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Rheonomic geometry. Absolute mechanics)(
By
A. Wundheiler

Translated by D. H. Delphenich

The main result of this article is a new and entislygple set okquations for non-
holonomic and rheonomic systenighey read (84):

N —
—+W, V =Q'+S/,
dt Q

and all terms in that have a mechanical meaning [i.ey¢ areeinvariant quantities (&3)].
However, those equations are closely linked with antkatleads to aadequate theory
of rheonomic, non-holonomic syste&s22). Up to now, such a thing did not exist,
because the usual definition of scleronomic systemstsslf useless, since the
dependency of the kinetic potential on time might vanish different choices of
parameters. Those and similar arguments necessadty to the realization that a
correctly-constructed theory ofiechanics is an invariant theory for the grouptiofie-
dependent coordinate transformations Thanks to that new concept, mechanics will
become identical to theulti-dimensional geometry of deformable spaedsch we will
call rheonomic geometr{g§ 1). We shall build the foundations for the two thesiie (88
2-20), in which we appeal to the constructions of tensocutas. However, we shall
employ astronger conception of tensor calcul(s 4), since we shall consider tensors
under a larger group than that of the point-transformatio

The applications are scattered throughout differentegla For example, we say
scleronomity(§ 26) and holonomity conditiong§ 20) to mean the conditions for the
existence of an “energy integral” for rheonomic ®ms(8 28) under the infinitesimal
bending of a Riemann spa(®10). Everything is expressed in an invariant language.
A theory of the reaction forcas a general dynamical system (88 31) concludes the
paper.

We shall assume that the elements of the ordinasptecalculus are known.

() The present article represents a summary of an indugissertation that was submitted to the
mathematics-natural science faculty at the Univerditvarsaw.
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Notations

Indices.— Following the example oBchouteris school {), the defining data of a
guantity will always have the same “kernel” symbol inelént coordinate systems, and
the difference in coordinate systems will result esilely in the type of indices.
Different defining data for the same quantities in ong thie same system will then be
distinguished by symbols (“signatures”) that are connectidtihiem; e.qg.:

VoV v, e X O L X

Different coordinate systems have basically-differegstems for the distinguishing
symbols (signatures); e.g.:

1,2,..n; 12 ...n; 1,2,...n: 1.2,.. 0, etc.

Different indices run through basically-different serof numbers, such that, eJQ.and
x* will be different systems of numbers, when notregply stated otherwise. We shall
write a coordinate transformation as:

X =x (x .
In what follows, we shall maintain the conventions
hij k=12, ..n; afy=1,2,..,m;
LK=1,2,..1n; Au=1,2,...,m.
Derivatives.— We shall always write:

d; , instead ofi, d; , instead ofi, X = %

ox ot dt
in which t will mean time exclusively for us. o will always mean the covariant
differential.

Summation signs- As is now becoming generally accepted, douhtetices that
appear in a monomial will be automatically summeero

We shall often employ an abbreviated notation imcWw tensors can be written
without any indices, without any special explamatioThat will happen in the cases
where the formulas can be calculated with an easipHering.

We shall denote spaces and subspaces by upper@zEsean symbols without
exhibiting their dimension numbergl will always mean the initial spaceB, ¢, ¢ are

() J. A. SchoutenandE. R. van Kampen “Zur Einbettungs- und Kriimmungstheorie nichtholonomer
Gebilde,” Math. Ann103(1930).
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subspaces. We shall always denote tensors by only wtibols (except fodX, x),
while non-tensors will be denoted by Greek symbols (@i@e: arc length elemewlo).

Strong invariants of the inhomogeneous quadratic form.
Rheonomic geometry.

1. Concept of rheonomic geometry— We will understandheonomic geometrfo
meanthe geometry of a deformable spad&'e construct its using the model of a surface
that moves in three-dimensional space, which wilh @ifen connect us with the case of
the deformable surface. We suggest that the reader stedefdall of our concepts to
that case as an illustration. In any event, the a#san arbitrary moving three-
dimensional medium can be drawn upon in order to makggmore intuitive.

We will be compelled naturally into multi-dimensioggometry. If we would like to
arrive at natural quantities then we must operate witAriants. However, what group
shall we use as a basis? In ordinary Riemannian gegmetrchoose the group of point-
transformations:

(1) X=X®) i=1,..n; 1=1,2,..,7,
and seek the invariants of the quadratic differential form
ds” = ay dX dX.

That will occur because iRiemann space all of the coordinate systems that are dinke
by (1) are equivalent (in the general non-Euclidiase). What form do things take in a
deformed space?

According to our program, if we consider the defable surface in three-
dimensional space then we will see that (when thiéase is not too rigid) one cannot
speak of the “same point at different moments.’atTik because if we do not think of the
surface as being material in its manifestation thew are we to recognize the point at
different moments? If one chooses a representation

x'=x' (X, 1) 41=1,2,3/i=1,2)

then “the same point” will always correspond to agnex. However, one can just as
well choose a different representation:

x'=x' (X, 1) 1=1, 2,

in which:

(2) X =X (X, 1),
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and neither of the two representations is distingdisihem the others (in the general
case). Naturally, the transformation (2) will chartbe “identity” of the point on the
surface. According to what was done above, the quanttierheonomic geometry”
must be invariant under the transformations (2), sine€itentities” of their points will
not represent any property of the moving surface, excepgpenvhen it is rigid. We
then clarify tharheonomic geometry is the invariant theory of kheematical group :

(3) X =xX (X, t) i=1,..n;1=1,.., 7.

Naturally, we can also introduce time-dependent coombinamnto an ordinary
Riemann space and thus create the appearance of rheonomitsuch a case, we shall
speak of astrongly-scleronomic spacelt will often be useful to see what the general
rheonomic quantities will be in the strongly-sclesmic case. That will often allow us to
understand their meaning.

2. The elementary displacement- In ordinary differential geometry, we denote an
elementary displacement by an infinitesimal veetibh the componentdX. That notion
cannot be expressed in rheonomic geometry: We rolatacterize the elementary
displacement by means of the system of quantibésdt. There are two arguments in
favor of that viewpoint:

1. If we consider all coordinate systems thatcargled by way of (2):
X=X (X, t)

to be equivalent then the components of the dispientdX in the systemi§ will still
not be determined by theX, since they also depend upat. Two different
displacements will have different components irfedént coordinate systems for the
samedX and differendt. A displacement that is determined exactly - umiquely in all
rheonomic systems — must also possess a well-d#fine

2. We consider the case of a moving surface. spldcement — i.e., two infinitely-
close pointsA andB — is considered to be determined when it likeveisgesponds to a
well-defined displacement in the surrounding spaiew, when the surface moves, the
point-pair that covera andB will depend upon the moment at whiglandB were fixed
in the surrounding space, so it will also dependrufhe duration of the displacement,
and thus, upodt.

We then propose that:

We refer to the system of differentiald, dk as an elementary displacement in a
rheonomic space.
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3. The inhomogeneous quadratic differential form.— Riemann geometry is the
invariant theory of a quadratic differential form:

ds? = ay dX dxX

Our model of the deformable surface teaches us thaholneic geometry must be based
upon the inhomogeneous form:

d< = ay dX dX + 2a d¥ dt + A df.

If we calculate that form for the moving surface, whghiven by:

x'=x' (X, 1) M=1,2,3;i=1,2),
then that will give:
ox* ox* ox* ox*
4 a=a, ——, —a,, ——.
@ Moot ox Moot ot

(The differentiationd / dt is done with constant.) a; is then the projection of the
guiding velocitydx' / dt onto the surface, while the “guiding longitud&”is theguiding
vis viva Naturally, neither quantity itrinsic, since they are referred to a well-defined
coordinate system. However, we shall derive imr@rquantities from them later.

4. Strong tensors— We call a systeml of n numbers that transform according to the
formulas:

|
V= aiivi
ox
under: o
(5) X =X (X, t)

a strong (contravariant)vector, so it transforms like an ordinary vector undee th
geometric transformation:

(6) X =X (X) .

Covariant vectors and various tensors are defimadasly according to the well-known
models.

To clarify, we remark that unlike the usual sitoat thedX do not define a vector,
since one has:

| |
X = X g + 9 .
ox' ot

That fact defines the fundamental difference betwiée ordinary and the “rheonomic”
theory of invariants. By contrast:
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of
ox'

will be a strongly-covariant vector only whéns a strong scalar. In fact, from (6), as
well as (5):

o oo
ox'  ox' X

The following simple and important theorem will allowmeoto construct strong
tensors:

(7) If T is a strong tensor that depends updnx, and t then so 'Sgl.
X

In fact, one has:

,o_ox . ox
X ==X+
ox ot
so
ok ox

|
However, thegii are independent of . If one then differentiates, e.g.:
X

K
TK:aX_ Ti, K:i,...,ﬁ
ox

with respect tox' then one will get the theorem directly.

5. The fundamental strong tensors— We shall now start with the form:
2T=a, X ¥ +2a % +A, i,k=1,..,n,

which must be invariant under: _
X =X (X, 1),
by assumption.
An application of the aforementioned theorem (1) mply the strongly-covariant
vector:
w=2T - a X +a
i 6)‘(i K (]
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which we shall call théongitudinal guideline. Another application of the same theorem
(7) will yield the second-rank strongly-covariant “fundanta tensor”:

As usual, we introduce the reciprocal tensor:

aijajk:aL:{ 1 i=k,
0 i#k.
If we now set:

a'=a* o

then we will come to the strongly-contravariantteec
V=aw=x +a'.
Naturally,dt is a strong scalar. Hence:
& =v'dt=dX + o' dt

will be a strong (infinitesimal) vector that we shalhll the absolute elementary
displacement It enters in place afX in our calculus. _

In the strongly-scleronomic case, one will hawe = 0 for a suitably-chosen
coordinate system. We see that the absolute coordivfties element coincide with the
ordinary (distinguished) ones in this case. The absotutgonents of the element then
cancel the apparent rheonomity that was introduced by ¢algrdinates, to some extent.

We shall now rewrite the quadratic fundamental formnigans of the absolute
displacement in order to arrive at new invariants:

ds’ = ay (dX + ' di) (X + a* db) + (A —ax o' a¥) dE,
d =ayx K &+ (A—-ai a') di.

The left-hand side and the first summand on the rightsaongly invariant. The same
thing will also be true for:

A=A-a;a

then. We call4 thetransverse viv viva The reader might verify that yields the square
of the transverse component of the guiding velocity éencdise of a rigid moving surface.

Naturally, one hasl = 0 in the strongly-scleronomic case, becaisea; = 0 in the
distinguished coordinate system, since the form is honemyen
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6. Strongly-covariant differential. — We must now go on to the definition of a
“strong” differential. Naturally, in order to duplicathe known theories, we must
demand that:

1. Thedifferential of a scalar is equal to the oady differential :
op=dp
2. Thedifferential of a strong tensorigensor of the same rank and t
3. The differential is additive and "partial”:
o(U +V)=3U+4dV; J(UV)=UoV+VoU,
Along with these absolutely - necessary conditioresadd that :
4. The differential is also partially - applicableascalar product :
o(U, V)=U, oV +V JU.
5. The differential of theundamental tensor is zero:
oa, =0.

(8)

Postulate 1. can be considered to be the definitiohetovariant differential of a
scalar. If we set:

&'=dv' + oV,
oM=dv +a,vV,

(wand w are differential forms irdx' anddt), and analogously in the known way for
tensors, then (8.3) will be fulfilled. If we then reguthat:

W +@, =0

then we will also achieve (8.4). However, the moshglcated postulates (8.2) and
(8.5) still remain.

We will achieve our goal by means of a method thaeig vemarkable, although it is
applied relatively little in tensor calculus. We wélnploy it often, and we shall request
that the reader should direct his attention to itcohsists of introducing new tensors as
the coefficients of scalar forms, which are, ondkb®er hand, represented by the sums of
ordinary (i.e., scalar) differentials of scalar faamThat will permit one to exhibit the
tensor property very easily, and in a sense by going badts torigin, namely, the
differential of a scalar. In that way, one carenfbe spared many calculations that are
ordinarily connected with coordinate transformations.

We consider the expression:

) $=03(a, 3% %) +3(3, 3% £)-3(ad %3 ¥),

() J. A. Schouten Der Ricci-Kalku| Berlin, Springer, 1924, pp. 63. Our treatment is diffefearh
the one that was given there.
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and propose to rewrite it as a differential forrrg‘in". The coefficients of that form will

then give us a tensor that proves to be the stronglgr@nt differential clfczka.

However, in order for that to be possible, we mustskahe elementary displacement
suitably: That is the essential gist of the methipd (
We set (invariantly):

(10) dt =dt =0,

SO

(11) OX =dxX, OJOx =d¥X,
2 2 3 3

and also choose the displacemet{htsg : g to be commutable:

(12) ddx=ddx @b=1,2,3).

We now develop (9), employ (10), (11), (12) once more, dtdima form inc35x‘. The
calculation takes the following form:

59X 4X) =8, ddxgk+q 9dkg ke da %"

_ j i i j k i k
=3, ddxd X+ g dd&kd x+9, ad x d» "o, & 'x @t ",

12

g(aik?xléx) :g(ark 9){2-*)'*' gaka; X 1d):

— j { j i k i k
_qugxg%+@9x2d3d&+aj @0 x d¥ %040 'x dt “xa, ddx i

2 3 1

g(a,.k?xgm :g(ark 9){02-*)'*' gakaz_ X 1d):

=g ddxdx+ g dx dd'x+0, & 'x d® “#d, a0 'x dt“xa, dlx .
3 1 3 2 2 1 3 2 1 3

1 2 3 2 1

The singly-underlined terms remain. The rest pss;?ed‘ as a “factor” and must then

define a strong tensor. The doubly-underlined $edwefine the cyclic objects whose
coefficients are:

() One encounters an expression of the form (9jhinde Donder, Théorie des invariants intégraux
Paris, 1927, pp. 114. Naturally, the covariant differéicta be derived in only ordinaRiemann space
for him. A suitable selection of displacements doésome into play there.
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(13) 20 ij = 0i ax + 0; & — Ok & ; M = a"

in the way that follows frorRiemannian geometry.
In addition, we set:

(14) 2rkj:at ajk+6,-ak—6ka,-; rkj :akh rhj

analogously and get:

$ = Ix[28, dgX+2r,, o X dX+27,d % d}

=23,[dOX+T o X dX+M, & & d}d &.

If we set:

(15) M=dV + I vdx +T7, V dt
or

(16) M =dvy + v dxX +0) y dt,

resp., for a strong vectot, by definition, then it will be easy to see thaistdifferential
fulfills the conditions (8.2) and (8.5). At firste have:

(14a) ¢ = 2a, clfczsx'cg%,

and sincep is a strong scalar ansdx" Is an arbitrary vector, it will follow from thishat

a, clf c25 X‘ is astrong vectorand thereforef c25 X, as well.

We further have:
OV IX)=VvIIX+IXAY.
1 2 12 2 1

Here, the left-hand side is a strong scalar, Wklﬁl;ﬁx‘ IS a strong vector, as was just
proved. Henceczf X c15 Vv is also a scalar, and therefalie/i is a strong vector. If we start

from the expression, w then we will prove analogously thal/ is a strong vector,
things are similar for the higher tensors.

Finally, in order to prove (8.5) — i.@ax = 0 — it suffices to sagx": gx" = ox¢in

(9). We then get:
¢ =0(a OX oX) = 2qu5>¢' oxX.

On the other hand, when we evaluate that expregs@partially-covariant way:
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¢:cha,.k5>€5>é‘+2ch155>'t5>%.

Due to (14a), it follows from this that:

ch a oxox =0
for arbitrarydx, so:
(17) Jay = 0.
Q. E.D.
By covariant differentiation:
. 1
alj — i — ,
Gk =8, { 0
we derive from that:
(18) da*=0,

Equations (17) and (18) insure that strong diffeetion commutes with the raising
and lowering of indices. However, that shows thenfl equivalence of the strong and
ordinary covariant differentiation.

If there is a coordinate transformation that makes | vanish everywhere and
always (e.g., in the strongly-scleronomic casentia® will have a special case that
relates to the general case in the same way thatidEumn geometry relates to
Riemannian, in a certain sense.

7. The strongly-covariant derivative. — Along with the strongly-covariant
differential, we consider the strongly-covariantidative. The differential is a linear
form in the elementary displacement; e.qg.:

oV = g_rkdxk +";_‘: e+ v dk+T ¥ d.

The coefficients of this form give rise to the aéfon of counterparts to the partial
derivatives. In fact, it follows from theorem (gt the coefficient ofX,, namely:

OOV NV iy
ox* dt  0x

is a strong tensor. We denote it By v' and the corresponding operation By, in
general. It is identical to the ordinary covariatfferentiation that we employ in



Wundheiler — Rheonomic geometry. Absolute mechanics. 12

Riemannian geometry. It proves to be not only an ordinangée, but also a strong one

(cf.,a—fkj :
0x

By contrast, the coefficient dlt is not a strong tensor, and we must then look deeper
to find the counterpart of the partial derivativéthmwespect to time. To that end, we
transform the covariant differential into the fooflanabsoluteelementary displacement.
The coefficient ofdx remains the same as it was before wlith; by contrast, fodt, we
get, e.g.:

N oriv-ai OV,
ot .

We call that construction thetrongly-covariant partial derivative with respetd
timeand denote it byJ, v'.
For a strong scalar, we get, e.qg.:

instead ofof / ot . In general, in order to arrive at the strongtiphderivative with
respect td, we must pick off the quantity’ [J; from the coefficient ofit. We will often
write the strong differential in the totally-strofgm:

(19) dT =0 T X+ O T dt

8. The rate of rate of strain tensor— We will now discover a tensor that defines a
peculiarity of rheonomic geometry, in a sense, pogsesses no analogueRiemannian
geometry. It proves to be definitive of the elomya of a space and vanishes for a
moving rigid space. Since a simply-infinite famdf surfaces can always be regarded as
a moving surface, it will also be important in gh@blem of infinitesimal isometries. In
that case (and in the case of a hypersurface, gemerally), it is closely related to the
second fundamental form [pp. 15, (24)].

That tensor is intrinsic to rheonomic space inghase that it is expressed solely in
terms of the inhomogeneous fundamental form. W pursue it by means of the
method that was set down on pp. &. 8

We consider the scalar form:

W= 0 (ax OX oxX) =d g, IX O
and choose theommutingdisplacements in the following (invariant) way:

dt=0, ox =0, so dX =-4 dt.
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The displacemen® is then purely-temporal, so to speak, and correspondsptotial
differentiation with respect to time, to some exteBl contrast, the displacemedits an
interval between two “simultaneous” pointsy will give the dilatation of a purely-
“spatial” interval during the timdt. In the strongly-scleronomic case, all of thatrige
verbatim, andy is naturally zero. The dilatation continues to exat & deformed
surface. Let us now calculaie

W= 20 (ax OX X)) =da oX ¥ +2a dd *J &

A q
=(0,a,-0a'0,3)0X X dt-2a0.a'd o xd
=(0,a,-0a'0,3,-30,a’ —g0 a’)oxJ X d.

The last step was necessary in order to obtain caafts that are symmetric irand
k, because only the symmetric part will be determined byahees of a quadratic form.
If one then sets:

(21) V\/ik:%(atam_ajajQk_ajakaj_%aiaj)
:%(at aik_Dkai _Diak)’

as one convinces oneself by calculation, then onenanlé:
(22) J (aw OX OX) =2W, oX J X dt,

and sincedX is arbitrary, we conclude th&ti has the character of a tensor. We call it
therate of strain tensor.

In order to ultimately justify this name, we considerarbitrarily-moving surface and
choose the “identities” of its points “normally”; i,en such a way that the paths of its
points will be orthogonal trajectories to the famiy all positions of the surface.
Naturally, we will then haver' = 0, and the rate of strain tensor will reduceltha, .

That follows from the fact that it measures a purehgitudinal stretching.
It follows immediately from the above that:

The necessary and sufficient condition for a “transversally” movindaserto be
rigid is the vanishing of its rate of strain tensor.

The same thing can also be expressed as:

A simply-infinite family of surfaces is orthogonally isometriantl only if its rate of
strain tensor vanishes,

in which the parameter that distinguishes the surface bmustterpreted as time. We
therefore emphasize that it is important for thatdsion to be strongly-invariant, so it
will be entirely independent of the chosen way of repnéing the family of surfaces.
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We can also now give theecessary and sufficient condition for the strong
scleronomity of spacelt reads:

(23) W=0, A=0,

in whichA =A —a a' (cf., pp. 5). Itis in fact necessary, since the fexmomogeneous

and independent of time in the distinguished coordinatesyso equations (23) will be
true. However, conversely, if (23) are also fulfilken we shall choose the coordinates
according to the conditiom = 0 (which is obviously always possible). Since (23) is
invariant, it must also be true in that coordinate syssenane will then have:

ataikzo, A=0.
Q. E.D.

9. Connection with the second fundamental form- If anm-dimensional spac®
moves in am-dimensional spacé@l then it will sweep out a “tube” that is ant+1-
dimensional spacé . ‘B is a hypersurface in that space at each moment, arefdieer

have a well-defined second fundamental form (the inducegtue). We will show that
it is connected closely with the rate of strain tens

We choose the coordinate system®in such a way that the trajectories of constant
X prove to be orthogonal to th&. If we set:

X' =x, A=1,..m: X=t

then we will have a coordinate systexi{on the m + 1)-dimensional tube. If &

means a displacement wihx = 0, as in &, then sincea' = 0 anddx = dX here, the
displacement will take place along thine, so it will be normal té3 in €. If we set:

dx'= B” dt
thenB” will be the lateral velocity oB. It is a strong vector, by its nature. If we set:
B'=Bnr

thenn” will be the unit normal t@ in ¢.

Now let & be a “purely-spatial” displacement that commutes withwhen Jt = 0.
We will then have @dt = 0):

0 Ix' =9dx = J(B'dt) = oB” dt,
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or:
0 Jx, = OB, dt.
We now write:

d(a, OXIX) =d(dx, IX')= 20 dx, Ox' =20B, ox* dt= 2BJ, o’ dt.

The first term in this is equal t@W, XJ % dt, from (22). However, due to the
definition of the second fundamental fotm (*%, the latter is just 2Bh, dXJ X di.
SinceW, as well ai lies in®B, that will imply that:

(24) VVik:—B hk-

That is the stated relation.
That will immediately imply the following theorerf){

If a space moves transversally without strain then it will be geoaethe tube that is
swept out.

The proof is immediate from the theorem on pp. 13, whi&inands thatVi = 0, and
the relatiorhi = 0, which is true for geodetic hypersurfaces.

10. Conditions for bending without stretching.— We imagine a one-parameter
family of spaces and pose the question of whether theyeamapped isometrically to
each other; i.e., when they can be regarded as a sépesitons of a space that moves
without stretching. For that to be true, it is necgsaad sufficient that a representation
of the family of spaces must exist:

(25) x* =xt (X, 1)

A
i

yeee,M,
S

1

for which 0; ax = 0. The rate of strain tensor allows us to fortaulthis problem
precisely.

Different representations (25) represent different doate systems. If there exists
one of them for whicld; ax = 0 then we will consider the corresponding value; @ind
call wi a strong vector that has the componentg in this distinguished coordinate
system. Due to the fact thétayx = 0, from (21), we will have:

2Wi = - Urai — Ui aic = U + Ly i

(*3 Cf., e.g.,Duschek-Mayer, Lehrbuch der Differentialgeometti@eubner, 1930, Bd. I, pp. 126, (13).
The notations there are somewhat different.

() For a different approach to hypersurfaces ifRiamannian space, confeA. Pantini, “Sur la
déformation le long de trajectoires orthogonal,” Butic SSt. Cluj6 (1931) and Mathematica(1931).
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in that coordinate system. That relation between tensast always exist when it exists
in a special coordinate system. The condition foethstence of a vectar; for which:

(26) Oews + O Wi = 2Wi

is then necessary for the isometry of the familgwffaces. The fact that it is sufficient is
implied by the converse argument. If such a vewtoexists then we can choose a
coordinate system in whiain = —w . (That is certainly possible!) However, the relatio

(26) will assume just the formh ai = 0 in that coordinates.

The equation (26) strongly recalls tKaling equation ?) for a rigid deformation and
will go over to it as long a®é = 0, so when a rigid orthogonal deformation existsie O
can infer even more conclusions from that equation,ehgnones that relate to the
infinitesimal isometry and the presentation of algible isometries’.

11. Strongly_—covariant commutation condition.— As is known, one says that two
displacementdx , dX commutevhen:
(27) ddx =ddX.

In a rheonomic space, one must include:

The condition (27) is indeed an invariant relation, butnitsvidual terms are obviously
not vectors. We pose the problem of rewriting it itrargyly-invariant way.
To that end, we consider the expression:

53X ~5OX =dBX +T, SR b+ 3 R dt & XTI, & X cber I, 3 "X ¢

Since 00X -9 dX is a strong tensor, so is the latter expressionweder, if we

choose a normal coordinate system (izg.= 0) then, since&dx = dx , & = dX, it will
be identical to:

M (53X dt-X dj= 1a*0,a, (5X di-6 X d) =W (5X dt-5%X ).

That is the desired formula. We can define the ratstrain tensor by means of this
formula, and we shall actually pursue that path wheextend it (pp. 23).

() Cf., e.g.Ricci-Kalkul pp. 212, (271).
() Cf., A. Wundheiler, “Conditions pour une surface flexible inextensible,RCAcad. Sci. Pari$93
(1931).
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Strong invariants of an inhomogeneous quadratic differential formand a Pfaffian
system. — Rheononholonomic geometry.

12. Concept of rheononholonomic geometry- In order to justify our applications
to mechanics, we must adapt our concepts and resultsoteholonomic and
simultaneously rheonomic spaces. We shall first givgeneral guideline. If a surface
moves in space according to the equations:

X =X (X t) i=1,2,3a0=1, 2,
dX = b dx¥ +v'dt, bi=0,%,v' =0 X

then a surface element and a guiding veloeltyill exist at each moment at each point
of the surface. They are coupled to each othdeasgatives of well-defined functions by
certain integrability conditions, so they cannotchesen freely.

We now renounce those conditions (and this iduhdamental step) and choose the
b, andv'to be completeljndependent of each otheiVe will then obtain a structure

that consists of ame-dependent fdimensional direction element and a vector at each
point of the space. We call itn@n-holonomic, rheonomic subspace

However, since such an element-vector pair ismasduat each point of space, we
will not have the analogue of a moving surface hbue a family of moving surfaces. If
n is the dimension number of the subspaceramsithat of the direction element then we
will get a family ofe”™ “surfaces” in the holonomic case. One must priyblaeep that
in mind when one would like to visualize non-holano geometry correctly. Failing to
observe that fact has led various authors to makesein several instances (commuting
displacements!).

We will assume that a rheononholonomic spacevesgby the equations:

(29) dX = b d¥ +v'dt a=1, .., m.

It is easy to see that non-holonomic geometry rbaghe invariant theory of the groups:
(30) dX = a dxX + o' dt, =1, ..., 7,

(31) dx”= b dx' + & dt, A=1,...,m.

In fact, not only is a subspace specified by (2Ri), also acoordinate system If one
performs a linear transformation (31) on thé€ then one will get another representation
of that subspace:

dX = b, dx' + V dt
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that is just as good as the previous one. The transfiorm@l) must then be invariant
with respect to properties that depend upon the coordipstiens.

There might be a distinguished coordinate system (gben (29) is actually
holonomic) in which the apparent anholonomity is only ttue clumsy choice of the
dx’.  One must then distinguish sharply between non-lotdm subspaces and
holonomic spaces in a non-holonomic representation.criterion for the apparent
holonomity must be unconditionally invariant under (31),wiégive that criterion later.

We then clarify thatheononholonomic geometry is the invariant theory of the group:

dX = a dxX + o' dt, dx? = b? dx' + of dt,

and aninhomogeneous quadratic differential fornT.he concept of that geometry must
be included as a special case of the one that wasludged up to now. However, that
shows that the increased complexity in comparison thiotenomic case is meaningless.
That explains the fact that the properties of the fngler of differentiation that are
independent of the integrability conditions (and thoseratedd the most important ones)
obviously read the same in both cases.

Form=n, the subspace will be identical to the ambient spaxk(Z1) will be simply
a coordinate transformation. We will check the meaninguo concepts in this case as
an illustration.

We will denote rheononholonomic spaces %y.[

Now, our problem consists of generalizing the conceptiswere introduced in I. to
non-holonomic subspaces. One deals wititer alia, the fundamental tensor, the
longitudinal velocity, the strongly-covariant diffete, the rate of strain tensor, etc. All
of those structures must go over to the usual ones imibeomic case.

13. Projection into the virtual subspace.— Let the rheonomic, non-holonomic
subspace be given by the equations:

(32) dX = b d¥ +v'dt.

They determine theirtual subspaceB. A vectorv' lies in that subspacehen it can be

represented in the form:
vi=h v,

A vector isorthogonal to8 when it is orthogonal to every vector that lies3n We
adapt that concept to arbitrary tensors by referring tioeanwell-defined index.

A vector can be decomposed into two summands, onehichwies in‘B, and the
other of which is, by contrast, orthogonal % We call the former summands the
longitudinal componentr theprojection of the vector ont®, while the latter are the

transverse components.
One easily verifies the following theorems: If wé se
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: 1 a=
bas = a, b, b, baybyﬂ:bgz{ 0 ailZ’ b = b% b = b% by b,
b, =h (one always hasb = b)
then the displacements:
v=bv

will always give the projections of vectons onto B, and indeed with different

coordinatesProjection is equivalent to multiplication by bwWe letb denote theunit
tensoronB and consider the quantities (33) to be its various reptasons in terms of

components. Obviously, one always (i.e., for evempgonent) has, symbolically:
bb=b.

If a tensor has the indexin some position then one can replace it with theemo
general index by using the formula:

T'=pT° (Ti=h"T,, resp.).
If we set:
c=a-b

symbolically therc will be the unit tensor on the spaté¢hat is orthogonal t@3.

The concepts of projection and of lying ¥ will also carry over to tensors by
relativizing them with respect to one or more indicés tensor lies iB8 with respect to
one index then it will be orthogonal ¢orelative to that index, and conversely.

14. Non-holonomic fundamental quantities and canonical form(Cf., 8 5) — We
first have:

(34) dX=b d¢ + (@' +v)dt, &'=b % +@ +Vv).

Just as in theorem (7) on pp. 6, we will prove that 0x* = b} is a strong vector
relative to the index. However,V is a scalar relative ta, so dv' /9x" = b is a

strongly-covariant vector relative to
In order find the fundamental form for the subspawe introduce (34) into the
expressionls. That will give:

ds’ = bz dX* ¥ + 28, dxX dt + B df.
One has:
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Ba= b (a' +V)
in this. As on pp. 7, it follows from this that:
bas= & b}, b
is a strongly-covariant tensor in regarddpf. Likewise, as in &, it follows further

that:
V,= b, X +4 Ox,= b, d¥ +4, dt,

vi=XxP+ g7, Ix7=dx" +p% dt

are strong vectors. The underline below the symbol$ itial to the subspace. We call
these constructions thengitudinal velocitiesand theabsolute elementary displacements

in [*B].
We can now rewrite equation (34) into the form:

XK =h ox+(a@ +v-h B di,

from which it will now follow that: _
B'=a'+V -4, 5°

is a strong vector. We call it thensverse velocitgnd write:
(35) oX =h ox" +B d, V=0 v +B.
That is acanonical and completely-invariant forfor the equations of§]. We shall

give its geometric interpretation.
We see immediately th&' is orthogonal tdB. In fact:

b B =h7(a' +V) - G A/ =b"(a'+v) - 57=0.

It then follows thath, v lies inB, and therefore “, as well.
It follows from equations (35) that each vector trelbbgs to 8] has components'
that are orthogonal 8 . We can write that as:

(36) cx=Bdt cv=B,
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if we write the unit tensor on the orthogonal spédey c. The geometric interpretation
for m=2,n = 3 is very intuitive. The endpoints of all vectoratthelong to B] that
issue from the same point lie on the same plane, whighrallel to the virtual plarts.

We further have the invariant:

B=B-B. 5,
which is analogous t@l. However, we have:
(37) ds = & &K + Adf.
If we now substitute (35) in formula (37) then we will.get
d€ = ox, OX + (A +Bi B') df = dx, X" + Bdf,

from which, it will follow that:
B=A+BB'

That is therelationship between the transverse viv vivas of the spaeesl 5.

15. The strongly-covariant differential in 8. — Let*B be the virtual subspace of a
rheonomic spaceX], and letb be its unit tensor. ¥ is a vector field that lies i® then
dv will no longer lie inB, in general. We must take care to find a strongladamnt
differential that satisfies the conditions (8), arslf lies in®5 for quantities that lie ifB,

in addition.
We shall call the expression:
oV =bodv

the differential that is induced i3, or simply, theB-differential which represents the
projection of the ordinary covariant differentiahto 8.

If Tis a tensor of higher rank then we will getBsdifferential when we project each
index of the ordinary differential ontB.

It is obvious that thé&-differential fulfills the conditions 1, 2, 3, 4 of@ We shall
then verify 5. In fact, it lies in®8 then we will have:

Va = baﬁ \/8,
(o)
oV =Vvob+bov =vob+ ov
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since dv, which lies inB, will not be altered by displacement lby We then have:
vob =0

for an arbitrary vectov in 8, and sincedb likewise lies in®B, we will get db = 0, as

claimed.
Hence, the fundamental tendmof 8 is likewise “constant” with respect to thg-

differential, just as the fundamental tenaas constant with respect to tie-differential.

A complete analogy exists here. It is clear thatrideced differential coincides with the
ordinary differential in the holonomic case, sinces iletermined completely by the five
conditions then. I coincides with( then the other two differential operations will also

coincide.
One can give a differential form @u :

ou” =du” + I ufdx +1% uf dt,
Ou, =dug— I u, dX -5y, dt
that is similar to that of th&-differential. However, that is hardly interestirggnce we

will not use that explicit form, except in1®.

16. Induced curvature.— We began with the remark that tledifferential of 8-
guantities does not lie iB, so it will be different from theB-differential. We then
calculate the difference of two quantities. We have:

ou=bdou+udb=3du +udb
or [cf., (19)]: _
ou - du' =u*dh = u“d, h ox + U O, K di

When & lies in 93, that form will temporarily determine the projection$ the
coefficients ofB relative tok. We get two tensors for the induced curvatdye (

(38) Hz = b}

5

0,8, HS=b0H4.

() Introduced bySchouten Ricci-Kalkiil pp. 158, (197), pp. 162, (82), in which one will also find
details about it. For non-holonomic space: Math. Zéitfootnote t). Proof of the holonomity condition:
Schouten-Kampen pp. 776.
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The symmetry of the tenson[E in the indicesf and a is equivalent to the
holonomity of$8. That is an important theorem that was foundblouten(”). Along

with H 2

s » We will often employ the equivalent tensor:

M— RWE |l i
ij—qu Hﬂa,

which is symmetric (antisymmetric, resp.) at the same asH gg.

17. Centrifugal vector for non-holonomic spaces- We now introduce a vect&;
by means of the invariant form (cf., pp. 8):

(39) 10Bdt---0(BIX)=S,oxX dt.

Here, we havedx = B' dt, sodX lies inB. J is the purely-temporal, so to speak, with

respect to*B], and dis purely spatial. In addition, we assume #ahd & commute. In

order to prevent any misunderstandings, we expressly kethat JX will no longer

belong toB after we apply the displacemedit, such thatd (B dX) must be non-zero.
Due to the commutation relation (28), one has:

JOX = I OX +W,dxX dt= (B df)+W, dX dt,
so (39) is actually a form iax”. It is easy to calculat®, explicitly. One will get:
(39*) Sa:bzi: %aiA_DtB_B(DkB_VMB)'

Sy plays a fundamental role in mechanical applicationd, lzecause of that, it will be
called theabsolute centrifugal force. In addition, one will meet up with it in the
holonomity conditions.

18. Rate of strain tensor for non-holonomic spaces. As we asserted on pp. 16, we
will now introduce the rate of strain tensor for faylenomic spaces by starting with the
commutation condition. Here, we will encounter tlodlofving complication: If two

fields X and dX lie in [®B] then they will not commute, in general. We shallnthe

modify the process in the sense that we will requirg oommutation along a curve that
lies in [B], which can always be achieved. By repeated differaomiaf:

OX = ox +B'dt,
we will obtain:
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00X =00X+0B dt+ Bodt=00x +0, B X dt+0, B dtde BJ d.
Projecting onto B will yield:

b" 00X =dox“+Hf 0, BoX dt+ H O, B dtd.
Similarly:
h" 00X =d0x" +i 0, BoxX dt+ WO, B dtd.

We subtract corresponding terms:
(BIX -33X) =b" (53X -33X)+ 0, B(OX de-3 & df.

If dand & commute along®B]-curve in2A then we can apply (28) to the points of that
curve and get:
(Sé_éé_) X' = ljla (Wik +|:|k B)(J% dt-0 % dy.
However, since:
Ox“ dt—J X< dt = ox* dt-J X dt,
we will have:
(30-39)x =bf (W, +0, B)(0 X dt-3 % dy,

and sincedand d lie in 9B, that will give:

(00-99)x" =7 bs (W, +0, B)(G X dtd X dx.
Finally, we have:

b’ b0, B=hb"Q B0, B =-B I 0K =- B H.,
from (38). Thus, we ultimately have:
(00-099)x" = (b B W, - B Hz)(@ X dt-d £ d.

We call 5X and dX, which are the projections of commuting differentiafsoo,
quasi-commuting differentials If [2] is holonomic then the quasi-commuting

differentials will almost commute, and the formuldl@wetermine the rate of strain tensor
of the holonomic spaca.

We then set:

(40) W,, =b" B W, - B Hy,
by definition.



Wundheiler — Rheonomic geometry. Absolute mechanics. 25

It will then follow from this formula that when theubspace is either geodetic or
homogeneousE = 0), the rate of strain tensor for the ambient spaltdw/the same as
the one for the subspace. Due to the holonomity idtond(pp. 23), we will have
immediately that:

The rate of strain tensor M will be symmetric if and only if the subspace is
holonomic.

19. Curvature tensor.— If we start with the expression for the “cycli¢feiiential”:

AU = (00-0d)u”
then we will get:
(41) (00-00)u’= Rggikdxﬁk‘+ R #(0 % dtd X gt
after a well-known calculation in Riemannian geometNow, we must introduce the

absolute displacementsx, X on the right-hand side in place @¥, dx, in order to
have a completely strongly-invariant form.

For the strong curvature tensd®§;, and Rf,

5 » We have:

R =0, M =0, T +T°, TV, =T, T,

a _— a a a a kpa
Rmi_atrﬂi_airﬂ+ryryﬂi_rViryﬂr( -a Rﬂik'

However, we must make a few remarks. InThelifferential, the differentiated vector
indeed lies i3, but the displacement along which one calculatesdifierential is
entirely arbitrary. For that reason, in the expas$or theB-differential:

ouT=du’+ o uf dX +1% f dt,
the third “differential” indexi in the I'“; can be coupled with an arbitrary quantity.
However, that implies that the first two (“vectoitjdices of the curvature tensors have

arbitrary positions i3, while the last two (i.e., the “differential’) indie have arbitrary

positions in the ambient space. The introduction of syedmtities insures a greater
flexibility in the devices used to treat problems in curvatwesy., the variational
equations (89).

If B coincides with( then all calculations will remain valid, and we wiltgsimply
the curvature tensors of the holonomic spagcewhich lie arbitrarily in all of their

indices. We point out once more that the general diemtefer to vectors that indeed
lie in A, but are displaced arbitrarily.
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20. Holonomity condition.— As was mentioned above, the equations:
dX = b, dx"+V dt

will determine not only a subspace, but also a coordisygem in it. It might happen
that the subspace is holonomic, but the coordinatesy&r} is not. For that reason, the
conditions that are usually given:

b%o, b, = bko, b,

cannot be fulfilled at all, even for holonomic subspacethe correct holonomity
condition must be invariant under the transformation:

dx":bj’dx‘ + of dt,
as well as: _ _
dX = a dX + w'dt

This problem can be solved only within the language of rhearomiic geometry.
We shall now consider the rheonomic subsp&e [Should it be holonomic then the

virtual spaceB, as well as the subspa€ehat arises from its motion, must be holonomic.

However, that is not satisfied: The vecBt, which belongs to our rheonomic subspace,
must be precisely the “transverse velocity.”

If 9 is holonomic then, from the theorem that was dtatepp. 23, one must have:
m — m
(42) Hzp = Hggs-
Similarly, the holonomity o€ demands that:

(43) g€el ¢=ed0,é,

in which € means the unit tensor @h We must express those conditions in termis of
andB'. If we set: _ _
B =Bn',
in whichn' is a unit vector, then we will easily verify that:
(44) e =h +n'n.
We now develop (43) on the basis of (44) &h@"= 0:

QlfeJiDi%:bfthKbL+H§th7kﬁ n+ A A n 'ﬂkfﬁﬁ(ﬁ?*ﬁ F ijh )ﬂfkfi-
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The symmetry of the third summand is obvious. That effitist follows from (42).
The symmetry of the second one follows from the foifg calculation:

by b0, M n=b b0, n=bb Pl n=-nn 0 8=-nnHS,
and due to (42), that expression is symmetric. What evitlain is the expression:

(O n“n + B M0, e
If we introduce the notation:
Prik) = Dix — Py
then we can rewrite (43) in the form:
(b n* n.+ 1 ' 0, § =0.
We contract that with", and then withi¥, and obtain the equivalent conditions:
by u* Oy, 6 =0, b u" 0y, & =0,
which we will shall ultimately write in the form:

(45) by w0, (B + U y) =0.

What still remains is the condition 8. If [8] is holonomic then the displacement
d in (39) of the elemendx will obviously lead to another one that liesdh Hence,
one will then have not onB; &' = 0, but alsod (B; &) = 0, and one will get:

(46) Sv=10,5.
The conditions (42), (45), and (46) are the desired neceasdrgufficient holonomity
conditions for rheonomic subspaces.
[l.
The absolute equations of mechanics.
21. Overview of the application of tensor calculus to mecharsc— In the year

1900 §), the creators of the absolute differential calspyRicci and Levi-Civita, had
already written out the equations of motion for areclemic and holonomic mechanical

() Ricci andLevi-Civita, “Méthodes du calcul différentel absolu et leurs appbeati’ Math. Ann54
(1900), pp. 179. [In Polish translation: Prace matematytizgazne12 (1901).]
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system in terms of the tensor symbolism, in which toxariant derivative was
employed. That form includes quantities that are invariamder only the point-
transformations: o

(47) X =x (X).

In that way, the mechanical system is considered ta peint in a multi-dimensional
Riemannian space, namely, tlm®nfiguration spacewhose fundamental form is:

(48) ds? = 2T df = ay dX dX,

in which 2T is thevis vivaof the system. That suggests the possibility of figdiyclic
coordinates by means of that multi-dimensional pictumce giving the conditions for the
existence of an integral that is linear in the genegdlivelocities.

The advantages that one can glean from that mutiedsional representation have
their roots in the fact that one can employ the fidos that arise from three-dimensional
space in order to envision known theorems (e.g., Heptegiple of the straightest path),
but also guess some new results with their help. Oes, th.g., obtain variational
equations for the paths of mechanical systems by generafimnizcobi equations for
the geodetic deviation [89, (19)]. In the same way, we have obtained our theotems
reaction forces that are given in 8§ 31 by generalizing the known intrinsic equations
of motion. The same intrinsic equations make it vemyple to infer a series of
consequences in regard to the evolution of the pathgohamical systems, the evolution
of the motion, etc., thaainlevéhad obtained in a different, more formal way (

The first systematic treatment of mechanics by medrnse tensor calculus goes
back toJ. L. Synge(1926) t9. He employed two types of multi-dimensional picture
for mechanical systems. One of them is the onevthatdiscussed before in terms of the
“kinematical” ds* (48), while the other one is based upondtfeof the action:

d¥=2h-\ Tdt

Syngelikewise wrote the mechanical equations for scleronacamid non-holonomic
systems by means of the covariant derivative, buthagpplication of it, he gave only
some considerations in regard to the stability of motioat were based upon the
variational equations thdtevi-Civita had obtained before that generalized daeobi
equations. He also gave criteria for the existenee-oi cyclic coordinates.

However, his main contribution was that he was trst fo point out the important
advantage that one can gain from the multi-dimensioictines: Namely, the difference
between holonomic and non-holonomic systems almasisikies formally with that way
of conceptualizing them, which one must naturally taken grano salis That
conclusion is not so glaring iByngés symbolism. One can say the same thing for
Vrianceanus equations for non-holonomic systems, which weretde#h in a series of

() P. Painlevé “Sur les trajectoires réelles,” Bull. Soc. Math.Ftance (1894).

(*% J. L. Synge “On the Geometry of Dynamics,” Phil. Trans. RoycS&226 (1926). — “Geodesics in
non-holonomic Geometry,” Math. AnA9 (1928). — “Hodographs of General Dynamical Systems,hdra
Roy. Soc. of Canadab (1931).



Wundheiler — Rheonomic geometry. Absolute mechanics. 29

notes by that author in the Accademia dei Lin¢8i (He calculated with the orthogonal
congruences that were characteristic of the oldeaittachool, and the transparency of
his methods was eclipsed by what could be attained by ap@ginguteris symbolism.
That was first done in 1928 hyorak (*3. Vrinceanus applications, like those of
Synge are restricted to the stability of conservative syste

All of those investigations were basically carried @mr only scleronomic systems.
Indeed,Horak also wrote his equations for rheonomic systems, bfdarass their clarity
was concerned, they were not distinguished by anything théd omake them supersede
the older explicit equations (e.§\Voronetz, Tzénoff, Hamel). The same thing is true to
a even greater degree fdrianceany who addressed the problem once more a year ago
(**) and wrote out the equations for rheonomic and nonAbafic systems in terms of
his symbolism.

22. Absolute mechanics— The basis for all of that inconvenience is theofeihg:
The theory of rheonomic systems will prove to bepd&monly when it is constructed
using the right terminology. However, in this cagglit” means that only those terms
that are independent of the admissible coordinateragstan have an intrinsic meaning.
Now it is clear (and this is the crux of the mattémttfor a rheonomic system that is
referred to the parametexs, all parameter systems that are coupled by a time-depende
transformation:

(49) X = X (X, 1)

are completely equivalent and cannot be distinguishécdbnd imagines a point on a
deformable surface then that will be clear with no furthecussion. One must consider
mechanical quantities, in the true sense, to be systeabhsate invariant under these
kinematical transformationg@9), and not only the “geometric” ones (47), and thuss one
that behave tensorially. By recasting the knowmt&bsolute differential calculus,” we
will refer to the representation of mechanics in sushrohgly-invariant” terms as
absolute mechanicsand call those strongly-invariant quantitiabsolute mechanical
guantities. Formally, it will be identical in many aspects with tfeonomic geometry
that was developed above or also with the “strong’aieaalculus.

We must go a step further in order to justify the nolemamic systems. If such a
thing is given by the condition equations:

dX = b, dx¥ +v'dt
then simultaneously-independent “non-holonomic” paramsetdr be introduced for that

system. As was already discussed on pp. 17 for a simitaation, all other
representations that one can obtain by applying the paatratsformations:

() G. Vrinceany “Sopra le equazioni del moto di una sistema anomdeyid. Lincei4 (1926). —
“Sopra la stabilita geodeticafiid. 5 (1927).— “Stabilita geodetica. Applicazioni ai sistemi consérdalla
Meccanica’ibid. 5 (1927). — “Sullo scostamento geodetico nelle varietaoamal’ ibid. 6 (1928). — “Sopra
i sistemi anolonomi a legami dipendenti dal tempmid. 13 (1931).

(*?) Z. Horék, “Sur les systémes non holonomes,” Bull. Int. Acad.éfche24 (1928).

(** Cf., the last of the cited notes Wyinceanu
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(50) dx = b? dx' + o dt

will be entirely equivalent and undistinguishable. Bfere, if a quantity that is referred
to a non-holonomic system is to have an intrinsiammg — so it will be an “absolute
mechanical quantity” — then it must behave invariantigaurithe transformations (50). It
is only in that picture that one can hit the nail oa tilead when one would like to
construct an adequate theory of rheonomic systemsit ananly with those quantities
that the explicit equations of the general systems prane to be simple. We then
ultimately establish that:

“Absolute mechanics” refers to the invariant theory of the non-holonomic and
rheonomic transformation®0) and the quadratic form for kinetic energy:

2T=a X X +2a X +A.

The applications that we shall give later will preably seem to justify that
viewpoint. However, we expressly emphasize that absehechanics is only in setting
for true rheonomic and non-holonomic systems: Natyrafivariance under ordinary
point-transformations is achieved completely for @miomic system, in which there is
a distinguished coordinate system.

23. Mechanical interpretation of the “strong” quantities. — Next, let a holonomic
mechanical system be referred to the paramgteiset itsvis vivabe:

(51) T=a X X+2a X +A.

In 85, we called the quantitieg “longitudinal guideline.” If one imagines, e.g., a point
that moves on a surface in three-dimensional space:

TN

then one can easily calculate, as on pp. 5 (4),ahiatjust the projection of the guiding
velocity onto the surface. Howevek, will be the square of the guiding velocity, and
therefore the “guidingis viva” Naturally, those two quantities depend upon the chosen
coordinate system for the surface, so upon the “idéndityhe point on the surface, and
are thus not absolute mechanical quantities. Howeveeturrn, the “transversas vive:

A=A-aa'

(i.e., in our example, the square of the guidimg vivain the absolute direction that is
orthogonal to the surface) is a strong quantity.
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Similarly, X is not a strong quantity, since it likewise depends uposeshtidentity”
of the point on the surface. By contrast, if we tddeequantities:

V=X +a'

then we can verify in our illustrative example thatythee the projections of the absolute
velocity of a point that moves with the surface otitat surface. However, that must
already be an absolute quantity, as we proved on pp. 6shdlfiecall it thelongitudinal
velocity.

Let us now go on to non-holonomic systems. Firstlipfvhat does the equation:

dX = b dx" +V dt

mean? We see that it couples the system, and thusepresentative point of mass 1 in
the n-dimensional rheonomic space with the fundamental {&), in such a way that its
“velocity” cannot be arbitrary. It must be composed oélative velocity X' that lies in
the virtual space and an inducgdiding velocity However, neither of them is invariant,
which was pointed out above. By contrast, if we gordweethe canonical strongly-
invariant form [cf., (35), (36)]:

V=V +B, ¢ V=B

then that will show that the “transverse” componeanfsthe “total” velocity are
determined completely; that is what we meartrbpsverse guidanceOne can interpret
that by saying that the endpoints of the possible velscdafematerial points that are
found at the locatioM must lie in am-dimensional “plane” that is parallel to the virtual
planes at the distanc8'. If B' is equal to zero then that will simplify to a redida on

the possible velocities only in regard to their dire&jomvithout restricting their
magnitudes. However, in the general case, the magnitutie @€locity will be coupled
with its direction.

B? = B; B' will be therelative transverse vis vivaBy contrast:

B=A+B B

will be the “total” guidingvis viva If the constraints are actually holonomic thelroal
those quantities will go over to the aforementioned gtiesti' andA.

24. Absolute equations for a holonomic system. We are now dealing with a form
of the equations of motion that are not only invariant unélee rheonomic
transformations (since one of them is already Lagrangquation), but also consist of
nothing but absolute mechanical quantities. That is ngelotine case for the Lagrangian
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equations. Indeed = % IS a strong quantity, but that is no longer trueag?rg—%-r and
X

o
ox
We start from Hamilton’s principle in the form:

(52) [(6T+Q3dX) dt=0

and calculate with strong covariants from the duts@ denotes the strong differential
along the path, an@ means a “strongly-covariant variation” that comnsunéth it. We
have @t = 0!):
02T=0(V+A) =WV +A) =2 dv'+ A
Furthermore:
v, oV dt=v (Vv d =v dIX,

and from the commutation relations, this is:
=V OOX -~y W, % di=0d(vIX)-dydx-yW, J X d.
The complete differential integrates out in (52)d avhat will remain is:

_ (ﬂ+wgﬂ vjjgi dt.
dt
We now write:
0A=0,A0x =25 X,

from (39). We then get the equations of motion in the form

oV, ,
(53) d_tI+W[Jﬂ\I]' =S5+Q.

The reader will easily verify that, e.g., in these of a rotating planed will be the

potential of the centrifugal force agiwill be the centrifugal force itself. Therefotbe
termabsolute centrifugal vectds appropriate.W; v' recalls the Coriolis force, but it is
something quite different, since the Coriolis forgeot an absolute quantity, and it will
vanish in a suitable coordinate system as onlylative, fictitious force. One sees
directly the sort of simplifications that will emtezhenW = 0.

It is, perhaps, interesting to consider the kndheory of relative motion from that
standpoint. In that theory, we have a point inirady space, so a strongly-scleronomic
system. The equations of equations reduce toNke&tonian” form here:
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If the coordinate system is rheonomic (which is justdase for moving axes) then one
can specify the equation as follows:

dv [ ' [

E+thvhv’ +MV=Q +S.

If the rheonomic coordinate system is defined by moving thess it will be easy to see
that I'};= 0, and that"™!, are the known rotation structures, such thgv" represents

simply the fictitious Coriolis force. Howeverd will then be the potential of the

centrifugal guiding forces. In the absolute treatménhe situation, they are all hidden
in thedv', and have no absolute mechanical sense. Moreoveshtiald be clear, since
they can be transformed away.

25. Equations for non-holonomic systems- For non-holonomic systems with the
supplementary conditions in the canonical form:

Vi = \_/i + Bi,
we have:

N i ciiAiapl
(54) E‘*‘WDJ-\}:S +Q +R,

in which R means the reaction force that is normal to the ligpace. We project onto
the virtual space’ and introduce the (underlined) quantities everywhere, whreh

referred to that space:
OV _ OV OB _ OV 0O,BoX+0 Bdt_ oV
= + = + =

= +[J, B+ B‘O, B+, B.
dt dt dt dt dt dt

We substitute that in (54) and project ofBpwherebyb” R will vanish:

5_th0 +Qa(Wik +Dk B) l§;_\y+ 5(— $+ Bjk B‘*‘Dt iB+_ W kB: bla Qi.

However, from formulas (39and (40):

(55) %w_vz_v“: S+ Q.
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That is the absolute form for rheononholonomic systémat was announcedf) It will
lead directly to a correct and meaningful classificatbdynamical systems.

26. Classification of mechanical systems: An adequate, meaningful classification
of mechanical systems must start from the properhas d@re inherent to the systems
themselves, and not the chosen system of parame®ers.cannot refer to the system as
rheonomic when its kinetic energy depends upon time, singecleronomic system that
is evaluated with respect to moving axes would also bendmiz. That same thing is
true for the usual definition of holonomity that we veralown above (pp. 26). An
adequate classification must come about from the absolktbanical quantities.

We summarize the holonomity conditions (42), (45), G¥&e more at this point:

bLD nY Dk(blif*_ 1 rL): 0,

108

20x%

Scleronomity. — We have already proved (pp. 14) that a holonomic system
strongly-sceleronomic, that is, it has a homogeneastik energy that is completely
independent of time in a suitable coordinate system, smwie have both:

wW=0, A=0.
However, we can also point to a system for whichlwaseonly:
W=0
as something that is especially simple. Indeed, tlilaihat necessarily be a system in
which the kinetic energy is homogeneous, but probablyionehich its quadratic part
does not depend upon time. We shall then simply cafiysenmscleronomic
For non-holonomic systems, one can imagine thesi@ilzetion that the equations of

motion (55) lead to as follows:

W,,=0 semi-scleronomic

(56) W,,=0, S=0 guasi-scleronomic

(% For scleronomic system#/ = 0, S= 0 give those equations are given by all authors thatoged
the geometric representation. Cf., eSchouten Math. Zeit.30, pp. 171, (116), and the cited paper by
Horék.
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Wi=0, 6,4=0, Ob,=0, B=0 scleronomic.

27. The natural equations of motion— In ordinary point mechanics, one naturally
writes the equations that represent the projectionfiefeguations of motion onto the
tangent and normal for the path:

2
mil:Ft, mV—:Fn.

dt P

We would now like to present similar equations for aabjtr dynamical systems,
including non-holonomic ones. That does not happen witloomplications: For
example, one can imagine that one can hardly spep#tio$in a rheonomic space, since
a rheonomic transformation will change the “identibf’the point, and therefore every
curve, as well. However, we have one certain guidefose refer ordinary space (e.qg.,
simple three-dimensionaRiemann space) to a rheonomic coordinate system (e.g.,
moving, rectangular axes) then we can also write doWwgualntities in that coordinate
system, such as tangent, normal, curvature, etc. Tdrepe expressed in a well-defined,
easy to state way in terms of our strong quantitieswéy¥er, that will show us the way:
We construct the same expressions in the general dds=.reader will easily find the
following representation by heeding that suggestion.

Let a “curve™ o

x'=x'(t)

be given in a rheonomic subspa@][ By that notion, one actually imagines a structure

that assigns a certain curve to every (rheonomic) coatelisystem: viz., something
similar to a vectonmutatis mutandis In general, we set:

do? =bi &K &K
(in which we drop the inconvenient underlines on‘Bhguantities, for simplicity). That
is ourarc-length elementObviously, we have:

V=— (V2:bikVin).

We also have:
L =p, OOX
do do

We callu' = dx ' / ds the unit tangentor simply thetangentto the curve. We further
introduce the strong vectod (s the stron@3-differential!):
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W= ou
do

as thecurvatureof our curve. The absolute value of that vector:
k=0 K =kn)

is thescalar curvature.Obviously, one has:

ou

(57) U E -

0.

It is probably pointless to remark that in the strgrdgdlonomic case, all of those
guantities will agree with the ones that were knowrotgefin the usual sense of the
word).

We now write:

o Ao ,dv_ ,du  dv
—=v—/—+U— =V —+U —.
dt dt dt do dt

That is the well-known decomposition into tangentiadl aormal accelerations. If we
substitute that into the equations of motion and muyltipém byu; in one case and by
in the other, while observing (57), then we will get:

dV_ i o
a_(s +Q )U|,

Vk=G"+Q")n,
resp.

These are the natural equations that were announaae bé&ne can say that the first
of them determines the type of evolution for a giypath, and therefore the velocity.
That will be true verbatim in the strongly-scleronomase {V = 0,S= 0). The equations
will then assume the form:

dV_ i —0Oin
E—Q U, V2k in,

and the curvature will naturally be explicitly independeh time. One can infer a
number ofPainlevés conclusions ) from those equations, whidfranck also reached

(**), to some extent, but on the basis of different egnatthat were less simple and
intuitive, and which were not written out in precisegognetric terms.

(**) Ph. Franck and L. Berwald, “Uber eine kovariante Gestalt der Differentialgleichem der
Bahnkurven allgemeiner mechanischer Systeme,” Math. Z&i(1924). Ph. Frank, “Die geometrische
Deutung vonPainlevés Theorie der reellen Bahnen allgemeiner mechaniscysterBe,” Proc. ° Inter.
Congress for Applied Mechanics, Delft, 1924.
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28. Energy integral for rheonomic and non-holonomic systems: We shall now
give a case in which an integral exists that is analodouthe energy integral for
scleronomic systems. We will say “an energy integnathe broader sense, to mean an
integral of the form:

T=h'"-V’'(X, 1),
which we can also write in the form:
(58) V=h-2V (X, 1),
since
vV + A=2T.

The problem can be posed more generally when one lookstégrals that agree with
kinetic energy only in their quadratic terms, but cafediin their linear terms. They can
then have the absolute form: _ _

V=AV -/ (X, t) +h,

in which A; is a strong vector and is a strong scalar. We find such an integral in the
known case ofPainlevé (**3. Our absolute equations also allow us to answer that
guestion, but they do not explain the criteria that timgly, since they require the
integrability of certain partial differential equationdVe then restrict ourselves to the
case in which an integral (58) exists and introduce a mewept that is the rheonomic
counterpart to a potential.

We call V anabsolute potential for the vector field Xwhen the strongly-invariant
conditions:

Xi:—aiV, DtVZO

are fulfilled.

One immediately verifies that the equation:

Xi d(i:—dv

is true, which is, in turn, an invariant counterpart ®eljuation of elementary work.
We return to the energy integral. We scalar multip&/equations of motion:

oV,
L Wi V= :
dt+ k S+Q

(we have omitted the underline that refers to the swesfey the velocity:

v%wvikw:(smw.

The covariant derivative of a scalar is identical wht& ordinary one, so:

(%3 Cf., e.g.,P. Appell, Traité de Mécanique rationelle. 2, 4" ed., § 448, pp. 329, ®&. Painlevé
Lecons sur 'intégration des équations de la dynami@aeis, Hermann, 1895, pp. 89.
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%Z—‘f+wk\)\%:(s+q)\/}

If equation (58) is true then no terms that are quadraticdan appear on the right-hand
side, and the rate of strain tensor must be skew-symenteen. If we assume that the
sum § + Q; possesses an absolute potential:

S+Q=-0V, V=0
then we can write:
; av
+ i\/l:——.
(S+Q)V=-—
If:
Wk=-W, S+Q=-0V, DevV=0

then it will possess the energy integral:
Vv =h-2V.

Those conditions will assume an interesting formafdrolonomic system. Since the
rate of strain tensor is symmetric then, one musge lmplyW = 0, so the system must
be semi-scleronomic. If we further assume thatetieera potential L in the usual sense
and set:

V=14-U

thenV will be the absolute potential & + Q; when the conditionl; V = 0 is fulfilled,
which requires the independent\bfromt, to some extent. The energy integral will then
assume the form:

*) V=h+A4+2U.

If the conditions:
Wy =0, i (A+2U)=0

are fulfilled for a holonomic system with the potentidl then it will possess an energy
integral (*).

We expressly point out that this case is differeamfithe Painlevé case t%). The
conditions that are given by our theorems are alsessecy ¢um grano salisin the
sense thatVvV = 0 must be true in any case. The conditions foretkistence of the
potential can be weakened.

(*®) Vrinceanusought to generalize just tiRainlevéintegral in the aforementioned notes, which can
make sense only for a non-absolute treatment of rmeigrgystems, since being independent of time is not
an invariant condition. Theainlevé integral is, so to speak, an accidental phenomenondtes not
correspond to any mechanical fact.
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29. Variational equations for curves in[*8]. — We shall give certain equations that

are fundamental to the problem of the stability obriemic systems as an application of
this. Those would be the variational equations fobit@ary curves in a
rheononholonomic space. Naturally, we understand thatetan that every element of
the curve lies in'B]. The canonical condition equations:

(59) c OX =B'dt
will then be fulfilled [cf., (36)].

We first define the deviation for two infinitely-closergesC and C’, of which we
will assume that their directions will also diffy infinitely little at infinitely-close
points. We relate the points of both curves (eachvloith has a well-defined time
coordinate) to each other arbitrarily, under which cquesding points are naturally

infinitely close. We letd denote the displacement that takes a poinCab the

corresponding point .
We shall call the vector:

pi — 5Xi

the deviationof the curve<C andC’. If we denote the elementary displacement along the
curvesC andC’ by dthen we will have:

(60) ddt=ddt, X —IdX =W, (X dt-0 X dy,

since the two displacements obviously commute. We seek the differential equations
thatp' must satisfy foeverypair of curves in‘B].

From (59), we have:

(61) 0C OX +d 50 X= o B'dt+ B J dt.
From formula (19): _
o= p' Dj + aﬂ]t,

and due to (60), we will get some rather complicated empstirom (61) after some
calculations that will determine the transverse compisnef the differentiady p".
However, those equations are quite unnecessarily catgdidn practice, since an

isochronousvariation, for whichdt = 0, will suffice for most appli_cations. We will ya
Jdt =0, as well, and equations (61) will become homogenequis:in

cOp +[0,goxX—(0,B+¢ W) dt p=0.
If [2B] is scleronomic thelV = B = 0, and we will get simply:

cop+0,qaox p=0.
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Those equations are true for arbitrary curvesih [ However, we can exhibit some

new equations when we are dealing with a special clag®em. For example, i€ and
C’ represent the motions of a dynamical system then wWehave its equations of
motion. We first remark that:

<i_ x0X _dtdoX -oxd dt_ dox oOxX Jdt
ovV=0—-= = -

dt dt? dt  dt dt
Due to (28), we have:
dt dt odt dt dt !
Hence:
=, _op i () Tt ]
oV -W+V\/j (vJ dt- |d) -V u,
in which:
- 3t
dt

is infinitely small. If we now start from the equatitr thecyclic differential:

(09-09)V = Raﬂik\ﬂg—)&a—%
then the remaining equations of deviation are not diffitulconstruct, which would be
quite complicated in the general case, but for a @etenic system and an isochronous
variation, they will assume the forrtf)

990 _h o =
5o D@ HRLY V) p=0.

In the special case @ = 0, we will getLevi-Civita’'s generalization of thdacobi
equationsf).

A characteristic of the method that was followesrenhis the application of the
strongly-covariant variatior(*?), which was encountered already in the derivatibthe
absolute equations frortlamilton’s principle.

() One finds this formula written out non-invariantlySgnge loc. cit, pp. 79.

(*®) Levi-Civita, “Sur I'écart géodésique,” Math. AnB7 (1926). Moreover, that problem was treated
previously, and in more generality, I8yngein “Geometry of Dynamics,” which is, unfortunatelyptn
well-known.

(*° 1 applied the covariant variation to the deviationbfem in the note “Une simple démonstration de
la formula de I'écart géodésique,” Rend. Lind&i (1930), which also includes dynamical applications.
The implementation and generalization to non-holonosyistems, as well as a certain method for
rheonomic ones, is included in the author’s paper: “ldeN/ariationsgleichungen fiir affine geodéatische
Linie und nichtholonome, nichtkonservative dynamischet&ge,” Prace Matem. Fizyczr3¥ (1931).
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V.
Theory of reaction forces.

30. The fundamental law of reaction forces.— We will now solve some
fundamental problems in regard to reaction foré8sirg full generality by means of our
multi-dimensional representation and the equations ofomdhat were obtained. The
theorems that we shall prove relate to not only reastihat replace all of the constraints,
but also to reactions whose introduction will replacdy some of the constraints. We
will call those reaction forcgzartial.

Perhaps the explanation below for the mechanical s#hatecorresponds to the
concept of a multi-dimensional reaction would not lopesfluous. Such a multi-
dimensional reaction is basically a complex of germzdliforces that replace the
constraints dynamically and are calculated for therpaters of the free system that one
would get by removing those constraints. For examplea feystem that consists of a
finite number of points, the “multi-dimensional reaatiowill be the totality of
components of the reactions that act upon each indivghiat, and one’s knowledge of
those reactions will insure one’s knowledge of eachhef individual reactions. By
contrast, for a rigid body, the multi-dimensionalatgzn will give only the resultant and
moment of the reaction forces (in the usual sens#)dtt upon the various points of the
body. Those reactions will not be determined by thdtisdumensional reaction, in
general.

We pose the following problems:

1. Calculate the equivalent reaction explicitly $onooth constraints.
2. How does one compose the reactions? That is: Hosg the reaction that
replaces several constraints depend upon the reactionsefilace those individual

constraints?

3. How does a reaction change when one strengthemsisgaints; i.e., by adding
new ones?

4. How do reactions in real motions differ from réaas in virtual motions?
We shall obtain the answers to all of those questansimple consequences of a

fundamental theorem that we will prove shortly. Ttieorem, which one can consider
to be a rather distant generalizatioMdusnier's theorem, is concerned with the change

The problem was not addressed by an absolute treatamehthe rheonomic systems were interpreted in an
(n + 1)-dimensional space.

(*° Several papers Hy. Gugino were dedicated to the problem of the reaction forc@gcent times.
We cite: “Sur la détermination des forces de réactiors d& mouvement d’'un systémes matériel,” C. R.
Acad. Sc. Parid9], pp. 1118, and “Sul problema dinamico di un quasivoglia sistén@lato ridotto
all'analogo problema relativo ad un sistema libro,” Rdridcei 12, pp. 307). We will also find a paper
with the same title byA. Quarleri, Boll. Un. Mat. 1t.10 (1931). Those authors proved that the reaction
forces depend upon only the state and indicated a pattctdatadg them in terms of the state, but gave no
explicit formulas for doing that.
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in the reaction forces when one strengthens thetreoms. Meusniers theorem is
concerned with curves on a surface that has a cominection at the same point, and
says something about the projection of the curvature dmostirface normals. Our
theorem is concerned with motions that are compatible wonstraints and will go
through the same position with the same velocity, dbagesaying something about the
component of the reactions in the direction thatrasgverse to the virtual space. One
sees immediately how that corresponds to the theorém®rder to be able to express
things conveniently, we define:

Two motions are said taontact when they go through the same position
(configuration, point) with the same velocity.

Here, we must speak in terms of virtual space, sincareeonsidering the general
rheonomic case. We denote an entiglyitrary system byJ(], as well as the subspace

that it corresponds to. Our theorem reads:

The reaction force that replaces the styaints[®8] on the systef®]  will hay
(62) the same projection onto the directitwat liesin2l and is orthogonal 8  for ¢
tangent motions of the systg®$that are compatible with the constraifd].

Proof: The equations of the virtual motion of the sys{@tread:

%+WV:S+Q+R,

in which R denotes the reaction that corresponds to theaVinootion. The other
notations need no explanation: For the sake oflsiityp we have omitted the underlines.
We have also omitted the indices, which will prdgaiot lead to any misunderstanding.
We immediately take the constrainf8][in the canonical form (36):

cv=B,

in whichc is the unit tensor in the spa€dhat is completely orthogonal 16 in 2.
We get the theorem immediately by projecting ahtd.e., upon multiplying by:

c% =-cWyv+c S+cQ+cR.

We shall now transform the left-hand side of ggsiation so that we can show that it
depends exclusively upon the position and veloaihg thus depends upon the state, but
not upon the acceleratiaw / dt. That is the key point:

ovV_ docv_ OoC _ 5B_V5c

dt dt dt  dt dt’
We then have:
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(63) R:cR:ch—v§+§—cS—cQ
T dt dt

for the transverse component of the reaction. Tdiet+hand side of this is a quadratic
function of thev' and the position, since the derivatives are taken ale@gnotion, so
they will be linear (due to the rheonomity, in generallt not homogeneous functions of

theV, and therefore thed, as well. The right-hand side will then depend exclusively
upon the state, and not on the acceleration, and et have the same value for all
tangent motions that are compatible wifB]] We assume tha®(] is Euclidian space,

[B] is a surface in that spad®,= 0 andt = s (arc length), so the reaction force will be
equal to the curvature, and we will ddeusnier's theorem.

Principle of least reaction:
The actual motion corresponds to a smaller reactl@an any other possible motion.

That is the answer to question 4. One gets the prootdiately. For the actual
motion, the reactiolR will be normal to the virtual space, so it will coide with its
transverse components. For any other possible motam, tiie theorem (62) above, the
reaction will have the transverse comporenso it will be greater than its projectién

We point out that this theorem is true for not orilg total reaction force, but for
every partial reaction force individually.

31.— We shall now answer question 2 of the previous 8.

The reaction will be weakened by a component thatrinogonal to it when the
conrate of straint is strengthened.

Proof: We return to the syster(] and assume that new constraints have been added
to the constraints?%], such that the corresponding rheonomic subspace avitiract to
[B]. We lett denote the unit tensor in the spate which is orthogonal to the new

virtual subspacés in .

We can then write:
ct=c+(C-0).

The motion that corresponds to the constraifi] is a possible motion for the
constraintsB]. From the fundamental theorem, we will have:

R=CR=cR+(t-9 R= I3+(T:—QT?,



Wundheiler — Rheonomic geometry. Absolute mechanics. 44

if the reaction force for that motion is denotedRy sinceR lies in@. However,- c is
obviously the unit tensor in the subspace that lieg iand is transverse ® in it. The

vector € — ¢) R lies in that space, so it will be orthogonal@pand therefore t&, as
well, which was claimed.

Scleronomic constraints: We shall assume that the systef] js scleronomic, so

from (56),W=0,B=S=0, andJ; c = 0. The formula for the normal component to the
reaction will assume a remarkable form. We have:

3i:—vj¢Dkdj—¢ g.
Sincel] means differentiation i, we will have:
-VvVO.¢ =vIVOE =bb0.8 Vv V=H, vV,
sinceV obviously lies irB. We finally get:
(64) '?i = H vV —(Tj :

in which we have denoted the transverse component oktierajized force b)' . The
T

formula (64) is a generalization of the known intrinsgiations of motion on a surface:

MY _E 4R,
0

Composition of reactions.— We turn to problem 2 of 80 and formulate it as
follows: We consider the system8{], a= 1, ...,k, which arises from] by introducing

new constraints, and IR denote the reaction forces that replace those cantstfar a

well-defined state. How do we then obtain the reactlmat replaces all of those
constraints simultaneously for the same state? Bblatuwe assume that the constraints
are independent of each other.

We let 8] denote the system that will arise by the simultaiseimtroduction of all
constraints, let denote space i that is transverse to its virtual subspace, andJet
denote the space that is transvers®fa Since®s is the common intersection of &, ,
¢ will be, dually, the (smallest) union of &}. Hence:

The resultant reaction lies in the sneat space that contains all spaces e
transverse to the partial virtual spaces.

(65)
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The motion of the systen®]] will be a possible motion of the systefB] in any
case. We leR denote the resultant reaction and will then have:

o R=R,
from the fundamental theorem (62), which implies tletbm:

The projection of the resultant reactidarce onto the space that is orthogo
to a partial virtual space is equal the corresponding partial reaction force

(66)

We assert that the theorems (65) and (66) determinecediotian completely. In
fact, two vectors cannot exist &éthat have the same projections ontg] [as theorem

(65) would require], since their differentials would bectees in¢ whose projections
onto eache, would be zero, and would then be perpendicular to thenweler, such a
vector does not exist, since each vectot is a linear combination of certain vectors in
the€,, so it cannot be simultaneously orthogonal te&all

The meaning of the theorems that were proved is actin@lfollowing:

The resultant reaction does not depend directlynugiee state, but is determined
completely by the partial reactions and purely-getin data.

That consequence is by no means obvious, since thelpestictions do not
determine the state that they correspond to at all.
We will arrive at more definite results when the éeimion of each, is smaller than

the dimension ofl by one. The normal spaces will be simple lines tHémem (66) the
vectorsR! (a = 1, ..., k) will lie on each lines, and the resultant reactiati be a

vector that lies in the space that is spanned byRheand its projections onto the

direction of each of those vectors will have a havength that is equal to its own. One
can refer to the resulting reaction asoamogonal sum of the partial reactions.




