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 In the year 1926, Levi-Civita  (1) generalized the Jacobi formula for the geodetic 
deviation in two dimensions to arbitrary Riemannian spaces.  Vranceanu (2) and Synge 
(3) then adapted it to non-holonomic, but always Riemannian, spaces.  Vranceanu 
worked with congruences and obtained rather opaque formulas that cannot be generalized 
to affine spaces, and they are very hard to understand for the reader that is familiar with 
Schouten’s symbolism.  In 1928, Synge gave a much simpler tensorial form to the non-
holonomic variational equations of geodetics that could not be adapted to affine spaces, 
either.  The dynamical applications are restricted to just the case of a conservative, 
scleronomic system of given total energy, so the classical theorem of Jacobi that 
identifies the trajectories under such a constraint with the geodetics of a Riemannian 
space can be employed. 
 In the present paper, we will: 
 
 1. Derive the equations of deviation for geodetic lines for a general affine non-
holonomic space from a new viewpoint (4).  The derivation is very simple, and the 
desired equations are obtained almost immediately from the commutation formula for the 
covariant differential.  Thanks to the introduction of a curvature tensor that did not occur 
to any of the cited authors (not even Schouten), the equations of deviation will take on 
precisely the same form in the non-holonomic case that they have in the holonomic case.  
The method will then be applied to scleronomic dynamical systems. 
 
 2. A connection between the geodetics of a suitably-chosen multidimensional space 
and the motions of an arbitrary rheonomic, linear, non-holonomic dynamical system will 

                                                
 (1) T. Levi-Civita , “Sur l’écart géodésique,” Math. Ann. 97 (1926).  
 (2) G. Vranceanu, “Studio geometrico dei sistemi anolonomi,” Ann. di Mat. (4) 6 (1928-29). Summary 
of the author’s results on non-holonomic spaces. 
 (3) J. L. Synge, “Geodesics in non-holonomic geometry,” Math. Ann. 99 (1928).  
 (4) A. Wundheiler, “Une simple démonstration de la formule de l’écart géodésique,” Rend. dei Lincei 
12 (1930), pp. 644. 
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be presented on an affine foundation that is entirely independent of Jacobi’s theorem.  In 
that way, the stability problem for arbitrary systems will be reduced to the equations of 
geodetic variation. 
 
 The treatment of the problem will be carried out in connection with Schouten’s 
symbolism (1).  In §§ 1 and 2, we present the concepts that are necessary for the reader to 
understand the definitions and theorems on non-holonomic spaces, which are unknown to 
the relevant work by Schouten.  However, the presentation is rather different in many 
places (2). 
 

§ 1. – Generalities on non-holonomic spaces. 
 

 1. Definitions of a constrained m
nA . – An denotes an n-dimensional affine space in 

which a symmetric (3) parallel displacement is given by means of its components k
ilΓ , 

which are otherwise-arbitrary functions of position.  We denote the unit affinor in this 
space by k

iA , which is then: 

k
iA = 

1 ( )

0 ( ).

i k

i k

=
 ≠

 

 
 Now let an m-direction be defined arbitrarily at every point of that An .  That is known 
to happen when one is given m linearly-independent vectors at that point.  Any linear 
combination of those vectors is a vector that falls along that direction.  We assign an m′ = 
(n – m)-direction to every point of the An that has no 1-direction in common with the 
previously-defined m-direction and call it the pseudo-orthogonal direction. 
 Now, any vector can be decomposed into two components, one of which falls along 
the local m-direction, while the other one falls along the pseudo-orthogonal direction.  
We call the first of those components the projection of the vectors into the local m-
direction and the other one, the projection along the pseudo-orthogonal direction.  As an 
image of those projections, one can now define an affinor as follows: 
 If uk is a vector in An then: 

u′ k = k i
iB u  

                                                
 (1) J. A. Schouten, Der Ricci-Kalkül, Berlin, 1924; “Über nichtholonome Überträgungen in einer Ln ,” 
Math. Zeit. 30 (1929) (cited as “Schouten”). 
 The last paper of that author: J. A. Schouten and E. R. van Kampen, “Zur Einbettungs- und 
Krümmungstheorie nichtholonomer Gebilde,” Math. Ann. 103 (1930), can remain unconsidered for our 
purposes. 
 (2) Cf., e.g., Formulas (4), (8.1), (15), the derivation of (13).  
 (3) That restriction is entirely inessential.  However, since the equation for geodetic lines: 

2

2

k i j

k

ij

d x dx dx

ds ds ds
+ Γ = 0 

 depends upon only the symmetric part of k

ij
Γ , so upon: 

1
2 ( )k k

ij ji
Γ + Γ , 

the consideration of asymmetric displacements would be superfluous for our purposes. 



Wundheiler – Variational equations for affine geodetic lines. 3 

will be its projection onto the local m-direction.  The components of the affinor kiB  can 

be calculated easily as soon as one is given m vectors that span the m-direction and m′ 
vectors that span the pseudo-orthogonal direction (1). 
 We call the totality of local m-directions an mnA .  If a pseudo-orthogonal direction is 

given at each point then we will speak of a constrained m
nA  and call k

iB  its unit affinor.  

If that unit affine k
iB  is known then the local m-direction, as well as the constrained m′-

direction will be given at each point. 
 If certain integrability conditions (2) are fulfilled then the m-elements can be 
assembled into an (n – m)-parameter family of Am that are embedded in An .  If that is not 
true then we will be dealing with the general case, and we will call the totality of m-
elements a non-holonomic m-dimensional space m

nA  that is embedded in An . 

 If a vector falls in the local m-direction then we say that it belongs to m
nA .  We call a 

curve whose tangent vector at each point belongs to m
nA  a curve in m

nA . 

 The totality of pseudo-orthogonal m′-directions defines an m
nA ′ , in its own right, and 

we can consider the original local m-direction to be its constraint direction; i.e., the m
nA ′  

can be constrained by the mnA  in their own right.  That constraint defines a unit affinor on 

the m
nA ′ , which we would like to denote by klC .  If uk denotes a vector in m

nA  and vk 

denotes a vector in m
nA ′ , then we will obviously have: 

 
 k l

lB u  = uk,  k l
lC u  = 0,  

 k l
lB v  = 0,  k l

lC v  = vk . 

Hence: 
k
lA = k k

l lB C+ . 

 
 
 2. Projection relative to a given index. – Just like the contravariant vectors, the 
covariant vectors can also be projected into m

nA  by means of the affinor k
lB : 

 
k
l kB u = lu′ . 

 
Corresponding formulas are true for the projection into m

nA ′ : 

 
k l
lC u  = u′ k, k

l kC u = lu′′ . 
 

                                                
 (1) Schouten, pp. 156, (31).  
 (2) Schouten, pp. 157, (35). 
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 However, higher affinors can also be projected into the m
nA , and indeed relative to 

arbitrary indices.  For example: 
k

iT′  = k k
k iB T ′

′  

 
is the projection of the affinor k

iT  into m
nA  relative to the index k.  Likewise, one has, 

e.g.: 
k
iT′′  = i k

i iB T′
′  

 
for its projection into m

nA  relative to the index i.  We can also project the affinor into mnA  

relative to the indices h, i and into m
nA ′  relative to the index j: 

 
hk
ijT′′  = h i j h k

h i j i jB B C T′ ′ ′
′ ′ ′ . 

 
 If such a projection is equal to the affinor itself, so, e.g.: 
 

k h
h iB T  = k

iT , 

 
then we will say that this affinor lies in m

nA  with respect to that index, or more simply, 

that the index lies m
nA .  The projection of that affinor into the constraint space relative to 

that index is then obviously zero, so: 
k h
h iC T  = 0. 

 
 In particular, the unit affinor with two indices lies in the space to which it belongs, so: 
 

k h
h lB B  = k

lB , k h
h lC C = k

lC , k h
h lC B  = k h

h lC B  = 0. 

 
 We [like Schouten (1)] shall employ the symbols a, …, g exclusively for indices that 
lie in m

nA  and the symbols p, …, w for the ones that lie in mnA ′ .  The indices h, …, l can be 

employed without any restriction. 
 
 
 3. The parallel translation that is induced in m

nA . – The covariant differential of an 

arbitrary vector in m
nA : 

(1)      δ uk = duk + k i j
ij u dxΓ  

 
can be decomposed into its two projections into each of our spaces: 
 

δ uk = δ′ uk + δ″ uk, 

                                                
 (1) Schouten-Kampen, pp. 760.  
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where 
 
(2)      δ′ uk = k i

iB uδ , 

and 
 
(3)      δ″ uk = k i

iC uδ . 

 
 For higher-rank affinors, we set, e.g.: 
 

k
iTδ ′  = k l k

k l iB B Tδ′ ′
′ ′ , 

 
etc.  We now calculate the components of the induced translation.  Let uk be an arbitrary 
vector in m

nA .  We then have: 

 
 δ′ uk  = k i

iB uδ = ( )k h h i j
h ijB du u dx+ Γ  

  = ( )k h i k k h i j
h i h ijd B u u dB B u dx− + Γ  

  = ( )k k h k i j
h ij j idu B B u dx+ Γ − ∂   j jx

∂ ∂ = ∂ 
. 

If we now set (1): 
 
(4)      k

ij
′Γ  = k h k

h ij j iB BΓ − ∂  

 
then that will give: 
 
(5)      δ′ uk = duk + k i j

ij u dx′Γ . 

 If we set: 
 
(6)      k

ij
′Γ  = h k k

i h j j iB BΓ + ∂  

 
then we will find, analogously: 
 
(7)      δ′ ul = dul − k j

ij ku dx′Γ . 

 
 

 
 

                                                
 (1) The treatment of the k

ij
Γ  for the induced translation in Schouten is different from ours, since he 

employed non-holonomic coordinates in the An .  We have avoided the rewriting of our formula for non-
holonomic coordinates in order to get around inessential complications in the derivation of the 
commutation formula (27).  The reader that is familiar with Schouten’s work will easily find the alteration 
that must be made to the affinor (15) when one has non-holonomic coordinates in An . 
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§ 2. – Curvature affinors and the commutation formula for m
nA . 

 
 1. Some fundamental formulas. – One first has: 
 

k
iAδ  = k k

i iB Cδ δ+ = 0, 

so: 
k

iBδ = − k
iCδ . 

One further has: 
 
(8)  k

iBδ ′  = − k
iCδ ′ = 0. 

 
In fact: 
 
(8.1)   k

iBδ ′  = k l k
k i lB B Bδ′ ′

′ ′ = − k l k
k i lB B Cδ′ ′

′ ′ = k k l
k l iB C Bδ′ ′

′ ′ = 0. 

 
 In a sense, k

iBδ  gives the change in direction in mnA  when it moves to a neighboring 

point.  From (8), the “intrinsic” change in direction of mnA  is then zero, so m
nA  is 

autoparallel with respect to itself. 
 
 
 2. The induced curvature. – As always, we set: 
 

k
iBδ = k j

j iB xδ∇ . 

 
 Now, if one projects both indices k and i of that affinor into m

nA  then, from (8), one 

will get zero.  By contrast, if one projects only one of the indices then one will get the 
two affinors: 
 
(9)    ..i

jkH ′  = j k l
j k j kB B B′ ′

′ ′∇ ,  .i
j kL ⋅′  = j l l

j l j kB B B′ ′
′ ′∇ , 

 
which one can employ as a measure of the relative change in m

nA .  Note that the first two 

indices of these two affinors lie in mnA , but, from (8), the last one lies in mnA ′ .  One can 

then write: ..r
baH ′ , .a

b rL ⋅′ . 

 In parallel with that, we introduce the following quantities that are referred to mnA ′ : 

 
(10)   ..k

jiH ′′  = j l k
j i j lC C C′ ′

′ ′∇ ,  .i
j kL ⋅′  = j k k

j k j iC C C′ ′
′ ′∇ . 

 
 Following Schouten, we call those affinors the induced curvature affinors. 
 
 
 



Wundheiler – Variational equations for affine geodetic lines. 7 

 3. Holonomity condition. – The following equation is true for vectors in mnA , which 

justifies the name of, e.g., curvature affinors for the ..k
jiH ′ : 

 
(11)    δ uk = δ′ uk + ..k i j

jiH u dx′ . 

 
In fact: 

δ uk = ( )k i
iB uδ = k i k i

i iB u B uδ δ+ ⋅  = k k k i j j
j k i ju B B u B duδ ′ ′
′ ′′ + ∇ ⋅ ⋅ . 

 
Similarly, one has: 
 
(12)    δ ul = δ′ ul +

..k j
j i kL u dx⋅′ . 

 
 Equation (11) allows us to say when the m

nA  is holonomic.  By definition, that will be 

the case when the m-direction elements can be combined into an m-dimensional space, 
which will then give an m′-parameter family.  In order for that to be true, it is necessary 
and sufficient that any curve that lies in m

nA  (so one whose direction is always included in 

the local m-direction) lies completely in an Am .  If we then displace a vector parallel to 
m
nA  along a path that lies in mnA  then it must always belong to the same Am .  In particular, 

in the holonomic case, an infinitesimal parallelogram that is constructed in an mnA  must 

lie completely in one Am , so it must be closed. 
 We now set MM′ = δ xk, MN′ = kxδ , M′ N″ || M N′, N′ N″′ || MM′ relative to m

nA .  

Now, N″ and N″′  must coincide in the holonomic case, so we must have k kx xδ δ δ δ−  = 
0.  On the one hand, we have: 
 

kxδ δ′ = 0, kxδ δ′ = 0, 
 
and on the other hand, from (11): 
 

kxδ δ = ..k k i j
jix H x xδ δ δ δ′ ′+ , kxδ δ = ..k k i j

jix H x xδ δ δ δ′ ′+ . 

 
It will then follow that: 

( ) kxδ δ δ δ− = .. ..( )k k i j
ji ijH H x xδ δ′ ′− . 

 
Should that be true for δ xk and kxδ  then one must have: 
 
(13)     ..k

jiH ′  = ..k
ijH ′ . 

 
That is the desired holonomity condition.  It is also sufficient (1). 

                                                
 (1) Schouten, pp. 161, (61).  
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 4. Commutation formula for m
nA . – We shall adapt the well-known commutation 

formula: 
( ) kuδ δ δ δ−  = ...k j l j

jliR dx dx u  

 
to m

nA .  In regard to the chosen notations, we establish that the first index of the curvature 

affinor refers to the first differentiation, the second index, to the second differentiation, 
and third one is linked with the vector index. 
 As always, δ and δ will denote two displacements that commute in An (but not m

nA !).  

We recall that this assumption is equivalent to kd dx  = kd dx .  We calculate, in the usual 
way: 

cuδ δ′ ′ = ( )c c b l
bld u u dxδ δ′ ′ ′+ Γ  

  = ( ) ( )c c a l c b b a j l
a j bl ajd du u dx du u dx dx′ ′ ′+ Γ + Γ + Γ  

  = c c a j i c b b a j l
i a j bl i ajd du u dx dx u u dx dx′ ′ ′+ ∂ Γ + Γ ∂ + Γ  

  + b a j c b j l c b a j i
aj bl j bl a ju d dx u dx dx u dx dx′ ′ ′ ′Γ + Γ ∂ + Γ Γ . 

 
The doubly-underlined terms are symmetric in d and d .  The same thing will be true for 
the sum of the singly-underlined terms.  If we now form the difference ( ) cuδ δ δ δ′ ′ ′ ′−  
then the aforementioned terms will cancel, and that will give: 
 
(14)   ( ) cuδ δ δ δ′ ′ ′ ′− = ...c j l a

jlaR dx dx u′ , 

 
when we set: 

...c
jlaR′ = c c b c b c

i aj j ai aj bi ai bj
′ ′ ′ ′ ′ ′∂ Γ − ∂ Γ + Γ Γ − Γ Γ . 

 
 As the notations for the indices would suggest, the first two indices of that affinor lie 
in An , while the last two lie in m

nA .  It has, so to speak, an intermediate position between 

An and m
nA , and we have that to thank for the simplicity of the commutation formula that 

we obtain.  We remark that this does not occur in either the cited works of Vranceaunu 
or Schouten.  The latter author skipped over a commutation formula for m

nA  completely 

(1).  We suggest that it will offer a great advantage for the problem of geodesic deviation. 
 
 

§ 3. – Deviation equations in a m
nA . 

 
 1. Two arbitrary curves in m

nA . – Let C and C′ be two curves in m
nA ; i.e., their 

directions fall into the local m-direction at each point.  We relate them to each other by a 
one-to-one correspondence of their points and now assume that the curves are 

                                                
 (1) Schouten, pp. 162, line 13 from the bottom.  
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neighboring; i.e., that corresponding points are infinitely close.  If M is an arbitrary point 
of the curve C then we denote the corresponding point of C′ by M′ and set: 
 

MM′ = kxδ . 
 
We generally let δ  denote the covariant differential that corresponds to the displacement 

kxδ ; we shall call it the covariant variation. 
 If the m

nA  is holonomic then C, as well as C′, will fall in an Am .  However, kxδ  will 

no longer lie in the m
nA , in general (1), since the Am of C and C′ would be different then.  

However, if kxδ  lies in m
nA  for a particular M then it will already lie in m

nA  along all of 

C, and C and C′ would have to fall in the same Am .  That is not true in the non-holonomic 
case.  In fact, it follows directly from the condition that it must lie in m

nA : 

 
k i
iC xδ = 0 

 
(δ means the covariant differential that corresponds to a displacement along C that 
commutes with kxδ ) that: 
 
(16)     k i k i

i iC x C xδ δ δ δ+ = 0. 

 
 We set kxδ = ξ k and decompose ξ k into two components: ξ′ k, which is in m

nA , and 

ξ″ k, which is in m
nA ′ : 

ξ′ k = k i
iB ξ ,  ξ″ k = k i

iC ξ . 

 
 If we observe that δ and δ  commute and we employ (16) then we will get: 
 
(17)   δξ″ k = ( )k i

iCδ ξ  = k i k i
i iC x Cδ δ δ ξ+ = − k i k i

i iC x Cδ δ δ ξ+  

 = − k j i k i j
j i j iC x C xξ δ ξ δ∇ + ∇ . 

 
However, we represent k

j iC∇  in terms of the curvature affinor: 

 
(18)   k

j iC∇ = ( )( )k k j j k
k k j j j iB C B C C′ ′ ′

′ ′ ′+ + ∇  

 = − .. ..( )( )k k k k
ji j i ji j iH L H L⋅ ⋅

⋅ ⋅′ ′ ′′ ′′+ + . 

 
If we then set u k = δ xk / ds, in which u k means the tangent vector to C, then we will get: 

                                                
 (1) The discovery of that almost-banal fact has its own history.  Cf., Vranceanu, “Sur l’écart 
géodésique dans les espaces non-holonomes,” Ann. Scient. Univ. Jassy 15 (1928), pp. 7 and pp. 309, as 
well as E. Cartan, “Sur l’écart géodésique et quelques notions connexes,” Rend. dei Lincei 5 (1927), pp. 
609. 
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(19)   
k

ds

δξ ′′
= .. ..[( ) ( ) ]k k i k k i j

ij ji j i j iH H L L uξ ξ⋅ ⋅
⋅ ⋅′ ′ ′ ′ ′′ ′′− − + . 

 
 We have substituted (18) in (17), then set ξ k = ξ′ k + ξ″ k, and finally multiplied out 
the parentheses, while observing the position of the indices in the curvature affinor.  
Products like: 
 
(20)  ..k i

ijH ξ′ ′′ , ..k i
ijH xδ′′ , .k i

i jL ξ⋅′ ′ , .k j
i jL xδ⋅′′ , etc., 

 
in which an index from m

nA  is concatenated with one from mnA ′ , will vanish. 

 We now ask what the condition would be for the vanishing of ξ″ k for every s to 
follow from the vanishing of 0

kξ ′′  for a certain s = s0 .  In order for that to be true, it is 

obviously necessary and sufficient that ξ′ k must not enter into equations (19); i.e.: 
 

.. ..k k
ji ijH H′ ′− = 0, 

 
which implies the holonomity condition (13).  If the mnA  are not holonomic then 0

kξ ′′ = 0 

can follow from ξ″ k = 0 only in exceptional cases. 
 (19) represents only n – m independent equations for the deviation ξ k that are true for 
arbitrary pairs of C and C′.  We shall give some more equations of deviation that can be 
useful in many investigations. 
 We can rewrite (16) in the form: 
 

k

ds

δξ ′′
= −

i
k
i

x
C

ds

δδ = − k i j
j iC u xδ∇ . 

Hence, from (18) (1): 

(21)    .. .( ) .
k

k k j i
ji j iH L u

ds

δ ξ ξ⋅

′′ ′ ′′= −  

 We further have: 
 δ″ δ′ ξ k = ( )k k i

h iC Bδ δξ  = k k i j
h j iC B xδξ δ∇ , 

 δ′ δ″ ξ k = ( )k k i
h iB Cδ δξ  = k k i j

h j iB C xδξ δ∇ . 

Hence: 

(22)    ..k k j i
jiH uδ δ ξ δ ξ δ′′ ′ ′ ′=  

and 

(23)    . .k k j i
j iL uδ δ ξ δ ξ δ⋅′ ′′ ′ ′′= −  

 
 

                                                
 (1) Those are essentially eqs. (6.42) in Synge (Geodesics, etc.) and (43′) of Vranceanu (Studio 
geometrico, etc.)  
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 2. Geodetic lines in m
nA . – We call a curve in m

nA  whose direction with respect to the 
m
nA  does not change (so it is autoparallel relative to the m

nA ) a geodetic line in m
nA .  If t 

denotes a parameter on a curve C then uk = δ xk / dt will be its tangent vector.  If its 
direction does not change then we must have: 
 

ku

dt

δ ′
= α uk. 

 
For a certain choice of parameter s = f (t), that equation will go to: 
 

(24)     
ku

ds

δ ′
= 0. 

 
How does one describe a geodetic in m

nA  relative to the translation in An?  We 

immediately get from (11) that: 
ku

ds

δ
= ..

k
k i j

ji

u
H u u

ds

δ ′
+ , 

so: 
ku

ds

δ
= ..k i j

jiH u u . 

 
 A geodetic in m

nA  is then a curve whose curvature lies in m
nA ′  for a suitable choice of 

parameter s.  We call that parameter the affine parameter. 
 
 
 3. Geodetic deviation. – Now let C and C′ be two infinitely-close geodetic lines in 

m
nA .  In that way, their directions shall also differ infinitely little when we relate them to 

each other in a suitable one-to-one way.  If the point M of C corresponds to the point M′ 
of C′ then we call the vector MM′, which we denote by kxδ  = ξ k, as in § 3, no. 1, the 
geodesic deviation.  As we said before, we shall call the covariant differential that 
corresponds to the displacement kxδ  the covariant variation. 
 Along with that covariant variation, we shall introduce the differential along C (C′, 
resp.), which corresponds to the displacement δ xk.  The displacements δ and δ  shall 
commute; i.e., if δ moves from M to N along C then δ will move from M′ to N′ along C′.  
If M corresponds to the parameter value s on C and M′, to the parameter value s′ on C′ 
then we will have: 

ds′ = ds +δ ds = (1 + µ) ds, 
in which have set: 

(25)     µ = 
ds

ds

δ
. 

µ is infinitely small. 
 We first have: 
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kuδ  = 
kx

ds

δδ  = 
2

k kds x x ds

ds

δ δ δ δ−
= 

k
ku

ds

δξ µ− , 

 
since one has kxδ δ = kxδ δ  = δξ k.  We project into m

nA and get: 

 

(26)     kuδ ′  = 
k

ku
ds

δ ξ µ
′

− , 

since k i
iB u = uk. 

 
 
 4. The Levi-Civita formula. – We set u c equal to the tangent vector δ x c / ds of our 
geodetic in the commutation formula (14): 
 

( ) cuδ δ δ δ′ ′ ′ ′− = ...c a j i
jiaR u x xδ δ′ , 

 
in which we recall (24).  Due to (26), we will get: 
 

c
cu

ds

δ ξδ µ
′ ′ − 

 
 = ...c a j i

jiaR u xξ δ′  

or (1): 

(27)    
2

...
2 .

c
c c j i a

jia

d
u R u u

ds ds

δ ξ µ ξ
′ ′− =  

 
That is the Levi-Civita  formula for non-holonomic spaces. 
 For the special case of Riemannian space, so when the m

nA  form a Vn , we can get the 

formula for µ that Levi-Civita  gave directly with the help of covariant variation (2).  It is 
then known that the affine parameter s is the arc-length, so: 
 
  2dsδ = ( )i k

ikg dx dxδ , 

or 
  ds dsδ = i k

ikg x xδ δ δ , 

or after dividing by ds2: 

(28)    µ = 
ds

ds

δ
 = 

k
i

ikg u
ds

δξ
. 

 
 
 

                                                
 (1) Compare the simplicity of this to formulas (6.32) and (6.52) of Synge and (44) of Vranceanu.  In 
the latter, one must consider the defining equations for the symbols that enter into them. 
 (2) Levi-Civita , pp. 314, (35′).  
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 5. Dynamical equations of deviation for scleronomic systems. – As is known (1), 
the Lagrange equations of motion for a scleronomic system with a vis viva of 2T = 

i k
ikg x xɺ ɺ  that is acted upon by the generalized force Qi , which are the equations: 

 

i i

d T T

dt x x

∂ ∂−
∂ ∂ɺ

= Qi , 

can be written in the form: 
kv

dt

δ
=

kx

dt dt

δ δ
= Qk = gki Qi , 

 
in which δ means the covariant differential in the Riemannian space with the fundamental 
form ds2 = gik dxi dxk.  The xk are the independent parameters of the system then. 
 If scleronomic and non-holonomic constraints are added to the system then we can 
replace them with a constraint force.  The constraints define an m-direction field in which 
the velocity vector must fall. We denote the unit affinor of the m

nV  that is defined in that 

way and constrained orthogonally by kiB .  The aforementioned constraint force, which 

must be perpendicular to the virtual displacement, since it does no work, must fall along 
the orthogonal constraint direction.  If we denote it by Rk then we will also have k i

iB R  = 

0.  We now project the equations of motion: 
 

kv

dt

δ
= Qk + Rk 

into m
nV  and obtain (2): 

(29)     
kv

dt

δ
= Q′ k. 

 
 We now relate two neighboring paths of the system to each other in a one-to-one way, 
while preserving the notation of footnote (1), except that we write t, instead of s.  If we 
once more apply the commutation formula, but this time to the vector v k = δ xk / dt, then 
we will get: 

( )
c

c cv Q dt
dt

δ ξδ µ δ
′ ′ ′ ′− − 

 
 = ...c j i a

jiaR x vξ δ′ , 

 
since δ′ v k = Q′ k dt, from the equations of motion (29).  If we perform the 
differentiations, once more replace δ′ v k with Q′ k dt, and divide by dt then that will give: 
 

(30)   
2

...
2 2 .

c
c c j i a c c

jia

d
v R v v Q Q

dt dt

δ ξ µ ξ µ δ
′ ′ ′ ′ ′− = + +  

                                                
 (1) See, e.g., E. Cartan, Leçons sur la géométrie des espaces de Riemann, Paris, 1928, pp. 42.  
 (2) Schouten, pp. 171, (115).  Vranceanu, “Sopra le equazioni del moto di un sistema anolonomi,” 
Rend. dei Lincei 4 (1926), pp. 508.  
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 If the curves C and C′ are “isochronously” related to each other, so dtδ  = 0, µ = 0, 
then (30) will take the simple form: 
 

(30.1)    
2

...
2 .

c
c j i a c

jiaR v v Q
dt

δ ξ ξ δ
′ ′ ′ ′= +  

 
 Remark. – (27), as well as (30) represent only m independent equations, since the two 
sides of those equations will fall in the mnA .  The remaining n – m equations are then 

obtained by the equations (21), which are true for any curve in m
nA , among which, there 

are similarly only n – m of them. 

 However, how do we calculate the 
2

2

k

dt

δ ξ
 themselves?  We first have: 

 
δ 2ξ k = δ′ 2ξ k + δ″ δ′ ξ k + δ′ δ″ ξ k + δ″ 2ξ k. 

 
We obtain the first three summands on the right from (27), (22), and (23), resp.  As far as 
the fourth one is concerned, δ″-differentiating (21) will give: 
 

(31)   
2

2

k

ds

δ ξ′′
 = .. ..( )k h h j i l

h l ji jiC H L u uξ′ ′′∇ − ⋅ , 

 
since the other summands that arise from differentiation will vanish due to (20).  Adding 
(27), (22), (23), and (31) will yield the formula: 
 

2

2

k

ds

δ ξ − µ uk = .. .. ... .. ..( ) [ ( )]
i

h h j h k h h j i l
ji ji jil h l ji jiH L u R C H L u u

ds

δξ ξ′ ′ ′ ′ ′′− + + ∇ − . 

 
 

§ 4. – Motions as geodetic lines. 
 

Deviation equations for arbitrary dynamical systems 
 

 1. – We understand a motion of a dynamical system with n degrees of freedom whose 
position is determined by the parameter xk to mean a curve in the (n + 1)-dimensional 
space (xk, t) that is defined by the equations xk = xk (t) that satisfy the differential 
equations of motion.  That curve then determines not only the path, but also the way that 
it is traversed. 
 The problem of reducing the examination of a dynamical system to the examination 
of the geodetics of a suitably-chosen multidimensional space has been taken up several 
times before.  We first recall the classical theorem of Jacobi, according to which, the 
trajectory of a scleronomic, conservative system of well-defined total energy is given by 
the geodetics of Riemannian space with: 
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ds2 = 2 (h – V) T dt2 
 
in which h means the total energy and V means the potential.  Obviously, that space is 
still not determined by the system itself (1).  Should the corresponding space be 
associated with the system in a one-to-one way, then it would have to have n + 1 
dimensions.  Namely, the totality of the motions is (in general) 2n-dimensional, whereas 
the totality of the geodetics in an n-dimensional space is only (2n – 2)-dimensional.  
Eisenhart (2) gave such a Riemannian space, but only for conservative, scleronomic, and 
holonomic systems.  Unfortunately, its (n + 1) coordinate is not time, but a parameter 
that is not holonomic for the system (which is therefore not determined by the position of 
the system), namely, a linear combination of the Jacobian action and time.  For 
rheonomic (but always holonomic and conservative systems), there is an (n + 2)-
dimensional Riemannian space that achieves the desired objective (3). 
 In these paragraphs, we shall indeed dispense with the construction of a Riemannian 
space that solves the problem, and satisfy ourselves with an affine one (4).  However, in 
return, the problem will be solved for arbitrary, but only linear, non-holonomic systems 
that can otherwise be subject to rheonomic and arbitrary forces. 
 
 
 2. Holonomic systems. – We consider an arbitrary holonomic system with n degrees 
of freedom that is referred to the parameters xk and is given by its kinetic energy: 
 

T = 1
2 g x xα β

αβ ɺ ɺ  

 
and the generalized forces that act upon it.  Moreover, we establish in these paragraphs 
that Greek indices range through the values 0, 1, 2, …, n, and Latin indices range through 
only the values 1, 2, …, n. 
 We understand x0 to mean the time t ; 0xɺ then stands for 1, the form for T is generally 
inhomogeneous.  We first specify the Lagrange equations under the assumption that the 
gαβ also depend upon x0 = t.  We have: 
 

i

T

x

∂
∂ɺ

 = ig xα
α ɺ ,  

i

d T

dt x

∂
∂ɺ

 = j
ij ig x g x xα β

β α+ ∂ ⋅ɺɺ ɺ ɺ , 
i

T

x

∂
∂

 = 1
2 i ig x xα β

α∂ ⋅ ɺ ɺ , 

so: 

Qi = 
i i

d T T

dt x x

∂ ∂−
∂ ∂ɺ

 = [ , ]j
ijg x i x xα βαβ+ɺɺ ɺ ɺ , [γ, α β] = 1

2 ( )g g gα βγ β γα γ αβ∂ + ∂ − ∂ . 

 

                                                
 (1) Cf., e.g., P. Appell, Traité de mécanique rationelle, t. II, Paris, 1923, pp. 453.  
 (2) L. P. Eisenhart, “Dynamical Trajectories and Geodesics,” Ann. Math. 30 (1929), pp. 603.  
 (3) L. P. Eisenhart, loc. cit., pp. 593. 
 (4) Cf., also J. L. Synge, “On the Geometry of Dynamics,” Phil. Trans. Roy. Soc. London, vol. 226, pp. 
35, line 17 from the top. 
  The fact that such a Riemannian space cannot exist for arbitrary systems is self-evident.  However, we 
hope to prove on another occasion that it does not exist for a conservative, scleronomic system either, in 
general. 
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 If we let gki denote the n-dimensional matrix that is reciprocal to gij (but not to gαβ !!) 
then we can rewrite that equation in the form: 
 
(32)    [ , ]k kix g i x xα βαβ+ɺɺ ɺ ɺ = Qk  (Q k = gki Qi). 
 
 We now define an affine (n + 1)-dimensional translation as follows: 
 
(33)   k

iβΓ  = gkj [j, i β], 00
kΓ  = gkj [j, 0 0], 0

αβΓ  = 0. 

 
 It is easy to verify that the geodetics that belong to this translation are the motions of 
our system.  In fact, it follows from the equations: 
 

2

2

d x dx dx

ds ds ds

λ α β
λ
αβ+ Γ  = 0 

that for λ = 0, one has: 

(34)    
2 0

0
2

d x dx dx

ds ds ds

α β

αβ+ Γ = 
2

2

d t

ds
 = 0 ; 

 
hence, s = k t + s0 .  We now choose s = t, precisely.  That will allow us to write the 
remaining equations in the form: 
 

2

2

k
kd x dx dx

dt dt dt

α β

αβ+ Γ  = 0. 

 
We further specify this by introducing the values (33) for k

αβΓ  and then get equations 

(32). 
 The geodetic lines of the translation (33) can coincide with the equations of an 
arbitrary holonomic system. 
 If we vary the forces that act upon the system then the translation must also vary if 
the equations are to remain geodetic lines, as before.  Namely, if forces Rk are added to 
the Qk then, from (33), the 00

kΓ  must be diminished by Rk.  The equations of motion will 

then read: 
22 0

2

d x dx dx dx
R

ds ds ds ds

λ α β
λ λ
αβ

 
+ Γ −  

 
= 0 

 
when we set R0 = 0.  In the space with the translation (33), the equations of motion of a 
holonomic system will then read: 
 

(35)    
2

2

x

ds

µδ
= 

2
dt

R
ds

µ  
 
 

, 
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if Rk means the forces that act upon the system, besides Qk, which are not considered 
when one forms the 00

kΓ . 

 
 
 3. Non-holonomic systems. – We understand An+1 to mean the affine space with the 
translation (33) that was just defined and assume that our system is subject to certain non-
holonomic conditions: 
 
(36)    

p

e xα
α δ  = 0 (p, q = 1, 2, …, n – m), 

 
in which the 

p

eα  depend upon time.  Those equations obviously determine an 1
1

m
nA +

+ .  How 

should we constrain it, and how do we find the unit affinor? 
 We choose the constraint direction to be the one that falls along the constraining force 
that replaces the couplings (36).  If we denote it by Ri then it must follow from: 
 

i
i

p

e xδ  = 0 

 
(for which the virtual displacement is δ x0 = δt = 0!) that Ri δ xi = 0.  We will then have: 
 

Ri = i
p p

R e . 

It follows from this that: 
Rk = gki Ri = ki

i
p p

R g e . 

If we set R0 = 0 then we can write: 
 
(37)     Rµ = 

p p
R eµ , 

where the vectors 
p

eµ  are explained by the equations: 

 
(38)    

p
eµ = ki

i
p

g e ,  0

p
e = 0. 

 
From equation (37), the constraining force falls in the space that is spanned by the vectors 

p
eµ , and we choose it to be the pseudo-orthogonal constraint direction.  We leave it to the 

reader to prove that the unit affinor of the 1
1

m
nA +

+  that is constrained in that way is given by 

the formulas: 
 
(39)  Bµ

λ  = A Cµ µ
λ λ− , Cµ

λ  = pq

qp

h e eµ
λ , hpq hqr = p

rδ , hqr = 
q

r

e eµ
µ  

 
(p, q, r = 1, …, n – m). 
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 Now, from (35), the equations of the motion of the constrained system read: 
 

2

2

x

ds

µδ
= 

2
dt

R
ds

µ  
 
 

. 

 
 If we now project into 1

1
m
nA +

+  then, since Rµ falls in the constraint direction, we will 

get: 

(40)     
2

2

x

ds

µδ ′
= 0. 

 
The system will then describe a geodetic line in 11

m
nA +

+ .  Q. E. D. 

 
 Those are only m + 1 independent equations that determine the parameter s.  In 
addition, we have n – m first-order condition equations: 
 

(41)     
p

x
e

ds

α

α
δ

 = 0. 

 
Equations (40) and (41) define the most general equations of motion for linear non-
holonomic systems.  We then write down the equations of deviation as in § 3, nos. 1 and 
3.  
 
 
 4. Summary. – We have arrived at the following results: 
 
 If an arbitrary, linear, non-holonomic dynamical system is given by its kinetic energy: 
 

T = 1
2 g x xα β

αβ ɺ ɺ , x0 = t  (α, β = 0, 1, …, m), 

 
along with the generalized forces Qi that act upon it and the non-holonomic conditions: 
 

p

e xα
α δ = 0  (p = 1, …, n – m), 

 
then we will get its equations of deviation in the form (when we choose the variation to 
be isochronous): 

(42)   

2
...

2

.. .

( ),

[cf ., (27), (21)].( ) ,

v xR v v
dt

H L v
dt

µ
λ λµ ω λ ν

ωλν

µ
µ µ λ ν

λν λ ν

δ ξ ξ

δ ξ ξ⋅

′ =′=

′′ ′ ′′= −

ɺ

 

 
[We have taken s = t, which is obviously permissible, from (34).]  Here, we have: 
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...R µ
ωλν′ = µ µ α µ α µ

λ νω ω νλ νω αλ νλ αω′ ′ ′ ′ ′ ′∂ Γ − ∂ Γ + Γ Γ − Γ Γ  [see (15)]   

 
 µ

νω′Γ  = B Bµ α µ
α νω ω νΓ − ∂    [see (4)]   

 
 α

νωΓ  is defined by (33), while Bµ
ν  is defined by (39).  The former depends upon only 

gαβ and Qi , while the latter depends upon the gik and the non-holonomic conditions. 
 

___________ 
 


