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 1. Introduction. – In kinetics, the equilibrium configuration of a system is referred to as stable 

when it will move only slightly from that configuration under the influence of any sufficiently-

small, but otherwise arbitrary, perturbation (and therefore perform a small oscillation about it). 

That definition is the basis for the processes of small motions, which assume only the 

linearizability of the differential equations of motion, and in the case of constant coefficients along 

the path of the exponential Ansatz, the roots of the characteristic equations, as well as the Routh-

Hurwitz criterion (1), allow one to ascribe stability to a system. 

 The stability problem in elastomechanics consists of determining the critical load at which an 

originally-stable equilibrium configuration will become unstable. In order to solve it, one can call 

upon the definition of stability directly, and in that way obtain the following criteria, which are 

valid with no further assumptions: 

 

Kinetic stability criterion: The critical value is the smallest load under which a suitable 

perturbation will lead to a motion that does not take place in the immediate neighborhood of 

the equilibrium configuration. 

 

In practice, this kinetic criterion was mostly employed before by L. Euler in his handling of the 

essentially-simpler criterion (but not equivalent to it with no further assumptions): 

 

Static stability criterion: The critical value is the smallest load under which a further (non-

trivial) equilibrium configuration will first exist along with the original (trivial) one, 

 

and in more recent times, it is the: 

 

Energetic stability criterion: The critical value is the smallest load under which the total 

potential energy of the body will no longer be positive-definitive 

 

that is preferred. 

 
 (1) E. J. Routh, Advanced Rigid Dynamics, 6th ed., London, 1930, pp. 228. A. Hurwitz, Math. Ann. 46 (1895), 

pp. 273. 
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 The results that have been achieved by the last-mentioned criterion have pushed the question 

of their legitimacy into the background and led to a purely-static conception of the intrinsically-

kinetic stability problem. The relative infrequency of non-conservative problems, for which that 

conception of things would lead to errors, explains the fact that (to cite just one major example) S. 

Timoshenko employed the last two criteria exclusively in his celebrated standard textbook (1), 

and without giving any kinetic basis. 

 In A. Pflüger’s book on stability problems in elastostatics (2), he referred to the fact that only 

the first criterion comes into question for non-conservative systems [of course, without proof and 

without inferring any consequences from that remark (3)]. Since then, the author (4) has proved 

that, for example, the buckling problem and the rotational speed problem of the shaft that is 

torsionally strained by an axial moment are non-conservative and that the stability criteria that 

were employed up to now will break down. 

 In light of that state of affairs, one raises the question of whether it might not be possible to 

legitimize the energetic criterion for non-conservative systems by reformulating it. The goal of 

this article is to answer that question, and in fact, in the negative sense. 

 

 

 2. The kinetic criterion. – A typical [one-dimensional, non-gyroscopic (5), and conservative] 

stability problem is Euler’s buckling problem for the (arbitrary, say, flexibly mounted at both 

ends) rod with mass  (x) per unit length and bending stiffness  (x). His energy of motion was: 

 

T = 
21

2

0

l

y dx , 

 

and he composed the potential energy from the deformation energy and the potential of the axial 

compression according to: 

 

V = U – P W0 ,  U = 
21

2

0

l

y dx  , W0 = 
21

2

0

l

y dx .  (2.1) 

 

If k is the kth normalized eigenfunction that belongs to the eigenfrequency k of the unloaded, 

laterally-oscillating rod then one can represent the vibrations under the compression P in the form: 

y (x, t) = 
1

( ) ( )k k

k

q t x


=

 , 

 

 
 (1) S. Timoshenko, Theory of Elastic Stability, New York and London 1936. 

 (2) A. Pflüger, Stabilitätsprobleme der Elastostatik, Berlin, Göttingen, Heidelberg, 1950, pp. 67. 

 (3) Despite his remark on pp. 67, he treated a non-conservative problem with the static criterion on pp. 217 (also 

cited in L. Collatz, Eigenwertaufgaben mit technischen Anwendungen, Leipzig 1949, pp. 41). 

 (4)  H. Ziegler, Z. angew. Math. Phys. 2 (1951), pp. 265. 

 (5) Cf., H. Ziegler, “Zum Begriff des konservativen System,” Elem. der Math., to appear.  
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and interpret the qk as position coordinates, which are normal coordinates for P = 0. The three 

components of the total energy are expressed in terms of them in the form: 

 

T = 
21

2

1

k

k

q


=

 ,  U = 
2 21

2

1

k k

k

q


=

 , W0 = 1
2

, 1 0

l

i k i k

i k

q q dx 


=

   . 

 

The kinetic potential is then: 

L = 2 2 21 1
2 2

1 , 1 0

( )

l

k k k i k i k

k i k

q q P q q dx  
 

= =

 − +   , 

 

and the Lagrange relations: 

 

k k

d L L

dt q q

  
− 

  
 = 0  (k = 1, 2, …)        (2.2) 

will lead to the differential equations of motion: 

 

2

, 1 0

l

k k k i i k

i k

q q P q dx  


=

 + −    = 0   (k = 1, 2, …).  (2.3) 

 

 In the case of a homogeneous prismatic rod that is pin-jointed at both ends, one has: 

 

2

k  = 
4 4

4

k

l

 


, k (x) = 

2
sin

k x

l l




, 

 

and since the eigenfunctions k , as well as their derivatives k  , are orthogonal in the interval 0, 

…, l, the simultaneous system (2.3) will decompose into the independent differential equations: 

 
4 4 2 2

4 2k k

k k
q P q

l l

  

 

 
+ − 

 
 = 0  (k = 1, 2, …).  (2.4) 

 

The eigenfrequencies under the load P are then given by: 

 

 2

k   = 
2 2 2 2

2 2

k k
P

l l

  



 
− 

 
 (k = 1, 2, …), 

 

and the demand that they should all be real will lead to Euler’s buckling load: 

 

 (x),  (x) 

y 

p l x p 

Figure 1. Conservative problem: Axially 

compressed two-sided pin-jointed rod. 
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Pk = 
2

2l

 
.      (2.5) 

 

 The kinetic stability criterion is true with no further assumptions since it is based upon the 

definition of stability directly. In fact, it is easy to see that the procedure that was employed here 

can be adapted to higher-dimensional problems with no further discussion, and in such a way that 

one extends the right-hand sides of the Lagrange equations (2.2) by means of generalized forces 

Qk, so it can also be extended to gyroscopic and non-conservative problems. However, since the 

simultaneous system (2.3) decomposes only in exceptional cases, the method is generally more 

involved. 

 

 

 3. The energetic criterion. – If the position coordinates of a conservative elastic system are 

measured from the trivial equilibrium position (i.e., the position of the unloaded system), and the 

potential energy in that position is set to zero then one will have the relations: 

 

V (0, …) = 0 ,  (0, )
k

V

q




 = 0  (k = 1, 2, …). (3.1) 

 

From the law of conservation of energy, the energy of motion T will decrease with increasing 

distance from the equilibrium position with certainty, or at best in special situations, according to 

whether V (q1, q2, …) is or is not positive-definite, respectively. For conservative systems, the 

kinetic criterion can then be replaced with the energetic one. 

 The potential energy in the neighborhood of the equilibrium position can often be represented 

by the truncated power series: 

V (q1, q2, …) = V (0, …) +
2

1
2

1 , 1

(0, ) (0, )k i k

k i kk i k

V V
q q q

q q q

 

= =

 
+

  
  , (3.2)  

 

and since (3.1) implies that here, not only does the first term vanish, but so does the second one 

(namely, the first variation of V), so the energetic criterion can also be formulated by saying that 

the third term, which is referred to as the second variation of V (up to the factor of 1/2), must be 

positive-definite if the system is to be stable. 

 In the example of Sec. 2, the potential energy V = U – P W0 is positive-definite for only 

sufficiently-small values of P. For a homogeneous prismatic rod that is pin-jointed at both ends, it 

will follow from (2.4) that the qk are also normal coordinates for the loaded rod, and the condition 

that: 

V = 
2 21

2

1

k k

k

q


=

  

 

must be positive-definite, so all of the 2

k   are greater than zero, will once more lead to the Euler 

buckling load (2.5). 
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 The domain of validity of the energetic criterion is obviously narrower than that of the kinetic 

one, insofar as it assumes the existence of a stationary, single-valued potential energy. Meanwhile, 

it is still conceivable that for non-conservative systems, it can be replaced with another argument 

of a static nature, e.g., one based upon work. 

 

 

 4. The static criterion. – If the potential energy of a conservative system admits the truncated 

development (3.2) then it can be represented by one of the form: 

 

V = U –  W0 = 1
2

, 1

( )ik i k

i k

c q q


=

 ,    (4.1) 

 

when one generalizes the representation (2.1) by introducing a parameter  that is characteristic of 

the load and calls upon (3.1), as well as (3.2). When one now transforms the quadratic forms U 

and W0 to principal axes, instead of T and V, one will obtain new normal coordinates pk in place of 

the qk, in which U and W0 will be expressed by: 

 

U = 
21

2

1

k

k

p


=

 ,  W0 = 
21

2

1

k k

k

a p


=

 .   (4.2) 

One then has: 

 V = 
21

2

1

(1 )k k

k

a p


=

− , 
k

V

q




 = (1 –  ak) pk   (k = 1, 2, …). 

 

As long as  is sufficiently small, the bracketed expressions in those relations will both be positive, 

and since the relations: 

k

V

q




 = (1 –  ak) pk = 0 (k = 1, 2, …)  (4.3) 

 

represent the equilibrium conditions for the system, there will exist no 

non-trivial equilibrium position. On the other hand, if one of the 

bracketed expressions becomes zero for the first time with increasing  

then V will lose its positive-definite character. However, at the same time, 

(4.3) will admit a non-trivial solution. 

 For the homogeneous prismatic rod that is pin-jointed at both ends in 

Section 2, the normal coordinates pk will coincide with the qk . The non-

trivial equilibrium positions are characterized by the vanishing of the 

brackets (2.4), and upon setting the smallest one equal to zero, one will 

again obtain the Euler buckling load (2.5). 

 As a result of those arguments, the static stability criterion will be 

true for conservative systems whose potential energy can be represented by (4.1) [(4.2), resp.]. 

Figure 2. Non-

conservative problem: 

Tangentially-compressed 

rod, clamped at one end. 
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However, it remains conceivable that its domain of validity can be extended, and even to non-

conservative systems in some situations. 

 

 

 5. Non-conservative problems. – Systems that are capable of vibration will already become 

non-conservative when one considers the damping that is always present and depends upon the 

state of the system. In general, one returns to a conservative system that can be treated by each of 

the three criteria by neglecting the damping. Meanwhile, it can happen (and this is the only case 

that will be examined) that an elastic system can lose its conservative character under loading due 

to the fact that the load, which is independent of the state of motion, cannot be derived from a 

stationary, single-valued potential. That includes the rod that A. Pfluger cited (1), which carried a 

continuous load that fell along the tangent to the elastic line and remained that way under 

deformation, as well as the one that the free shaft that the author treated (2), which was loaded by 

an axial moment vector. The basis for that abnormal behavior lies in the fact that neither a force 

with constant magnitude that is rigidly coupled with the body (and therefore takes part in its 

motion) nor a constant moment vector is conservative (3). 

 As a prime example of this class of problems that is indeed not very broad is scope, but still 

has practical significance, one can consider the homogeneous and prismatic rod that is clamped at 

one end and loaded with a tangential unit force P at the free end (Fig. 2). The work done by P 

under the displacement to the (trivial) equilibrium position depends upon the way that this 

displacement was performed; the load P is therefore not conservative. The energetic criterion 

breaks down in the form that was given Sec. 1, and since one can show effortlessly that no non-

trivial equilibrium position can exist, one must conclude from the static criterion that there is 

unlimited stability to the rod. 

 The open question in Secs. 3 and 4 of whether that static or energetic criterion can be modified 

in such a way that it would also be applicable to non-conservative systems can be answered with 

a simple example, such as a chain of linked rods, which can serve as a simplified model of the 

elastic rod (Fig. 2) according to K. Marguerre (4). 

 

 

 6. A model. – Fig. 3 shows a double pendulum with the angles of rotation 1, 2 (which are 

assumed to be small) that consists of two rigid rods of length l, and whose masses m1, m2 are 

thought to be concentrated at the distances a1, a2 from the links. Two vertical forces G1, G2 act at 

m1, m2, which can be interpreted as weights, the axial force P acts at the free end, and restoring 

moments c 1 , c (2 – 1), as well as the damping moments 1b , 2 1( )b  − , act in the joints. 

 The total energy of motion is equal to: 

 

T = 2 2 2 2 21
1 1 2 1 2 2 1 2 1 2 22

[( ) 2 ]m a m l m l a m a   + + +  , 

 
 (1) A. Pflüger, loc. cit., pp. 41.  

 (2) H. Ziegler, Zeit. angew. Math. Phys. 2 (1951), pp. 279.  

 (3) Cf., H. Ziegler, “Zum Begriff des Konservativen System,” loc. cit.  

 (4) K. Marguerre, Neuere Festigkeitsprobleme des Ingenieurs, Berlin, Göttingen, Heidelberg, 1950, pp. 211. 
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up to second-order quantities. The potential energy of the forces G1, G2, as well as the restoring 

moments, is: 

V = 2 21
1 1 2 1 1 2 2 2 22

[( 2 ) 2 ( ) ]G a G l c c G a c   + + − + +  , 

 

and the generalized non-conservative 

forces (that are due to P and the damping 

moments) are calculated to be: 

 

 Q1 = 1 2 1 2( ) (2 )Pl b   − − − . 

 Q2 = 1 2( )b  −  . 

 

The Lagrange relations: 

 

k k

d L L

dt  

  
− 

  
 = Qk , 

 

(L = T – V,  k = 1, 2) 

 

lead to the differential equations of 

motion: 

 
2 2

1 1 2 1 2 2 2 1 2 1 1 2 1 2( ) (2 ) [ ( ) 2 ] ( )m a m l m l a b G a G P l c Pl c     + + + − + + − + + −  = 0 , 

 2 2 1 2 2 2 1 2( )m l a m l a b   + − −  − c 1 + (G2 a2 + c) 2 = 0 , 

 

and the exponential Ansatz: 

k = t

kA e   (k = 1, 2)    (6.1) 

 

leads to the characteristic equation: 

 
4 3 2

0 1 2 3 4p p p p p   + + + +  = 0 ,     (6.2) 

 

whose coefficients are given by: 

 
2 2

0 1 2 1 2

2 2 2

1 1 1 2 2 2

2 2 2 2

2 1 1 2 2 2 2 2 1 1 2 2 2

3 1 1 2 2

4 1 1 2 2 2

,

[ ( 2 2 )] ,

( )( ) [ ( ) 2 ] ( 2 ) ,

[ ( 2 ) 2 ] ,

[ ( ) 2 ] ( ) ( ) .

p m m a a

p m a m l l a a b

p m a m l G a c m a G a G P l c m l a P l c b

p G a G l a c b

p G a G P l c G a c Pl c c

=


= + + + 


= + + + + − + − − + 
= + + +

= + − + + + − 

 (6.3) 

 

1 

m1 

 

G1 

 

2 
m2 

G2 
P 

Figure 3. Double pendulum as a two-component model of the 

elastic rod in Fig. 2. 
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 The double pendulum is stable as long as all of the roots 1, …, 4 of the characteristic equation 

have non-positive real parts. Then and only then does the most general motion, which is composed 

of four solutions of the form (6.1), remain bounded. 

 If (as will be true many times in what follows) any two roots are equal and opposite (say 2 = 

− 1, 4 = − 3) then the oscillator will be stable as long as the values 2

1  = 2

2 , 2

3  = 2

4  are 

negative or zero. 

 If one of the roots vanishes then, according to (6.1), a solution will exist with constant roots 

1, 2, that do not vanish simultaneously, i.e., a non-trivial equilibrium position. Conversely, the 

existence of a non-trivial equilibrium position demands the vanishing of one of those roots. 

 

 

 7. Consequences: 

 

 a) If one sets b = 0, m1 = 2 m, m2 = m, a1 = a2 = l, G1 = G2 = 0 then the pendulum in Fig. 3 

can be regarded as a two-component model for the rod in Fig. 2 (rotated by ), in which the mass 

is concentrated at the modes, and the proper weight can be neglected, along with damping. With: 

 

p0 = 2 42 m l , p2 = 
2 (7 2 )ml c P l− , p4 = 

2c ,   (7.1) 

 

the characteristic equation will then go to the biquadratic equation: 

 
4 2

0 2 4p p p + +  = 0 ,     (7.2) 

whose discriminant is: 

 = 2

2 0 44p p p−  = 
2 4 2 2 2(41 28 4 )m l c Pl c P l− + . (7.3) 

 

 For P = 0, the roots 2

1  = 2

2 , 2

3  = 2

4  of the characteristic equation are less than zero (Fig. 

4), since along with the discriminant (7.3), all of its 

coefficients (7.1) are positive. The most general motion 

is then bounded and can be composed of the two normal 

oscillations in the known way. If one lets P increase 

then  will decrease and change sign for p = 

(7 / 2 2) /c l−  = Pk . The roots 2

1 , 2

3  will then 

approach each other with increasing P and coincide for 

P = Pk, and since they will become complex conjugate for larger values of P: 

 

Pk = (7 / 2 2)
c

l
−  = 2.086

c

l
     (7.4) 

will be the critical load. 

 

 

Figure 4. Displacement of the roots of the 

characteristic equation with increasing load. 
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 Since (7.1) says that p4 > 0, the roots of (7.2) will be non-zero for arbitrary values of P. There 

will then be no non-trivial equilibrium position, as one can also confirm by considering the action 

of the forces in Fig. 3. It will then follow already from this simple example that: 

 

 Theorem 1: 

 

 The static stability criterion can break down for non-conservative systems. 

 

However, one might suspect that it will break down only in the absence of a non-trivial equilibrium 

position. 

 

 b) If one modifies the example by considering the proper weight by setting G1 = 2 G, G2 = G 

now, instead of G1 = G2 = 0 then one will get: 

 

p0 = 2 42m l , p2 = 
2 (7 2 6 )ml c Pl G l− + , p4 = 

2 2 2 25 3c cG l PG l G l+ − +  (7.5) 

 

instead of (7.1) and: 

 

 = 2 4 2 2 2 2 2 2(41 4 (7 11 ) 4 16 12 ]m l c c P G l P l PG l G l− − + − +   (7.6) 

in place of (7.3). 

 For P = 0, the roots 2

1  = 2

2 , 2

3  = 2

4  of (7.2) are again negative, so the pendulum is stable, 

as was to be expected. If one lets P increase then the stability will be lost as soon as (Fig. 4) either 
2

1  = 0 or 2

1  = 2

3 , because at least 2

1  will leave the negative real axis then. The critical load is 

then determined from the sharper of the two requirements: 

 

p4 = 0 ,   = 0 ,      (7.7) 

 

the first of which is, at the same time, the condition for the existence of a non-trivial equilibrium 

position. If one implements (7.7) by means of (7.5) and (7.6) then one will get the critical load: 

 

hP   = 
2

2

1
5 3

c c
G

l l G
+ +   

 

on the basis of the static stability condition alone, but the kinetic one will imply: 

 

Pk = 
2

2

2

7
2 2 3

2

c c c
G G G

l l l
+ − + + , 

in addition. 

 Since hP   > 0, there is a load for which a non-trivial equilibrium position exists. Meanwhile, 

since Pk < hP   and hP    grows without limit as G → 0, the critical load will be Pk , and not the load 
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hP   that the static criterion implies, which can be considerably greater under some circumstances. 

One will then have: 

 

 Theorem 2: 

 

 The static stability criterion can also break down in the presence of a non-trivial equilibrium 

position (and imply a critical load that is much too high in some situations). 

 

That theorem proves the unusability of the static criterion from Sec. 1 for non-conservative 

systems. Meanwhile, the question of whether it is possible to determine Pk in another, purely static, 

way (e.g., by considering the work done) still remains open. 

 

 c) If one neglects the damping and proper weight by setting b = 0, G1 = G2 = 0 then with m1 

= m2 = m, a1 = a2 = l / 2, one will get a two-component model of the rod in Fig. 2 (rotated through 

) that is equivalent to the one that was discussed in (a) and differs from it only by the fact that the 

mass is now thought to be concentrated at the midpoints of the rods, and not the nodes. The 

characteristic equation here is also (7.2), but in that way, (7.1) and (7.3) will be replaced with: 

 

p0 = 2 41
16

m l , p2 = 21
2

(11 3 )ml c Pl− , p4 = 2c , 

 

 = 2 4 2 2 23
16

(39 22 3 )m l c Pl c P l− + . 

 

 Since one again has p4 > 0, one will get the critical load by setting  equal to zero, and indeed 

with: 

Pk = 3
c

l
, 

 

it will be an essentially higher value than was obtained from (7.4) in the case (a). One will then 

have: 

 

 Theorem 3: 

 

 For non-conservative systems, the critical load depends upon the otherwise-equal ratios (and 

very strong in some situations) of the mass distribution. 

 

 Since masses do not enter into static investigations, if will follow from Theorem 3 that: 

 

 Theorem 4: 

 

 Non-conservative stability problems cannot be solved by the static method. 
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That shows that the energetic criterion in Sec. 1 cannot be legitimized for non-conservative 

systems, either. With the convention that only the kinetic criterion remains applicable, however, 

the question of the influence of damping will come to the foreground. 

 

 d) With G1 = G2 = 0, m1 = 2m, m2 = m, a1 = a2 = l, one 

will obtain a two-component model of the rod in Fig. 2 in 

which the internal damping is also considered. The 

characteristic equation has the form (6.2), in which the 

coefficients are given by: 

 
2 4 2

0 1

2 2

2 3

2

4

2 , 7 ,

(7 2 ) , 2 ,

.

p m l p ml b

p ml c Pl b p cb

p c

= =


= − + = 
= 

      (7.8) 

 

Since equation (6.2), in contrast to (7.2), is no longer 

quadratic, it is recommended that one should employ the 

Routh-Hurwitz criterion (1), and as a result of it, the system 

will be stable in any case as long as the expressions: 

 

p0 ,  p1 , 
0 3

2

1

p p
p

p
− , 

2

1 4
3

1 2 0 3

p p
p

p p p p
−

−
, p4 

 

possess the same signs. If one substitutes the values (7.8) here then one will arrive at the stability 

conditions: 

 

 1.  b > 0 ,    3.  P < 
3

41 1

28 2

c b

l ml
+ , 

 

 2.  P < 
2

3

45 1

14 2

c b

l ml
+ ,  4. 2c  > 0 , 

 

the fourth of which will be fulfilled in all cases. One concludes from the first one that the system 

is unstable for negative damping (Fig. 5). The third one, which is sharper than the second, implies 

that for positive damping, the critical load is: 

 

Pk = 
3

41 1

28 2

c b

l ml
+ , 

and as b → 0, that will not go to (7.4), but to: 

 

 
 (1) Cited in loc.cit.  

b 

stable 

Pk 

P 

 

Figure 5. Stability domain of the 

model when one considers damping. 

(b = damping, P = load) 
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kP   = 1.464
c

l
.      (7.9) 

 

 Mathematically, one can understand the discrepancy between Pk and 
kP   to mean that the 

Routh-Hurwitz criterion represents the conditions for the general solution to die away, so the 

stationary vibrations can already prove to be unstable in the sense of that criterion for loads 
kP  < 

P < Pk . That corresponds to the mechanical convention that whenever one calculates with damping 

(no matter how slight), and since it has a destabilizing effect in the interval 
kP  < P < Pk , one must 

always regard 
kP   as the critical load from the physical standpoint, and even for the undamped 

system, in practice. One will then have: 

 

 Theorem 5: 

 

 For non-conservative systems, damping can have a destabilizing effect, 

 

as well as ultimately: 

 

 Theorem 6: 

 

 For non-conservative systems, the slightest damping can modify the critical load considerably. 

 

 Systems of the type considered here can then be treated with only the kinetic stability criterion. 

It is essentially more laborious than the other two in applications and will become even more 

cumbersome when one considers damping, which is known to be necessary. Meanwhile, the 

complications that it implies can hardly be avoided. They are probably intrinsic to the nature of 

the problem, and indeed based upon the fact that the energy loss in a non-conservative system can 

be very sensitive to slight variations in the course of motion. 
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