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Non-holonomic Relativity and the
Unitary Theory of Einstein and Mayer

By
Kentaro Yano '

(Received 1 September 1937)

VRANCEAUNU [1] has recently established a non-holonomic unithlsory of
fields in the schema of his theory of non-holononpaces [2].

The present note has the goal of making the relatiom&typeen this non-holonomic
theory of relativity and the unitary theory of Einsteand MAYER [3] as clear as
possible.

In order to establish the non-holonomic unitary theofyfields one may, as the
author has already pointed out [4], start with theofeihg hypotheses:

(A) A Riemannian spacés admits an infinitesimal point translation:

(1) X" =xt+ ¢ dt, A uv..=1 23, 4,5)
that leaves invariant the fundamental quadratic form:
(2) do® = G,y dx'd¥’

in which ¢! =&'is a unit vector.
(B) Spacetime is identified with a non-holonomic spétehat is defined ivs by:

(3) @ dx' =0,
in whichg =G, ¢
If one considers only coordinate transformations efftrm:

5
(4) {_5
X

then one concludes from these hypotheses that the cemig@), of the fundamental
tensor in any coordinate system are independent offthedordinatex’ andGs, = ¢,
Gs5 =1

Moreover, one may write (2) in the form:

'(x")

X
ik .. =1,2, 3, 4),
X+ f(x') 0] )

(5) dd? = gjdX dX + (gdX + dxX)?,

" Translated by.H. Delphenich
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inwhichg; = G; - @ ¢.

Since theg; transform under the coordinate transformation (4) ilee components
of a tensor in a spadé that is described by, they constitute ten functions that represent
the gravitational field, whereas tlgeare the components of a vectoMnthat represents
the electromagnetic field.

The non-holonomic spack, thus defined is totally geodesic. Since a geodesic
inV,”, i.e., a geodesic that satisfies the equation:

@ dx =0,
is given by [5]:
d*x’ ; dx* dx’
(6) dSZ +(r,uv+¢¢p,v) dS dS :0!
in which:
0G,, G 0G j
A 1 Aw 24 W HV
(7) r;zv_ZG (axv + ox¥ ox? )’
0¢ ;
%/V:axf - %r,uv
_}(%_%j
20ax"  ox*)’

as a consequence (60) reduces to:
d'  _, dx¥ dx’
d@ e Tde de

0;

however, these are the equations for geodesis in
ThusV, is totally geodesic.

We define a tensag,, in Vs by:
(8) O =G~ 9@
Since this tensor satisfies the identity:
Os1 = s = 0,

one may consider thai transforms under a coordinate transformation kg the
components of a tensor W with respect to the index, and like the components of a
vector inV4 with respect to.

Thus, the two quantities:

9) 9,=d'gy @ g =4),
and:
(10) 9’ =G¥qgy G*Gu=4),

are mixed tensors.
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As one may easily verify, th8* satisfy the equations:
Gij — gij ,
(11) G*=-d'g,
G*=1+d'pg,

and thereforg’, andg’ have the following explicit forms:

(12) {gi.ﬂ =9 -7'e
g9, =9,

from which one easily obtains the identities:

(13) 9i =9, 9 G,

(14) Giu=9,9.,9i + & %,
(15) 9,9, =9,

(16) 9'9,= 3 - ¢ a,
(7 »mg'=0,

g’,g,, andg correspond tg/',),, andA,, respectively, in the previously-cited memoir

of EINSTEIN and MAYER.
When a vectow” in Vs satisfies:
o V=0,

one says that it is M°. A covariant vectoW, is in V;” when it satisfies:
W, ¢ =0.

These definitions may be extended to affinors. é&@mpleg,,, as defined by (8),
is certainly inV,”, since:

O @ =gss = 0.

When one is given a vectwrin V,, i.e., a space framed by the coordinafes?, x°,
andx’, one may form a vector W by gV, and this vector is M :

w(g'V) = 0.

If one is given a vector in V4 and a scalap then one may form a vectdf that is
not inV,;” from:
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(18) g'vV+pd.

We shall consider the covariant derivative to be geonadiiriof this type.
A connection in the spacé; is well defined by the CHRISTOFFEL symbols that
one forms fronG,,;

wV

ox” ox* ox’

1 [aGw , 3G _6Gﬂvj

which have the following values:

(19) { }+¢ﬂ<+¢i¢,
- 1(0p 0
ri=or 350 5
in which:
o, =108 _9%
Mo2laxH axt )
:G/lv ,
(20) 9 > G
g=9"q,
N ath aghk agjk
. =—dg J .
jk| 27 (ox* ox! oxX

Take a vectol” whose components are independent of the varidtdad consider
a displacement M,

av=2 dx + 1,V dx
ox*
in which:
ov dx = av_ X
ox¥ ox'
and: |
dC = - g dX,

since the vector must beVifi, which is defined by dx' = 0.
One therefore has:

21) & = (GV LAV jd)é,
ox

in which:
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(22) rl:i = rAVi - r/;/’:_)wl .

In the sequel, we let “;” denote the covariant deriativith respect to the
connection parametef3, . For a mixed tensor, one defines the covariant derevats
follows:

o1, k
|- Hi APV _1mvpAd 14
(22) Ty, = WH-” n, —T:N, -T, {ij}'
Since:
A A A
M =TT,

one has, foG,,:

aG/l,u v v
Giui = 3 +GWI_IM—GMI'IM.

0G
= ( ax/:# +Gv,ur;i _G/lerij + (@/I + %A)W

Both of the two terms in the right-hand side are andullieie to the definitions, just
likel;, andg,, and one thus obtains:

(23) Gui = 0.

This is the first condition that was posed by Einsteid Bayer (loc. cit., pp. 548
(1), which geometrically signifies that the lengthaot/ector does not change when it is
parallel displaced with respect Iftf‘m.

Having said this, we calculate the covariant derivagﬁ]e ofg’. Before doing this,

we write down the relationship betwelém and{ a}:

bc
(24) =g gl i1y 94, 08 +aq+4'9,,
w mZaSHpe[ 27 o ax ) “

from which, one obtains:

al 1 09, o0¢
25 M =g/g°! L +=¢ | L+ |+ g'g .
(25) i gagﬂ{bi} 2¢(ax' axﬂj )
Now:
P ag'ﬂ v A a1k
=y g'nd - ,
g|,] 6X’ gl Vj g« |J
but, on the other hand:
dg’ _ @

(J -¢'9)

oxl  ox)
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__0¢
-
al 1 ,(og 9@
n* = o += T
9t ga{ij} qul(axJ axj
so therefore one has:
(26) gi/?j == (d @ .

The geometrical significance of (26) is the following:
If V' is parallel displaced iy, i.e.: _
N =0,

then the corresponding vecgﬂlvi in V., after being displaced iVv,, satisfies the
equation:
Ag'V) =gV
=— ¢ (gV d¥).

Therefore, the covariant derivatideg'V') is normal to/,”.

This is the second condition of Einstein and Mayet. (@it., pp. 549 (11)).

Furthermore,g is an antisymmetric tensor in (26), so (26) also expsefise fact
that:

If V' is parallel displaced in its proper direction Vi then the corresponding
vectorg’V is also parallel displacedVy, since:

Ag'V)=(dg")V
—d gV
0.

This is the third condition of EINSTEIN and MAYER (lodit., pp. 549 (Il1)).
Moreover, one has:

_og )
# - % ,+ Jnm
(29) o'q.

which geometrically signifies that the covariant detiix@of ¢/ is always found i,
The equations of the trajectories will then be oladim exactly the same manner as
those of EINSTEIN and MAYER.

In spacetime, a curve is given by: _
X(9),

but when one is dealing with a trajectory for an eleglisiccharged particle one must
also specify a scalar=e/m, wheree is the charge anah is the mass of that particle.
One may then define a vectoniia by:
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(30) : g.”% + o

One poses the following conditions with respect to tagdtory:
The vecton is parallel displaced along the curve i Yfom which, one has:

/] dX
Therefore, one has:
dX dx d X dk dx
31 A D2 0. ——0
(1 g"‘dsdsg[dé{}dsdgqf” A7
However, on the other hand, one has:
-—¢¢
= (o V/‘)J = V/‘ dx
ds d~
—gmaj(g. +p¢)
X dx
~Age de
:O,
so one finally has:
d’' [T |dx dx dx’
(32) ag {,-k}am 1ds O

upon contracting (31) bg}.

In the memoir of EINSTEIN and MAYER, the [Lagrangjalensity whose variation
would give the field equations is nowhere to benfihu

Here, one may take the variation:

(33) S [Kgtdxt d o dx* = 0
where:
=16l =Gl
K=G"K,, K =K,
w_arvw arﬂv K v K v
K(quA _aT/‘,u _67:’1 + rmer - r/LurKa)

(33) gives us [6]:
(34) Oy — @@l =0,
in which:
O = Kiw =3GiuK,
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Upon contracting (34) by’ g, we have:

Rj + 2¢f @~ giK = 0,
(35) Ri _ngin + z[ﬁﬂq +7llgij#<¢£] =0,
in which R; and R are the Ricci tensor and the scalar curvature formenh fiy; ,

respectively.
In (34), if we contract withg” and sefz = 5, then we obtain:

4‘}?1':0-

Finally, if we setd = =5 then we have:

Uss— U =0,
but:
0=G"0,,=G"Ky,-1G,.K)
=-3K
2 1
D55 = K55—L2K
=@ 9—3K
S0:

Oss—-O0=K+ ¢'d.
As a consequence:
(36) R=0.
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