motion will

then read:

0

2 2
_d XA+r2 %d_)e_Rﬂ iﬁ =
ds? # ds ds ds

when we seR’ = 0. In the space with the translation (33), the eqostid motion of a
holonomic system will then read:

X _ L dtY
(35) rEaR (dsj !
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if R means the forces that act upon the system, be§ifjeshich are not considered
when one forms thé .

3. Non-holonomic systems- We understané,.; to mean the affine space with the
translation (33) that was just defined and assume thmatystem is subject to certain non-
holonomic conditions:

(36) e,oX =0 (@g=12 ..n-n),
p

in which thee, depend upon time. Those equations obviously determing an How
p

should we constrain it, and how do we find the unihaff?
We choose the constraint direction to be the onefalia along the constraining force
that replaces the couplings (36). If we denote Rlayen it must follow from:

edX =0

p

(for which the virtual displacement & = & = 0!) thatR, dx = 0. We will then have:

R = Re.

Pp

It follows from this that:
Rk:gklRi: ngi e
P p
If we setRy; = 0 then we can write:
(37) Rz Re,
p p

where the vectorg” are explained by the equations:
p
(38) e=g"e, "= 0.
P P P

From equation (37), the constraining force falls in thesphat is spanned by the vectors
€’ , and we choose it to be the pseudo-orthogonal camistlieection. We leave it to the
p

reader to prove that the unit affinor of tg;' that is constrained in that way is given by
the formulas:

(39) le:Ajl—Cf, Cf:hpq%é, hpqhqr:a—rp, hqr:e'u%,
q r

p ¢

(p,g,r=1,..,n—m.
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Now, from (35), the equations of the motion of thestaained system read:

LR (EJZ.
ds’ ds
If we now project intoA™:" then, sinceR” falls in the constraint direction, we will
get:
24k
(40) IxX*

02 =0.

The system will then describe a geodetic line\fi{*. Q. E. D.

Those are onlyn + 1 independent equations that determine the pararsetén
addition, we hava — mfirst-order condition equations:

(41) e = 0.

Equations (40) and (41) define the most general equations témior linear non-
holonomic systemsWe then write down the equations of deviation &3nnos. 1 and
3.

4. Summary.— We have arrived at the following results:

If an arbitrary, linear, non-holonomic dynamical gystis given by its kinetic energy:
T=1g,X ¥, X =t (a, /=0, 1, ...m),
along with the generalized forc€that act upon it and the non-holonomic conditions:

e, oX=0 P=1,..,n=-m,
P

then we will get its equations of deviation in the fomhén we choose the variation to
be isochronous):

52? =RHEVY, (v'=x)
(42) “
5;: =(H -8V, | [ef.,(27). (20)].

[We have takews =t, which is obviously permissible, from (34).] Here, have:
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Raiu= 0,7 =0l + ML -Ti Ty,  [see (15)]

w' VA vw ' al
Mo = Br M, 0,8 [see (4)]

7 is defined by (33), whilB* is defined by (39). The former depends upon only
gap andQ; , while the latter depends upon theand the non-holonomic conditions.




