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 The main result of this article is a new and entirely-simple set of equations for non-
holonomic and rheonomic systems.  They read (§ 14): 
 

i
i k
k

v
W v

dt

δ
⋅+  = Q i + S i, 

 
and all terms in that have a mechanical meaning [i.e., they are invariant quantities (§ 23)].  
However, those equations are closely linked with an idea that leads to an adequate theory 
of rheonomic, non-holonomic systems (§ 22).  Up to now, such a thing did not exist, 
because the usual definition of scleronomic systems is itself useless, since the 
dependency of the kinetic potential on time might vanish for different choices of 
parameters.  Those and similar arguments necessarily lead to the realization that a 
correctly-constructed theory of mechanics is an invariant theory for the group of time-
dependent coordinate transformations.  Thanks to that new concept, mechanics will 
become identical to the multi-dimensional geometry of deformable spaces, which we will 
call rheonomic geometry (§ 1).  We shall build the foundations for the two theories in (§§ 
2-20), in which we appeal to the constructions of tensor calculus.  However, we shall 
employ a stronger conception of tensor calculus (§ 4), since we shall consider tensors 
under a larger group than that of the point-transformations. 
 The applications are scattered throughout different places.  For example, we say 
scleronomity (§ 26) and holonomity conditions (§ 20) to mean the conditions for the 
existence of an “energy integral” for rheonomic systems (§ 28) under the infinitesimal 
bending of a Riemann space (§ 10).    Everything is expressed in an invariant language.  
A theory of the reaction forces in a general dynamical system (§§ 30, 31) concludes the 
paper. 
 We shall assume that the elements of the ordinary tensor calculus are known. 
 
 
 
 
                                                
 (*) The present article represents a summary of an inaugural dissertation that was submitted to the 
mathematics-natural science faculty at the University of Warsaw. 
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Notations 
 

 Indices. – Following the example of Schouten’s school (1), the defining data of a 
quantity will always have the same “kernel” symbol in different coordinate systems, and 
the difference in coordinate systems will result exclusively in the type of indices.  
Different defining data for the same quantities in one and the same system will then be 
distinguished by symbols (“signatures”) that are connected with them; e.g.: 
 

v1, …, vn ; vx , vy , vz ; 
1x , 2x , …, nx . 

 
Different coordinate systems have basically-different systems for the distinguishing 
symbols (signatures); e.g.: 
 

1, 2, …, n ; 1, 2, …, n ;  1, 2, …, n ; 1 , 2 , …, n , etc. 
 
Different indices run through basically-different series of numbers, such that, e.g., xi and 
xa will be different systems of numbers, when not expressly stated otherwise.  We shall 
write a coordinate transformation as: 

xi = xi (xλ) . 
 
 In what follows, we shall maintain the conventions: 
 
 h, i, j, k = 1, 2, …, n ; α, β, γ = 1 , 2 , …, m ; 
 
 I, K = 1 , 2, …, n ; λ, µ = 1′ , 2′ , …, m′ . 
 
 Derivatives. – We shall always write: 
 

∂i , instead of  
ix

∂
∂

, ∂t , instead of  
t

∂
∂

, ixɺ  = 
idx

dt
, 

 
in which t will mean time exclusively for us.  δ will always mean the covariant 
differential. 
 
 Summation signs. – As is now becoming generally accepted, doubled indices that 
appear in a monomial will be automatically summed over. 
 We shall often employ an abbreviated notation in which tensors can be written 
without any indices, without any special explanation.  That will happen in the cases 
where the formulas can be calculated with an easy deciphering. 
 We shall denote spaces and subspaces by upper-case German symbols without 
exhibiting their dimension numbers.  A will always mean the initial space.  B, C, E are 

                                                
 (1) J. A. Schouten and E. R. van Kampen, “Zur Einbettungs- und Krümmungstheorie nichtholonomer 
Gebilde,” Math. Ann. 103 (1930).  
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subspaces.  We shall always denote tensors by only Latin symbols (except for dxi, ixɺ ), 
while non-tensors will be denoted by Greek symbols (exception: arc length element dσ). 
 
 

I 
 

Strong invariants of the inhomogeneous quadratic form. 
Rheonomic geometry. 

 
 1. Concept of rheonomic geometry. – We will understand rheonomic geometry to 
mean the geometry of a deformable space.  We construct its using the model of a surface 
that moves in three-dimensional space, which will also often connect us with the case of 
the deformable surface.  We suggest that the reader should refer all of our concepts to 
that case as an illustration.  In any event, the case of an arbitrary moving three-
dimensional medium can be drawn upon in order to make things more intuitive. 
 We will be compelled naturally into multi-dimensional geometry.  If we would like to 
arrive at natural quantities then we must operate with invariants.  However, what group 
shall we use as a basis?  In ordinary Riemannian geometry, we choose the group of point-
transformations: 
 
(1)    xi = xi (xI)  i = 1, …, n ;  I = 1 , 2 , …, n , 
 
and seek the invariants of the quadratic differential form: 
 

ds2 = aik dxi dxk. 
 
That will occur because in Riemann space all of the coordinate systems that are linked 
by (1) are equivalent (in the general non-Euclidian case).  What form do things take in a 
deformed space? 
 According to our program, if we consider the deformable surface in three-
dimensional space then we will see that (when the surface is not too rigid) one cannot 
speak of the “same point at different moments.”  That is because if we do not think of the 
surface as being material in its manifestation then how are we to recognize the point at 
different moments?  If one chooses a representation: 
 

xλ = xλ (xi, t) (λ = 1 , 2 , 3 ; i = 1, 2) 
 
then “the same point” will always correspond to the same xi.  However, one can just as 
well choose a different representation: 
 

xλ = xλ (xI, t) I = 1 , 2, 
in which: 
 
(2)  xi = xi (xI, t), 
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and neither of the two representations is distinguished from the others (in the general 
case).  Naturally, the transformation (2) will change the “identity” of the point on the 
surface.  According to what was done above, the quantities of “rheonomic geometry” 
must be invariant under the transformations (2), since the “identities” of their points will 
not represent any property of the moving surface, except perhaps when it is rigid.  We 
then clarify that rheonomic geometry is the invariant theory of the kinematical group : 
 
(3)  xi = xi (xI, t) i = 1, …, n ;  I = 1 , …, n . 
 
 Naturally, we can also introduce time-dependent coordinates into an ordinary 
Riemann space and thus create the appearance of rheonomity.  In such a case, we shall 
speak of a strongly-scleronomic space.  It will often be useful to see what the general 
rheonomic quantities will be in the strongly-scleronomic case.  That will often allow us to 
understand their meaning. 
 
 
 2. The elementary displacement. – In ordinary differential geometry, we denote an 
elementary displacement by an infinitesimal vector with the components dxi.  That notion 
cannot be expressed in rheonomic geometry: We must characterize the elementary 
displacement by means of the system of quantities dxi, dt.  There are two arguments in 
favor of that viewpoint: 
 
 1. If we consider all coordinate systems that are coupled by way of (2): 
 

xi = xi (xI, t) 
 
to be equivalent then the components of the displacement dxi in the system {i} will still 
not be determined by the dxI, since they also depend upon dt.  Two different 
displacements will have different components in different coordinate systems for the 
same dxI and different dt.  A displacement that is determined exactly – i.e., uniquely in all 
rheonomic systems – must also possess a well-define dt. 
 
 2. We consider the case of a moving surface.  A displacement – i.e., two infinitely-
close points A and B – is considered to be determined when it likewise corresponds to a 
well-defined displacement in the surrounding space.  Now, when the surface moves, the 
point-pair that covers A and B will depend upon the moment at which A and B were fixed 
in the surrounding space, so it will also depend upon the duration of the displacement, 
and thus, upon dt. 
 
 We then propose that: 
 
 We refer to the system of differentials dxi, dt as an elementary displacement in a 
rheonomic space. 
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 3. The inhomogeneous quadratic differential form. – Riemann geometry is the 
invariant theory of a quadratic differential form: 
 

ds2 = aik dxi dxk. 
 
Our model of the deformable surface teaches us that rheonomic geometry must be based 
upon the inhomogeneous form: 
 

ds2 = aik dxi dxk + 2αi dxi dt + A dt2. 
 
If we calculate that form for the moving surface, which is given by: 
 

xλ = xλ (xi, t) (λ = 1 , 2 , 3 ; i = 1, 2), 
then that will give: 

(4)    αi = 
i

x x
a

t x

λ µ

λµ
∂ ∂
∂ ∂

, A = 
x x

a
t t

λ µ

λµ
∂ ∂
∂ ∂

. 

 
(The differentiation ∂ / ∂t is done with constant xi.)   αi is then the projection of the 
guiding velocity ∂xλ / ∂t onto the surface, while the “guiding longitude” A is the guiding 
vis viva.  Naturally, neither quantity is intrinsic, since they are referred to a well-defined 
coordinate system.  However, we shall derive invariant quantities from them later. 
 
 
 4. Strong tensors. – We call a system vi of n numbers that transform according to the 
formulas: 

vI = 
I

i

i

x
v

x

∂
∂

 

under: 
(5)      xi = xi (xI, t) 
 
a strong (contravariant) vector, so it transforms like an ordinary vector under the 
geometric transformation: 
 
(6)      xi = xi (xI) . 
 
Covariant vectors and various tensors are defined similarly according to the well-known 
models. 
 To clarify, we remark that unlike the usual situation, the dxI do not define a vector, 
since one has: 

dxI = 
I I

i

i

x x
dx dt

x t

∂ ∂+
∂ ∂

. 

 
That fact defines the fundamental difference between the ordinary and the “rheonomic” 
theory of invariants.  By contrast: 
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I

f

x

∂
∂

 

 
will be a strongly-covariant vector only when f is a strong scalar.  In fact, from (6), as 
well as (5): 

I

f

x

∂
∂

= 
I

I i

f x

x x

∂ ∂
∂ ∂

. 

 
 The following simple and important theorem will allow one to construct strong 
tensors: 
 

(7)  If T is a strong tensor that depends upon ixɺ , xi, and t then so is 
i

T

x

∂
∂ɺ

. 

 
 In fact, one has: 

Ixɺ  =
I I

i

i

x x
x

x t

∂ ∂+
∂ ∂
ɺ , 

so 
I

i

x

x

∂
∂
ɺ

ɺ
 = 

I

i

x

x

∂
∂

. 

 

However, the 
I

i

x

x

∂
∂

 are independent of ixɺ .  If one then differentiates, e.g.: 

 

TK = 
K

i

i

x
T

x

∂
∂

,   K = 1 , …, n  

 
with respect to Ixɺ  then one will get the theorem directly. 
 
 
 5. The fundamental strong tensors. – We shall now start with the form: 
 

2T = 2i k i
ik ia x x xα+ɺ ɺ ɺ  + A, i, k = 1, …, n, 

 
which must be invariant under: 

xI = xI (xi, t), 
by assumption. 
 An application of the aforementioned theorem (7) will imply the strongly-covariant 
vector: 

vi = 
i

T

x

∂
∂ɺ

 = k
ika xɺ  + αi , 
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which we shall call the longitudinal guideline.  Another application of the same theorem 
(7) will yield the second-rank strongly-covariant “fundamental tensor”: 
 

i
k

v

x

∂
∂ɺ

= aik . 

 
 As usual, we introduce the reciprocal tensor: 
 

a ij ajk =
i
ka = 

1 ,

0 .

i k

i k

=
 ≠

 

If we now set: 
α i = aik αk 

  
then we will come to the strongly-contravariant vector: 
 

vi = aik vk = ixɺ  + α i . 
 
Naturally, dt is a strong scalar.  Hence: 
 

δxi = v i dt = dxi + α i dt 
 
will be a strong (infinitesimal) vector that we shall call the absolute elementary 
displacement.  It enters in place of dxi in our calculus. 
 In the strongly-scleronomic case, one will have α i = 0 for a suitably-chosen 
coordinate system.  We see that the absolute coordinates of the element coincide with the 
ordinary (distinguished) ones in this case.  The absolute components of the element then 
cancel the apparent rheonomity that was introduced by false coordinates, to some extent. 
 We shall now rewrite the quadratic fundamental form by means of the absolute 
displacement in order to arrive at new invariants: 
 

ds2 = aik (dxi + α i dt) (dxk + α k dt) + (A – aik α i α k) dt2, 
 

ds2 = aik δxi δxk + (A –α 
i α i ) dt2. 

 
The left-hand side and the first summand on the right are strongly invariant.  The same 
thing will also be true for: 

A = A – α 
i α i  

 
then.  We call A the transverse viv viva.  The reader might verify that A yields the square 

of the transverse component of the guiding velocity in the case of a rigid moving surface. 
 Naturally, one has A = 0 in the strongly-scleronomic case, because A = α 

i = 0 in the 

distinguished coordinate system, since the form is homogeneous. 
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 6. Strongly-covariant differential. – We must now go on to the definition of a 
“strong” differential.  Naturally, in order to duplicate the known theories, we must 
demand that (2): 
 

(8)  

1. The differential of  a scalar is equal to the ordinary differential :

= .

2. The differential of  a strong tensor is a tensor of  the same rank and type.

3. The differential is additive and "partial":

(

p dp

U

δ

δ + ) ; ( ) .

Along with these absolutely - necessary conditions, we add that :

4. The differential is also partially -applicable to a scalar product :

( ) .

5. The differential of  the f

i i i
i i i

V U V UV U V V U

U V U V V U

δ δ δ δ δ

δ δ δ

= + = +

= +
undamental tensor is zero :

= 0.ikaδ

















 

 
 Postulate 1. can be considered to be the definition of the covariant differential of a 
scalar.  If we set: 
 δv i = dv i + i k

k vω , 

 δvi = dvi   + i
k ivωɶ , 

 
(ω and ϖ are differential forms in dx i and dt), and analogously in the known way for 
tensors, then (8.3) will be fulfilled.  If we then require that: 
 

i i
k kω ϖ+ = 0 

 
then we will also achieve (8.4).  However, the most complicated postulates (8.2) and 
(8.5) still remain. 
 We will achieve our goal by means of a method that is very remarkable, although it is 
applied relatively little in tensor calculus.  We will employ it often, and we shall request 
that the reader should direct his attention to it.  It consists of introducing new tensors as 
the coefficients of scalar forms, which are, on the other hand, represented by the sums of 
ordinary (i.e., scalar) differentials of scalar forms.  That will permit one to exhibit the 
tensor property very easily, and in a sense by going back to its origin, namely, the 
differential of a scalar.  In that way, one can often be spared many calculations that are 
ordinarily connected with coordinate transformations. 
 We consider the expression: 
 
(9)   ϕ = 

1 2 3 2 1 3 3 1 2
( ) ( ) ( )i k i k i k

ik ik ika x x a x x a x xδ δ δ δ δ δ δ δ δ+ − , 

 
                                                
 (2) J. A. Schouten, Der Ricci-Kalkul, Berlin, Springer, 1924, pp. 63.  Our treatment is different from 
the one that was given there. 
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and propose to rewrite it as a differential form in 
3

kxδ .  The coefficients of that form will 

then give us a tensor that proves to be the strongly-covariant differential 
1 2

kxδ δ .  

However, in order for that to be possible, we must choose the elementary displacement 
suitably: That is the essential gist of the method (3). 
 We set (invariantly): 
 
(10)     

2
d t  = 

3
d t  = 0, 

so 
(11)    

2

ixδ  = 
2

id x , 
3

ixδ  = 
3

id x , 

 
and also choose the displacements 

1
d , 

2
d , 

3
d  to be commutable: 

 
(12)     i

a b
d d x = i

b a
d d x    (a, b = 1, 2, 3). 

 
We now develop (9), employ (10), (11), (12) once more, and obtain a form in 

3

ixδ .  The 

calculation takes the following form: 
 
 

1 2 3
( )i i

ika x xδ δ δ   =
1 2 3 1 3 2 1 2 3

i k k i i k
ik ik ika d d x x a d d x x d a d x xδ δ δ+ +  

 
  =

1 2 3 1 3 2 2 1 3 2 2 3

i k k i i j k i k
ik ik j ik t ika d d x x a d d x x a x d x x a x d t xδ δ δ δ δ δ+ + ∂ + ∂ , 

 
 

2 1 3
( )i i

ika x xδ δ δ   =
2 1 3 2 3 1

( ) ( )i k i
ik kd a d x x d x d tδ α δ+  

 
 =

2 1 3 1 2 3 2 1 3 2 1 3 2 3 1

i k i k j i k i k k
ik ik j ik j k ka d d x x a d x d d x a x d x x x d t x d d x d tδ δ δ α δ δ α+ + ∂ + ∂ + , 

 
 

3 1 2
( )i i

ika x xδ δ δ   =
3 1 2 3 2 1

( ) ( )i k i
ik kd a d x x d x d tδ α δ+  

 
 =

3 1 2 1 3 2 2 1 3 2 1 3 3 2 1

i j i k j i k j k j
ij ik k ij k j ja d d x d x a d x d d x a x d x x x d t x d d x d tδ δ α δ δ α+ + ∂ + ∂ + . 

 
The singly-underlined terms remain.  The rest possess 

3

kxδ  as a “factor” and must then 

define a strong tensor.  The doubly-underlined terms define the cyclic objects whose 
coefficients are: 
 

                                                
 (3) One encounters an expression of the form (9) in Th. de Donder, Théorie des invariants intégraux, 
Paris, 1927, pp. 114.  Naturally, the covariant differential can be derived in only ordinary Riemann space 
for him.  A suitable selection of displacements does not come into play there. 
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(13) 2 Γk, ij = ∂i ajk + ∂j aki − ∂k aij ; 
k
ijΓ  = akh Γh, ij 

 
in the way that follows from Riemannian geometry. 
 In addition, we set: 
 
(14)  2 Γkj = ∂t ajk + ∂j ak − ∂k aj ; 

k
jΓ  = akh Γhj 

 
analogously and get: 
 
  ϕ  = ,

3 1 2 2 1 2 1
[2 2 2 ]k i h j h

ik k hj khx a d x x d x x d tδ δ δ δ+ Γ + Γ  

 
   = 

1 2 2 1 2 1 3
2 [ ]i i h j i h k

ik hj ha d x x d x x d t xδ δ δ δ+ Γ + Γ . 

If we set: 
 
(15)   δvi = dvi + i h j i h

hj hv dx v dtΓ + Γ  

or 
(16)   δvh = dvh + i j i

hj i h iv dx v dtΓ + Γ , 

 
resp., for a strong vector vi, by definition, then it will be easy to see that this differential 
fulfills the conditions (8.2) and (8.5).  At first, we have: 
 
(14a)  ϕ = 

1 2 3
2 i k

ika x xδ δ δ , 

 
and since ϕ is a strong scalar and 

3

kxδ  is an arbitrary vector, it will follow from this that 

1 2

k
ika xδ δ  is a strong vector, and therefore 

1 2

ixδ δ , as well. 

 We further have: 

1 2
( )i

iv xδ δ = 
1 2 2 1

i i
i iv x x vδ δ δ δ+ . 

 
Here, the left-hand side is a strong scalar, while 

1 2

ixδ δ  is a strong vector, as was just 

proved.  Hence, 
2 1

i
ix vδ δ  is also a scalar, and therefore 

1
ivδ  is a strong vector.  If we start 

from the expression vi wi then we will prove analogously that δwi is a strong vector; 
things are similar for the higher tensors. 
 Finally, in order to prove (8.5) – i.e., δ aik = 0 – it suffices to set 

2

kxδ = 
3

kxδ  = δ xk in 

(9).  We then get: 
ϕ = 

1
( )i k

ika x xδ δ δ  = 
1

2 i k
ika x xδ δ δ . 

 
On the other hand, when we evaluate that expression in a partially-covariant way: 
 



Wundheiler – Rheonomic geometry. Absolute mechanics. 11 

ϕ = 
1 1

2i k i k
ik ika x x a x xδ δ δ δ δ δ+ . 

 
Due to (14a), it follows from this that: 
 

1

i k
ika x xδ δ δ  = 0 

for arbitrary δ xl, so: 
 
(17)    δ aik = 0. 
 
Q. E. D. 
 
 By covariant differentiation: 

a ij ajk =
i
ka = 

1

0





, 

we derive from that: 
 
(18)    δ a ik = 0. 
 
 Equations (17) and (18) insure that strong differentiation commutes with the raising 
and lowering of indices.  However, that shows the formal equivalence of the strong and 
ordinary covariant differentiation. 
 If there is a coordinate transformation that makes the i

hΓ  vanish everywhere and 

always (e.g., in the strongly-scleronomic case) then we will have a special case that 
relates to the general case in the same way that Euclidian geometry relates to 
Riemannian, in a certain sense. 
 
 
 7. The strongly-covariant derivative. – Along with the strongly-covariant 
differential, we consider the strongly-covariant derivative.  The differential is a linear 
form in the elementary displacement; e.g.: 
 

δ vi = 
i i

k i h k i h
hk hk

v v
dx dt v dx v dt

x t

∂ ∂+ + Γ + Γ
∂ ∂

. 

 
The coefficients of this form give rise to the definition of counterparts to the partial 
derivatives.  In fact, it follows from theorem (7) that the coefficient of dxk, namely: 
 

i

k

v

x dt

δ∂
∂ɺ

 = 
i

i h
hk

v
v

x

∂ + Γ
∂

 

 
is a strong tensor.  We denote it by ∇k v i and the corresponding operation by ∇k , in 
general.  It is identical to the ordinary covariant differentiation that we employ in 
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Riemannian geometry.  It proves to be not only an ordinary tensor, but also a strong one 

cf.,
k

f

x

∂ 
 ∂ 

. 

 By contrast, the coefficient of dt is not a strong tensor, and we must then look deeper 
to find the counterpart of the partial derivative with respect to time.  To that end, we 
transform the covariant differential into the form of an absolute elementary displacement.  
The coefficient of δx remains the same as it was before with dxi ; by contrast, for dt, we 
get, e.g.: 

i
i h j i
h j

v
v v

t
α∂ + Γ − ∇

∂
. 

 
 We call that construction the strongly-covariant partial derivative with respect to 
time and denote it by i

t v∇ . 

 For a strong scalar, we get, e.g.: 
 

∇t f = j
j

f f

t x
α∂ ∂−

∂ ∂
, 

 
instead of ∂f / ∂t .  In general, in order to arrive at the strong partial derivative with 
respect to t, we must pick off the quantity α j ∇j from the coefficient of dt.  We will often 
write the strong differential in the totally-strong form: 
 
(19)   dT = ∇k T δ xk +  ∇t T dt. 
 
 
 8. The rate of rate of strain tensor. – We will now discover a tensor that defines a 
peculiarity of rheonomic geometry, in a sense, and possesses no analogue in Riemannian 
geometry.  It proves to be definitive of the elongation of a space and vanishes for a 
moving rigid space.  Since a simply-infinite family of surfaces can always be regarded as 
a moving surface, it will also be important in the problem of infinitesimal isometries.  In 
that case (and in the case of a hypersurface, more generally), it is closely related to the 
second fundamental form [pp. 15, (24)]. 
 That tensor is intrinsic to rheonomic space in the sense that it is expressed solely in 
terms of the inhomogeneous fundamental form.  We will pursue it by means of the 
method that was set down on pp. 8, § 6. 
 We consider the scalar form: 
 

ψ = δ (aik δ xi δ xk) = ikd a  δ xi δ xk, 

 
and choose the commuting displacements in the following (invariant) way: 
 

dt = 0,  ixδ  = 0, so dxi  = − αi dt . 
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The displacement δ  is then purely-temporal, so to speak, and corresponds to a partial 
differentiation with respect to time, to some extent.  By contrast, the displacement δ is an 
interval between two “simultaneous” points.  ψ will give the dilatation of a purely-
“spatial” interval during the time dt.  In the strongly-scleronomic case, all of that is true 
verbatim, and ψ is naturally zero.  The dilatation continues to exist for a deformed 
surface.  Let us now calculate ψ. 
 
 ψ = δ (aik δ xi δ xk)  = 2i k j i

ik ijda x x a d x xδ δ δ δ+  

  = ( ) 2j i k j j i
t ik j ik ij ka a x x dt a x x dtα δ δ α δ δ∂ − ∂ − ∂  

  = ( )j j j i k
t ik j ik ij k kj ia a a a x x dtα α α δ δ∂ − ∂ − ∂ − ∂ . 

 
 The last step was necessary in order to obtain coefficients that are symmetric in i and 
k, because only the symmetric part will be determined by the values of a quadratic form.  
If one then sets: 
 
(21) Wik = 1

2 ( )j j j
t ik j ik ij k kj ia a a aα α α∂ − ∂ − ∂ − ∂  

   = 1
2 ( )t ik k i i ka α α∂ − ∇ − ∇ , 

 
as one convinces oneself by calculation, then one will have: 
 
(22)   δ (aik δ xi δ xk) =2 i k

ikW x x dtδ δ , 

 
and since δ xi is arbitrary, we conclude that Wik has the character of a tensor.  We call it 
the rate of strain tensor. 
 In order to ultimately justify this name, we consider an arbitrarily-moving surface and 
choose the “identities” of its points “normally”; i.e., in such a way that the paths of its 
points will be orthogonal trajectories to the family of all positions of the surface.  
Naturally, we will then have α i = 0, and the rate of strain tensor will reduce to 1

2 t ika∂ .  

That follows from the fact that it measures a purely-longitudinal stretching. 
 It follows immediately from the above that: 
 
 The necessary and sufficient condition for a “transversally” moving surface to be 
rigid is the vanishing of its rate of strain tensor. 
 
 The same thing can also be expressed as: 
 
 A simply-infinite family of surfaces is orthogonally isometric if and only if its rate of 
strain tensor vanishes, 
 
in which the parameter that distinguishes the surface must be interpreted as time.  We 
therefore emphasize that it is important for that condition to be strongly-invariant, so it 
will be entirely independent of the chosen way of representing the family of surfaces. 
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 We can also now give the necessary and sufficient condition for the strong 
scleronomity of space.  It reads: 
 
(23)    W = 0,  A = 0, 

 
in which A = A – αi α i (cf., pp. 5).  It is in fact necessary, since the form is homogeneous 

and independent of time in the distinguished coordinate system, so equations (23) will be 
true.  However, conversely, if (23) are also fulfilled then we shall choose the coordinates 
according to the condition αi = 0 (which is obviously always possible).  Since (23) is 
invariant, it must also be true in that coordinate system, so one will then have: 
 

∂t aik = 0, A = 0. 
Q. E. D. 
 
 
 9. Connection with the second fundamental form. – If an m-dimensional space B 

moves in an n-dimensional space A then it will sweep out a “tube” that is an m+1-

dimensional space C .  B is a hypersurface in that space at each moment, and therefore 

have a well-defined second fundamental form (the induced curvature).  We will show that 
it is connected closely with the rate of strain tensor. 
 We choose the coordinate system on B in such a way that the trajectories of constant 

xi prove to be orthogonal to the B.  If we set: 

 
xλ = xi,  λ = 1, …, m ; x0 = t 

 
then we will have a coordinate system {xλ} on the (m + 1)-dimensional tube C.  If δ  

means a displacement with ixδ  = 0, as in § 7, then since a i = 0 and δ xi = dxi here, the 
displacement will take place along the t-line, so it will be normal to B in C.  If we set: 

 
dxλ = B dtλ  

 
then Bλ will be the lateral velocity of B.  It is a strong vector, by its nature.  If we set: 

 
Bλ = B nλ 

 
then nλ will be the unit normal to B in C. 

 Now let δ be a “purely-spatial” displacement that commutes with tδ  when tδ = 0.  
We will then have ( dtδ  = 0!): 
 

xλδ δ  = xλδ δ = ( )B dtλδ = δ Bλ dt, 
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or: 
xλδ δ  = B dtλδ . 

 We now write: 
 

( )i k
ikd a x xδ δ  = ( )d x xλ

λδ δ = 2 x xλ
λδ δ δ  =2 B x dtλ

λδ δ = 2B x dtλ
λδ δ . 

 
The first term in this is equal to 2 i k

ikW x x dtδ δ , from (22).  However, due to the 

definition of the second fundamental form hik (3a), the latter is just − 2 i k
ikB h x x dtδ δ .  

Since Wik , as well as hik lies in B, that will imply that: 

 
(24)     Wik = − B hik .  
 
That is the stated relation. 
 That will immediately imply the following theorem (4): 
 
 If a space moves transversally without strain then it will be geodetic in the tube that is 
swept out. 
 
 The proof is immediate from the theorem on pp. 13, which demands that Wik = 0, and 
the relation hik = 0, which is true for geodetic hypersurfaces. 
 
 
 10. Conditions for bending without stretching. – We imagine a one-parameter 
family of spaces and pose the question of whether they can be mapped isometrically to 
each other; i.e., when they can be regarded as a series of positions of a space that moves 
without stretching.  For that to be true, it is necessary and sufficient that a representation 
of the family of spaces must exist: 

(25)    xλ = xλ (xi, t)   
1, , ,

1, ,

m

i n

λ =
=
…

…

  

 
for which ∂t aik = 0.  The rate of strain tensor allows us to formulate this problem 
precisely. 
 Different representations (25) represent different coordinate systems.  If there exists 
one of them for which ∂t aik = 0 then we will consider the corresponding value of ai and 
call wi a strong vector that has the components − αi in this distinguished coordinate 
system.  Due to the fact that ∂t aik = 0, from (21), we will have: 
 

2Wik = − ∇k αi − ∇i αk = ∇k wi + ∇i wk 
 

                                                
 (3a) Cf., e.g., Duschek-Mayer, Lehrbuch der Differentialgeometrie, Teubner, 1930, Bd. I, pp. 126, (13).  
The notations there are somewhat different. 
 (4) For a different approach to hypersurfaces in a Riemannian space, confer A. Pantini, “Sur la 
déformation le long de trajectoires orthogonal,” Bull. Soc. St. Cluj 6 (1931) and Mathematica 5 (1931). 
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in that coordinate system.  That relation between tensors must always exist when it exists 
in a special coordinate system.  The condition for the existence of a vector wi for which: 
 
(26)    ∇k wi + ∇i wk = 2Wik 
 
is then necessary for the isometry of the family of surfaces.  The fact that it is sufficient is 
implied by the converse argument.  If such a vector wi exists then we can choose a 
coordinate system in which αi = − wi . (That is certainly possible!)  However, the relation 
(26) will assume just the form ∂t aik = 0 in that coordinates. 
 The equation (26) strongly recalls the Killing  equation (5) for a rigid deformation and 
will go over to it as long as Wik = 0, so when a rigid orthogonal deformation exists.  One 
can infer even more conclusions from that equation, namely, ones that relate to the 
infinitesimal isometry and the presentation of all possible isometries (6). 
 
 
 11. Strongly-covariant commutation condition. – As is known, one says that two 
displacements dxi , idx   commute when: 
 
(27)     id dx  = id dx . 
 
In a rheonomic space, one must include: 
 

d dt  = d dt. 
 

The condition (27) is indeed an invariant relation, but its individual terms are obviously 
not vectors.  We pose the problem of rewriting it in a strongly-invariant way. 
 To that end, we consider the expression: 
 

i ix xδ δ δ δ−  = i i h j i h i i h j i h
hj h hj hd x x dx x dt d x x dx x dtδ δ δ δ δ δ+ Γ + Γ − − Γ + Γ . 

 
 Since i ix xδ δ δ δ−  is a strong tensor, so is the latter expression.  However, if we 

choose a normal coordinate system (i.e., α i = 0) then, since ixδ  = idx , δxi = dxi, it will 
be identical to: 
 

( )i h h
h x dt x dtδ δΓ − = 1

2 ( )ik h h
t kha a x dt x dtδ δ∂ −  = ( )i h h

hW x dt x dtδ δ− . 

 
That is the desired formula.  We can define the rate of strain tensor by means of this 
formula, and we shall actually pursue that path when we extend it (pp. 23). 
 
 
 
                                                
 (5) Cf., e.g., Ricci-Kalkul, pp. 212, (271).  
 (6) Cf., A. Wundheiler, “Conditions pour une surface flexible inextensible,” C R. Acad. Sci. Paris 193 
(1931).  
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II. 
 

Strong invariants of an inhomogeneous quadratic differential form and a Pfaffian 
system. – Rheononholonomic geometry. 

 
 12. Concept of rheononholonomic geometry. – In order to justify our applications 
to mechanics, we must adapt our concepts and results to non-holonomic and 
simultaneously rheonomic spaces.  We shall first give a general guideline.  If a surface 
moves in space according to the equations: 
 
 xi = xi (xα, t)   i = 1, 2, 3; α = 1 , 2 , 
 
 dxi = ib dxα

α  + v i dt, ibα = ∂α xi, v i = ∂t x
i 

 
then a surface element and a guiding velocity v i will exist at each moment at each point 
of the surface.  They are coupled to each other as derivatives of well-defined functions by 
certain integrability conditions, so they cannot be chosen freely. 
 We now renounce those conditions (and this is the fundamental step) and choose the 

ibα  and v i to be completely independent of each other.  We will then obtain a structure 
that consists of a time-dependent m-dimensional direction element and a vector at each 
point of the space.  We call it a non-holonomic, rheonomic subspace. 
 However, since such an element-vector pair is assumed at each point of space, we 
will not have the analogue of a moving surface here, but a family of moving surfaces.  If 
n is the dimension number of the subspace and m is that of the direction element then we 
will get a family of ∞n−m “surfaces” in the holonomic case.  One must probably keep that 
in mind when one would like to visualize non-holonomic geometry correctly.  Failing to 
observe that fact has led various authors to make errors in several instances (commuting 
displacements!). 
 We will assume that a rheononholonomic space is given by the equations: 
 
(29)    dxi = ib dxα

α  + v i dt,   α = 1 , …, m . 
 
It is easy to see that non-holonomic geometry must be the invariant theory of the groups: 
 
(30)    dxi = i I

Ia dx  + ω i dt,   I = 1 , …, n , 
 
(31)    dxα = b dxα λ

λ  + ϖα dt,   λ = 1′ , …, m′ . 
 
In fact, not only is a subspace specified by (29), but also a coordinate system.  If one 
performs a linear transformation (31) on the dxα then one will get another representation 
of that subspace: 

dxi = i ib dx v dtλ
λ + ɶ  
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that is just as good as the previous one.  The transformation (31) must then be invariant 
with respect to properties that depend upon the coordinate system. 
 There might be a distinguished coordinate system (e.g., when (29) is actually 
holonomic) in which the apparent anholonomity is only due to a clumsy choice of the 
dxα.  One must then distinguish sharply between non-holonomic subspaces and 
holonomic spaces in a non-holonomic representation.  A criterion for the apparent 
holonomity must be unconditionally invariant under (31); we will give that criterion later. 
 We then clarify that rheononholonomic geometry is the invariant theory of the group: 
 

dxi = i I
Ia dx  + ω i dt,  dxα = b dxα λ

λ  + ϖα dt, 

 
and an inhomogeneous quadratic differential form.  The concept of that geometry must 
be included as a special case of the one that was introduced up to now.  However, that 
shows that the increased complexity in comparison to the holonomic case is meaningless.  
That explains the fact that the properties of the first order of differentiation that are 
independent of the integrability conditions (and those are indeed the most important ones) 
obviously read the same in both cases. 
 For m = n, the subspace will be identical to the ambient space, and (31) will be simply 
a coordinate transformation.  We will check the meaning of our concepts in this case as 
an illustration. 
 We will denote rheononholonomic spaces by [B]. 

 Now, our problem consists of generalizing the concepts that were introduced in I. to 
non-holonomic subspaces.  One deals with, inter alia, the fundamental tensor, the 
longitudinal velocity, the strongly-covariant differential, the rate of strain tensor, etc.  All 
of those structures must go over to the usual ones in the holonomic case. 
 
 
 13. Projection into the virtual subspace. – Let the rheonomic, non-holonomic 
subspace be given by the equations: 
 
(32) dxi = ib dxα

α  + v i dt . 

 
They determine the virtual subspace B.  A vector v i lies in that subspace when it can be 

represented in the form: 
v i = ib vα

α . 

 
A vector is orthogonal to B when it is orthogonal to every vector that lies in B.  We 

adapt that concept to arbitrary tensors by referring them to a well-defined index. 
 A vector can be decomposed into two summands, one of which lies in B, and the 

other of which is, by contrast, orthogonal to B.  We call the former summands the 

longitudinal components, or the projection of the vector onto B, while the latter are the 

transverse components. 
 One easily verifies the following theorems: If we set: 
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bαβ = i k
ika b bα β , bαγ bγβ = bα

β  = 
1

0

α β
α β

=
 ≠

,  ibα = bαβ bβ l = bαβ bik 
kbβ , 

 
i
kb = i

kb bα
α   (one always has bb = b!) 

 
then the displacements: 

v = bv 
 
will always give the projections of vectors v onto B, and indeed with different 

coordinates: Projection is equivalent to multiplication by b.  We let b denote the unit 
tensor on B and consider the quantities (33) to be its various representations in terms of 

components.  Obviously, one always (i.e., for every component) has, symbolically: 
 

bb = b. 
 
 If a tensor has the index a in some position then one can replace it with the more 
general index i by using the formula: 
 

T i = ib Tα
α  (Ti = ib Tα

α , resp.). 

If we set: 
c = a – b 

 
symbolically then c will be the unit tensor on the space C that is orthogonal to B. 

 The concepts of projection and of lying in B will also carry over to tensors by 

relativizing them with respect to one or more indices.  If a tensor lies in B with respect to 

one index then it will be orthogonal to C relative to that index, and conversely. 

 
 
 14. Non-holonomic fundamental quantities and canonical form. (Cf., § 5) – We 
first have: 
 
(34)   dxi = ib dxα

α  + (α i + v i) dt, δv i = ib xα
α ɺ  + (α i + v i) . 

 
 Just as in theorem (7) on pp. 6, we will prove that /iv xα∂ ∂ɺ  = ibα  is a strong vector 

relative to the index i.  However, vi is a scalar relative to α, so /iv xα∂ ∂ɺ  = ibα  is a 

strongly-covariant vector relative to α. 
 In order find the fundamental form for the subspace, we introduce (34) into the 
expression ds2.  That will give: 
 

ds2 = bαβ dxα dxβ + 2βα dxα dt + B dt2. 
One has: 
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βα = ( )i i ib vα α +   

 
in this.  As on pp. 7, it follows from this that: 
 

bαβ = i k
ika b bα β  

 
is a strongly-covariant tensor in regard to α, β.  Likewise, as in § 5, it follows further 
that: 
 vα = b xβ

αβ αβ+ɺ ,  xαδ = b dx dtβ
αβ αβ+ , 

 
 vα = xβ αβ+ɺ ,  xαδ = dx dtα αβ+  
 
are strong vectors.  The underline below the symbols shall refer to the subspace.  We call 
these constructions the longitudinal velocities and the absolute elementary displacements 
in [B]. 

 We can now rewrite equation (34) into the form: 
 

δxi = ( )i i i ib x v b dtα α
α αδ α β+ + − , 

 
from which it will now follow that: 

Bi = i i iv b α
αα β+ −  

 
is a strong vector.  We call it the transverse velocity and write: 
 
(35)   δ xi = ib xα

α δ  + Bi dt,  vi = ib vα
α  + Bi. 

 
 That is a canonical and completely-invariant form for the equations of [B].  We shall 

give its geometric interpretation. 
 We see immediately that B i is orthogonal to B.  In fact: 

 
i

ib Bα  = ( )i i a
i ib v b bα α β

βα β+ − = ibα (α i + v i) − β α = 0. 

 
It then follows that ib vα

α  lies in B, and therefore v α, as well. 

 It follows from equations (35) that each vector that belongs to [B] has components Bi 

that are orthogonal to B .  We can write that as: 

 
(36)    c δx = B dt, cv = B, 
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if we write the unit tensor on the orthogonal space C by c.  The geometric interpretation 

for m = 2, n = 3 is very intuitive.  The endpoints of all vectors that belong to [B] that 

issue from the same point lie on the same plane, which is parallel to the virtual plane B. 

 We further have the invariant: 
B = B – βα βα, 

 
which is analogous to A.  However, we have: 

 
(37) ds2 = δxi δxi + A dt2 . 

 
If we now substitute (35) in formula (37) then we will get: 
 

ds2 = x xα
αδ δ  + (A + Bi B i) dt2 ≡ x xα

αδ δ  + B dt2, 

 
from which, it will follow that: 

B = A + Bi B i. 

 
That is the relationship between the transverse viv vivas of the spaces A and B. 

 
 
 15. The strongly-covariant differential in B. – Let B be the virtual subspace of a 

rheonomic space [B], and let b be its unit tensor.  If vi is a vector field that lies in B then 

dvi will no longer lie in B, in general.  We must take care to find a strongly-covariant 

differential that satisfies the conditions (8), and itself lies in B for quantities that lie in B, 

in addition. 
 We shall call the expression: 

vδ  = b δv 
 
the differential that is induced in B, or simply, the B-differential, which represents the 

projection of the ordinary covariant differential onto B. 

 If T is a tensor of higher rank then we will get its B-differential when we project each 

index of the ordinary differential onto B. 

 It is obvious that the B-differential fulfills the conditions 1, 2, 3, 4 of § 6.  We shall 

then verify 5.  In fact, if v lies in B then we will have: 

 
vα = bαβ v

β, 
so 

vδ  = v b b vδ δ+  = v b vδ δ+  
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since vδ , which lies in B, will not be altered by displacement by b.  We then have: 

 
v bδ  = 0 

 
for an arbitrary vector v in B, and since bδ  likewise lies in B, we will get bδ  = 0, as 

claimed. 
 Hence, the fundamental tensor b of B is likewise “constant” with respect to the B-

differential, just as the fundamental tensor a is constant with respect to the B-differential.  

A complete analogy exists here.  It is clear that the induced differential coincides with the 
ordinary differential in the holonomic case, since it is determined completely by the five 
conditions then.  If B coincides with A then the other two differential operations will also 

coincide. 
 One can give a differential form to uδ : 
 
 uαδ  = duα + i

i u dx u dtα β α β
β βΓ + Γ , 

 
 uβδ  = duβ − i

i u dx u dtα α
β β β αΓ − Γ  

 
that is similar to that of the A-differential.  However, that is hardly interesting, since we 

will not use that explicit form, except in § 19. 
 
 
 16. Induced curvature. – We began with the remark that the A-differential of B-

quantities does not lie in B, so it will be different from the B-differential.  We then 

calculate the difference of two quantities.  We have: 
 

δ u = b δ u + u δ b = uδ  + u δ b 
or [cf., (19)]: 

δ ui − iuδ  = k i
ku bδ = k i j k i

j k t ku b x u b dtδ∇ + ∇ . 

 
When δx lies in B, that form will temporarily determine the projections of the 

coefficients of B relative to k.  We get two tensors for the induced curvature (7): 

 

(38)   iHβα
⋅⋅  = jk i

j kb b bα β ∇ , iHα
⋅⋅  = k i

t kb bα ∇ . 

 

                                                
 (7) Introduced by Schouten, Ricci-Kalkül, pp. 158, (197), pp. 162, (82), in which one will also find 
details about it.  For non-holonomic space: Math. Zeit. 30, footnote (1).  Proof of the holonomity condition: 
Schouten-Kampen, pp. 776. 
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 The symmetry of the tensor iHαβ
⋅⋅  in the indices β and α is equivalent to the 

holonomity of B.  That is an important theorem that was found by Schouten (7).  Along 

with iHβα
⋅⋅ , we will often employ the equivalent tensor: 

 
i

jkH ⋅⋅ = i
j kb b Hβ α

βα , 

 
which is symmetric (antisymmetric, resp.) at the same time as iHβα

⋅⋅ . 

  
 
 17. Centrifugal vector for non-holonomic spaces. – We now introduce a vector Sα 
by means of the invariant form (cf., pp. 8): 
 
(39)    1

2 ( )i
idt B xδ δ δ⋯B = S x dtα

α δ . 

 
Here, we have ixδ  = iB dt , so δ xi lies in B.  δ  is the purely-temporal, so to speak, with 

respect to [B], and δ is purely spatial.  In addition, we assume that δ and δ  commute.  In 

order to prevent any misunderstandings, we expressly remark that δ xi will no longer 
belong to B after we apply the displacement δ , such that ( )i

iB xδ δ  must be non-zero. 

 Due to the commutation relation (28), one has: 
 

ixδ δ = i i j
jx W x dtδ δ δ+  = ( )i i j

jB dt W x dtδ δ+ , 

 
so (39) is actually a form in δ xα.  It is easy to calculate Sα explicitly.  One will get: 
 
(39*)   Sα = 1

2( )i k k
i t i k i ikb B B B W Bα ∂ − ∇ − ∇ −A . 

  
Sα plays a fundamental role in mechanical applications, and because of that, it will be 
called the absolute centrifugal force.  In addition, one will meet up with it in the 
holonomity conditions. 
 
 
 18. Rate of strain tensor for non-holonomic spaces. – As we asserted on pp. 16, we 
will now introduce the rate of strain tensor for non-holonomic spaces by starting with the 
commutation condition.  Here, we will encounter the following complication: If two 
fields δ xi and ixδ  lie in [B] then they will not commute, in general.  We shall then 

modify the process in the sense that we will require only commutation along a curve that 
lies in [B], which can always be achieved.  By repeated differentiation of: 

 
δ xi = ixδ + B i dt,  

we will obtain: 
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ixδ δ  = i i ix B dt B dtδ δ δ δ+ + = i i k i i
k tx B x dt B dt dt B dtδ δ δ δ+ ∇ + ∇ + . 

 
Projecting onto B will yield: 
 

i
ib xα δ δ  = i k i

i k i tx b B x dt b B dt dtα α αδ δ δ+ ∇ + ∇ . 

Similarly: 
i

ib xα δ δ  = i k i
i k i tx b B x dt b B dt dtα α αδ δ δ+ ∇ + ∇ . 

 
We subtract corresponding terms: 
 

( )x xα αδ δ δ δ−  = ( ) ( )i i i k k
i i kb x x b B x dt x dtα αδ δ δ δ δ δ− + ∇ − . 

 
If δ and δ  commute along [B]-curve in A then we can apply (28) to the points of that 

curve and get: 
( ) xαδ δ δ δ− = ( )( )i i k k

i k kb W B x dt x dtα δ δ+ ∇ − . 

However, since: 
k kx dt x dtδ δ−  = k kx dt x dtδ δ− , 

we will have: 
( ) xαδ δ δ δ−  = ( )( )i i k k

i k kb W B x dt x dtα δ δ+ ∇ − , 

 
and since δ and δ  lie in B, that will give: 

 
( ) xαδ δ δ δ−  = ( )( )k i i

i k kb b W B x dt x dtα β β
β δ δ+ ∇ − . 

Finally, we have: 
 

k i
i kb b Bα

β ∇ = j k i
i i kb b b Bα

β ∇  = − i k j
i k iB b b bα

β ∇  = − i
iB H α

β
⋅

⋅ , 

 
from (38).  Thus, we ultimately have: 
 

( ) xαδ δ δ δ−  = ( )( )k i i
i k ib b W B H x dt x dtα β β

β βα δ δ⋅ ⋅− − . 

 
 We call δ xi and ixδ , which are the projections of commuting differentials onto B, 

quasi-commuting differentials.  If [B] is holonomic then the quasi-commuting 

differentials will almost commute, and the formula will determine the rate of strain tensor 
of the holonomic space A. 

 We then set: 
 
(40)    Wαβ  = k i i

i k ib b W B Hα
β βα

⋅ ⋅− , 

by definition. 
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 It will then follow from this formula that when the subspace is either geodetic or 
homogeneous (Bi = 0), the rate of strain tensor for the ambient space will be the same as 
the one for the subspace.  Due to the holonomity condition (pp. 23), we will have 
immediately that: 
 
 The rate of strain tensor Wαβ will be symmetric if and only if the subspace is 
holonomic. 
 
 
 19. Curvature tensor. – If we start with the expression for the “cyclic differential”: 
 

∆uα = ( )uαδ δ δ δ−  
then we will get: 
 
(41)   ( )uαδ δ δ δ− = ( )i k i i

ik iR x x R u x dt x dtα α β
β βδ δ δ δ⋅ ⋅+ −  

 
after a well-known calculation in Riemannian geometry.  Now, we must introduce the 
absolute displacements δ xi, ixδ  on the right-hand side in place of dxi, idx , in order to 
have a completely strongly-invariant form. 
 For the strong curvature tensors ikRα

β⋅  and iRα
β⋅ , we have: 

 
 ikRα

β⋅ = k i i k k i i k
α α α γ α γ

β β γ β γ β∂ Γ − ∂ Γ + Γ Γ − Γ Γ , 

 
 iRα

β⋅ = k
t i i i i k ikRα α α γ α γ α

β β γ β γ β βα∂ Γ − ∂ Γ + Γ Γ − Γ Γ − . 

 
However, we must make a few remarks.  In the B-differential, the differentiated vector u 

indeed lies in B, but the displacement along which one calculates the differential is 

entirely arbitrary.  For that reason, in the expression for the B-differential: 

 
uαδ = duα + i

i u dx u dtα β α β
β βΓ + Γ , 

 
the third “differential” index i in the i

α
βΓ  can be coupled with an arbitrary quantity.  

However, that implies that the first two (“vector”) indices of the curvature tensors have 
arbitrary positions in B, while the last two (i.e., the “differential”) indices have arbitrary 

positions in the ambient space.  The introduction of such quantities insures a greater 
flexibility in the devices used to treat problems in curvature; e.g., the variational 
equations (§ 29). 
 If B coincides with A then all calculations will remain valid, and we will get simply 

the curvature tensors of the holonomic space A, which lie arbitrarily in all of their 

indices.  We point out once more that the general quantities refer to vectors that indeed 
lie in A, but are displaced arbitrarily. 
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 20. Holonomity condition. – As was mentioned above, the equations: 
 

dxi = ib dxα
α + vi dt 

 
will determine not only a subspace, but also a coordinate system in it.  It might happen 
that the subspace is holonomic, but the coordinate system {α} is not.  For that reason, the 
conditions that are usually given: 

k i
kb bβ α∂  = k i

kb bα β∂  

 
cannot be fulfilled at all, even for holonomic subspaces.  The correct holonomity 
condition must be invariant under the transformation: 
 

dxα = b dxα λ
λ  + ϖα dt, 

as well as: 
dxi = i I

Ia dx  + ω i dt. 

 
This problem can be solved only within the language of rheononholomic geometry. 
 We shall now consider the rheonomic subspace [B].  Should it be holonomic then the 

virtual space B, as well as the subspace C that arises from its motion, must be holonomic.  

However, that is not satisfied: The vector B i, which belongs to our rheonomic subspace, 
must be precisely the “transverse velocity.” 
 If B is holonomic then, from the theorem that was stated on pp. 23, one must have: 

 
(42)     lHβα

⋅ ⋅  = lHαβ
⋅ ⋅ . 

 
Similarly, the holonomity of C demands that: 

 

(43)    jk i
k j j ke e e∇  = j k i

j k k je e e∇ , 

 
in which i

ke  means the unit tensor on C.  We must express those conditions in terms of b 

and Bi.  If we set: 
Bi = B n i, 

 
in which n i is a unit vector, then we will easily verify that: 

 
(44) i

ke  = i
kb  + n i nk . 

 
We now develop (43) on the basis of (44) and i h

hb B = 0: 

 
jk i

k j j ke e e∇  = ( )h k i h k i h k i h k k h i
h k k h h k k h h k k h h k k h k hb b b b b n n n n n n e b n n b n n e∇ + ∇ + ∇ + + ∇ . 
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 The symmetry of the third summand is obvious.  That of the first follows from (42).  
The symmetry of the second one follows from the following calculation: 
 

h k i
h k k hb b n n∇ = h k i

h k k hb b n n∇ = h j h i
h h j k hb b b n n∇ = − i j k h

h h k k jn n b b b∇ = − i h
h khn n H ⋅ ⋅ , 

 
and due to (42), that expression is symmetric.  What will remain is the expression: 
 

( )h k k h i
h k k h k hb n n b n n e+ ∇ . 

If we introduce the notation: 
Φ[ik] = Φik − Φki 

 
then we can rewrite (43) in the form: 
 

[ ]( )h k k h i
h k k h k hb n n b n n e+ ∇  = 0. 

 
We contract that with uh, and then with uk, and obtain the equivalent conditions: 
 

[ ]
h k i
h k hb u e∇  = 0, [ ]

k h i
k k hb u e∇  = 0, 

 
which we will shall ultimately write in the form: 
 
(45)    [ ] ( )h k i i

h k h hb u b u u∇ +  = 0. 

 
 What still remains is the condition for B i.  If [B] is holonomic then the displacement 

δ  in (39) of the element δ xi will obviously lead to another one that lies in B.  Hence, 

one will then have not only Bi δxi = 0, but also δ (Bi δxi) = 0, and one will get: 
 
(46)     Sα = 1

2 α∂ B . 

 
The conditions (42), (45), and (46) are the desired necessary and sufficient holonomity 
conditions for rheonomic subspaces. 
 
 

III. 
 

The absolute equations of mechanics. 
 

 21. Overview of the application of tensor calculus to mechanics. – In the year 
1900 (8), the creators of the absolute differential calculus, Ricci and Levi-Civita , had 
already written out the equations of motion for a scleronomic and holonomic mechanical 

                                                
 (8) Ricci and Levi-Civita , “Méthodes du calcul différentel absolu et leurs applications,” Math. Ann. 54 
(1900), pp. 179. [In Polish translation: Prace matematyczno-fizyczne 12 (1901).] 
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system in terms of the tensor symbolism, in which the covariant derivative was 
employed.  That form includes quantities that are invariant under only the point-
transformations: 
(47)     xi = xi (xI ). 
 
In that way, the mechanical system is considered to be a point in a multi-dimensional 
Riemannian space, namely, the configuration space, whose fundamental form is: 
 
(48)    ds2 = 2T dt2 = aik dxi dxk , 
 
in which 2T is the vis viva of the system.  That suggests the possibility of finding cyclic 
coordinates by means of that multi-dimensional picture and giving the conditions for the 
existence of an integral that is linear in the generalized velocities. 
 The advantages that one can glean from that multi-dimensional representation have 
their roots in the fact that one can employ the intuitions that arise from three-dimensional 
space in order to envision known theorems (e.g., Hertz’s principle of the straightest path), 
but also guess some new results with their help.  One then, e.g., obtain variational 
equations for the paths of mechanical systems by generalizing the Jacobi equations for 
the geodetic deviation [§ 29, (19)].  In the same way, we have obtained our theorems on 
reaction forces that are given in §§ 30, 31 by generalizing the known intrinsic equations 
of motion.  The same intrinsic equations make it very simple to infer a series of 
consequences in regard to the evolution of the paths of mechanical systems, the evolution 
of the motion, etc., that Painlevé had obtained in a different, more formal way (9). 
 The first systematic treatment of mechanics by means of the tensor calculus goes 
back to J. L. Synge (1926) (10).  He employed two types of multi-dimensional pictures 
for mechanical systems.  One of them is the one that was discussed before in terms of the 
“kinematical” ds2 (48), while the other one is based upon the ds2 of the action: 
 

ds2 = 2 (h – V) T dt2. 
 
 Synge likewise wrote the mechanical equations for scleronomic and non-holonomic 
systems by means of the covariant derivative, but as an application of it, he gave only 
some considerations in regard to the stability of motion that were based upon the 
variational equations that Levi-Civita  had obtained before that generalized the Jacobi 
equations.  He also gave criteria for the existence of n – 1 cyclic coordinates. 
 However, his main contribution was that he was the first to point out the important 
advantage that one can gain from the multi-dimensional pictures: Namely, the difference 
between holonomic and non-holonomic systems almost vanishes formally with that way 
of conceptualizing them, which one must naturally take cum grano salis.  That 
conclusion is not so glaring in Synge’s symbolism.  One can say the same thing for 
Vrănceanu’s equations for non-holonomic systems, which were dealt with in a series of 

                                                
 (9) P. Painlevé, “Sur les trajectoires réelles,” Bull. Soc. Math. de France (1894).  
 (10) J. L. Synge, “On the Geometry of Dynamics,” Phil. Trans. Roy. Soc. A226 (1926). – “Geodesics in 
non-holonomic Geometry,” Math. Ann. 99 (1928). – “Hodographs of General Dynamical Systems,” Trans. 
Roy. Soc. of Canada 25 (1931). 
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notes by that author in the Accademia dei Lincei (11).  He calculated with the orthogonal 
congruences that were characteristic of the older Italian school, and the transparency of 
his methods was eclipsed by what could be attained by applying Schouten’s symbolism.  
That was first done in 1928 by Horák  (12).  Vrănceanu’s applications, like those of 
Synge, are restricted to the stability of conservative systems. 
 All of those investigations were basically carried out for only scleronomic systems.  
Indeed, Horák  also wrote his equations for rheonomic systems, but as far as their clarity 
was concerned, they were not distinguished by anything that could make them supersede 
the older explicit equations (e.g., Woronetz, Tzénoff, Hamel).  The same thing is true to 
a even greater degree for Vrănceanu, who addressed the problem once more a year ago 
(13) and wrote out the equations for rheonomic and non-holonomic systems in terms of 
his symbolism. 
 
 
 22. Absolute mechanics. – The basis for all of that inconvenience is the following: 
The theory of rheonomic systems will prove to be simple only when it is constructed 
using the right terminology.  However, in this case, “right” means that only those terms 
that are independent of the admissible coordinate systems can have an intrinsic meaning.  
Now it is clear (and this is the crux of the matter) that for a rheonomic system that is 
referred to the parameters x i, all parameter systems that are coupled by a time-dependent 
transformation: 
(49)     xi = ( , )i Ix x t  
 
are completely equivalent and cannot be distinguished.  If one imagines a point on a 
deformable surface then that will be clear with no further discussion.  One must consider 
mechanical quantities, in the true sense, to be systems that are invariant under these 
kinematical transformations (49), and not only the “geometric” ones (47), and thus, ones 
that behave tensorially.  By recasting the known term “absolute differential calculus,” we 
will refer to the representation of mechanics in such “strongly-invariant” terms as 
absolute mechanics, and call those strongly-invariant quantities absolute mechanical 
quantities.  Formally, it will be identical in many aspects with the rheonomic geometry 
that was developed above or also with the “strong” tensor calculus. 
 We must go a step further in order to justify the non-holonomic systems.  If such a 
thing is given by the condition equations: 
 

dxi = ib dxα
α  + v i dt 

 
then simultaneously-independent “non-holonomic” parameters will be introduced for that 
system.  As was already discussed on pp. 17 for a similar situation, all other 
representations that one can obtain by applying the parameter transformations: 

                                                
 (11) G. Vrănceanu, “Sopra le equazioni del moto di una sistema anomolo,” Rend. Lincei 4 (1926). – 
“Sopra la stabilità geodetica,” ibid. 5 (1927). − “Stabilità geodetica. Applicazioni ai sistemi conservati della 
Meccanica” ibid. 5 (1927). – “Sullo scostamento geodetico nelle varietà anolome,” ibid. 6 (1928). – “Sopra 
i sistemi anolonomi a legami dipendenti dal tempo,” ibid. 13 (1931). 
 (12) Z. Horák , “Sur les systèmes non holonomes,” Bull. Int. Acad. Tchéque 24 (1928).  
 (13) Cf., the last of the cited notes by Vr ănceanu. 
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(50)    dxα = b dxα λ
λ  + ϖα dt 

 
will be entirely equivalent and undistinguishable.  Therefore, if a quantity that is referred 
to a non-holonomic system is to have an intrinsic meaning – so it will be an “absolute 
mechanical quantity” – then it must behave invariantly under the transformations (50).  It 
is only in that picture that one can hit the nail on the head when one would like to 
construct an adequate theory of rheonomic systems, and it is only with those quantities 
that the explicit equations of the general systems can prove to be simple.  We then 
ultimately establish that: 
 
 “Absolute mechanics” refers to the invariant theory of the non-holonomic and 
rheonomic transformations (50) and the quadratic form for kinetic energy: 
 

2T = 2i k i
ik ia x x xα+ɺ ɺ ɺ  + A . 

 
 The applications that we shall give later will presumably seem to justify that 
viewpoint.  However, we expressly emphasize that absolute mechanics is only in setting 
for true rheonomic and non-holonomic systems: Naturally, invariance under ordinary 
point-transformations is achieved completely for a scleronomic system, in which there is 
a distinguished coordinate system. 
 
 
 23. Mechanical interpretation of the “strong” quantities. – Next, let a holonomic 
mechanical system be referred to the parameters xi.  Let its vis viva be: 
 
(51)    2T = 2i k i

ik ia x x xα+ɺ ɺ ɺ  + A . 

 
In § 5, we called the quantities αi “longitudinal guideline.”  If one imagines, e.g., a point 
that moves on a surface in three-dimensional space: 
 

xλ = xλ (xi, t)   
1, 2, 3

1,2i

λ =
=

 

 
then one can easily calculate, as on pp. 5 (4), that αi is just the projection of the guiding 
velocity onto the surface.  However, A will be the square of the guiding velocity, and 
therefore the “guiding vis viva.”  Naturally, those two quantities depend upon the chosen 
coordinate system for the surface, so upon the “identity” of the point on the surface, and 
are thus not absolute mechanical quantities.  However, in return, the “transverse vis viva”: 
 

A = A – αi α i 
 
(i.e., in our example, the square of the guiding vis viva in the absolute direction that is 
orthogonal to the surface) is a strong quantity. 
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 Similarly, xi is not a strong quantity, since it likewise depends upon chosen “identity” 
of the point on the surface.  By contrast, if we take the quantities: 
 

vi = ixɺ  + α i, 
 
then we can verify in our illustrative example that they are the projections of the absolute 
velocity of a point that moves with the surface onto that surface.  However, that must 
already be an absolute quantity, as we proved on pp. 6.  We shall call it the longitudinal 
velocity. 
 Let us now go on to non-holonomic systems.  First of all, what does the equation: 
 

dxi = ib dxα
α  + vi dt 

 
mean?  We see that it couples the system, and thus, the representative point of mass 1 in 
the n-dimensional rheonomic space with the fundamental form (51), in such a way that its 
“velocity” cannot be arbitrary.  It must be composed of a relative velocity ixɺ  that lies in 
the virtual space and an induced guiding velocity.  However, neither of them is invariant, 
which was pointed out above.  By contrast, if we go over to the canonical strongly-
invariant form [cf., (35), (36)]: 

vi = iv  + Bi, i k
kc v = Bi 

 
then that will show that the “transverse” components of the “total” velocity are 
determined completely; that is what we mean by transverse guidance.  One can interpret 
that by saying that the endpoints of the possible velocities of material points that are 
found at the location M must lie in an m-dimensional “plane” that is parallel to the virtual 
plane B at the distance Bi.  If Bi is equal to zero then that will simplify to a restriction on 

the possible velocities only in regard to their directions, without restricting their 
magnitudes.  However, in the general case, the magnitude of the velocity will be coupled 
with its direction. 
 B2 = Bi B

i will be the relative transverse vis viva.  By contrast: 
 

B = A + Bi B
i 

 
will be the “total” guiding vis viva.  If the constraints are actually holonomic then all of 
those quantities will go over to the aforementioned quantities v i and A. 
 
 
 24. Absolute equations for a holonomic system. – We are now dealing with a form 
of the equations of motion that are not only invariant under the rheonomic 
transformations (since one of them is already Lagrange’s equation), but also consist of 
nothing but absolute mechanical quantities.  That is no longer the case for the Lagrangian 
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equations.  Indeed, vi = 
i

T

x

∂
∂ɺ

 is a strong quantity, but that is no longer true for 
i

d T

dt x

∂
∂ɺ

 and 

i

T

x

∂
∂

. 

 We start from Hamilton’s principle in the form: 
 

(52)     ( )i
iT Q x dtδ δ+∫ = 0 

 
and calculate with strong covariants from the outset.  δ denotes the strong differential 
along the path, and δ means a “strongly-covariant variation” that commutes with it.  We 
have ( tδ  = 0!): 

δ 2T = δ (v2 + A) = δ (vi v i + A) = 2vi δ v i + δ A. 
Furthermore: 

i
iv v dtδ  = ( )i

iv v dtδ  = i
iv xδ δ , 

 
and from the commutation relations, this is: 
 

= i i j
i i jv x v W x dtδ δ δ⋅−  = ( )i i i j

i i i jv x v x v W x dtδ δ δ δ δ⋅− − . 

 
The complete differential integrates out in (52), and what will remain is: 
 

− j ii
i j

v
W v x dt

dt

δ δ⋅
 + 
 

. 

We now write: 
  δ A = i

i xδ∂
�
A  = 2 Si δxi, 

 
from (39*).  We then get the equations of motion in the form: 
 

(53)    ji
i j

v
W v

dt

δ
⋅+  = Si + Qi . 

 
 The reader will easily verify that, e.g., in the case of a rotating plane, A will be the 

potential of the centrifugal force and Si will be the centrifugal force itself.  Therefore, the 
term absolute centrifugal vector is appropriate.  Wij v j recalls the Coriolis force, but it is 
something quite different, since the Coriolis force is not an absolute quantity, and it will 
vanish in a suitable coordinate system as only a relative, fictitious force.  One sees 
directly the sort of simplifications that will enter when W = 0. 
 It is, perhaps, interesting to consider the known theory of relative motion from that 
standpoint.  In that theory, we have a point in ordinary space, so a strongly-scleronomic 
system.  The equations of equations reduce to the “Newtonian” form here: 
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iv

dt

δ
 = Q i 

 
If the coordinate system is rheonomic (which is just the case for moving axes) then one 
can specify the equation as follows: 
 

i
i h j i h
hj h

dv
v v v

dt
+ Γ + Γ = Qi + Si . 

 
If the rheonomic coordinate system is defined by moving axes then it will be easy to see 
that i

hjΓ = 0, and that i
hΓ  are the known rotation structures, such that i h

h vΓ  represents 

simply the fictitious Coriolis force.  However, A will then be the potential of the 

centrifugal guiding forces.  In the absolute treatment of the situation, they are all hidden 
in the δv i, and have no absolute mechanical sense.  Moreover, that should be clear, since 
they can be transformed away. 
 
 
 25. Equations for non-holonomic systems. – For non-holonomic systems with the 
supplementary conditions in the canonical form: 
 

v i = iv  + B i, 
we have: 

(54)    
i

i i
j

v
W v

dt

δ
⋅+ = S i + Q i + R i, 

 
in which Ri means the reaction force that is normal to the virtual space.  We project onto 
the virtual space B and introduce the (underlined) quantities everywhere, which are 

referred to that space: 
 

iv

dt

δ
= 

i iv B

dt dt

δ δ+ = 
i k ii

k tB x B dtv

dt dt

δδ ∇ + ∇+  = 
i

i k k i i
k k t

v
B v B B B

dt

δ + ∇ ⋅ + ∇ + ∇ . 

 
We substitute that in (54) and project onto B, whereby i

ib Rα  will vanish: 

 

( ) ( )i i k k i k i i i k
i k k i k t k

v
b W B b v b S B B B W B

dt

α
α α

β
δ + + ∇ + − + ∇ + ∇ + = i

ib Qα . 

 
However, from formulas (39*) and (40): 
 

(55)    
v

W v
dt

α β
β

δ + = S Qα α+ . 
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That is the absolute form for rheononholonomic systems that was announced (14).  It will 
lead directly to a correct and meaningful classification of dynamical systems. 
 
 
 26. Classification of mechanical systems. – An adequate, meaningful classification 
of mechanical systems must start from the properties that are inherent to the systems 
themselves, and not the chosen system of parameters.  One cannot refer to the system as 
rheonomic when its kinetic energy depends upon time, since any scleronomic system that 
is evaluated with respect to moving axes would also be rheonomic.  That same thing is 
true for the usual definition of holonomity that we wrote down above (pp. 26).  An 
adequate classification must come about from the absolute mechanical quantities. 
 We summarize the holonomity conditions (42), (45), (46) once more at this point: 
 

iHβα
⋅ ⋅  = iHαβ

⋅ ⋅ , 

 
[ ] ( )h k i i
k k h hb n b n n∇ + = 0, 

 

Sα = 
1

2 xα
∂
∂
B

. 

 
 
 Scleronomity. – We have already proved (pp. 14) that a holonomic system is 
strongly-sceleronomic, that is, it has a homogeneous kinetic energy that is completely 
independent of time in a suitable coordinate system, so when we have both: 
 

W = 0,  A = 0. 

 
However, we can also point to a system for which one has only: 
 

W = 0 
 
as something that is especially simple.  Indeed, that will not necessarily be a system in 
which the kinetic energy is homogeneous, but probably one in which its quadratic part 
does not depend upon time.  We shall then simply call the system scleronomic. 
 For non-holonomic systems, one can imagine the classification that the equations of 
motion (55) lead to as follows: 
 
 Wαβ = 0 semi-scleronomic 

 
(56) Wαβ = 0,   S= 0 quasi-scleronomic 

 
                                                
 (14) For scleronomic systems, W = 0, S = 0 give those equations are given by all authors that employed 
the geometric representation.  Cf., e.g., Schouten, Math. Zeit. 30, pp. 171, (116), and the cited paper by 
Horák .  
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 Wik = 0, ∂i A = 0, t bαβ∇ = 0, Bi = 0 scleronomic. 

 
 
 27. The natural equations of motion. – In ordinary point mechanics, one naturally 
writes the equations that represent the projections of the equations of motion onto the 
tangent and normal for the path: 
 

dv
m

dt
= Ft ,  

2v
m

ρ
= Fn . 

 
We would now like to present similar equations for arbitrary dynamical systems, 
including non-holonomic ones.  That does not happen without complications: For 
example, one can imagine that one can hardly speak of paths in a rheonomic space, since 
a rheonomic transformation will change the “identity” of the point, and therefore every 
curve, as well.  However, we have one certain guidepost: If we refer ordinary space (e.g., 
simple three-dimensional Riemann space) to a rheonomic coordinate system (e.g., 
moving, rectangular axes) then we can also write down all quantities in that coordinate 
system, such as tangent, normal, curvature, etc.  They can be expressed in a well-defined, 
easy to state way in terms of our strong quantities.  However, that will show us the way: 
We construct the same expressions in the general case.  The reader will easily find the 
following representation by heeding that suggestion. 
 Let a “curve”: 

x i = x i (t) 
 
be given in a rheonomic subspace [B].  By that notion, one actually imagines a structure 

that assigns a certain curve to every (rheonomic) coordinate system: viz., something 
similar to a vector, mutatis mutandis.  In general, we set: 
 

dσ 2 = bik δxi δxk 
 
(in which we drop the inconvenient underlines on the B-quantities, for simplicity).  That 

is our arc-length element.  Obviously, we have: 
 

v = 
d

dt

σ
  (v2 = bik v

i vk). 

We also have: 

1 = 
i k

ik

x x
b

d d

δ δ
σ σ

. 

 
We call u i = δ x i / ds the unit tangent or simply the tangent to the curve.  We further 
introduce the strong vector (δ is the strong B-differential!): 
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ki = 
iu

d

δ
σ

 

 
as the curvature of our curve.  The absolute value of that vector: 
 

k = 
i k

ik

u u
b

d d

δ δ
σ σ

  (ki = k n i) 

 
is the scalar curvature.  Obviously, one has: 
 

(57) 
i

i

u
u

d

δ
σ

= 0. 

 
 It is probably pointless to remark that in the strongly-holonomic case, all of those 
quantities will agree with the ones that were known before (in the usual sense of the 
word). 
 We now write: 

iv

dt

δ
= 

i
iu dv

v u
dt dt

δ +  = 2
i

iu dv
v u

d dt

δ
σ

+ . 

 
That is the well-known decomposition into tangential and normal accelerations.  If we 
substitute that into the equations of motion and multiply them by ui in one case and by ki 
in the other, while observing (57), then we will get: 
 

 
dv

dt
= (S i + Q i) ui , 

 
 v2 k = (S i + Q i) ni , 
resp. 
 These are the natural equations that were announced before.  One can say that the first 
of them determines the type of evolution for a given path, and therefore the velocity.  
That will be true verbatim in the strongly-scleronomic case (W = 0, S = 0).  The equations 
will then assume the form: 

dv

dt
= Q i ui , v2 k = Q i ni , 

 
and the curvature will naturally be explicitly independent of time.  One can infer a 
number of Painlevé’s conclusions (9) from those equations, which Franck also reached 
(15), to some extent, but on the basis of different equations that were less simple and 
intuitive, and which were not written out in precisely geometric terms. 

                                                
 (15) Ph. Franck and L. Berwald, “Über eine kovariante Gestalt der Differentialgleichungen der 
Bahnkurven allgemeiner mechanischer Systeme,” Math. Zeit. 21 (1924).  Ph. Frank, “Die geometrische 
Deutung von Painlevé’s Theorie der reellen Bahnen allgemeiner mechanischer Systeme,” Proc. 1st Inter. 
Congress for Applied Mechanics, Delft, 1924. 
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 28. Energy integral for rheonomic and non-holonomic systems. – We shall now 
give a case in which an integral exists that is analogous to the energy integral for 
scleronomic systems.  We will say “an energy integral,” in the broader sense, to mean an 
integral of the form: 

T = h′ – V′ (xi, t), 
which we can also write in the form: 
 
(58)     v2 = h – 2V (xi, t), 
since 

v2 + A = 2T. 

 
The problem can be posed more generally when one looks for integrals that agree with 
kinetic energy only in their quadratic terms, but can differ in their linear terms.  They can 
then have the absolute form: 

v2 = Ai v i – 2V (xi, t) + h, 
 
in which Ai is a strong vector and V is a strong scalar.  We find such an integral in the 
known case of Painlevé (15a).  Our absolute equations also allow us to answer that 
question, but they do not explain the criteria that they imply, since they require the 
integrability of certain partial differential equations.  We then restrict ourselves to the 
case in which an integral (58) exists and introduce a new concept that is the rheonomic 
counterpart to a potential. 
 We call V an absolute potential for the vector field Xi when the strongly-invariant 
conditions: 

Xi = − ∂i V, ∇t V = 0 
are fulfilled. 
 One immediately verifies that the equation: 
 

Xi δxi = − dV 
 
is true, which is, in turn, an invariant counterpart to the equation of elementary work. 
 We return to the energy integral.  We scalar multiply the equations of motion: 
 

iv

dt

δ
+ Wik v

k = Si + Qi 

 
(we have omitted the underline that refers to the subspace) by the velocity: 
 

i iv
v

dt

δ
+ Wik v

i vk = (Si + Qi) v
i. 

 
The covariant derivative of a scalar is identical with the ordinary one, so: 
 
                                                
 (15a) Cf., e.g., P. Appell, Traité de Mécanique rationelle, t. 2, 4th ed., § 448, pp. 329, or P. Painlevé, 
Leçons sur l’intégration des équations de la dynamique, Paris, Hermann, 1895, pp. 89. 
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21

2

dv

dt
+ Wik v

i vk = (Si + Qi) v
i. 

 
If equation (58) is true then no terms that are quadratic in vi can appear on the right-hand 
side, and the rate of strain tensor must be skew-symmetric then.  If we assume that the 
sum  Si + Qi possesses an absolute potential: 
 

Si + Qi = − ∂i V, ∇t V = 0 
then we can write: 

(Si + Qi) v
i = − 

dV

dt
. 

 If:  
Wik = − Wki , Si + Qi = − ∂i V, ∇t V = 0 

 
then it will possess the energy integral: 
 

v2 = h – 2V. 
 
 Those conditions will assume an interesting form for a holonomic system.  Since the 
rate of strain tensor is symmetric then, one must have simply W = 0, so the system must 
be semi-scleronomic.  If we further assume that there is a potential – U in the usual sense 
and set: 
 

V = 1
2A – U 

 
then V will be the absolute potential of Si + Qi when the condition ∇t V = 0 is fulfilled, 
which requires the independent of V from t, to some extent.  The energy integral will then 
assume the form: 
(*)      v2 = h + A + 2U. 

 
 If the conditions: 

Wik = 0, ∇t (A + 2U) = 0 

 
are fulfilled for a holonomic system with the potential – U then it will possess an energy 
integral (*). 
 
 We expressly point out that this case is different from the Painlevé case (16).  The 
conditions that are given by our theorems are also necessary (cum grano salis) in the 
sense that W = 0 must be true in any case.  The conditions for the existence of the 
potential can be weakened. 

                                                
 (16) Vr ănceanu sought to generalize just the Painlevé integral in the aforementioned notes, which can 
make sense only for a non-absolute treatment of rheonomic systems, since being independent of time is not 
an invariant condition.  The Painlevé integral is, so to speak, an accidental phenomenon that does not 
correspond to any mechanical fact. 
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 29. Variational equations for curves in [B]. – We shall give certain equations that 

are fundamental to the problem of the stability of rheonomic systems as an application of 
this.  Those would be the variational equations for arbitrary curves in a 
rheononholonomic space.  Naturally, we understand that to mean that every element of 
the curve lies in [B].  The canonical condition equations: 

 
(59)     i k

kc xδ  = Bi dt 

will then be fulfilled [cf., (36)]. 
 We first define the deviation for two infinitely-close curves C and C′, of which we 
will assume that their directions will also differ by infinitely little at infinitely-close 
points.  We relate the points of both curves (each of which has a well-defined time 
coordinate) to each other arbitrarily, under which corresponding points are naturally 
infinitely close.  We let δ  denote the displacement that takes a point of C to the 
corresponding point of C′. 
 We shall call the vector: 

pi = ixδ  
 
the deviation of the curves C and C′.  If we denote the elementary displacement along the 
curves C and C′ by δ then we will have: 
 
(60)   d dt = d dt ,  i ix xδ δ δ δ− = ( )i i i

jW x dt x dtδ δ− , 

 
since the two displacements obviously commute.  We now seek the differential equations 
that pi must satisfy for every pair of curves in [B]. 

 From (59), we have: 
 
(61)    i k i k

k kc x c xδ δ δ δ+ = i iB dt B dtδ δ+ . 

From formula (19): 
δ = p j ∇j + tdt∇ , 

 
and due to (60), we will get some rather complicated equations from (61) after some 
calculations that will determine the transverse components of the differential δ pk. 
 However, those equations are quite unnecessarily complicated in practice, since an 
isochronous variation, for which dt  = 0, will suffice for most applications.  We will have 

dtδ  = 0, as well, and equations (61) will become homogeneous in p i : 
 

[ ( ) ]i k i k i i k j
k j k j k jc p c x B c W dt pδ δ+ ∇ − ∇ +  = 0. 

 
If [B] is scleronomic then W = B = 0, and we will get simply: 

 
i k i k j
k j kc p c x pδ δ+ ∇ = 0. 
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 Those equations are true for arbitrary curves in [B].  However, we can exhibit some 

new equations when we are dealing with a special class of them.  For example, if C and 
C′ represent the motions of a dynamical system then we will have its equations of 
motion.  We first remark that: 
 

ivδ = 
ix

dt

δδ = 
2

i idt x x dt

dt

δ δ δ δ−
= 

i ix x dt

dt dt dt

δ δ δ δ− . 

Due to (28), we have: 
 

ix

dt

δ δ
= 

i i i
i
j

p x p dt
W dt

dt dt dt

δ δ 
+ − 

 
 = ( )

i
i j j
j

p
W v dt p

dt

δ + − . 

Hence: 

ivδ  = ( )
i

i j j
j

p
W v dt p

dt

δ + −  − vi µ , 

in which: 

µ = 
dt

dt

δ
 

 
is infinitely small.  If we now start from the equation for the cyclic differential: 
 

( )vαδ δ δ δ−  = i k
ikR v x xα β

β δ δ  

 
then the remaining equations of deviation are not difficult to construct, which would be 
quite complicated in the general case, but for a scleronomic system and an isochronous 
variation, they will assume the form (17): 
 

( )
i

i h k j
j hik

p
Q R v v p

dt dt
αδ δ − ∇ + = 0. 

 
In the special case of Q = 0, we will get Levi-Civita ’s generalization of the Jacobi 
equations (18). 
 A characteristic of the method that was followed here is the application of the 
strongly-covariant variation (19), which was encountered already in the derivation of the 
absolute equations from Hamilton ’s principle. 

                                                
 (17) One finds this formula written out non-invariantly in Synge, loc. cit., pp. 79.  
 (18) Levi-Civita , “Sur l’écart géodésique,” Math. Ann. 97 (1926).  Moreover, that problem was treated 
previously, and in more generality, by Synge in “Geometry of Dynamics,” which is, unfortunately, not 
well-known. 
 (19) I applied the covariant variation to the deviation problem in the note “Une simple démonstration de 
la formula de l’écart géodésique,” Rend. Lincei 12 (1930), which also includes dynamical applications.  
The implementation and generalization to non-holonomic systems, as well as a certain method for 
rheonomic ones, is included in the author’s paper: “Über die Variationsgleichungen für affine geodätische 
Linie und nichtholonome, nichtkonservative dynamische Systeme,” Prace Matem. Fizyczne 37 (1931).  
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IV. 
 

Theory of reaction forces. 
 

 30. The fundamental law of reaction forces. – We will now solve some 
fundamental problems in regard to reaction forces (20) in full generality by means of our 
multi-dimensional representation and the equations of motion that were obtained.  The 
theorems that we shall prove relate to not only reactions that replace all of the constraints, 
but also to reactions whose introduction will replace only some of the constraints.  We 
will call those reaction forces partial. 
 Perhaps the explanation below for the mechanical sense that corresponds to the 
concept of a multi-dimensional reaction would not be superfluous.  Such a multi-
dimensional reaction is basically a complex of generalized forces that replace the 
constraints dynamically and are calculated for the parameters of the free system that one 
would get by removing those constraints.  For example, for a system that consists of a 
finite number of points, the “multi-dimensional reaction” will be the totality of 
components of the reactions that act upon each individual point, and one’s knowledge of 
those reactions will insure one’s knowledge of each of the individual reactions.  By 
contrast, for a rigid body, the multi-dimensional reaction will give only the resultant and 
moment of the reaction forces (in the usual sense) that act upon the various points of the 
body.  Those reactions will not be determined by the multi-dimensional reaction, in 
general. 
 We pose the following problems: 
 
 1. Calculate the equivalent reaction explicitly for smooth constraints. 
 
 2. How does one compose the reactions?  That is: How does the reaction that 
replaces several constraints depend upon the reactions that replace those individual 
constraints? 
 
 3. How does a reaction change when one strengthens the constraints; i.e., by adding 
new ones? 
 
 4. How do reactions in real motions differ from reactions in virtual motions? 
 
 We shall obtain the answers to all of those questions as simple consequences of a 
fundamental theorem that we will prove shortly.  That theorem, which one can consider 
to be a rather distant generalization of Meusnier’s theorem, is concerned with the change 

                                                                                                                                            
The problem was not addressed by an absolute treatment, and the rheonomic systems were interpreted in an 
(n + 1)-dimensional space. 
 (20) Several papers by E. Gugino were dedicated to the problem of the reaction forces in recent times.  
We cite: “Sur la détermination des forces de réaction dans le mouvement d’un systèmes matériel,” C. R. 
Acad. Sc. Paris 191, pp. 1118, and “Sul problema dinamico di un quasivoglia sistema vincolato ridotto 
all’analogo problema relativo ad un sistema libro,” Rend. Lincei 12, pp. 307).  We will also find a paper 
with the same title by A. Quarleri , Boll. Un. Mat. It. 10 (1931).  Those authors proved that the reaction 
forces depend upon only the state and indicated a path to calculating them in terms of the state, but gave no 
explicit formulas for doing that. 
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in the reaction forces when one strengthens the constraints.  Meusnier’s theorem is 
concerned with curves on a surface that has a common direction at the same point, and 
says something about the projection of the curvature onto the surface normals.  Our 
theorem is concerned with motions that are compatible with constraints and will go 
through the same position with the same velocity, as well as saying something about the 
component of the reactions in the direction that is transverse to the virtual space.  One 
sees immediately how that corresponds to the theorems.  In order to be able to express 
things conveniently, we define: 
 Two motions are said to contact when they go through the same position 
(configuration, point) with the same velocity. 
 Here, we must speak in terms of virtual space, since we are considering the general 
rheonomic case.  We denote an entirely arbitrary system by [A], as well as the subspace 

that it corresponds to.  Our theorem reads: 
 

(62) 

     [ ]  [ ]  

    

 

The reaction force that replaces the constraints on the system will have

the same projection onto the direction that lies in and is orthogonal to for all

tangent motions of  the systems

B A

A B

[ ]  [ ].that are compatible with the constraintsA B

 

 
 Proof: The equations of the virtual motion of the system [A] read: 

 
v

dt

δ
+ W v = S + Q + R, 

 
in which R denotes the reaction that corresponds to the virtual motion.  The other 
notations need no explanation: For the sake of simplicity, we have omitted the underlines.  
We have also omitted the indices, which will probably not lead to any misunderstanding.  
We immediately take the constraints [B] in the canonical form (36): 

 
c v = B, 

 
in which c is the unit tensor in the space C that is completely orthogonal to B in A. 

 We get the theorem immediately by projecting onto C ; i.e., upon multiplying by c: 

 
v

c
dt

δ
 = − c W v + c S + c Q + c R . 

 
 We shall now transform the left-hand side of this equation so that we can show that it 
depends exclusively upon the position and velocity, and thus depends upon the state, but 
not upon the acceleration δv / dt.  That is the key point: 
 

v
c

dt

δ
= 

cv c
v

dt dt

δ δ−  = 
B c

v
dt dt

δ δ− . 

We then have: 
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(63)   
T
R  = c R = c W v − c B

v
dt dt

δ δ+  − c S – c Q  

 
for the transverse component of the reaction.  The right-hand side of this is a quadratic 
function of the vi and the position, since the derivatives are taken along the motion, so 
they will be linear (due to the rheonomity, in general), but not homogeneous functions of 
the vi, and therefore the ixɺ , as well.  The right-hand side will then depend exclusively 
upon the state, and not on the acceleration, and will then have the same value for all 
tangent motions that are compatible with [B].  We assume that [A] is Euclidian space, 

[B] is a surface in that space, Q = 0 and t = s (arc length), so the reaction force will be 

equal to the curvature, and we will get Meusnier’s theorem. 
 
 Principle of least reaction: 
 
 The actual motion corresponds to a smaller reaction than any other possible motion. 
 
 That is the answer to question 4.  One gets the proof immediately.  For the actual 
motion, the reaction R will be normal to the virtual space, so it will coincide with its 
transverse components.  For any other possible motion, from the theorem (62) above, the 
reaction will have the transverse component R, so it will be greater than its projection R. 
 We point out that this theorem is true for not only the total reaction force, but for 
every partial reaction force individually. 
 
 
 31. – We shall now answer question 2 of the previous §. 
 
 The reaction will be weakened by a component that is orthogonal to it when the 
conrate of straint is strengthened. 
 
 Proof: We return to the system [A] and assume that new constraints have been added 

to the constraints [B], such that the corresponding rheonomic subspace will contract to 

[B].  We let c  denote the unit tensor in the space C , which is orthogonal to the new 

virtual subspace B  in A. 

 We can then write: 
c = c + (c − c). 

 
The motion that corresponds to the constraints [ ]B  is a possible motion for the 

constraints [B].  From the fundamental theorem, we will have: 

 
R  =c R = ( )c R c c R+ −  = ( )

T
R c c R+ − , 
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if the reaction force for that motion is denoted by R , since R  lies in C.  However, − c is 

obviously the unit tensor in the subspace that lies in C  and is transverse to C in it.  The 

vector (c  − c) R lies in that space, so it will be orthogonal to C, and therefore to R, as 

well, which was claimed. 
 
 Scleronomic constraints. – We shall assume that the system [B] is scleronomic, so 

from (56), W = 0, B = S = 0, and ∇t c = 0.  The formula for the normal component to the 
reaction will assume a remarkable form.  We have: 
 

i

T
R = − j k i i k

k j kv v c c Q∇ − . 

 
Since ∇ means differentiation in A, we will have: 

 
− j k i

k jv v c∇  = j k i
k jv v b∇  = k j i

k jb b b v vα β
α β ∇ = iH v vα β

αβ , 

 
since vi obviously lies in B.  We finally get: 

 
(64)    i

T
R = i i

T

H v v Qα β
αβ
⋅ ⋅ − , 

 
in which we have denoted the transverse component of the generalized force by i

T

Q .  The 

formula (64) is a generalization of the known intrinsic equations of motion on a surface: 
 

2mv

ρ
 = Fn + Rn . 

 
 
 Composition of reactions. – We turn to problem 2 of § 30 and formulate it as 
follows: We consider the systems [Ba], a = 1, …, k, which arises from [A] by introducing 

new constraints, and let iaR  denote the reaction forces that replace those constraints for a 

well-defined state.  How do we then obtain the reaction that replaces all of those 
constraints simultaneously for the same state?  Naturally, we assume that the constraints 
are independent of each other. 
 We let [B] denote the system that will arise by the simultaneous introduction of all 

constraints, let C denote space in A that is transverse to its virtual subspace, and let Ca 

denote the space that is transverse to Ba .  Since B is the common intersection of all Ba , 

C will be, dually, the (smallest) union of all Ca .  Hence: 

 

(65) 
The resultant reaction lies in the smallest space that contains all spaces that are

transverse to the partial virtual spaces.
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 The motion of the system [B] will be a possible motion of the system [Ba] in any 

case.  We let R denote the resultant reaction and will then have: 
 

i k
k
a

c R = i
aR , 

 
from the fundamental theorem (62), which implies the theorem: 
 

(66) 
The projection of  the resultant reaction force onto the space that is orthogonal

to a partial virtual space is equal to the corresponding partial reaction force.
 

 
 We assert that the theorems (65) and (66) determined the reaction completely.  In 
fact, two vectors cannot exist in C that have the same projections onto [Ca] [as theorem 

(65) would require], since their differentials would be vectors in C whose projections 

onto each Ca would be zero, and would then be perpendicular to them.  However, such a 

vector does not exist, since each vector in C is a linear combination of certain vectors in 

the Ca , so it cannot be simultaneously orthogonal to all Ca . 

 The meaning of the theorems that were proved is actually the following: 
 
 The resultant reaction does not depend directly upon the state, but is determined 
completely by the partial reactions and purely-geometric data. 
 
 That consequence is by no means obvious, since the partial reactions do not 
determine the state that they correspond to at all. 
 We will arrive at more definite results when the dimension of each Ba is smaller than 

the dimension of A by one.  The normal spaces will be simple lines then.  From (66) the 

vectors i
aR  (a = 1 , …, k ) will lie on each lines, and the resultant reaction will be a 

vector that lies in the space that is spanned by the i
aR  and its projections onto the 

direction of each of those vectors will have a have a length that is equal to its own.  One 
can refer to the resulting reaction as an orthogonal sum of the partial reactions. 
 

____________ 
 
  
 
 
 
 
 


