
Schubert Collection XXXIV 

 
 
 

Line geometry 
 

with applications 
 

by 
 

Dr. Konrad Zindler  

Professor at the University of Innsbrück 

 

Translated by D. H. Delphenich 

_______ 

 

Volume I. 

 

 

With 87 figures 

 

 

________ 

 

 

Leipzig 

G. J. Göschensche Verlagshandlung 

1902





 

Foreword 
___ 

 
 A systematic line geometry that also considers the analytical methods has not 
appeared in the German language since Plücker’s original work Neue Geometrie des 
Raumes, gegründet auf die Betrachtung der geraden Linie als Raumelement (I, 1868, II, 
1869) (Sturm’s Liniengeometrie, 3 vols., 1892, 1893, 1896 is purely synthetic); in other 
languages, there are only monographs on individual, generally extended, parts of line 
geometry (namely, Koenigs, Géométrie réglée, 1895).  Thus, I welcomed the challenge 
of writing a book on line geometry, since this problem seemed worthwhile to me. 
 Corresponding to the aims of the “Schubert Collection,” the first two chapters are 
kept at a completely elementary level; i.e., no use will be made here of line coordinates 
and only a very general use of projective geometry.  In the latter chapter, the demands on 
the reader increase somewhat; at that point, the presentation is more accessible to 
students in advanced courses. 
 The principal topic in the present first volume is defined by linear complexes, 
congruences, and linear manifolds of such complexes, along with the applications that 
this part of line geometry admits.  The higher-degree structures that thus appear will 
likewise serve as a preparation for the second volume, which will primarily treat 
algebraic line structures of degree higher than one and infinitesimal line geometry.  Since 
university instruction nowadays devotes more attention to applied mathematics, I have 
drawn the circle of applications as widely as possible; e.g., I have considered the relations 
between line geometry and graphical statics. 
 In order to make the presentation as independent as possible of other books, I have 
interpolated a chapter on “Imaginary elements,” in order for the beginner to acquire some 
facility with this now-indispensable theory and expressly to acquire, not merely a 
familiarity, but an insight into its power.  I felt moved by similar considerations to 
include § 80.  Generally, I have restricted myself to the theory of imaginaries in its 
narrowest sense, in order to attain a relatively complete presentation, namely, the laws of 
meets and joins, but I believe that some simplifications can be achieved. 
 I have sought to make all of the structures as intuitive as possible.  The intuitive 
appeal depends less on whether the analytical or synthetic method was employed (when 
the abstract generality of projective geometry is just as non-intuitive as analytic 
geometry), as much as on whether it is possible to create the structures in a metrically 
distinguished manner.  This is clearly attained only in the elementary context; one should 
then desire more such progress.  Conspicuously less care has been devoted to – e.g. – 
how a net of rays or real focal lines actually “look.”  Theorems 105 to 110 and Fig. 47 
will then fill this gap. 
 New material is found in §§ 43, 54, 55, 59, 60, 68, 83, B.  In addition, many new 
proofs of old theorems are given, and the details of known things are enlarged: Thus, the 
geometric meaning of tetrahedral line pointers is still not discussed in its entirety 
(Theorem 47) and the discussion of imaginary tangents of the second type for a surface of 
second order (§ 72) is not given explicitly.  The examination of congruences of axes of 
net complexes will be given with consideration for all of the special cases, which did not 
happen in either Plücker or Ball (The Theory of Screws, 1900), but is necessary when one 
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wishes to address the applications to mechanics and the evaluation of each individual 
case of three degrees of freedom of motion on that basis. 
 I have used the convenient Grassmann expression of “pointers,” instead of 
“coordinates” extensively (and correspondingly, “system of pointers,” “line pointers,” 
etc.), and have likewise absorbed a few convenient notations of Sturm.  I have the taken 
the opportunity of making mention of the further literature in the exercises for the reader 
when there was no reason to mention it in the text.  Other volumes of the “Schubert 
Collection” are cited by S.S. 
 The need for the synthetic or the analytic method will alternate.  The “purity of 
method” then seems to pay off only in the fundamental disciplines.  Later on, it becomes 
tedious and should be superseded by those tools that deliver the most rapid and natural 
progress. 
 
 Innsbruck, on 26 February 1902. 
         Konrad Zindler.  
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Introduction  
____ 

 
The goal of line geometry. 

 
 The manifold of lines in space is four-fold; i.e., the individual line depends upon four 
constants or parameters.  If we – e.g. – determine a line through its two intersection 
points S, S′ with two fixed planes then we will obtain each line only once, and each of the 
points S, S′ will then need only two pointers (coordinates) in order to determine it in its 
plane.  If we base the analytical representation: 
 

x = az + α, y = bz + β 
 
on a system of parallel pointers with the running pointers x, y, z then we can consider a, 
b, α, β to be the four parameters of the line.  Inside of this four-fold domain (*) there are 
only one-fold, two-fold, and three-fold domains, analogous to the way that inside of a 
three-fold extended point space there are one-fold and two-fold domains (viz., curves and 
surfaces).  The one-fold domains of straight lines are called ruled surfaces, the two-fold 
domains are ray systems – or frequently, ray congruences (and also line congruences or, 
more casually, congruences) – and three-fold domains are line complexes or complexes.  
For example, the totality of all normals to a surface defines a ray congruence, and all of 
the tangents to it define a complex (of a very special type).  From the analytic 
representation above, we will also obtain complexes when we restrict the choice of four 
parameters by imposing a condition: 
 

f(a, b, α, β) = 0. 
 

Two such conditions specify a congruence and three of them specify a ruled surface.  
Four independent conditions specify only a discrete number of straight lines, analogously 
to the way that three surfaces generally intersect in a finite number of points. 
 The examination of the one-fold, two-fold, and three-fold line manifolds now defines 
the goal of line geometry in a narrower sense; an extension of these things will be made 
in the conclusion of § 43.  In addition, line geometry admits applications to mechanics, 
graphical statics, and the study of motion, with which we shall also be concerned. 

________ 
 

 
 

                                                
 *) Instead of “manifold” we will frequently use the shorter expression “domain.” 



 

Chapter I. 
 

The null system and the ray twist. 
___ 

 
§ 1.  The screwing motion. 

 
 Let P be a point of a circular cylinder with a radius r, let N be its perpendicular 
projection onto the axis a of the cylinder, and let P′ be its perpendicular projection onto a 
plane ε that is perpendicular to a (Fig. 1).  If P moves in such a way that the circular arc 
described by P′ and the line segment that is described by N always have the same 
relationship through all of time then P will describe a helix.  It is simplest to think of the 
motion of N, and therefore, that of P′, as well, as being uniform.  Let τ be the velocity of 
P, and let ω be the angular velocity of the point P′, so rω will be its absolute velocity.  If 
one regards the plane ε from the side to which τ is directed then the rotation of P′ can 
result in a positive or negative sense, so ω can have two possible signs.  In the former 
case, the helix will be called right-wound, or right-going (when regarded from the outside 
of the cylinder, it will proceed to the right), while in the latter case, it will be left-wound 
or left-going. *)  This convention is independent of the sense in which the helix s is 
traversed; if we rotate the cylinder in Fig. 1 in such a way that its base comes to lie above 
then s will remain right-wound.  Let P0 be the intersection of s and ε, and let τ be the time 
that has elapsed since the point P0 was at P.  We can unwind the triangle P0P′P that lies 
in the cylinder onto a plane and obtain a right-angled triangle with the smaller sides: 

 
P0P′ = rω t,  P′P = τ t; 

 
the pitch of the helix will be then determined from: 
 

(1)    tan ϑ = 
r

τ
ω

. 

 
 Since ω is positive for right-wound helices and 
negative for left-wound ones, ϑ will be acute in the 
former case and obtuse in the latter; i.e., we will always 
understand ϑ to mean the angle that the velocity vector of 
the point P0 defines with the tangent to the circle under a 
positive rotation.  If P′ describes a complete circle then 
one will have P0P′ = 2rπ, thus, 2rπ = rω t, and the 
associated time will be: 
 

                                                
 (*) Thus, e.g., the corkscrew and the screw that is used most generally are “right-wound.”  This manner 
of speaking is common in the study of machines; in theoretical geometry, the terminology is occasionally 
inverted. 
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      t = 
2π
ω

. 

 
P′P is equal to the altitude h; one therefore has: 
 

(2)      h = 
2πτ
ω

. 

 
 s is completely determined by the axis a and the tangent T to a point on it.  If s is 
right-wound then the helix that is determined by T as its axis and a as its tangent, will 
also be so.  Thus, we will call a pair of skew lines that are not perpendicular to each other 
right-wound or left-wound according to whether one or the other kind of helix is 
determined when one takes one line to be the axis and the other one to be the tangent. 
 If a geometric structure rotates with a uniform angular velocity ω and simultaneously 
proceeds along a with the uniform velocity τ then one will say that the structure executes 
a uniform screw motioning or a screw with axis a.  Since one can think of each point of 
space as being tightly coupled with the moving structure, one will arrive at the notion of 
all of the moving space R executing a screw in a second space that is at rest.  Each point 

P of R will thus describe a helix whose altitude, from (2), will be independent of its 

position, and whose pitch, from (1), will decrease with increasing r; merely the points of 
a describe a itself.  We will call the entire screw right-wound or left-wound according to 
whether its individual helices have that character, respectively.  Thus, the paths of the 
points will depend, not upon the absolute values τ and ω, but only upon their ratio: 
 

(3)      
τ
ω

= k 

 
and the position of the axis; k will be called the parameter or the slope of the screw.  For 

r = 1, one will have tan ϑ = k, so: 

 
 Theorem 1:  The slope of the screw is equal to the tangent of the pitch of those 
helices that lie on a cylinder of radius one. 
 

________ 
 

§ 2.  The null system. 
 

 We think of a space that contains a screw around a and fix our attention on a definite 
time point; we call the normal plane to the path that a point P has at this time its null 
plane ν, on the grounds of things that we shall discuss later.  Thus, each point of space is 
associated with a plane that goes through it.  If we think of the normal plane as being 
carried along during the screw motion then for each point of time it will remain the null 
plane of the point P.  Any association will then be independent of the chosen time point.  
Conversely, when ν is given, we will wish to find a point P whose null plane is ν.  When 
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ν ⊥ a, its intersection point N with a will be the desired point.  In the other cases, we will 
draw the line g ⊥ a in ν through N; we will only have to look for P on g.  Its distance r 
from N must fulfill condition (1), where ϑ is known from the normal to ν.  If we 
temporarily consider only the absolute values on both sides of the equation then r will be 
determined uniquely by them.  However, there are two points g at this distance that are 
symmetric to N; one of them will be the desired one, whose normal to ν in the direction 
of a will wind the same way as the given screw.  P is called the null point of ν.  The 
association is thus uniquely reciprocal; only the planes that are parallel to a will contain 
no null point.  This gap will be closed shortly. 
 
 Theorem 2: Let each point of a screw be associated with the normal plane to its 
path.  The geometric relationship that is thus defined is uniquely reciprocal and is called 
a null system. 
 
 The axis a of the screw is also called the axis of the null system, and the parameter k 

of the screw is also the parameter (slope) of the null system.  The null system depends 
upon the position of the axis and k ; thus, since there are ∞4 lines, there will be a five-fold 

infinitude of null systems.  From the way that a null system N comes about, it emerges 

that it will go to itself under a rotation around a.  That is, if one rotates a point along with 
its null plane around a then the plane will always remain the null plane of the point.  One 
says that N “admits” a rotation around a.  Likewise, it will admit a displacement along a, 

and therefore a screw, as well, which is composed of such rotations and displacements, 
and therefore not only those screws that defined it, but: 
 
 Theorem 3: A null system admits an arbitrary screw around an axis. 
 
 Therefore, one can imagine the way that the points and planes of space are associated 
with each other by way of N.  One can thus restrict oneself to the points P of a line g that 

cut a perpendicularly at N.  Every other point of space can then be taken to a point of g 
by a suitable screw.  For the sake of ease of notation, we think of a as being vertical, 
write equation (1) in the form: 

(1a)     tan ϑ = 
r

k
, 

 
and learn from this that: When r increases from zero to ∞, P will move along g from N to 
infinity; thus, the associated helix of the screw will always get flatter, while the null plane 
will always get steeper with respect to the horizontal plane. 
 

________ 
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§ 3.  On the motion of a line. 
 

 Suppose that a line g moves in space in some way, and let the velocity vector a at one 
of its points A be perpendicular to that line.  Let β be the velocity vector of a second point 
B on g, let g1 be a neighboring position of g, let g′ be the parallel to g1 that is drawn 
through A, and finally, let ε be the normal plane to g at B.  We can then take g to g1 in 
such a way that we first bring g to g′ by just a rotation around A, and then to g1 by a 
parallel displacement; after the first step, the velocity vector of B will lie in ε, after the 
second step, it will be parallel to a, and therefore it will likewise be perpendicular to g.  
One composes β from these two vectors, so it will also lie in ε when it does not vanish.  
We would like to extend this argument by an analytical proof; i.e., to show that: 
 
 Theorem 4: If the path tangent to a moving line is perpendicular to the line at one of 
its points then the same thing will be true for all of its points. (*) 
 
 We locate the origin of a rectangular system of pointers at A and the z-axis along the 
line g; a second point B on g has the pointer z = r.  During the motion of g, A will 
describe a curve: 
(4)    x = ϕ(t),  y = ψ(t), z = χ(t), 
 
with the tangent α at A, and B will describe a curve: 
 
(5)    x1 = ϕ1(t),  y1 = ψ1(t), z1 = χ1(t) + r, 
 

with the tangent β at B.  Thus, it will follow from the 
position of the pointer system that all six functions ϕ, 
ψ, χ must vanish at t = 0, if we measure the time t 
from the beginning of the motion.  However, one 
must also have: 

χ′(0) = 0 
 
if the direction cosines of α are proportional to ϕ′(t), 
ψ′(t), χ′(t), and, by assumption, one has cos(α, Z) = 0.  
What one must then prove is that dz1 / dt will vanish 
for t = 0.  Because the points A and B preserve their 
separation r during the motion, one will have: 
 

(ϕ1 – ϕ)2 + (ψ1 – ψ)2 + (r + χ1 – χ)2 = r2; 
 

after differentiation by t, one will obtain: 
 

1 1 1 1 1 1( )( ) ( )( ) ( )( )rϕ ϕ ϕ ϕ ψ ψ ψ ψ χ χ χ χ′ ′ ′ ′ ′ ′− − + − − + + − − = 0;

                                                
 (*) This theorem may have been first expressed by Chasles [“Propr. geom.. rel. au mouv. inf. petit….” 
Comptes R., 16 (1843)]. 
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if we set t = 0 in this then we will get: 
 

1[ (0) (0)]r χ χ′ ′−  = 0, 

so: 

1(0)χ ′ = 0. 

________ 
 
 

§ 4.  The ray twist. 
 

 During a motion in space, a point P will have ∞1 path normals at a definite moment, 
and indeed, if ν is the normal plane to its path then they will all be rays of the pencil (P, 
ν).  We define: 
 The totality of the path normals of points of space under a screw motion is called a 
ray twist (Strahlengewinde), or simply a twist (Gewinde). 
 Thus, from Theorem 2, a twist is likewise defined by any null system; namely, if we 
consider all rays at each point P of space that go through that point and lie in its normal 
plane then we will obtain a twist.  We ask whether some ray s of the twist, besides ν, can 
go through P.  Such a line must lie in the null plane of one of its points.  The path tangent 
at this point Q would then be perpendicular to s, so (*), from Theorem 4, it would be 
perpendicular to the path tangent at P, as well.  However, this is possible only when s lies 
in ν.  Likewise, it follows from Theorem 4 that the path tangent to each point Q of a twist 
ray s is perpendicular to s; thus, s is contained in the null plane ν of each of its points.  If 
Q moves on s then ν will rotate around s, while, from Theorem 2, the possibility that ν 
can return to the same position that Q had earlier will be excluded.  There are ∞3 points in 
space; ∞1 rays of the twist go through each of them, which then define a plane pencil.  On 
the other hand, each ray appears as a ray of the associated pencil, along with each of its 
points.  There are thus only ∞3 rays in the twist. 
 
 Theorem 5: The rays of a twist define a triply-infinite manifold.  A pencil of lines 
therefore goes through each point of space and lies in each plane of space. 
 
 We must prove the last part of this theorem as follows: If the plane ε is parallel to the 
axis a to begin with then we will choose a line g in it that is parallel to a.  Since the null 
system admits a displacement along g, all points of g will have parallel null planes.  This 
plane must be the null plane for each its points, since a second ray of the twist in ε goes 
through it.  If ε is not parallel to a then we will know a pencil of rays of the twist in ε 
whose vertex will be the null point that is associated with it as in § 2; on the same 
grounds as before, no other ray of ε can belong to the twist.  Thus, Theorem 5 will be 
proved completely, and we can now also associate the planes that are parallel to a − and 
thus, from § 2, contain no null points − with one of them.  Namely, for each such plane ε, 
since the vertex of the pencil of rays of the twist, which is likewise the null point, points 
                                                
 (*) The case that was provided for in § 3, in which β vanishes, cannot enter into the argument here, 
since no point whatsoever will remain at rest under a uniform screw motion.  
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to infinity in a certain direction, we will have to consider the point V that is at infinity in 
this direction to be the null point of ε.  There is no other ray of the twist through V than it; 
if we then draw a plane ε′ through such an ε then ε′ will contain two parallel rays of the 
twist − namely, s, and the line of intersection line with ε − which is impossible, since ε′ 
has its null point at infinity.  From § 2, it will emerge that one will now also have, 
conversely, a null plane that is associated with each point at infinity (for the moment, 
with the exception of the U that are axis directions).  However, if a plane that is always 
parallel to an arbitrary starting point points to infinity then its null point will always point 
to infinity in the axis direction; we thus have to consider the point U to be the null point 
of the plane at infinity.  This is consistent with the fact that U is the only point at infinity 
through which no ray of the twist at a finite point can go.  It is therefore the points and 
planes of space without exception (except, of course, the elements at infinity) that are 
now reciprocally associated with each other into a null system.  A twist ray will also be 
called a guide line of the associated null system. 

________ 
 

 
§ 5.  Polar pairs of lines. 

 
 If we focus on two points P, P′ of a line g (Fig. 3) that does not belong to the twist 
then its null planes will not go through g, and will thus intersect in a line g′ that is skew to 
g.  All rays of the pencils (P, g′), like the pencils (P′, g′), will 
be rays of the twist, especially QP and QP′, when Q is an 
arbitrary point of g′.  The locus of the twist rays through Q is 
a plane pencil of lines that is determined completely by the 
two rays QP and QP′; thus, Qg is the null plane of Q, and 
likewise, Q′g is the null plane of Q′, such that, conversely, g 
is also determined by the intersection of the null planes of 
arbitrary points Q, Q′ of g′.  Two such mutually-associated 
lines will be called polars of the null system or twist.  Each 
ray through Q that intersects g will belong to the twist.  Since this is true for each point Q 
of g, one will have: 
 
 Theorem 6: All rays that intersect two associated polars belong to the twist. 
 
 The null plane of a point on one of the two lines is therefore the connecting plane 
with the other one.  We summarize this along with a result from § 4 into: 
 
 Theorem 7: If a point describes a line g then its null plane will rotate around a line 
g′ that agrees with g or is skew to it according to whether g is or is not a ray of the twist 
that is bound to the null system, respectively; the roles of g and g′ are interchangeable. 
 
 As one sees immediately from the way that one generates null systems by screws, the 
null planes of two points P, P′ will be parallel only when the connecting line g of P and 
P′ is parallel to the axis a.  g′ will then point to infinity and will be represented by the 

 g′ 

Q′ 

Q P 

P′ 

g 

Figure 3. 
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locus of the pencil of parallel planes that is defined by g; g will then be called a diameter 
of the null system.  Theorem 7 thus also preserves its tangible content in this case, except 
that a parallel displacement appears in place of an actual rotation.  If, by comparison, a 
point describes an line at infinity g′ then, in a real sense, the null plane will rotate around 
the polar diameter g.  Only for the lines at infinity of the parallel planes to a, which are to 
be regarded as rays of the twist, does the rotation enter in place of a parallel translation.  
The axis is the only diameter for which the associated locus is perpendicular to it. 
 
 Theorem 8:   If a ray of the twist intersects a line g then it will also intersect its polar 
g′. 
 
 With g′, it will then likewise lie in the null plane of its point of intersection with g.  
Let h, h′ be a second polar pair, where h may cut either g or g′.  A ray s that intersects g, 
g′ will be a ray of the twist; if it also intersects h then, from Theorem 8, it will also 
intersect h′.  Now, the rays s that intersect three given ones g, g′, h will define a second-
order family of rulings R (cf., Reye, Geom. d. Lage, I, Vortr. 10).  Since all of the h′ will 

be intersected, h′ will be a ray of the guiding family R′, which g, g′, h will also belong to.  

One says that four lines have hyperbolic position when they belong to the same second-
order family of rulings. 
 When g and h intersect each other (Fig. 4), g′, as well as h′, must lie in the null plane 
σ of the point of intersection S; thus, they will also intersect in a point T whose null plane 

τ will include g, as well as h.  The four lines are 
arranged such that they each intersect two others, so 
the connecting line of the intersection point will be 
identical with the line of intersection of the 
connecting planes.  We would like to treat this 
situation under the name of “hyperbolic position.”  (If 
necessary, we shall distinguish between the “special 
hyperbolic position” and the “general” kind).  The 
totality of all lines that intersect g, h, g′ will split into 

the two pencils of rays (S, σ) and (T, τ).  Thus, we can say: 
 
 Theorem 9: Two arbitrary pairs of associated polars of a null system will have 
hyperbolic position. 
 
 We now let h coincide with a; if a line s intersects h, as well as h′, then that will say 
that it intersects h perpendicularly.  R′ will now include a line at infinity h′, and will 

therefore be a hyperbolic paraboloid P, one of whose guide lines will be perpendicular to 

the axis and the other of which will be parallel to it. (*)  P will therefore be equililateral, 

and each of the two principal generators will be intersected perpendicularly by all of the 
lines of the other family.  The axis is the one principal generator; the other one, since it is 

                                                
 (*) For the reader that is familiar with the geometry of position, we remark that the very important 
Theorem 10 will be proved once more in § 8. 
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intersected perpendicularly by g, g′, will include the shortest distance between these two 
lines, and therefore: 
 
 Theorem 10:  The shortest distance between two polars of a null system intersects 
the axis perpendicularly. 
 
 Three rays determine a family of rulings.  If all three of them belong to a twist then 
we will focus on a line g of the guiding family.  Then, from Theorem 8, its polar g will 
also belong to the family.  It follows from this, in connection with Theorem 6, that: 
 
 Theorem 11: If three rays of a family of rulings R belong to a twist then each ray of 

R will belong to the twist. 

________ 
 
 

§ 6.  The null system as a reciprocal relationship. 
 

 From Theorem 7 and the end of § 4, one deduces that each “spatial element” − 
namely, a point, line, or plane − is always again associated with a spatial element through 
a null system, and indeed with a plane, line, or point, resp., and in such a way that if the 
point ranges over a line (the plane rotates around a line, resp.) then the corresponding 
plane will rotate around the corresponding line (the associated point will describe the 
associated line, resp.).  If the point Q lies in the null plane ν of the point P then QP will 
be a ray of the associated twist; thus, conversely, the null plane of Q will also go through 
P.  The points of the field ν will thus correspond to the planes of the pencil P, and 
furthermore, the lines of the field will correspond to the lines of the pencil.  Thus, when g 
lies in ν, g′ will go through P.  Finally, if two lines g, h intersect each other then the 
corresponding ones will also intersect (§ 5). 
 If a point lies in a plane, a point lies in a line, a line lies in a plane, or finally, if two 
lines intersect then one will say that in all of these cases the two spatial elements are 
incident.  By using this terminology, we can summarize the aforementioned individual 
theorems into one theorem: 
 
 Theorem 12: If two spatial elements are incident then the ones that correspond to 
them in a null system will be incident. 
 
 Which sort of incidence one is dealing with will be determined by the type of spatial 
element itself.  The null system will thus belong to what are called in projective geometry 
“reciprocal relationships” or “correlations;” we will come back to this later (§ 46). 
 

_________ 
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§ 7.  Analytical representation of the null system. 
 

 We immediately recall § 2, and we wish to be able to write down the equation of the 
null plane of a point P when its pointers x, y, z are given.  We let the Z-axis of a 
rectangular system of pointers of the first type coincide with the axis a of a null system.  
The equation of a plane through P will have the form: 
 
(6)     A(ξ – x) + B(η – y) + C(ζ – z) = 0, 
 
where ξ, η, ζ are its running pointers.  Should it be the null plane of P then A, B, C would 

have to be proportional to the direction cosines of the path 
tangent at P under the screw; we must then compute these 
direction cosines.  Let P come to the position P1 ≡ (x1, y1, 
z1) at the time t as a result of the screw.  Let P′ ≡ (x, y, 0) 
and 1P′  ≡ (x1, y1, 0) be the projections of P and P1 onto the 

XY-plane.  P1 will then be obtained from P′ by rotating in 
the XY-plane through the angle β = ω t (§ 1).  Thus, if r, α 
are the polar pointers for P′ in the XY-plane (Fig. 5) and 
r1, α1 are those of 1P′ then one will have: 

 
   r1 = r,  α1 = α + β, 
 x1 = r1 cos α1 = r (cos α cos β – sin α sin β), 
 y1 = r1 sin α1 = r (sin α cos β + cos α sin β), 
or: 
  x1 = x cos β − y sin β,   y1 = x sin β + y sin β; 
 
in addition, the altitude of P above the XY-plane will increase by τ t.  The connection 
between the pointers for P and P1 will then be represented by: 
 

(7)     
1

1

1

cos sin ,

sin cos ,

.

x x t y t

y x t y t

z z t

ω ω
ω ω

τ

= −
= +
= +

 

 
These equations represent the path curve of the point P, in which x1, y1, z1 are the running 
pointers and t is the parameter.  For t = 0, one will have P1 ≡ P, as it should be.  If we 
would then like to know three quantities that are proportional to the direction cosines of 
the path tangent at P then we would have to differentiate with respect to t and then set t = 
0.  This would yield: 
 

1

0

dx

dt
 
 
 

= − y ω, 1

0

dy

dt
 
 
 

= x w,  1dx

dt
 = t. 
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We have substituted these three quantities for A, B, C in equation (6) and thus obtained, 
while taking equation (3) into account, the equation of the null plane at P: 
 
(8)     x η – ξ y + k (ζ – z) = 0. 

 
We now consider τ and ω to be quantities endowed with signs; however, one confirms 
that the null system will depend upon only their ratio k.  When one changes both of their 

signs simultaneously, a screw will come about in the opposite sense, but with the same 
path as before.  A positive k corresponds to a right-wound screw, while a negative k 

corresponds to a left-wound one. 
 

_________ 
 
 

§ 8.  The position of polar pairs. 
 

 Since we can bring about a situation where the shortest distance from a line g to a 
falls along the X-axis by a suitable rotation of the null system around the a axis and a 

displacement along it, we can restrict ourselves to the 
lines g that intersect the X-axis perpendicularly.  Such a 
line is determined by the X-pointer c of its point of 
intersection S and its pitch angle ν in the XY-plane.  For 
the numerical evaluation of this angle, we assume the 
following: A positive sense of rotation in the YZ-plane 
is fixed (and in each of those that are parallel to it) by 
the positive side of the X-axis.  Now, if g1 is the 
projection of g onto the YZ-plane (Fig. 6) then we will 
understand the pitch angle ν of g with respect to the 
XY-plane to be the angle (Y, g1).  If c and ν are given 

then we will pose the problem of finding the polar g′.  The equations of the lines g are: 
 

x = c, 
z

y
= tan ν. 

The pointers to a point P will then be: 
c, y, y ⋅ tan ν, 

 
and will depend upon only the single variable y.  If we substitute them into equation (8) 
then we will get the null plane of P in the form: 
 
(9)     cη + kζ – y (ξ + k tan ν) = 0. 

 
From this equation, we can, by a choice of y, compute the equation of the null plane of an 
arbitrary point of g; in particular, we would like to find the null plane ε of S and the null 
plane ε′ of the infinitely-distant point U of g.  We set y = 0 and obtain: 

 

X 
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S 
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Z 
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ν 

Figure 6. 
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(10)      
ζ
η

 = − c

k
 

 
for the equation of ε.  In order to find the equation of ε′, we next write equation (9) in the 
form: 

c

y

η ζ+ k − (ξ + k tan ν) = 0. 

 
If we now let y become infinite then the plane will approach the limiting position: 
 
(11)     ξ = − k tan ν ; 
 
viz., the null plane of U.  The plane (10) includes the X-axis, as it must, while the plane 
(11) is perpendicular to it.  The line of intersection of both of them is, from § 5, the 
desired polar g′.  Moreover, one finds, from the form of equation (9) that the common 
points of the planes (10) and (11) lie in the plane (9) for each value y, because their 
pointers make the components cη + kζ and ξ + k tan ν go to zero; thus, this plane will 

rotate around the line of intersection of the other two.  Thus, the first part of Theorem 7 is 
proved once more, and independently of § 3, et seq., and likewise for Theorem 10.  
Equations (10) and (11) then represent a line g′ that, like g, intersects the X-axis 
perpendicularly; if c′, ν′ are its analogous determining parameters then one will have: 
 

ζ
η

= tan ν′, x = c′, 

 
and if we compare this with (10) and (11) then we will find that: 
 

tan ν′ = − 
c

k
,  c′ = − k tan ν′, 

or, more symmetrically: 

(12)     
tan ,

tan ,

c

c

ν
ν

′= −
′ = −
k

k
 

 
from which the relation between the four determining parameters of the lines g, g′ can be 
expressed.  We then deduce from this that: 
 
(13)    c : c′ = tan ν′ : tan ν. 
 
We ask when g′ will coincide with g.  For this, one must have c′ = c, so, from equation 
(12): 

c = − k tan ν. 
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For the twist rays s, whose determining parameters we indicate by the index s, one will 
then have: 

(14)     tan νs = − sc

k
. 

 
If we compare the right-hand sides of this equation and equation (1) then we will find 
(taking into account the change in sign) that the product is – 1.  In fact, ν will be larger 
than ϑ by π / 2 when g comes to the position s. 
 We would like to provide an intuitive glimpse of the distribution of polar pairs that 
lets us describe the line g of the pencil (S, ε′) (Fig. 7) and follow the motion of g′.  Since 
ε, U are the corresponding elements to S, ε′, we can infer from Theorem 12 that g′ 
describes the pencil of rays (ε, U); i.e., it moves in the null plane of S parallel to the 
position s of g.  We can also deduce this situation and the quantitative properties of the 
motion from equation (12).  Besides s, we then consider the two distinguished positions, 
in which g is parallel to the Y or Z axis, resp., and call them p and q, resp.  According to 
whether k is positive or negative, g will be the rotation in the positive sense that begins at 

the position p and proceeds to the position q or s, resp.; one gather this from equation 
(14) or immediately from the geometric meaning of the sign of k (§ 7).  In order to fix the 

presentation, we think of k as being positive.  From equation (12), c′ decreases from 0 to 

− ∞ while ν increases from 0 to π / 2.  Also, under a further rotation, the subsequent 
intervals will correspond to the following table: 
 

ν c′ 
0 to π / 2 0 to − ∞ 

π / 2 to νs + ∞ to c 

νs to π c to 0 

 
This situation is made apparent in Fig. 7, where 
the distinguished positions of g and the 
corresponding ones g′ are sketched in.  
Furthermore, the angle that ν describes is 
indicated by arcs that carry the same numerals as 
the corresponding line segments that range 
through the point of intersection (g′, X); q′ lies at 
infinity. 
 If the shortest distance from g to g′ intersects 
these lines at N, N′, and the axis at M, then we 
can deduce from Figure 7 or equation (13) that: 
 
 Theorem 13: Depending upon whether the projections of g, g′ onto the YZ-plane lie 
in different quadrants or the same one, M will lie inside or outside of NN′, resp. 
 

______
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§ 9.  The pencil of rays. 
 

 Up to now, we have always thought in terms of real screws.  Thus, if the 
displacement component τ vanishes then we will merely have a rotation around a.  It is 
immediately apparent that that the path normals in this case will consist of all spatial 
points of all the ∞3 lines that intersect a.  One calls their totality a “special twist” or a 
bush of rays and a is its carrier.  It no longer corresponds to an actual null system.  The 
null points of the points of the axis would then be indeterminate, and all of the other 
planes would intersect the axis.  The reciprocal uniqueness of the association would then 
break down.  However, this exceptional null system will always be represented by 
equation (8) (k = 0). 

 On the other hand, if the rotational component ω vanishes then k will be infinite.  If 

one previously divides equation (8) by k then one will obtain the equation ζ − z = 0 in this 

case; in fact, it will always represent the normal plane to the path at each point.  One is 
then left with a displacement in the direction of the Z-axis.  The twist now consists of all 
∞3 rays that are parallel to the XY-plane, and can be regarded as a bush of rays whose 
carrier is the line at infinity in this plane. 
 

___________ 
 
 

§ 10.  Ways of determining a twist or null system. 
 

 A twist is determined uniquely: 
 
 a) By the axis a and a ray s (which must be skew to a). 
 
 We then choose the shortest distant from a to s to be the X-axis of a system of 
pointers that is arranged as in § 8, in which we can fix the positive direction arbitrarily 
such that vs and cs are then given, and one can compute k from equation (14). 

 If a polar pair g, g′ (with the shortest distance NN′) of a null system is given then a 
must intersect the line segment NN′ perpendicularly.  In addition, the condition (13) must 
be fulfilled.  One can therefore choose the direction of a inside of a pencil arbitrarily, 
from which, the plane will also be determined, and the angle will result from that.  Thus, 
M is determined uniquely from equation (13), such that one must divide NN′ in the ratio 
tan ν′ : tan ν (cf., also Theorem 13).  If one adds a connecting line for g, g′ then one will 
be in the realm of case a).  A null system is then also determined uniquely: 
 
 b) By a polar pair and the direction of a, which must be deduced from the pencil of 
directions g, g′. 
 
 There are thus ∞1 twists in which g, g′ are polar.  If one chooses a third line h (that is 
skew to g and g′) then, by Theorem 9, h′ will be restricted to the family of rulings that g, 
g′, h belong to, so it can therefore likewise assume just ∞1 positions.  One will thus be 
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able to choose h′ arbitrarily inside of the family of rulings.  However, a twist will then be 
determined.  Thus, if d is the shortest distance between g, g′, and d1 is that between h, h′ 
then, from Theorem 10, a must be the shortest distance between d, d1.  If d, d1 intersect 
then a will be the common perpendicular at the point of intersection.  A null system is 
then also determined uniquely: 
 
 c) By two polar pairs in hyperbolic position. 
 g 

g′ 

P 

s1 
Q 

s ε 

Figure 8. 

 g g′ 

ε 

s1 

t1 
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t 

s 

Figure 9. 
 

 In particular, one can choose h′ to be identical with h.  The twist will then give a ray 
s, in addition to g, g′, and one can construct the null plane at each point P of space.  One 
can, in fact, next find (Fig. 8) the null plane Q of the plane (P, s) = ε when one knows, 
besides s, the ray of the twist s1 in this plane that is determined by the point of 
intersection of g, g′.  One then knows the ray PG of the twist by way of P, as well as the 
ones that intersect g, g′.  Dually, one can construct the null point A to any plane ε in space 
(Fig. 9).  Namely, one can next find the null plane of its point of intersection S with s 
when one knows the ray of the twist s1 through S that intersects g, g′, in addition to s.  
One obtains a ray of the twist t in ε as the intersection with the plane (s, s1) and a second 
one t1 through the point of intersection g, g′ with ε.  A null system is then also determined 
by: 
 d) A polar pair and a guide line. 
 

__________ 
 
 

§ 11.  Arrangement of the rays of the twist. 
 

 It is important for us to provide a picture of the rays of a twist that is as intuitive as 
possible.  However, since a manifold of ∞3 indistinguishable lines is difficult to draw, it 
will be necessary for us to decompose it into submanifolds.  We would like to propose an 
especially intuitive decomposition as follows: For the sake of ease of expression, we 
think of the axis a as horizontal; if MN = c is the shortest distance from a ray s of a twist 
to a, where M lies in a and N lies on s, then the pitch of s relative to the horizontal plane 
χ will be determined by equation (14).  If one describes a circular cylinder around a with 
a radius c then s will contact this cylinder, and all of the tangents to the cylinder that have 
the same pitch relative to c and are wound (§ 1) the same way as s relative to a will 



16 I.  The null system and the ray twist. 

likewise belong to the twist.  From equation (14), this pitch will increase with increasing 
cylinder radius.  The ∞3 rays of the twist can then be arranged into the ∞2 tangents to ∞1 
circular cylinders; each point of a cylinder will contact a ray of a twist and will be 
perpendicular to the path tangent to the point that is associated with it by means of the 
screw.  The ∞2 tangents rays of the twist that contact the same cylinder can then be again 
arranged into the ∞1 tangents to ∞1 helices, which will intersect the path helices of the 
cylinder points perpendicularly everywhere, and will therefore be wound oppositely to 
them.  One say that a helix (or any curve, for that matter) is contained in a twist when its 
tangents belong to the twist.  Any helix that is contained a twist can itself be called right-
wound or left-wound, so: 
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 Theorem 14: A ray twist is wound oppositely to the screw that defines it. 
 
 In Fig. 10, we have represented three coaxial cylindrical surfaces that intersect a 
plane through a and the pencil of parallel rays of the twist that contact along the resulting 
cylinder generators, which is suggested by short lines.  If one rotates this system of ∞2 
lines around a then one will obtain all of the rays of the twist.  Since, from equation (3), a 
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positive k corresponds to a right-wound helix, equation (8) will represent a left-wound 

twist for k > 0. 

________
 
 

§12.  The moment of two rods and two lines. 
 

 One calls the general line segment a vector when only its length, direction, and sense 
are in question.  Vectors are free to move parallel to themselves without changing their 
meaning.  By comparison, a force − e.g., one that acts on upon a rigid body − is linked 
with a definite line of action.  We, along with H. Grassmann, Jr. (cf., Ges. W. I, b, pp. 
438), call a line segment whose length, the line that it lies on, and the sense of progress 
along it is at issue a rod (Stab).  A rod is thus freely translatable only along this line – 
viz., its “carrier” – without losing its meaning. 
 b) We will understand the phrase the moment of two rods a, b to mean the product of 
their lengths, their shortest distance, and the sine of the angle of inclination between their 
carriers.  The moment will then be zero when the carriers intersect (or are parallel) to 
each other.  However, in order to be able to define the sign, we will arbitrarily assume 
that the line of shortest distance AB (where A lies on a, and B and b) has a positive 
direction, from which, a positive sense of rotation (*) will be fixed on the planes that are 
perpendicular to it, as well as the angle (a, b) (cf., § 8).  We then understand the moment 
of two rods, when their measures are a and b, to mean: 
 
(15)     M(a, b) = − a ⋅ b ⋅ AB ⋅ sin(a, b). 
 
The basis for the minus sign will be made clear in Theorem 15.  The moment is 
independent of how the positive direction was fixed in the shortest distance; the last two 

                                                
 (*) We consider a positive sense of rotation in a plane to mean the one that is opposite to clockwise 
when it is viewed from the positive side of its normal, and will thus agree with the sense of rotation of the 
Earth around its axis, when it is seen from the North Pole, and furthermore, with the sense of the motion of 
the Earth in the ecliptic, when it is viewed from the northern side of the ecliptic, which is how most 
civilized countries define a complete year.  One now understands the angle (a, b) between two directions 
(i.e., half-rays) in a plane to mean the angle that is subtended when one rotates a half-ray from the direction 
a into the direction b in the positive sense of rotation; one will then have: 
 

∡ (b, a) = 2π  –∡ (a, b). 
 
When only trigonometric functions come under consideration, one can set: 
 

∡ (b, a) = –∡ (a, b), 
 

and one will be dealing with angles between zero and 2π (excluding the upper limit).  It is not always 
necessary to introduce a positive sense of rotation, or − what amounts to the same thing − to observe the 
sequence of legs in the angle, because many results will be independent of that; e.g., all of the ones into 
which only the cosine of the angle enters.  We then speak of the absolute angle measure.  It only needs to 
extend from zero to π (excluding both limits).  We will get an example of its use shortly (Theorem 15). 
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factors will change sign under a change in that positive direction.  On the same basis, one 
will have: 

M(b, a) = M(a, b). 
 

By comparison, if a rod is turned into the opposite direction then the moment would 
change its sign, because the angle (a, b) would change by π.  Up to now, we have thought 
of the positive direction in the carrier of the rod by this very means, such that the 
numbers a, b were positive.  Any other possible convention would have no effect on the 
moment.  If the positive direction for the carrier of a changed then the sign of a, as well 
as that of sin (a, b), would change, too.  From Fig. 11, one sees (*) that the moment of the 
rods a, b will remain positive as long as the sense of rotation that the rod b determines 
relative to a is positive (** ).  When we carry over the notion of the twist of two lines (§ 1) 
to rods, we can also deduce the last part of the following theorem from Fig. 11: 
 
 Theorem 15: The moment of two rods agrees in sign with the sense of rotation that 
one rod determines relative to the other; the moment of two right-wound rods will be 
positive when they define an absolute acute angle. 
 
 The remaining cases can be obtained from this one. 
 

 c) By the term the moment of two lines, we mean the 
moment of two unit rods on these lines; in order for the sign to 
be determined, as well, the positive direction on the lines must 
be fixed.  We intend the term the moment of a rod relative to an 
axis to mean the moment of the rod relative to a unit rod on the 
axis; by the term the moment of a rod ST relative to a point P, 
we mean the moment of the rod relative to an axis that lies 
through P and is perpendicular to the connecting line PST; it will 
thus be equal to twice the area of the triangle PST.  These 
definitions are adapted naturally from the demands of mechanics. 
 

 d) We regard the volume of a tetrahedron ABCD as being positive or negative 
according to whether the triangle ABC, when viewed from D, yields a positive or 
negative sense of traversal for an interior point, resp. (*** )  It will therefore change sign 
when one exchanges two neighboring symbols, or even two arbitrary ones (cf., Balzer, 

                                                
 (*) In Fig. 11, the line segment AB is thought of as going downwards to the right.  Thus, ∡ (a, b) will 
lie in the fourth quadrant when AB > 0.  Thus, M(a, b) > 0.  The rods will be right-wound. 
 (** ) One thinks of there being a force in b that rotates a body around the axis a.  According to whether 
the sense of this rotation is positive or negative, we will say that the rod b determines a positive or negative 
sense of rotation, resp., relative to the rod a.  The sense of rotation that the rod a determines relative to b 
will have the same sign. 
 (*** ) Möbius first introduced (1827) a sign for a tetrahedral volume; cf., the Baryc. Calc., § 19 (Ges. 
W., Bd. I) and “Über die Bestimmung des Inh. eines Polyeders,” § 18 (Ges. W., Bd. II).  He took the sense 
of rotation of a clock hand to be positive, but regarded the surface BCD from A; nevertheless, for us and for 
Möbius, every tetrahedron ABCD will have the same sign.  The convention that is used here says, besides 
Theorem 16, that the tetrahedron ABCD will be positive when A is the origin and B, C, D lie in the X, Y, 
and Z axes, resp., of a system of pointers of the first type. 
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Determin., § 1), and likewise when one cyclically permutes the four symbols.  By 
comparison, one has: 

ABCD = CDAB. 
 

If one denotes the rods AB, CD by m, n and expresses the tetrahedral volume that they 
determine by concatenation then the sign will also be: 
 

mn = nm. 
 

If one displaces an edge of a tetrahedron along itself without changing its length (Fig. 12; 
B′C′ = BC) then its volume will not change; therefore, either the height of D or the 
magnitude of the associated base surface will have changed.  If one displaces two 
opposite sides AA′, BB′ of a tetrahedron (Fig. 11) until 
their starting points lie on the base points of their shortest 
distance then one will see that the six-fold tetrahedral 
volume 6V is equal (up to absolute value) to the moment 
of the rods AA′, BB′.  6V is also equal to the volume of a 
parallelepiped whose base surface is the parallelogram 
that is determined by a, b′ (b′ � b goes through A) and 

whose height is AB.  However, this equality will also be 
true for the signs; from the definition of the sign of the 
tetrahedral volume it will then emerge that it agrees with 
the sense of the rotation that the rod AA′ determines 
relative to the axis BB′.  If we compare this with Theorem 15 then we will find: 
 
 Theorem 16: The moment of the rods AA′, BB′ is also equal to six times the volume 
of the tetrahedron AA′BB′, including the sign. 
 
 e) We can derive an analytical expression for the moment of two lines g1, g2 from 
this, when g1 is given by one of its points P1 ≡ (ξ1, η1, ζ1) and its direction angles α1, 
β1, γ1, and analogously g2 is given by P2 ≡ (ξ2, η2, ζ2) and its direction angles α2, β2, γ2 .  
If two arbitrary rods 1 1PP′  and 2 2P P′  lie on the line then the six-fold tetrahedral volume 

will be given by (cf., Balzer, Determin., § 15): 
 

(16)    1 1 2 26PP P P′ ′  = 

1 1 1

1 1 1

2 2 2

2 2 2

1

1

1

1

ξ η ζ
ξ η ζ
ξ η ζ
ξ η ζ

′ ′ ′

′ ′ ′

. 

 
One can recognize the fact that this equation also has the correct sign most simply by a 
special case: If one assumes that P1 is the origin and that1P′ , P2, 2P′  lie along the X, Y, Z-

axis, resp., of a rectangular system of the first type at a distance of one from the origin 
then 1 1 2 26PPP P′ ′  = + 1; on the other hand, the determinant will also be: 
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1 0 0 0

1 1 0 0

1 0 1 0

1 0 0 1

= + 1. 

 
Since the tetrahedral volume does not change its sign as long as a vertex never intrudes 
on the plane of the other three during a motion of the vertices that preserves their 
sequence, and the determinant never vanishes under this assumption, as well, the 
agreement of the signs must always be true if it is true in a special case. (*)  One will then 
have (Theorem 16): 

1 1 2 2( )M PP P P′ ′  = 

1 1 1

1 1 1 1 1 1

2 2 2 1 2 1

2 2 2 2 2 2

1

0

0

0

ξ η ζ
ξ ξ η η ζ ζ
ξ ξ η η ζ ζ
ξ ξ η η ζ ζ

′ ′ ′− − −
− − −

′ ′ ′− − −

. 

 
In particular, if 1 1PP′  and 2 2P P′  are two unit rods then one will have: 

 

1ξ ′  − ξ1 = cos α1, 2ξ ′ − ξ2 = cos α2, etc.; 

thus: 

(17)    M(g1, g2) = 
1 2 1 1

1 2 1 2

1 2 1 2

cos cos

cos cos

cos cos

ξ ξ α α
η η β β
ζ ζ γ γ

−
−
−

, 

 
where (ξ1, η1, γ1) and (ξ2, η2, γ2) are any arbitrary points of g1 and g2, resp. 
 

______ 
 
 

Practice problems: 
 

 1. What is the actual content of Theorem 7 for the case that was expressed explicitly 
in which g was the line at infinity of a plane that was parallel to the axis. 
 
 2. How does one calculate the null point of a given plane Aξ + Bη + Cζ + D = 0 
with the help of equation (8)? 

                                                
 (*) One must then observe that a sequence of ones must be written in the first column (or row), while 
the rest of the rows (or columns) correspond to the sequence of vertices. 
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 3. As a result of the properties of null systems, equation (8) cannot change when one 
rotates the pointer system around the Z-axis or displaces it along it; this is confirmed 
immediately. 
 4. Draw the figure that is analogous to Fig. 7 when k is negative. 

 
 5. In connection with that, construct g′ for a given position of g. 
 
 6. What happens to the manner of determination b) in § 10 when one chooses the 
direction of the axis to be perpendicular or parallel to the g? 
 
 7. In the manner of determination e) in § 10, it is immediate how one can construct 
the null plane to any point, and conversely, from d). 
 
 8. How can the manner of determination a) in § 10 be regarded as a special case of 
d)? 
 
 9. How does one find the axis in § 10, d) most quickly? 
 
 10. How does it help one when d, d1 coincide in § 10, 
c)? 
 
 11. If a is the axis (thought of as vertical) of a null 
system (Fig. 13), d is the shortest distance to a ray l of the 
twist, and ν is its inclination with respect to the horizontal 
plane then (l, d) will be the null plane of P.  From equation 
(14), one will have the relation: d ⋅⋅⋅⋅ cos ν = − k.  If d1, ν1 

have the corresponding meanings for another ray l1 of the twist that goes through P then 
one will also have d1 cot ν1 = − k.  One will then have: 

 
d1 cot ν1 = d ⋅⋅⋅⋅ cot ν. 

This is verified immediately. 
 
 12. If one intersects a tetrahedron with a plane along a parallelogram (How?), and 
then displaces an edge that is parallel to E along itself (§ 12) then the parallelogram will 
displace congruent to itself in E; one can also infer the invariance of the volume of the 
tetrahedron from this (Cavalieri’s principle). 
 
 13. The quotient of the cross-section of the screw cylinder and the height of the screw 
twist will be constant for all helices that are contained in a null system.  (Silldorf, 
Zeitschr. f. Math. u. Phys., Bd. 20). 
 
 13a)  Three points A, B, C and three planes α, β, γ that go through them, respectively, 
will determine a null system when the plane (A, B, C) goes through the point (α, β¸ γ). 
 

________
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Chapter II 
 

Applications to the theory of motion,  
mechanics, and graphical statics. 

____ 
 

§ 13.  Moments of forces. 
 

 If a rigid body is in motion around an axis a, and a force k is applied to it along a line 
of action that circles a in a perpendicular plane at a distance AB = d (the notations and 
conventions are the same as in § 12) then, as is known (*) in the theory of rotations of 
bodies, the product kd will play a role that is analogous to that of force in the theory of 
moving mass points; it is called the moment of the force k with respect to the axis a.  If a 
positive direction for a is fixed then a positive sense of rotation around a will also be 
given, and one will then call the moment positive or negative depending upon whether 
the rotation that the force brings about has a positive or negative sense, respectively.  If 
one traces a unit line segment AE in the positive direction along a then the moment (as 
well as its sign) equals six times the volume of the tetrahedron AEBB′ (if k = BB′), 
because it will equal the volume of a parallelepiped with height AE and base AB ⋅ BB′. 
 If k lies arbitrarily with respect to a then the only component of k that will come 
under consideration for the rotation around a will consist of its projection onto a plane 
that is perpendicular to a, and one understands the moment of k on a to mean the moment 
of this component.  The volume of the tetrahedron will not change under projection since 
the height will remain unchanged when one considers ABE to be its base (Fig. 11).  Thus, 
the moment of k relative to a will still be equal to 6AEBB′.  From this, in conjunction 
with theorem 16, it will follow that if g is the line of action of the force then one will 
have: 
 
 Theorem 17: The moment of a force relative to an axis a is equal to either the 
moment of the force rod and a unit rod on a or the moment of a, g multiplied by the 
magnitude of the force. 
 
 We understand the term “moment of a force system relative to a” to mean the 
algebraic sum of the moments of all of the individual forces relative to a.  In particular, if 
the force system is a force couple then its moment relative to a normal to its plane is 
known to be independent of the location of this normal, and for that reason one will call 
it, by abuse of terminology, the moment of the force couple.  It can be made more 
intuitive by drawing a line along such a normal whose length is equal to the magnitude of 
the moment and is directed in such a way that it makes the sign of the force couple 
positive when it points in the direction of the positive normal to the plane.  It is known 
that since the plane of the force couple can be translated parallel to itself arbitrarily, the 
line segment that represents this moment will have the character of a vector (see the 

                                                
 (*) In § 13, we will recall certain theorems of mechanics, although we will assume that the simplest 
ones are already known. 
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beginning of § 12).  It is also known that moment vectors can be added geometrically, as 
well as the force rods whose carriers they intersect (viz., the parallelogram of forces).  In 
the latter case, the resultant force relative to each axis in space also has the same moment 
as the system of components. 
 One understands the phrase “the moment of a force k relative to the point P” to mean 
the moment of k relative to a normal to the plane (P, k) that goes through P. 
 

________ 
 

 
§ 14.  Normal form for a force system. 

 
 Let a force k be given, along with l = AA′⊥ k (Fig. 14) and g || k, which goes through 
A′.  If we let two opposite, but equal, forces k1, − k1 (k1 = k) act at A′ then the entire 
system will be equivalent to the single force k.  k and – k1 define 
a rotational moment whose vector m is directed under the plane; 
k, l, m thus lie (in alphabetical order) like the axes of a system of 
pointers of the first type.  If we denote the lengths of these rods 
and vectors with the same symbols (*) then we will have m = kl ; 
one can express this result as follows: 
 
 Theorem 18:  One may displace a force rod k in a direction 
that is perpendicular to it when one adds a moment m of 
magnitude kl, such that k, l, m point like the axes of a pointer 
system of the first type. 
 
 Since the force rod is displaced arbitrarily along its carrier, one will replace l with an 
arbitrary vector that points from A to any point of g; however, the special situation in the 
theorem is sufficient.  The moment relative to an arbitrary axis does not change under the 
transformation of theorem 18; as an algebraic sum, it is then independent of the order and 
composition of the arrangement.  Thus, the moment of a moment vector m relative to an 
axis a is equal to the component of m that falls along a. 
 If a force system is now given then we can “reduce” it at an arbitrary point P of space 
– i.e., all of its forces can act at P if one adds a suitable rotational moment, so all of the 
forces can be summarized as a single force and all of the rotational moments, as a single 
moment.  Thus, if a force couple were present in the system then, with no further 
assumptions, we could displace its moment vector to P.  The reduction to P is unique and 
the force system can now be represented by a single force rod k and a single moment 
vector M, which can likewise go through P.  From Theorem 18, it now follows that: 
 
 Theorem 19: The length and direction of k are independent of the location of the 
point P. 
 

                                                
 (*) A misunderstanding can therefore not come about since we do not employ the Grassmann 
symbolism (except in § 16). 
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 We ask whether one can further reduce at another point O in such a way that the 
plane of the rotational moment becomes perpendicular to the line of action of the force, 
so the carriers of k and M will coincide.  We decompose M into two components m1 ⊥ k 

and m || k (Fig. 15).  We then reduce at a point O that is at a 
distance l from the half of the normal to the plane (k, M) 
for which the angle k, m1 appears to be 90o (not 270o).  We 
must then (Theorem 18) add a moment vector m′ that has a 
magnitude of kl, and is directed oppositely to m1.  Thus, if 
we choose l = m1 / k then m1 will be directly cancelled by 
m′, and what will remain after the reduction at O is only a 
force of magnitude k and the moment m.  An arbitrary 
point of its new common carrier a (the “axis” of the force 
system) can play the role of O.  However, aside from this, 
the reduction to this “normal form” for the force system is 
unique.  The reduction from P to O is indeed unique; if one 

were to go from another point P to a point O′ on a line a′ then, from Theorem 19, one 
would at least have a || a′, and a reduction of O to O′ would not change the direction of 
the moment vectors, which, from Theorem 18, would be impossible. 
 We call the aggregate of a force and its rotational moment whose plane is 
perpendicular to the force a dyname.  Due to its force part, it has the mobility of a rod that 
displaces along its carrier, and we do not regard it as different from one. 
 
 Theorem 20: Any spatial force system may be reduced to a unique dyname. 
 
 Naturally, it is not out of the question that the force or moment part of the dyname 
might vanish in some special cases. 

_________ 
 
 

§ 15.  Simplest form for a force system. 
 

 As such, we consider the forms in which the force system is the smallest aggregate 
possible, namely, two components that contain either a), a force and a moment, or b), two 
forces. 
 
 a) We now start with the dyname k, m with the 
carrier a, and displace (Fig. 16) k to k′ along the line 
segment OP = l, while adding the moment m′ = kl, 
which we compose with m at P into a single moment 
M.  Since we can consider k, l, m′ to be the axes of a 
reference system of the first type, the angle (m′, k), as 
seen from P, will always be a right angle.  If M 
defines an angle ϑ with the plane l, m′ (for the angle 
convention, cf., § 8), moreover, then one will have: 
 

 

m′ 

l 
O 

P 
m1 

k 

m 

M 

Figure 15. 

 

k′ 
l 

k 

m 

M 

O 

P 

m′ 

Figure 16. 



§ 15.  Simplest form for a force system.                                                25 

1)   tan ϑ = 
m

m′
= 

m

kl
, 

 
where m is positive or negative according to whether it has the same or the opposite 
direction to k, respectively.  As a result of the orientation of our system of pointers itself, 
k and l will always be positive.  If we compare equation 1) with equation (1.a) in Chapter 
I, § 2 then we will see that both equations will be identical, up to the sign of the distance 
along the axis, if we set: 

2)      k = 
m

k
. 

 
Thus, the direction of M agrees with the tangent of a screwing motion S around a with 

parameter m / k.  Since the construction preserves its validity under a displacement along 
a or a rotation around a this will be true for not only the point P, but also for each point in 
space.  This screwing motion will have the same sense as that of the screw S′ that 

confers a homogeneous, coaxial, circular cylinder to the dyname. (*)  Since the plane of 
the moment, and also the null plane of the screw, are perpendicular to M we can 
summarize the most important results and broaden them as follows: 
 
 Theorem 21: If we reduce a dyname k, m to the form k′, M at all points of space in 
succession then a moment plane will be associated with each point P.  This association 
will define a null system with the parameter k = m : k.  The screw that belongs to this null 

system will have a left or right winding according to whether k, m has the same or 
opposite direction, resp.  We then say that the screw itself, as well as the force system, 

has a right or left winding, resp.  The magnitude of M is, by our reduction, 2 2 2m k r+ , 
where r = (P −| a).  (** ) 
 
 Since the vector M points into the first or fourth quadrant of the plane (M, k′) 
according to whether the dyname has a left or right winding, respectively, one will obtain 
the intuitive rule: 
 
 Theorem 22: The axis of a dyname D lies on that side from which the angle (k′, M) 

appears to be concave.  D is wound right or left according to whether k′, M subtends an 

absolutely (*** ) acute or obtuse angle, resp. 
 
 We look for all axes a that go through a point P and relative to which, a given force 
system has a null moment.  If we reduce the system at P, where it takes the form k′, M, 
                                                
 (*) Instead of the cylinder, one can take an arbitrary body whose principal axis of inertia is along a.  
However, one may believe that S and S′ are identical.  The motion that the body exhibits under the 
influence of the dyname will then depend upon not only the dyname, but also on the mass and mass 
distribution (i.e., moment of inertia) of the body. 
 (** ) We employ the notation of Rohn and Papperitz (Darst. Geom.) for the distance from a point to a 
line. 
 (*** ) Cf., the first remark in § 12. 
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then k′ will always have a null moment relative to an axis through P, but only when the 
associated moment plane E goes through a.  The “null axis” through P thus defines the 
plane pencil (P, E). (*)  From Theorems 21 and 14, and § 4, it now follows immediately 
that: 
 
 Theorem 23: The null axes of a force system S define a screw of lines that is wound 

oppositely to S. 

 
 b) We call a system of two rods a rod cross (Stabkreuz), in the style of Buddes 
“vector cross (Vectorkreuz)” (mechanics), or, when forces are present on the rods, also a 
force cross.  We now examine how a force system S, which we will think of as being 

given in the form of a dyname D, can be replaced with a force cross k1, k2 .  In order for 

the force cross to be equivalent to D, it must have the same moment as D relative to 

every axis and a null moment about the same axes as D.  Now, the null axes define a 

screw (the associated null system is denoted N).  If a ray s cuts the aforementioned k1 

then the moment of k1 relative to s will be null.  Thus, the moment of k2 relative to s must 
also be null; i.e., s must also intersect k2 .  Thus (§ 5), in any case, we have to look for the 
carrier of a rod cross that is equivalent to k1, k2 only among the polar pairs of N. 

 We ask whether, conversely, each polar pair g1, g2 can be the carrier of such a cross 
of rods.  We choose an arbitrary line g1 ; let P be the foot on it of the shortest distance 

from the axis a of the force system, and let ε be the plane || a 
through g1 .  If we reduce S at P then k′, as well as M, will lie in 

ε.  The plane µ of the moment M will be perpendicular to the 
vector M, as well as to the plane ε that is depicted in Fig. 17, in 
which its trace σ is found.  Now, one can arbitrarily choose the 
magnitude of the force of a couple, through which one would like 
to represent a rotational moment, and thus determine the distances 
to the lines of action.  We draw one of the forces of the couple by 
which we would like to represent M through P and choose it to be 
large enough that its resultant with k′ will fall along g1.  We will 
then find the force PT when we draw QS || σ and ST || k′.  We 

                                                
 (*) This explains the name “null system.”  Since the null axes that go through a point fill up a plane, 
Möbius (Statik, § 84; Ges. W., Bd. III), the discoverer of null systems, called this plane the “null plane” of 
the point, and conversely, the point was its “null point” (1837).  Then, v. Staudt (Geom. d. Lage, Art. 321; 
1847) called this arrangement a “null system.”  In recent times, Giorgini (“Intorno alle propr. geom.. dei 
movim. di una sist. di punti di forma invar.”  Mem. di mat. e di fis. della soc. it. delle sc. res. in Modena, 
Tomo XXI, submitted 1830, printed 1836) is occasionally called the discoverer of null systems.  In the 
reference cited, he treated various problems in the composition of and decomposition of motions; however, 
he did not find the actual characteristic association between points and planes that constitutes a null system.  
In art. 32, he made some incorrect assertions about, for instance, the problem of decomposing a given 
motion along three axes being soluble (in general), while the conditions cease to apply for seven axes (cf., 
loc. cit., § 85). 
 The present theorems on null systems were known to Möbius, for the most part; in addition to der Statik, 
cf. also “Über eine bes. Art dualer Verh…” Journ. f. Math., Bd. 10 (1833).  
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have now arrived at the fact that S can be replaced with a force k1 = PS that points in the 

direction g1 and the other force k2 of a force couple that, from what was said earlier, must 
lie along g2 . 
 The construction breaks down only: First, when g1 coincides with k′ (then the lever 
arm of the force couple would then become infinite and one would be in case a), and 
second, when g1 coincides with σ.  g1 would then become the guide line of N, so g2 

would coincide with g1, and it would therefore be conceivable that the problem would no 
longer be soluble.  We would like to make it more intuitive how the rod cross appears 
when g1 rotates around P and comes into the vicinity of the position σ: Then, from § 8, g2 
would likewise move in the vicinity of the position σ, and PT would simultaneously grow 
unbounded.  The two rods of the cross would thus become oppositely directed while their 
carriers would move ever closer, and both of them would become infinitely large.  Once 
we know that a polar pair g1, g2 (if g1 and g2 are different and both of them lie at finite 
points) can always be carrier of an equivalent force cross in a real sense, we can find the 
rods of the cross in a simpler way when we let k′ point in the directions g1, g2 .  We 
summarize: 
 
 Theorem 24: A given dyname k, m can be replaced by a force cross in ∞4 ways.  One 
can choose the line of action g1 of the one force (excluding the guide lines and diameter 
of the associated null system N) arbitrarily, while the other one is its polar g2 in N.  One 

obtains the magnitude and sense of both forces by decomposing the vector k in the 
directions g1, g2 . 
 
 Conversely, if a force cross k1, k2 is 
given then we would like to find the 
equivalent dyname k, m in the simplest 
way.  Indeed, one can also apply the 
general process of § 14 here, and one then 
clearly arrives at the point: When we add 
the vectors k1, k2 geometrically (PC # 
QB), we will obtain the magnitude and 
direction of k in k′ (Fig. 18), from which 
we will know, in addition (Theorem 10), 
that it intersects the shortest path PQ to 
the rods of the cross perpendicularly.  One must then treat only the determination of this 
intersection point S.  From Chap. I, equation (13), one must have: 
 

SP: SQ = tan v2 : tan v1 = cot v1 : cot v2 , 
 
where the angles v1, v2 are measured from one of the two directions h, as well as k′, which 
is perpendicular to PQ; they lie in the normal plane H of k′, which we would like to think 

of as horizontal.  We thus choose two points A and B on k1 and k2, resp., by the 
construction of S, which are at the same level above H (CA || h), project them onto H 

from A′ and B′, and let PQ intersect A′B′ at S.  Space will be divided into two halves by 
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H, and likewise by the connecting plane B of k and k′.  k1 and k2 will always point to 

different half-spaces relative to the division by B, but, relative to the division by H, they 

can point to the same or different half-spaces.  In the latter case, PA′ and QB′ will be in 
the same half-space relative to B, and S will lie outside of PQ.  Since two opposite 

corners of a parallelogram have the same distance from a diagonal, the projections of k1 
and k2 onto H will be equal and opposite, and will thus define the moment m of a 

dyname, and it will follow that: 
 
 Theorem 25: If one adds the vectors of a given force cross k1, k2 geometrically then 
one will obtain a direction k.  The rod of the equivalent dyname D will be found by 

composing the components of k1, k2 that lie in the direction of k, while the components 
that lie in the normal plane of k will define the rotational moment of D. 

 
__________ 

 
 

§ 16.  A theorem of Chasles. 
 

 If k1 = KL, k2, and 1k′ , 2k′  are two equivalent force crosses then they will have the 

same moment relative to any axis.  If e = EE′ is a unit rod on A then the moment of k1 
relative to A will be equal to six times the volume of the tetrahedron EE′KL.  We can also 
denote this volume briefly by ek1, where we thus think of each rod symbol as being 
replaced with the two symbols of its endpoints.  We can now express the facts above by 
the equation: 

ek1 + ek2 = 1 2ek ek′ ′+ , 

 
which will, however, also be true when we replace e by the symbol of an arbitrary rod a 
on A, because that will come down to the same thing as multiplication by a numerical 
factor.  A, and therefore a, as well, can be chosen arbitrarily.  If we now let a coincide 
with each of the four rods k in sequence then each tetrahedron will always vanish, and we 
will obtain the equations: 
 
    k1 k2 = 1 1 1 2k k k k′ ′+ ,  k2 k1 = 2 1 2 2k k k k′ ′+ , 

    1 1 2 1k k k k′ ′+  = 1 2k k′ ′ ,  1 2 2 2k k k k′ ′+  = 2 1k k′ ′ . 
 
By adding these four equations, one will obtain: 
 

k1 k2 = 1 2k k′ ′ . 
 

For two arbitrary s, s′, one will always have, in fact: 
 

ss′ = s′s, 
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because the volume of a tetrahedron ABCD does not change in sign when one switches 
the pairs AB and CD as wholes (§ 12, d).  Thus: 
 
 Theorem 26: The volume of the tetrahedron that is determined by a force cross is the 
same for all equivalent force crosses. 
 
 The symbolism that is employed here agrees, in fact, with that of Grassmann; the 
proof goes back to Möbius [Ges. W., Bd. III, pp. 503 or Crelles J., Bd. 4 (1829), pp. 179, 
et seq.]. 

_________ 
 

 
§ 17.  Composition of velocities. 

 
 If a rigid body moves then at a definite time point each point P will have a certain 
velocity that can be visualized by means of a line segment through P.  One calls such a 
system of ∞3 line segments, each of which is applied to a definite point, a vector field. (*)  
The velocity distribution of the points of a rigid body is thus represented by a vector 
field, in such a way that we can think of it as being extended over the entire infinite 
space, because we can think of each point of space as being tightly coupled with the rigid 
body (§ 1). 
 One now cares to speak of the connection between velocities and motion in a rigid 
body in two senses of the term: 
 a) A rigid body K1 moves in a space that is thought of being as at rest (e.g., the Earth 
in the universe when the Sun is thought of as fixed); this motion corresponds to a vector 
field V1.  A second rigid body K2 moves relative to K1 (e.g., a projectile on the Earth).  
This motion corresponds (when one thinks of the Earth as at rest) to the vector field V2 .  
The motion of K2 in a space at rest will then correspond to a vector field V.  It will be 
found when one adds the vector fields V1 and V2 geometrically at each individual point of 
the line segment.  One calls these operations the composition of the vector fields V1 and 
V2 .  Since K2 also moves as a rigid body relative to the space at rest, it clear from the 
outset that under composition a vector field will again come about, whose velocity 
distribution will correspond to a possible motion of a rigid body. 
 b) A rigid motion can perform various motions in a rest space.  We attach two 
motions to each time point and compose the two vector fields V1, V2 that correspond to 
these time points into a field V.  In this way of looking at things (** ), it is not clear from 

                                                
 (*) The name is not entirely appropriate, insofar as we think of the word “vector” as meaning a line 
segment that is free to move in all of space while preserving its direction, while the line segments of the 
vector field differ from the rods by the fact that that their initial points are actually also fixed.  The 
terminology may thus be all the more easily retained, as there are only ∞3 vectors in space to begin with 
(∞2 directions and ∞1 lengths in each of them), so one hardly has any reason to speak of a manifold of ∞3 
vectors in a real sense. 
 (** ) It finds its place in physics (in general, mostly for accelerations, instead of velocities) where one 
knows the motions that the body individually takes on as a result of two simultaneously acting causes.  
Here, we have only a rigid body (e.g., a freely falling magnet) and always the same reference body (the 
Earth).  One knows the accelerations that the magnet assumes as a result of the weight alone and the 
magnetic field of the Earth alone.  By contrast, this way of looking at things will also enter into velocities 
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the outset that V represents such a velocity distribution that corresponds to a possible 
motion of a rigid body.  However, since we already know this from a), it will also follow 
here;  the operation of composition itself does differ at all in the two cases.  On this basis, 
it not always necessary to specify from which viewpoint a definite composition of vector 
fields originated. 
 In special cases, a vector field is capable of a simpler geometric representation: If a 
body rotates around an axis a with the angular velocity ω then this state will be 
characterized completely when one applies the segment ω to a in the direction that 
appears to be positive when the positive side of a is assumed to have the given sense of 
rotation.  The line segment will thus have the character of a rod, and will replace the 
vector field that corresponds to the rotation for us; we will call it a rotating rod, and a 
will be its carrier.  Angular velocities whose axes intersect will, it is known, be 
composed by adding the corresponding rotational moment geometrically. 
 If a body executes a displacement (i.e., a translation) then this state can be 
characterized by a displacement vector that replaces the vector field that corresponds to 
the displacement.  The composition of displacements will result from the geometric 
addition of the corresponding vectors. 

________ 
 

 
§ 18.  Duality between forces and velocities. 

 
 Two rotational rods whose carriers are parallel, and whose line segments are thus 
equal and opposite (a rotational couple) are, it is known (*), equivalent to a displacement 
vector whose magnitude and direction are determined by the rods in the same way as the 
moment vector when the rods refer to a force couple.  For that reason, the construction 
that led up to Theorem 18 will also be valid for the motions that result when one replaces 
each force rod with a rotation rod and each moment vector with a displacement vector.  
In the case of motions, Theorem 18 corresponds to: 
 
 Theorem 27: One may perform a displacement l of a rotation rod d in a direction 
that is perpendicular to it if one adds a displacement vector s of magnitude ld such that d, 
l, s are directed like the axes of a pointer system of the first type. (** ) 
 
 Everything up to now has pointed to the following complete analogy between the 
forces on a rigid body and velocities, which one might care to refer to as a duality 
between forces and velocities: Forces and rotational velocities have the character of rods 
and, as such, when their carriers intersect, they will be added geometrically.  Rotational 
moments and displacement velocities have the character of vectors and, as such, will be 

                                                                                                                                            
when one treats an impulsive force.  Thus, one must remark that the two vector fields V that one obtains for 
accelerations by analogous definitions in the cases a) and b) are no longer identical (Coriolis theorem). 
 (*) Cf., say, Schell, Th. d. Beweg. u. d. Kräfte, I., 2nd ed., pp. 168. 
 (** ) One remarks that the alphabetical sequence of symbols k, l, m in Theorem 18 is also preserved here 
for d, l, s. 
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added geometrically.  A force couple is equivalent to a rotational moment, and a 
rotational couple is equivalent to a displacement velocity.  From the rule of Theorem 18, 
forces can be displaced, and from Theorem 27, rotations can be displaced.  (The vector l 
is separate from the duality.) 
 One can therefore immediately carry over those theorems and constructions about 
force systems that are derived from merely the aforementioned theorems and purely 
geometrical properties of the null system to the composition and decomposition of 
velocities when one considers the rods and vectors that enter into the theorems and 
constructions as having a different interpretation, namely: The rods become rotational 
rods, and the vectors become displacement vectors.  We thus state the following theorem, 
whose meaning we will explain directly in detail: 
 
 Theorem 28: In the theorems on the composition and decomposition of forces and 
velocities for rigid bodies, one can equivalently exchange any two of the juxtaposed 
concepts: 
    Force     Rotational velocity 
 

    
Rotational moment

(Force couple)
  Displacement velocity. 

 
 Thus, the rotational velocity always belongs to a definite axis.  One must observe that 
the assumed properties of forces are true only for rigid bodies; for that reason, Budde 
aptly said that duality itself is a property of rigid bodies.  Since the dislocations of a 
definite starting time t that begin the velocities at the time t become increasingly more 
precise as the time increment grows smaller, the theorems on the composition of 
velocities will also become more precise for the composition of smaller motions; for that 
reason, one often speaks of a “composition of infinitely-small motions,” which one more 
precisely refers to as the composition of velocities, when one thinks of the transition from 
difference quotients to differential ones as having been performed. 
 We call a screw motion that proceeds with a definite velocity a winding.  By duality, 
from Theorem 28, it will correspond to a dyname.  A winding (τ, ω), as well as a dyname 
(m, k), belongs to a certain null system N (§ 2 and 15).  However, conversely, infinitely 

many windings and dynames will correspond to the same N, which come about by 

multiplying both components of one of them by a numerical factor.  In both cases, the 
parameter k of N depends only upon the ratio τ : ω (m : k) (§ 1 and 15). (*) 

 For many investigations of dynames and windings, only the null systems that they 
define come under consideration.  Once again, we can think of this as being completely 
represented by a helix on a cylinder of radius one and pitch tan ϑ = k (§ 1).  We casually 

refer to such helices on a cylinder of radius one as screws.  (** )  Null systems and screws 
are oriented equally and oppositely to each other.  With Ball (Theory of Screws), we say 
that a winding or a dyname “lies on a screw,” or also, “the screw is the carrier of a 
winding or a dyname,” when the null system of screw is identical with the null system of 

                                                
 (*) In order to give this the correct sense, one draws one’s attention to the fact that k is a linear quantity. 
 (** ) An extension of this concept will be presented in § 36. 
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the dyname or that of the winding.  Only the winding, but not the dyname, has an 
immediate intuitive connection with the screw on which it lies.  Above all, it must be 
emphasized that a dyname and a winding, even when they lie on the same screw, have no 
causal connection in and of themselves (cf., the first remark in § 15), but it is only under 
their composition with others of their kind that they play the same role and correspond to 
each other under duality. 
 We can now also determine a winding by its parameter (viz., its pitch) k, its axis, and 

its velocity ω, which we will causally refer to as not only the velocity of the rotational 
part, but also the velocity of the winding.  One will then have: 
 

τ = k ω. 
 

Analogously, one can determine a dyname k, its axis, and its “intensity” k.  One will then 

have: 
m = k k. 

 
We need the expression “pitch” for k (in Ball’s terminology), and, by way of analogy, 

also for dynames, regardless of whether it has no obvious mechanical meaning here.  For 
k = 0, one has the “unit dyname,” and for ω = 1, one has the “unit winding.” 
  Poinsot (Theor. nouv. de la rot. des corps, 1834) first suggested the duality between 
forces and rotational velocities. 

_________ 
 
 

§ 19.  Psychological remarks. 
 

 As far as the theory of cognition is concerned, the composition of velocities is simpler 
than that of forces because velocity is a purely geometrical concept, while force is a 
physical notion.  Nevertheless, the theory of the composition of forces is more intuitive 
and generally simpler in all of the other regards than the corresponding one for velocities: 
First of all, force, whether a compression or a tension, takes on a form that is just as 
tangible and perceptible in its manifestation (*) as motion, although it is a notion in which 
a process of differentiation does not seem intrinsic (as it is with velocity).  Furthermore, 
several forces can act on a rigid body simultaneously (e.g., in the form of elastic strings 
or coil springs in a definite state of stress), while a body cannot have several velocity 
states at the same time; moreover, a decomposition of this state is merely a way of 
imagining things.  Finally, the conceptualization of a force system in its simplest form is, 
so to speak, exhaustible (two forces for a force cross, three, for a force along with a force 
couple), while an individual rotating rod already represents infinitely many points of the 
body, and will substitute for the entire infinite vector field.  Thus, a force rod represents 
the many rods that immediately follow as a rotating rod.  On this basis, we have 
presented the theory of forces as the simplest one. 

                                                
 (*) It is neither desirable nor possible to extend this tangible manifestation to the foundation of 
mechanics. 
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§ 20.  The instantaneous axis. 
 

 The position of a body K in space is determined completely by the position of three of 
its points that define a real triangle, because the position of a plane in the body is 
determined by them.  If we first assume a point M of K to be fixed then we can choose 
the other two A, B to be points of a spherical surface that has M for its center.  The 
position of K will then be determined by the position of A, B alone, which can go to a 
nearby position A′, B′ under a motion.  One can arrive at the same dislocation when one 
first takes A to A′ along the largest circle of a rotation, for which B must go to B′ by a 
rotation around MA′, and one can think of the transition as be so contrived that one tightly 
couples MA′ with a second rigid body K′, which experiences only the first rotation 
relative to the space R, which is thought of being at rest.  Now, the motions of K′ relative 
to R and of K relative to K′ can also be performed simultaneously in many ways; e.g., 
uniformly.  If we pass to the limit in which we let the neighboring position A′B′ go back 
to AB then at the time point in question the motion of K′ relative to R will be 
characterized by a rotating rod that is perpendicular to MA and the motion of K relative to 
K′, by a rotating rod whose carrier coincides with MA.  The vector field of the actual 
motion of K will come about (§ 17a) by composing the two fields that correspond to the 
rotations; however, we know that this will again give a rotation.  Thus: 
 
 Theorem 29: Under a motion of a rigid body, a point of which is fixed, all points will 
have the same velocities as when the body rotates around a definite axis with a definite 
velocity. 
 
 We now consider a general motion of a body K under which three points A, B, C 
might correspond to the nearby position A′B′C′.  We can then think of the dislocation as 
being so contrived that we can think of the point C of K as being tightly coupled with 
another body K′ that merely experiences a displacement along the vector CC′, while K 
moves freely around C relative to K′.  By a passage to the limit that is analogous the one 
before, we recognize that the vector field for the actual motion of K will consist of the 
composition of two vector fields, one of which will correspond to a displacement velocity 
τ′ whose magnitude and direction coincides with the velocity of C, while the other one, to 
the rotation ω′ that K experiences relative to K′ (Theorem 29).  If the motions of K′ 
relative to R and of K relative to K′ are assumed to be arbitrary then what will always 
result is a possible motion of K.  Thus, τ′ and ω′ will bee independent of each other, in 
and of themselves, but under a definite motion of K they will also be determined 
completely by a choice of the point C.  We thus arrive at the fact that the velocity vector 
field of a rigid body at a definite time point is known by the aggregate of a rotating rod ω′ 
and a displacement vector τ′, and this is the point at which the fact of the duality between 
forces and velocities can be of value: We can reduce τ′ and ω′ to an arbitrary point of 
space (exactly like a system of forces in § 14), corresponding to the arbitrary choice of C.  
We choose the reduction point in such a way that a displacement vector τ with the same 
direction as the rod ω′ will appear in place of τ′ (viz., the analogue of the dyname), where 
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ω′ is displaced parallel to ω.  τ and ω then define a winding (§ 18) with the parameter k = 

τ / ω (§ 1). 
 
 Theorem 30: Under an arbitrary motion of a rigid body, at each moment, all of its 
points will have the same velocity as if the body had experienced a definite winding with 
a definite velocity.  The axis of this winding is called the “instantaneous axis,” and its 
parameter is called the “instantaneous parameter” or the “instantaneous pitch.”  The 
velocity vector field at that instant is determined completely, up to a numerical factor, by 
the instantaneous axis and instantaneous parameter, which together determine the 
“instantaneous winding.” 
 
 It is not out of the question that τ or ω might vanish.  In the former case, a pure 
rotation would appear in place of the winding, while in the latter case, it would be a pure 
translation; one can regard the latter as if the instantaneous axis were the line at infinity 
of all planes that are perpendicular to the displacement.  τ and ω can also vanish 
simultaneously; at such a time point, all points of the body will have a zero velocity, and 
the instantaneous axis will either be completely indeterminate or will be defined to be the 
limiting position of the neighboring instantaneous axes.  If, e.g., a body begins a uniform, 
accelerated winding at the time t then one will also obtain the axis of the winding at t as 
the instantaneous axis in this way. 
 The discoverer of the instantaneous axis was Giulio Mozzi (Discorso mat. sopra il 
rotamento mom. dei corpi, Napoli, 1763). (*) 
 

___________ 
 
 

§ 21.  The decomposition of a winding in its simplest form. 
 
 We can connect this section immediately with § 18; now, however, we know from 
Theorem 30 that the results that we derived for the velocity vector field of a winding will 
remain valid for each instant of an arbitrary motion. 
 We next carry over the most important theorems of § 15 on the law of duality to the 
case of a winding.  If k = τ : ω is the pitch of the winding then one can displace the 

rotating rod ω of the winding parallel to itself in an arbitrary direction that is 
perpendicular to it along the line segment r, when one replaces the displacement vector τ 

by another one T of absolute value 2 2 2rτ ω+ that lies in the same way as the vector M 
of § 15a).  Furthermore:  
 
 Theorem 31: A winding (τ, ω) can be represented in ∞4 ways as the resultant of two 
rotational velocities.  One can choose the axis g of one rotation arbitrarily (except for the 

                                                
 (*) The following simple consequence of corollary IX in this paper is still worthy of mention: When 
arbitrarily many forces are given, one can always find two of them that are equivalent, one of which lies in 
an arbitrary plane E and the other of which is perpendicular to it.  One can then decompose any force into a 
component in E and one that is perpendicular to E. 
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guide lines and diameter of the null system N that is associated with the winding).  The 

other axis is the polar g′ of g in N.  One obtains the angular velocity of both rotations by 

decomposing ω in the directions g, g′.  Conversely, the construction in Fig. 18 that 
served to define the composition of two rotations will remain unchanged. 
 
 Thus, we must dispose of an objection: The derivation of Theorem 24 made use of the 
concept of moment of a force system relative to an axis, which has no natural analogue in 
the theory of motion.  Is one therefore justified in transferring the results in the name of 
duality?  One knows that if one replaces a result on rotating rods with one on force rods 
and the displacement vectors with moment vectors, and then performs the reduction at a 
point of the axis then the same dyname will come about.  Thus, while preserving the 
original meaning, the given winding must result from the same reduction, because the 
theorems on composition and decomposition of rods and vectors in § 18, especially 
Theorem 27, are independent of whether one interprets them as forces or velocities.  By 
this argument, one can once more subsequently convince oneself that, in fact, all of the 
results of § 15 can be transferred to the realm of the study of motion, even if the 
derivation of these results cannot always be immediately transferred. 
 As an application of Theorem 31, we treat a question that has no analogue in the 
theory of forces: Under an arbitrary motion, a plane E in a rigid body determines an 
intersection line g1 with a neighboring position.  One seeks the limiting position of g1 
(relative to the composition of the neighboring lines with the original one), or the 
“characteristic” (for Chasles) of the plane E.  If E is perpendicular to the instantaneous 
axis a then the characteristic will be the line at infinity of E; if E || a then it will be any 
parallel to a that lies in E and has the shortest distance to a.  We now exclude these 
special cases. 
 An instantaneous axis and an instantaneous parameter determine an instantaneous 
winding and an associated null system.  In order to get a glimpse of the distribution of 
velocity vectors at all of the points of E, we erect a 
normal g′ to E at the null point N.  The polar g of g′ 
lies in E (Theorem 12).  If we replace the 
instantaneous winding with two rotational velocities 
that have axes g, g′ then the rotation g will confer 
each point of E with a velocity component that is 
perpendicular to E and the rotation g′ will confer one 
that lies in E.  Only for the points of g does the first 
component vanish, while the second component 
vanishes for N.  One can now (§ 17) think of the 
winding as being performed (Fig. 19) in such a way 
that E rotates around g, while g simultaneously rotates around g′ and thus comes into the 
neighboring position 1g′ , which also lies in E.  The moving line 1g′  will constantly be the 

intersection of E with its neighboring position.  For that reason, the limiting position g of 

1g′  will be the characteristic of the plane.  Thus: 

 
 Theorem 32: Under a winding, the null point N of a plane E will be the only point of 
E whose velocity is perpendicular to E.  The location of the points of E whose velocity 
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falls in E is a line g that is the polar to the normal to E at N; g is likewise the 
characteristic of E. 
 
 In order to learn more about the position of g we set: 
 

tan ν = − cot ν′ 
 
in equation (12) of § 8 (since the angle itself differs from 90o) and obtain: 
 

c c′ = − k2, 

i.e.: 
 
 Theorem 33: The null point and characteristic of a plane lie on opposite sides of the 
axis a at distances from a such that parameter of the null system is proportional to the 
geometric mean of the absolute values of these distances. 
 

_________ 
 
 

§ 22.  The instantaneous winding of a body, five points of which are 
constrained to remain on five surfaces. 

 
 
 If a rigid, planar system moves in its own plane then the motion will be determined 
completely when the paths are prescribed for two points, since the motion of the 
connecting line segment will then be determined, and this will direct the entire system 
uniquely.  Analogously, we can prescribe the motion of a rigid body by a number of its 
points P1, P2, …, Pk and surfaces F1, F2, …, Fk , upon which they must remain during the 
entire motion.  It will be shown that for k = 5 the motion of the body is determined 
uniquely, in general.  Whether we do or do not know the direction that Pi is given at the 
beginning of the motion in Fi , we do still know that the normal ni to the surface Fi at Pi 
must also be the path normal for Pi , and thus the guide line of the null system that is 
linked with the instantaneous winding.  Therefore, 
if a twist is determined completely by the five rays 
n1, …, n5 then it will also be the instantaneous 
winding of the motion that the body can exhibit 
from the given position, and we pose the problem: 
Determine the axis and the parameter of a twist 
when one is given five rays n1, …, n5 . 
 
 We determine the two common transversals g, 
g′ of n1, …, n4 , which, from Theorem 8, must be 
polar to each other in the twist.  From § 10, d), the 
twist will then be determined; one constructs g, g′ 
when one intersects the hyperboloid H that is 
determined by n1, n2, n3 with n4 .  g, g′ go through 
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the intersection points as the rays of the guiding family of n1, n2, n3 .  If the intersection 
points are not real then one can enforce a real construction of the following kind (Fig. 
20): One considers the hyperboloid (n3, n4, n5) ≡ H′, in addition to H.  If one cuts both of 
them with a plane E then one will get two conic sections K, K′ in them that have the point 
(E, n3) ≡ S in common, and thus, at least one other point T.  A ray 4n′  of the family of 

rulings (n3, n4, n5) will go through T, which, from Theorem 11, will also be a ray of the 
twist.  If we replace n4 with 4n′  then g, g′ will become real.  We provide ourselves with 

yet a second polar pair h, h′, with the use of another quadruple from the five rays n and 
then construct the instantaneous axis a from Theorem 10.  The path tangent ti at Pi is that 
tangent to Fi at Pi that is perpendicular to the intersection of Fi with the null plane of Pi .  
Now, from § 1, the instantaneous winding is determined by the axis and one of the 
tangents ti ; therefore: 
 
 Theorem 34:  If five points of a rigid body are constrained to move on a surface then 
the instantaneous winding that the body can execute will be determined uniquely (up to 
its velocities) by that data in all cases  in which a twist is determined uniquely by five 
surface normals. 
 
 If P1 and P2 coincide (but not F1 and F2), and likewise P3 and P4, then one will be 
dealing with the case in which two points of a body are constrained to stay on two curves 
(viz., the intersection curves of some pair of surfaces), and a third point is constrained to 
remain on a surface, as well.  Here, determining the instantaneous winding will be a 
special case of the problem that was just solved (which we will find a linear solution for 
in § 47, d), moreover), which is why not all of the special cases that were present were 
considered.  Later on (§ 70), we will see that the absence of intersection points does not 
affect the solution. 
 

_________ 
 

 
§ 23.  Planar frameworks and associated reciprocal force planes. 

 
 We imagine ourselves as being in the plane of a system of material rods that are 
linked at their ends in such a way that the system can move only as a whole.  For the sake 
of simplicity, we further assume that the rods do not cross anywhere, so the polygon in 
the plane that they define is simply covered.  Such systems of rods are special cases of 
“planar frameworks,” and come about with iron bridges, roofs, etc.  If the external 
conditions (e.g., the loads on the bridge, the wind pressure on the roof, etc.) are given 
then in order to construct these objects one must know the effect of tension or 
compression on each individual rod in order to be able to determine the rigidity that one 
gives it.  The points at which several rods join together are called nodes.  One now makes 
the assumption that the external forces act only on the nodes of the framework; i.e., that 
they can be distributed over the nodes (viz., a “statically-determinate” framework) 
according to the laws of statics (including the dead weight of the rods), resp.  One further 
considers only the tensile or compressive stresses in the rods (but not the effects of shear 
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or torsion), as if the rods were linked with each other at the nodes in an articulated way.  
This arrangement has proved to be adequate for the applications, when it also does not 
deviate too far from reality, since the links are usually defined by numerous rivets. 
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 We shall show that one can average out the stresses in a planar framework by the 
simplest possible example: Let A, B, C, D (Fig. 21) be the nodes of a framework that 
consists of five rods 1, …, 5, which represents a carrier of the resistance that the pressure 
l on the node C, which is given in magnitude and direction, must experience.  The carrier 
itself is supported by a fixed support at B and a moving one at A in order to be able to 
yield to temperature effects.  If, for the sake of simplicity, we ignore the dead weight of 
the rods then l will provoke certain support reactions a and b at A and B, resp., where a 
must be normal to the base of the moving support; if we ignore the friction then moving 
surfaces can support only a pressure that is normal to each of them.  Since the external 
forces a, l, b that act on the carrier are in equilibrium, their line of action must go through 
a point S that is determined by the known lines of action of a and l.  In order to find the 
magnitudes of a and b, one imagines that arbitrarily many 
forces that go through a point are in equilibrium if and 
only if their vectors form a closed force polygon when 
added together according to the rules of geometric 
addition.  One then draws (Fig. 22) l′ || l, b′ || b, and a′ || a 
through the endpoints of that segment; one thus obtains the 
lengths and senses of a and b, since the sense of traversal 
over the force polygon is given by the sense of l′.  In order 
to determine the stresses in the rods 1 and 2, we think of 
the node A as being divided by a cut that meets the rods 1 
and 2 (Fig. 23).  In order for A to remain in equilibrium, 
we must replace the stresses in the rods with forces that are directed towards A or away 
from A according to whether tension or compression prevails on the rod in question.  We 
experience the sense and magnitude of these forces when we draw a triangle whose sides 
a′, 1′, 2′ are parallel to the directions a, 1, 2, while a′ also agrees with a in magnitude.  
One can likewise connect this with Fig. 22, in order to not repeat anything.  The arrow at 
a′ gives a sense of traversal that the arrows inside the triangle also follow.  This therefore 
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gives the sense of the forces that must be applied to the intersection surface in order to 
replace the actual stresses.  On then sees that 1 is in a state of tension and 2 is 
compressed.  Now, one can go on to the rod stresses at a neighboring node: A cut through 
2, 3, 5 divides D.  The stress in a rod through this node is known already.  One can then 
find the other two stresses by the methods that were just applied when one connects the 
triangle 2′, 3′, 5′ to the two triangles that were referred to already in Fig. 22.  The arrows 
inside of this triangle will again give the sense of the forces in the intersection surface.  
Therefore, the arrows on both sides of 2′ must naturally have the opposite sense, since the 
two triangles to which 2′ belongs refer to two nodes that lie at the ends of 2, and both of 
them are drawn through the middle of the rod, and thus, in opposite directions.  A sense 
of traversal is also determined in the triangle 2′, 3′, 5′ by 2′, which establishes the 
direction of the other two arrows.  One then sees that 3 is now in a state of tension and 5 
is compressed.  One then goes on to even newer neighboring nodes.  In our example, 
however, the determination of the stress in rod 4, which we can consider to belong to B, 
is now unnecessary.  We then connect b′ with the triangle b′, 5′, 4′, of which, the side 5′ 
has already been referred to; since the triangle must close when we draw the parallel to 4 
through P, the connecting line PQ must be parallel to 4, in its own right, which will give 
one a check. 
 One can arrange the arrows on both sides of each rod in such a way that one can learn 
from the force plane by itself, regardless of whether the rod in question is in a state of 
tension or compression; in the former case, one draws the arrows in such a way that 
points are closer to each other, and in the latter case, the origins are closer. 
 Fig. 22 defines a force plane; i.e., a schema of lines that represent the stresses that act 
in the rods of the framework in length and direction.  One sees that we have succeeded 
here in arranging a force plane in such a way that each rod is referred to a parallel 
regardless of whether it is met by two nodes.  Any node of the framework corresponds to 
a closed polygon of the force plane; this is also true at C, where the lines l, 1, 3, 4 meet.  
In fact, l′, 1′, 3′, 4′ define a closed rectangle.  Since the node C was not employed in its 
construction, one cannot force this situation when it does not occur in its own right.  The 
sense of traversal that delivers the force through C will be denoted by arrows on the 
external boundary of this rectangle.  Naturally, it is only in the triangle that corresponds 
to the external forces that the arrows are denoted (along its sides) in the actual sense that 
correspond to these forces.  However, conversely, the lines that define a polygon in the 
framework (e.g., a, 2, 5, b) also correspond to lines in the framework that go through a 
point.  Due to these properties, the force plane is called reciprocal. 
 If one wishes to arrive at a reciprocal force plane then the process of construction will 
be determined uniquely as long as the first triangle is denoted by a′, b′, l′.  Indeed, one 
can just as well employ the two dotted lines in place of the lines 1′ and 2′ when one is 
merely dealing with ascertaining the stresses in the rods 1 and 2; however, since a, l, 1 
define a triangle in Fig. 21, a′, l′, 1′ must go through a point.  It is thus no longer in doubt 
through which endpoint of a′ one has to draw the parallel to 1.  The possibility of 
reciprocal force planes is in no way obvious; the theory of null systems is conducive to 
the proof of its existence for certain kinds of frameworks.  For that, we must therefore 
first fall back on the theory of polyhedra. 
 

_________ 
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§ 24.  From the theory of polyhedra. 
 

 If one traverses any face of an everywhere-convex polyhedron P that lies entirely at 

finite points in the same sense (e.g., considered to have the positive sense from the 
outside) then any edge will then be crossed twice in the opposite senses.  This “Möbius 
edge law” can also be expressed in a dual form: If one rolls a plane around any edge of P 

in the same sense (which can never cut the polyhedron, but always have an edge or a face 
in common with it) then each edge will then appear twice as the axis of opposite 
rotations. 
 If one then begins to traverse a face in an arbitrary sense then one can also, without 
knowing whether one finds oneself on the outside or inside of P, go on to a neighboring 

face when one always observes that the same edges must be traversed in opposite senses, 
since they are associated with two different faces.  Any face will then obtain a definite 
sense of traversal independently of the type of the transfer. 
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Figure 24. 
 

 However, this is not possible for all polyhedra: In order to get an intuitive picture of a 
“one-sided zone,” one bends a rectangular strip AA′B′B (Fig. 24) such that A′ goes to B 
and B′ goes to A.  The boundary of the strip can now be traversed completely in a single 
circuit.  If one displaces a small closed curve, which shall be denoted by, say, 1 on the 
visible side, together with a definite sense of rotation, into the positions 2, …, 5, until it 
arrives at 1 again then the curve will come to the other side of position 1 and the sense of 
traversal will have been converted to the opposite one; a half-ray that is constantly 
normal to the surface will serve the same purpose as the curve.  One can go from any 
location on the surface to the other side of the location in question without crossing over 
the boundary or breaking through the surface.  Indeed, one cannot distinguish two 
different sides of the strip as a whole at the individual locations on the strip.  Möbius (*) 

                                                
 (*) And simultaneously Listing (cf., Stäckel, Math. Annal., Bd. 52).  
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first discovered this situation (1858); according to him, such surfaces are called one-sided 
(*). 
 In order to have an example of a closed, one-sided surface, one needs only to 
eliminate the boundary of the strip, perhaps in such a way that one connects an arbitrary 
point of space with it by a conic surface.  Thereby, self-intersections of the surface will 
be unavoidable, and if one would like to go from one side to a place on the other side 
then one will generally need to break through the surface, but never through the part of it 
along which one actually moves. 
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 Analogously, one can define closed polyhedra when one (in order to give a simplest 
possible example) perhaps breaks a net of five triangles that are connected in sequence 
along each side (Fig. 25; A′B′ = AB) along those common triangle sides in such a way 
that A′ again coincides with B and B′, with A.  In order for this to be practicable, one 
might not depict the net arbitrarily (the reader takes it to be similar to Figure 25, and 
allows a boundary along AB in order to attach it along B′A′ or to fasten it with a pin), but 
one can choose the first four triangles arbitrarily only within certain limits.  One then 
fixes the middle triangle 3, so the geometric locus of A is a conic surface of radius AC 
(with the exception of certain components of the sphere surface), while the geometric 
locus of B′ is merely a circle.  One will then rotate B′ far enough that it is at a distance of 
AC from C, whereupon one can bring A into coincidence with B′ by a suitable choice of 
the lengths of the sides of the triangle.  The final triangle 5 is then determined 
completely.  The strips will have only one boundary: A, C, E, A′ ≡ B, D, B′ ≡ A.  In order 
to get a closed, one-sided polyhedron, one can eliminate the boundary by connecting it 
with an arbitrary space point through five triangles, but not when one connects a vertex 
on the boundary itself with the opposite edges by three triangles; cf., Brückner, Vielecke 
und Vielflache, Theorie und Geschichte, 1900, art. 55. 
 The edge law is not valid for the one-sided polyhedra.  However, it is restricted to 
everywhere-convex polyhedra P, except that P must only be two-sided; i.e., when one 

starts with a well-defined location on the outer surface, one must always come back to the 
same side of that location, as one might also come back to the same location while 
                                                
 (*) The terminology “double surface” of function theory means one-sided surface.  One finds the basis 
for this in the following picture: If one finds oneself on a definite side of a two-sided surface then only that 
one side will be accessible, while for the one-sided surfaces the two sides will be accessible from the 
location in question, whereby the location in question will have “doubled,” so to speak.  
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moving on the surface.  Thus, P can be “extraordinary”; i.e., possess a surface whose 

perimeter intersects itself; Cf., Brückner, loc. cit., art. 60. 
  

_________ 
 

 
§ 25.  Reciprocal polyhedra. 

 
 For each element (vertex, edge, face) of a polyhedron P in a null system, whose axis 

a we think of as vertical, we seek the corresponding element (null plane of the vertex, 
polar of the edge, null point of the face, respectively).  If the edges k1, k2, …, kn go 
through the vertex E then its polars 1k′ , 2k′ , …, nk′  will lie in the null plane ε of E 

(Theorem 12), which will also appear among the corresponding elements.  Conversely, if 
the edges κ1, κ2, …, κn lie on a face ϕ of P then the polars 1κ ′ , 2κ ′ , …, mκ ′  will go 

through a point F of ϕ that also appears among the corresponding elements. However, in 
order for us to convince ourselves that all corresponding elements actually comprise the 
faces, edges, and vertices of a second polyhedron P′, and how that happens, we will pose 

the following argument, in which, for sake of intuitive appeal, we will restrict ourselves 
to the case in which P is an everywhere-convex polyhedron that lies entirely at finite 

points: We assume that no face of P is parallel to a and project P onto a horizontal 

plane.  We also refer to the edges of P, which therefore provide the periphery of the 

projection, as peripheral edges; their totality defines the “true periphery” of P.  If a plane 

E rotates around an edge k of P then it will come to two positions in which it will include 

faces of the polyhedron, and these faces will cut out the null point on the polar k′.  When 
we think of a line as connected at infinity, we say that k′ will be divided into two parts by 
the two null points.  If E || a then the null point will go to infinity.  Thus, if a plane E is 

rolled around a vertex A of P then its null point will describe a closed polygon a that 

either has two infinite sides or lies at finite points entirely, according to whether A does 
or not belong to the true periphery of P, resp.  However, in the first case, we will change 

the law of rotation for the rolling in such a way that we will establish that for the 
peripheral edges, and only for them, E shall rotate around those edges of a polyhedron to 

the next ones in such a way that they describe a wedge in which the polyhedron itself lies.  
A peripheral edge k will now, as before, appear twice as an axis of opposite rotations, 
since each of the previous two (established in the previous §) rotations would be 
associated with their opposites.  Therefore, the null point of the plane will traverse the 
corresponding (now, finite) piece of the polar k′ two more times in the opposite senses.  
We thus have the: 
 
 Theorem 35:  If P is an everywhere-convex polyhedron that lies at finite points 

entirely, no face of which is parallel to the axis a of a null system, then the finite pieces of 
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the polars of all edges of P will close together into a polyhedron P′ that will likewise 

obey the law of edges. 
 
 Namely, if one thinks of the edge law for P as being expressed in the dual form (§ 

24, beginning) then it will follow for P′ in the original form.  One can easily say more: If 

E rolls around A in the just-altered way then it can only come to the same position (in 

which it links the two peripheral edges) twice when A belongs to the periphery.  
Therefore, this will overlap the finite pieces of the sides once in the corresponding 
polygon a′ of P′, except when those peripheral edges meet the vertex.  a′ will then 

emerge from a in such a way that the two possible sides at infinity will be replaced with 
their finite extensions. 
 If we then let the vertex A be described by an edge k that successively sweeps out all 
of the edge angles of the vertex then the edge will not come to the same position twice, 
except when the shell cuts the vertex itself.  In addition, if A is everywhere convex then k 
will never meet the extension of another side of the vertex, as it does in the one in which 
it actually moves.  Therefore, k′ will rotate around the vertices of the polygon a in such a 
way that it will not come to the same position twice and will never go through another 
vertex of a except the one that it actually rotates around; i.e., it will roll around the outer 
sides of an everywhere-convex polygon, which we assume either lies at finite points 
entirely or has the type of Fig. 26.  We conclude and summarize, when we again replace 
the polygon a that appears in P′ with a′: 
 
 Theorem 36:  If A is a vertex of P that belongs to the true periphery then the two 

peripheral edges that go through A might or might not be divided by ordinary edges; in 
the first case, the corresponding polygon a′ of P′ will consist of two intersecting line 

segments (AB, A′B′, Fig. 27) and two line paths that link its endpoints and return to the 
double point of its convex side (as long as it contains more than one segment, to begin 
with); in the second case, only the part on one side of the double point will remain.  If A 
does not belong to the periphery then a′ will be everywhere convex. 

 

Figure 26. 
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 One then sees that when one considers the finite pieces of the polars k′ (which is 
necessary for our purposes), P′ will be an extraordinary polyhedron, in general; for that 

reason, it was necessary to be careful in proving Theorem 35.  (One will find examples in 
the practice problems.)  It follows further from Theorem 10 that: 
 
 Theorem 37:  The projections of the edges of reciprocal polyhedra onto H are 
parallel. 
 
 The edges and faces of P are incident with the faces and edges of P′; however, the 

latter fact is inessential for our present purpose.  By contrast, Theorems 35 and 37 will 
remain true when one replaces P′ with another polyhedron 1′P  that emerges from P′ by 

an arbitrary parallel displacement and similarity transformation.  If we now project P and 

P′ onto H orthogonally then two figures N, N′ will arise that we would like to call 

reciprocal nets.  Theorems 35 ands 37 immediately give: 
 
 Theorem 38:  If one projects a convex polyhedron that lies at finite points entirely 
perpendicularly onto a plane that is not perpendicular to any face of the polyhedron then 
a net N will arise for which there will always exist a reciprocal net N′; i.e., a system of 

nothing but finite segments, each of which is parallel to a segment of N, with the property 

that all segments in one net that emanate from a point will correspond to segments in the 
other one that define a closed polygon.  All of these polygons in N′ can also be traversed 

in such a way that every segment in the two polygons to which they belong will be 
traversed in opposite senses. 
 

_________ 
 
 

§ 26.  The existence of reciprocal force planes. 
 

 We assume that all of the lines of action k of the external forces (including the 
support reactions) on a planar framework can be regarded as the projections of an 
everywhere-convex, spatial polyhedron P; finally, should all lines k go through a single 

point S, then all of the rods s of framework would define a net N, for which we will 

construct a reciprocal one N′.  The point S will then correspond to a polygon s that we 

traverse in the sense that corresponds to the actual directions of the forces through S.  We 
indicate this sense of traversal by arrows on the sides k′ of the polygon (cf., Fig. 22), with 
which the sense of traversal of the neighboring polygon is also determined.  Any other 
segment s′ of N′ will contain two arrows, according to whether it can be regarded as a 

segment of one or the other polygon, and in fact we can thus always go on to neighboring 
polygons and determine the sense of traversal of each of them, whereby we know from 
Theorem 38 that the result will be independent of the choice of intermediate polygons, 
even when the individual polygons overlap.  If we now let the force that is determined by 
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the corresponding polygon act upon each node of the framework then the framework will 
be in equilibrium, in any case.  However, since many choices can be made arbitrarily in 
the construction of N′ with the help of a null system, there will be numerous reciprocal 

nets N′ (*) to the same net N, and one must show that among them there is one for which 

the segments k′ are equal to the given external forces.  We direct our attention to the 
vertex of P whose projection is S and then prove the: 

 
 Theorem 39:  A spatial vertex can always be mapped by a null system in such a way 
that the sides of its corresponding polygon in N′ will have arbitrarily-given lengths when 

only the geometric sum of these lengths is zero. 
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 We assume that this theorem is true for vertices with n – 1 edges and then prove it for 
n-edged vertices: Let the given lengths be carried by the lines kν through S, and let them 
be denoted by kν , in their own right.  We replace two of them – say, kn−1 and kn – with 
their geometric sum k (Fig. 28a).  In space, this construction corresponds to an extension 
of those sides of the n-edge that correspond to angles ωn−2 , ωn in space until they cut the 
new edge k0 .  (It should create no misunderstanding when we denote the elements in 
space and their projections by the same symbols.).  The n-edge can be chosen in manifold 
ways, such that the projection of k0 falls along the diagonal k.  Theorem 39 is true for the 
vertex that is defined by the n – 1 edges k1, k2, …, kn−2 .  By mapping in a null system 
(parallel translation, similarity transformation) and projection, one can then obtain a 
polygon σ (Fig. 28 b) for which each of the sides 1k′ , 2k′ , …, 2nk −′ , k′ are not only 

parallel, but also equal to the corresponding segment kν .  If we now consider the plane 
that rolls around the edges through S, according to § 25, and instead of taking it from the 
position ωn−2 to the position ωn immediately by a rotation around k, we first rotate it 
around kn−1 into the position (kn−1, kn) and then around kn into the position ωn then its 
point in N′ that corresponds to its null point, instead of describing the segment k′ whose 

two endpoints join 1nk −′ , nk′  on the circuit, will become the segments that are not only 

                                                
 (*) In fact, one can distribute the resultant R of the external forces at F on the same lines of action 
through the same nodes in various way, even when one does not change R , and therefore the support 
reactions, as well, so one will also get various stress states. 



46 II.  Application to the theory of motion, mechanics, etc. 

parallel to the segments kn−1, kn , but also equal to them, since a segment can be 
decomposed into two given directions in only one way.  Theorem 39 is then true in 
general, since it is self-explanatory for all of the three-edged vertices up to now. 
 Now, since σ correctly represents the external forces, the net N′ will be, in fact, a 

reciprocal force plane of the framework.  Then, on the one hand, the stress state will be 
determined uniquely by the external forces, and on the other hand, as we saw before, N′ 
will represent a possible equilibrium state of the framework; it must then represent the 
actual stress state under the action of the given external forces, as long as only they are 
represented correctly by N′.  We then have the: 

 
 Theorem 40:  If a planar framework with two supports, together with the lines of 
action of the external forces (which might go through the same point S), can be regarded 
as the projection of a convex polyhedron then there will exist a reciprocal force plane. 
 
 Naturally, one will not return to the null system now for the actual construction of the 
force plane, but apply the process in § 23, which must then produce, at the least, the 
reciprocal force plane when one always finds the neighboring nodes by performing the 
process, by which, the stress state is still unknown in merely two rods.  However, one 
cannot deduce the existence of the force plane from the possibility of performing the 
process. 
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 Now, nothing will be affected if the point S goes to infinity; σ will then coincide with 
a line, but in such a way that its sides keep definite lengths.  For example, if S in Fig. 21 
goes to infinity then Fig. 29 will come about.  (At the same time, we let symmetry enter 
in, and denote the moved rod by double lines.)  The reciprocal force plane assumes the 
form of Fig. 30.  One easily sees that the assumptions in Theorem 40 will be fulfilled for 
all carriers of the type in Fig. 31: in it, S lies at infinity.  One thinks of the broken line 
path AMB as being in the reference plane, while one considers the line AB to be the 
projection of a broken line that arches a distance AB in a plane that is normal to the 
reference surface.  The parallel lines of action of the forces will then be edges of a 
prismatic shell, of which, the one that goes through A and B will lie in the reference 
plane.  One also recognizes that the process in § 23 suffices for the actual construction of 
the reciprocal force plane (cf., Appendix I, problem 23). 
 In order to not stray too far and give a picture of the connection between the theory of 
null systems and graphical statics, we have made very simply-restricted assumptions that 
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were not all essential, but must be proved in a more rigorous theory, such as one finds in 
the following papers: Cremona-Migiotti, “Die reziproken Figuren in der graph. Statik,” 
(Zeitschr. d. österr. Ingenieur- u. Architektenver., 1873); F. Schur, “Üb. d. recipr. Fig. d. 
graph. Statik,” (*), and especially: F. Schur, “Über ebene einfache Fachwerke,” (Math. 
Annalen, Bd. 48). 
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_________ 
 
 

§ 27.  The polar system of a paraboloid of rotation. 
 
 In this §, we assume a knowledge of the general polar properties of second-degree 
surfaces (cf., S. S., Bd. XXV, § 4). 
 Suppose that a meridian parabola of a paraboloid of rotation P lies in the image plane 
B (Fig. 32), g1 is the perpendicular projection of a 
line g || B, d1 is the diameter of the meridian 
parabola that is conjugate to g1, and G and D are 
the planes through g1 (d1, resp.) that are 
perpendicular to B.  D will then be the diametral 
plane for the chords of P that are parallel to g1;  i. 
e., the polar plane of the points at infinity of these 
chords.  Therefore, if a line g is parallel to g1 then 
its polar g′ will lie in D.  If one projects g and g′ 
onto a plane that is perpendicular to the rotational 
axis then the projected planes will be parallel and 
perpendicular to B, respectively, and thus perpendicular to each other.  It will follow from 
this that: 
 
 Theorem 41:  Two polar lines of a paraboloid of rotation will produce two mutually- 
perpendicular lines when projected onto a plane that is perpendicular to the axis. 

                                                
 (*) (Zeitschr. f. Math. u. Phys., Bd. 40).  
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 The polar system, just like the null system, is a special case of the general spatial 
correlation.  If one seeks the polyhedron that corresponds to a polyhedron in a polar 
system, then projects the two polyhedra (perhaps, onto the tangential plane to the vertex 
of P), and finally rotates the one through 90o then one will obtain two nets that have the 
same properties as the ones that were considered in § 25.  This is the way by which 
Maxwell first exploited the theory of correlations in graphical statics; cf., Hauck, “Über 
die Beziehung des Nulls. u. lin. Strahlenkompl. zum Polarsyst. des Rotationsparaboloides 
(Zeitschr. f. Math. u. Phys., Bd. 31, 1886).  
 

__________ 
 
 

Practice problems: 
 
14. a)  Relative to which of all the axes that go through a point P does a force system 
have the greatest moment? 
 b) The moments relative to all axes that go through P are proportional to the lengths 
that are determined on these axes by a certain spherical surface. 
 c) If the moments are given relative to three axes through P then find the moment 
relative to a fourth axis through P. 
 
15. a) The moments relative to the axes in a plane E are proportional to the distances 
from these axes to the null point of E. 
 b) Given the moments relative to three axes in E, construct the moment relative to a 
fourth axis in E. 
 
16. Amongst all possible decompositions of a dyname into a force cross, find the ones for 
which the two forces: 
 a) Have an equal magnitude, 
 b) Are perpendicular to each other, 
 c) Are both present at the same time. 
 
17. For a general motion of a rigid body, at each instant: 
 a) The normal planes to the paths of all points in a plane will go through a certain 
point of this plane. 
 b) The normal planes to the paths of all points of a line g will again go through a line 
g′.  If g and g′ are distinct then the velocity vectors of all points of g will be the same as if 
g were rotating around g′; if g is identical to g′ then the vectors of all points of g will be 
perpendicular to g. 
 
18. We direct our attention to a line g in a moving rigid body. 
 a) Which points of it have the smallest velocity? 
 b) In which limiting position does the base point have the shortest distance from a 
neighboring position? 
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19. The perpendicular projections of two polars onto a plane E intersect on the 
characteristic of E (Mannheim, Géométrie cinématique, pp. 105). 
 
20. How does the search for the instantaneous winding of § 22 simplify for the special 
case that was mentioned at the conclusion of this § ? 
 
21. Ascertain the spherical regions that are attainable for the point A in Fig. 25. 
 
22. In a null system with axis A, ascertain the reciprocal polyhedra to: 
 a) A tetrahedron whose altitude falls upon A. 
 b) α), an octahedron and β), a cube, two opposing edges of which fall upon A.  One 
should pursue the arguments and theorems of § 25, in concreto, for these examples. 
 
23. Construct the reciprocal force plane to the framework that is represented in Fig. 31 
when equally large, vertical forces act upon all nodes of the horizontal segment AB. 
 
24. If one rotates a polar system of a paraboloid of revolution with axis a and parameter 
2p through 90o around a, and then reflects it relative to the tangential plane to the vertex 
then it will define a null system with parameter k = p with the original position. 

 
__________ 

 



 

Chapter III 
 

Line pointers, rod pointers, and equations in them (1) 
 

______ 
 
 

§ 28.  The concept of a line pointer. 
 

 The lines in space define a four-fold manifold (see Introduction).  One thus needs (at 
least) four numbers in order to specify a single line, which one can call the pointers 
(coordinates) of the line.  These characteristic numbers of the line can be chosen in very 
different ways: For example, one can refer to the representation of the lines in a parallel 
system: 
(1)     x = r z + ρ, y = s z + σ 
 
(x, y, z are the running pointers), and define the four numbers r, s, ρ, σ, which determine 
the line completely, and conversely are associated with one uniquely, to be the pointers. 
 However, this pointer system has a great drawback: If one were to perform a 
transformation of it then equations (1) would go to: 
 
(2)     x′ = r′z′ + ρ′, y′ = s′z′ + σ′, 
 
and one would have to be able to calculate the new pointers r′, s′, ρ′, σ′ from the old ones 
if the orientation of the new pointer system were given in terms of the old one.  One 
would then find that the formulas that represented the new line pointers as functions of 
the old ones (or conversely) would be nonlinear in those pointers.  In order to convince 
oneself of that, it will suffice to consider a special case: We imagine the original system 
of parallels to be rectangular and perform a cyclic permutation of the pointer axes, so: 
 

x = y′, y = z′, z = x′. 
Equations (1) will then go to: 

y′ = r x′ + ρ, z′ = s x′ + σ. 
 

We must now bring these equations into the form (2): 
 

x′ = 
z

s s

σ′
− , y′ = 

r s r
z

s s

ρ σ−′ +  

 
by solving for x′, y′.  If we compare this with (2) then we will find that: 
 

                                                
 (1) As a preliminary to this chapter, one can read Chapter III in S. S. IX (Analyt. Geom. des Raumes, 
Part I), in which rectangular, homogeneous, line pointers were presented independently of the tetrahedral 
pointers, and appeared as a special case of them. 
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 r′ = 
1

s
, ρ′ = − 

s

σ
, 

 s′ = 
r

s
, σ′ = 

s r

s

σ σ−
. 

 
An algebraic equation in line pointers would thus change its degree under a pointer 
transformation.  While the degree is thus something that is characteristic of an algebraic 
geometric structure for the usual pointer systems, here, the degree would depend upon 
not only the structure itself, but also upon the pointer system.  For that reason, we will 
define other quantities to be line pointers that we will introduce in connection with the 
tetrahedral point and plane pointers. 
 

_____________ 
 
 

§ 29.  Homogeneous point and plane pointers. 
 

 In this and the following paragraphs, we will summarize the most important 
properties of homogeneous point and plane pointers, in order to be able to discuss them 
more easily.  Since the proofs will not be included here, we shall refer to the thorough 
presentation in Killing’s Lehrbuch der analytischen Geometrie, 1901 (II. Teil). 
 
 a) Definition:   We choose a “pointer tetrahedron” − or “basic tetrahedron” − and a 
positive side for each of its planes, and denote the distances from an arbitrary point P to 
these planes by d1, d2, d3, d4 .  We will define four numbers to be the pointers of that 
point P, which will behave like those distances when each of them is measured with an 
arbitrary unit of measurement.  If one measures di with the unit ei then di : ei will be the 
new measurement.  If: 

1

ie
= κi  

then: 
(3)     ρ xi = κi di  (i = 1, 2, 3, 4) 
 
can serve as the defining equation of the pointers xi .  The four numbers κi are fixed for all 
points of space; ρ is an arbitrary proportionality factor. 
 Let E be a plane for which we distinguish a positive and a negative side, let δ1, δ2, δ3, 
δ4 be the distances from the four tetrahedral vertices to it, and let ei be the units of 

measurement that they are measured with.  One then defines the pointers u1, u2, u3, u4 of 
the plane E analogously by: 

ρ ui = i

i

δ
e

, 

or, when 1 : ei = λi, by: 

(4)     ρ ui = λi δi  (i = 1, 2, 3, 4). 
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Only the ratios of the pointers of a point or plane will then come under consideration, 
among which, one will find three independent ones.  Conversely, a quadruple of numbers 
xi (ui, resp.) will be assigned to a point (plane, resp.) uniquely. 
 The surfaces and corners of the basic tetrahedron that have the same indices lie 
opposite to each other. 
 
 b) One can choose the constants κi arbitrarily, and determine the ratios of the λi 
arbitrarily from them in such a way that the condition for the incidence of P and E will be 
as simple as possible, namely: 

(5)      
4

1
i i

i

u x
=
∑ = 0. 

 
 c) If one goes from one homogeneous pointer system xi, ui to another ix′ , iu′  then the 

old pointers will be linear, homogeneous functions of the new ones with the same names, 
and likewise for the new as functions of the old, namely: 
 

(6)    1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

,

,
i i i i i

i i i i i

x a x a x a x a x

u A u A u A u A u

ρ
σ

′ ′ ′ ′= + + +
 ′ ′ ′ ′= + + +

 

 
in which the Aik are the adjoints of the determinants | aik |.  Solving this for the new 
pointers will give: 

(7)    1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

,

.
i i i i i

i i i i i

x A x A x A x A x

u a u a u a u a u

ρ
σ

′ ′ = + + +
 ′ ′ = + + +

 

 
Conversely, each such system of linear transformations can be regarded as a pointer 
transformation.  If one sets the right-hand side of equations (6) equal to zero then one will 
obtain the equations for the faces and vertices of the old basic tetrahedron relative to the 
new ones, and analogously, (7) will give the equations of the elements of the new 
tetrahedron relative to the old system. 
 
 d) Under the transition from a rectangular system to a homogeneous one, the 
homogeneous pointers will be entire, linear functions of the rectangular ones x, y, z, 
which will be linear, homogeneous, fractional functions (with common denominators) of 
the homogeneous pointers, namely: 
 
(8)   ρ xi = ai1 x + ai2 y + ai3 z + ai1 x   (i = 1, …, 4) 
 

(9)   x = 

4

1
1

4

4
1

i i
i

i i
i

A x

A x

=

=

∑

∑
,  y = 

4

2
1

4

4
1

i i
i

i i
i

A x

A x

=

=

∑

∑
,  z = 

4

3
1

4

4
1

i i
i

i i
i

A x

A x

=

=

∑

∑
. 
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 e) The points at infinity find an actual representation in tetrahedral points: A 
quadruple of numbers xi that makes the denominator of equations (9) zero means an point 
at infinity whose representative direction one will find when one seeks the ratios of the 
numbers. 
 
 f) If i, j, k, m are the numbers 1, 2, 3, 4 in any sequence, Pi are the vertices, and Ei 
are the opposite planes of the basic tetrahedron then xk, xl, xm will also be the tri-metric 
pointers of the point of intersection of Pi P with the planes Ei in that plane relative to Pk, 
Pl, Pm as the basic triangle.  uk, ul, um will also be the tri-metric pointers of the line of 
intersection Ei Ei in the plane Ei relative to the same basic triangle. 
 
 g) The point whose four pointers are equal to each other (e.g., equal to one) is called 
the unit point e, and the planes whose four pointers are all equal is called the unit plane 
E.  If the constants κ and λ are chosen as in b) then the following relationship will exist 

between e and E: If k is a tetrahedral edge, and S is the point of intersection of the 

opposite edge with E then the two tetrahedral planes that go through k will be 

harmonically separated by e and S, and if B is the connecting plane of the opposite edge 

with e then the two tetrahedral vertices will be harmonically separated by E and B on k. 

 
_____________ 

 
 

§ 30.  Geometric representation of the pointer ratios by double ratios. 
 

 We choose a plane E with the pointers ui and consider a well-defined pointer ratio; 
e.g., u2 : u1.  Let S be the point of intersection of the edge P1P2 of the basic tetrahedron 
with E, and let S be its intersection with G (Fig. 33).  From § 29 a), one will then have: 

 

2

1

u

u
 = 1 2

2 1

:
δ
δ
e

e
. 

Now, one will have: 

2

1

δ
δ

 = 2

1

P S

PS
, 

 
since the former ratio emerges from the latter by projective onto the normal direction of 
E.  Analogously, one will have: 

2

1

e

e
 = 2

1

P

P

S

S
, 

so (*): 
                                                
 (*) We employ the notation: 

(ABCD) = :
AC AD

CB DB
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(10)     2

1

u

u
 = (P2 P2 S S). 

 
 We choose a point P with the pointers xi and consider the ratio: 
 

2

1

x

x
 = 2 2

1 1

:
d e

d e
. 

 
 

δ2 

P2 

P3 

P4 

P1 

C 

e2 

γ′ 

Ek 

S 

Nk 

γ 

σ 

1P′  

e1 

A T 
D 

B 

ω 

δ1 

U 

α 

Figure 33. 
 

 One can now replace the points P and e, which involve the distance ratio of the planes 
E1, E2, with arbitrary points of the connecting planes PP3P4 and eP3P4, resp. – e.g., with 
their points of intersection S′ and S′ with the edge P1P2 .  (Fig. 34. P3P4 ≡ y is the line of 

intersection of E1E2 .  Only two vertices P1, P2, two faces E1, E2, and two edges k, y of the 

                                                                                                                                            
 for the double ratio, in which we regard AB as the divided segment, and C, D as the dividing points. 
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tetrahedron are indicated.) Thus, if 1d′ , 2d′  have the same meaning for S′ and 1e′ , 2e′  have 

the same meaning for S′ that the unprimed quantities do for P and e then one will have: 

 
 d1 : d2 = 1d′ : 2d′ , e1 : e2  = 1e′ : 2e′ , 

 1d′ : 1e′  = P2S′ : P2S′, 2d′ : 2e′  = P1S′ : P1S′, 
so 

(11)     2

1

x

x
= (P1 P2 S′ S′) . 

 

τ 

y x 

σ 

β 

α 

P2 

Figure 34. 

E1 

E2 P1 

k 

k″ 

2d′  
2e′  

S′ 

1P′  

1d′  

1e′  
γ′ 

k′ 

 
 The elements P2, P1, S, S in equation (10) correspond dually to four planes E2, E1, (P, 

y), (e, y).  The latter would then be made to intersect with k in S2, S1, S′, S′.  Now, S2 ≡ 

P1, S1 ≡ P2, and this is the basis for the fact that the points P1, P2 have changed places in 
equation (11) when compared to equation (10). 
 
 Theorem 42:  If Pi Pk is a tetrahedral edge k, and y is the opposite edge then the 
pointer ratios ui : uk for a plane E and the pointer ratios xi : xk for a point P can be 
represented by double ratios on k, and in fact: If S, S are the points of intersection of k 

with E and the unit plane, respectively, in the first case, while S′, S′ are the intersections 

of k with the planes (P, y), (e, y), resp., in the second case, then one will have: 
 

i

k

u

u
 = (Pi Pk S S), i

k

x

x
 = (Pk Pi S′ S′). 
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 This geometric interpretation of the pointer ratios goes back to Fiedler (Darst. Geom.) 
 

______________ 
 
 

§ 31.  The parallel pointer as a special case of the tetrahedral pointer. 
 

 We take P1 to be 
the origin of a parallel 
system whose positive 
semi-axes X, Y, Z are 
directed towards the 
other vertices P2, P3, 
P4, resp., of the basic 
tetrahedron, and we 
would like to look for 
the connection 
between the parallel 
pointers x¸ y, z of a 
point P and its 
tetrahedral pointers xi, 
under the assumption 
that we can shift the 
tetrahedral plane E1 to 
infinity.  The X-axis 
will then play the role 
that the edge k did in 
the previous paragraph.  
The opposite edge is the line at infinity in the YZ-plane, so P1S′ = x (Fig. 35) and: 
 

2

1

x

x
 = 1 1

2 2

:
PS P

S P P

′ ′
′ ′

S

S
= 1 2

1 2

:
PS S P

P P

′ ′
′ ′S S

. 

Now, one will have: 

lim 2

2

S P

P

′
′S

= 1 

 
when E1 goes to infinity.  Thus, x2 : x1 will be precisely equal to x in the event that we 
choose P1S′ = 1; analogous statements will be true for x3 : x1 and x4 : x1.  We thus choose 

the unit point e to be the vertex that is opposite to P1 in a parallelepiped that is 
determined by the three unit segments on the positive semi-axes.  Under this assumption, 
one will have: 

2

1

x

x
 = x, 3

1

x

x
 = y, 4

1

x

x
 = z.

 
 

 
Z 

Y 

e 
P 

z 

y 

X S′ 

γ 

γ′ P1 

E 

E 

Figure 35. 
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As the unit plane, E must now be chosen to be the connecting plane for the three negative 

unit segments that emanate from P1 .  Furthermore, if u, v, w are the parallel pointers of a 
plane E and ui are its tetrahedral pointers then one will have: 
 

u = − 
1

1

PS
, 

so: 

2

1

u

u
 = 2 2

1 1

:
P S P

SP P

S

S
 = 2 1

2 1

:
P S P

P PS

S

S
, 

and: 

lim 2

2

P S

PS
 = 1, 

so 

lim 2

1

u

u
 = 1

1

P

PS

S
, 

 
so it will be equal to u precisely, since P1S = − 1.  Since the position of the unit point and 

unit plane were established once and for all (§ 29, g), we can say that: 
 
 Theorem 43:  If we locate the origin of a parallel system at the vertex P1 of the basic 
tetrahedron and the positive semi-axes X, Y, Z in the directions of P2, P3, P4 then the unit 
plane will cut out lengths of – 1 from the semi-axes, and if the tetrahedral plane E1 goes 

to infinity then 2

1

x

x
, 3

1

x

x
, 4

1

x

x
; 2

1

u

u
, 3

1

u

u
, 4

1

u

u
 will go to x, y¸ z; u, v, w, resp. 

 
 Thus, when the equation G of a structure is given in homogeneous point or plane 
pointers then one can derive the equation G′ of that structure in parallel pointers from it 
in such a way that one replaces x1, x2, x3, x4 ; u1, u2, u3, u4 with 1, x, y, z; 1, u, v, w, resp.  
Indeed, this will be true when the coefficients of G are numerical only when the two 
pointer systems are oriented with respect to each other as was specified in Theorem 43, 
so when they are general, unrestricted, arbitrary numbers, for an arbitrary orientation of 
the systems with respect to each other (§ 29, c), in the sense that the totality of the 
structures that are represented by G is identical with the totality of ones that are 
represented by G′. 
 

______________ 
 
 

§ 32.  General (tetrahedral), homogeneous, line pointers. 
 

 a) The quantities r, s, ρ, σ that were employed temporarily in § 28 as line pointers 
were likewise coefficients in the equations of two planes that went through the line, and 
indeed, two distinguished (projecting) planes.  Analogously, if a line g is given then we 
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would like to consider the distinguished planes εi through g and the vertices Pi of the 
basic tetrahedron by employing tetrahedral point and plane pointers, namely, to calculate 
the coefficients of their equations, or – what amounts to the same thing – their pointers.  
Two such planes would, in general, suffice for the determination of g.  In order to not 
show any preference then, we would like to consider all four of them.  We think of g as 
being given by the pointers vi, wi of two planes εv, εw that go through g.  All four planes 
will belong to the pencil of planes (εv, εw).  The pointers of ε1 must then be obtained in 
the form: 
(12)    ui = λ vi + µ wi  (i = 1, 2, 3, 4). 
  
For the determination of the ratio λ : µ, one can appeal to the fact that u1 = 0 for a plane 
that goes through P1 .  Thus, equation (12) will give: 
 

λ
µ

 = − 1

1

w

v
,  e.g., λ = − w1, µ = v1 . 

 
If we substitute this into equation (12) for i = 1, 2, 3, 4 then we will get: 
 

0,    v1 w2 – v2 w1 ,    v1 w2 – v2 w1 ,    v1 w2 – v2 w1 
 

for the pointers of the plane ε1 .  One computes the pointers of ε2 , ε3 , ε4 analogously.  We 
summarize them in the following table, in which we have set: 
 
     vi wk – vk wi = pik ; 
one then has: 
(13)     pki = − pik . 
 
Table of the pointers of the planes through g and the vertices of the basic tetrahedron: 
 

(14)    

1 12 13 14

2 21 23 24

3 31 32 34

4 41 42 43

0

0

0

0

p p p

p p p

p p p

p p p

ε
ε
ε
ε

 

 
Due to equation (13), one can write the numbers in this table in such a way that only the 
six quantities: 

p12 ,  p13 , p14 , p23 , p34 , p42 
 

appear in it (*).  Since the v and w by which the p are defined are already determined only 
up to a common factor, only the ratios of the p will come under consideration, as well.  

                                                
 (*) One sees that the two indices are written in their natural sequence everywhere, except for p42 .  The 
fact that p42, not p24, was singled out from the six pointers has its roots in the fact that the formulas would 
be clearest then.  For example, a minus sign would appear in equation (16) otherwise. 
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We now define six numbers that behave like these six quantities p to be the line pointers 
of the line g, where (with the inclusion of a proportionality factor ρ): 
 
(15)    ρ pik = vi wk – vk wi 
 
will be preserved as the ultimate definition of the quantities p.  Since only the ratios of 
the six quantities p come under consideration, they will be equivalent to five numbers.  
There must then exist a relation between them, since we already know (Intro. and § 28) 
that a line can have only four mutually-independent pointers.  One will find this relation 
when one develops the determinant: 

∆ = 

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

v v v v

w w w w

v v v v

w w w w

 

 
in the elements of the first two rows (Laplace’s determination theorem; cf., Pascal, 
Determ., § 4).  Thus (when we omit a factor of 2): 
 
(16)    p12 p34 + p13 p42 + p14 p23 = 0. 
 
Any six pointers of a line will fulfill this equation, which will be an identity as long one 
goes back to the v and w.  A line is then, in general, already determined by five of its the 
pointers (whose ratios are equivalent to the four quantities).  Indeed, the fact that g is 
already determined by two of the planes εi corresponds to the fact that any two rows of 
the table (14) contain five p quantities.  Nevertheless, one will preserve all six pointers, 
due to symmetry, and yet another reason that will be illuminated in § 39, a). 
 Conversely, any six numbers that fulfill condition (16) can be considered to be 
pointers of a line.  If one then builds the table (14) with the six numbers then one can 
write down the equations of four planes εi corresponding to that table, which one can 
show will all go through one and the same line.  This will be the case when two of the 
four triples of εi have a common line of intersection.  It is once more characteristic of this 
that all determinants of order three of the three-rowed matrices of these two triples must 
vanish.  One can then verify that the adjoints of two rows of the table (14) will vanish as 
long as the equation (16) is fulfilled.  This table is [due to equation (13)] skew- 
symmetric.  Thus, the adjoints of the principal diagonal terms will vanish as skew-
symmetric determinants of odd order (cf., Pascal, Determ. § 16).  The adjoints of two 
elements that are symmetric to the principal diagonal will differ only by the factor of 
(−1)3.  One then has to carry out the calculation only for the adjoints of five elements.  
For example, the adjoint of p12 is: 
 

p43 (p14 p23 + p13 p42 + p12 p34). 
 

It will then vanish because of equation (16); the remaining adjoints will likewise contain 
the left-hand side of equation (16) as a factor. 
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 Theorem 45:  The lines in space and the ratios of six numbers that satisfy equation 
(16) are in one-to-one correspondence with each other. 
 
 The lines at infinity are also included in this; the pencil εv, εw would then become 
only a pencil of parallel planes, and the conclusions would remain valid. 
 
 b) In a), we thought of a line as the carrier of a pencil of planes, and calculated the 
pointers of those planes of the pencil that went through the vertices Pi of the basic 
tetrahedron.  From the principle of duality, we must acknowledge that the following 
process is justified: We think of g as the carrier of a point sequence through two of its 
points Py, Pz, whose pointers yi, zi are given, and calculate the point of intersection Si with 
the tetrahedral faces Ei .  If P is any point of the sequence g with the pointers xi then one 
will have: 

xi = λ yi + µ zi  (i = 1, 2, 3, 4). 
  
Should P coincide with S1 then one would need to have x1 = 0; we can thus set λ = − z1, µ 
= y1 .  If σ is an arbitrary proportionality factor then we will set: 
 
(17)   σ πik = yi zk – yk zi  (so πki = − πik) 
and get: 

0,     π12,    π13,    π14 
 
for the pointers of S1 .  One already sees that one can carry over all of the essential results 
of a).  Namely, the six numbers: 
 

π12,    π13,    π14 ,  π23,    π34,    π42 
fulfill the relation: 
(16a)    π12 π13 + π13 π42 + π14 π23 = 0, 
 
and under this assumption their ratios will be in one-to-one correspondence with the lines 
in space. 
 
 e) Since the determination of a line is achieved from either the system of p or the 
system of π, one must be able to determine the one system from the other one.  In order 
to find that connection, we next write the table (14) and the corresponding one for π next 
to each other: 

(18)   

12 13 14

21 23 24

31 32 34

41 42 43

0

0

0

0

p p p

p p p

p p p

p p p

 

12 13 14

21 23 24

31 32 34

41 42 43

0

0

0

0

π π π
π π π
π π π
π π π

 

 
A row on the left represents the pointer of connecting plane (g, Pi), while a row on the 
right represents an intersection point (g, Ei).  Since each of the four points Si lies in each 
of the planes εi, resp., one must get zero when one combines a row on the left with a row 
on the right in such a way that one forms the sum of the products of just as many 
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elements (§ 29, b).  This gives sixteen relations, four of which – viz., the ones that arise 
from combining the same number of rows – will be three-parameter relations, while the 
other ones will be two-parameter relations.  We write down those of the latter that arise 
from employing the first row on the left: 
 
 p13 π23 + p14 π24 = 0, 
 p12 π32 + p14 π34 = 0, 
 p12 π42 + p13 π43 = 0, 
which we can also write: 

(19) 12

34

p

π
= 13

42

p

π
= 14

23

p

π
. 

 
This already follows from any two of the relations.  Thus, each of them will be a 
consequence of the other two.  Analogously, one will obtain: 
 

12

34

p

π
= 23

14

p

π
= 42

34

p

π
 

 
by applying the second row on the left.  We still lack a relation for p34.  One obtains it, 
e.g., from the third row on the left and the second one on the right: 
 

34

12

p

π
= 13

42

p

π
. 

 
One sees that the chain of equations (19) and the two following ones have a term in 
common.  One can thus combine them into a single one: 
 

(20)  12

34

p

π
= 13

42

p

π
 = 14

23

p

π
 = 23

14

p

π
 = 34

12

p

π
 = 42

13

p

π
. 

 
On the sequence of indices, cf., the rem. in a). 
 One refers to the p as axial pointers and the π as ray pointers, since g can be thought 
of as the axis of a pencil of planes by the definition of p and the carrier of a point 
sequence by the definition of the π.  The axial pointers are thus identical with the ray 
pointers, up to the sequence (*).  If one denotes: 

                                                
 (*) Since it superfluous to keep both kinds of pointers in most investigations, one must then prefer one 
of them, at least, for its notation.  There is no point in introducing a common symbol r ik , as Koenigs did 
(Géom. reglée, pp. 8).  The equality is therefore only apparently justified.  One must then decide whether rik 
should be identical to pik or πik , and when Koenigs chose the former, he also actually gave preference to the 
axial pointers.  Many authors conversely denote the ray pointers by pik and the axial pointers by πik or qik .  
That fact is, in and of itself, unimportant, but the following situation speaks for the denoting of the axis 
pointers by pik (with Koenigs): It is generally customary to keep the symbol p as the line pointers where a 
difference between axis and ray pointers is not necessary.  By our choice, pik has a simple connection to the 
moment of the line g relative to the tetrahedral edge Pi Pk (§ 34).  Generally, the same thing will be true for 
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  P  = p12 p34 + p13 p42 + p14 p23 , 
 Π = π12 π34 + π13 π42 + π14 π23 
 
then one can also briefly write the connection as: 
 

(21)    ρ pik = 
ik

d

dπ
Π

,  σ πik = 
ik

dP

dp
. 

 
 

§ 33.  Rectangular, homogeneous and inhomogeneous, line pointers. 
 

 The line pointers will keep their well-defined meanings for an arbitrary choice of 
basic tetrahedron, even when one of its planes is shifted to infinity.  We would like to see 
how the connection between the line pointers of g and the point and plane pointers of the 
elements by which we think of g as being given will be specialized when E1 coincides 
with the plane at infinity and, at the same time, the other three planes define a rectangular 
vertex.  We prepared for this in § 31 and now assume, as we did there, that the unit point 
and unit plane are such that x2 : x1 goes to x, etc. (Theorem 43).  One had: 
 
 ρ pik = vi wk – wi vk , 
 σ πik = yi zk  –  zi yk . 
 
Since we are dealing with two planes and two points here, we would like to distinguish 
their rectangular pointers in such a way that we put primes on the plane wi and the point 
(zi) ≡ P′.  From Theorem 43, one will then have to replace: 
 

2

1

v

v
, 3

1

v

v
, 4

1

v

v
;    2

1

w

w
, 3

1

w

w
, 4

1

w

w
;    2

1

y

y
, 3

1

y

y
, 4

1

y

y
;   2

1

z

z
, 3

1

z

z
, 4

1

z

z
 

 
with the symbols below: 
 

u,     v,     w;    u′,     v′,     w′;     x,     y,     z;     x′,     y′,     z′, 
 
resp.  If we then set ρ = ρ′ v1 w1, σ = σ′ y1 z1, and then once more write ρ, σ, instead of 
ρ′, σ′, then we will get: 
 

(22) 
12

13

14

,

,

,

p u u

p v v

p w w

ρ
ρ
ρ

′= −
′= −
′= −

 
23

34

42

,

,

,

p uv u w

p vw v w

p wu w u

ρ
ρ
ρ

′ ′= −
′ ′= −
′ ′= −

 

 

                                                                                                                                            
πik when one considers the moment relative to the edge (E i , E k).  However, it is more convenient to regard 
the edge as the join of two points than the intersection of two planes. 
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(23) 
12

13

14

,

,

,

x x

y y

z z

σ π
σ π
σ π

′= −
′= −
′= −

 
23

34

42

,

,

.

xy x y

yz y z

zx z x

σ π
σ π
σ π

′ ′= −
′ ′= −
′ ′= −

 

We set σ = 1 and denote: 
 
 x′ − x = q1 , yz′ − y′z = q4 , 
(24) y′ − y = q2 , zx′ − z′x = q5 , 
 z′ − z = q3 , xy′ − x′y = q6 . 
 
We call these six quantities q the homogeneous, rectangular pointers of the line PP′.  
Once again, only their ratios will come under consideration, since P, P′ are arbitrary on it, 
but with the restriction that the sign of the pointers has a geometric interpretation.  
Namely, q1, q2, q3 are the cosines of the direction of P, which are proportional to P′.  We 
summarize the connection between the quantities p, p, q in the following table: 
 
 π12 π13 π14 π34 π42 π23 
(25) q1 q2 q3 q4 q5 q6  
 p34 p42 p23 p12 p13 p14 . 
 
The relation (16) will then go to: 

(26)     
3

3
1

i i
i

q q+
=
∑ = 0. 

 
Conversely, if six quantities q that fulfill (26) are given then we already know from § 32 
(Theorem 45) that they will be the pointers of a line.  In order to find two points on it, one 
can choose – say, z – arbitrarily and calculate the other pointers from equations (24). 
 
 q4, q5, q6 also have a simple geometric meaning.  We next ascertain them under the 
assumption that the absolute values of the q are fixed by: 
 
(27)      2 2 2

1 2 3q q q+ +  = 1. 

 

This can be achieved by multiplying by the factor 1 /2 2 2
1 2 3q q q+ +  in two ways, due to 

the double-valuedness of the root (for the case of q1 = q2 = q3 = 0, cf., § 36).  Now, one 
has: 
(28)     PP′ = 1. 
 
When this condition is fulfilled, we will call the six pointers normal pointers and denote 
them by q′.  If P1 is the origin of the pointer system then the equation of the plane P1PP′ 
≡ E will have the form: 

Ax + By + Cz = 0 
 

and will be fulfilled by the pointers of P and P′.  One will then have: 
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A : B : C = yz′ – y′z : … = q4 : q5 : q6 ; 
 
i.e., if n is the normal to E then q4, q5, q6 will be proportional to the cosines of the 
direction n, and one will fix the direction of n to be the direction from which the triangle 
P1PP′ is seen to be positive.  One convinces oneself of the latter most simply by choosing 
the segment PP′ to be special (e.g., in the XY-plane).  The same thing must then be true in 
general, since such relations are invariant under a pointer transformation (cf., § 12, e).  In 
order to ascertain the meaning of the absolute values of 4q′ , 5q′ , 6q′ , we lay a segment s on 

n in the direction that was just fixed with a length that is equal to the shortest distance 
from the line g to P1 .  Due to equation (28), s will also be the moment of the rod PP′  
relative to P1 (cf., § 12, c).  Thus, if s1, s2, s3 are the projections of s onto the pointer axes 
then they will represent the components of that moment, and the faces will be the 
projections of the triangle P1PP′ ; i.e., the quantities yz′ – y′z will be numerically equal 
(both of them will be multiplied with the cosine of the same angle); s1, s2, s3 will then be 
identical with 4q′ , 5q′ , 6q′ , respectively [see Drach: “Zur Theorie der Raumgeraden and 

der lin. Kompl.,” Math. Ann. II (1869)]. 
 
 Theorem 46:  Of the six normal pointers for a line g, 1q′ , 2q′ , 3q′  are the direction 

cosines of the line and 4q′ , 5q′ , 6q′  are the projections of a vector onto the axes whose 

length is equal to the shortest distance from the origin to the line and is directed along a 
normal to the connecting plane (g, U) on the same side from which the sense of rotation 
is positive when the direction of g is determined on U; i.e., 4q′ , 5q′ , 6q′  are the moments of 

g relative to the X, Y, Z-axes. 
 
 One can confirm the last part of the theorem immediately when one – e.g. – lays a 
unit rod UC along the Z-axis and calculates the moment Mz of the rods PP′, UC as in § 
12, e).  Since C has the pointers 1, 0, 0, one will find that: 
 

Mz = 

1 1 1 1

0 0

0 0

0 1

x x

y y

z z

′
′
′

 = xy′ – x′y = q6 . 

 
Thus, Mz = 6q′  when PP′ is a unit rod. 

 We would like to ascertain the connection between the pointers q and the quantities r, 
ş  ρ, σ of § 28: If the points P ≡ (x, y, z), P′ ≡ (x′, y′, z′) lie on the line: 
 

ξ = r ζ + ρ, η = s ζ + σ 
 

then the following equations will be fulfilled: 
 
 x = r z + ρ, y = s z + σ, 
 x′ = r z′ + ρ, y′ = s z′ + σ . 
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If one eliminates r, s, ρ, σ, in sequence and then defines xy′ – x′y from them then if one 
recalls equations (24), one will find that: 
 

 r = 1

3

q

q
, s = 2

3

q

q
, 

(29) ρ = − 5

3

q

q
, σ = 4

3

q

q
, 

r σ – s ρ = − 6

3

q

q
. 

 
If one denotes r σ – s ρ by η then the relation (26) will go to the identity: 
 

r σ – s ρ − η = 0. 
 
The five quantities r, s, ρ, σ, η are called inhomogeneous, rectangular line pointers. 
 

___________ 
 

 
§ 34.  Geometric meaning of the tetrahedral line pointers. 

 
 We have seen that three of the rectangular normal pointers of a line g are equal to the 
moments of g with respect to the three finite edges of the basic tetrahedron, and we ask 
whether a similar relationship can also exist for general tetrahedral pointers.  We assume 
that the basic tetrahedron P1 P2 P3 P4 has a positive volume.  The moment of any two 
opposite edges P1 P2, P3 P4 ; P1 P3, P4 P2 ; P1 P4, P2 P3 will be positive then, although one 
must observe that the indices are written in the same sequence as the indices in the 
pointers of a line or in the relation (16).  We draw a plane E ⊥ P3 P4 through an edge P1 
P2 and consider the point of intersection O to be the origin of a rectangular system (Fig. 
36) of the first kind, in which the X-axis might fall along OP1 and the Z-axis might fall in 
the direction P3 P4.  As a result of our assumptions, the angle P1OP2 = ω will always be 
acute.  We determine a line g (along with its positive direction) by a unit rod PQ on it; its 
projection P′ Q′ onto the reference plane E appears in Fig 37.  Let the pointers of P be ξ1, 
η1, ζ1 in the rectangular system and yi in the tetrahedral one; one will have analogous 
pointers ξ, η, ζ, zi for Q.  Let the distances to the points P, Q from the reference plane E2 
be d2, δ2; one will have analogous distance d1, δ1 for E1.  We would like to calculate the 
moment M34 of the rod PQ relative to the Z-axis from Chap. I, equation (17).  We can 
shift ξ2, η2, ζ2 to O, set cos γ2 = 1, cos α2 = cos β2 = 0, and obtain: 
 

M34 = ξ1 cos β1 − η1 cos α1, 
or since: 

cos α1 = ξ – ξ1,  cos β1 = η – η1, 
one will get: 
(30)     M34 = ξ1η − η1ξ , 
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which one usually writes down immediately, since the moment must be twice the area of 
the triangle OP′ Q′.  We would like to convert this expression such that only the 
tetrahedral pointers of the points P, Q enter into it.  One can set (§ 29; the unit point lies 
inside the tetrahedron): 

(31)    2

2

y

κ
 = d2 = η1 ,  2

2

z

κ
 = δ2 = η . 

 

Figure 36. 
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P4 
 

O 

Y 

Z 

X P1 

P2 

 

δ1 
 

d2 ω 

Figure 37. 
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Q′ 

P2 

Y 

 
 

If we rotate the rectangular system through the angle ω and denote the new pointers with 
primes then the positive side of the pointer planes will be carried along in such a way that 
they will arrive outside of the tetrahedron.  For that reason, one will have: 
 

(32)   1

1

y

κ
= d1 = − 1η ′ , 1

1

z

κ
= δ1 = − η, 

and furthermore: 
 ξ = ξ′ cos ω – η′  sin ω, 
 η = ξ′ sin ω + η′  cos ω, 
so 
 η′ = − ξ sin ω + η cos ω, 
 
and if one recalls equations (30) and (31) then: 
 

 ξ sin ω = 1 2

1 2

cos
z z ω
κ κ

+ , 

 ξ1 sin ω = 1 2

1 2

cos
y y ω
κ κ

+ . 

With that, one will have: 

(ξ1 η – η1 ξ) sin ω = 1 2 2 1

1 2

y z y z

κ κ
−

. 
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If we set the factors ρ and σ equal to + 1 in equations (3), (4), (15), and (17) then we will 
get: 
(33)    κ1 κ2 sin ω34 ⋅⋅⋅⋅ M34 = π12 = π34 . 
 
From the remark that was made at the beginning of this paragraph, the analogous 
formulas for all remaining pointers will also be always correct (up to sign) when ωik 
means the internal face angle at the tetrahedral edge Pi Pk in question everywhere.  If one 
lets the unit point and a line g pass through a tetrahedral plane El by fixing the 
tetrahedron then the sign of πik will change when l is one of the indices i, k.  By contrast, 
when one switches the notations of two tetrahedral vertices, with which, the moment of 
two opposite edges will become negative, then one will increase ∠ P1OP2 .  If i, k, l, m 
are always the four indices 1, 2, 3, 4 in any sequence then it will follow from this that: 
 
 Theorem 47:  Let Y ≡ (yi) and Z ≡ (zi) be two points at a unit distance, let ωik be the 
absolute value of the face angle at the edge Pi Pk of the basic tetrahedron, and let Mik be 
the moment of the rod YZ relative to a unit rod that lies in the edge Pi Pk  and coincides 
with its direction.  Moreover, one will set ρ = σ = 1 in equations (3), (4), (15), (17), such 
that the line pointers π and the p (which, from equation (20) are set equal to them) will 
also be fixed (up to absolute value) by: 
 
(34)     πlm = yl zm – ym zl . 
One will then have: 
(35)     pik = cik Mik , 
where: 
(36)     cik = ± κl κm sin ωik . 
 
In this, the upper sign will be valid in any of the six equations for a basic tetrahedron 
with a positive volume when the unit point lies in the same wedge at the edge Pi Pk  in 
which the tetrahedron itself lies, or when it lies in the opposite wedge; otherwise, the 
lower sign will be true.  The opposite thing will be true for a basic tetrahedron with a 
negative volume.  The (always positive) constants κ have the same meaning that they did 
in § 29. 
 
 If one drops the assumption on the absolute values of the line pointers, or – what 
amounts to the same thing – the length of the rod YZ, then one can always still say: The 
line pointers p behave like the moments of the line g relative to the unit rod on the same-
named tetrahedral edges when each moment is multiplied with a certain constant (that is 
independent of the position of the line).  The ratios of these constants will then be 
determined by equation (36) alone. 

_______________ 
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§ 35.  Rod pointers. 
 

 If we fix – say – P of the points P, P′ in § 33 and displace P′ along the line PP′  then 
the absolute values of the rectangular pointers of the line (24) will change proportional to 
the distance: 

PP′  = d, 
 
as would emerge from the derivation of the geometric meaning of 4q′ , 5q′ , 6q′ , and can, by 

the way, be confirmed arithmetically from: 
 

q1 = x′ − x = d cos (g, x) = 1dq′ , 

q4 = yz′ – y′z = y (z + 3dq′ ) – (y + 2dq′ ) z = d 3 2( )yq zq′ ′− , 

 
etc., where the factor of d is constant.  The absolute values of the pointers of a line will 
thus take on a meaning as soon as one considers, not only the line, but also a length on it 
– i.e., a rod (§ 12, a).  The numbers q that are defined by equations (24) will become the 
pointers of a rod in that way.  There is a five-fold infinitude of rods in space.  In 
connection with Theorem 46, it follows that: 
 
 Theorem 48:  Any six numbers q that satisfy the relation (26) are rectangular 

pointers of a rod of length d = 2 2 2
1 2 3q q q+ +  that has the moments q4, q5, q6 with respect 

to the axes; the direction cosines of its carrier are proportional to q1, q2, q3 .  In order to 
find a point on the carrier, one can choose perhaps z′ arbitrarily and then calculate the 
remaining pointers of the origin from equations (24). 
 
 Something analogous is true for tetrahedral pointers: If we fix the point Y in Theorem 
47 and move Z along g then we can set: 
 

zi = yi + ζi , 
 
where the various values ζi will be proportional to the distance d from the point Z to Y for 
the same i, since the distances from a point to one and the same pointer plane will also be 
proportional to the same-named pointers in tetrahedral pointers.  Thus, ζi = ci d, and: 
 

πlm = yl (ym + zm) – ym (yl + zl) = d (yll cm – ym cl), 
 
where the factor next to d is independent of the position of the point Z; thus: 
 
 Theorem 49:  If one fixes the absolute values of the pointers of a line as in Theorem 
47 then they can be considered to be the pointers of a rod YZ.  Conversely, if the pointers 
of a rod are given then one will find two points that represent the rod when one sets e.g., 
z1 = 0,  chooses y1 arbitrarily, and calculates the remaining six quantities zi, yi from them 
using equations (34). 

_______________ 
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§ 36.  Pointers for a field (rotational moment).  The ultimate concept of screw. 
 

 If q1 = q2 = q3 = 0 then equation (26) will always be fulfilled.  However, we will still 
not get a rod in the proper sense.  In order to recognize whether, and in which sense, q4, 
q5, q6 can, in turn, be regarded as the pointers of a spatial structure, we link this case to 
the regular one by a consideration of the limit: We let g go to infinity in the plane E of § 
33 in an arbitrary way, and simultaneously reduce to rod on g such that its rotational 
moment relative to the origin P remains constant.  q4, q5, q6 will then suffer no change 
during this (Theorem 48), while q1, q2, q3 will diminish proportional to the rod length and 
vanish.  The triangle surface that is determined by P1 and the rod will be the one that 
remains unchanged during the entire process, and the position of its plane, its magnitude, 
and the sense of traversal will come under consideration on it. 
 This argument will be coupled to another one and completed: If the rod P′ P″  means 
a force then, with the inclusion of the rotational moment that it exerts relative to the 
origin, we can let it go through the origin (§ 14), and thus decompose rotational moments, 
as well as forces, into three components.  In that way, we will come to the six pointers q1, 
…, q6 precisely, which can then be regarded as the pointers of a force.  If iq′  is a second 

force whose carrier might cut that of qi then both forces will have a resultant whose 
pointers pi one will find by algebraic addition of the same-named pointers of the 
individual forces: 

pi = qi + iq′ . 

 
If qi and then iq′  define a force-couple then one 

will get p1 = p2 = p3 = 0 from the same process.  
On the other hand, p6 means the algebraic sum of 
the XY-projections of the double triangle that the 
two rods determine with the origin.  Now, the 
vector components of the rod are equal and 
opposite, so (Fig. 38): 
 
2ABP1 + 2A′B′P1 = 2ABP1 – 2B′A′P1 = ABA′B′ ; 

 
i.e.: the origin drops out completely, and p6 means 

a parallelogram in the XY-plane, and only its magnitude and sense of traversal will come 
under consideration.  On the other hand, one knows that the essence of a force-couple lies 
only in its rotational moment, which is characterized by a surface patch in the plane in 
which it acts (or one that is parallel to it).  If we ignore the mechanical meaning then we 
will now consider: 

0, 0, 0, p4, p5, p6 
 
to be the pointers of a surface patch, and only its magnitude, its sense of traversal, and 
the orientation of its plane will come under consideration, which we can also think of as 
being arbitrarily (and also curvilinearly) bounded.  The three pointers of the surface patch 
are its three projections onto the three pointer planes.  According to Grassmann, Jr., such 
a surface patch is called a field, while it will be called a plate when the position (not just 

 

Figure 38. 
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the orientation) of its plane also comes under consideration (cf., Grassmann, Ges. W., 
Bd. I, b, pp. 438). 
 We have seen how the rod will go to a field when it is moved to infinity and how the 
force that it perhaps represents will simultaneously be replaced with a rotational moment.  
We would like to interpret the analogous passage to the limit in the event that the rod s 
means the unit rod of the axis of a rotation, and σ denotes a line that remains fixed under 
the motion of the body.  If s is moved to infinity then the field f that thus emerges will 
then mean a plane whose orientation will remain fixed during the motion, and the rotation 
will go to a displacement T that is perpendicular to the field.  The moment of a force k 
with respect to σ will be measured by the six-fold tetrahedral volume that the two rods 
determine.  k and f also determine a volume V when one makes f a cylindrical body 
whose generator has the length k.  The component of k that comes under consideration for 
the motion in the direction T is now, in fact, proportional to V, and indeed equal to V 
precisely, in the event that f is a unit field.  We will therefore also call V the moment of k 
relative to f, here, and say “the moment of a force system” to mean “the algebraic sum of 
the individual moments.” 
 
 Theorem 50:  Should two force systems be equivalent then their moments relative to 
an arbitrary axis and an arbitrary field would have be equal to each other. 
 
 The second part of the theorem says nothing but the fact that its components must be 
equal in an arbitrary direction; however, the consideration above makes this appear to be 
a special case of the first part. 
 The moment of the force-couple f relative to k will also be represented by the same 
volume V, if conversely f represents a force-couple and k, a unit rod.  The moment of a 
field (i.e., a force-couple) relative to another one will now be defined completely by the 
foregoing passage to the limit, but it will always be zero. 
 A field is an adequate geometric representation of a rotational moment (which we 
have represented by a vector up to now according to § 13), and can likewise serve as the 
representation of a translational velocity (in the form of a rotational-couple) by means of 
duality.  From now on, we will then also frequently think of a dyname and a twist as 
represented by a rod s and a field f that is perpendicular to it, instead of by a rod and a 
vector.  This aggregate A of a rod and a field is the purely geometric concept that remains 

when one abstracts, on the one hand, from the mechanical meaning of the dyname, and 
on the other hand, from the kinematical one of the twist.  A also determines completely 

the null system N (with the pitch k = f : s) that belongs to the dyname or twist.  In § 18, 

we thought of N as being represented by a certain helix, namely, a screw.  We can now 
just as well think of N as being represented by A and carry over the term “screw” to an 

aggregate of a rod and a field that is perpendicular to it.  We can do this, since only the 
rules of composition and decomposition of such aggregates are necessary for that 
concept, but not the way that we choose to illustrate it; in an equally-justified way, it can 
either (in closer connection with the twist) happen for a helix or (in connection with the 
dyname) with an aggregate of a rod and a field.  We have thus generally enlarged the 
concept, to some extent, since the absolute values of s and f also come under 
consideration now, which were not represented for the helix, in its own right.  Where it is 
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not expressly given, it will emerge from the context whether we are using the concept of 
“screw” in its narrow (i.e., non-metric) meaning or the broader (i.e., metric) meaning.  
Dynames, screws, and twists will then behave conceptually like forces, rods, and 
rotational velocities (around a definite axis), respectively; the last three are limiting cases 
of the first three. 
 For s = 1, we obtain a unit screw (cf., the analogous concept at the conclusion of § 
18). 

_______________ 
 

 
§ 37.  Moment of two rods and the shortest distance between two lines. 

 
 a) Let P′ P″ = p and Q′ Q″ = q be two rods with rectangular pointers pi and qi ; their 
endpoints might have the pointers x′, y′, z′, x″, y″¸ z″; ξ′, η′, ζ′ ; ξ″, η″, ζ″.  The six-fold 
volume of the tetrahedron is then (§ 12, e): 

6 ⋅⋅⋅⋅ P′ P″ Q′ Q″ = 

1

1

1

1

x y z

x y z

ξ η ζ
ξ η ζ

′ ′ ′
′′ ′′ ′′
′ ′ ′
′′ ′′ ′′

. 

 
From Theorem 16, the moment M of the two rods will be just as large.  If one develops 
the determinant along the first two rows (cf., § 32, a) then one will obtain, if one recalls 
equations (24): 

M = p1 q4 + p2 q5 + p3 q6 + p4 q1 + p5 q2 + p6 q3 
or 

M = 
6

3
1

i i
i

p q+
=
∑ , 

 
in which the indices come under consideration only modulo 6.  It emerges from Theorem 
48 that one will get the moment of the two carriers when one divides by p ⋅⋅⋅⋅ q, with 
which: 

p = 2 2 2
1 2 3p p p+ + , q = 2 2 2

1 2 3q q q+ + . 

 
 b) If two lines p, q, along with their positive directions, are given by two rods that lie 
in them then let A be the foot of their shortest distance on p and let B be the one on q.  We 
regard the segment: 

d = AB 
 
(all sign conventions are as in § 12) as the rod and call it the rod of the distance from p to 
q, or more briefly, the distance rod (p, q); we would like to calculate its pointers di . 
 If we always take the sense of p to q – i.e., from A to B – to be positive on d then all 
three quantities p, q, d will be positive.  If we further denote the angle (p, q) by ω then 
(Theorem 48) we will have: 
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cos ω = 1 1 2 2 3 3p q p q p q

pq

+ +
. 

 
If we substitute the up-to-now known quantities into § 12, equation (15) then we will get: 
 

∑ pi qi+3 = − p q d ⋅⋅⋅⋅ sin ω. 
 

We can deduce the sign from sin ω, but that expression, in its own right, can be deduced 
from: 

sin2 ω = 1 – cos2 ω, 
 

= 
2 2 2

2 3 3 2 3 1 1 3 1 2 2 1
2 2

( ) ( ) ( )p q p q p q p q p q p q

p q

− + − + −
⋅

. 

 
We can see from the sign of cos ω whether the rods define an absolutely acute or obtuse 
angle, and from that, using Theorem 15, whether they are right-wound or left-wound.  If 
we let w denote the square root of the numerator in the last formula, provided with the 
sign of sin ω, then we will get: 

(37)     d = − 

3

3
1

i i
i

p q

w

+
=
∑

 = − 
M

w
, 

 
where d becomes positive, in its own right. 
 In order to calculate the pointers of d, we consider that d, as well as p, cuts q 
perpendicularly, so: 

3

1
i i

i

p d
=
∑ = 0, 

3

1
i i

i

q d
=
∑ = 0, 

3
2

1
i

i

d
=
∑ = d2, 

 

(37.a)  d1 = − 
2

M

w
(p2 q3 – p3 q2), d2 = − 

2

M

w
(p3 q1 – p1 q3),  

d3 = − 
2

M

w
(p1 q2 – p2 q1). 

 
The parentheses in these expressions would define the direction of d from which the 
rotational sense of p through the concave angle to q would seem positive (cf., the 
derivation of Theorem 46).  As one convinces oneself in any special case, the quantities 
d1, d2, d3, and also their signs, will then be given correctly by these equations. 
 We find the other three pointers from the equations: 
 

 
3

3
1

i i
i

p d +
=
∑  = − 

3

3
1

i i
i

p d+
=
∑ , 

 
3

3
1

i i
i

q d +
=
∑  = − 

3

3
1

i i
i

q d+
=
∑ ,
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3

3
1

i i
i

d d +
=
∑  = 0. 

 
Their determinant is – M.  One finds: 
 

(37.b)   d4 = 
3

2 2
1 1 1 14

1

( ) i i
i

M
p q P q p Q q P p Q p q

w =

 + − + 
 

∑ , 

where: 

P = 
4 5 6

1 2 3

1 2 3

p p p

p p p

q q q

,  Q = 
4 5 6

1 2 3

1 2 3

q q q

p p p

q q q

, 

 
and d5, d6 are obtained by cyclic permutations (Cayley, Coll. Pap., Vol. X, Sec. 682, 
1878). 

_______________ 
 
 

§ 38.  Incidence of a line with a point or a plane. 
 
 Should the line πik lie in the plane ui then the pointers of the latter would have to 
fulfill the equations of the point of intersection of πik with the tetrahedral faces; one can 
deduce these equations from Table (18).  One must then have: 
 

(38)    

12 2 13 3 14 4

21 1 23 3 24 4

31 1 32 2 34 4

41 1 42 2 43 3

0,

0,

0,

0.

u u u

u u u

u u u

u u u

π π π
π π π
π π π
π π π

+ + =
+ + =

+ + =
+ + =

 

 
If any two of these four equations are fulfilled then the other one will be, as well; firstly, 
upon geometric grounds, and secondly, because all determinants of third order from the 
table of p will vanish (32.a).  From now on, we will frequently replace the symbols for 
the tetrahedral line pointers that have two indices with ones that have one index, 
according to table (25), except that we will now write pi, instead of qi .  For example, we 
would write equations (38) in the new notation as: 
 

(39)    

1 2 2 3 3 4

1 1 6 3 5 4

2 1 6 2 4 4

3 1 5 2 4 3

0,

0,

0,

0.

p u p u p u

p u p u p u

p u p u p u

p u p u p u

+ + =
− + − =
− − + =
− + − =

 

 
 The conditions for the dual situation can be obtained from the left-hand side of Table 
(18).  However, Table (25) shows that in the result (39) we only have to replace the u 



74 III.  Line pointers, rod pointers, and equations in them. 

with the x and simultaneously change each index of a p by 3 in order to obtain the 
condition for the point x to lie on the line p: 
 

(40)    

4 2 5 3 6 4

4 1 3 3 2 4

5 1 3 2 1 4

6 1 2 2 1 3

0,

0,

0,

0.

p x p x p x

p x p x p x

p x p x p x

p x p x p x

+ + =
− + − =
− − + =
− + − =

 

 
Using (25), one can once more write down this condition in axial or ray pointers, as 
required. 

_______________ 
 
 

§ 39.  Special positions of lines. 
 
 a) Relative to the basic tetrahedron. 
 
 Theorem 51:  If a line cuts the tetrahedral edge Pi Pk then its pointer pik will vanish. 
 
 This follows from Theorem 47; naturally, the parallel position is included in this.  It 
also follows from the definition of π (Equation 17) that πik will vanish when the line cuts 
the edge Pi Pk .  The reader can now easily infer what happens when the position of the 
line is even more special.  If it ultimately coincides with Pi Pk then pkl will no longer be 
non-zero, except that the orientations of the pointer planes will enter in place of the 
tetrahedral edges P2 P3, P3 P4, P4 P2 . 
 
 b) Incidence of two lines. 
 
 Let pik and qik be the pointers for two lines p, q and: 
 

pik = vi wk – vk wi , qik = i k k iv w v w′ ′ ′ ′− . 

 
If the lines are incident (i.e., they intersect or are parallel) then the four planes v, w, v′, w′ 
will go through a point.  One will then have: 
 

∆ = | vi wi iv′  iw′  | = 0  (i = 1, …, 4). 

 
On the other hand, if one develops ∆ along the first two columns (cf., § 32, a) then one 
will obtain: 
 
 Theorem 52:  The condition of incidence between two lines p, q is: 
 

p12 q34 + p13 q42 + p14 q23 + p23 q14 + p34 q12 + p42 q13 = 0 
or (25): 
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(41)     
6

3
1

i i
i

p q+
=
∑ = 0. 

 
 If one denotes: 

(42)    ω(p) = 
6

3
1

i i
i

p p+
=
∑ = 2 

3

3
1

i i
i

p p+
=
∑ , 

 

(43)  ω(p, q) = 
6

3
1

i i
i

p q+
=
∑  = 

6

1

( )

i i

d p

dp

ω
=
∑ qi =  

6

1

( )

i i

d q

dq

ω
=
∑ pi = ω(q, p) 

 
then the incidence condition (41) can be written: 
 
(44)     ω(p, q) = 0, 
 
and the condition for p to be the pointers of a line [equations (16) and (26)] will be: 
 
(45)     ω(p) = 0. 
 
 If the condition (41) is fulfilled then that will pose the problem of calculating the 
pointers ui of the connecting plane of the lines p, q.  The system (39) must be fulfilled, 
and likewise: 

(39.a)    

1 2 2 3 3 4

1 2 6 3 5 4

2 1 6 2 4 4

3 1 5 2 4 3

0,

0,

0,

0.

q u q u q u

q u q u q u

q u q u q u

q u q u q u

+ + =
− + − =
− − + =
− + − =

 

 
If one employs the first equations in (39) and (39.a) and adds − perhaps − the second 
equation in (39) to this pair of equations G then one will find that: 
 

u1 : u2 : u3 : u4   
 

= 
1 2 3

1 2 3

6 50

p p p

q q q

p p−
 : − 

2 3

2 3

1 6 5

0

0

p p

q q

p p p− −
 : 

1 3

1 3

1 5

0

0

0

p p

q q

p p− −
 : 

1 2

1 2

1 6

0

0

0

p p

q q

p p− −
 . 

 
If one replaces the first determinant p2 p5 + p3 p6 with – p1 p4 after performing the 
calculation then the factor p1 will appear in all determinants, and if one recalls (41) then 
one will find that the u will be proportional to the first row of the following table (46).  
One will obtain the same thing that one might also get by combining the third equation 
with the pair G.  If one then takes another pair of just as many equations from the two 
quadruples, instead of G, then one will obtain the ratios of the u in another form, namely 
[when one sets pi qk – pk qi = (i, k)]: 
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 Theory 53:  The pointers of the connecting plane of two incident lines p, q are 
proportional to the elements of an arbitrary column of the following table (whose two 
parts are thought of as adjacent): 
 
  p1 q4 + p2 q5 + p3 q6   (2, 3) 
  (6, 5) p1 q4 + p5 q2 + p6 q3  
  (4, 6)  (2, 4) 
  (5, 4)  (3, 4) 
(46) 
  (3, 1)  (1, 2) 
  (1, 5)  (1, 6) 
 p2 q5 + p4 q1 + p6 q3   (2, 6) 
  (3, 5)  p3 q6 + p4 q1 + p5 q2 . 
 
We will obtain the pointers of the point of intersection of those lines p, q when we change 
all of the indices in this table by three (§ 38), or – what amounts to the same thing − 
switch the rows and columns.  The indices of the p that appear in any column are: 
 
 1 2 3 
 1 5 6 
 4 2 6 
 4 5 3 
 
One confirms the legitimacy of generating the last three triples from the table: 
 
 1 2 3 
 4 5 6 
 
 For later use, we make note of the following situation: If the quantities p fulfill the 
relation (45), and likewise, the q, and both of them together fulfill the incidence relation 
(44) then the two systems of equations: 
 

(38.a)  
4

1
km m

m

p x
=
∑ = 0, 

4

1
km m

m

q x
=
∑ = 0  (k = 1, …, 4; pkk = qkk = 0) 

 
which are dual to (38), will be fulfilled by one and only one common system x1 : x2 : x3 : 
x4 .  This is also independent of the geometric meaning of the quantities of an analytic 
entity that is therefore likewise true for complex numbers p, q, x.  If one substitutes the 
values of x that were calculated in (38.a) in the equations then they will become 
identities. 
 
 c) The rays of a pencil. 
 
 Let ai and bi be the pointers of two lines a and b.  If we define: 
 
(47)    pi = λ ai + µ bi  (i = 1, …, 6) 
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then we will have: 

ω(pi) = ω (λ ai + µ bi) = 
6

1

( )i i
i

a bλ µ
=

+∑ (λ ai+3 + µ bi+3) 

= λ2 ⋅⋅⋅⋅ ω(a) + 2 λ µ ⋅⋅⋅⋅ ω(a, b) + µ2 ⋅⋅⋅⋅ ω(b). 
 

We will have ω(a) = ω(b) = 0, since ai and bi are the pointers of a line.  We now assume 
that a, b intersect.  We will then have ω(a, b) = 0, and ω(pi) will be zero identically – i.e., 
the pi will always be the pointers of a line, no matter how we choose λ and µ.  Since only 
the ratios of these parameters come under consideration, (47) will represent only a simple 
manifold of lines, which we will prove is identical with the pencil of rays (a, b). 
 Namely, let c be a line that cuts a and b; we will then have: 
 

ω (a, c) = ω (b, c) = 0 

(48)   ω (p, c) = ω (λ a + µ b, c) = ∑ (λ ai + µ bi) ci+3 
= λ ⋅⋅⋅⋅ ω (a, c) + µ ⋅⋅⋅⋅ ω (b, c) = 0; 

 
i.e., p and c will be incident for all values of λ, µ .  If we now choose c arbitrarily in the 
connecting plane E of a¸ b then condition (48) will be fulfilled, and it will follow that p 
will also lie in E.  However, if we draw c arbitrarily through the point of intersection S of 
a and b then it will likewise follow that p goes through S.  Therefore, p will belong to the 
pencil of rays (S, E). 
 If, conversely, p is a certain line in the pencil, and c is a line that cuts p, but not a and 
b simultaneously, then one can determine λ : µ in such a way that: 
 

λ ⋅⋅⋅⋅ ω (a, c) + µ ⋅⋅⋅⋅ ω (b, c) = 0 . 
 

These values of λ, µ , when substituted in (47), will provide the pointers of a line p′ that 
belongs to the pencil (a, b) and likewise cuts c, and must therefore be identical with p.  
Therefore, the representation (48) will actually subsume all rays of the pencil. 
 As a consideration of Table (25) would show, it is irrelevant whether we identify the 
a, b with the pointers p or the pointers π.  When we again go to two indices, we can set: 
 

aν = xi yk – xk yi , 
 
where ν are chosen from the sequence 1, …, 6 and i, k are chosen from the sequence 1, 2, 
3, 4, corresponding to the table (25).  If we assume that the x are pointers of S then we 
can set: 

bν = i k k ix y x y′ ′− , 

so 
bν = λ aν + µ bν = xi(λ yk + µ ky′ ) – xk (λ yi + µ iy′ ) = xi zk – xk zi 

 
will be two of the four pointers of a point Z on the connecting line of the points y, y′.  If 
we set µ : λ = ϕ equal to the four values ϕ1, …, ϕ4, in sequence, then we will obtain four 
rays p1, …, p4 of them pencil (a, b) whose double ratio will be equal to that of the 
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corresponding points Z1, …, Z4 , resp., through which they go.  However, the latter 
double ratio is (cf., Hesse, Vorl. aus d. anal. Geom. d. geraden L., etc.): 
 

(49)    1 3 1 4

3 2 4 2

:
Z Z Z Z

Z Z Z Z
 = 3 1 4 1

3 2 4 2

:
ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

− −
− −

. 

 
One will then obtain (Voss, Math. Ann. Bd. 8, pp. 57): 
 
 Theorem 54:  If ai and bi are two incident rays then the pencil that they determine 
will be represented by: 

pi = λ ai + µ bi  (i = 1, …, 6), 
 
where the double ratio of four rays of the pencil will depend upon the parameters λ and µ 
in the same way that they do for point sequences and pencils of planes. 
 
 In particular, if we let p1 coincide with a and p2, with b, and write p, p′, instead of p3, 

p4, resp., then we will have: 

ϕ1 = 0,  ϕ2 = 0,  lim 4 1

3 1

ϕ ϕ
ϕ ϕ

−
−

 = 1, 

so 

(49.a)     (a, b, p, p′) = 
ϕ
ϕ′

. 

 
 Theorem 55:  If ai, bi are two incident rays then the double ratio of the four rays ai, 
bi, ai + ϕ bi , ai + ϕ′ bi will be equal to ϕ : ϕ′ ; in particular, ai, bi will then be 
harmonically separated by ai + ϕ bi  and ai − ϕ bi . 
 
 If we define a matrix of three rows and six columns from the pointers ai, bi, ci of three 
rays of a pencil then, from (47), all of its three-rowed determinants will vanish.  If, 
conversely, three rays a, b, p are given for which all three-rowed determinants of the 
matrix of their pointers vanish then we can determine multipliers λ, µ, ν that fulfill all six 
equations: 
(50)   λ ai + µ bi + ν pi = 0  (i = 1, …, 6). 
 
The ratios of those multipliers will then be determined uniquely by two of them (say, i = 
1, 2).  Due to the vanishing of the determinant: 
 

1 2

1 2

1 2

i

i

i

a a a

b b b

p p p

, 
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equation (50) must also be satisfied for an arbitrary i.  If we choose ν = − 1 then we will 
get back (47).  One says that a matrix has rank r when all of its determinants of order r + 
1 vanish, but not all of them of order r.  We can then express one part of Theorem 54 as: 
 
 Theorem 56:  The necessary and sufficient condition for three rays to belong to the 
same pencil is that the rank of the matrix of their pointers can be reduced to two. 
 
 d) Three rays of a sheaf or a field. 
 
 Let three lines p, q, r be given, whose axial pointers are pik, qik, r ik, resp., and whose 
ray pointers are πik, κik, ρik , resp.  We assume that each one intersects the other one 
without belonging to the same pencil, which one can recognize from b) and c).  They 
must then belong to either the same sheaf or the same field.  In order to decide which of 
the two situations is present, we consider the determinant: 
 

∆i = 
ik il im

ik il im

ik il im

π π π
κ κ κ
ρ ρ ρ

. 

 
From table (18) the three non-zero tetrahedral pointers of the point of intersection of one 
of the lines with the tetrahedral plane Ei is in each row, and thus also its tri-metric 
pointers in that plane (§ 29, f).  If p, q, r belong to the same field then these three points 
of intersection must lie in a line, so ∆i must vanish for all four values of i.  Naturally, the 
vanishing of one of these determinants will generally suffice for one to be able to make 
that decision (*). 
 
 Theorem 57:  Three lines, each of which intersects the other ones, belong to the 
same sheaf or field according to whether those three-rowed determinants in the matrix of 
their ray pointers vanish whose elements lack one index completely or the ones in which 
one index appears in all nine elements.  One can prove the converse by the use of axial 
pointers. 
 
 e) Hyperbolic position of four lines. 
 
 Let four lines be given.  Each four-rowed determinant in the matrix of their pointers 
ai, bi, ci, pi (i = 1, …, 6) might vanish.  One can then find a representation [cf., the 
conclusion of c)]: 
(51)    pi = λ ai + µ bi + ν ci   (i = 1, …, 6). 
 
If qi is any line then one will have: 
 

                                                
 (*) If one does not make the assumption that every line cuts the other one then the vanishing of all four 
∆i will merely say that the three points of intersection lie on a line gi in each plane of the tetrahedron.   This 
will also happen when p, q, r belong to the same family of rulings, along with two opposite edges.  An 
analogous remark will be true in the dual case. 
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(52)   ω (p, q) = λ ⋅⋅⋅⋅ ω (a, q) + µ ⋅⋅⋅⋅ ω (b, q) + ν ⋅⋅⋅⋅ ω (c, q), 
and [cf., c)]: 
(53)   ω(p) = λ2 ⋅⋅⋅⋅ ω(a) + µ2 ⋅⋅⋅⋅ ω(b) + ν2 ⋅⋅⋅⋅ ω(c)  
     + 2µν ⋅⋅⋅⋅ ω (b¸ c) + 2νλ ⋅⋅⋅⋅ ω (c¸ a) + 2λµ ⋅⋅⋅⋅ ω (a¸ b). 
 
It follows from (52) that every line q that cuts a, b, c will also cut p. 
 The three lines a, b, c can then belong to the same sheaf or field; p will then also 
belong to that sheaf or field.  Conversely, six numbers that can be calculated from (51) 
for an arbitrary choice of λ, µ, ν will be the pointers of a line (of the sheaf or field), since 
ω(p) will vanish identically from (53). 
 If we now pass over this special case then it will follow that when three a, b, c of four 
given lines a, b, c, p are mutually skew to each other, all four of them will (in general) 
have hyperbolic position.  Conversely, if we calculate the pi from (51) for an arbitrary 
choice of λ, µ, ν then we will obtain a fourth line of the family of rulings (a, b, c) when 
the pi are, in fact, pointers of a line.  The condition for this is that ω(p) = 0 or: 
 
(54)   µν ⋅⋅⋅⋅ ω(b, c) + λν ⋅⋅⋅⋅ ω(c, a) + λµ ⋅⋅⋅⋅ ω(a, b) = 0, 
 
in which the three quantities ω are constant numbers.  They will then satisfy a simple 
infinitude of parameter ratios λ :  µ : ν, corresponding to the ∞1 lines of the family of 
rulings.  We will come back to this later. 
 Therefore, if, say, a and b intersect in S (cf., Fig. 5, where one must replace g, h¸ g′, 
with a, b, c¸ resp.) and their connecting plane τ intersects c at T then the plane (c, S) will 
be called σ.  Should q cut the three lines a, b, c then it would have to belong to the pencil 
(S, σ) or (T, τ); since we can make the one choice just as well as the other, p must then 
belong to one of the pencils (S, τ), (T, σ).  Conversely, the condition (54) will reduce to: 
 

µν ⋅⋅⋅⋅ ω(b, c) + λν ⋅⋅⋅⋅ ω(c, a) + λµ = 0 
 
in this case.  It can be fulfilled by either v = 0 [which gives the pencil (S, τ)] or by: 
 

λ
µ

= − 
( , )

( , )

b c

c a

ω
ω

; 

 
when one assigns arbitrary values to ν, this will yield the lines of the pencil (T, σ).  If we 
then exclude the case in which three of the four given lines a, b, c, p belong to the same 
pencil, as was done in Theorem 56, then p will belong to the pencil T, σ, and we will be 
confronting the special hyperbolic position (§ 5). 
 
 Theorem 58:  If the rank of the matrix of the pointers of four lines is reduced to three 
(but no more) then they will have either general or special hyperbolic position, or they 
will belong to the same sheaf or field.  The choice between these two cases will follow 
from b) and d). 
 
 (On the calculation of the double ratios of four hyperbolic lines, cf., prob. 82.)



§ 40.  Transformations of line pointers. 81 

 f) Rectangular pointers. 
 
 All of the results that were derived in this paragraph also find an application in the 
special case of rectangular, homogeneous pointers, mutatis mutandis.  Here, we further 
add: The condition that two lines pi, qi are perpendicular to each other is [§ 37, b)]: 
 

p1 q1 + p2 q2 + p3 q3 = 0. 
 
 We can first speak of special positions of more than four lines later on (Theorem 
102). 

_______________ 
 
 

§ 40.  Transformation of line pointers. 
 
 If a transformation of point pointers is established by: 
 

(55)    ρ xi = 
4

1
ia xλ λ

λ=

′∑    (i = 1, 2, 3, 4) 

 
then we will wish that the ray pointers πik of a line relative to the old tetrahedron should 
be expressed in terms of the pointers ikπ ′  relative to the new tetrahedron.  We can set: 

 

πik = xi yk – xk yi , ρ yk = 
4

1
ka yµ µ

µ=

′∑ , 

and obtain: 

ρ ρ′ ⋅⋅⋅⋅ πik = 
4 4 4 4

1 1 1 1
i k k ia a x y a a x yλ µ λ µ λ µ λ µ

λ µ λ µ= = = =

′ ′ ′ ′−∑∑ ∑∑ . 

 
In this, x yλ µ′ ′  have the coefficients aiλ akµ – akλ aiµ ; x yµ λ′ ′  have the coefficients aiµ akλ – 

akµ aiλ , which differs from the previous expression only in sign.  One will then have: 
 

(56)    ρ ρ′ ⋅⋅⋅⋅ πik = ∑ (aiλ akµ – akλ aiµ) λµπ ′ , 

 
in which, from now on, the sum will be extended over the six combinations of two Greek 
indices.  The different choices of i, k will yield six such equations.  Due to the connection 
with equation (20), one can express the old ray or axial pointers arbitrarily in terms of the 
new ray or axial pointers, respectively.  However, the essential fact is: 
 
 Theorem 59:  A transformation of the tetrahedral line pointers will be mediated by a 
linear, homogeneous substitution of the line pointers. 
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 The aiλ (λ = 1, 2, 3, 4) were the pointers of the planes Ei of the old tetrahedron 
relative to the new ones (§ 29, c).  Thus, from equation (15), the quantities: 
 
(56.a)    aiλ akµ – akλ aiµ = pik, λµ 

 
will be the axial pointers of the edge (Ei, Ek) relative to the new tetrahedron.  If we denote 
[cf., the second and third row of table (25)] the index combinations: 
 
(I)    34, 42, 23, 12, 13, 14, 
 
respectively, by the single symbols: 
 
(II)    1, 2, 3, 4, 5, 6, 
and thus set, e.g.: 

p14, 42 = p62 , 

 
then we can also write equation (56) as: 
 

(57)   σ πn = 
6

1
nν ν

ν
π

=

′∑p   (n = 1, …, 6). 

 
From the geometric meaning of the coefficients, one can easily infer that not every linear 
substitution of the form (57) can be interpreted as a pointer transformation.  Moreover, 
the p in each row of pointers must, first of all, be a line, so they must fulfill the relation: 

 
6

, 3
1

n nν ν
ν

+
=
∑p p = 0; 

 
secondly, from Theorem 57, certain three-rowed determinants must vanish: The 
tetrahedral edges, which intersect in Pi (e.g., in P2), correspond to three such pairs in row 
(I), in which i (e.g., 2) is absent; if we go on to row (II) then, from Theorem 57, e.g., the 
determinant: 

1 1 1

5 5 5

6 6 6

α β γ

α β γ

α β γ

p p p

p p p

p p p

 

 
must vanish, as long as we set α, β, γ to be numbers from row (II) that lie under three 
pairs from row (I) that have common numerals.  Since we also have four choices for the 
first indices, there will be 16 relations.  We will obtain just as many when we express the 
idea that four times three edges of the old tetrahedron lie in a plane.  In addition, one can 
write out the conditions that the edges of the tetrahedron intersect.  Naturally, not all of 
these equations are independent of each other; moreover, we can enumerate the number 
of conditions as follows: If we introduce the pointers into the expression: 
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ω(p) = 
6

3
1

n n
n

π π +
=
∑  

by means of (57) then a quadratic form that has 6 + 
6

2

 
 
 

 = 21 terms, in general, will arise, 

which must then reduce to: 

ω(π′) = 
6

3
1

ν ν
ν

π π +
=

′ ′∑ , 

 
up to a constant factor, if (57) is to represent a pointer transformation.  Namely, whenever 
the π mean the pointers of a line, the same thing must be true for the π′, and conversely.  
The equations ω(π) = 0 and ω(π′) = 0 must then be completely equivalent and go to each 
other under the transformation.  Therefore, eighteen coefficients must vanish in the new 
quadratic form, while the remaining three will remain equal to each other; that will give 
twenty conditions, which we shall not discuss in more detail (cf., Klein, “Über die Transf. 
der allg. Gl. des 2 Gr. zw. Linienkoord. auf eine kanon. Form,” Math. Ann., Bd 23, pp. 
546, et seq.). 

_______________ 
 
 

§ 41.  Transformation of rectangular, homogeneous, rod pointers. 
 

 From equations (24), the rectangular, homogeneous pointers of a rod P′ P″ were: 
 
 q1 = x″ − x′, q4 = y′ z″ – y″ z′, 
(24) q2 = y″ − y′, q5 = z′ x″ – z″ x′, 
  q3 = z″ − z′, q6 = x′ y″ – x″ y′. 
 
We rotate the pointer system around the origin such that the direction cosines of the new 
axes ξ, η, ζ compared to the old ones x, y, z are given by the following table: 
 

(58)     1 2 3

1 2 3

1 2 3

x a a a

y b b b

z c c c

ξ η ζ

 

 
The new pointers p of the rod P′ P″ will then be: 
 
 p1 = ξ″ − ξ′, p4 = η′ ζ″ – η″ ζ′, 
(24.b) p2 = η″ − η′, p5 = ζ′ ξ″ – η″ ξ′, 
 p3 = ζ″ − ζ′, p6 = ξ′ η″ – ξ″ η′. 
 
We wish to express the old rod pointers q in terms of the new ones p.  With the help of 
the table, one will find immediately that: 
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(59)   q1 = 
3

1
i i

i

a p
=
∑ ,  q2 = 

3

1
i i

i

b p
=
∑ ,  q3 = 

3

1
i i

i

c p
=
∑ , 

and furthermore: 
 

q4 = (b1 c2 – b2 c1) p6 + (b2 c3 – b3 c2) p4 + (b3 c1 – b1 c3) p5 . 
 
Now, any of the nine elements in (58) is equal to its adjoint (S. S., Bd. IX, § 18).  Thus: 
 

(60) q4 = 
3

3
1

i i
i

a p+
=
∑ , q5 = 

3

3
1

i i
i

b p+
=
∑ , q6 = 

3

3
1

i i
i

c p+
=
∑ ; 

 
i.e., the last three pointers are expressed in terms of the corresponding new ones in the 
same way as the first three.  Equations (59) and (60) together represent the desired 
transformation for an arbitrary rotation.  In particular, if the rotation takes place around 
the X-axis of the old system through an angle of ω then the coefficients: 
 
 1 0 0 
(58.b) 0 cos ω − sin  ω 
 0 sin  ω  cos ω 
 
will enter in place of the table (58) in equations (59) and (60). 
 The first three pointers will not change under a subsequent parallel displacement of 
the system with the components x, y, z.  As for the last three, when we denote the line 

pointers after the displacement by κ, we will find that: 
 
 p4 = y κ3 – z κ2  + κ4 , 

(61) p5 = z κ1 – x κ3 + κ5 , 

 p6 = x κ2 – h κ1 + κ6 . 

 
From (59), (60), (61), one can now easily summarize the general transformation 
formulas.  One sees that: 
 
 Theorem 60:  Under a transformation of the rectangular, homogeneous, rod 
pointers, the old pointers can be expressed in terms of the new ones (and conversely) in a 
linear and homogeneous way. 

_______________ 
 
 

§ 42.  Equations in line pointers. 
 

 If F1 is an entire, homogeneous function of degree n in the six pointers pik of a line 
then a condition will be imposed upon the line pointers by the equation: 
 
(62)    F1 (p12, p13, p14, p34, p42, p23) = 0, 
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which is equivalent to the equation: 
 
(62)    F1 (π 34, π 42, π 23, π12, π 13, π 14) = 0. 
 
The pointers of ∞3 lines will then satisfy the equations; i.e., (62) or (63) will define a line 
complex.  In fact, one can choose three of the five pointer ratios arbitrarily, and the other 
two from (62), and determine: 
(16)    P = p12 p34 + p13 p42 + p14 p23 = 0. 
 
 We also call the number n the degree of the complex.  From Theorem 59, the degree 
is independent of the pointer system, and is therefore something that is characteristic of 
the complex.  In order to ascertain its geometric meaning, we think of the line pointers in 
(62) and (63) as being replaced with their expressions in plane (point, resp.) pointers, and 
obtain: 
(62.a)    F1 (v1 w2 – v2 w1, v1 w3 – v3 w1, …) = 0, 
(63.a)    F1 (y3  z4 – y4  z3 , y4  z2 – y2  z4, …) = 0. 
 
Here, equation (16) will be fulfilled by the arguments identically.  Now, if we fix the 
point y in (63.a) then that equation will represent a surface of degree n in the running 
coordinates z, which, from the nature of things, must be a conic surface with the vertex y.  
It must then be the locus of the points of space whose connecting line with y is a complex 
ray.  Thus: 
 
 Theorem 61:  The lines of a complex of degree n that go through a well-defined point 
generally define (*) a conic surface of order n; viz., the “complex cone” of the point. 
 
 It will follow from the dual consideration to the one that is linked to equation (62.a) 
that: 
 
 Theorem 62:  The rays of a complex of degree n that lie in a well-defined plane will 
generally envelop a curve of class n; viz., the “complex curve” of that plane. 
 
 It follows from both theorems that: 
 
 Theorem 63:  The degree of a complex is equal to the number of its rays that belong 
to any pencil of rays in general position. 
 
 In particular, if n = 1 (i.e., a linear complex) then all complex rays through a point 
will define a plane pencil of rays, just like all complex rays in a plane, as we encountered 
for a twist.  In fact, it will be shown (§ 46) that the linear complex is identical to a twist 
(or to a bush of rays). 
 

                                                
 (*) We will discuss the exceptional points for which this is not the case in vol. II, along with an 
analogue of Theorem 62.  
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 Two equations F1 = 0, F2 = 0 of the form (62) and of degree n, n′, resp., will single 
out ∞2 lines in space, and will thus define a line congruence C.  Each individual equation 

will represent a complex, and C will be the totality of rays that are common to both 

complexes C and C′ (i.e., their intersection).  The two curves that are defined in a plane 
by C and C′ will have classes n and n′, resp., and thus n ⋅⋅⋅⋅ n′ common tangents (*), which 
also belong to C.  Likewise, nn′ rays of C will go through a point.  One calls the number 

of rays in a congruence that go through a point its order and the number of rays that lie in 
a plane its class; when the order and class are equal, one will refer to the degree of the 
congruence.  It then follows that: 
 
 Theorem 64:  The congruence that is the complete intersection of two complexes of 
degree n, n′ has degree nn′. 
 
 If we add yet a third equation F3 = 0 of the form (62) and degree n″ then all three 
equations will generally define a simple manifold of lines – i.e., a ruled surface – that 
includes the rays common to all three complexes (which are defined by the individual 
equations) or also the common rays of the congruence that is defined by two equations 
and the complex that is defined by the third equation.  It is also called the intersection of 
three complexes (or the congruence and the complex).  In order to ascertain its degree, 
we consider how many of its lines p can cut a certain line p′ in space.  For this, one must 
satisfy the three equations Fi = 0, along with equation (16) and: 
 

6

3
1

i i
i

p p+
=

′∑  = 0. 

 
These equations have the degree numbers: 
 

n, n′, n″, 2, 1 
 

in the p, resp., and thus determine 2nn′n″ pointer ratios; i.e.: 
 
 Theorem 65: Three complexes of degree n, n′, n″ generally (** ) have a ruled surface 
of degree 2n n′n″ in common. 
 
 It likewise follows that: 
 
 Theorem 66:  Four complexes of degree n, n′, n″, n′″ generally have 2nn′n″n′″ rays 
in common. 

                                                
 (*) If one restricts oneself to real elements then – here and later – one must add the phrase “at most” to 
similar theorems.  We will thus also give a meaning to complex line pointers (Chap. V). 
 (** ) Three surfaces generally intersect in a finite number of points, but they can also have a curve in 
common; naturally, analogous outcomes are not excluded in line geometry: Three complexes can have a 
congruence in common.  
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§ 43.  Equations in rod pointers. 
 

 The manifold of rods is five-fold.  The rod pointers will fulfill an equation: 
 
(64)     Φ(πik) = 0 
 
that will additionally always fulfill the relation: 
 

(16.a)     
3

3
1

i i
i

π π +
=
∑ = 0, 

 
which will impose a condition that singles out a four-fold rod manifold, which we would 
like to call a rod forest.  We call the three, two, and simple rod manifolds rod complexes, 
rod congruences, and rod surfaces, respectively.  They will be represented by 2, 3, 4 
equations, resp., in the rod pointers (i.e., “rod equations”).  Since the absolute values of 
the rod pointers also come under consideration, these rod equations will generally not be 
homogeneous, even if we always employ homogeneous (rectangular or tetrahedral) rod 
pointers.  Any rod of a rod structure lies in a line – viz., its carrier.  The totality of these 
lines will define the carrier of the rod structure.  These carriers of the rod complexes, 
congruences, surfaces will then generally be line complexes, congruences, surfaces, resp., 
while all of line space is to be considered as the carrier of a rod forest (except for 
questions of reality).  Only when all representative equations of a rod structure are 
homogeneous will one enter the case in which all rods will lie on lines on which any rod 
of the structure at all lies that likewise belong to the structure.  The carrier manifold of 
the rod structure is then one dimension lower than that structure.  Since this case does not 
serve to characterize the line structures, we will exclude it from now on.  Since metric 
properties (above all, the length of the rod) are essential to rod structures, from now on 
we will think in terms of rectangular, homogeneous, rod pointers and write the equations 
of the rod structure in the form: 
 
 Φ (x′ − x, y′ − y, z′ − z, yz′ − y′ z, …) = 0, 
(65) Ψ (x′ − x, y′ − y, z′ − z, yz′ − y′ z, …) = 0, 
 ………………………………………… 
 
In particular, when Φ, Ψ, … are entire, rational functions of their six arguments, the rod 
structure will be called algebraic. 
 We next consider a single equation Φ = 0.  If we fix the point P ≡ (x, y, z) then a 
surface will be represented by (65), and indeed, by the locus of the endpoints P′≡ (x, y, z) 
of all rods of the rod forest whose carriers go through P when one puts the starting point 
of the rod at P itself.  If the rod forest is algebraic of degree n, in particular, then it will 
follow that: 
 
 Theorem 67:  If one considers all rods of an algebraic rod forest of degree n whose 
carriers go through a point P and takes P to be the starting point of the rod then the 
endpoints will lie on an algebraic surface of order n. 
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 In general, this surface will not go through P (except when the constant term in (65) 
vanishes). 
 We now consider two equations Φ = 0, Ψ = 0; a rod complex C will be defined by it.  

Each point P will now be assigned two surfaces whose line of intersection can be 
considered to be the guiding line of the complex cone of C that is associated with the 

point P.  In particular, if C is algebraic and n0, n are the degrees of Φ and Ψ, resp., then it 

will follow from Theorem 67 that: 
 
 Theorem 68:  If one considers all rods of an algebraic rod complex whose carrier 
goes through a point P and takes P to be the starting point of the rod then its endpoints 
will lie in an algebraic space curve of order n0 n; the carrier of the rod complex will then 
also be of the same degree. 
 
 One deduces in the same way that: 
 
 Theorem 69:  The carrier of an algebraic rod congruence that is defined by three 
equations of n0, n, n′ is a line congruence of order n0nn′.  If one adds a fourth equation of 
degree n″ then one will obtain a rod surface whose carrier is a ruled surface of degree 
2n0nn′n″. 
 
 For the last part of this theorem, confer the derivation of Theorem 65; analogously to 
Theorem 66, one will have: 
 
 Theorem 70:  Five rod forests of degree n0, n, n′, n″, n″′ have 2n0 nn′n″n″′ rods in 
common. 
 
 Let a rod complex C be given by two equations of the form (65) and degree n and m, 

resp.  We pose the problem of calculating the equation of the carrier C of C.  In order to 

find the complex cone at the point P ≡ (x, y, z), we have to join P rectilinearly with all 
points P′ whose pointers x′, y′, z′ satisfy both equations (65).  The equations of such a 
connecting line will read: 

(69)     
x

x x

ξ −
′ −

 = 
y

y y

η −
′ −

= 
z

z z

ζ −
′ −

. 

  
In order to obtain the equation of the complex cone, we must derive a relationship 
between ξ, η, ζ that is true for all values x′, y′, z′ that fulfill (65).  We thus have to 
eliminate x′, y′, z′ from all four equations, and from the nature of things, the result must 
be capable of being written in terms of the line pointers: 
 
(67)   ξ – x,    η – y,    ζ – z,    yζ – zη,     zξ – xζ,    xη – yξ 
 
alone.  One asks only how one can carry out this elimination without reverting to the 
expressions in the point pointers when equations (65) are given in the form: 
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(65.a)   Φ (q1, q2, …, q6) = 0,  Ψ (q1, q2, …, q6) = 0. 
 
We can also set: 
 x′ – x = t (ξ – x), 
(68) y′ – y = t (η – y), 
 z′ – z = t (ζ  – z), 
 
instead of (66), and now eliminate the four quantities x′, y′, z′, t′ from the five equations 
(65) and (68).  We next substitute the expressions in (65) for x′, y′, z′ in (68); we will get, 
e.g.: 

yz′ – y′z = t (yζ – zη). 
 
If we then denote the line pointers (67) by κi then we will still have to eliminate t from 
the two equations: 

Φ(tκ1 , …, tκ6) = 0, Ψ(tκ1 , …, tκ6) = 0. 
 
We will no longer need to distinguish the κ from the q in the result, so we can state the 
following rule: 
 
 Theorem 71:  If a rod complex is given by the equations: 
 
     Φ(qi) = 0, Ψ(qi) = 0 

 
then one will have to eliminate t from the equations: 
 
(69)    Φ(t qi) = 0, Ψ(t qi) = 0 
 
in order to calculate its carrier. 
 
 This rule is true for arbitrary (even transcendental) rod complexes (*).  Thus, if C is 

algebraic then we can perform the calculations even further and come to a well-known 
algebraic problem: Namely, if we denote the aggregate of terms of dimension ν in Φ and 
Ψ by ϕν and ψν , resp., then we can also write (65.a) as: 
 
 ϕn + ϕn−1 + … + ϕ1 + ϕ0 = 0, 
 ψm + ψm−1 + … + ψ1 + ψ0 = 0, 
 
while (69) will assume the form: 
 
 tnϕn + … + tϕ1 + ϕ0 = 0, 
(70)

                                                
 (*) Transcendental line complexes will be admissible in the investigations with homogeneous line 
pointers when one considers them to be the carriers of a rod complex, and thus to be defined by two 
inhomogeneous equations in homogeneous line pointers, at least one of which is not algebraic.  
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 tmψm + … + tψ1 + ψ0 = 0. 
 
One eliminates t from equations (70) when one sets the resultant of the two entire 
functions of t to zero (cf., Pascal, Determ., § 57): 
 

(71)   D = 

1 2 0

1 1 0

1 2 0

1 1 0

n n n

n n

m m m

m m

ϕ ϕ ϕ ϕ
ϕ ϕ ϕ ϕ

ψ ψ ψ ψ
ψ ψ ψ ψ

− −

−

− −

−

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯ ⋯ ⋯

 = 0. 

 
The ϕ appear in m rows of this determinant, while the ψ appear in n rows. 
 If a rod structure is defined by λ equations (λ > 2) then when we combine one 
equation with any of the remaining λ – 1 ones, we can find λ – 1 complexes that will 
define the carrier of the rod structure; their equations will replace λ – 1 of the original 
equations. 
 
 Theorem 72:  A rod structure can be represented in such a way that all of its 
equations are homogeneous, except for one of them.  The carrier of the structure will be 
represented after one drops the inhomogeneous equation. 
 
 We now also include the investigation of rod structures in line geometry in the 
broader sense.  Non-algebraic line structures can be defined by equations in the rod 
pointers in which one ignores the lengths of the rods. 
 

_______________ 
 
 

§ 44.  Historical remarks. 
 
 Certain line structures already appear in the theory of surfaces and curves – e.g., the 
normal congruence to a surface, the ruled surface of tangents, the principal normals to a 
space curve, etc.  However, if one overlooks them then line structures had already been 
considered for some time before the birth of systematic line geometry – e.g., by Binet for 
a quadratic complex, as we will learn about in vol. II.  However, we would now like to 
pursue the history of line pointers (i.e., line coordinates), in particular. 
 The essence of the general tetrahedral line and rod pointers in all of their mechanical 
meaning (and even more general concepts) was already completely familiar to 
Grassmann in 1844 (Ausdehnungslehre, Ges. W., Bd. Ia, § 117), although he did not 
develop the suggestions that he made in relation to that to the extent that one could 
actually be able to calculate with them; his book also remained unnoticed for a decade.  
The name “line coordinates” was first used by Plücker in 1846 for the quantities r, s, ρ, 
σ, η (cf., § 33, conclusion, here, and Syst. der Geom. des Raumes in neuer analyt. 



§ 44.  Historical remarks. 91 

Behandlung, art. 258).  Cayley used six homogeneous line pointers explicitly in order to 
represent a space curve analytically by a single equation in the lines that met it (“On a 
new anal. repres. of curves in space,” Coll. pap., vol. IV, no. 284 and 294); here, one will 
also find the equation of the bush of rays.  He started with the definition of line pointers 
for the pointers (x, y, z, w), (α¸ β, γ, δ) of two points that lie on it, which he then assumed 
to be pointers “of the ordinary kind.”  Despite the formal identity of his formulas with the 
ones that appeared here as equation (17) (§ 32, b), no tetrahedral pointers had emerged 
yet as of the year 1860, since the defining point pointers were made rectangular and 
merely superficially (*) homogeneous, in such a way that one wrote x : w, y : w, z : w, 
instead of x, y, z (** ). 
 In his ground-breaking treatise “On a new geometry of space” (Phil. Transact., v. 155, 
received Dec. 1864; read Feb. 1865; Ges. math. Abh., no. 34) Plücker examined the line 
complex in Part One (pp. 725-759, in which he introduced the word “complex”) and 
congruences, ruled surfaces of order two as the intersection of three complexes, and in 
connection with that, the two-fold and three-fold linear manifolds.  He employed the 
inhomogeneous coordinates, so his calculations became asymmetric and non-intuitive.  
The six expressions x′ – x, …, yz′ – y′z, … for the homogeneous, rectangular, line 
pointers also appear there occasionally, but were still not regarded as line pointers and no 
proper symbols were being written out explicitly.  In Part Two (pp. 760-774), he made 
applications to the refraction of light in doubly-refracting crystals, and in an “additional 
note” on pp. 774-788 (received Dec. 1865), he introduced homogeneous, rectangular, line 
pointers, when he (like Cayley) started with rectangular point and plane pointers that had 
been made homogeneous by an artifice, wrote down the equation of one and the same 
general complex in numerous (viz., eight) forms, and proved the general fundamental 
theorems on complexes and congruences of arbitrary degree (here, in § 42).  He further 
presented line pointers, starting from twists immediately, without reverting to the point 
and line pointers, and remarked that the absolute values of the line pointers also have 
meaning, which was a suggestion (*** ) that was little noticed for some time.  One thus 
already finds the essential ideas of his book Neue Geometrie des Raumes, gegründet auf 
die Betractung der geraden Linie als Raumelement (ed. by Klein, 1868) in this treatise; 
he was also influenced by his immediate contemporaries.  For that reason, even though 
Malus (1808), Hamilton (1828), and Kummer (1860) had already published important 
investigations into ray congruences, 1865 must be considered to be the year in which line 
geometry was born, since that was when it was first raised to the status of a systematic 
development by the use of line pointers. 

                                                
 (*) One sees that the name “tetrahedral” pointer is more characteristic than “homogeneous.”  
 (** ) This undoubtedly emerges from the fact that he said on pp. 448 (in a loose translation): “The six 
line pointers cannot be divided into two groups of three that have the same character.  The symmetry of the 
pointers is, moreover, the same as the one that one finds in the vertices (faces) of a complete four-face 
(tetrangle).  We can divide the pointers into two groups in four ways…, where each left group corresponds 
to three vertices that define a triangle and each right group corresponds to the three remaining vertices that 
lie on a line.”  Had he also thought only of the tetrahedron then he would have certainly explained the 
grouping of the pointers by the edges of the tetrahedron itself and not on the basis of the more remote 
example of the vertices of a complete four-face.  This is all the more striking since he also referred to the 
complete tetrangle (in parentheses), which can be regarded as the projection of a tetrahedron. 
 (*** )  One finds this in an extended form in art. 25 of  Neuen Geometrie. 
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 Tetrahedral line pointers were introduced by Battaglini (“Intorno ai sist. di rette do 
sec. grado,” Atti della acc. di sc. Napoli, vol. III, 1866), Cayley (“On the six coord. of a 
line,” Coll. pap., vol. VII, no. 435, read 1867, printed 1869, Transact. of the Cambr. Phil. 
Soc.) and Klein (“Über die Transf. der allg. Gl. des 2. Grades zw. Linienkoord. auf eine 
kanon. Form,” Dissert., Bonn 1868, reprinted in Math. Ann., Bd. 23).  One finds the 
mechanical meaning of the rectangular line pointers in Plücker (1865), and that of 
tetrahedral pointers in Zeuthen (1869), who made its definition his starting point (“Notes 
sur une syst, de coord. lin. dans l’espace,” Math. Ann., Bd. I).  We will come to speak of 
further generalizations of the concept of pointer later on (§ 49 and 81). 
 One finds a thorough report on the older line-geometric discoveries in Lie and Engel, 
Geom. der Berührungstransf., chap. 7, § 2. 
 

_______________ 
 

Practice problems. 
 
 25. The determinant of Table (14), as a skew-symmetric determinant of even order, 
must be a complete square; on the other hand, since it vanishes, because all of its adjoints 
vanish, it must be the square of the left-hand side of (16) (up to a possible constant 
factor).  This can be confirmed immediately. 
 
 26. The quantities p and π must be independent of each other, on geometric grounds, 
since the planes vi and wi were chosen to go through g or the points yi and zi (§ 32, a) 
were chosen to lie on g.  This can be confirmed by direct calculation. 
 
 27.  In the definition of the pointers of the line g, we thought of it as being 
determined, once, by two planes εv, εw, and once, by two points Py, Pz .  In the first case, 
calculate the pointers of the connecting planes with the vertices of the tetrahedron, and in 
the second case, calculate the pointers of its points of intersection with the faces of the 
tetrahedron.  Conversely, one can also calculate the points of intersection in the first case, 
and the connecting planes in the second case, and thus arrive at the same pointers.  Do 
these calculations. 
 
 28. Show: The necessary and sufficient condition for two lines p, q to lie in 
hyperbolic position with the two opposite edges (i, k), (l, n) of the basic tetrahedron is 
that the two quadruples that remain after one puts primes on the pointers with the index 
pairs i, k; l, m must be proportional to each other. 
 
 29. In § 40, one could just as well start from the equations: 
 

ρ ui = 
4

1
iA uλ λ

λ=

′∑   (i = 1, 2, 3, 4), 

 
instead of equations (55), to which they are equivalent, where the Aiλ are the adjoints in 
|aik|.  One would arrive at: 
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(72)    ρ ρ′ plm = ∑ (Alλ Amµ − Amλ Alµ) pλµ′ . 

 
Derive (56) from this equation: 
 
 30. Confirm, by calculation, that (63.a) is the equation of a conic surface when the 
point y is fixed. 
 
 31. Should equation (71) actually represent the carrier complex, then it would have to 
be homogeneous of degree mn in the line pointers.  Confirm this purely algebraically by a 
consideration of the determinant D. 
 
 32. In Plücker’s book of 1846, in the place that was cited here in § 44, one finds the 
words “An equation in these four coordinates (*) does not determine a geometric locus for 
the straight lines, but only a rule by which the infinite space consists of straight lines.”  In 
what sense is this striking remark to be understood?  
 

_______________ 
 

                                                
 (*) Namely, between r, ş  ρ, σ (cf., § 28 here).  



  

Chapter IV. 
 

Linear rod forests, complexes, and congruences,  
with applications to mechanics. 

____ 
 

§ 45.  The general linear rod equation. 
 

 Since rod structures have essential metric properties, we will assume rectangular, 
homogeneous rod pointers, and thus write the general linear rod equation in the form: 
 

(1)      α0 + 
6

1
i i

i

qα
=
∑  = 0. 

 
If we rotate the pointer system around the origin and choose a1, b1, c1 (§ 41) in such a 
way that (*): 
 a1 α1 + b1 α2 + c1 α3 = 0, 
 a1 α4 + b1 α5 + c1 α6 = 0 
 
then the coefficients of the new pointers p1, p4 will vanish.  We can then assume that the 
equation (while reverting to the original symbols q and α): 
 
(2)   α0 + α2 q2 + α3 q3 + α5 q5 + α6 q6 = 0 
 
still represents the general linear rod forest.  If we once more rotate the system around the 
X-axis through the angle ω then, from § 41, table (58.b), we will get: 
 

q5 = cos ω ⋅⋅⋅⋅ p5 – sin ω ⋅⋅⋅⋅ p6 , q6 = sin ω ⋅⋅⋅⋅ p5 + cos ω ⋅⋅⋅⋅ p6 , 
 
while the linear, homogeneous function that was defined by the terms in q2 and q3 will go 
to an analogous function in p2, p3 .  If we determine ω from: 
 
(3)    α5 cos ω + α6 sin ω = 0 
 
then the coefficient of p5 will vanish.  If we now assume that the linear rod equation has 
the form: 
(4)    α0 + α2 q2 + α3 q3 + α6 q6 = 0 
 

                                                
 (*) This is always possible in such a way that the relations that must exist between the nine coefficients 
of an orthogonal substitution will be fulfilled simultaneously. 
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then we will have imposed no specialization of the rod forest, but only of its position 
relative to the pointer system.  Finally, if we perform a displacement then, from § 41, 
equations (61), if y = 0 and z is arbitrary then we will get: 

 
q6 = x p2 + p6 . 

Thus, (4) will go to: 
α0 + (α2 + α6 x) p2 + α3 p3 + α6 p6 = 0. 

We next assume: 
α6 ≠ 0, 

and then we choose: 

x = − 2

6

α
α

, 

 
and thus bring the general, linear rod equation into the form: 
 
(5)     α0 + α3 q3 + α6 q6 = 0 
 
by a pointer transformation (in which we again write q, instead of p).  The constant term 
was not affected by these calculations.  The transformations will then be also valid for the 
special case of the linear complex (α0 = 0).  If α6 = 0 then we can arrive at the form: 
 
(6)     α0 + α3 q3 = 0 
 
from (4) by rotating around the X-axis, and this form will be included in (5) when we let 
α6 = 0. 
 
 Theorem 73:  The general, linear rod equation can always be brought into the form 
(5) by pointer transformations. 
 
 We call a rod forest general when all three coefficients in (5) are non-zero, and 
special otherwise. 

___________ 
 
 

§ 46.  The linear complex. 
 

 From the result of the last paragraph, we next discuss the case of the linear complex 
(α0 = 0).  When we set: 

3

6

α
α

= k, 

(5) will assume the form: 
(7)      k q3 + q6 = 0, 
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or, when we introduce the pointers for the starting point P ≡ (x, y, z) and the end point Q 
≡ (ξ, η, ζ) of the rod: 
(8)      k (ζ – z) + xη – ξy = 0. 

 
However, this is precisely equation (8) of Chapter I, so it will represent a twist, in 
general; if α3 = 0 then q6 = 0, or: 

η
ξ

 = 
y

x
, 

 
will represent all lines that cut the Z-axis; if α6 = 0 then q6 = 0, or ζ = z, will represent all 
lines that are parallel to the XY-plane.  Thus: 
 
 Theorem 74:  The linear complex is identical to either a ray twist or a bush of rays 
(*); the axis of the latter can lie at finite points or at infinity. 
 
 Once we know this, we can again assume general, tetrahedral pointers and write the 
equation of the linear complex in the forms (** ): 
 

(9)      ∑ aik πik = 0 
or 

(10)     ∑ aik plm = 0; 
furthermore, let: 
(11)    a12  a34 + a13  a42 + a14  a23 = A. 
 
If A = 0 then the aik will be pointers of a line, and indeed, we will regard them as axial 
pointers.  (10) will then express the idea that the lines a, p intersect (§ 39, b).  In this case, 
(9) or (10) will then be the equations of a bush of rays. 
 We now assume: 
(12)     A ≠ 0. 
 
In this case, there will be no line of intersection for all the lines p that fulfill (10).  The 
pointers of one of them must then be identical to the aik , whose ratios will be determined 
completely by five suitably-chosen sextuples pik.  From Theorem 74, (9) or (10) will 
represent a twist.  In order to find the association between points and planes, we 
introduce: 

πik = yi xk – yk xi 
into (9), and order the result in the y: 
 

(a12 x2 + a13 x3 + a14 x4) y1 + (− a12 x1 + a23 x3 − a42 x4) y2  

                                                
 (*) We will always employ the words “twist” and “bush of rays” as we did in the Chapter I, while we 
will keep “linear complex” as the common term for both.  We will also call a sheaf of rays a singular 
complex. 
 (** ) When all four indices i, k, l, m appear, the sum will always refer to the three arrangements 12, 34; 
13, 42; 14, 23, and the ones that arise by permutation of the pairs, and thus, to six terms. 
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(13)    + (− a13 x1 − a23 x2 + a34 x4) y3 
+ (− a14 x1 + a42 x2 − a34 x4) y4 = 0. 

 
If we think of the point xk as being fixed then (13) will represent the locus of points y that 
yield a ray of the complex, when combined with xk , and thus the null plane of the point x.  
The coefficients of the y are then the pointers u of that plane.  Therefore, an association 
of the form: 

(14)    σ ui = 
4

1
ik k

k

xα
=
∑    (i = 1, …, 4), 

 
with αii = 0, αik = − αki , will be defined by the twist.  If we then also set aik = − aki then 
we can write (14) as: 

(15)    

1 12 2 13 3 14 4

2 12 1 23 3 24 4

3 13 1 23 2 34 4

4 14 1 24 2 34 3

,

,

,

u a x a x a x

u a x a x a x

u a x a x a x

u a x a x a x

σ
σ
σ
σ

= + +
= − + +
= − − +
= − − −

 

 
in the present case.  The determinant D of the aik, as the even-order, skew-symmetric 
determinant, is a complete square (cf., Pascal, Determ., § 16), and in fact: 
 

D = (a12 a34 + a13 a42 + a14 a23)
2. 

 
Due to the assumption (12), equations (15) can be solved for x: 
 

τ xi = 
4

1
ki k

k

A u
=
∑ , 

 
with which, the null point x to any plane u is also found, and indeed, the Aki will have the 
common factor A [cf., § 32, a)].  After its omission, these equations will assume the form: 
 

(16)    

1 34 2 42 3 23 4

2 34 1 14 3 24 4

3 42 1 14 2 12 4

4 23 1 13 2 12 3

,

,

,

.

x a u a u a u

x a u a u a u

x a u a u a u

x a u a u a u

τ
τ
τ
τ

= + +
= − + −
= − − +
= − + −

 

 
If one writes the equation of the twist in the form: 
 

∑ ai qi = 0 
 
then one will also have to rewrite the indices of the a according to the first two rows of 
the schema (25), and obtain: 
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(15.a)    

1 1 2 2 3 3 4

2 1 1 6 3 5 4

3 2 1 6 2 4 4

4 3 1 5 2 4 3

,

,

,

,

u a x a x a x

u a x a x a x

u a x a x a x

u a x a x a x

σ
σ
σ
σ

= + +
= − + −
= − − +
= − + −

 

 

(16.a)    

1 4 2 5 3 6 4

2 4 1 2 3 2 4

3 5 1 3 2 1 4

4 6 1 2 2 1 3

,

,

,

.

x a u a u a u

x a u a u a u

x a u a u a u

x a u a u a u

τ
τ
τ
τ

= + +
= − + −
= − − +
= − + −

 

 
Therefore, one must agree that the qi mean (arbitrary tetrahedral, moreover) ray pointers. 
 Equations (14) define (also for an arbitrary choice of the a, except that the 
determinant cannot vanish) a spatial correlation (viz., a linear, reciprocal conversion).  
Our correlation is characterized by the fact that any point lies in the plane that is 
associated with it.  If we ask what the most general correlation would be that has this 
property then one would have to fulfill: 
 

∑ ui xi = 0 
identically as a result of (14); thus: 
 

σ ∑ ui xi = 2
ii i ik i kx x xα α+∑ ∑  

 
must vanish for an arbitrary choice of the x.  This imposes the conditions: 
 

αii = 0,  αki = − αik (i ≠ k) 
 
on the a, which are precisely the same as the ones that are fulfilled in the present case. 
 
 Theorem 75:  The null system that is defined by a twist is the most general 
correlation for which each point and its corresponding plane are incident. 
 
 For any correlation, a line g, as a point sequence, will correspond to a line g′ (viz., its 
polar) as the axis of the projective pencil of planes that is associated with the point 
sequence.  However, g is also the polar of g′ for a null system (§ 5); the correlation of a 
null system is then involutory.  In the event that g and g′ are distinct, the projectivity 
would be trivial in the present case, since the point sequence g and the pencil of planes g′ 
actually lie projectively.  We then express the theorem in question for the rays of the 
twist (which are the lines that correspond to themselves under the correlation) as: 
 
 Theorem 76:  If a point describes a ray s of a twist then its null plane will describe a 
projective pencil of planes around s. 
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 If a line is the carrier of a point sequence and is likewise the axis of a point sequence 
of a projective pencil of planes then one will say that the line is the carrier of a 
correlation. 
 

__________ 
 
 

§ 47.  Further properties of a twist and ways of generating it. 
 
 We take five points, no four of which lie in a plane, link them in any sequence into a 
simple, spatial pentagon, whose vertices and faces might be denoted by 1, …, 5; I, …, V, 
respectively, in such a way that I is the face 512, etc. (Fig. 39).  No four of the five planes 
I, …, V will then go through a point, 
either.  Three neighboring planes – 
e.g., I, II, III – will then have merely 
the point 2 in common, which will lie 
in either IV or V, however.  If we then 
associate the points 1, 2, … with the 
planes I, II, …, resp., then a non-
degenerate correlation will be defined 
in any case (cf., Killing, Analyt. Geom. 
II , pp. 236), which we would like to 
show is a null system (v. Staudt, Geom. 
d. Lage, art. 325). 
 Any side of the pentagon corresponds to itself, so the point of intersection P ≡ (34, I) 
will then correspond to the connecting plane (34, 1) that goes through P.  In the pencil of 
planes (1, I), the three rays 5, P, 2 will all correspond to themselves then.  For that reason, 
each point in I, and one of the five planes I, II, …, more generally, will correspond to a 
plane that goes through it.  In order to show that for an arbitrary point Q of space, we 
draw a line g through Q; it will cut at least three of the planes I, II, … in nothing but 
distinct points Pi .  If we regard g as a sequence of points P then g′ will be the carrier of a 
projective pencil of planes that lies perspectively with P, since the three points Pi of P 
will lie in their corresponding planes.  Since a twist is linked with any null system, we 
can say: 
 
 Theorem 77:  A twist is defined by a simple, spatial pentagon and its rays belong to 
the five sides of that pentagon. 
 
 b) However, if we also take five arbitrary rays of space to be rays of a twist then that 
twist will be determined uniquely by them, in general.  Then, let: 
 

( )
ip λ   (λ = 1, …, 5; i = 1, …, 6) 

 
be the pointers of the five rays, so the equation of the desired twist: 
 

 

III 
3 

2 

II 

I 

IV 
V 

1 

5 

P 4 

Figure 39. 
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6

1
i i

i

pα
=
∑ = 0 

 
must be fulfilled by all five sextuples ( )

ip λ .  The ratios of the α will be determined 

uniquely by the equations for: 
6

( )

1
i i

i

p λα
=
∑  (λ = 1, …, 5) 

 
when the matrix of the ( )

ip λ  has rank five.  One can then also write the equation of the 

twist in determinant form: 

1 2 6
(1) (1) (1)
1 2 6

(5) (5) (5)
1 2 6

p p p

p p p

p p p

⋯

⋯

⋮ ⋮

⋯

 = 0. 

 
 Theorem 78:  A twist is determined uniquely by five rays when the matrix of their 
pointers has rank five. 
 
 We can first discuss the geometric meaning of this condition later on (Theorem 102). 
 
 c) We consider two projective pencils of rays for which the connecting line a of their 
vertices is identical with the line of intersection of their planes, and the two pencils shall 
be self-corresponding.  From § 39, c), we can then represent these projective pencils p, p′ 
in the forms: 

pi = ai + µ bi,  ip′  = ai + µ ib′ , 
 
in which the same value of µ is assigned to corresponding rays.  If we pose the condition 
that a ray q must cut any two corresponding rays of the pencils then we must have: 
 

6

3
1

( )i i i
i

a b qµ +
=

+∑ = 0,  
6

3
1

( )i i i
i

a b qµ +
=

′+∑  = 0; 

 
if we eliminate µ from this then we will obtain: 
 

3( )i i ib b q+′ −∑  = 0, 

 
which is the equation of a linear complex that will be a twist when b and b′ do not 
intersect.  In fact, one will then have [cf., § 39, c)]: 
 

ω (b − b′) = ω (b) – 2ω (b, b′) + ω (b′) = − 2ω(b, b′) ≠ 0. 
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We have thus come to recognize the Sylvester way of generating a twist [which he first 
derived in Comptes R., t. 52, (1861) in a synthetic way]: 
 
 Theorem 79:  Let two projective pencils of rays with a self-corresponding line be 
given that nevertheless have distinct planes and vertices.  The totality of lines that cut the 
two corresponding rays of the pencils will define a twist. 
 
 Conversely, a twist can be generated in ∞5 ways, since one can choose a point and a 
plane that goes through it to be the vertex and plane of the one pencil arbitrarily.  In order 
to construct the null point to a plane E, one observes that E cuts the two pencils in two 
perspective point sequences; the center of perspectivity will then be the desired null point 
(dual construction?). 

 

B′ 

N 

Figure 40. 
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 d) The Sylvester generation process can thus be employed to construct a twist 
linearly from five rays g1, …, g5 (Sturm, Liniengeom., Bd. I, art. 74).  If (A, a) is one ray 
pencil of this process of generation then, from c), we can choose A on g1 and α on g1 
arbitrarily.  Let (Fig. 40) A2, …, A5 be the points of intersection of g2, …, g5, resp., with 
a, let B2, …, B5 be those with another plane β through g1, let B be a second point on g1, 
let a2, …, a5 be the rays from A to A2, …, A5, resp., and let b2, …, b5 be the rays from B to 
B2, …, B5, resp.  We will then have to choose β, and at the same time, B, in such a way 
that: 

A(g1, a2, a3, a4, a5) ∧   B(g1, b2, b3, b4, b5). 
 

We seek a position B′ of B for which this is attained for just four pairs of rays, namely: 
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B′(g1, b2, b3, b4) ∧   A(g1, a2, a3, a4), 
 
in which we can choose the plane β arbitrarily through g1 .  If B1 is the point of 
intersection of (B2, B3, g1) then we will determine a point 4B′  on B2 B3 such that: 

 
(B1, B2, B3, 4B′ ) = (g1, a2, a3, a4). 

 

4B′  B4 then will cut the point B′ out of g1 .  If one replaces g4 with g5 in this construction 

then one will get a point 5B′  on B2 B3 , instead of 4B′ , and a point B″ on g1, instead of B′.  
The solution will then be achieved when B′ and B″ coincide, with which, β can be rotated 
around g1 .  Therefore, B2 B3 will run through the guiding family R that g1, g2, g3 belong 

to, so 4B′  will itself be a ray 4g′ of R, and likewise 5B′  will be a ray 5g′ of R.  The line 4B′  

B4 will then describe the guiding family of the family of rulings 4g′ , g4, g1 under a rotation 

of β, and will thus cut out a plane pencil β of a projective point sequence B′ on g1 .  B″ is 
likewise projective to β, and thus to B′, as well.  If β comes to the position α then 4B′  will 

coincide with the point of intersection (A2, A3, a4), and therefore B′ (like B″) will coincide 
with A.  A will then be the one double point of the two projective sequences B′, B″ on g1 ; 
the other double point B and the associated position of β will determine the second pencil 
in Sylvester’s generation process. 
 We still have to explain how one can construct the second double point B from a 
double point A and two pairs P, P′ and Q, Q′ corresponding to points on g1 (Fig. 41) 
linearly.  One projects P, Q from an arbitrary point S onto an arbitrary line that goes 
through A along P1, Q1 .  The sequences AP′Q′ and AP1Q1 will then be perspective with 
C as their center.  B will then be cut out of SC on g1. 

 

A Q′ P B Q P′ g1 

h 

S 

Q1 

C 

P1 

Figure 41. 
 

 e) Let: 
(17)     ∑ aλµ pλµ = 0 
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be the equation of a twist.  We assume that we have constructed the two polars to the 
opposite edges 12, 34 of the basis tetrahedron.  Any line g that cuts these two edges will 
then be a ray of the twist.  On the other hand, from § 39, one will have: 
 

p12 = p34 = 0 
 
for g.  Equation (17) must be fulfilled for an arbitrary choice of the remaining four 
pointers, which are restricted only by the condition p13 p42 + p14 p23 = 0, and especially 
when we let g coincide with the edge 13 of the tetrahedron, for which only p42 is non-
zero.  Therefore, one must have a42 = 0, etc. 
 
 Theorem 80:  The equation for a twist in which the edges i, k and l, m of the basic 
tetrahedron are polars has the form: 
(18)     aik pik + alm plm = 0. 
 
 From Theorem 47, we find that: 

ik

lm

p

p
 = ik ik

lm lm

c M

c M
⋅ , 

 
and from equation (18), we find for the rays of the twist: 
 

ik

lm

p

p
 = − lm

ik

a

a
; 

thus, one will have: 

ik

lm

M

M
 = − lm lm

ik ik

a c

a c
 

for them; i.e.: 
 
 Theorem 81:  The ratio of the moments of an arbitrary ray of a twist relative to two 
fixed polars is constant. 
 
 This shows, once more, that a twist is determined by two polars and a ray; that 
constant is then determined by them. 
 
 f) 
 
 Theorem 82:  If one maps all rays of a twist G by a collineation or a correlation then 
a twist will again arise. 
 
 One thinks of G as being defined by a null system; it will be mapped as a correlation 
by a collineation or a correlation into a correlation again, and indeed, due to the 
conservation of the incidence relations, to a null system. 
 Since there are ∞15 collineations, but only ∞5 twists, it will follow that a twist will go 
to itself under ∞15 collineations, or it will “admit” them; it will likewise admit ∞10 
correlations. 
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§ 48.  The linear rod forest. 
 

 a) From Theorem 73, the linear rod equation can be brought into the form: 
 
(19)     α + β q3 + γ q6 = 0. 
 
We will first assume that all three coefficients are non-zero, so the rod forest S will be 

general.  If we drop the constant term then we will get the equation of a twist G: 

 
(20)     β q3 + γ q6 = 0, 
or, when we set β / γ = k: 

(21)     k q3 + q6 = 0, 

 
which also plays a role in the investigation of S, and which shall be called the twist that 

is associated with this rod forest.  Its axis is also called the axis of S.  It emerges from § 

41 that only the pointers q4, q5 will change under a displacement of a rod along the Z-
axis, and only the pointers q1, q2, q4, q5 will change under a rotation around the Z-axis, 
which do not, however, appear in (19).  G will then admit any screw around the Z-axis.  

Therefore, in order characterize all of the rods of S, it will suffice to displace a point P 

along the X-axis, while always carrying a plane ε that goes through it and is perpendicular 
to the X-axis along with it.  If one has determined the length of the rods in all pencils of 
rays (P, ε) then any other rod of S can be found from it by a screw. 

 From Theorem 67, any point (x, y, z) is associated with a plane by S whose equation 

in the running pointers x′, y′, z′ reads: 
 
(22)    α + β (z′ − z) + γ (xy′ − x′y) = 0. 
 
In particular, the point P ≡ (x = c, y = z = 0) is then associated with the plane π: 
 
(23)     α + β z′ + γ cy′ = 0. 
 
It will cut ε along a line h that limits the lengths of the rods in the pencil (P, ε).  The pitch 
ν′ of h with respect to the XY-plane will be determined by (cf., the angle determination 
and the figures in § 8): 

tan ν′ = − 
cγ

β
 = − c

k
. 

 
However, from Chapter I, equation (12), the pitch of the ray s of G that belongs to the 

pencil (P, ε) will be just as large.  h will then arise from s by displacement along the Z-
direction through the distance – α / β, which is independent of c, and π will be parallel to 
the null plane of P in G. 
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 Theorem 83:  The planes that are associated with the points of space by a linear rod 
forest arise from the null planes of the associated twist by displacement along the 
direction of the axis through a constant distance [cf., also Plücker, “Fund. Views 
regarding Mechanics,” (1866); Ges. math. Abh., no. 35] 
 
 If we once more consider the construction in § 15, b) (Fig. 17) then for an arbitrary 
choice of the g1 in the pencil (P, ε) the end point S will always lie on the fixed line QS, 
which will arise from the ray of the twist σ by displacement along the vector k′ = k.  If we 
then choose the component k of a dyname to be equal to – α / β and determine the 
component m on it from m = k k (§ 15, a) then: 

 

m = − α β
β γ

⋅  = − α
γ

, 

 
so this dyname D will have the intrinsic connection with S that: 

 
 Theorem 84:  The rods of a general, linear rod forest are identical with the totality 
of all rod crosses that are equivalent to a certain dyname. 
 
 In order to give an expression to the connection between D and S even more clearly, 

we introduce the quantities k, m into (19), instead of the previous coefficients.  When we 
multiply by α / βγ, we will obtain: 
(24)     m q3 + k q6 – m k = 0. 
 
The characteristic of this equation is that the constant term is equal to the negative 
product of the other two coefficients.  This form is called the normal form for the 
equation (*). 

                                                
 (*) As we will soon see, it plays a role that is similar to the Hessian normal form for the equation of a 
plane.  However, whereas there are two normal forms for the equation of a plane (one of them will again 
arise by multiplying by – 1), here, only one is present for a particular system of pointers.  By contrast, one 
can arrive at an equivalent normal form when one reverses the direction of the Z-axis [in fact, ω was 
determined only up to p by equation (3)].  One must then reverse the direction of yet another axis – e.g., the 

Y-axis – in order for the system of pointers to remain one of the first kind.  If one calls the new pointers 
i

q′  

then one will have: 

i
q′  = − qi , along with  

4
q′ = + q4 . 

 

The 
i

q′  will then satisfy the equation: 

(24a)      − 
3 6

mq k q m k′ ′ ′ ′ ′− −  = 0, 

 
which will again be a normal form.  If one compares this with: 
 

3 6
mq k q m k+′ ′ ′ ′ ′−  = 0 

then one will find that: 
m′ = − m, k′ = − k, 
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 If D is given then one can immediately write down the equation of the rod forest, and 

conversely, when S is given first in this special position with respect to the system of 

pointers, one can find D when one brings the equation of S into normal form.  G will 

depend upon only the ratio m : k, so S will also depend upon the absolute values of the 

components of the dyname.  One sees very clearly from Theorem 83 the way in which 
the rods of the rod cross become infinite when their carriers approach the rays of the 
associated twist.  We call a rod forest right-wound or left-wound, analogously to the 
associated twist. 
 
 b) The connection in Theorem 84 no longer exists in the case of a special rod forest.  
In fact, if β = 0 (k = 0) then a unit force k along the Z-axis will appear in place of D.  On 

the other hand, equation (23) will reduce to: 
 
(25)     α + γ c y′ = 0. 
 
The rod forest will then include all rods that are skew to k, while all rods that can be 
obtained by decomposing k into two forces will cut k itself.  Furthermore, the rod forest 
can now be characterized geometrically by: 
 
 Theorem 85:  The equation α + γ q6 = 0 encompasses all rods that have the constant 
moment – α / γ with respect to a unit rod on the Z-axis. 
 
 (25) then represents a plane that is parallel to the Z-axis.  If one displaces the end 
point of the rod along its line of intersection with ε then the projection of the rod onto the 
XY-plane will not change, so its moment relative to the Z-axis, which is determined by 
cy′, will not change either.  This will immediately yield: 
 
 Theorem 86:  The equation α + β q6 = 0 encompasses all rods whose projections 
onto the Z-direction yield a constant vector of length – α / β. 
 
 In the case of Theorem 85, all rods of the forest will have the constant moment – kα / 
γ with respect to an arbitrary rod k on the Z-axis.  Analogously, a mere rotational moment 
m will appear in place of the dyname in the case of γ = 0 (k = ∞), which will be 

represented by a field (§ 36), and all rods of the forest will determine a constant volume 
with the field m when one considers the field to be the base of a cylinder whose 
generators have the direction and length of such a rod. 
 We say that a special rod forest of the kind in Theorem 85 is one of the first kind and 
that one of the kind in Theorem 86 is one of the second kind.  The former is a bush of 

                                                                                                                                            
 
which is geometrically self-explanatory.  Nevertheless, only one normal form will then exist for a well-
defined system of pointers, so one can always arrive at a normal form for which the coefficient of q6 is 
positive, which comes from choosing the positive direction of the Z-axis to agree with the rod part of the 
dyname; m can then have a double sign. 
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rays with an axis at infinity, while the latter is associated with an axis at infinity that is 
“associated.”  One will obtain its equation when one sets the constant term equal to zero. 
 
 c) We must extend the considerations in a) to an arbitrary position of the rod forest 
with respect to the system of pointers S: We will obtain this when we subject equation 
(24) to an arbitrary pointer transformation.  We first rotate S around the origin into the 
position S′.  If the new pointers are called iq′  then, from § 41, (24) will go to: 

 
(26)  1 1 2 2 3 3 1 4 2 5 3 6( ) ( )m c q c q c q k c q c q c q′ ′ ′ ′ ′ ′+ + + + + − km = 0. 

 
 If we displace S′ to the final position S″ and call the new pointers pi then (26) will go 
to the form: 

      ∑ ai+3 pi – a0 = 0, 
or when we again write qi (

*): 

(27)     ∑ ai+3 qi – a0 = 0. 
 
 Therefore, from § 41, equations (61), one will have: 
 

(28)    
4 1 2 3

5 1 3 1

6 1 1 2

( ),

( ),

( ),

a mc k c c

a mc k c c

a mc k c c

= + −
 = + −
 = + −

z y

x z

y x

 

 
(29)   a1 = k c1, a2 = k c2, a3 = k c3, 
 
(30)     a0 = k m. 
 If we define: 

3

3
1

i i
i

a a+
=
∑  = A 

 
then the coefficient of k2 will be zero; thus: 
 
(31)    a1 a4 + a2 a5 + a3 a6 = a0 , 
or: 
 
 Theorem 87:  A is non-zero for a general rod forest. 
 
 The relationship (31) is characteristic of the quantities a when we start from a normal 
form for equation (24).  If it is fulfilled then we would also like to call (27) a “normal 
form” for the equation of the rod forest here, or a normal equation for it.  We can obtain 
the normal form from an arbitrary form: 
 

                                                
 (*) Why we denote the coefficients of pi by ai+3 , and not by ai , will be made clear in the next paragraph.  
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∑ αi+3 qi – α0 = 0 
 

by multiplying by a suitable factor N.  If: 
 

3

3
1

i i
i

α α +
=
∑  = A 

 
then one can determine the “normalizing” factor uniquely from: 
 

N2 A = N α0 , 

so: 

(33)     N = 0α
A

. 

 
 We return to the normal equation (27) and the geometric meaning of its coefficients: 
As would emerge from the schema (58), c1, c2, c3 are the direction cosines of the axis a of 
the rod forest relative to S″; x, y, z are the pointers of the origin of S″ relative to S or S′.  
However, if we take the standpoint that equation (27), and thus, S″, are given originally 
then – x, − y, − z will be the pointers of a point of a relative to S″.  Thus, if a dyname and 

its position with respect to the system of pointers is given by the quantities: 
 
(34)    k, m, c1, c2, c3, – x, − y, − z 

 
then we can write down the equation (27) of the associated rod forest by means of 
equations (28) to (30). 
 Conversely, if we would like to ascertain the geometric determining data of the 
associated dyname from the equation of a rod forest then we must first bring its equation 
into normal form and then solve equations (28) to (30) (six of which are independent) for 
the quantities (34).  These are, in fact, eight quantities, so ∑ c2 = 1, and of the quantities 
x, y, z, it is the nature of things that one of them will be arbitrary, since any point of a will 

play the same role.  We find from (29) that: 
 

(35)     k = 2 2 2
1 2 3a a a+ + , 

 
and we may choose the positive value of the root [cf., the remark in a)]; then, from (28) 
and (30): 
(36)    a1 a4 + a2 a5 + a3 a6 = km, 
so 

(37)     m = 
A

k
, 
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(38)    k = 
m

k
 = 

2 2 2
1 2 3

A

a a a+ +
, 

and from (29): 

ci = ia

k
   (i = 1, 2, 3), 

 
from which (28) will assume the form: 
 
 a2 z – a3 y  = a4 − k a1 , 

(39) a3 x – a1 z  = a5 − k a2 , 

 a1 y – a2 x  = a6 − k a3 . 

 
 d) We can now choose one of the quantities x, y, z arbitrarily and calculate the other 

two.  Instead of them, we seek the pointers ai of 

the rod k = QR.  If one attaches a rod k′ to the 
origin O whose vector part is equal to that of k 
(Fig. 42) then, from equation (29), a1, a2, a3 will 
be the pointers of its endpoint P, while (– x, − y, 

− z) ≡ R will be a point of a.  Let OR′P′ be the 

projection of the triangle ORP onto the XY-plane, 
so: 
 

2 OR′P′ = 
1 2a a

− −x y
. 

 
 2OQ′R′ will then be just as large, which will be the pointer a6 of k (Theorem 48); i.e., 
one will find both pointers of k and the components (of which we will make use) of the 
moment of the force pair k, − k on the left-hand side of (39).  The quantity A will also 
represent a well-defined material volume mk [equation (37)], so it will not change under a 
pointer transformation.  For that reason, it is called an invariant of the rod forest; a 
second invariant is k.  It is geometrically clear that there are only two independent 

invariants of a rod forest.  From the algebraic standpoint, one can mostly simply choose: 
 

A = a1 a4 + a2 a5 + a3 a6  and  2 2 2
1 2 3a a a+ + , 

 
and from the geometric standpoint, one can choose m and k, or mk and k = m / k.  

Therefore, if a general, linear rod forest is given by its equation then one will have the 
following rule for the determination of the associated dyname (k, m): 
 
 Theorem 88:  One brings its equation into the normal form: 
 

 

P 

O 

− k 

k′ 

R 

k 

Q 

Figure 42. 
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∑ ai+3 qi – A = 0. 
 One will then have (*): 

(35)     k = 2 2 2
1 2 3a a a+ + , 

 

(38)     k = 
m

k
 = 

2 2 2
1 2 3

A

a a a+ +
, 

and the pointers ai of k will be: 

(40)    
3 3

,

,
i i

i i i

a

a a+ +

=
= −

a

a k
 (i = 1, 2, 3). 

 
 The rod forest and the associated twist are left-wound or right-wound according to 
whether A is positive or negative, respectively. 
 
 The last part of the theorem follows from Theorem 14 and equation (38).  Since the 
constant term is not affected by the pointer transformation, Theorem 88 will also be true 
for a twist (a0 = 0), to the extent that it affects the determination of k and ai ; only the 

ratios will come under consideration for the ai . 

 
 e) If the rod forest is special then one can link the same conversions that were 
performed in c) with equation (24) to equation (19) (since no normal form exists now) in 
which (since the case of α = 0 was just dealt with) either β or γ will be set to zero.  One 
must correspondingly set either m = 0 or k = 0 in the equations of c) and likewise replace 
either k with γ again or m with β, respectively. 
 
 Theorem 89:  If the invariant A of a linear rod equation is zero then a special rod 
forest will be present; it will be of the first or second kind, according to whether a1, a2, a3 
are or are not all zero, respectively. 
 
 In the first case, its geometric determining data are likewise given by equation (40) 
(where only the ratios of the ai come under consideration now), and from Theorem 58, 

by: 

(41)     M = − 0

2 2 2
1 2 3

a

a a a+ +
. 

 
In the second case (cf., Theorem 86), the rod forest is completely characterized 
geometrically by a vector of length: 

                                                
 (*) One observes that a1, a2, a3 have dimension one, a4, a5, a6, m have dimension two, and A has 
dimension three.   The connection between the pointers of a dyname and those of its axis that is expressed 
by equations (38) and (40), respectively, was first given by Franke [“Über geom. Eigensch. von Kräfte- 
und Rot.-Syst. in Verb. mit Linienkompl.,” Wiener Ber., Bd. 84, II (1881)]. 
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(42)    σ = − 0

2 2 2
4 5 6

a

a a a+ +
, 

 
whose direction cosines are proportional to a4, a5, a6 . 
 

______________ 
 
 

§ 49.  Pointers for a screw and a linear complex. 
 

 Let a linear rod forest by given by: 
 
(43)    ∑ ai+3 qi – a0 = 0, 
 
which will be in normal form when A ≠ 0, so one will have a0 = 0.  In the previous 
paragraphs, we were compelled to give a mechanical interpretation for this; however, the 
result is just as valid for an arbitrary system of segments that are subject to the laws of 
geometric addition for rods, so it will be true for “screws” (§ 36) and rod crosses, which 
are equivalent to them.  We have preferred the mechanical picture only for the sake of 
intuitive appeal and in order to be able to link things to § 15. 
 We can therefore regard (43) as an equation of a rod forest, as well as the equation for 
a screw that is coupled with the rod forest, and we have learned how to find the 
determining data for that screw from Theorem 88.  The screw is determined uniquely by 
the six quantities a1, …, a6, and conversely (except that we must count the rod and field 
as degeneracies of the actual screw with respect to the general concept).  For that reason, 
we call these six quantities the pointers of the screw and would now like to ascertain their 
geometric interpretation: We first assume that A ≠ 0, preserve the symbols k, m of the 
component of a dyname for the screw Σ, and we can reduce Σ at the origin O of the 
system of pointers (§ 14), when we parallel translate (Fig. 42) k along k′ and add the force 
pair P ≡ (k, − k′), whose components might be P1, P2, P3 .  We can then also write 

equations (28), which express the connection between the three pointers and the 
geometric determining data of Σ, as follows (cf., § 48, d)): 
 
(44)    ai+3 = mci + Pi  (i = 1, 2, 3). 

 
a4, a5, a6 will then be the components of the total field that appears after the reduction of 
Σ at the origin of the system of pointers; thus: 
 
 Theorem 90:  Of the six pointers of the screw that is represented by the normal 
equation: 

(43)    ∑ ai+3 qi – a0 = 0 (A = a0), 
 
a1, a2, a3 mean the pointers for the rod, and a4, a5, a6 mean the pointers for the field that 
appears after reducing the screw at the origin of the system of pointers. 
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 The same thing is still true, as one sees immediately from § 48, e), when the screw 
degenerates into a rod or a field from the outset; only the condition that (43) should be a 
normal equation will drop out. 
 If we interpret the screw as a dyname then a1, a2, a3 will be the components of the 
force and a4, a5, a6 will be those of the moment after reduction at the origin.  If we 
interpret the screw as a twist then a1, a2, a3 will be the components of the rotational 
velocity, and a4, a5, a6 will be those of the translational velocity after reduction at the 
origin.  a6 will then mean two equal and opposite rotational velocities around parallel 
axes in the XY-plane; however, they will combine into a translation in the Z-direction 
(beginning of § 18).  In these cases, we will also call the ai the pointers for the dyname 
(the twist, resp.). 
 A linear complex: 

(43.a)     ∑ ai+3 qi = 0 
 
belongs to a screw and a rod forest that are determined uniquely by the ratios of the ai 
(and likewise conversely); we thus call the ai (whose ratios all are that come under 
consideration now)  the pointers of the complex.  In particular, if A = 0 then the pointers 
of the sheaf of rays will likewise be the ray pointers of the carrier (*).  That will allow us 
to distinguish ray pointers and axis pointers, not only for a line, but also for a linear 
complex and a screw.  In fact, since the equation: 
 

∑ ai+3 qi = 0 
 
represents a special case of a linear complex for fixed a, when the a, as well as the q 
mean ray pointers (axial pointers, resp.) of a line, it is logical to call the quantities a the 
ray pointers (axial pointers, resp.) of the twist (screw, resp.), even in the case of a twist or 
a screw: 

∑ ai+3 qi = A. 
 
If bi are the axial pointers (ray pointers, resp.) of the same structure then one will also 
have: 
(45)     bi = ai+3 
 
here.  By contrast, if one writes the equation of the screw in the form: 
 

∑ ai qi = A 
 

then the coefficient of the i th ray pointer of a rod q will be the same-named axial pointer 
of the screw, and conversely. 
 This can be correspondingly carried over to another notation for a twist equation: 
Thus, if the π in: 

∑ aik πik = 0

                                                
 (*) That would not be the case if we had written the rod equation as ∑ ai qi = 0.  
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are the ray pointers of a ray twist then we would like to call the a the axial pointers of the 
twist itself.  The same thing will be true for the notation: 
 

∑ aik pik = 0 
 
when the p are axial pointers.  We have thus employed axial pointers for the twist in § 46; 
here, however, as we always do for a rectangular system, we have employed ray pointers 
for the screw (dyname, twist).  ∞1 metric screws belong to a complex (cf., § 36). 
 
 Theorem 91:  There are ∞4 screws. 
 

_______________ 
 
 

§ 50.  Applications to spatial force systems. 
 

 We first calculate the moment of a dyname D that is given by its pointers ai relative 

to an axis a.  We can replace D with any equivalent force system, and therefore with one 

that is represented by the six pointers ai (Theorem 90), as well. 
 

M = ∑ M (ai, α). 
 
Here, two types of moments appear, namely, the three rod pointers a1, a2, a3 and the three 
field pointers a4, a5, a6 .  If we imagine a unit rod a with the pointers ai as being on α 

then the moment of the second kind will be expressed immediately by the pointers: 
 

M(a6, a) = a6 a3 , 

 
since a3 can be considered to be the height of the cylinder that was constructed on page 

70, (§ 36).  In order to also express the other three moments most swiftly, we observe that 
we can exchange two rods while preserving their carriers without changing the volume of 
the tetrahedron, which represents their moment.  M(a3, a) will then be also equal to the 

moment of a rod σ of length a3 on α relative to a unit rod ε on the Z-axis.  We can now 
once more decompose σ into its pointers a3 ai; therefore: 

 
M(a3, a) = a3 a6 , 

 
since of the six pointers of σ, only the field pointer a3 a6 will determine a non-zero 

volume with ε.  One generally sees from this argument that when one speaks of the 
moment of two arbitrary rods, one can replace any rod with an arbitrary equivalent 
system of rods or screws without having to consider whether the rod means a force or an 
axis. 
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 Theorem 92:  If ai are the pointers of a dyname D and ai are the pointers of a unit 

rod a on the axis a then the moment M of D relative to α will be: 

 

(46)     M = 
6

3
1

i i
i

a +
=
∑ a . 

 

 In particular, if one reduces D to a rod (bi) then ∑ bi+3 ai will be six times the volume 

of the tetrahedron that is determined by a, so: 

 

(47)     6 ⋅⋅⋅⋅ V = ∑ bi+3 ai 
 
will be the moment of two arbitrary rods (b) and (a).  The normal equation (43) of a rod 
forest takes on a new meaning by way of (46): We have to understand the moment of D 

relative to a rod qi to mean the moment of the rod relative to the carrier (§ 13), multiplied 
by the length of the rod.  When we then multiply equation (46) by the length of the rod qi, 

we will obtain ∑ ai+3 qi as the expression for the moment of D relative to qi . 

 The moment M′ of D relative to the carrier of qi is: 

 

3

2 2 2
1 2 3

i ia q

q q q

+

+ +
∑ , 

 
since we must divide by the length of the rod.  Therefore: 
 

 Theorem 93:  ∑ ai+3 qi is the moment of the dyname (ai) relative to the rod (qi).  All 
rods, relative to which a dyname has a constant moment, define a linear rod forest, and 
conversely.  All axes, relative to which a dyname has a constant moment M′, define a 
quadratic ray complex C2 . 

 
 In fact, its equation is (*): 

(48)    ( )2 2 2 2 2
3 1 2 3( )i ia q M q q q+ ′− + +∑  = 0. 

 
One can, moreover, deduce the last part of Theorem 93 (and even more) in a different 
way: Namely, in order to find the axes of constant moment, one must look for the unit 
rods in the rod forest of Theorem 93, so the ones of constant length.  However, since the 
lines that go through a point P will, from Theorem 83, be bounded by a plane, they will 
define a cone of rotation. 

                                                
 (*) This complex was already found by Franke in the paper that was cited in Theorem 88, and was 
examined more closely by Segre [“Sur les droites, qui ont des mom. données,…,” J. f. Math., Bd. 97 
(1884)].  
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 Theorem 94:  The complex cones of C2 are cones of rotation whose axes are 

perpendicular to the null planes that are associated with their vertices in the associated 
twist.  The complex curves are circles that have the null points of their planes E for their 
centers. 
 
 The last part of the theorem follows from the fact that the moment of D relative to an 

axis that lies in E is proportional to the distance from the axis to the null point of E (cf., 
practice prob. 15).  If one replaces a dyname with an equivalent rod cross and considers a 
rod of a cross to be a rod qi as in Theorem 93 then, from Theorem 84, one will again 
obtain a proof of Chasles’s theorem in § 16. 
 

____________ 
 
 

§ 51.  The calculation of polar rods and lines. 
 

 We call each of two rods of a linear rod forest S that are associated as in Theorem 84 

the polar rod of the other one.  If the ratios of the pointers qi of a rod of S are given then 

one would wish to be able to calculate the pointers iq′  of the polar rod.  From Theorem, 

24, this must be possible.  Should the rod cross (qi), ( )iq′  and the dyname (with the 

pointers ai) be equivalent, then both of then would have the same moment relative to an 
arbitrary rod zi in space.  One would then have: 
 

∑ ai+3 zi = 3 3( )i i iq q z+ +′+∑ . 

 
In particular, we can let (zi) coincide with rods in the pointer axes and with fields in the 
pointer planes, in succession, from which, it will follow that: 
 
(49)     iq′  = ai – qi . 

 
The problem is solved by this, since one can calculate the absolute values of the ai from 
the equation of S: 

∑ ai+3 qi = A 
or 

ω(a, q) = A. 
 

In fact, one can first confirm that( )iq′  is a rod to begin with and then secondly, that it 

belongs to S.  Namely, one first has (§ 39, c): 

 
ω(q′) = ω (a – q) = ω (a) – 2ω (a, q) + ω (q) = 2A – 2A + 0 = 0, 

 
and secondly: 
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ω (a, q′) = ω (a, a – q) = ω (a, a) − ω (a, q) = 2A – A = A. 
 

 Theorem 95:  The same-named pointers of two polar rods can be extended to the 
pointers of the equivalent dyname. 
 
 This theorem will also follow immediately from the geometric interpretation of the 
pointers when one thinks of the rods, as well as the dyname, as having been reduced at 
the origin of the system of pointers. 
 We must solve the analogous problem for a twist: Its equation reads: 
 

(50)    
6

3
1

i i
i

a p+
=
∑  = 

6

3
1

i i
i

a p+
=
∑  = 0. 

 
We can consider the pointers qi of an arbitrary line in space whose polar we seek to be 
the carrier of a rod of an associated rod forest: 
 

6

3
1

i i
i

a q+
=
∑ = const., 

 
then apply equation (49), and subsequently ignore the length of the rod ( )iq′  by 

considering only the ratios of the iq′ .  However, one would wish to calculate the iq′  

immediately from a formula in which the line pointers appear only homogeneously; one 
obtains such a formula when one multiplies (49) by: 
 

∑ ai+3 qi = A = ω(a, q), 
namely: 

A iq′  = ai 
6

3
1

i i
i

a q+
=
∑ − Aqi . 

 
When one lets iq′ denote any quantities that are proportional to iq′ , instead of them, and 

correspondingly writes an arbitrary proportionality factor ρ on the left, instead of A, one 
will get (Reye, Journ. f. Math., Bd. 95): 
 
(51)    ρ iq′  = ai ω(a, q) − Aqi . 

 

One can, in fact, confirm that any ray pi of the complex (thus, ∑ ai+3 pi = 0) that cuts the 

line (qi) (thus ∑ pi+3 qi = 0) will also cut the polar (q′) ( 3 3ip q+ ′∑  = 0).  It follows from 

(51) that: 

ρ 3 3ip q+ ′∑  = ω(a, q) ∑ ai pi+3 – A ∑ pi+3 qi . 
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We imagine the original rectangular line pointers.  However, the proof of the latter 
characteristic property of polar is independent of that; (51) will also be valid for 
tetrahedral line pointers then. 
 

§ 52.  The moment of two screws and two complexes.  
The work done by a dyname on a twist. 

 

 a)  Up to now, we have always thought of the qi in the expression ∑ ai+3 qi as being 
the pointers of a rod, so they would be subject to the relation ω(q) = 0.  Nothing prevents 
us from ignoring that and defining: One understands the moment M of two screws A and 

A′, whose pointers are ai and ia′ , to mean: 

 

(52)    M = 
6

3
1

i i
i

a a+
=

′∑  = 
6

3
1

i i
i

a a+
=

′∑ . 

 
This extension of the concept is generally a purely formal one, but it will take on an 
actual content when we express the moment of two screws in terms of their determining 
data; moreover, it will find an important mechanical application in (b). 
 Let k, k′ be the rod parts of the two screws and likewise the lengths of the rods, let αi , 

iα ′   be the pointers of the rods, let V be the volume of the tetrahedron that they determine, 

let m, m′ be the field parts of the screws, let k, k′ be the parameters of the associated 

twists, let d = NN′ be the shortest distance, and let ω be the angle between the positive 
directions of the axes.  It is in and of itself irrelevant which sense of rotation one chooses 
for ω; from § 12, b), only the sign of d will be determined by the choice of sense.  We 
can write equations (40) as: 
 
 ai = αi ia′  = iα ′  

(i = 1, 2, 3), 
 ai+3 = αi+3 + k αi 3ia +′  = 3i iα α+′ ′+ k  

 
so, from (52): 

(53)    M = 
6 3

3
1 1

( )i i i i
i i

α α α α+
= =

′ ′ ′+ +∑ ∑k k . 

 
Now, from a basic formula of analytic geometry, one has: 
 

3

1
i i

i

k k

α α
=

′

′

∑
 = cos ω, 

 
so, from equation (47) and Theorem 16: 
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M = 6V + k k′ (k + k′) cos ω, 

 
where V is endowed with a sign, from the rule in § 12.  From Chapter I, equation (15), we 
can write: 
(54)    M = kk′ [(k + k′) cos ω – d ⋅⋅⋅⋅ sin ω]. 

 
We have derived the moment of the carriers of two rods from the moment of the rods in § 
12, c) when we replace the rods with unit rods.  If we replace screws with unit screws (§ 
36) then we will obtain an analogous expression that is characteristic of two complexes 
that belong to the screws A, A′.  We thus call it the moment M of two complexes (*). 

 
(55)    M = (k + k′) cos ω – d ⋅⋅⋅⋅ sin ω . 
 
 From § 49, all of the formulas that were derived in this paragraph will still be true 
when one or both screws reduce to a rod.  In the latter case, one will have k = k′ = 0, and 

one will get back equation (15) of Chapter I.  When A reduces to a field (k = ∞), one will 

have a1 = a2 = a3 = 0, and one will obtain immediately from (52): 
 

M = 
3

3
1

i i
i

a a+
=

′∑ , 

 
i.e., the volumes that the field determines with the rod part of A′ (cf., § 50).  When the 

two screws reduce to fields, one will have: 
 

M = 0, 
 
in agreement with what was said in the conclusion to § 36. 
 If one introduces the geometric determining data k, m; k′, m′ of the two screws and 
likewise denotes the measures of the quantities in question with these symbols then one 
will obtain an expression for the moment whose validity will remain unchanged in all 
special cases: 
(54.a)    M = (km′ + k′m) cos ω − kk′ d ⋅⋅⋅⋅ sin ω. 
 
Now, if A reduces to a field then one will have k = 0; thus, the normal to the field will 

remain definitive for the determination of the angle ω. 
 Now, since the moment of two screws is expressed by quantities that are independent 
of the system of pointers, it will then follow that it is a simultaneous invariant of the two 
linear forms: 

∑ ai+3 qi – A,  3i ia q+′∑ − A′, 
 

                                                
 (*) The expression on the right-hand side of (55) first appeared in Klein, Math. Ann., Bd. II (1870), pp. 
368.  
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which yields the equations of the screws in their normal form when it is set to zero.  That 
is: If the forms go to: 

∑ bi+3 pi – B,  3i ib p+′∑ − B′ 
 
under a pointer transformation then one must have: 
 

(56)    
6

3
1

i i
i

a a+
=

′∑  = 
6

3
1

i i
i

b b+
=

′∑ . 

 
 If we now denote the moment of two screws by (A, A′), and analogously for the 

moment of any other two geometric quantities, and further denote the aggregate of k and 
m, which A consists of, symbolically by k + m then we will get: 

 
(54.b)   (k + m, k′ + m′) = (k, m′) + (k′, m) + (k, k′) + (m, m′). 
 
In fact, one recognizes that the first three terms on the right are the three terms of the 
right-hand side of (54.a), when (m, m′) = 0.  The distributive law is then valid.  We have 
thus actually written down these notations in Grassmann’s symbolism (*), and with 
Grassmann’s methods, which we will not 
assume, equation (54.b) can define the starting 
point of the discussion, instead of the 
conclusion.  We would only like to verify by 
an example how the Grassmann symbolism is 
especially adequate for certain problems. 
 
 b) We would now like to compute the 
work that a dyname with the pointers ai 
performs when a body executes a twist with the 
pointers bi during a certain time, but first we 
must preface a few remarks: A force-couple of 
moment m in the reference plane (Fig. 43) acts 
on a rigid body, which rotates only around an 
                                                
 (*) Except that this is even simpler when Grassmann would write: 
 

(m + k)(m′ + k′) = mk′ + m′k + kk′ + mm′. 
 
We would not like to do this, in order to admit no mixing with the usual symbolism that is applied in (54.a).  
In recent times, people have employed a multitude of other symbolic notations that are partly outgrowths of 
Hamilton’s theory of quaternions and partly of Grassmann’s theory of extensions.  One can then, e.g., let 
the symbol η suggest that the neighboring symbol means a field and accordingly write the dyname as: 
 

k + m η . 
 

Under symbolic multiplication, one will then have to set η2 = 0, and it becomes understandable in what 
way one can be allowed to introduce “complex units” for which η2 = 0 (cf., Fortschr. d. Math., Bd. 26 
(1895), pp. 804, report of Kotjelnikoff). 

 

B 
A C 

Figure 43. 
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axis that is perpendicular to the plane of the couple.  We can think of the forces of the 
couple as both acting at the same distance – e.g., at a unit distance – at B and C; each of 
them must then have the magnitude m / 2.  We seek the work that the force-couple exerts 
under a rotation of the body through an angle ϑ.  Since the force-couple moves freely in 
its plane, we can think of it as being carried along by the rotation.  Each point of contact 
will then describe a path of length ϑ that comes under consideration completely in the 
calculation of the work, since its direction will always agree with the direction of the 
force.  The work done by the couple will then be mϑ.  By contrast, if the body rotates 
around any axis in the reference plane then the couple will perform no work, since the 
paths of the contact points are perpendicular to the forces. 
 The bi mean velocity components; we imagine the velocity of the twist as being 
uniform, and when we multiply it by the time duration t we will get the motion of the 
corresponding path components of a screw S.  We can refer to the bi t as the “pointers of 

the screw motion” (to distinguish them from the pointers of a screw in § 49).  To 
calculate the work, we can arbitrarily replace a force with an equivalent one and take the 
algebraic sum of the individual works; we can likewise decompose the twist arbitrarily 
and do both things again: When we reduce the dyname, as well as the twist, to the origin, 
we will obtain the work A that is done by the dyname during the screw motion, expressed 

in terms of the pointers of both.  If we let A(k, w) denote the work that is done by the 

force k under a motion w, which can consist of either a translation or a rotation, then we 
will have: 

A(D, S) = 
6 6

1 1

( , )i k
i k

a b t
= =
∑∑A . 

Here, one will have, e.g.: 
      A(a3, b6 t) = a3 b6 t, 

 
since b6 t is a path along the Z-direction, and furthermore: 
 
      A(a6, b3 t) = a6 b3 t. 

 
b3 t will then be an angle of rotation around the Z-axis and a6 will be the rotational 
moment around it.  Only six of the 36 terms in the sum will be non-zero: 
 

(57)      A(D, S) = 
6

3
1

i i
i

t a b+
=
∑ . 

 
If we imagine the twist as being uniform in a constant force field then this equation will 
be valid for an arbitrary time interval t.  We call: 
 

d

dt

A
= A′ 
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the work velocity (*) of the dyname under the twist and obtain: 
 

(57.a)     A′ = 
6

3
1

i i
i

a b+
=
∑ . 

 
This equation is also true as a consequence of the existence of an instantaneous axis (§ 
20) for an arbitrary motion at any moment when the b are the pointers of the 
instantaneous twist and the a are the pointers of the force system that acts at any time 
point. 
 If a is the velocity of the twist (from § 18, it is dual to the intensity of the dyname) 
then, from equations (52), (54), and (55), we can also write: 
 
(58)   A′ = kα [(t + t′) cos ω – d ⋅⋅⋅⋅ sin ω] = kα M; 

 
M is a purely geometric quantity, here. 

 
 Theorem 96:  If one of two screws is the carrier of a dyname and the other one is 
the carrier of a twist then the work velocity of the dyname on the twist will be equal to the 
moment of the corresponding unit screw, multiplied by the intensity of the dyname and 
the velocity of the twist (** ).  If the moment is zero then one is dealing with a body whose 
velocity is restricted to the twist that is in equilibrium under the influence of the dyname. 
 
 The last part of the theorem, whose meaning we will later generalize (§ 85), follows 
from the principle of virtual displacements.  In order to also encompass all of the special 
cases, we write down that from (54.a): 
 
(58.a)    A′ = (kτ + mα) cos ω – kα d ⋅⋅⋅⋅ sin ω, 

 
where τ is the translational velocity of the twist.  Here, it is not excluded that arbitrarily 
many of the quantities that enter in will vanish. 
 

__________ 
 
 

§ 53.  The ray net. 
 

 From Theorem 64, the intersection of two linear complexes A and B is a first-degree 

congruence; i.e., it has order one, as well as class one.  We (with Sturm) call it, more 
briefly, a ray net, or − when no misunderstanding is possible − even more briefly, a net.  
If A and B are given by any sort of determining data (§§ 10, 47) whatsoever then one 

                                                
 (*) It has the dimension of a “horse power.”  
 (** ) This was first expressed by Klein (in a somewhat different form), Math. Ann. IV (1871).  
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will find the ray of the net N that goes through a point P when one constructs the two 

null planes of P in A and B and intersects them; an analogous statement will be true for 

the dual picture.  If one considers a ray s of N then the pencil of planes with the axis s 

will correspond to a projective point sequence in A, as well as in B.  One will then have 

two projective point sequences on s; their possible double points D will be the points on s 
that correspond to the same null plane δ in both complexes.  Therefore, the entire pencil 
(D, δ) will belong to the net.  The points through which more than one ray (and therefore, 
an entire pencil) of the net go and the planes in which more than one ray (and therefore, 
an entire pencil) of the net lie are called singular points (planes, resp.) of the net. 
 Let: 

(59)    ∑ ai pi = 0, ∑ bi pi = 0 
 
be the equations (*) of the two complexes A and B that define the net N in whatever sort 

of homogeneous pointers.  We also let A and B denote the linear forms on the left-hand 

sides of (59).  The equation: 
(60)     λ A + µ B = 0 

 
will then represent a linear complex that includes all lines of N for an arbitrary choice of 

the constants λ and µ, since the pointers of the two terms on the left-hand side of (60) are 
already individually set to zero.  For different choices of λ : µ, one will obtain ∞1 linear 
complexes from (60) that define a pencil of complexes with the carrier N.  Let: 

 
(61)   C1 = λ1 A + µ1 B, C2 = λ2 A + µ2 B 

  
be two different complexes of the pencil (thus λ1 µ2 − λ2 µ1 ≠ 0).  The equations: 
 
(62)    C1 = 0,  C2 = 0 

 
will then be equivalent to equations (59); i.e.: 
 
 Theorem 97:  A pencil of complexes (and its carrier) is determined by any two of its 
complexes, just as the original two are. 
 
 Theorem 98:  An arbitrary line in space belongs to just one complex of the pencil, 
except when it belongs to its carrier. 
 
 In fact, if one substitutes the pointers of the lines in the forms A and B then the ratio 

λ : µ will be determined uniquely by (60). 

                                                
 (*) If the geometric meaning of the coefficients does not come under consideration then the notation 

∑ai+3 pi of the foregoing paragraphs will not be necessary. 
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 We consider a line g, which might not belong to the net; from Theorems 97 and 98, 
we can then assume that g does not belong to either of the two complexes of the net that 
were defined.  g will correspond to polars g1 and g2 in them.  From Theorems (6) and (8), 
all rays that cut g and belong to the net will be likewise the ones that meet g, g1, g2 .  In 
general, they will then define a family of rulings R, and g, g1, g2 will themselves belong 

to its guiding family L; g1 and g2 will always be skew to g, but they can intersect each 

other.  Two pencils of rays will appear in place of R, and the point of intersection of g 

with the plane (g1, g2) will be the (only) singular point on g.  We return to the case in 
which g has no singular points; R is then determined by three of its rays, and any ray of 

L will accomplish the same thing as g, namely, it must also lead to R.  If one moves g 

along L then, because each of them is the null system of a correlation, g1 and g2 will 

describe two families of rulings on L that are projective to g, and thus, to each other, as 

well, and which can have two double rays d1, d2 .  Let g0 be the position of g for which g1 

and g2 combine into d1 .  g0 and d1 will then be polar to each other in the two complexes; 
therefore, when g comes to d1, g1 and g2 must combine into g0 ; i.e., g0 and d2 will be 
identical.  In the event that two real, distinct double elements are present, there will then 
be only one pair of common polars.  All of their lines of intersection will then belong to 
the net and will also exhaust it, as will be shown shortly.  We will distinguish three main 
types of ray nets according to whether d1, d2 are distinct, combine, or are absent, and we 
will likewise examine them analytically.  For the moment, we will deduce from this 
argument only the theorem: 
 
 Theorem 99:  The rays of a net N that intersect a line that does not belong to N 

define a family of rulings; if three rays of N belong to one family of rulings then they will 

belong to all of them. 
 
 We will employ Theorem 97 in order to replace the defining complexes of the pencil 
C with two singular ones, where possible, and thus arrive at an intuitive picture of the 

rays of a net.  In order for: 

(63)    ∑ (λ ai + µ bi) pi = ∑ ci pi = 0 
 
to represent a pencil of rays, from § 46, one must have ω(c) = 0, so: 
 
(64)  ω (λ a + µ b) = λ2 ⋅⋅⋅⋅ ω (a) + 2 λ µ ⋅⋅⋅⋅ ω (a, b) + µ2 ⋅⋅⋅⋅ ω (b) = 0. 
 
We now have a quadratic equation for the determination of λ : µ .  Its discriminant is: 
 
(65)    Ω (a, b) = [ω (a, b)]2 – ω (a) ⋅⋅⋅⋅ ω (b). 
 
  There are now four cases to distinguish: 
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 a) Ω > 0.  One then gets two real, distinct values for λ : µ from (64) that will give 
the equations of the two pencils of rays that enter into C when they are substituted in (63).  

N will then consist of all lines of intersection of the axes of these two pencils of rays, and 

thus, two skew lines that are called the focal lines of the net; one will get the fact that 
they are actually skew from the discussion of case c).  In particular, if crosses are 
perpendicular to the focal lines then we will call the net rectangular. 
 
 b) Ω = 0, without all coefficients in (64) vanishing individually.  This equation will 
then have a double root, and C will contain only one pencil of rays Γ with the axis s, 

which belongs to each twist of C.  s will then have a polar s′ in a twist G of the pencil, so 

N will consist of the common rays of G and Γ − i.e., the lines of intersection of s, s′ - and 

we will be dealing with case a).  N will then consist of all rays of G that intersect a ray s 

of G itself.  Such a net is called special, and s is its focal line.  Now, from Theorem 76, s 

is the carrier of a correlation.  One will then obtain all of the rays of N when one moves a 

pencil of rays in such a way that its vertex S runs through the ray s and simultaneously its 
plane ε describes a projective pencil with the sequence S. 
 The type of motion can be made completely intuitive by the metric properties of such 
a correlation: The point at infinity U 
of s corresponds to a plane εu, and the 
plane εc that is perpendicular to εu 
(viz., the “central plane”) corresponds 
to a point C (viz., the “central point” 
of the correlation).  If one measures 
the distance t from s to C and the 
angle α between s and εc (the positive 
direction on s and the positive sense 
of rotation around s are mutually 
independent) then the double ratio of 
C, U with two other points P1, P2 of s 
will be: 

(C U P1 P2) = 1 2

1 2

:
CP CP

PU PU
 = 1

2

t

t
, 

 
and that of the four corresponding planes will be: 
 

(εc εu ε1 ε2) =  1 2

1 2

sin( ) sin( )
:

sin( ) sin( )
c c

u u

ε ε ε ε
ε ε ε ε

 = 1

2

tan

tan

α
α

. 

 
In particular, if one sets t1 = 1, tan α1 = K then one can choose K arbitrarily, because one 
can associate the three points t = 0, 1, ∞ with three arbitrary planes in order to define the 
correlation.  The condition for P2 and ε2 to correspond to each other will then consist of 
the equality of the two double ratios, namely: 

 
εu 

C 
P1 

s εc 

U∞ ε1 

α1 

Figure 44. 
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2

1

t
= 

2tan

K

α
. 

 
If we drop the index then the corresponding points and planes will be coupled by the 
equation: 
(66)     tan α = K t. 
 
K is called the parameter of the correlation.  According to whether it is positive or 
negative, the plane will rotate while the points of the sequence in the positive sense run 
through it in the positive or negative sense, respectively.  In the former case, we call the 
special ray net right-wound, while in the latter case, it is left-wound.  If the point moves 
uniformly with unit velocity then the associated angular velocity ϕ of the plane will be 
given by dα / dt; thus: 

(67)     ϕ = 
2 21

K

K t+
. 

 
For t = 0, one will get ϕ = K, with which, we have arrived at a second geometric 
interpretation for the parameter. 
 If we then consider the position of N in G then εu must be the plane through s that is 

parallel to the axis a of G, and C must be the base point of the shortest distance from s to 

a. 
 c) ω(a) = ω(a, b) = ω(b) = 0.  All complexes of the pencil are singular; ai and bi are 
the pointers to two intersecting lines that determine the pencil of rays λ ai + µ bi (§ 39, c).  
C will then consist of all pencils of rays whose carriers define a pencil of rays (S, ε).  The 

common rays of all complexes are, firstly, all rays through S and secondly, all rays in ε.  
N will then decompose into a sheaf of rays and a ray field whose carriers are incident.  

Such a ray net is called singular or degenerate. 
 We now have a complete overview of the distribution of the singular points (and 
planes) of the net in cases a), b), c).  In a) and b), they are all points of the focal lines 
(planes through them, resp.), and in c), they are all points of ε (planes through S, resp.).  
We also see that the family of rulings R of the Theorem 99 will decompose into two 

pencils of rays in cases a) and b) if and only if g cuts a focal line; reciprocally, rays of the 
net can meet only on a focal line.  N will always decompose in case c). 

 We assume that a ray net has a singular point N; the sheaf N in the common null plane 
ν of both complexes that were defined will then correspond to two correlative 
(reciprocal) fields that will thus be mutually collinear and will have at least one real 
double line d.  If there is a double line d that does not go through N then it will define a 
common polar pair to both complexes with the lines d1 that correspond in the sheaf, and 
we will be dealing with case a).  If there is only one double line d through N then d1 must 
lie in ν, so it must coincide with d, because d, d1 be now also correspond to each other in 
the two null systems; we will have come to case b).  Finally, if the two fields are identical 
then case c) will arise.  Among all situations, the assumption then leads to just a single 
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singular point in a case that is known already, which is why we are certain that in the case 
Ω < 0 that we have yet to discuss, there will be no singular points or planes. 
 However, we next prove some theorems that are true for any non-singular ray net: 
 
 Theorem 100:  Two planes E1, E2 that go through a ray s of a ray net N (without 

including a focal line) will be cut by N in two collinear fields. 

 
 In fact, if we fix a general line g in E1 then, from Theorem 99, the rays of N that go 

through it will define a family of rulings R that will also belong to s.  R will then be cut 

by E2 along a linear sequence of points that are related projectively to the sequence g by 
R.  Since every ray of N − and thus s, as well − will cut the possible focal lines b, b′, g 

can also cut a focal line only in a point of s.  Therefore, there are at most two pencils of 
rays in E1 with positions g for which R will decompose.  Let γ be one such position, and 

let P be its point of intersection with s.  All of the rays of N that cut γ in a point that is 

different from P will then either define a pencil of rays whose vertex lies in the point of 
intersection of the plane (b, γ) with b′, or the plane (b, g) will be associated with b, 
according to whether another focal line b′, besides b, is or is not present, respectively.  In 
both cases, the point sequence γ is associated with a perspective sequence in E2 .  Any 
line g in E1, without exception, is then associated with a projective sequence in E2, which 
is just the characteristic property of a collinear relationship. 
 
 Theorem 101:  A ray net is determined uniquely by four of its rays that do not have 
hyperbolic position; if four rays of a net belong to a linear complex then all of them will 
belong to it. 
 
 If a complex: 

(68)     
6

1
i i

i

a p
=
∑  = 0 

 
includes four rays sλi (λ = 1, …, 4; i = 1, …, 6) then that will impose the four conditions: 
 

(69)    
6

1
i i

i

a sλ
=
∑  = 0 (λ = 1, …, 4) 

 
on the coefficients, from which, four coefficients – say, a3, …, a6 – can be calculated as 
functions of the other two a1, a2, since the matrix of s has rank four (Theorem 58); a1 and 
a2 will remain arbitrary, appear in the solutions homogeneously and linearly, and will 
thus play the role of the quantities λ and µ in equations (60) or (63).  A pencil of 
complexes will then be defined by four rays, and thus, a ray net, as well.  One now also 
recognizes the geometric meaning of the conditions of Theorem 78: Should five rays 
determine a linear complex, then they could not belong to the same ray net.  If this 
condition is fulfilled then four of the five rays will determine a ray net, and it will follow 
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once more from Theorem 98 that five rays determine a linear complex.  It will also 
follow that: 
 
 Theorem 102:  If the matrix of the pointers of five rays has rank only four then the 
five rays will belong to the same net, and conversely.  If the determinant of the pointers of 
six rays has rank five then the rays will belong to the same linear complex, and 
conversely. 
 
 The last part of the theorem follows from the fact that the equations: 
 

6

1
i i

i

a sλ
=
∑  = 0 (λ = 1, …, 6) 

 
can be fulfilled by non-zero ai if and only if the determinant of the sλi is zero. 
 We draw two planes E1, E2 through a line s0 that is one of the four defining rays of a 
net N in such a way that the other three rays cut out an actual triangle from any plane.  

Thus, three pairs of corresponding points and one pair of corresponding lines (namely, 
when s0 corresponds to itself), and thus, two corresponding complete quadrilaterals are 
known in the planes, with which, a collineation is defined (*) that must be identical to the 
one that is defined by N.  Since the four rays can be chosen arbitrarily, the two planes 

and the collineations between them can be regarded as arbitrary, except for the situation 
in which s0 corresponds to itself.  The converse of Theorem 100 will then follow: 
 
 Theorem 103:  Two collinear fields that have their corresponding line of intersection 
in common will generate a ray net. 
 
 In particular, we can think of a given net N as being generated in such a way that we 

can draw two arbitrary planes through the single line of N that lies in the plane at infinity, 

whereby the fields of Theorem 100 will become affine fields. 
 
 Theorem 104:  A non-singular ray net can generally be generated in ∞2 ways by two 
parallel, affine fields. 
 
 Only when a focal line of the net lies at infinity will one already have ∞1 choices for 
the location of the affine fields, and correspondingly, ∞3 generators for affine fields. 
 

____________ 
 
 

§ 54.  The ray net with no focal lines. 
 

 Theorem 104 will help us to arrive at a picture of the ray net for the still-remaining 
case of Ω < 0 in the previous paragraph that is just as intuitive as it was in the case of real 
                                                
 (*) Cf., Reye, Geom. d. Lage, Bd. II, 3rd ed., lect. 1.  
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focal lines.  If P, Q, …, g, … mean points or lines in a plane Σ then we will let P1, Q1, …, 
g1, … denote the corresponding elements of a parallel affine field Σ1, and let P′, Q′, …, 
g′, … denote the perpendicular projections of the elements P1, Q1, …, g1, … onto Σ, such 
that Σ, Σ′ are in affine systems that lie in each other.  According to Staudt, Beitr. z. 
Geom. d. Lage, art. 301 (cf., Reye, loc. cit., Bd. II, lect. 9), the corresponding common 
elements of two incident collinear fields can consist of (when we exclude the case of 
perspective position, since it will not come under consideration here): 
 
  I) The vertices and sides of an actual triangle that are either α) all real, or β) just one 
vertex and the opposite side to it are real. 
 
 II) Two points, their connecting line, and a line through one of the points. 
 
 III) A point and a line through it. 
 
 However, we would now like to pursue only the case in which the ray net has no real 
focal lines.  All other possibilities for Σ, Σ′ are then excluded, except for I, β).  The line at 
infinity then will correspond to itself; if a point on it corresponded to itself then that 
would give rise to parallel similar sequences in Σ and Σ1 whose center of perspectivity 
would be a singular point (compare § 53).  Σ and Σ′ would then have a single point M ≡ 
M′ that would correspond to itself, and which would lie at infinity.  MM1 is called the 
principal ray a of the net, and M is the carrier of two projective pencils of rays in Σ and 
Σ′, namely, the “pencils of central rays.”  Any two corresponding rays g, g′ of it are the 
carriers of two similar point sequences.  g, g1 will then generate an equilateral paraboloid 
P, one of whose principal generators is a.  N can be decomposed into ∞1 equilateral 

paraboloids. 
 Two affine fields Σ, Σ1 are determined by three pairs of corresponding points, or – 
what amounts to the same thing – by two corresponding triangles (cf., the determination 
of collinear fields in the previous paragraph).  We can always take M, M1 to be one of the 
pairs.  Since two corresponding right angles are present in the central pencil, moreover 
(cf., perhaps, Hankel, Proj. Geom., Sect. III, § 4), we can assume that the corresponding 
triangles MAB, M1A1B1 (at M and M1) are rectangular and that one of them MAB is 
isosceles. 
 
 We are now dealing with the special case in 
which M1A1B1 is isosceles (Fig. 45); the 
reference plane might coincide with Σ, and all 
points with the index one are thought of as being 
at a constant distance above the reference plane.  
In order to construct the point P1 in Σ1 that 
corresponds to an arbitrary point P, one draws 
PQ || BM, PR || AM; the point Q1 must divide 
M1A1 in the same ratio as MA is divided by Q, 
etc.  One then sees that Σ′ arises from Σ by 
rotation around the angle ω and a similarity 
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Figure 45. 
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transformation.  The pencil of concentric circles around M corresponds to a similar pencil 
around M1, so any two corresponding circles will generate a rotational family of rulings.  
The shortest distances from a to all rays of the net that connect corresponding points of 
the sequences MA and M1A1 will lie along a line.  The shortest distances from a to all rays 
of a family of rulings of P will then lie on the other principal generator of P.  Therefore, 

all hyperboloids of rotation will have their throat circle in the same plane, viz., the middle 
plane M of N (*). 

 
 Theorem 105:  Among the rays nets without focal lines, there is a rotation net that is 
generated by rotating a family of rulings of an equilateral hyperbolic paraboloid around 
its principal ray and which also can be decomposed into ∞1 rotational families of rulings 
with common throat planes. 
 
 Among the ∞2 types of generators of Theorem 104, ∞1 of the rotation nets will be 
distinguished by the fact that the fields extend just as far on both sides of M, so they will 

be congruent, and ∞1 of them will be distinguished by the fact that Σ1 is rotated with 
respect to Σ through a right angle, whereby M and the plane at infinity will be associated 

with each other.  When Σ and Σ1 are rotated through 45o on both sides of M, this way of 

generation will unite the two distinguished properties, so: 
 
 Theorem 106:  A rotational net can be generated in ∞1 ways by two congruent point 
fields and in ∞1 ways by two similar ones that are rotated with respect to each other by a 
right angle, and in a single way by two congruent fields that are rotated through a right 
angle. 
 
 If we generate a rotation net by two congruent point fields then we can derive the one 
field from the other one by a uniform screw motion.  An arbitrarily small piece of it 
already defines a rotation net in this way.  If we pass to the limit then we will obtain (** ): 
 
 Theorem 107:  If one subjects a plane E to a screw whose axis a is normal to E then 
the tangents to the paths at all points of E will define a rotation net with a as its principal 
ray. 
 
 If one draws a plane E through the principal ray of a rotation net R and changes the 

separation of all spatial points of E by the same ratio then a ray net N will again arise 

from R; any two affine fields, by which, one can perhaps think of R as being generated, 

                                                
 (*) We call the ray of a ray net with two focal lines that cuts the two focal lines perpendicularly the 
“principal ray.”  The middle plane is the one that that is parallel to the two focal lines and has an equal 
distance from them.  For a special ray, we then call a ray that cuts the focal line perpendicularly at the 
central point a principal ray.  The “middle plane” here goes through the focal line, and is perpendicular to 
the principal ray, and thus to the central plane, as well.  This would be required by the passage to the limit 
of the hyperbolic net. 
 (** ) I am grateful for an oral communication by Study.  
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will again go to affine fields under this (special) affine transformation T.  This only raises 

the question of whether one can already obtain all ray nets without focal lines in this way.  
The number of constants would make us suspect this.  In order for us to convince 
ourselves of this more rigorously, we think of R as given by the second kind of generator 

in Theorem 106 by the isosceles, rectangular triangles MAB, M1A1B1 (Fig. 46), and draw 
E through MB perpendicular to the reference plane Σ.  A will then go to A″ through T, 

and B1 goes to 1B′′ , such that: 

 
MA

MA′′
 = 1 1

1 1

M B

M B′′
; 

therefore: 
∆ ≡ MA″B ~ 1 1M B A′′  ≡ ∆1 , 

 
therefore such that the legs of the triangle that 
correspond under the affinity do not correspond 
under the similarity.  We will have reached our 
goal when we are able to show that one can 
generate any ray net without focal lines by an 
affinity that is defined by triangles ∆ and ∆1 of 
that kind.  Here, the central pencil is involutory, 
since the corresponding right angles coincide.  One must then, above all, be able to 
replace two arbitrary systems with two that have involutory central planes.  Two arbitrary 
affine fields Σ, 1′Σ  that lie in each other and have the origin M as a self-corresponding 

point are defined by: 
(70)    x′ = α x + β y,  y′ = γ x + δ y. 
 
The direction τ = y / x corresponds to a direction τ′ = y′ / x′, and one finds from (70) that: 
 

(71)     τ′ = 
γ δτ
α βτ

+
+

 

or 
(72)    β ττ′ + α τ′ – δ τ – γ = 0. 
 
Should the central pencil be involutory, then nothing would change in this equation under 
permutation of τ and τ′.  One would then have: 
 
(73)     α = − δ 
 
as the condition for that.  Since Σ1 arises from Σ′ by a parallel displacement in the Z-
direction through a segment d, the pointers to two associated points of Σ and Σ1 will be: 
 

x, y, 0;  x′, y′, d. 
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A1 
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Figure 46. 
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Therefore, the equations of the connecting line in the running pointers ξ, η, ζ will be: 
 

x

x x

ξ −
′ −

= 
y

y y

η −
′ −

 = 
d

ζ
 

or 

(74)   
( 1)

x

x y

ξ
α β

−
− +

= 
( 1)

y

x y

η
γ δ

−
+ −

 = 
d

ζ
. 

 
For each choice of x and y, one will obtain the equations of a ray of N from (74).  If one 

intersects N with the plane ζ = d′ and sets: 

 
d′ : d = c 

 
then one will obtain a field Σ0, and the affinity between Σ and Σ0 will be represented by: 
 

(75)    
( 1) ,

( 1) .

c c x c y

c x c c y

ξ α β
η γ δ

= − + +
= + − +

 

 
Here, the condition (73) reads: 

cα – c + 1 = − c δ + c – 1, 
 
so it will be fulfilled when we choose: 

c = 
2

2α δ
−

+ −
. 

 
For any system Σ, we then obtain a system Σ0 such that the associated central pencil is 
involutory; if one starts with Σ0 then one will come back to Σ. 
 We can assume that Σ and Σ′ already have this property and draw the axes in them 
with their non-corresponding legs at corresponding coincident right angles.  A point (x, 0) 
on the X-axis must then correspond to a point (0, y′) on the Y-axis, etc.  Equations (70) 
will then reduce to: 
(76)     x′ = β y, y′ = γ x. 
One finds that: 

τ τ′ = 
γ
β

, 

 
so, in fact, one finds an involution of the central pencil; therefore, τ and τ′ have opposite 
signs.  We choose a point A ≡ (x0, 0) on the X-axis and a point B ≡ (0, y0) on the Y-axis.  
One will then have: 

A′ ≡ (0, γ x0),  B′ ≡ (β y0, 0). 
Now, should we have: 
(77)     M A B ~ M B′ A′, 
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as would be the case for the triangles ∆ and ∆1, then we would need to have: 
 

0

0

x

y
 = − 0

0

y

x

β
γ

, 

so: 

0

0

y

x
 = 

γ
β

− , 

 
which must always be real.  One can then always choose the right triangle M A B in such 
a way that it fulfills condition (77) with its correspondent.  Under this assumption, 
however, the affine system can be derived from two fields that are rotated similarly 
through a right angle by the transformation T.  We have thus arrived at the most intuitive 

way of generating a ray net with no focal lines: 
 
 Theorem 108:  The general ray net with no focal lines can be obtained from the 
rotation net when one draws a plane E through the principal ray of the latter and 
changes all distances from E by the same ratio. 
 
 By applying T to the last part of Theorem 106, it will follow that the mutually-

covering circles Σ, Σ′ that correspond to each other when rotated through a right angle 
will go to ellipses that lie upon each other; thus: 
 
 Theorem 109:  If one assumes that there is a family of similar and similarly-lying 
ellipses in Σ then every point P of Σ will be associated with the closest endpoint P′ of the 
diameter that is conjugate to the direction MP on that ellipse in a specified sense of 
rotation, and if this field Σ′ lifts up from Σ1 perpendicular to Σ then Σ, Σ1 will generate a 
general ray net without focal lines.  One can generate every such net in a single way (*). 
 
 Moreover, one immediately recognizes the first part of the following theorem: 
 
 Theorem 110:  All rays of a net without focal lines are equally-wound with respect to 
the principal ray.  Therefore, one can call the net itself right or left-wound (** ).  An 
arbitrary ray of such a net is, like the net itself, equally-wound with respect to all rays of 
the net in a certain neighborhood that is bounded by a family of rulings of a hyperbolic 
paraboloid. 
 
 The latter follows from the fact that a ray in continuous motion can change its 
winding with respect to another fixed s only when it cuts it once or crosses it 
perpendicularly once.  The former is excluded by the absence of singular points of the 

                                                
 (*) One is then dealing with the theorems of this paragraph without having to establish the application of 
imaginary elements, since conversely, the theory of the latter will be founded in the next chapter on a 
knowledge of ray nets. 
 (** ) We also call a family of rulings “right-wound” or “left-wound” according to whether each of its rays 
is right-wound or left-wound with respect to its neighboring rays, respectively.  
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net; the latter is excluded due to continuity in a certain neighborhood of s.  This will also 
show one the way to bound the region for which the theorem is valid.  Namely, this will 
happen for the rays that cross s perpendicularly.  They cut the plane at infinity in a linear 
point sequence, and thus, from Theorem 99, define a family of rulings. 
 We now have an intuitive picture for all kinds of ray nets, and summarize it with: 
 
 Theorem 111:  Ray nets are either: 
 
 I) “General” and indeed, either α) they have two focal lines (viz., the “hyperbolic” 
case) or b) they have no focal lines (viz., the “elliptic”  case). 
 
 II) “Special,” with one focal line (viz., “parabolic”) or: 
 
 III) “Singular” (sheaves of rays of a total field). 
 
 The general ray net depends upon 8 parameters, the special one on 7, and the 
singular one on 5. 
 
 Thus, I, α) and II will 
yield just one variety when 
a focal line goes to infinity, 
III) will yield two varieties 
according to merely 
whether the point S (cf., § 
53, c), or also the plane ε, 
goes to infinity, such that 
when we consider the 
element at infinity, we will 
have eight kinds, three of 
which are singular. 
 Six of the parameters 
come from the position in 
space.  Thus, two 
parameters will remain for 
the general ray net for the 
form and magnitude – i.e., 
one of them will remain for 
the form.  In fact, the form 
is determined completely, 
in case I, α), by the angle at 
which the focal lines cross, 
and in case I, β), by axis 
ratio of the ellipses of 
Theorem 108, which we 
also call the “axis ratio of 
the net.”  From § 53, b), all 

 
A′ 

A 

B 

B′ 

Figure 47. 
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special nets with the same-notated parameter are similar.  
 
 

§ 55.  Simplest analytical representation of the ray net. 
 

 For metric investigations, it is preferable to bring the ray net into the simplest 
possible position with respect to a rectangular system of pointers.  We shift the XY-plane 
to the middle plane and the Z-axis to the principal ray of the net N and then distinguish 

between the cases: 
 
 a) If N has two focal lines b, b′ that cut the Z-axis at the points N, N′ then N will 

have the Z-pointer – c for an arbitrary choice of the positive direction on the Z-axis; N′ 
will then have the Z-pointer + c.  We can always adjust the notation so that c > 0.  If β, β′ 
are the projections of b, b′ onto the middle plane then we will choose the positive 
direction in b arbitrarily, but we will choose the positive direction in b′ such that angle (β, 
β′ ) is concave.  Finally, we assign the positive X-axis to the bisecting line of the angle (β, 
β′ ).  Now, if: 

∠ (X, β′) = α 
 
then α will always be an acute angle, and in fact, it will be less than 45o (Fig. 48.a) when 
the focal line pair is left-wound and greater then 45o (Fig. 48.b) when b, b′ is right-
wound.  If one thinks of the middle plane as coincident with the (horizontal) reference 
plane then in both figures one must imagine that b is below the reference plane and b′ is 
above it. 
 

α 
α 

b 

b′ 

X 

Y 

Figure 48a. 
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b′ 

X 
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Figure 48b.  
 
 If the points of intersection S, S′ of a ray s of the net with b, b′ have the distances δ 
and δ′ from N and N′, resp., then the pointers of S and S′ will be: 
 
 x = δ  cos α, y = − δ  sin α, z = − c; 
 x′ = δ′ cos α, y′ =    δ′ sin α, z′ =    c. 
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Therefore, one can summarize the line pointers qi of s, according to § 33, equations (24), 
as: 
 q1 = (δ′ − δ) cos α, q4 =    (δ′ − δ) c sin α, 
(78) q2 = (δ′ + δ) sin α, q5 = − (δ′ + δ) c cos α, 
 q3 = 2c, q6 =     δδ′  sin 2α. 
 
We have thus arrived at a parametric representation of the ray net I, a); i.e., the line 
pointers of the doubly-infinite ray manifold of the net are expressed in terms of two 
independent variables δ, δ′ , which are the “parameters” (*).  The relation: 
 

∑ qi qi+3 = 0 
 

is fulfilled identically, due to (78).  The qi fulfill the equations: 
 

(79)    4

1

q

q
 = c tan α,  5

2

q

q
 = − c cot α, 

 
which are free of the parameters; they are the equations of two linear complexes, and 
thus, of the net, in the sense of § 53. 
 If one introduces: 

δ′ + δ = u, δ′ − δ = v, 
 
in place of δ, δ′, as parameters then one will get: 
 
 q1 = v cos α, q4 =    v c sin α, 
(78.a) q2 = u sin α, q5 = − u c cos α, 
 q3 = 2c, q6 = 1

4 (u2 – v2) sin 2α 

 
as the representation of the net.  In particular, for a rectangular net (α = 45o), when one 

introduces u / 2 , v / 2 , in place of u, v as the new parameters: 
 
 q1 = v, q4 =    v c, 
(78.b) q2 = u, q5 = − u c, 
 q3 = 2c, q6 = 1

4 (u2 – v2) . 

 
 One can arrive at the equations of the net in yet another way when one writes down 
the pointers bi, ib′  of the focal lines: (0, 0, c) and (cos α, sin α, c) are two points of b′, so 

from § 33: 
 1b′  =    cos α, 2b′  =    sin α, 3b′  = 0, 

 4b′  = − cos α, 5b′  = c sin α, 6b′  = 0. 

                                                
 (*) These parameters are found in D’Emilio, “Le superf. rig. di una congr. lin.,” Atti del Ist. Ven., Ser. 
VI, v. 3.b.  
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The equation of the sheaf of rays with the carrier b′ is: 
 

3i ib q+′∑  = 0, 

so: 
(80) c (− q1 sin α + q2 cos α) + q4 cos α + q5 sin α = 0. 
 
In order to find the equation of the sheaf b, one must simultaneously replace α and c with 
– α and – c, resp.: 
(81) − c (q1 sin α + q2 cos α) + q4 cos α − q5 sin α = 0. 
 
Instead of equations (80) and (81), one obtains simpler ones by addition and subtraction: 
 

q4 cos α – q1 c sin α = 0, q5 sin α + q2 c sin α = 0, 
 
which agrees with (79). 
 
 b) If the one focal line b′ goes to 
infinity then this representation will break 
down; We then draw the other b in the ZX-
plane, where it might cut the Z-axis at the 
origin U at an angle ω (Fig. 49), while all 
rays of the net shall be parallel to the XY-
plane.  Is S is a point of b and US = δ then: 
 

x = δ sin ω, y = 0, z = δ cos ω 
 
will be the pointers of S.  One finds, by a 
process that is analogous to the one in a), 
that the pointers of the rays s, s′ of the net 
through S that are parallel to the X and Y 
axes are: 
 

s || X 
 

s′ || Y 
 

1 0 
0 1 
0 0 
0 − δ cos ω 

δ cos ω 0 
0 δ sin ω 

 
Thus, the parametric representation of the net is: 
 
 q1 = λ, q2 = µ, q3 = 0, 

 Z 

S 

b 

Y 
X 

U 

ω 

Figure 49. 
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 q4 = − µδ cos ω, q5 = λδ cos ω, q3 = µδ sin ω, 
 
in which δ and λ : µ are the parameters.  As the intersection of two complexes, the net 
will be represented by: 
 
(82)   q6 cos ω + q4 sin ω = 0, q3 = 0. 
 
 c) If N is elliptic then we will start from Theorem 109: If r is the major axis of an 

ellipse in that theorem and m is a constant (0 < m < 1) then the pointers of P will be: 
 

x = r cos u, y = mr sin u, z = − c, 
 

in which u runs through all values from 0 to 2π.  The pointers of P′ are: 
 

x′ = − r cos u,    y′ = mr sin u,    z′ = c, 
 
in which c will be positive for right-wound nets.  When we again define the qi as in § 33, 
we will get the parameter representation of the net I, β): 
 
 q1 = − r (cos u + sin u), q4 = cmr (cos u + sin u), 
(83) q2 = mr (cos u − sin u), q5 = cr (sin u − cos u), 
 q3 = 2c, q6 = m r2. 
 
By eliminating the parameters r and u, one will obtain the same net when it is represented 
as the intersection of two complexes: 
 

(84)   q4 + cm q1 = 0,  q5 + 
c

m
 q2 = 0. 

 
If the point of intersection of a ray (u, r) with the XY-plane (viz., the middle plane) has 
the pointers x0, y0 then, since the points P, P′ are at equal distances on opposite sides of 
the middle plane, x0 will be the arithmetic mean of x and x′, etc., as one can confirm from 
equations (83), moreover, when one introduces the expression in point pointers for the q 
on the left-hand side, then sets z = 0, and calculates the remaining pointers according to § 
33.  Thus: 

x0 = 1
2 r (cos u – sin u), y0 = 1

2 mr (cos u + sin u), 

or 

r cos u = 0y

m
 + x0 ,  r sin u = 0y

m
− x0 . 

 
Therefore, if one introduces x0, y0 in place of r, u as parameters then one will obtain the 
following parametric representation (while dropping a factor of 2): 
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 q1 = − 0y

m
, q4 = c y0 , 

(83.a) q2 = m x0, q5 = − c x0 , 

 q3 = c, q6 = 2 2
0 0

1
mx y

m
+ . 

 
(83) is also the parametric representation of a family of rulings, if one considers r to be 
constant.  The net is decomposed into ∞1 families of rulings by the various values of r, 
whose throat ellipses, which we will also call the throat ellipses of the net, all lie in the 
middle plane and whose axes have a common position.  We also call the latter the axes of 
the net.  They cut each other and the principal ray at right angles in the center of the net; 
let the two planes of Theorem 109 be called power planes. 
 As the center of a hyperbolic net, we refer to the middle of the segment that is cut out 
by the focal lines on the principal ray as the axis of the bisector of the lines β, β′ in a). 
 
 d) For a special ray net, we lay the focal line along the X-axis and the middle plane 
(§ 54, rem.) in the XY-plane.  If δ is the distance from the origin to the vertex S of a plane 
pencil of rays of the net whose plane defines the angle ω with the XY-plane then one will 
find the parametric representation of this pencil of rays in a manner that is similar to the 
one in b): 
 q1 = λ, q2 =    µ   cos ω, q3 = µ   sin ω, 
 q4 = 0, q5 = − µδ sin ω, q6 = µδ cos ω . 
 
Thus, from equation (66), δ and ω will be coupled by the equation: 
 

cot ω = K δ ; 
 
from § 54, rem., one can, in fact, extend the α in equation (66) and the ω to π / 2.  When 
d increases, the associated plane will rotate in the negative sense, here, for a positive K.  
One can then choose either  
 
 q1 = λ, q2 =    µ   cos ω, q3 = µ   sin ω, 
(85) 

 q4 = 0, q5 = − 
K

µ
 sin ω, q6 = 

K

µ 2cos

sin

ω
ω

 

or 

 q1 = λ 2 21 K δ+ , q2 =    µ Kδ, q3 = µ, 
(86) 
 q4 = 0, q5 = − µδ, q6 = µ Kδ 2 
 
as the representation of the net; in the first case, ω and λ : µ are the parameters, and in the 
second one, δ and λ : µ are the parameters.  Moreover: 
 
(87)    q4 = 0,  q2 + K q5 = 0 
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are the equations of the net. 
 
 e) If the focal line of the special ray net is at infinity then we will draw it in the 
location of the XY-plane.  The point sequence on the focal line – i.e., directions of the 
pencil of rays τ = y : x − and the pencil of planes z = δ (and therefore also an arbitrary 
piece of it – e.g., a point sequence on the Z-axis) are then projectively associated with 
each other.  If we also project the pencil τ = y : x onto the Z-axis then we will have a 
correlation for which, from (66), the relation: 
 

t = K δ 
 

will be true for the simplest choice of pointer system.  Thus: 
 

y = K δ x + ν,  z = δ 
 
will be the equations of all rays of the net and: 
 
 q1 = 1, q2 = K δ, q3 = 0, 
 q4 = K δ 2, q5 =    δ, q6 = −ν 
 
will be the parametric representation, while: 
 
(89)    q3 = 0,  q2 – K q5 = 0 
 
will be its sectional representation. 
 
 There are two distinguished directions in the pencil, namely, the one that corresponds 
to the plane at infinity and the one that is perpendicular to it – viz., the “principal 
direction”; we call its corresponding plane the “principal plane” of the net.  Here, it falls 
on the XY-plane, and the principal direction, along the X-direction.  The net admits the ∞2 
translations that take the principal plane to itself. 
 
 f) If N is singular then we will place the point S [§ 53, c)] at the origin and the plane 

ε on the XY-plane.  The rays through the origin are characterized by: 
 

q4 = q5 = q6 = 0, 
 
and the ones in the XY-plane are characterized by: 
 

q3 = q4 = q5 = 0. 
Therefore: 
(90)     q4 = q5 = 0 
 
will be the equations of the net.  In fact, conversely, when equations (90) are fulfilled, 
since: 
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q1 q4 + q2 q5 + q3 q6 = 0, 
either q3 or q6 must be zero. 
 If S goes to infinity along the X-axis then: 
 

q2 = q3 = q4 = 0 
 
will be the equations of the ray sheaf: 
 

q3 = q4 = q5 = 0 
 
will be those of the ray field, as before, and therefore: 
 
(91)     q3 = q4 = 0 
will be those of the entire net. 
 Finally, if ε is the plane at infinity, and S represents the direction of the X-axis then, 
as before: 

q2 = q3 = q4 = 0 
 
will be the equations of the sheaf, while the totality of the fields in space will enter in 
place of the ray field (§ 36): 

q1 = q2 = q3 = 0. 
Therefore: 
(92)     q2 = q3 = 0 
will be the equations of the net. 
 All parametric representations of this paragraph will also be true when q refers to the 
tetrahedral pointers (except that the possible relationships with the elements at infinity 
will vanish, and the parameters will no longer have such a simple geometric meaning); 
the elimination of the parameters will then lead to the same equations as before. 

______________ 
 

 
§ 56.  The involution of two linear complexes. 

 
 If the simultaneous invariants (§ 52) of two linear complexes vanish: 
 

∑ ai pi+3 = 0,  ∑ bi pi+3 = 0, 
so one has: 

(93)    ω(a, b) = ∑ ai bi+3 = ∑ ai+3 bi = 0, 
 
then we will say that the complexes are in involution (*).  We first assume that both 
complexes are twists.  In order to understand the geometric meaning of their involutory 
position, we map a ray s of the second twist (bi) by the reciprocity that is defined by the 
first twist; i.e., we seek the polar is′  of si in (a) from equation (51): 

                                                
 (*) The concept of the involution of two complexes was introduced by Klein (Gött. Nachr., 1869).  
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isρ ′  = ai ω(a, s) – A ⋅⋅⋅⋅ si . 

 
It can be shown that is′  also belong to the complex (b); one will then have: 

 

3i ib sρ + ′∑  = ω(a, s) ∑ bi+3 ai – A ∑ bi+3 si . 

 
Both sums on the right now vanish, so the sums on the left will, as well.  Conversely, the 
sum on the left will vanish only when the first sum on the right also vanishes.  If one or 
both of the complexes is special then that will yield the meaning of equation (93) 
immediately; thus: 
 
 Theorem 112:  If two twists are involutory then each of them will go to the other one 
by the null system, and conversely.  If a twist and a sheaf of lines are involutory then the 
carrier of the latter will belong to the twist.  The carriers of two involutory sheaves of 
rays will interest. 

 
 One can deduce another, more intuitive, 
property of involutory position from this 
theorem: One chooses a point P on a common 
ray t of the complexes (a) and (b) (Fig. 50).  A 
null plane α corresponds to it in (a) and a null 
plane β in (b); α has the null point A on t in 
(b), and β has the null point B on t in (a).  
Now, A and B will be identical when the 
complexes are in involution.  The pencil (P, 
α) will then correspond to a pencil in β in the 

null system (b), because it has the vertex P, and a pencil with the vertex A, and thus, the 
pencil (A, β), because it lies in the plane α.  On the other hand, from Theorem 112, it 
must once more be a pencil in (a), so since it lies in β, it must be the pencil (B, β).  
Therefore, A and B will be identical.  If one were to start with the point A ≡ B, which we 
will call Q, then one would come back to P by this process.  Each of the four elements P, 
Q, α, β will determine the remaining three.  If one rotates α around t then the sequences 
P and Q on t will also be projective for two arbitrary complexes, so here, they will be 
involutory, as well.  By combining the two reciprocities that are defined by two twists, a 
collineation will arise that is therefore involutory, here. 
 
 Theorem 113:  The points (planes, resp.) of space are paired in an involutory way by 
two involutory twists when the two null points of a plane (the two null planes of a point, 
resp.) that rotates around a common ray t (that moves along t, resp.) describe involutory 
sequences (pencils, resp.).  This involution is a collineation. 
 
 We would like to represent them analytically (Stolz, Math. Ann., Bd. IV, pp. 440) by 
calculating the pointers of g1 from those of g.  It is therefore irrelevant whether we first 
look for the polar g′ of g in (a) and then the polar g1 of g′ in (b) or first look for the polar 
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Figure 50. 
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1g′  of g in (b) and then the polar γ1 of 1g′  in (a); γ1 must then coincide with g1 .  We set 

out upon the first path: If si are the pointers of g, is′  are those of g′, and is′′  are those of g1 

then, from equation (51) (cf., the beginning of this paragraph): 
 
(94) isρ ′  = ai ⋅⋅⋅⋅ ω(a, s) – A ⋅⋅⋅⋅ si , 

(95) isρ ′′  = bi ⋅⋅⋅⋅ ω(b, s′) – A ⋅⋅⋅⋅ is′ , 

where: 
B = ∑ bi bi+3 . 

 
If we substitute the values in (94) into (95) then we will get: 
 

ρ ⋅⋅⋅⋅ ω (b, s′) = ∑ bi+3 ⋅⋅⋅⋅ isρ ′  = ω (a, s) ⋅⋅⋅⋅ ω (b, a) – A ⋅⋅⋅⋅ ω (b, s). 

 
Since ω (b, a) = 0, by involution, what will remain is: 
 

isρρ′ ′′  = – A bi ⋅⋅⋅⋅ ω (b, s) – B ai ⋅⋅⋅⋅ ω (a, s) + A B si , 

 
or when one sets ρρ′ = − σ : 
 
(96)   isσ ′′  = A bi ⋅⋅⋅⋅ ω (b, s) + B ai ⋅⋅⋅⋅ ω (a, s) − A B si . 

 
 Two twists A and B with the pointers ai and bi determine a pencil.  Two complexes 

C, C′ in it might have the pointers λ ai + µ bi and λ′ ai + µ′ bi .  They will be in involution 

when: 
(97)    ω (λ ai + µ bi , λ′ ai + µ′ bi) 

= λλ′ ⋅⋅⋅⋅ ω(a) + (λµ′ + λ′ µ) ⋅⋅⋅⋅ ω (a, b) + µµ′ ⋅⋅⋅⋅ ω (b) = 0. 
 

If one chooses λ : µ arbitrarily then that will yield λ′ : µ′ uniquely; i.e.: 
 
 Theorem 114:  For any twist in a pencil, there is a single twist in that pencil that is 
involutory with it. 
 
 In particular, if A and B are already involutory then equation (97) will reduce to: 

 
λλ′ ⋅⋅⋅⋅ ω(a) + µµ′ ⋅⋅⋅⋅ ω (b) = 0, 

or 
(98)     λλ′ A + µµ′ B = 0. 
 
 If the carrier N of the pencil is elliptic then, from equations (65), A and B will get the 

same notation (the converse is not true), and we would like to see how the helix of N 

depends upon the signs of the invariants of the complexes in the pencil.  We can assume 
that it has a special position with respect to the system of pointers and, from Theorem 88 
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and § 55, c), we can then immediately deduce the meaning of the sign of c that was given 
there: 
 
 Theorem 115:  All twists of a pencil that has an elliptic carrier N are left-wound or 

right-wound according to whether N is right-wound or left-wound, respectively; in the 

first case, the invariants of the twist will be positive. 
 

____________ 
 

 
§ 57.  Gathered, involutory spatial systems. 

 
 If N is a ray net with two focal lines b, b′ then a ray of N will go through any point P 

in space, upon which we would like to associate the point P with the point P′ that is 
harmonically separated from P by the points of intersection with b, b′.  The points of 
space are thus involutorily associated with each other, in such a way that the points of b, 
b′ will correspond to themselves (dual construction?).  This association is a collineation, 
because all points of one line g are projectively associated with the points of the line g′ 
that is harmonically separated from g on the family of rulings (g, b, b′).  The rays of N 

correspond to themselves under the collineation.  One calls a non-perspective spatial 
collineation (*) for which there exist ∞2 self-corresponding rays a gathered (gescharte) 
collineation, and if it is involutory then one will call it a gathered involution (Staudt, 
Beitr. zur. Geom. d. Lage, art. 101, 1856). 
 Now, for the following chapter it will be very important to prove that a gathered 
involution is defined uniquely by any general ray net, independently of the existence of 
focal lines.  The net determines a pencil of complexes; all that one needs to prove then is 
that the involution in Theorem 113 is independent of which of the ∞1 involutory complex 
pairs in the pencil (Theorem 114) one starts with.  If one determines an involution I by 

the complexes C and C′, instead of the complexes A and B (cf., the conclusion of the 

foregoing paragraphs) then in order to represent I analytically, one must substitute: 

 
 λ ai + µ bi in place of ai, 
 λ′ ai + µ′ bi “ bi, 
 1

2 ω (λ ai + µ bi) =  λ2 ai + µ2 bi “ A. 

 λ′2 ai + µ′ 2 bi , “ B, 
 λ ⋅⋅⋅⋅ ω(a, s)  + µ ⋅⋅⋅⋅ ω(b, s) “ ω(a, s), or, more briefly, ωa ,  
 λ′ ⋅⋅⋅⋅ ω(a, s) + µ′ ⋅⋅⋅⋅ ω(b, s) “ ω(b, s), or, more briefly, ωb ,  
 
in equation (96).  We can now assume that A = ± B = ± 1 (and indeed, from Theorem 
115, one will certainly have A = B for elliptical nets; we will now examine only this case, 
                                                
 (*) One will get the perspective spatial involutions when one chooses a point S and a plane E, and 
assumes that the points on each ray s through S that are harmonically separated by A and (s, E) are 
associated with each other. 
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since the other one is completely analogous to it), because we can multiply the complex 
equations by an arbitrary factor.  The relation (98) will then go to: 
 
(99)     λλ′ + µµ′ = 0, 
 
and the line Si that corresponds to si in I will be given by: 

 
(100) σ Si = (λ2 + µ2) (λ′ ai + µ′ bi) (λ′ ωa + µ′ ωb)  

+ (λ′2 + µ′ 2) (λ ai + µ bi) (λ ωa + µ ωb) − (λ2 + µ2) (λ′2 + µ′ 2) si . 
 
By means of (99), one will get: 
 

(λ2 + µ2) (λ′2 + µ′ 2) = (λµ′ – λ′µ)2 . 
 

Moreover, ωb will have the coefficients: 
 

ai (λµ′ + λ′µ)(λλ′ + µµ′ ) + bi [(λµ′ – λ′µ)2 + 2 µµ′ (λλ′ + µµ′ )] = bi (λµ′ – λ′µ)2. 
 
The right-hand sides of (96) and (100) will thus differ by only the factor (λµ′ – λ′µ)2, 
which is why the Si are proportional to the is′′ . 
 
 Theorem 116:  A gathered involution is defined uniquely by any general ray net, 
namely, the one that determines any two involutory complexes of the pencil whose carrier 
is the net. 
 
 We would like to convince ourselves that the the involution I of this theorem is 

identical with the I′ that was presented in the beginning of this paragraph in the 

hyperbolic case: In order to find the correspondent to a point in I, we must look for its 

null point in one complex and then its null point in the other one.  Now, since a true point 
involution is determined completely by its possible double points, the involutory 
sequences of I and I′ must be identical on any ray of the net. 

 We would like to represent the involution analytically as a point conversion in the 
special position with respect to the system of pointers [§ 55, c)] for the case of an 
elliptical net: We will obtain the reciprocity of the first null system (84) when we set: 
 

a4 = 1,  a1 = cm 
 
in equations (15.a) of § 46 and set all of the other a equal to zero.  We will further 
calculate the null point ix′  to a plane in the second null system, when set: 

 

a2 = 
c

m
, a5 = 0, 
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in equations (16.a) of § 46 and set all other a equal to zero.  We have to combine these 
two conversions: 
 σ u1 = c m x2 , 1xτ ′  = u3 , 

 σ u2 = − c m x1 , 2xτ ′  = − c

m
 u4 , 

(101) 
 σ u3 = x4 , 3xτ ′  = − u1 , 

 σ u5 = − x3 , 4xτ ′  = 
c

m
 u2 , 

into: 
 σ 1xτ ′  = x4 , 

 σ 2xτ ′  = 
c

m
x3 , 

(102) 
 σ 3xτ ′  = − c m x2 , 

 σ 4xτ ′  = − c2 x1 , 

 
and finally (from the rule in § 31) replace x2 : x1 , x3 : x1 , x4 : x1 with x, y, z: 
 

 x′ = 
c y

m z
, 

(103) y′ = − x
cm

z
, 

 z′ = −
2c

z
. 

In fact, the solution for x, y, z: 
 

x = 
c y

m z

′
′
, y = − x

cm
z

′
′
, z =  −

2c

z′
 

 
will have the same form as the original equations, which is as it must be for an involutory 
relationship.  Since the two complexes (84) that we started with are also involutory to 
each other when the q mean tetrahedral pointers, the associated involution will be 
represented by (102) for general pointers.  The basic tetrahedron thus lies in such a way 
with respect to the net that the opposite edges P1 P4 (x2 = x3 = 0) and P3 P3 belong to the 
net, and the two vertices of the tetrahedron on each of these two edges are a pair of the 
involution; an analogous dual statement will also be true. 
 If we take two rays s, s′ of a general net and an involution on s then any pair of points 
P, P1 on them that are linked with s′ as self-corresponding points will give to rise planes 
that correspond to each other in the gathered involution, and will thus define a point-pair 
of the involution around s′′; i.e., if one projects the point involution onto any ray of a 
general net N from the other rays of N and cuts the plane involution around any ray of N 
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with the other rays of N then one will obtain the same involutions that were defined 

already.  In other words: 
 
 Theorem 117:  Any point involution that belongs to a ray of the net will lie 
perspectively to any plane involution that belongs to a ray of that net. 
 
 In particular, the planar, affine parallel systems that can be generated by N (Theorem 

104) will be paired involutorily, and the involution will cut that ray out of any finite ray 
of the net; likewise, the directions that are located in the middle plane will be paired 
involutorily (we called this an involution in the central pencil in § 54) and will determine 
the plane involution around this ray with any finite ray.  The plane at infinity will 
correspond to the middle plane, on which the central points of all true point involutions 
will then lie. 
 We also call a gathered involution elliptic or hyperbolic according to the character of 
the associated net. 
 

____________ 
 

§ 58.  The special ray net of a twist and the parameters of its correlations. 
 

 Any ray s of a twist G with an axis α is the focal line of a special ray net.  These nets 

are all (from § 54, conclusion) similar to two of them 
and differ only by the parameter K of the correlation 
on s, which we would like to calculate as a function 
of the shortest distance δ between s and α, and the 
pitch k.  Let the base point of δ on s be N.  From § 53, 

b), all that must be calculated is the angular velocity 
ϕ0 by which the null plane rotates around s when a 
point on s passes through N with unit velocity.  Let n 
be the normal to the moving null plane; the angle 
between two arbitrary positions of n (Fig. 51) will 
then have the location of a plane that goes through 
the X-axis.  The angular velocity can then be 
measured by the change in the angle (X, n) = ω.  If t 
is the distance from a point P on s to N and (Y, s) = ν then the pointers of P will be: 

x = d, y = t ⋅⋅⋅⋅ cos ν, z = t ⋅⋅⋅⋅ sin ν. 
 
Now, from § 8, equation (14): 

tan ν = − 
δ
k

. 

Thus, if one sets: 
2 2δ+k  = w 

then: 

 

ν 

N 
X 

δ 

Y 
P 

s 

Z 

α 

Figure 51. 
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sin ν = 
w

δ
, cos ν = − 

w

k
. 

 
In fact, if one chooses the direction of s that subtends an acute angle with the Z-axis to be 
positive then the negative sign must stand before the cos, as Fig. 51 shows when one 
considers the geometric meaning of k (Fig. 51 corresponds to a right-wound twist, so it 

will correspond to a negative k; cf., § 11).  If one substitutes the pointers of P, namely: 

 

δ, − 
t

w

k
, 

t

w

δ
, 

in the equation of the null plane (§ 7): 
 

x η – y ξ + k (ζ – z) = 0 

 
of an arbitrary point then one will get: 
 

wδη – k tξ + k (wζ – t δ) = 0 

 
as the equation for all null planes of s.  We infer from this that: 
 

cos ω = 
2 2 2 2 2( )

t

tδ+ +
k

k k
, 

 

and must calculate ϕ0 = 
0t

d

dt

ω
=

 
  

.  When we then merely seek the absolute value and 

consider that when t is equal to zero, we will have cos ω = and sin ω = ± 1, we will 
immediately obtain by differentiating the equation: 

 

cos ω ⋅⋅⋅⋅ 4 2 2w t+ k  = k t 

that: 

w2 
0t

d

dt

ω
=

 
  

= k, 

so 

| ϕ0 | = 
2 2

 

δ+
k

k
. 

 
The null plane rotates in the positive sense for increasing t when the twist is right-wound 
(from Theorem 14, a left-wound screw is defined by the normal plane), so the same thing 
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will be true (§ 11) when k is negative (*).  If we also wish to express the rotational sense 

of the null plane by the sign of the parameter K of the correlation on s then we must write 
[cf., § 53, b)]: 

(104)     K = − 
2 2

 

δ+
k

k
. 

 
Thus, we can also calculate the angular velocity ϕ of the null plane at an arbitrary point P 
of s from equation (67): 

ϕ  = 
2

4 2 2

 w

w t

−
+
k

k
. 

 
On the other hand, the distance r from the point P to α is given by: 
 

ρ2 = t2 cos2 ν + δ 2 = 
2 2

2

t

w

k
+ δ 2, 

so: 

ρ2 + k2 = 
2 2 4

2

 t w

w

+k
 

and 

(105)     ϕ = 2 2

 

ρ
−
+
k

k
. 

 
This equation includes (104) as a special case and shows the result that will be employed 
later on: 
 
 Theorem 118:  If a point P moves on a ray of a twist with unit velocity then the 
angular velocity of its null plane will depend upon just the distance from the point to the 
axis, but not on the direction of the motion. 
 

____________ 
 
 

§59.  Generating a twist by translation, rotation, and screwing of a net. 
 

 A surface of rotation can be generated by not only rotating its meridian curve, but 
also by rotating an arbitrary curve that lies on it.  In general, it will not always be 
obtained completely in that way.  For example, if one rotates a sphere circle around a 
diameter of the sphere then only a spherical zone will be generated, in general.  
Analogously, since a twist G admits not only a rotation, but also a screw around its axis 

a, any net N that is contained in G will generate the twist by a screwing motion around a.  

                                                
 (*) One sees this from Fig. 51 immediately when one considers that the normal to α at P always belongs 
to the null plane.  In addition, it will follow that: The special ray nets of a twist are wound the same way as 
the twists themselves. 
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However, one will have to investigate whether any ray of G can be obtained in that way.  

Since the screwing motion can be decomposed into a translation and a rotation, it suffices 
to consider these two cases. 
 
 a) We generate G by translating N along the direction a and ask whether the 

generation is complete.  We seek all rays of N that cut any diameter d of G; from 

Theorem 99, they will define a second-order family of rulings R, and in fact, here they 

will define a hyperbolic paraboloid, because they also cut the polar at infinity of d.  If we 
project R along the direction d onto the null plane of any point P of d then the projections 

will fill up the pencil (P, ν) completely; therefore, this pencil will also be obtained 
completely by the displacement when it extends from − ∞ to + ∞. 
 
 Theorem 119:  A twist will be generated completely by displacing any net that is 
contained in it. 
 
 b) We generate G by rotating N around a.  The line at infinity of N must also be 

contained in G; i.e., the middle plane of N must be parallel to a (this will follow 

immediately from Theorem 10 for the hyperbolic net).  In the event that N is general, we 

shall consider only the simplest case in which the middle plane contains a itself.  Thus: 
 
 α) If the net N is hyperbolic then the focal lines b, b′ will define equal angles with a.  

We consider a plane E || a and ask whether all rays of the twist in it can be obtained by 
rotating N.  We thus consider the starting position of N to be the one in which b, b′ are 

parallel to E.  Under rotation around a, b, b′ will describe the same hyperboloid of 
rotation that will be cut by E in a hyperbola whose asymptotes have the directions b, b′, 
and in fact, after a half rotation of the starting position the point of intersection of b will 
describe the one branch of the hyperbola and that of b′ will describe the other one.  Any 
two points of the hyperbola that are on different branches will be associated with each 
other by the same position of N, and we known from the outset that the connecting line 

of associated points will move parallel to itself.  Since the branches will be described 
completely, it must then also pass through the plane E completely. (The reader must 
complete a sketch for himself and pursue the two possibilities that E can or cannot be 
separated by b, b′.)  Only when E goes through b or b′ will the rays of the twist not be 
contained in E.  However, since such planes E define only a simple manifold and their 
rays then define only a two-dimensional manifold, we will consider this to be no breach 
of completeness. 
 
 β) When N is an arbitrary special net of G, an argument that is similar to the one in 

α) will show the completeness of the generation: Let b be the focal line of N and let α be 

the acute angle (a, b); if we again draw E || a then under a half rotation of N the point of 

intersection S ≡ (b, E) will describe completely one branch of a hyperbola with the 
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asymptotic angle 2α, whose auxiliary or principal axis will be parallel to a according to 
whether E is or is not separated from the plane at infinity by a, b, respectively.  In the 
first case, the ray s of the twist will subtend an acute angle with a in E whose absolute 
value will be greater than α, and in the second case, it will be smaller.  Thus, while S runs 
through the one branch of the hyperbola, the ray s that goes through S will sweep out the 
plane E completely in both cases. 
 
 γ) Let a, g, h be three mutually perpendicular rays that intersect at A and let a be the 
axis of a twist G, so g, h will be rays of it.  The rays of G whose shortest distances fall 

along h will all define a 
family of rulings R of 

an equilateral 
hyperbolic paraboloid 
P, whose principal 

generators will be g and 
h (Fig. 52).  If one 
carries the same 
segment on g from A in 
both directions and 
draws the second 
generators r, r′ of P 

through the points C, C′ 
thus-obtained then R 

can be regarded as the 
product of congruent 
point sequences on r, r′.  
If one then rotates R 

around g then a rotation net N will arise (Theorem 105) whose principal axis is g.  It will 

belong to G completely; a ray s of P will then arrive at the same position twice under the 

rotation, where it intersects a perpendicularly and certainly belongs to G then.  Since this 

can be generated by rotating R, it will follow ( Zindler, Jahresber. d. D. Math. Ver. IV) 

that G can be generated by rotating a simple line manifold twice, namely: 

 
 Theorem 120:  If one rotates a family of rulings of an equilateral hyperbolic 
paraboloid around its principal generator g and the net thus obtained around a line 
through the vertex of the paraboloid that is perpendicular to g then a twist will arise. 
 
 Thus, a half-rotation must be executed each time; the generation will indeed be 
complete then.  We then ask whether all rays s can be obtained in a plane E || a: The s0 
that intersect h (at B) already belong to N in its original position.  The remaining ones 

will then emanate from the rays of N that contact the cylinder with the axis a and radius 

AB, so they will lie in the contact plane β of the cylinder.  If β ⊥ g then the ray of the net 

 

r 

h 

r ′ 

a 

g 
s0 

C 

A 

C′ 

E 

Figure 52. 
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will lie at infinity in β; if one rotates β then it will come in from infinity, and indeed from 
the side on which it is wound like s0 compared to g (in Fig. 52, it is left-wound, so that 
will be from below in the event that the initial position of β cuts the positive half-line g).  
It will move continuously into the position s0 when β rotates through a right angle into 
the position E.  If β rotates through another right angle then a ray of the net that lies in β 
(when it always defines the same angle with a) will again go from the position s0 to 
infinity, but on the other side (here, from above), because it must always be wound the 
same compared to g; it will then sweep out the entire plane β under a half-rotation. 
 If one draws a plane ε ⊥ a and changes the distance from all points of space to ε by 
the same ratio then this (special) affine transformation will convert the rotation net into a 
general elliptical one and the twist into another one; the rotation around a will remain 
preserved, as such.  Therefore, the generation of the twist will also be complete when one 
rotates a general elliptical net. 
 The fact that a twist is always wound oppositely to an elliptical net that is contained 
in it (Theorem 115) is immediately intuitive in the case of Theorem 120: Every ray s of Π 
will then be wound with respect to a oppositely to the way that it is wound with respect to 
g. 

____________ 
 
 

§ 60.  Parametric representation of a twist. 
 

 If the line pointers of a line are given as functions of three independent variables – 
viz., the parameters u, v, w – by: 
 
(106)    σ pi = fi (u, v, w) (i = 1, …, 6), 
in which the condition: 

(107)     ∑ pi pi+3 = 0 
 
is fulfilled identically, then a line complex C will be defined by that.  If one changes just 

one parameter then one will get a ruled surface that is contained in C.  A u-surface – i.e., 

one for which only u varies – will then be singled out by a value-pair v = v0, w = w0 .  C 

can therefore be decomposed into ∞2 u-surfaces, ∞2 v-surfaces, or ∞2 w-surfaces.  
Analogously, a u, v-congruence will be singled out by w = w0, and a decomposition of C 

into ∞1 congruences will be given by the parametric representation itself, and in three 
ways.  Any congruence will again be decomposed into ∞1 surfaces in two ways. 
 For a twist, we can derive such representations immediately from the results of the 
previous paragraphs, since we have already learned about the parametric representation 
of the net.  We restrict ourselves to the employment of the general net for the generation 
of the twist G. 

 
 a) For a displacement z along the Z-axis, equations (61) in § 41 reduce to: 
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 pi = κi  (i = 1, 2, 3, 6), 
(108) p4 = − z κ2 + κ4 , 

 p5 = z κ1 + κ5 . 

 
Here, the old rod pointers p are expressed in terms of the new ones κ ; z means the 

displacement of the system of pointers with respect to the structure.  We would like to 
conversely express the new pointers in terms of the old ones and likewise introduce the 
displacement of the structure with respect to a fixed system of pointers in place of z, so 

we must substitute – z for z in (108) and then solve for κ.   However, we will arrive at 

equations of precisely the same form in that way, which is why we will preserve equation 
(108) and now regard the p as the new pointers and z as the displacement of the structure 

with respect to the system of pointers.  One can also find this by mere contemplation (*). 
 In the representation (78.a), the principal ray of the net falls upon the Z-axis, which 
we would, however, ultimately like to obtain as the axis of the twist.  We thus cyclically 
permute the axes in (78.a), which gives us: 
 
 κ1 = 2c, κ4 = 1

4 (u2 – v2) sin 2α, 

(109) κ2 = v cos α, κ5 = v c sin α, 
 κ3 = u sin α, κ6 = – u c cos α . 
 
The principal ray of this hyperbolic net will now fall upon the X-axis; we obtain G by 

displacement along the Z-axis, so equations (108) can be applied immediately: 
 
 p1 = 2c, p4 = − z v cos α + 1

4 (u2 – v2) sin 2α, 

(110) p2 = v cos α, p5 = 2cz + vc sin α, 

 p2 = u sin α, p6 = − uc cos α . 
 
Here, u, v, w are the parameters.  Relation (107) will be true, as it must be, and the pi will 
fulfill the linear equation: 

(111)  6

3

p

p
= − c cot α, 

 
which is free of parameters, and which will then be the equation of the twist. 
 If we base things upon an elliptic net then we will next obtain in the same way from 
equations (83.a) (when we also cyclically permute the geometric meaning of the 
parameters x0, y0 and drop the index 0): 
 

 κ1 = c, κ4 = my2 + 
1

m
 z2, 

                                                
 (*) An analogous remark is true for an arbitrary pointer transformation, especially for the interpretation 
of equations (115). 
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(112) κ2 = − 
z

m
, κ5 = cz, 

 κ1 = my, κ6 = − cy, 
 
and then from (108): 
 

 p1 = c, p4 = my2 + 
z

m
(z + z), 

(113) p2 = − 
z

m
, p5 = c (z + z), 

 p3 = my, p6 = − cy 
or 

(114)     6

3

p

p
 = − 

c

m
. 

 
 One obtains the simplest representations when one bases (110) on a rectangular net (α 

= 45o) and bases (113) on a rotation net (m = 1); in the first case, we introduce u / 2 , v 

/ 2  as the new parameters, and in the second case, we replace z with z + z = w, which 

gives: 

(110.a)  

2 21
1 4 2

2 5

3 6

2 , ( ),

, 2 ,

, ;

p c p v u v

p v p c cv

p u p cu

 = = − + −
 = = +
 = = −

z

z  

 

(113.a)  

2
1 4

2 5

3 6

, ,

, ,

, .

p c p y zw

p z p cw

p y p cy

 = = +
 = − =
 = =

 

 
 b) For a rotation around the z-axis through an angle ω (and with a change of 
notation) equations (59) and (60) in § 41 reduce to: 
 
 p1 = κ1 cos ω – κ2 sin ω, p4 = κ4 cos ω – κ5 sin ω, 
(115) p2 = κ1 sin ω + κ2 cos ω, p5 = κ4 sin ω + κ5 cos ω, 
 p3 = κ3 , p6 = κ6 . 
 
If we substitute the same values for κ that we prepared in equations (109) or (112) then 
we will get two new parametric representations (116) of the twist, whose explicit 
specification we will forego. 
 These representations will also all be true when one considers the p to be general 
tetrahedral pointers; the elimination of the parameters will then always yield a linear 
equation. 
 It is self-explanatory that a map of the rays of a twist to the spaces of points or planes 
will be given by any parametric representation when one interprets the parameters to be 
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any sort of point or plane pointers.  For example, if one considers them to be rectangular 
point pointers then the rays of a twist will be mapped completely and reciprocally by 
(116) onto all points of a slice of space that is bounded by two parallel planes at a 
distance of π, but they will be mapped to the entire point space by (110) and (113).  One 
can obtain infinitely many such maps when one substitutes the representations that are 
given here for their parameter functions. 
 The first map of a twist onto point space was given by Noether (Göttinger Nachr., 
1869). 

____________ 
 

 
Practice problems: 

 
 33. If a twist is given by two projective pencils of rays (viz., Sylvester’s method of 
generation) then how can one construct its axis most rapidly? 
 
 34. Which special forms does the equation of a twist assume when: 

α) The null plane of a vertex of the base tetrahedron falls upon a face of the 
latter? 

β) This happens twice? 
g) This happens three times? 

 
 35. The (special) affine transformations T also belong to the collineations, which 
consist of the ones that change the distance from all points to a fixed plane E by the same 
ratio q.  If one draws E through the axis of a twist G then the twist must go to another one 
under T (Theorem 82).  On the other hand, it seems as if its axial symmetry would then 
be lost, in the same way that an ellipsoid of rotation would become general under T.  
How does one resolve this paradox? 
 
 36. Investigate the arrangement of the rays of the complex C2 of Theorem 94 with the 

help of a family of coaxial circular cylinders (similar to what we did for the twist in § 
11). 
 
 37. Verify equation (56) for rectangular line pointers by direct calculation.  (§ 52) 
 
 38. Which theorems will replace Theorem 106, 108, 109 for hyperbolic nets? 
 
 39. Verify that when one substitutes the pointers is′′  in the right-hand side of equation 

(96), one will come back to the pointers si . 
 
 40. Represent the involution of the general ray net with equations (79) or (84) as a 
plane conversion. 
 
 41. Represent the hyperbolic net with equations (79) as a point conversion. 
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 42. Let x, x′ and y, y′ be corresponding pairs of points of two projective sequence g, 
g′.  Consider xy′ and x′y to be the focal lines of a ray net.  The ∞2 nets thus-defined are 
contained in the same twist (Franel, Vierteljahrsschr. d. naturf. Ges. Zürich, Bd. 40, 
1895). 
 
 43. If h is a ray of a twist G that cuts the axis a perpendicularly then the rays of G 
whose shortest distances from a fall upon h will define a family of rulings R of a 

hyperbolic paraboloid.  Find a parametric representation for it and derive a representation 
of the twist from that when one first rotates R around a and the translates along a. 

 
 44. How can the completeness of the ways of generation that were spoken of in § 59 
be deduced from the parametric representations of the twist? 
 
 45. Show how u-surfaces, v-surfaces, u, v-congruences, etc. are given by the 
representations (110), (113). 
 
 46. Show that the polars of a fixed line g with respect to all complexes of a pencil 
define a family of rulings. 
 

____________ 



  

Chapter V 
 

Imaginary elements 
___ 

 
 

§ 61.  The transversals to a quadruple of rays and the associated ray net. 
 

 We have already encountered a quadratic equation once before in the calculation of 
line pointers, namely, in the determination of the bush of rays in a pencil of complexes (§ 
53).  From an analytical standpoint, this is the same problem as: Find the transversals 
that intersect four given lines.  Let: 
 

siλ  (i = 1, …, 4; λ = 1, …, 6) 
 

be the pointers of the given rays si and pλ that cut a desired common ray; the following 
equations must then be fulfilled: 
 

(1)     
6

3
1

is pλ λ
λ

+
=
∑ = 0  (i = 1, …, 4), 

 

(2)      ω(p) = 
6

3
1

p pλ λ
λ

+
=
∑  = 0. 

 
We assume that the si are not in hyperbolic position; the matrix siλ will then have rank 
four, and we can calculate four of the p – say, p3, …, p6 – as linear, homogeneous 
functions of the remaining two: 
 
(3)     pλ = cλ p1 + 2c pλ′    (λ = 3, …, 6). 

 
We can also write down λ = 1, …, 6 when we establish that: 
 
 c1 = 1, 1c′ = 0, 

 c2 = 1, 2c′ = 0. 

 
We substitute the values (3) into (2) and obtain: 
 

ω(p) = 1 2 3 1 3 2( )( )c p c p c p c pλ λ λ λ+ +′ ′+ +∑  = 0, 

or 
(4) ω(c) ⋅⋅⋅⋅ 2

1p + 2ω(c, c′) ⋅⋅⋅⋅ p1 p2 + ω(c′) ⋅⋅⋅⋅ 2
2p = 0. 

 
The ratio p1: p2, and therefore all remaining pointers, will be determined by this.  On the 
other hand, one can construct the transversals geometrically, when one intersects the 
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hyperboloid H, which lies on the family of rulings R ≡ (s1, s2, s3), with s4 . If S is a 

common point of H and s4 then the guiding ray of the family R that goes through S will 

be a common intersector of all four rays.  The reality of the solution must be independent 
of which triple one has selected from the four rays for the determination of H; thus: 

 
 Theorem 121:  The four hyperboloids that four rays determine three at a time will all 
be either cut or contacted or not cut simultaneously by the fourth ray. 
 
 The reality of the roots of (4) depends upon the sign of the quantity: 
 
(5)     Ω = [ω(c, c′)]2 – ω(c) ⋅⋅⋅⋅ ω(c′). 
 
We know that when the matrix: 
 

siλ  (i = 1, …, 5; λ = 1, …, 6) 
 
of pointers of five rays is reduced to rank four, the five rays will belong to the same net 
(Theorem 102).  With this assumption, one row of the matrix can be combined with the 
remaining ones with constant multipliers; e.g.: 
 

(6)     s5λ = 
4

1
i i

i

sλκ
=
∑   (λ = 1, …, 6) 

 
(cf., the argument in § 39, e).  Conversely, the rank of the matrix siλ will always be 
reduced by the existence of equations (6).  Thus, if s5λ mean the pointers of any ray 
whatsoever then it will belong to the net that is determined by s1, …, s4 .  If one then 
replaces the four original rays si by any other four independent ones in the same net and 
then seeks the common transversals then that will come down to multiplying equations 
(1) by four numbers four times and adding them; i.e., replacing them with an equivalent 
system of equations.  Thus, the solutions of the equations must remain the same.  I. e.: 
 
 Theorem 122:  The equation that serves to determine the pointers of the common 
transversals of four rays that were chosen from a net is independent of that choice. 
 
 This is self-explanatory for a hyperbolic net; however, we have proved it in general.  
Thus, from Theorem 122, any general ray net will now be associated with two sextuples 
of numbers that fulfill the condition (2) and are real for a hyperbolic net, complex 
conjugates for an elliptic one, and coincide for a special one.  We would like to invert the 
last result, namely, to show how every complex-conjugate pair of sextuples that fulfills 
the condition (2) is associated with an elliptic ray net (Klein, dissert., art. 5, Math. Ann., 
Bd. 23).  Let: 

(7)    
p a ib

p a ib
κ κ κ

κ κ κ

= +
′ = −

  (κ = 1, …, 6) 
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be the pair of sextuples.  We seek all real lines whose pointers qκ fulfill the incidence 
condition ω(p, q) = 0 with the pκ .  It decomposes into two equations: 
 

(8)     ∑ aκ qκ+2 = 0,  ∑ bκ qκ+2 = 0 
 
that can be considered to be the equations of two linear complexes, and thus, a ray net.  If 
they are fulfilled then ω(p′, q) = 0 will also be fulfilled.  Therefore, this ray net is 
determined by the pκ′ , as well as by the pκ .  We assume that: 

 
ω(p) = ω(a) + 2i ⋅⋅⋅⋅ ω(a, b) + i2 ⋅⋅⋅⋅ ω(b) = 0, 

so: 
(9)      ω(a) = ω(b), 
 
(10)     ω(a, b) = 0. 
 
The latter condition says that the two complexes lie in involution.  Furthermore, we next 
assume that: 
(11)     ω(a) ≠ 0. 
 
From § 53, equation (65), Ω is always negative here, so: 
 
 Theorem 123:  Any sextuple of complex numbers that fulfills the conditions (2) and 
(11) is uniquely associated with an elliptic net, and therefore with a gathered elliptic 
involution, and indeed the one that is associated with the sextuple of complex-conjugate 
numbers. 
 
 If, conversely, an elliptic ray net is given by two twists, and one would like to find the 
associated sextuple then one will first seek the pencil that is involutorily associated with 
the one twist, as in § 56, with which, equation (10) will be fulfilled.  Since the invariants 
of the two twists are denoted in the same way (Theorem 115), it will always be possible 
to fulfill equation (9) in such a way that one multiplies the equation of the one twist by a 
suitable factor.  One can then compose the sextuple immediately using (7).  One does not 
actually need to exhibit the quadratic equation (4) then (*). 
 Theorem 133 opens up the prospect of being able to also ascribe a geometric meaning 
to complex line pointers.  However, since the theory of imaginary lines can be developed 
only in connection with the theory of imaginary points and planes, we must return to this 
somewhat later. 

________ 
 
 

                                                
 (*) The basis for this – at first glimpse, surprising – fact is geometrically transparent: One can determine 
the involution linearly, but not its possible double elements.  Moreover, the determination of the 
aforementioned factor will demand the solution of a purely quadratic equation. 
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§ 62.  Geometric interpretation of the imaginary elements. 
 

 We call a system of four (three, resp.) complex numbers an “imaginary point” or an 
“imaginary plane” according to whether it has been obtained from the solution of a 
problem by employing tetrahedral (ordinary, resp.) pointers as the pointer system of a 
desired point or plane, respectively.  Analogously, we call a system of six complex 
numbers “an imaginary line” when it satisfies the same condition (2) that the pointers of 
an actual line also fulfill.  In the case of tetrahedral pointers, only the ratios of the 
numbers shall be involved.  We shall use the term “imaginary element” for the common 
term for imaginary points, planes, and lines (*).  We call an imaginary element D′ 
“conjugate” to another one D of the same kind when the numbers of the system that 
comprises it are conjugate to those of D in succession. 
 This definition is then purely analytical at first (** ), but our next problem is to 
associate the imaginary elements with actual geometric structures uniquely.  The simplest 
basic problem that appears for imaginary points already points to the path that must be 
pursued: If one calculates the pointers of the intersection points of a line g with a conic 
section (in the same plane) then they will be real or complex according to whether g does 
or does not cut the conic sections, respectively.  On the other hand, one knows that a 
point involution is defined (S. S. VII, art. 93) on any line in the plane of a conic section K 
by that conic section, which will be hyperbolic, elliptic, or degenerate according to 
whether g cuts, does not cut, or contacts the conic section, respectively.  In the first case, 
the double points of the involution are simultaneously the points of intersection with K.  
A hyperbolic line involution is then (also ignoring the relationship to K) associated with 
two real points and two pairs of plane pointers; one then asks whether an elliptic 
involution can be associated with a well-defined (complex) number system). 
 If: 

A ≡ (aν), A′ ≡ ( )aν′  (n = 1, …, 4) 

 
are two points of a line g then the point sequences: 
 

P ≡ ( )a aν νλ λ′ ′+ , Q ≡ ( )a aν νµ µ′ ′+  

 
will be projective when a bilinear relation: 
 

cλ′µ′ + mλµ′  + c′λ′µ = 0 
 
exists between the parameters λ′ : λ , µ′ : µ . 
 Should the projectivity be an involution, then the equation would have to be 
symmetric in the two parameter ratios: i.e., m = m′.  Should A, A′, in particular, be a pair 
of associated points of the involution then the equation: 

                                                
 (*) More properly, one should say “complex elements,” since imaginary numbers are only a special case 
of the complex ones in algebra.   However, the name “imaginary element” has already become sufficiently 
natural that one would not wish to depart from it. 
 (** ) If one must always adhere to it then it would have no value; it is only a temporary artifice for 
speaking comfortably about the entire matter. 
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(12)    cλ′µ′ + m (λ µ′  + λ′ µ) + c′λ′µ = 0, 
must be fulfilled by: 
 λ′ = 0, µ = 0, 
as well as by: 
 λ = 0, µ′ = 0. 
 
Both of these pairs will lead to the same condition, since one must have: 
 

m = 0. 
If we set: 

c

c′
= k 

then it will follow that: 
λ µ
λ µ
′ ′
⋅  = − k. 

 
One can then represent various involutions on g in the form: 
 
(13)   P ≡ ( )a aν νλ λ′ ′+ ,  P′ ≡ ( )a k aν νλ λ′ ′−  

 
when one assigns all real values to k, in succession, and indeed one will obtain a 
parabolic involution for k = 0, an elliptic one for k > 0, and a hyperbolic involution for k 
< 0, since one must have: 

2λ
λ

′ 
 
 

 = − k 

 
for the double elements.  One can always make the absolute values of k equal to unity by 
a proper involution; we shall pursue this only for k > 0: Let: 
 

k  = w, 

 
so one can also write the involution (13) as: 
 

P ≡ ( )wa waν νλ λ′ ′+ ,  P′ ≡ ( )a w waν νλ λ′ ′− ⋅  

 
when one multiplies the pointers of P by w.  If one now sets: 
 

λw = λ0 , waν′  = aν′′  
 
then the involution (13) will be represented by: 
 

P ≡ 0( )a aν νλ λ′ ′′+ ,  P′ ≡ 0( )a aν νλ λ′ ′′− , 
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and the point A″ will be identical with A′.  In order to obtain all elliptic involutions now 
in which A, A′ is a pair, one must fix the pointers of the one point A and vary those of the 
other one A′.  If we again revert to the original notations then we can say that: 
 
 Theorem 124:  Any proper elliptic involutions in which the pair A, A′ is involved can 
be represented in the form: 
 
(14)   P ≡ ( )a aν νλ λ′ ′+ , P′ ≡ ( )a aν νλ λ′ ′−  (ν = 1, …, 4), 

 
when one chooses the absolute values of the pointers a suitably (*). 
 
 Should P and P′ coincide then one would need to have: 
 

λ
λ

′
= − λ

λ′
; 

i.e.: 
λ′ : λ = ± i. 

 
There will then be only imaginary double elements: 
 
(15)  D ≡ (aν + i aν′ ),  D ≡ (aν – i aν′ )  (ν = 1, …, 4), 

 
and we will next show that they are independent of which pair A, A′ one has based the 
representation (14) upon: Suppose that it is based upon the pair P, P′, instead of A, A′; 
one will then obtain the double elements: 
 
 D1 = ( )a aν νλ λ′ ′+ + i ( )a aν νλ λ′ ′−  = (λ + iλ′) aν + (λ′ − iλ) aν′ , 

 1D′  = (λ − iλ′) aν + (λ′ + iλ) aν′ . 

 
D1 emerges from D′ by multiplying by λ + iλ′; analogously, D and 1D′  are identical.  

Conversely, one can write down the associated involution (14) for which D is the one 
double element immediately when an imaginary element D ≡ (aν + i aν′ ) is given.  One 

easily convinces oneself by calculation that this involution depends upon only the ratios 
of the four numbers (D), which also emerges from the fact that only the amplitude, but 
not the absolute value, of the factor λ + iλ′ comes under consideration in the previous 
calculation. 
 
 Theorem 125:  Any imaginary point D is associated with a unique elliptic involution; 
conversely, the conjugate point D′, along with D, belongs to this involution. 
 

                                                
 (*) Any hyperbolic involution can be represented in the form: 
 

P ≡ (λ aν + aν
′ ), P′ ≡ (λ′ aν + aν

′ ). 
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 This result can be carried over immediately to the case in which an involutory pencil 
of planes or lines enters in place of the proper point involution: We need only to 
understand aν and aν′  to mean the pointers of two planes in the first case and the pointers 

of two incident lines in the second case (cf., § 39, c), while ν simultaneously goes from 1 
to 6.  Namely, in the latter case, a ray involution will be represented by: 
 
(14.a)  pν = λ aν + λ′ aν′ , pν′ = λ′ aν – λ aν′  (ν = 1, …, 6), 

 
 and one will have: 

ω(a) = ω(a′) = 0; ω(a, a′) = 0, 
 
and this is precisely the case that we left unconsidered in the previous paragraph.  In 
summary, we can say that: 
 
 Theorem 126:  The pairs of conjugate imaginary elements are in one-to-one 
correspondence with elliptic involutions, and indeed, with involutory point sequences, 
pencils of planes, pencils of rays, and gathered involutions. 
 
 According to whether the sextuple: 
 

aν + i aν′  (ν = 1, …, 6) 

 
is associated with an involutory pencil of rays or a gathered involution, one will 
ordinarily call it an imaginary line of the first or second kind, respectively.  In the first 
case, one will have: 

ω(a) = ω(a′) = 0, 
 
while in the second case one will have: 
 

ω(a) = ω(a′) ≠ 0 
 
[in both cases, one will have ω(a, a′) = 0]; we then say special and general imaginary 
lines, respectively, instead. 
 We call the p the ray or axis pointers of the imaginary lines according to whether the 
a and b in (7) are the ray or axis pointers of twists (of lines, in the special case), 
respectively.  If pν are the ray pointers of an imaginary line and qν are its axial pointers 
then, due to § 49, equation (45), one will also have: 
 

pν+3 = qν 
here. 
 We further understand the carrier of an imaginary point to mean the carrier of the 
associated involution; analogously, we say the axis of an imaginary plane. 
 

_________ 
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§ 63.  The separation of two conjugate-imaginary elements. 
 
 If the one point in a proper, elliptic, point involution traverses a line in a certain sense 
then the other point will move in the same sense.  One can thus say that the involution 
itself is traversed in a certain sense.  Analogously, elliptic ray and plane involutions can 
be traversed in two senses.  Finally, for a gathered elliptic involution, all of the involutory 
point sequences and pencils of planes that enter into it can be traversed in two senses.  
However, if one fixes a certain sense on one of the point sequences g then, from Theorem 
117, a certain sense of rotation will be fixed in all pencils of planes.  They will cut out the 
same involution, and in fact, with the same sense of traversal, from any ray s of the net.  
The same thing will then be true on g.  If one moves s from g continuously in the net then 
the sense of the intersection of s with a pencil of planes cannot change suddenly from one 
pencil to another.  One can then accordingly assign two senses of traversal to the gathered 
involution itself.  One of them is fixed (cf., the conclusion of § 57), e.g., when we fix 
either the sense of the involution of the planar affine system or the sense on the ray at 
infinity of the net.  Indeed, this will yield the insight that a certain sense of traversal of a 
ray will be associated with the sense of rotation around it for the principal ray of a right-
wound net, and therefore, for any ray of it, and that sense will seem positive for the fixed 
sense of the ray.  The opposite thing will be true for the left-wound net. 
 All involutions in Theorem 126 can thus be traversed in two senses, and one asks 
whether that situation can be employed in order to separate a pair in such a way that one 
can associate the one element with a certain sense of the associated involution and the 
other element of the same involution with the opposite sense. 
 We next treat the imaginary points, planes, and special imaginary lines together.  If: 
 

A ≡ (aν), A′ ≡ ( )aν′   (ν = 1, …, 4 or 1, …, 6) 

 
is a pair of associated involutions then: 
 

B ≡ (aν + aν′ ),  B′ ≡ (aν − aν′ ) 

 
will be the pair in involution that is harmonically separated by A, A′ (*). 
 The sense: 

A B A′ 
will be then be opposite to the sense (** ): 

A B′ A′, 
but will agree with the sense of: 
 

B A′ B′  or A′ B′ A. 
                                                
 (*) There is just one such pair.  One must then have: 
 

− :
λ λ
λ λ

′
′ = − 1 

for it; i.e., λ′ = ± λ.  
 (** ) We consider the line to be closed at infinity.  A sense is then also first fixed for the case of the point 
sequence by a succession of three of its elements. 
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 Rule:  We associate the element: 
D ≡ (aν + i aν′ ) 

with the sense: 
(aν), (aν + aν′ ), ( )aν′ , 

and the element: 
D′ ≡ (aν − i aν′ ) 

with the sense: 
(aν), (aν − aν′ ), ( )aν′ . 

 
 If this rule is to be useful then one must show that the association is independent of 
which pair one bases it on, as opposed to A, A′, or – what amounts to the same thing, 
from the previous paragraph – that it does not change when all numbers of the imaginary 
element are multiplied by the same (complex) factor.  However, we first remark that an 
arbitrary point C ≡ (λ aν + λ′ aν′ ) can be employed in place of B ≡ (aν + aν′ ) when λ′ : λ is 

positive.  If one now uses the pair P, P′ as a basis, instead of A, A′, whereby: 
 
    pν = λ aν + λ′ aν′ , pν′  = λ aν − λ′ aν′ , 

then 

(16)   aν = 
2 2

p pν νλ λ
λ λ

′ ′+
′+

, aν′ = 
2 2

p pν νλ λ
λ λ

′ ′−
′+

, 

 
and D will be identical with 1D′ ≡ (pν − i pν′ ) (cf., the previous paragraph).  On the other 

hand, from our rule, 1D′  will be associated with the sense pν , pν − pν′ , pν′ .  Next, let λ′ : λ 

be positive.  From the remark that was made above and equation (16), this sense will then 
be identical with the sense P A′ P′.  However, this will be the same as the sense A P A′, 
which we can replace A B A′ with.  However, if λ′ : λ is negative then the sense pν , pν 
− pν′ , pν′  will agree with the sense P A P′ or A P A′.  Thus, in both cases, the association 

of the various forms in which the imaginary elements can be given is independent of the 
forms of the associated involutions. 
 In order to derive analogues for the general imaginary lines, we must invoke a 
theorem on pencils of complexes: 
 
 Theorem 127:  Four complexes of a pencil determine the same double ratio δ on any 
plane by way of four null points (which lie in a plane), and likewise, any point will 
determine the same double ratio by way of four (coaxial) null planes of the point. 
 
 Let aik, bik be the axial pointers of two complexes A, B; the pointers of the two others 
C, C′ can then be represented in the form: 
 

aik + λ bik , aik + µ bik . 
 
It suffices to prove one of the two dual assertions: The point xk will be associated [§ 46, 
equation 14)] with the plane: 
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σ ui = 
4

1
ik k

k

a x
=
∑    (i = 1, …, 4; aii = 0), 

by A, with the plane: 

σ ui = 
4

1
ik k

k

a x
=
∑  

by B, and with the plane: 

σ wi = 
4

1

( )ik ik k
k

a a xλ
=

+∑  = σ (ui + λ vi) 

 
by C, etc.  Thus, the double ratio δ of the four planes that the point x is associated with by 
A, B, C, C′ will be: 

δ = 
µ
λ

, 

 
and will be thus independent of xk .  One can speak of the double ratio of the four 
complexes, of the projective association of the complexes of two pencils, or also the same 
pencil, and in the last case, of the involution of pencils of complexes, one of which lies 
inside the other.  The complexes of a pencil are then also paired involutorily in a new 
sense by the fact that they are paired involutorily [§ 56, equation (98) or the proof of 
Theorem 113] (*).  In particular: 

aκ, bκ, aκ + bκ, aκ – bκ 
 
are four harmonic complexes of that pencil whose carrier is associated with the general 
imaginary line: 

pκ = aκ + i bκ 
 
and its conjugates.  We can now carry over the previous arguments to this case and 
extend our rule in it to: 
 
 We associate the general imaginary line aκ + i bκ with the associated ray net that has 
the same sense and is determined on a ray s of the net and a fixed plane that goes 
through it by the null point of the twist: 
 

aκ, aκ + bκ, bκ 
 
and the line aκ − i bκ  of the same net with the opposite sense. 
 

                                                
 (*) One can also say that the complexes of a pencil will be mapped projectively from the null point of a 
fixed plane onto a straight line point sequence.  If the carrier of the pencil is hyperbolic then two involutory 
complexes of the pencil will have two null points in that planes that are harmonically separated by the point 
of intersection with the focal lines (and dually); the double points of an involution then harmonically 
separate each pair.  
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 The question can be posed of whether we can use the null plane of a fixed point on s 
instead of the null point of a fixed plane in this rule without changing the type of 
association: 
 For the determination of the gathered involutions, up to now, we have always thought 
of a fixed, involutory pair of twists and allowed, e.g., a plane to rotate around a ray s of 
the net, so that the null points of the twist-pair cut away a pair of the involution from s in 
any position.  We denote this affinity between a sense of traversal on s and a sense of 
rotation around s by Z. 
 Instead of that, we can now leave the plane fixed and obtain the pairs of the 
involution as the null points of all involutory twist-pairs of the pencil.  The gathered 
involution will then be independent of which twist-pair one resorts to (§ 57).  If we now 
let a twist traverse the pencil continuously then the null point of a fixed plane through s 
will traverse that ray, just as the null plane of a fixed point on s will rotate around that 
line.  Therefore, an affinity Z′ − viz., a sense of traversal on s and a sense of rotation 
around s − will also be established by this, and one asks the question of whether Z′ is 
identical with the affinity Z″ that is defined by Theorem 117 and is itself definitive of the 
sense of the gathered involution.  In order to decide this, we compare Z′ and Z″ with Z. 

 Let s be the null plane of A in the twist G (Fig. 53).  If 

we change G continuously into G′ then ε will rotate into the 

neighboring position η when A is through of as fixed, while, 
by contrast, A will be displaced into the position when s is 
through of as fixed.  The sense of advance σ and the sense 
of rotation τ will then be associated with each other by Z′.  
For a fixed G′, the rotation of the plane from ε to η will then 

correspond to an advance of the null point from B to A; 
therefore, the associations Z and Z′ will be opposite to each 
other. 
 In the comparison of Z and Z″, we assume a right-wound 
ray net in order to fix the presentation.  Any twist in the 
pencil will then be left-wound (Theorem 115).  Thus, the 
null plane will rotate around a ray of the twist in the 

negative sense when the direction of advance of the point is assumed to be positive (§ 58, 
rem.).  The opposite will be true, however, for Z″ for a right-wound net (cf., the 
beginning of this paragraph).  Thus, Z″ and Z will be also opposite, while Z, Z″ will be 
identical.  It will then be irrelevant whether we speak of the null points of a fixed plane or 
the null planes of a fixed point in the rule above. 
 With that, the one-to-one correspondence between imaginary elements and elliptic 
involutions that are endowed with a given sense is concluded (*). 

                                                
 (*) We have placed a lot of value on the idea of completing this association and only then going into the 
relationships between the imaginary elements (i.e., to the incidence relations).  In fact, the use of the 
incidence relation ω(p, q) = 0 in § 61 was not essential, and served only as a heuristic tool.  We can just as 
well say immediately that: We associate the lines: 
 

pκ = aκ + i bκ 
 

 

Figure 53. 

A 

B 
ε 

η τ σ 
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§ 64.  The incidence of imaginary elements with real ones. 
 
 The incidence between two elements, one or both of which are imaginary, will be 
defined by the same equations that are fulfilled by real elements.  Thus, a point x and a 
plane u, one or both of which are imaginary, are then called incident when: 
 

(17)     
4

1
m m

m

u x
=
∑ = 0, 

 
and a point x and a line pkm, when (*): 
 

(18)     
4

1
km m

m

p x
=
∑ = 0  (k = 1, …, 4), 

 
(and the analogous dual statement), and two lines pλ , qλ , when: 
 

(19)     
6

3
1m

p qλ λ+
=
∑ = 0. 

 
One is now dealing with the problem of ascertaining the geometric interpretation of these 
equations by complex pointers.  We will first assume that one of the two elements is real. 
 If u is a real plane, and: 

xm = ym + i zm 
 

is an imaginary point then (17) will decompose into two conditions that express the facts 
that the point y, as well as the point z, lie in u.  Thus, the carrier of the linear point-
involution that represents x will lie in u; an analogous dual statement will be true. 
 If p is a real line, and x is an imaginary point, as above, then (18) will decompose into 
two systems that express the idea that y, as well as z, lie on p, so p will be the carrier of 
the involution that belongs to x.  Conversely, if x is a real point, and: 
 

pkm = akm + i bkm 
 
is an imaginary line then (18) will decompose into the two systems: 
 
(20)  km m

m

a x∑ = 0,  km m
m

b x∑ = 0  (k = 1, …, 4). 

 

                                                                                                                                            
of the gathered involution with the involutory complexes aκ and bκ , without previously speaking of the fact 
that the ordering rays of this involution are, at the same time, the ones that fulfill the incidence relation with 
p.  
 (*) The symbol p with one and two indices shall also be connected with the same Table (25) in § 33 for 
imaginary lines as it was for real lines.  The p are to be considered as axial pointers, since the system (18) 
is dual to the equations (38) of  § 38. 
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Now, if the imaginary line is general then the determinants | akm | and | bkm | (§ 62) (and 
likewise the invariants a and b of the twist) will be non-zero (§ 46).  Equations (20) can 
only be fulfilled when all x are equal to zero; i.e., when there is no real point that is 
incident with a general imaginary line.  However, if the imaginary line is special then the 
two determinants will be zero, and equations (20) will be precisely the same (except for 
notation) as the ones that served for us to find the point of intersection of two incident 
lines a, b.  The vertex of the ray involution that belongs to p will be the only real point 
that lies in p; an analogous dual statement will be true. 
 The incidence of a real line with a general imaginary one was already discussed in § 
61.  For a special imaginary p and a real q, (19) will decompose into two conditions that 
express the ideas that a will be cut by two rays of the involution that belongs to p, and 
will thus be incident with the vertex or the plane of the pencil that belongs to p.  We 
summarize (along with the dual results that were still not expressed up to now): 
 
 Theorem 128: 
 A real point lies in an imaginary plane when it lies on the axis of the associated 
involution. 
 An imaginary point lines on a real plane when the carrier of its associated involution 
lies in the plane. 
 A real line is incident with an imaginary point or an imaginary plane when it is 
identical with the carrier of the associated involution. 
 A special imaginary line is incident with a real point when it is the vertex of the 
representing pencil, with a real plane when it is the plane of that pencil, with a real line 
when it is either incident with the vertex or with the plane of the pencil, and with a 
general imaginary line when it belongs to the associated ray net. 
 A real point or a real plane cannot be incident with a general, imaginary line (*). 
 

__________ 
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 a) (** ) For the incidence of the imaginary point: 
 

xm = ym + i zm  (m = 1, …, 4) 
and the imaginary plane: 

um = vm + i wm  (m = 1, …, 4), 
 
(17) will decompose into the two conditions: 
 

                                                
 (*) It should be mentioned that when a real line p and an imaginary point x are not incident, along with 
the general position, one can also find a special one, namely, when p is cut by the carrier of the involution 
that belongs to x; an analogous dual statement is true.  If, moreover, a special imaginary line q cuts a real 
one p then the two cases that were mentioned in the text can appear simultaneously; p will then be a ray of 
the involution that belongs to q. 
 (** ) From an (unpublished) lecture of v. Dantscher (Univ. Graz., Summer Sem. 1890).  
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(21)    ∑ ym vm − ∑ zm wm = 0, 

(22)    ∑ ym vm + ∑ zm wm = 0 . 
However, we can assume: 

(23)     ∑ ym vm = 0. 
 
We can then choose the starting pair of the involution to be y, z, and choose: 
 

ξm = λ ym + λ′ zm , mξ ′ = λ′ ym − λ zm , 

 
to which x belongs, to be an arbitrary pair of the involution, and thus the one in which the 
point of intersection y of its carrier with the plane v enters.  It will then follow that: 
 

(24)     ∑ zm wm = 0 ; 
 
i.e., the other point of that pair will lie in the plane w of the plane involution that is 
associated with the plane v: 
 

ηm = µ vm + µ′ wm ,  η′ = µ′  vm − µ wm 
 
that belongs to u.  We now choose one such point ξ of the one and only one such plane η 
of the other involution, which are incident, so, from (23) and (24): 
 

(25)    λ µ′ ∑ ym wm + λ′ µ ∑ zm vm = 0 . 
 
It can now be the case that the last two sums vanish individually; y, as well as x, will then 
lie in v, as well as in w; i.e., the point and plane involutions will coincide.  On the other 
hand, if one uses (22) then (25) will reduce to: 
 

λ µ′ − λ′ µ = v; 
 

i.e., ξ and η will be incident when 
µ
µ

′
 = 

λ
λ

′
;  however, one will also have  − µ

µ ′
 = − λ

λ′
 

then; i.e., ξ and η will also be incident, and the involutions will lie perspectively. 
 Moreover, we have associated with the element x with the sense: 
 

ym ,  ym + zm , zm , 
and the element u with the sense: 

vm ,  vm + wm , wm . 
 
Since the elements that are arranged in a column are incident, when the point involution 
is traversed in the prescribed sense, the plane that is carried along by means of the 
perspective relation will also rotate in the prescribed sense.  In such cases, we will say 
that the involutions are perspective including the sense. 
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 Theorem 129:  An imaginary point and an imaginary plane are incident when the 
associated involutions are perspective including the sense (principal case), or when the 
carriers of the involutions are identical (special case). 
 
 It follows immediately from this theorem (purely or algebraically) that when the point 
ym + i zm and the plane vm + i wm are incident then the same thing will be true for ym – i zm 
and vm – i wm, but not perhaps for ym + i zm and vm – i wm . 
 We can consider (17) to be the equation of an imaginary point or a plane, just as it is 
for real elements, according to whether the x or the u are constant, resp.. 
 
 b) If the special imaginary line: 

pkm = akm + i bkm 
 
is incident with the imaginary point: 

xm = ym + i zm 
 
then the conditions (18) will decompose into the two systems: 
 

(26)   
4 4

1 1
km m km m

m m

a y b z
= =

−∑ ∑ = 0, 

         (k = 1, …, 4) 

(27)   
4 4

1 1
km m km m

m m

a z b y
= =

+∑ ∑ = 0. 

 
We knew from the outset that the two systems did not contradict each other, since the 
system (18), from which they were obtained, had the solutions x from the vanishing of 
the determinant | pkm |.  On the same basis, we can assume, as we did in a), that: 
 

∑ akm ym = 0. 
It will then follow that one also has: 

∑ bkm zm = 0; 
 
i.e., the carrier of the point involution will lie in the plane of the pencil of rays.  However, 
it cannot coincide with a ray of the pencil, since otherwise we would choose y to be the 
vertex of the pencil, and it would follow that all four sums in (26) and (27) would vanish 
individually; i.e., z would also have to coincide with the vertex.  From the representation 
of the involutions: 

πkm = λ akm + λ′ bkm ,  kmπ ′  = λ′ akm − λ bkm , 

and 
ξ = µ ym + µ′ zm ,  ξ′ = µ′ ym − µ zm , 

 
we can then conclude, as we did in a), that they lie perspectively, including the sense. 
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 Theorem 130:  A special imaginary line is incident with an imaginary point or an 
imaginary plane when the two associated involutions are perspective including the sense. 
 
 A special imaginary line p was incident with a real line q when it was (§ 64) either 
incident with the vertex or the plane of the involution J that was associated with p.  We 
are now in a position to give the common plane E, in the first case, and the common point 
P, in the second: E is represented by the involution that projects J onto q, and P, by the 
involution in which q is cut by J. 
 
 c) We can now resolve the case of the incidence of two special imaginary lines p, q 
by reverting immediately to the discussion of equation (19).  If that equation is fulfilled 
then the lines will have a common point, and it was previously remarked (§ 39, c) that 
this analytical fact is independent of the reality of the elements.  There is then a point x 
that is incident with p, as well as q, and once we have already interpreted this situation 
geometrically, it must follow without calculation that: 
 Let x first be real.  From Theorem 128, x must coincide with the vertices of two 
involutions, but their planes E, E′ can be different.  In order to find u, we denote the line 
of intersection E, E′ by s (Fig. 54).  It will correspond to a ray s′ in the involution p and to 
a ray σ′ in the involution q.  We then think of the involution p as being given by the pair 
s, s′, and the pair t, t′ that is harmonic to it, while q is given by s, σ′ and the pair τ, τ′ that 
is harmonic to it.  Now, the ray shadows (Strahlenwürfe) s, σ′ , τ, τ′ , and s, s′, t, t′ lie 
perspectively, and indeed in two ways, when one makes no recourse to the sense, since 
one has: 

(s, σ′ , τ, τ′ ) = (s, s′, t, t′), 
as well as: 

(s, σ′ , τ′, τ) = (s, s′, t, t′). 
 
However, if s, t, s′ is the sense that belongs to p and s, τ, σ′ is the sense that belongs to q 
then there will be only one plane involution that lies perspectively to p, as well as to q, 
including the sense.  One will find its axis when one, e.g., intersects the planes s, σ′ and t, 
τ. 
 Dually, u can be real and x imaginary; the carrier of x will be the only line in the 
plane u on which the two pencils of rays p, q cut out involutions that are perspective 
including the sense.  Naturally, x, as well as u, can be real.  The two involutions will then 
have a common vertex and lie in the same plane. 
 Finally, x and u can both be imaginary (the general case); p and q will then cut out the 
same point involution on the line of intersection of their planes and, at the same time, the 
connecting line of their vertices will determine the axis of that plane involution.  We 
spare ourselves the repeated formulation of all these possibilities and merely emphasize 
that: 
 
 Theorem 131:  The incidence of two special, imaginary lines subsumes four cases. 
 
 d) When the general imaginary line: 
 

pkm = akm + i bkm 
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is incident with the imaginary point: 
xm = ym + i zm , 

 
the system (18) will likewise decompose into the two systems: 
 

(26)   
4 4

1 1
km m km m

m m

a y b z
= =

−∑ ∑ = 0, 

         (k = 1, …, 4) 

(27)   
4 4

1 1
km m km m

m m

a z b y
= =

+∑ ∑ = 0. 

 
The determinants | akm | and | bkm | will now be non-zero (§ 62 and § 46) and numerically 
equal (§ 61, equation 9).  These systems do not contradict each other, on the same 
grounds as in b).  However, since the z that is associated with the given value y by the 
system is already determined, the two systems must be equivalent. 
 We first write the representation of the gathered involution as a point manifold.  It is 
defined by the two systems: 
 

(28) σ uk = 
4

1
km m

m

a z
=
∑ ,   29) σ′ uk = 

4

1
km m

m

b y
=

′∑  (k = 1, …, 4) 

 
(cf., § 46).  (28) expresses the connection between the pointers of a point and those if its 
null plane u in the twist u, (29) expresses the one from b, and the gathered involution 
indeed arises by composing these two conversions.  In order to be able to immediately 
calculate the pointers y of the point that corresponds to a point y in that involution, we 
must solve (29) for the y′ and then substitute the values of u from (28) in the right-hand 
side.  However, we write the connection between the y and the y′ in the form (*): 
 

(30)  
4

1
km m

m

a y
=
∑ = τ 

4

1
km m

m

b y
=

′∑   (k = 1, …, 4). 

 
A comparison of systems (26) and (30) shows that the point y that belongs to x in the line 
involution J and the one that belongs to p in the gathered involution J′ correspond to the 
same point.  Since we can base the representation of J on an arbitrary pair, instead of y, z 
(§ 62), it will follow that this is true for every point of J, so J will be identical with the 
involution that is defined on its carrier g by J′ ; we call it (J′, g).   However, similar to 
what we did in the previous cases, we would also like to convince ourselves of that by 
                                                
 (*) If one is merely dealing with the calculation of an individual system of values y′ for a given system 
y, one can set the proportionality factor τ = σ : σ ′equal to unity.   However, if one has to deal with deciding 
whether a system of values y that is calculated from (30) is equivalent to one that is given in some other 
way, as we are here, then this would not be allowed.  By contrast, it neither necessary nor allowed to add a 
proportionality factor to the one term in equations (26) and (27) [and also with (21) and (22) already].  If 
we then fix the absolute values of the y then those of the z will also be fixed (Theorem 124), if the 
involution is to find its simplest representation.  Likewise, when the absolute values of the a are fixed those 
of the b will be determined by § 61, equation (9). 
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calculation, in order to clarify the association of senses: Let x be represented by the 
involution: 

ξm = λ ym + λ′ zm ,  mξ ′ = λ′ ym − λ zm . 

 
We seek the point my′  that corresponds to ξm in J′ when we replace ym with ξm in (30) and 

obtain, by means of (26) and (27): 
 

λ ∑ bkm zm − λ′ ∑ bkm ym = τ  ∑ bkm my′ . 

 
This equation will be fulfilled identically when one sets my′  equal to mξ ′  and τ = − 1.  

Now, there is only one solution system y′ ; thus, the points that correspond to ξ in J and J′ 
will be identical.  x belongs to the sense: 
 

ym ,  ym + zm , zm , 
on g; p belongs to the sense: 

akm , akm + bkm , bkm 
 

that the twist determines by means of the null point to a fixed plane that goes through g.  
We choose the fixed plane to be the null plane of y in a [and thus calculate the u from 
(28)], and then determine its null point y′ in the second twist a + b by way of: 
 

(31)  τ uk = 
4

1

( )km km m
m

a b y
=

′+∑    (k = 1, …, 4), 

 
and in the third one b by: 

(32)     σ′ uk = 
4

1
km m

m

b z
=
∑ , 

 
and these values of z will, in fact, be identical to the ones in the representation: 
 

xm = ym + i zm , 
 
due to the identity of the involutions J and (J′, g).  One can now show that the point my′  

is, in turn, identical with ym + zm .  In fact, if we calculate the null plane ku′  of the latter 

point in the second twist then we will have to substitute my′ = ym + zm in (31).  Of the four 

sums, two of them will disappear by means of (27), and we will obtain: 
 

(33)    τ ku′  = ∑ akm ym + ∑ bkm zm , 

so 
τ ku′  = (σ + σ′ ) uk ; 
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i.e., u′ will be identical with u.  Thus, the involutions J and (J′, g) will be identical, 
including the sense. 
 
 Theorem 132:  If the general, imaginary line (let its associated gathered involution 
be J′) is incident with an imaginary point (an imaginary plane, resp.) for which g is the 
carrier of the associated point involution of J (for which g is the axis of the associated 
plane involution J, resp.) then the involution that J′ determines on g (around g, resp.) will 
be identical with J, including the sense. 
 
 In this case, we would also like to say that J lies perspectively with J′, including the 
sense, when J is actually a part of J′ here.  A general, imaginary line thus contains ∞2 
imaginary points, namely, one on each ray of the associated net; analogously, ∞2 
imaginary planes will go through it. 
 
 e) We can now resolve the case of the incidence of a general, imaginary line p with a 
special, imaginary q on the same grounds as in c) by a simple argument: From Theorem 
128, the common point x of p and q and the common plane u cannot be real.  From 
Theorem 130, x must lie on the same ray s of the net N that belongs to p, which lies in the 
plane of the ray involution q, and the involution that cuts out q from s must be 
perspective with gathered involution J that belongs to p, including the sense.  If this is the 
case then the following must enter into consideration by itself (and conversely): A ray t 
of N goes through the vertex of q, and the plane involution that projects q from t must be 
perspective to J′, likewise including the sense.  In this case, we say that the ray involution 
q lies perspectively to a gathered involution J′, including the sense. 
 
 Theorem 133:  If a general, imaginary line is incident with a special one then the 
corresponding gathered and ray involutions will lie perspectively, including the sense. 
 
 f) A general, imaginary line: 

pk = ak + i ka′  

 
has an imaginary point x (with the carrier g), as well as an imaginary plane u (with the 
axis h), in common with another general line: 
 

qk = bk + i kb′ , 

 
and they must be incident with each other.  One then asks whether the latter incidence is 
present in the principal case or the special case (Theorem 129).  Above all, g and h must 
be common rays of the two nets N and N′ that belong to p and q, resp.  We thus come to 
the question of how many rays two (elliptic) nets can have in common.  If we think of 
each of them as the intersection of two twists then this will come down to the 
determination of the common rays to four twists.  We will examine the relationships 
between several twists more closely in the next chapter, and here we merely point out that 
the four equations of the twists: 
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(34)   
6

, 3
1

aλ µ µ
µ

π+
=
∑ = 0  (λ = 1, …, 4), 

 
together with the equation: 

ω(π) = 0, 
 
will generally have two systems of solutions (which is entirely similar to the situation in 
§ 61), which naturally can also coincide, but will certainly be real, in our case (*).  We 
first assume that g and h are different, and that g is the carrier of the common imaginary 
point x.  If g were also the axis of the common plane u then the involution u would cut 
out a second common imaginary point y (Theorem 117) from the second common ray h 
of the net.  However the gathered involutions would then be identical, since an imaginary 
line is determined by two of its points, just as a real one is (** ).  Thus, if g is the carrier of 
x then h will be the axis of u. 
                                                
 (*) Equations (34) can be independent of each other and have infinitely many solutions; however, this 
will be excluded by the following considerations. 
 (** ) Namely, if the system (18) is fulfilled by two (complex) systems of values xk and yk then the ratios of 
the p will be determined completely by that.  For example, one finds from the first equations of that system 
that: 

p12 : p13 : p14 = x3 y4 – x4 y3 ; … 
 
Briefly, if one denotes xl ym – xm yl = (l, m) then the two systems will fulfilled identically with: 
 

pik = (l, m), 
 
in which the sequence of indices i, k; l, m is constructed according to known rules (§ 46).  However, the p 
also fulfill the relation ω(p) = 0, which emerges from its construction [cf., the derivation of this relation in § 
46] or from the fact that the factor ω(p) appears in the determinant of p (§ 32), and when it does not vanish, 
the system cannot be fulfilled by the values x or y.  In fact, a line is then determined uniquely by two 
imaginary points (planes, resp.).  We already know otherwise that this general or special line will be 
imaginary or real according to whether the carriers of the points (the axes of the planes) do not intersect, do 
intersect, or coincide, respectively. 
 The p were axial pointers in (18).  If we then call the ray pointers πik then, from the conclusion of § 62, 
we have to set: 

πik = xi yk – xk yi . 
 
The pointers of an imaginary line thus have formally obtained the same representation by the pointers of 
two of their points (two of their planes, resp.) that was taken to be the starting point of the definition of line 
pointers for real lines.  It follows immediately that the totality of the points of the connecting line xk , yk will 
also be represented by: 
(35)     σ zk = λ xk + µ yk  (k = 1, …, 4) 
 
for imaginary elements, since all of the three-rowed determinants in the matrix: 
 

xk , yk , zk 
 
will vanish, which is what the relations (18) imply, and this says that z will be incident with the connecting 
line x, y.  The choice of λ and µ will now include a four-fold arbitrariness in it.  However, one and the same 
imaginary point can be written in ∞2 ways, due to the multiplication by a complex factor, such that we will 
now get ∞2 points on the line, as it must be.  If the x and y are real, but λ and µ are complex, then we will 
obtain the imaginary points on a real line.  In fact, there will be ∞2 elliptic involutions on one such line. 
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 Theorem 134:  If two general, imaginary lines are incident then there will be 
incidence between their common point that their common plane, from the principal case 
or the special case of Theorem 129, respectively, according to whether the two 
associated ray nets have two rays or one ray in common, respectively. 
 
 g) We have now interpreted the incidence relation between imaginary elements 
geometrically in all possible cases, and it is immediately obvious − analytically, as well 
as geometrically − that: 
 
 Theorem 135:  If two imaginary elements are incident then their conjugate elements 
will also be incident. 
 
 If two involutions are perspective, including the sense, and one inverts the sense of 
each of them then they will once more be perspective, including the sense. 
 
 h) If one considers only the elements that lie in a fixed real plane E then the 
imaginary planes and general, imaginary lines will drop out (Theorem 128), and it will 
also follow from the second case of § 65, e) and f) in this paragraph (middle of the 
remark) that for the imaginary points and lines of E, any two elements of the one kind 
will determine one of the other kind.  It is then unnecessary to develop a special “theory 
of the imaginary elements in the plane” beforehand.  Analytically, one makes this 
restriction to the theory in the plane such that one thinks of E as a plane of the basic 
tetrahedron, so one pointer will be set to zero from the outset for all points and three 
pointers for all lines.  Thus, imaginary points, as well as lines, in the plane will have three 
homogeneous pointers.  In fact, it will also follow from the incidence relations: 
 

ik k
k

uπ∑ = 0  (i = 1, …, 4) 

 
in § 38 that the three quantities π21, π31, π41 will vanish when, e.g., only u1 is non-zero, 
even for imaginary elements.  One can likewise speak of a theory of imaginary elements 
in sheaves of rays, in which only imaginary planes and special imaginary lines are 
present. 

__________ 
 
 

§ 66.  Joins and meets of imaginary elements. 
 

 The linear constructions that are single-valued for real elements will also be single-
valued for imaginary ones.  They will then emerge analytically from certain properties of 
determinants or calculations involving them that are independent of whether the numbers 
are real or complex.  We have thus already convinced ourselves in § 65, f), rem., that the 
problem of joining two points into a line is also soluble and single-valued in the 
imaginary domain.  Furthermore, e.g., a plane will always be determined by three 
independent points, since the ratios of the u can be calculated from the three equations: 
 



§ 66.  Joins and meets of imaginary elements. 177 

4

1
ik k

k

x u
=
∑  = 0  (i = 1, …, 3). 

 
It then follows from this that a plane is also determined by a line and a point, etc.  One 
then only has to deal with obtaining the solutions constructively.  Therefore, we will 
often assume that an involution is given by two such pairs that are harmonically 
separated; we will call then a harmonic quadruple of the involution.  From § 63 (first 
rem.), a harmonic quadruple of an elliptic involution is determined completely by one of 
its elements. 
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Figure 55. 
 

 If an elliptic involution is given by two arbitrary pairs A, A′; B, B′ (Fig. 55) then one 
can find a harmonic quadruple for it as follows: One projects A, A′; B, B′ from any point 
S of a conic section K on it to α, α′; β, β′, determines the center U of the curved 
involution, and draws two conjugate chords through U; e.g., one joins the pole P of α, α′ 
with U and projects the points of intersection γ, γ′  with K from S to C, C′.  A, A′; C, C′ 
will then be a harmonic quadruple of the involution (cf., S. S. VII, arts. 79, 92 for this; 
namely, one will have (P, U, γ, γ′ ) = − 1; if one projects these points from α onto K then 
it will follow that α, α′; γ, γ′ also lie harmonically). 
 
 a) Joining two imaginary points of a real plane. 
 
 We first think of the two points as given by the two harmonic quadruples S, S′; T, T′ 
and S, 1S′ ; T1, 1T′ , in which one finds the point of intersection S of their carriers g and g1 

(Fig. 56).  These quadruples lie perspectively in two ways [cf., § 65, c)].  Thus, if the 
point x is represented by the involution on g with the sense S T S′ and the point y, by the 
involution on g1 with the sense 1 1S T S′ , and of the conjugate points are called x, y then the 

connecting lines will be represented as follows: 
 
 x y, by the ray involution around C with the sense σ, 
 x′y′  “ “ “ “ “  “ “ − σ, 
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 x y′  “ “ “ “ C′  “ “   τ, 
 x′y  “ “ “ “ “  “ “ − τ . 

 

Figure 56. 
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Without taking recourse to a figure, the correct center the correct sense in any case – e.g., 
in the third case – will be determined by the two senses: 
 
 S  T  S′ 
 S 1T′ 1S′  

 
such that one joins the elements of the last two pairs that lie above and  below each other.  
The point of intersection of the lines that arise in that way will determine the sense with 
one of the two rows. 
 If the involutions on g, g1 are given by an arbitrary harmonic quadruple then one can 
revert from this case to the one that was just treated by employing a conic section in a 
manner that is similar to Fig. 55, or one can also solve the problem linearly that we, 
following Grünwald (Zeitschr. f. Math. u. Phys., Bd. 45, 1900), follow through in the 
dual case: 

 

Figure 57. 
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 b) Intersecting two imaginary lines in a real plane. 
 
 Let the lines g and g1 be given by the two elliptical involutions a, a′; b, b′ and a1, 1a′ ; 

b1, 1b′ , which we also call their vertices S, S1 (Fig. 57).  One is then merely dealing with 

the problem of finding the line in the plane on which the same involution will be cut out 
by S and S1.  We merely assume that (a, a′, b, b′) = (a1, 1a′ , b1, 1b′ ).  The involutions will 

then be related to each other projectively, and the rays that correspond to the points of 
intersection α, α′, β, β′  will lie on the same conic section K with S and S1, on which a 
curved involution J with the center U is defined by α, α′, β, β′.  The polar u of U has the 
property that the involution that is defined by K on it (S. S. VII, art. 92, 5) will also be 
obtained when J is projected from an arbitrary point of K (S. S. VII, art. 98, 4).  u will 
then be the desired carrier of the imaginary point of intersection P of g and g1.  One 
obtains a representation of P itself when one intersects one of the involutions S or S1 with 
u; u will then be found linearly from the points of intersection of the opposite edges of 
the tetrangle α, α′, β, β′. 
 In particular, if the two ray quadruples are harmonic then α, α′; β, β′ will also be four 
harmonic points on K.  If one projects from one of them (e.g., from α) onto u then one 
will obtain a harmonic representation of P.  In that way, the tangent to K at α is to be 
considered as the connecting line αα, and thus, the ray that is separated harmonically 
from αα′ by αβ and αβ′.  Its point of intersection with u will be identical with the point 
(u, ββ′).  One sees that in this case the imaginary point will already be determined by the 
simple tetrangle αβα′β′ (which is endowed with a sense of traversal) alone.  This can 
also serve as a “representation” of the imaginary point then.  However, the tetrangles will 
no longer be in one-to-one correspondence with the imaginary points, unlike the elliptic 
involutions. 
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 c) Intersecting a general, imaginary line γ with a real plane E. 
 
 Let γ be given by two imaginary points; i.e., by the involutions A, A′; B, B′ on g and 
A1, 1A′ ; B1, 1B′on g1 (Fig. 58).  Once again, let: 

 
(A A′ B B′) = (A1 1A′  B1 1B′ ) = D. 

 
One projects the involution onto g from g1 through the planes α, α′; β, β′, and conversely 
projects the involution onto g1 from g through the planes α1, 1α ′ ; β1, 1β ′  on E.  The 

special, imaginary lines (a, a′; b, b′) and (a1, 1a′ ; b1, 1b′ ) will arise in this way, whose 

common point one can construct from b).  One sees how one can then construct 
arbitrarily many more points of an imaginary line that is given by two points. 
 In particular, if D = − 1 then the four fixed lines αα1, 1α α′ ′ ; ββ1, 1β β′ ′  (which lie 

harmonically on the same family of rulings and determine an involution there) will cut 
out four points from E for an arbitrary position of E, by which the imaginary point of 
intersection (γ E), in the sense of b), will be defined. 
 
 d) Draw a plane through a general, imaginary line γ and a real point Q. 
 
 Let γ be given as in c).  If we project the involutions A, A′; B, B′ and C, C′; D, D′ 
from Q then we will obtain two special, imaginary lines that both lie in the desired plane.  
We thus come back to the problem that was solved in § 65, c). 
 
 e) Draw a plane through three imaginary points A, B, C in general position. 
 
 In order to convert this problem into the sub-problem that was solved already, one 
can make a sketch with real elements (Fig. 59).  Since the reciprocal way of determining 
the points, planes, and lines from each other is 
independent of the reality of the elements, this 
sketch will also have a schematic meaning for 
imaginary elements.  We draw an arbitrary real 
plane E through the point A, which we intersect 
with the general, imaginary line BC at P, as in c).  
The connecting line AP (a special, imaginary 
line) that was constructed as in a) will lie in the 
desired plane ε.  The vertex of its involution will 

then be a real point of ε, and we will come back to the 
case d). 
 
 f) Intersect a general, imaginary line g with an 
imaginary plane. 
 
 We think of γ as being determined by two imaginary 
planes and thus come to a problem that is dual to the 
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one that was just solved. 
 
 g) Decide whether two general, imaginary lines γ and γ′ intersect. 
 
 We make use of a real sketch (Fig, 60), as in e), and draw an arbitrary plane E 
through γ′ (i.e., we consider any planar involution that lies perspectively to a gathered 
one) and intersect it with γ, as in f).  If the point of intersection also belongs to γ′ then γ, γ′ 
will intersect at that point. 
 
 h) In order to be able to solve a problem in imaginary lines constructively, it is 
necessary to revert to the manner of determination of the associated net N by two 

imaginary points on it by four rays (the solution of the converse problem is contained in § 
66, e); i.e., to determine the associated gathered involution by two imaginary points when 
four rays g1, g2, g3, g4 of N are given.  A family of rulings R is determined by g1, g2, g3, 

and it will determine an involution J on g4 .  If one projects J onto g1 then the rays of the 
guiding family L of R will also be paired involutorily by that.  L will thus cut two 

imaginary points out of any two of the lines g1, g2, g3 that determine a line γ completely; 
it is the desired one.  L also determines a gathered involution (we are anticipating 

Theorem 137) in which the three planes that join a point P of g4 with g1, g2, g3 correspond 
to three such lines that intersect at the point P that is conjugate relative to R.  Thus, g4 

also belongs to the net of γ.  The determination of the involution J is an elementary 
problem, and can be solved when one draws a plane through g4 , intersects it with the 
hyperboloid, etc. 
 For later purposes, we remark here that the polar 4g′  of g4 also belongs to N.  If we 

then draw two planes through g4 then we will obtain two collinear fields (Theorem 103) 
in which all of the intersection curves with R correspond to each other, and thus also the 

pole of g4 relative to it. 
 
 i) The solutions to the other elementary meet and join problems are partly dual to 
the foregoing ones and partly self-explanatory from what was said up to now.  Whenever, 
e.g., a real element meets or joins with an imaginary one, that will come down to the 
projection or intersection of the involution in question, although when one is dealing with 
a general, imaginary line, it will come down to the search for the rays of the net that are 
incident (or coincide) with the real element. 
 

__________ 
 
 

§ 67.  Involutory families of rulings and their relationship to gathered involutions. 
 

 One can pair off the rays of a family of rulings R involutorily when one chooses an 

involution on any of its guiding rays.  One then calls R an involutory family of rulings.  

Such a family is said to be included in a gathered involution J when its rays are 



182 V.  Imaginary elements. 

associated with each other in the same way that they are by J.  For example, an elliptic-
involutory family of rulings R that is included in J is defined by three rays l, l′, l″ of the 

net N that belongs to J when they are used as its guiding rays.  Each ray p that cuts l, l′, l″ 
will then correspond to a ray p′ in J that cuts the same lines, and thus belongs to R.  An 

involution in R that pairs off the rays of R in the same way that J does is defined by the 

involution on one of the lines l, l′, l″. 
 We think of J as being determined by two imaginary pairs, namely, by the elliptic 
involutions x, ξ, x′, ξ′ on g (Fig. 61) and y, η, y′, η′ on h, where the sequences of symbols 
are defined at the same time as the senses.  Let the double ratio be: 
 

(x, x′, ξ, ξ′ ) = δ. 
 
We assume that y, y′ is chosen to be an arbitrary pair of the involution on h, and choose 
η, η′ to be the pair for which one also has: 
 
(36)     (y, y′¸ η, η′ ) = δ. 
 
The point sequences g, h can be related to each other projectively in such a way that the 
quadruples x, x′, ξ, ξ′ and y, y′¸ η, η′ correspond to each other.  Now, g and h generate an 
involutory family of rulings that is included in J, in which: 
 

p ≡ (x, y), p′ ≡ (x′, y′), 
and 

π ≡ (ξ, η), π′ ≡ (ξ′, η′) 
 
are two pairs of corresponding rays (*). 

 

π′ 

p′ 

π 

p 

h 

y 

t 

g 

x 

η 

y′ 

p 
q 

q′ 

η′ p′ 

ξ 

x′ 

ξ′ 

Figure 61. 
 

                                                
 (*) Since the pair y, y′ (i.e., one of its points) can be chosen arbitrarily for given involutions on g and h 
and fixed x, x′, ξ, ξ′ , the two involutions will give rise to ∞1 involutory families of rulings.  However, since 
one can base the representation of the involution on h on an arbitrary pair y, y′, the following calculations 
will be true for all of these families of rulings. 
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 We can set: 

(37)   
, ,

, .
i i i i i i

k k k k k k

x x x x

y y y y

ξ λ µ ξ µ λ
η λ µ η µ λ

′ ′ ′= + = −
′ ′ ′ ′ ′ ′ ′= + = −

 

 
However, due to (36), we must have: 
 

:
µ λ
λ µ

′ ′
−

′ ′
= :

µ λ
λ µ

− , 

so we can assume that: 
λ′ : µ′ = λ : µ, 

ηk = λ yk + kyµ ′ , kη ′ = µ yk − kyλ ′ . 

One will have: 
πik = ξi ηk – ξk ηi , 

so: 

(38)    
2 2

2 2

( ) ,

( ) ,
ik ik ik ik ik

ik ik ik ik ik

p q q p

p q q p

π λ λµ µ
π µ λµ λ

′ ′= + + +
′ ′ ′= − + +

 

 
if q, q′ are the diagonals of the skew tetrangle x, y, y′, x′.  If we consider λ : µ to be 
variable in this then we will have a representation of the elliptic-involutory family of 
rulings. 
 We calculate its double rays d, d′ when we set: 
 

πik = ikσπ ′ , 

so 
(λ2 – σµ2) pik + λµ (1 + σ) (qik + ikq′ ) + (µ2 – σλ2)  = 0. 

 
We can now fulfill these six equations simultaneously when: 
 

σ = − 1,  µ = ± iλ. 
We will thus find: 

(39)    
( ),

( ).
ik ik ik ik ik

ik ik ik ik ik

d p p i q q

d p p i q q

′ ′= − + +
′ ′ ′= − − +

 

 
On the other hand, we know [§ 64, f), rem.] that the points of an imaginary line, any two 
points of which are: 

xi = xi + iix′ ,  hk = yk + kiy′ , 

 
can be allowed to coincide, just as they do for a real line.  Thus, the line γ that belongs to 
J will have the pointers: 
 
(40)   γik = xi hk − xk hi = pik − ikp′ + i (qik + ikq′ ). 
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If we then separate the two double rays of R in a manner that is analogous to what we did 

with the previous structure such that we associate the ray d of the involution, whose sense 
is p, π, p′, π′, with the ray d′ that has the sense p, π′, p′, π then the double ray d will agree 
precisely with the imaginary line that is associated with the involution J.  Since two 
arbitrary rays of N can be taken to be g, h, this will be true for any involutory family of 
rulings that is contained in J.  In fact, each of them must cut all of its guiding rays in 
point involutions.  The carriers of the point involutions that are contained in J are, 
however, exhausted by the rays of N.  Therefore, our construction will yield all of the 
involutory families of rulings that are contained in J. 
 For a hyperbolic-involutory family of rulings, from the remark regarding Theorem 
124, merely a plus sign will enter equations (37), and therefore also (38), in place of the 
minus sign.  Its double rays will be represented by: 
 
(39.a)  dik = pik + ikp′ + qik + ikq′ , ikd′ = pik + ikp′ − (qik + ikq′ ). 

 
If one starts with the representation of the point-involutions on g and h by their double 
points s, s′; t, t′, namely: 

, ,

, ,
i i i i i i

k k k k k k

s s s s

t t t t

ξ λ µ ξ λ µ
η λ µ η λ µ

′ ′ ′= + = −
′ ′ ′= + = −

 

then one will get: 

(41)    
2 2

2 2

( ) ,

( )

d r r d

d r r d

π λ λµ µ
π λ λµ µ

′ ′= + + +
′ ′ ′= − + +

 

 
as the representation of the involutory family of rulings, in which r, r′ mean the 
connecting lines s t′ and s′ t. 
 
 Theorem 136:  The double rays of any involutory family of rulings R that is 

contained in a gathered involution J are identical with the two imaginary lines that 
belong to J when one traverses J in both sense.  All guiding rays of R are rays of the net 

that belongs to J. 
 
 We confirm the latter situation analytically.  Since t is a line that cuts p, p′, π, one will 
have: 

∑ pik tlm = 0,  ik lmp t′∑ = 0, 

∑ (qik +  ikq′ ) tlm = 0. 

One will then also have: 

∑ γik tlm = 0; 
 
t will then fulfill the incidence condition with γ, so (§ 61) it will belong to the rays of N. 
 Since an imaginary line is determined completely by an elliptic-involutory family of 
rulings R (all with a well-defined sense), a gathered involution must also be determined 
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by R when one adds the assumption that all of its guiding rays are ordering rays in the 

involution.  In fact, the five independent points x, x′, y, y′, P (Fig. 61) will correspond to 
the five such points x′, x, y′, y, P′, by which a collineation is determined (Killing, Analyt. 
Geom. II, pp. 231). 
 
 Theorem 137:  A gathered involution is determined completely by each involutory 
family of rulings that it contains. 
 
 However, imaginary lines would not be defined by an involutory family of rulings, 
since the guiding rays of such a family would contain merely ∞1 of the ∞2 points of an 
imaginary line, so the association of general, imaginary lines and elliptic-involutory 
families of rulings is not, by any means, a one-to-one correspondence; moreover, ∞3 
involutory families of rulings will belong to any general, imaginary line. 
 We thus make note of the fact that two imaginary lines γ, γ′ that belong to a gathered 
involution J can also be regarded as the locus of double points of that involution.  Every 
point of γ or γ′  will then be a double point of an elliptic involution that is contained 
precisely in J.  In connection with § 62, we thus have the completely general: 
 
 Theorem 138:  The imaginary elements are always also the double elements of the 
involutions that they belong to. 

__________ 
 
 

§ 68.  Imaginary elements in rectangular pointer systems. 
 

 From § 31, we can regard the rectangular points as a special case of the tetrahedral 
ones.  If x1 = u1 = 1 then, from now on, we will have three pointers for both imaginary 
points and planes in a rectangular system, but six for an imaginary line when they are ray 
pointers that are connected with the point pointers by equations (24) of § 33 [cf., § 65, f), 
rem.].  All investigations of the geometric meaning of the incidence conditions, into the 
identity of the imaginary elements with the double elements of the elliptic involutions, 
etc., and more briefly, all essential results of the foregoing paragraphs will be 
unperturbed by this specialization.  Here, one comes down to only the problem of 
examining the position of the imaginary elements in relation to the pointer system in 
which the metric properties of the involutions and their distinguished elements will also 
come to be valid. 
 
 a) We solve our problem for the imaginary points by giving ourselves a 
representation of the proper, elliptic, point involution I in rectangular pointers and then 

looking for its double elements.  I will be known completely when we know its central 

point C, the straight line g that goes through C, on which it lies, and its power – m2 (*). 
                                                
 (*) If δ, δ′ are the distances from two associated points of an elliptic involution to the central point then 
(S. S. VII, art. 138): 

δ δ′ = − m2. 
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 If a, b, c are the pointers of C, α, β, γ are the direction cosines of g, and x, y, z; x′, y′, 
z′ are the pointers of two associated points of the involution then one will have: 
 

(x – a) (x′ – a) = − m2 a2 
 
for the projection of the involution onto the X-axis.  We will then obtain: 
 

ξ = a ± m α i, … 
for x = x′ = ξ.  Therefore: 

a ± m α i, b ± m β i, c ± m γ i 
 
will be the pointers of the double elements of the involution I and, from Theorem 138, 

they will likewise make up the imaginary points that belong to I.  If we set: 

 
m α = a′, m β = b′, m γ = c′ 

then we will have: 
a′2 + b′2 + c′2 = m2. 

 
We point out that C and the infinite-distant point U of g are associated with each other for 
the separation of the two points by the sense of I.  Thus, if a + a′, b + b′, c + c′ belong to 

a point Q as pointers then the sequence CQU will determine the sense of C along the 
finite segment on Q. 
 
 Theorem 139:  The imaginary point a + a′i, b + b′i, c + c′i is associated with the 
involution with the central point C ≡ (a, b, c), the power – (a′2 + b′2 + c′2), and the sense 
of C from (a + a′, b + b′, c + c′); the direction cosines of its carriers are proportional to 
a′, b′, c′. 
 
 b) If an elliptic net N lies in relation to the pointer system as in § 55, c) – i.e., if its 

axes coincide with the X and Y axes – then we will find the double points of the 
associated gathered involution from the equations [cf., § 57, equations (103)]: 
 

(42)    x = 
c y

m z
⋅ ,      y = − cm ⋅⋅⋅⋅ x

z
,      z = − 

2c

z
. 

 
The last of these can be derived from the first two; one will then find that: 
 

(43)    
y

z
= ± m i,  z = ± c i. 

 

                                                                                                                                            
For | δ | = | δ′ | = m, one obtains the two mutually-associated “power points”; the power points of all point 
involutions that are contained in precisely a gathered involution J will lie (as would emerge from Theorem 
109) on the power planes of J; hence, the name. 
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Thus, the upper two and the lower two signs will belong together, while either x or y will 
remain arbitrary.  The imaginary lines γ, γ′ that belong to N will be represented by these 

two solutions.  We calculate the pointers of γ as in § 33, equations (24), from those of the 
two points: 
 x = 0, y = 0, z = c i, 
 x′ = 1, y′ = m i, z′ = c i, 
and find: 
(44) q1 = 1, q2 = m i, q3 = 0, 
 q4 = c m, q5 = c i, q6 = 0. 
 
The pointers of γ′ are conjugate to these.  We always use γ to denote the line for which 
the coefficient of i in q2 is positive – i.e., we can assume that m > 0, as was also done in § 
55, c).  The sign of c and the winding of the net is determined from q4 in that way [§ 55, 
c)]. 
 
 Theorem 140:  If a general imaginary line lies in such a way that the two axes of the 
associated ray nets coincide with the X and Y axes of the pointer system then it will be 
characteristic of that position that the pointers q3, q6 are zero, the pointer ratios q4 : q1, 
q5 : q2 are real, and q2 : q1 are pure imaginary.  If one makes q1 equal to unity then the 
absolute value of q2 will be the axis ratio of the net and that of q5 will be one-half the 
distance between the power planes. 
 
 We now apply the formulas for the pointer transformation (§ 41) (*).  If one solves 
equations (59) there for the new pointers p then one will next obtain: 
 
 p1 = a1 q1 + b1 q2 + c1 q3 , 
(45) p2 = a2 q1 + b2 q2 + c2 q3 , 
 p3 = a3 q1 + b3 q2 + c3 q3  
 
for a mere rotation around the origin.  If one replaces the q in this with the expressions in 
(44) then one will have: 
(46)    pλ = p ipλ λ′ ′′+  = aλ + bλ m i (λ = 1, 2, 3). 

 
One will obtain the new pointers p4, p5, p6 when one raises the indices of the q by three 
[cf., § 41, equations (60)]: 
(47)    pλ+3 = 3 3p i pλ λ+ +′ ′′+  = c (aλ m + bλ i) . 

 
It will follow from the properties of the coefficients of an orthogonal substitution that: 
 

(48)  
2 2 2

2 2 2 2
3 3 3 3

1 , 0,

( 1), 0

p p m p p

p p c m p p
λ λ λ λ

λ λ λ λ+ + + +

′ ′′ ′ ′′ − = − =
 ′ ′′ ′ ′′− = − =

∑ ∑ ∑
∑ ∑ ∑

 

 

                                                
 (*) This is also true for imaginary elements; this will then be true for the associated real involutions 
whose double elements are the imaginary elements (Theorem 138).  
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(49) 3p pλ λ+′ ′∑ = cm, 3p pλ λ+′′ ′′∑ = cm, 

 
(50) 3p pλ λ+′ ′′∑ = 0, 3p pλ λ+′′ ′∑ = 0, 

 
in which λ = 1, 2, 3.  Only one of the relations (49) and (50) is essential; the other one 
will then follow from the fact that ∑ pλ pλ+3 = 0.  These conditions are by no means 
characteristic of the present position of the net, since one can multiply all p with a 
common factor α + β i.  In that way, they will then go to the quantities Pλ = P iPλ λ′ ′′+ , and 

indeed one will have: 
Pλ′  = p pλ λα β′ ′′− ,  Pλ′′  = p pλ λα β′′ ′+ . 

 
If one sets, to abbreviate: 
 

P Pλ λ′ ′′∑  = σλ ,  3 3P Pλ λ+ +′ ′′∑  = σλ+3 , 
 

2Pλ′∑ = λσ ′ ,      2Pλ′′∑ = λσ ′′ ,      2
3Pλ+′∑ = 3λσ +′ , 

 
2
3Pλ+′′∑ = 3λσ +′′ ,      3P Pλ λ+′ ′∑  = τ′,      3P Pλ λ+′′ ′′∑  = τ″, 

 

3P Pλ λ+′ ′′∑  = τ12 , 3P Pλ λ+′′ ′∑  = τ21 

 
then one will find, with the use of equations (48) to (50), that: 
 

(48.a)  
2 2 2 2

2 2 2 2 2 2
3 3 3

( )(1 ), (1 ),

( ) ( 1), ( 1),

m m

c m c m
λ λ λ

λ λ λ

σ σ α β σ αβ
σ σ α β σ αβ+ + +

′ ′′ − = − − = −
 ′ ′′− = − − = −

 

 
(49.a)    τ′ = (α2 + β2) c m = τ″, 
 
(50.a)     τ12 = 0 = τ21 . 
 
There is thus a three-fold condition for a net, namely, that its midpoint must coincide 
with the origin. There must then be three relations between the P′, P″ alone, which 
express that position (in which, the ones that follow from: 
 

∑ Pλ Pλ+3 = 0   (λ = 1, …, 6) 
 
will not be counted).  One of them will be (50.a), and another one will be: 
 

(51)    3 3λ λ

λ λ

σ σ
σ σ

+ +′ ′′−
′ ′′−

 = 3λ

λ

σ
σ

+ . 

One would further have: 
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c2 = − 3λ

λ

σ
σ

+ . 

 
We shall not pursue the derivation of the third relation and the calculation of m [cf., the 
conclusion of b)], but we would like to derive the main features for a rotational net.  m = 
1 for one such, so: 
 λσ ′  = λσ ′′ , σλ  = 0, 

 3λσ +′  = 3λσ +′′ , σλ+3  = 0. 

 
Conversely, the first row of these relations, or also the last one, can be fulfilled without α 
and β vanishing individually only for m = 1.  The first two can be combined into: 
 

(52)     
3

2

1

Pλ
λ=
∑  = 0, 

and the last two into: 
3

2
3

1

Pλ
λ

+
=
∑  = 0, 

 
and indeed (52) will be true for an arbitrary position of the net, since the first three 
pointers do not change under a parallel displacement (§ 41).  Thus: 
 
 Theorem 141:  If qλ (λ = 1, …, 6) are the pointers of a general, imaginary line then 
the necessary and sufficient condition for the associated ray net to be a rotational net will 
be: 

3
2

1

qλ
λ=
∑ = 0. 

 
 For a parallel translation (x, y, z) of the pointer system [equations (61) of § 41] from 

the original special position, the connection between the new pointers κ and the old ones 
q will be: 
 κλ = qλ   (λ = 1, 2, 3) 
 κ4 = q4 + x q4 – y q3 , 

 κ5 = q5 + x q3 – z q1 , 

 κ6 = q6 + h q1 – x q2 . 

 
If one now replaces the q here with the expressions in (4) then one will get: 
 
 κ1 = 1, κ4 = c m + x m i  = 4 4iκ κ′ ′′+ , 

(53) κ2 = m i, κ5 = − z + c i  = 5 5iκ κ′ ′′+ , 

 κ3 = 0, κ6 = y − x m i  = 6 6iκ κ′ ′′+ . 
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 Theorem 142:  If the axes of an elliptic net are parallel to the X and Y axes of the 
pointer system then it will be characteristic of that position that, of the pointers of the 
associated imaginary line, κ3 will be zero, and κ2 : κ1 will be pure imaginary.  If only the 
principal ray of the net is parallel to the Z-axis then one will still have κ3 = 0 (*). 
 
 The last part of the theorem follows from the formulas for the rotation of the system 
around the Z-axis.  If a given κ fulfills these two conditions then one will make κ1 equal 
to unity; one can then deduce the quantities m, c, x, y, z from equations (53). 

 If a general, imaginary line q iqλ λ′ ′′+  is given, and its position with respect to the 

pointer system is arbitrary then one can determine a3, b3, c3 from: 
 
 3 1 3 2 3 3a q b q c q′ ′ ′+ +  = 0, 

 3 1 3 2 3 3a q b q c q′′ ′′ ′′+ +  = 0, 
2 2 2
3 3 3a b c+ + = 1 

 
(with which, the direction of the principal ray will be found), and furthermore, the 
remaining a, b, c will be obtained from: 
 
 1 1 1 2 1 3a q b q c q′′ ′′ ′′+ +  = 0, 

 2 1 2 2 2 3a q b q c q′ ′ ′+ +  = 0, 

 
and the conditions for an orthogonal substitution.  One will then know the pointer 
transformation by which the position of Theorem 142 is arrived at.  By performing it, one 
can calculate the two constants m and c that are definitive for the form and size of the net 
(§ 54, conclusion). 
 
 c)  For a special, imaginary line q i qλ λ′ ′′+ , one can calculate the pointers of the vertex 

and plane of the associated ray involution from § 39, b), after one has specialized the 
incidence conditions in a known way (§ 31) for rectangular pointers.  Moreover, one can 
also write down the ray involution itself immediately: 
 

pλ = q qλ λµ µ′ ′ ′′+ , pλ′ = q qλ λµ µ′ ′ ′′−  (λ = 1, …, 6); 

 
its analytical representation does not differ at all in rectangular and tetrahedral, 
homogeneous, line pointers. 
 Things are different for the case of the imaginary plane u iuλ λ′ ′′+ ; one has: 

 

(54)   1 + 
3

1

u xλ λ
λ=

′∑  = 0, 
3

1

u xλ λ
λ=

′′∑ = 0 

 
for the equations of the axis α of the involution, while, by contrast: 

                                                
 (*) The last condition is counted twice.  
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(54a)  vλ = u uλ λµ′ ′′+ ,  vλ′  = 
1

u uλ λλ
′ ′′−  (λ = 1, 2, 3) 

 
are those of the involution itself.  An arbitrary plane v of the pencil (54) will be 
represented by the left-hand equations (54.a) when the u″ themselves are also not pointers 
of a plane of the pencil (*); moreover, the pointers of a plane that rotates around α in such 
a way that it goes through the origin will become infinite in such a way that their ratios 
will approach those of the fixed line u″.  We thus denote this plane by u″; its equation is 
the right-hand equation (54).  Moreover, if: 
 

wλ = u vuλ λ′ ′′+  

then: 

(u′ u″ v w) = 
ν
µ

. 

One must have: 
(u′ u″ v w) = (u″ u′ v′ w′) 

 
for the corresponding planes v′, w′, since u′, u″ itself is a pair of the involution, so: 
 

ν
µ

 = 
µ
ν

′
′
. 

 
If one thinks of the one pair w, w′ as being fixed, while the other one moves, then one 
will find that: 

µ µ′ = const. 
 

is the connection between the parameters of the associated planes of one pair.  Indeed, the 
constant will be negative for elliptic involutions, and here it can be chosen such that the 
double elements of the involution will emerge from the given imaginary planes precisely, 
so: 

µ µ′ = − 1. 

                                                
 (*) If one would like to express the pointers v of a general plane of the pencil in terms of the pointers u′, 
u of two fixed planes in the pencil then, as is known, one will have: 
 

vλ = 1
u uλ λ

µ
µ′

+
+

. 

One would then obtain: 

vλ = 1
u uλ λ

µ
µ′

+
+

, vλ
′ =

2

2

u

k

k uλ λµ
µ

−′
−

 

 
as the representation of an involution from this in the same manner as in the text.  However, the 
representation (54.a) is not only simpler, but it also can be connected immediately with the pointers of the 
given imaginary plane. 
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 We now ask when the ray or plane involution will be rectangular.  In the former case, 
one must have: 

3

1

p pλ λ
λ=

′∑ = 0, 

and in the latter one: 
3

1

v vλ λ
λ=

′∑ = 0 

 
for every value of µ′ : µ or µ.  This will give: 
 
 Theorem 143:  Should the involutions that belong to a special, imaginary line 
q iqλ λ′ ′′+  or an imaginary plane u iuλ λ′ ′′+  be rectangular then one would need to have: 

 
3

1

q qλ λ
λ=

′ ′′∑ = 0,  
3

2

1

qλ
λ=

′∑ = 
3

2

1

qλ
λ=

′′∑  

or 
3

1

u uλ λ
λ=

′ ′′∑ = 0,  
3

2

1

uλ
λ=

′∑ =
3

2

1

uλ
λ=

′′∑ , 

 
which can be combined into one equation: 
 

3
2

1

qλ
λ=
∑ = 0 or 

3
2

1

uλ
λ=
∑ = 0. 

 
__________ 

 
 

§ 69.  Basic tetrahedron with some imaginary elements. 
 

 From § 29, e), any linear transformation: 
 

(55)   ρ xλ = 
4

1

a xλµ µ
µ=

′∑ , σ uλ = 
4

1

A uλµ µ
µ=

′∑ , 

 

(56)   xλρ′ ′ = 
4

1

A xλµ µ
µ=
∑ , uλσ ′ ′ = 

4

1

a uλµ µ
µ=
∑  

 
whose determinant | aλµ | does not vanish can be regarded as a pointer transformation.  
Any of these four systems of equations will determine the other three.  Up to now, we 
have thought of the coefficients a in the substitution as being real.  However, even when 
they are complex, any (real or complex) quadruple of values x or u is in one-to-one 
correspondence with a quadruple x′ or u′, such that the values x′ or u′ are just as useful 
for the determination of a (real or imaginary) point as the x or the u.  Due to the known 
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connection between the line pointers and the point or plane pointers, the same thing will 
be true for the line pointers. 
 When we set the right-hand sides of (56) equal to zero, we will further obtain the 
equations of the vertices and faces of the new tetrahedron in the old system; in other 
words, Aλµ (µ = 1, …, 4) will be the pointers of the λth plane and aλµ (µ = 1, …, 4) will be 
those of the λth vertices of the new tetrahedron.  We also define these numbers to be the 
pointers of the vertices and faces of the new tetrahedron for complex substitutions.  In 
fact, we are justified in saying that they exist for a real tetrahedron, as the elementary 
properties of determinants show. 
 From now on, we consider only such imaginary basic tetrahedra for which the 
conjugates of the elements of the tetrahedron will enter into consideration, along with 
each imaginary element.  Only two cases can then appear: 
 
 a) Two vertices – say, P1, P4 – are real and the other two P2, P3 are complex 
conjugate, so their connecting line k will be real.  Only two (k, P1) and (k, P4) of the four 
planes will also be real then.  A pair of opposite edges will be real, while the other two 
pairs will be imaginary, and indeed they will cut any two conjugate edges as special, 
imaginary lines in a real vertex. 
 
 b) All four edges are imaginary, and perhaps P2, P3 are conjugate, along with P1, P4 .  
Such a tetrahedron will be determined by two proper involutions on skew carriers g, g′.  
A pair of opposite edges g, g′ will be real; each of the other two pairs will consist of two 
general, conjugate, imaginary lines. 
 
 a) We obtain a tetrahedron of the first kind when we choose two real columns from 
the a that are both complex-conjugate to each other.  Since for us this only comes down 
to obtaining such a basic tetrahedron as real, and not in general position with respect to 
the original one, in order to accomplish this, we will take the simplest possible 
transformation of the vertices Q1, Q4 of the old tetrahedron, as well as the vertices P1, P4 
of the new ones, and choose an involution on Q2 Q3 for which: 
 

Q2 ≡ (0, 1, 0, 0), Q3 ≡ (0, 0, 1, 0) 
is a pair of it.  Let: 

(0, 1, i, 0), (0, 1, − i, 0) 
 
be the double points of such an involution, so (§ 29, c): 
 
 1 0 0 0 
 0 1 i 0 
 0 i − i 0 
 0 0 0 1 

 
will be the substitution matrix.  For our purposes, we can multiply its adjoint by i and 
thus obtain the desired transformation: 
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(57)  
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We combine the transformation of the line pointers, as well as the ray pointers, according 
to equations (56) in § 40: 
 

(59)  
12 12 13

13 12 13

14 14

,
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,

i

τ π π π
τ π π π
τ π π
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34 42 34

42 42 34

23 23
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,

2 .

i

i

τ π π π
τ π π π
τ π π

′ ′= − +
′ ′= −

′= −
 

 
 b) In order to obtain such a tetrahedron as simply as possible, we will choose that 
elliptic involution on the edges Q1, Q4 and Q2, Q3 of the old real tetrahedron to which the 
two edges belong as one of its pairs.  The imaginary vertices P1, P4 will also emerge from 
the pointers of the real ones Q1, Q4, as P2, P3 already did before from Q2, Q3 .  From a), 
we can thus write down the desired transformation for the point and plane pointers 
immediately, and for the line pointers from the matrix: 
 
 1 0 0 0 
 0 1 1 0 
 0 i − i 0 
 0 0 0 − i 
 
analogous to before, we can summarize them as: 
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(62)  
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 c) We would like to consider the pointer system that one obtains from a rectangular 
one when one introduces new pointers in place of the rectangular pointers x, y, z by 
means of the equations: 
(63) ξ = x + i y, η = x – i y, ζ = z 
or 
(64) x = 1

2 (ξ + η), y = 1
2 (− ξ + η), z = ζ . 
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If we recall § 31 then we can consider the new system to be a special case of a).  In fact, 
the XY-plane and the tetrahedral plane that has been shifted to infinity will remain real, 
and corresponding statements will be true for the vertex of the tetrahedron at the origin 
and the point at infinity on the Z-axis.  ξ = 0 and η = 0 are the double elements of the 
rectangular ray involution: 

λ x + µ y = 0,  µ x – λ y = 0. 
 
The transformation thus comes down to introducing the double rays of this rectangular 
involution instead of the X and Y axes.  We would like to check which transformation of 
the ray pointers has equations (63) as a consequence.  If we think of them as once more 
written with primed symbols then we will find, when we recall equations (24) of § 33 and 
denote the new ray pointers by p and the old ones by q, that (*): 
 
 p1 = q1 + i q2, p4 = − (q5 + i q4), 
(65) p1 = q1 − i q2, p5 = q5 − i q4 , 
 p3 = q3 , p6 = − 2i q6 . 
 

__________ 
 
 

§ 70.  Imaginary lines of real line structures. 
 

 a) We say that an imaginary line g is contained in a real line structure L when its 

pointers pλ = p i pλ λ′ ′′+  fulfill the equations for L.  If L is a twist (** ) then the equation: 

 

(66)     
6

3
1

a pλ λ
λ

+
=
∑ = 0 

will decompose into two: 
(67)    3a pλ λ+ ′∑ = 0,  3a pλ λ+ ′′∑ = 0. 

 
Now, if g is special then equations (67) will mean that the vertex and plane of the 
involutory bush of rays that belongs to g will be associated with each other as the null 
point and null plane in the twist, resp.  If g is general then these equations will mean that 
the given twist a will lie involutorily with the two twists p′ and p″ by which the net that g 
belongs to is determined. 
                                                
 (*) One can believe that equations (65) must also be obtained from equations (59) when they are solved 
for the π′ in such a way that one replaces the symbols with two indices by symbols with one index 
according to the table (25) in § 33.  In fact, one will obtain the same equations from this process that one 
does by means of the transformation: 
 

ξ = 1
2 (x – i y), η = 1

2 (x + i y), ζ = z, 

 
which differ from (63) only inessentially. 
 
 (** ) The analogous question for a real bush of rays will be answered by Theorem 128.  



196  V. Imaginary elements. 

 b) The definition of an imaginary line being contained in an arbitrary line structure is 
entirely analogous.  Therefore, should g be contained in a ray net N that is defined by the 

complexes a and b, then the equations: 
 

3b pλ λ+ ′∑  = 0,  3b pλ λ+ ′′∑ = 0 

 
would have to be fulfilled, in addition to (67).  That is, when g is general: Each of the 
complexes a, b will lie involutorily to p′, as well as p″.  If g is special then the vertex of 
the ray involution will be a singular point, and its plane will be a singular plane of N.  

This condition is independent of the way that a ray complex is determined by two 
complexes; from § 53, it will then emerge immediately that: 
 
 Theorem 144:  If a complex c lies involutorily to two others a, b then it will also lie 
involutorily to the complexes of the pencil a, b. 
 
 One can then say that c lies involutorily to the pencil a, b. 
 
 c) Up to now [§ 39, e)], we have represented the rays p of a family of rulings R 

analytically by: 
pk = λ qk + k kq qµ ν′ ′′+ , 

with the condition: 
ω(p) = 0, 

 
in which q, q′, q″ are three fixed rays of R.  If we also assign complex values to the 

parameters λ, µ, ν then we will obtain imaginary rays of the real family of rulings.  They 
will also be characterized completely by the fact that they cut any three rays s, s′, s″ of 
the guiding family L, since the analytical condition in question will be fulfilled 

independently of the reality of the parameters.  We will thus find the imaginary lines of 
R when we seek all imaginary lines p that each have one point in common with the real 

lines s, s′, s″.  The necessary and sufficient condition for this is that s, s′, s″ must belong 
to the net N that p belongs to.  We will thus obtain all imaginary lines of R when we 

determine a net by way of s, s′, s″, and an arbitrary fourth ray t, and therefore a gathered 
involution J.  Since t can be chosen to be inside that same net in ∞2 ways, there will be ∞2 
imaginary lines in a real family of rulings.  From § 67, J will determine an involutory 
family of rulings on the guiding family of L – i.e., on R itself – to which p will belong as 

a double ray. 
 
 Theorem 145:  One obtains all imaginary lines of a real family of rulings R as the 

double rays of all elliptic involutions to which the rays of R can be assigned; R will thus 

contain ∞2 (general) imaginary lines. 
 

__________ 
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§ 71.  Logical and historical remarks on the role of the “imaginary” in geometry. 
 

 We shall once more give an overview of the train of thought that we previously 
embarked upon in the theory of imaginary elements: In analytic geometry, complex 
values are frequently produced for the pointers of a desired element (i.e., point, plane, 
line).  Every such system of complex pointers can be put in one-to-one correspondence 
with a well-defined real geometric structure (§ 61-63).  The analytically-defined 
incidence conditions between the complex elements also correspond to well-defined 
geometric statements (§§ 64, 65).  The reciprocal determination of the elements by each 
other is expressible analytically by equations whose validity is independent of the reality 
of the elements.  Once the incidence relations are interpreted geometrically, the laws of 
meets and joins will thus also have a well-defined meaning in the imaginary domain, first 
of all, and secondly, they will preserve their validity.  The problems that these rules gave 
rise to were solved constructively in § 66, once their unique solubility was already 
established at the beginning of that paragraph.  With that, the constructions of the 
“geometry of position,” which rest upon merely the laws of meets and joins, are thus 
made independent of analytic geometry (and therefore, of the pointer system), for the 
imaginary domain, as well. 
 One can thus give a schema (cf., the following example) for a construction in the 
geometry of position, for which one first directs one’s attention to real elements, and then 
applies it, while being unconcerned about whether imaginary elements appear in the 
course of the construction.  One is certain that each step in the schema can be translated 
into actual constructions in such a way that the final result will remain correct.  The latter 
can – e.g., from the nature of things – be real and still remain useful in a schema in which 
imaginary elements appear.  However, this “passage to the imaginary” would not be 
permissible if one could not endow each step with a well-defined geometric meaning.  
The fact that one does not always need to remember it explicitly when one is merely 
concerned with results is one advantage of the theory of imaginary elements that are 
allowed to operate with the complex structures of the involutions just as they do with real 
elements.  On the other hand, in the analytic geometry of position one knows that each 
step of the calculation is meaningful without appealing to the reality of the numbers that 
appear in it.  A completely parallelism is exhibited between the analytic operations and 
the geometric constructions in the designated context that makes it permissible to convert 
the results in the one domain into results in the other one immediately. 
 One has assumed three standpoints in relation to the theory of imaginary elements: 
 
 a) One converts the results that were made obvious for real elements to the case in 
which all of the elements that were employed as tools for proving them are now 
imaginary using the “principle of continuity,” without actually developing a theory of 
imaginary elements at all.  For example, a theorem of geometry reads: If three circles in a 
plane have three common chords to two of them then they (viz., the three “chordals”) will 
intersect in the same point.  This theorem can be easily recognized in the case of Fig. 62 
without making any use of the property of common chords that they are power lines: If 
one describes three spheres with the three circles as great circles then the three points of 
intersection that the three spheres have in common will go through the two points P, P′ 
that are common to all three spheres.  The three planes of the circles will thus go through 
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the connecting line PP′, and their three traces on the reference plane will go through the 
trace point of PP′.  One now concludes that the possible common chords to the three 
circles might also intersect in a point when the three spheres have no real points in 
common (e.g., Fig. 63).  However, that is not correct.  One cannot conclusively commit 
to such a method, although it is also very fruitful as a heuristic tool.  One can likewise 
judge when the theorems of algebra on the common roots of equations, et al., can be 
converted into mere figures of speech in geometry without affecting their actual meaning. 

 

Figure 62. 

 

Figure 63. 
 

 
 b) One refuses to employ imaginary numbers in geometry or to speak of imaginary 
elements at all.  This standpoint is logically correct, but inconvenient.  One is then forced 
to address all case distinctions in the investigation that raise questions of reality from the 
outset, while one who is in possession of a theory of the imaginary elements must first 
separate them in the results.  The advantages that the imaginary contributes to algebra are 
also attainable in geometry (*) when they can be assigned to actual geometric structures 
in that context, just as the imaginary numbers do, which emerge as the solutions to a 
problem that is originally posed as real.  The advantage of a schema such as the one in 
the following example would be lost completely if one were to reject the theory of 
imaginary elements. 
 
 c) One develops an actual theory of imaginary elements (as we did here, at least, in a 
restricted context), from which, algebraic operations with complex numbers will become 
geometrically useful.  It is, in fact, correct that all of the results that one thus obtains can 
also be formulated without leaving the real domain, so the theory of imaginary elements 
in geometry cannot add any actual content, but merely an abbreviated way of speaking.  
However, it is precisely in the latter situation that its greatest value exists, which also lies 
essentially in the “economy of thought” (cf., Mach, Mechanik, chap. IV, 4).  The words 
“imaginary point, line,” etc, are not at all trivial.  They immediately remind us of the fact 
that the same laws are true for the corresponding structures that are true for the real ones, 
and make it easy for us to apply the same system of thinking or notation − indeed, 
schematic notations (§ 66, e, f) that lead to correct results − since the logical relationship 
of “complete analogy” exists between the schemas and the actual structures.  Therefore, a 

                                                
 (*) Staudt emphasized this in the Foreword to Beitr. zur Geom. d. Lage (1856).  
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“mechanical implementation of the concept of an imaginary point,” as well as imaginary 
elements, is indeed possible (this was renounced in S. S. VII, pp. 288). 
 One cannot reproach the use of imaginaries for a lack of logical clarity (*), as long as 
one applies them only within the boundaries within which the theory was founded − so, 
for us, as long one deals with the geometry of position.  By contrast, from the previous 
developments, we can ascribe no meaning to the concepts of “an imaginary angle” or 
“the perpendicular position of imaginary lines.”  It would take us to far from our topic in 
line geometry to extend the theory of imaginary elements further in an essential way.  
Moreover, we have still not done everything that we would like to do, since there is also 
more that we could include in our presentation.  For example, one finds a theory of the 
double ratios of imaginary elements in Clebsch-Lindemann’s Vorl. üb. Geom., Bd. II (pp. 
115, et seq.).  Above all, the theory of projective conversions of the basic structures was 
also already extended to imaginary elements by Staudt himself.  Moreover, we will have 
occasion to extend the theory up to now at some points.  In order to explain the 
statements, we consider an: 
 
 Example:  Let a null system be given by five real rays n1, …, n6 of the associated 
twist.  Construct the null plane ν to a real point P. 
 
 We already encountered a similar problem, and we summarized the constructions that 
§ 22 and § 10, d) implied in a table in which points were denoted by upper-case Latin 
characters, lines, by lower-case Latin ones, and planes, by Greek ones.  The symbol “≡” 
should mean “incident with.”  If several symbols are on one or both sides of it then each 
element on the one side should be incident with each element on the other.  One thus 
determines, in succession: 
 
 g, g′ ≡ n1, n2, n3, n4  (§ 66, h) 
 ε ≡ P, n5 (real) 
 S ≡ g, ε; S′ ≡ g′, ε (§ 66, c) 
 h ≡ S, S′ (must be real) 
 N ≡ h, n5 “ “ “ 
 t ≡ P, g, g′ “ “ “ 
 v ≡ t, N “ “ “ 
 
In regard to the penultimate row of the table, we remark that t is determined for 
imaginary elements, in general, in that same way that it is for real ones; i.e., this row can 
be replaced with: 
 α ≡ P, g (dual to § 66, c) 
 α′ ≡ P, g′ “ “ “ 
 t ≡ α, α′ (dual to § 66, a). 
  

                                                
 (*) The fact that one must remain in the realm of imaginary elements for elliptic involutions in the 
geometric theory, while one goes on to the double elements for the hyperbolic involutions, is a small 
incongruity that cannot be set aside, but will either disturb things or bring about errors.  
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 However, this is not necessarily true here, since g, g′ are (real or) conjugate-
imaginary.  The problem of t ≡ P, g, g′ then comes from § 66, d).  The axis of the plane 
involution is the solution.  If one then knows from analytic geometry that a twist is 
determined by five rays then this schema will give − even when a linear construction (§ 
47, d) is not known − the solution to the problem under all circumstances, since otherwise 
it would be necessary for us to force the reality of the solution by a trick, as in § 22. 
 
 The creator of the theory of imaginary elements was Staudt [Beitr. z. Geom. d. Lage, 
here one must consider both the first book (1856) and the second one (1857)].  He 
proceeded in a purely synthetic way; his main achievements were the interpretation of a 
general, imaginary line in terms of a gathered involution and the separation of the 
conjugate-imaginary elements by their sense of traversal.  The synthetic theory was 
developed further by Lüroth (“Die Imaginäre in der Geometrie und das Rechnen mit 
Würfen,” Math. Ann. IX), Sturm (“Über die v. Staudtschen Würfe,” Math. Ann. IX), and 
for planes, by Kötter (“Grundz. einer rein geom.. Theorie der alg. eb. Kurven,” Abh. d. 
Berl. Ak., 1887), and the connection with analytic geometry was exhibited by Stolz (“Die 
geom.. Bedeutung der kompl. Elemente in der anal. Geom.,” Math. Ann. IV), August 
(“Unters. über d. Imaginäre in d. Geom.,” Progr. d. Friedr.-Realsch., 1872), Schröder 
(“Über v. Staudts Rechnung mit Würfen u. verw. Prozesse,” Math. Ann. X), Segre (“Le 
rappr. reali delle forme compl., etc.” Math. Ann., Bd. 40).  The presentation that was 
given here is self-contained in many points (*).  Ramorino gave a thorough historical 
study of this topic in Giorn. di. Mat., v. 35 and 36 (1898). 
 The analytic-geometric theory of imaginary elements is superior to the purely-
synthetic one.  The latter was actually brought to a state of completion only for second-
order structures by Staudt, and can be extended to higher structures only with great effort.  
With the analytic theory, however, one arrives a more general viewpoint at one stroke: 
For example, an nth-degree algebraic equation with real coefficients in three variables (in 
rectangular pointers) is also satisfied by a triple of complex values.  We attribute the 
totality of the imaginary points thus defined to an nth-order surface; indeed, it can contain 
imaginary points exclusively.  From the fundamental theorem of algebra, when the 
contact points are correspondingly counted multiply, every line g will have precisely n 
points in common with it, in which the possible imaginary ones will appear in conjugate 
pairs when g is real (** ).  I. e.: 

                                                
 (*) E. g., the determination of the sense of a general, imaginary line was carried out in a way that was 
analogous to what was done for the remaining imaginary structures, by which the involutory family of 
rulings became unnecessary for that purpose.  The same thing was treated only by way of an appendix in § 
67, once the main goal of the chapter was attained in § 66.  
 (** ) If a multiple complex root w is present then we will say that the line g has imaginary contact with 
the surface F (except when all partial derivatives of the surface equation are also fulfilled by w).  There is 
nothing difficult about interpreting this situation geometrically: If the line g′ at a neighboring position 
moves into g then several involutions on g′ that are defined by F must exist, that will coalesce for the 
position g, while their powers will also become equal (which can first happen when n ≥ 4).  It would be 
desirable to separate the case of imaginary contact from the case of imaginary singular points by geometric 
information. 
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 Theorem 146:  The number r of the real points of intersection and the number s of 
the elliptic involutions that are determined by an algebraic surface of order n on a 
general, real line are related by: 

r + 2s = n. 
 

 There is nothing left to prove for this theorem.  One can only further demand that the 
determination of the involutions can also be carried out geometrically (this will happen 
for n = 2 in the next paragraph).  Analogously, the theorem on the number of points of 
intersection of three algebraic surfaces will now have a well-defined geometric meaning, 
etc. 

__________ 
 
 

§ 72.  The line-geometric representation of a second-order surface. 
Its imaginary elements. 

 
 a) (*)  Let aλµ be real quantities, for which we assume that: 
 
(68)     aµλ = aλµ . 
If one denotes: 

4 4

1 1

a x xλµ λ µ
λ µ= =
∑∑ = F(x),  

1

2

dF

dxλ

 = 
4

1

a xλµ µ
µ=
∑  = Fλ (x) 

 
then the identity will exist: 

(69)    F(x) = 
4

1

( )x F xµ λ
λ=
∑ , 

and 
(70)     F(x) = 0 
 
will represent a second-order surface F2 .  For the sake of intuition, we would like to look 
for its imaginary points first under the assumption that it also possesses real points, 
whereby we can assume that the polar theory for second-order surfaces is known.  
Should: 
(71)    ρ xλ = ξλ + i ηλ  (λ = 1, …, 4) 
 
fulfill (70), then one would need to have: 
 

4 4

1 1

( )( )a i iλµ λ λ µ µ
λ µ

ξ η ξ η
= =

+ +∑∑  = 0, 

 
which decomposes into the two conditions: 
 
(72) F(x) = F(h), 

                                                
 (*) On this, cf., Stolz, loc. cit., art. 8.  
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(73)     ∑ ηλ Fλ (η) = 0. 
 
The second condition says that the points ξ and η must be conjugate with respect to F2 ; 
i.e., that each of them must lie on the polar plane of the other one (S. S. XXV, § 2).  For a 
fixed value of η, (73) will then represent the equation of the polar plane to the point η; its 
pointers will then be: 
(74)     σ uλ = a xλµ µ

µ
∑ , 

 
if we write x, instead of η, and switch λ, µ. 
 Space will be divided into two domains by F2, and we already know from Theorem 
146 that ξ and η will lie in the same domain (for positively-curved surfaces, they will lie 
outside of it), since otherwise their connecting line g would have to intersect it at a real 
point.  Thus, F(ξ) and F(η) will have the same sign in any case, and (72) can be fulfilled 
when one multiplies the pointers of a point with a suitable constant, with which, from § 
62, (71) will just now be connected with a well-defined involution: 
 
(75)   ρ xλ = v ξλ + v′ ηλ ,  xλρ ′ = v′ ξλ − v ηλ . 

 
We would like to show that this involution is identical with the one that is defined on g 
by F2 when one associates the points that are conjugate relative to F2 with each other.  If 
one substitutes xλ′  for ηλ and xµ for ξµ , as in (75), in the left-hand side of (73) then one 

will get: 
( ) ( )aλ λ λµ µ µ

λ µ
ν ξ νη νξ ν η′ ′− +∑ ∑  

or 

v v′ [F(ξ) – F(η)] – v2 ∑ ηλ Fλ (x) + v′2 ∑ ξλ Fλ (η), 
 

and this will, in fact, vanish identically due to (72) and (73) (the two sums differ only by 
the ordering of the terms).  One calls the reciprocal transformation that is defined by a 
second-order surface, which associated any point with its polar plane, a (spatial) polar 
system.  What we just proved and the dual version of it (*) can then be expressed as: 
 
 Theorem 147:  The possible imaginary points of intersection of a line g (or contact 
plane through g) with a second-order surface F2 are represented by the involution that 
the polar system of F2 cuts out from g (is determined around g as its axis, resp.). 
 
 This theorem also keeps its sense and validity for the case in which the form F2 is 
definite, so F2 will contain no real points.  A well-defined polar system will also be 
linked with F2 then, by which, the imaginary surface will be represented in a way that is 
similar to the way that an imaginary element is represented by an involution: Namely, we 

                                                
 (*) We understand a contact plane of F2 to mean any plane whose pointers fulfill the equation for F2 in 
plane pointers; we can also perform the conversion without exhibiting that equation. 



§ 72.  The line-geometric representation of a second-order surface. 203 

start with equations (74).  They associate every point x in space with a plane u, and when 
one solves for x: 

(76)     ρ xλ = 
4

1

A uµλ µ
µ=
∑ , 

 
one will also associate every plane u with a point x.  Due to (68), we can also write: 
 

(77)     ρ xλ = ∑ Aλµ uµ , 
 
instead of (76).  Furthermore, if the point y corresponds to the plane v then: 
 

(78)     σ vλ = ∑ aλµ yµ , 
 
so we would like to assume that v and x are incident, thus: 
 

(79)     ∑ vλ xλ = 0, 
 
and show that the corresponding elements y and u will also be incident then.  It follows 
from (78) and (79) that: 

∑ aλµ yµ xλ = 0, 
which we can write as: 

∑ aλµ xµ yλ = 0, 
according to (68), or: 

∑ uλ yλ = 0. 
 
If x then moves in the fixed plane v then u will rotate around the fixed point y.  If x 
likewise moves around another fixed plane w then u must rotate around another fixed 
point z – i.e., around a line – which one can, moreover, infer immediately from the 
linearity of the transformation.  The lines in space will also be associated with each other 
in this way.  A plane v will then always be associated with the same point, regardless of 
whether one carries out this association immediately using equations (77) or first chooses 
three points in it and then intersects their associated planes.  Due to this property, the 
reciprocal transformation (i.e., correlation) that is defined by equations (74) will be 
involutory, in contrast to the general correlation that is defined by the same equation 
when one drops the conditions (68). 
 One determines the points in space that lie in the associated planes (viz., the ordering 
points) from the equation: 

∑ uλ xλ = 0, 
which agrees with: 

F(x) = 0, 
 
due to (74) and (69).  An involutory correlation is also called a polar system, and the 
locus of the ordering points of this polar system will be a second-order surface.  Both of 
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them depend upon only the aλµ, and one can write down the equation of the surface 
immediately for a given polar system, or conversely.  However, the polar system and the 
calculations that led to Theorem 147 are completely independent of the reality of the 
ordering surface. 
 We would like to provide ourselves with an intuitive picture of a polar system with no 
real ordering surface (*) and assume a rectangular pointer system.  Any definite form in 
three variables can then be put into the form: 
 

2 2 2

2 2 2
1

x y z

a b c
+ + +  

 
by a pointer transformation (except for a factor), so the equation of the imaginary surface 
can be put into the form: 

(80)     
2 2 2

2 2 2
1

x y z

a b c
+ + +  = 0. 

 
The associated polar field is defined by: 
 

(81)    u = 
2

x

a
, v = 

2

y

b
, w = 

2

z

c
. 

 
Along with the above, we consider the ellipsoid: 
 

(82)     
2 2 2

2 2 2
1

x y z

a b c
+ + −  = 0 

and the associated polar field: 

(83)    u′ = −
2

x

a
, v′ = −

2

y

b
, w′ = −

2

z

c
. 

 
One sees that the planes u, v, w and u′, v′, w′, which correspond to the same point in both 
cases, lie parallel to each other at the same distance on both sides of the origin; thus: 
 
 Theorem 148:  A spatial polar system with no real ordering surface emerges from 
the polar system of an ellipsoid when one leaves the points of space unchanged and 
transforms the plane in a manner that is centrally-symmetric with respect to the center of 
the ellipsoid (or conversely). 
 
 In particular, if a = b = c = r then we will call the surface: 
 

x2 + y2 + z2 = − r2 
 

                                                
 (*) We consider only the case in which the determinant | aλµ | does not vanish.  In the other case, the 
“imaginary cone” will be represented a polar system that one obtains when one projects a planar polar field 
with no real ordering curve from a point. 
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an imaginary cone.  Its polar system is characterized completely by the fact that any point 
and its associated plane lie along the same line such that their distances from the origin 
are δ, δ′, resp., and one has δ ⋅⋅⋅⋅ δ′  = − r2 (*). 
 If one intersects a (spatial) polar system with a plane E then one will obtain a polar 
field whose ordering curve is real or imaginary according to whether E does or does not 
cut the ordering surface of the polar system in real points, respectively.  Since there is 
only one kind of second-order imaginary curve (except for pairs of imaginary special 
lines), as would emerge from the analytical representation, one will obtain the same polar 
field that would emerge from intersecting a second-order imaginary surface with a plane 
as the one that would result from intersecting a real surface of positive curvature with an 
unreal plane. 
 
 b) We would next like to represent the totality of tangents to a second-degree surface 
with an equation in line pointers.  To that end, we represent the transformation of the 
polar system in line pointers when we set: 
 

σ ui = ia xλ λ
λ
∑ , σ′ vk = ka yµ µ

µ
∑ . 

 
These equations are just (74) in a different notation.  The connecting line g ≡ (x, y) 
corresponds to the line of intersection g′ ≡ (u, v).  If we set: 
 

πλµ = xλ yµ – xµ yλ ,  pik = ui vk – uk vi 
 

then we can express the axial pointers of g′ in terms of the ray pointers of g by precisely 
the same calculation as in the beginning of § 40: 
 
(84)    τ pik = 

,

( )i k k ia a a aλ µ λ µ λµ
λ µ

π−∑ , 

 
or when we go from symbols with two indices to ones with one index, as in § 40: 
 

(85)    τ pn = 
6

1
nν ν

ν
π

=
∑p  (n = 1, …, 6). 

 
 The tangents to the surface are characterized by the fact that their polars intersect.  
We must now write the incidence condition as: 
 

(86)     
6

1

pµ µ
µ

π
=
∑ = 0. 

                                                
 (*) Analogously, we call the curve: 

x2 + y2 = − r2 
 
an imaginary circle.  Its polar field is likewise characterized, except that one has to say “associated line” 
instead of “plane.”  A sphere will always be cut by a plane in a (real or imaginary) circle. 
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From (85) and (86), we will obtain: 

(87)     
6 6

1 1
µν µ ν

µ ν
π π

= =
∑∑p = 0 

 
as the condition for the lines π that cut their own polars, or when written out more 
thoroughly: 
(88)    

, ,

( )i k k i ik
i k

a a a aλ µ λ µ λµ
λ µ

π π−∑∑ = 0. 

 
Due to the symmetry of the matrix aik, we will have: 
 
(89)     pνµ = pµν  

 
in (87).  This is the line-geometric representation (*) of the second-order surface F2 : 
 

(70)     ∑ aik xi xk = 0. 
 
We now also define the tangents to the 
surface F2 − for imaginary pointers, as well 
− to be all lines whose pointers fulfill 
equation (87).  In order to characterize this 
geometrically, we can go back to the origin 
of this equation, instead of appealing to it 
directly: For imaginary lines, (85) will 
decompose into two equations that say that 
the representative involutions of polar lines 

are also polar to each other (** ).  With that, we know how we have to go about looking 

                                                
 (*) If a polar tetrahedron of the surface is chosen to be the basic tetrahedron then we can set aii = ai, 
while all of the remaining a vanish (Killing, Lehrb. d. anal. Geom. II, § 14).  Equations (74), (84), (88) will 
then assume the simple forms: 
(74a)      σ ui = ai xi , 
(84a)      τ pik = ai ak πik , 

(88a)      ∑ ai ak 
2

ik
π  = 0. 

 (** ) Namely, if π is a general, imaginary line iν νπ π′ ′′+  then it will go to 
n n

p ip′ ′′+ , where: 

 

(90)      
n

pτ ′  = ∑ pnν  νπ ′ . 

 

The νπ ′  are pointers of a twist G with the equation: 

 

(91)      ∑ νπ ′  un+3 = 0. 

 
One must show that the p′ are pointers of the twist that corresponds to G in the polar system.  Since the 
polars correspond reciprocally, the inverse transformation to (85) will have the same form as (85) itself (cf., 
the similar state of affairs in § 57).  We thus do not need (85) in order to solve for the π, but only have to 

 

Figure 64. 

β A 

B α 

s M N M′ s′ 
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for the polar to an imaginary line.  Since (86) is also true for imaginary lines, we can say 
that in general the tangents to the surface F2 are characterized by the fact that they 
intersect their own polars.  The point of intersection must always belong to F2 in its own 
right, since this was true for real lines initially.  If one calculates the pointers of that point 
as functions of π, as in § 39, b), and substitutes them into (70) then that equation must be 
an identity between the π that is also true when complex numbers are substituted for real 
ones.  Similar conclusions are true for the connecting plane E and the last part of the 
following theorem: 
 
 Theorem 149:  The lines g whose pointers satisfy the line-geometric equation of a 
second-order surface F2 are the ones that cut their own polars g′.  The point of 
intersection S lies in F2, while the connecting plane E contacts F2 .  S and E correspond 
to each other in the polar system; the two points of intersection of g or g′ will also 
coalesce in S. 
 
 With the help of this theorem, we can now find the imaginary tangents to an F2 by a 
simple argument: 
 
 I) Let S be real, and therefore E, as well.  If we choose S to be a real point on F2 and 
choose E to be the contact plane at S then the conditions for Theorem 149 will be fulfilled 
when we choose an arbitrary (elliptic) ray involution in the pencil of rays (S, E).  Any 
such special, imaginary line g will thus contact F2 .  However, when F2 is positively 
curved, two of these lines γ, γ′ will be distinguished, namely, the ones whose involution is 
the one that is defined by the polar system of F2 in the pencil (S, E).  If we cut γ or γ′ with 

                                                                                                                                            
switch π and p, although simultaneously we should worry that left axial pointers and right ray pointers will 
once more come about.  However, if we would like to still keep the same pointers then we would have to 
write: 
(92)      πn+3 = 3n pν ν

ν
+∑ p . 

 
If we substitute κ in place of π and q in place of p in this and then substitute the expressions in (91) then we 
will obtain the relation: 
(93)      3n n qν νπ +′∑ ∑p = 0, 

 
which is satisfied by the totality of all lines q that correspond to the rays κ of the three G.  If we write (93) 
in the form: 

∑ aν qν+3 = 0 
then we will have: 

aν = n n

n
νπ ′∑ p , 

or due to (89): 

aν = 
6

1
n n

n
ν π

=

′∑ p . 

 
However, the right-hand sides of these systems differ from (90) only be the exchange of n and ν; thus, the a 
will be proportional to the p′, which completes the proof. 
 



208 V.  Imaginary elements. 

an arbitrary plane then, from Theorem 147, the point of intersection will also belong to 
F2.  The lines γ, γ′ will then lie completely on F2 . 
 
 II) Let S be imaginary, and therefore E, as well.  One can then have: 
 
 a) g, g′ are special.  They must then lie as in the last case of § 65, c).  We can then 
choose S to be an arbitrary, imaginary point of F2 (which is represented by M, N, M′, N′ 
in Fig. 64), and the plane α of g can be chosen to go through the carrier s of S arbitrarily; 
everything else will be determined them.  Namely, since S and E correspond to each 
other, the polar s of s′ must be the axis of E.  s′, α intersect in a point B whose polar plane 
β will go through s.  The point A ≡ (s′, β) will correspond to α.  The two lines g, g′ will 
then be represented by the involutions (B, S) and (A, S).  If F2 is real then at least one of 
the planes α, β must be real.  However, the argument will also be true for an imaginary 
F2 .  If F2 is positively-curved then among the positions of α there will be two 
distinguished ones, namely, the real contact planes to F.  g will coincide with g′ for them, 
and as in I), we will come to two lines through S that lie completely on F2 . 
 Since an imaginary line that is incident with a plane is special, and the second-order 
curves can be obtained as plane sections of the second-order surface, the imaginary 
tangents to a second-order curve will also be obtained by what we did up to now. 
 
 β) g, g′ can be general.  The first or the second case in Theorem 134 can then be 
relevant – i.e., the associated nets of rays N, N′ can have either two rays a, b in common 

or just one a. 
 In the first case, let a be the carrier of S, so b will be the axis of E.  From the last part 
of Theorem 149, a and b must correspond to each other in the polar system.  If we then 
choose an imaginary point S on a given F2 and then choose an arbitrary imaginary point T  
≡ (A, B, A′, B′ ) on the polar b of its carrier a then the elements on b that are conjugate to 
the elements A, B, A′, B′ of the involution T will determine an involution T′.  The polars 
to the connecting line g ≡ (S, T) will be determined by the two plane involutions (b, S), 
(a, T′), or also by its reciprocal axis intersection S, T′.  Thus g, g′ will, in fact, fulfill the 
condition of Theorem 149.  If we choose T to be an imaginary point of F2 that lies in b, in 
particular (this is not possible for positively-curve surfaces), then g′ will be identical with 
g, and g must lie on F2 entirely.  In fact, this will be true for not only real lines, but also 
more generally for lines that are similar to the ones that were used in Theorem 149. 
 In the second case of Theorem 134, a is the carrier of A, as well as the axis of E, so it 
must correspond to itself in the polar system and lie upon F2 ; this case can come about 
only for ruled surfaces.  We shall investigate when the connecting line g of S with 
another imaginary point T of space is a tangent to F2 .  Let the carrier of T be t, and let its 
polar be t′; g′ is determined by E and the plane involution (t′, T).  If g, g′ are supposed to 
intersect then the latter involution must also cut out the involution S on a, since a, by 
assumption, is the only common ray of the net g, g′.  If S is then chosen such that one can 
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still choose the carrier t of T arbitrarily then T itself will be cut out of t by the plane (t′, S) 
(*). 
 We direct our attention to the general, imaginary line g that lies completely on a ruled 
surface F2 .  If we choose an imaginary point S on a ray a of a family of rulings R of F2 

then one such line will already be determined by it.  S will then determine an involution 
in the guiding family L of R, so by Theorem 137, it will determine an imaginary line γ.  

Two generators of F2 will go though S, namely, γ and the real carrier a of S.  If we choose 
all possible imaginary points S on a certain ray a then we will obtain ∞2 lines γ; they will 
all be general, imaginary lines that lie on F2 already.  If we then determine a line γ that 
lies upon F2 in the most general way such that we choose an arbitrary imaginary point S′ 
of F2 (whose carrier does not therefore lie upon F2) then, from the discussion of the first 
case of b), we will meet up with the choice of sense on the polar t′ to t.  t will then 
determine the ray net N, N′ that t′ also belongs to, from § 66, h), by means of the one, as 

well as the other, family of rulings on F2, respectively.  The two lines that belong to N 

and N′ will then lie entirely upon F2, since they will include not just S′, but also ∞1 

imaginary points whose carriers lie upon F2 . 
 We have thus not only proved the following theorem, but also made its content 
completely intuitive: 
 
 Theorem 150:  Two generators also go through every imaginary point P of a second-
order surface F2 .  When F2 is imaginary, they will generally be imaginary.  When F2 is 
real, they will be special or general imaginary, according to whether F2 is positively or 
negatively curved, resp.  The one will be general imaginary and the other one real in the 
last case only when the carrier of P lies upon F2 . 
 
 The splitting of the imaginary generators into two families is also easy: For the 
positively-curved surfaces, in order to specify the one family, one can establish a well-
defined sense of rotation for the associated ray involutions everywhere – e.g., the positive 
one – when one considers them from the outside of the surface.  For a ruled surface F2, 
from the argument that we just presented, we will obtain every imaginary generator γ 
through an involutory family of rulings R that lies upon F2 ; γ must be counted as being 

in the family R.  That agrees with the fact that the real generator of the other family is 

attached to an imaginary point whose carrier lies upon F2, in this way of determining 
things.  For positively-curved surfaces, two conjugate-imaginary generators will belong 
to different families, while for ruled surfaces, they will belong to the same family. 
 Finally, for an imaginary F2 , let the central point of the involution of one of its 
imaginary points J be linked with the polar t′ to the carrier t of J by a plane ε.  If one 
chooses the one imaginary point of F2 to be on t then a positive sense of rotation will also 
be fixed by its sense in ε, so the one imaginary point of F2 will thus be distinguished on 
t′.  If we connect an imaginary point of F2 with a certain second point in this way then we 

                                                
 (*) This corresponds completely to the real behavior: By assumption, E is determined along with S; i.e., 
one knows a pencil (S, E) that g belongs to.  A line of the pencil is determined by the condition that it cut a 
second line t. 
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will obtain the generators of the one family.  Two conjugate-imaginary generators will 
belong to the same family here. 
 For all F2 , one has that one of the two generators through a point will belong to one 
family and the other one will belong to the other family. 
 
 Theorem 151:  When one considers the imaginary elements of a second-order 
surface, it will have ∞4 points that can be arranged into ∞2 groups of ∞2 lines in two 
different ways. 
 
 The decision about whether a given general, imaginary line does or does not contact 
an F2 can be made as in § 66, g), once one has constructed its polars. 
 
 It is self-explanatory how part of the foregoing investigation can be specialized for 
the plane and the imaginary second-order curves – such as, e.g., the way that the polar 
field of one of them can be obtained from that of an ellipse. 
 

__________ 
 
 

§ 73.  The imaginary sphere-element at infinity. 
 

 We now consider the imaginary elements at infinity of a second-order surface, and in 
particular, a sphere.  A polar field is determined by F2, as it is in any plane, and therefore 
in the plane at infinity U, as well – i.e., any direction in space will be associated with an 
attitude (Stellung) (viz., the direction of a diameter of the attitude of the plane of the 
conjugate diameter).  We shall pass over the paraboloids for which U is a contact plane 
here.  If F2 is a sphere K then any direction will be perpendicular to the associated 
attitude.  The polar field will then be independent of the location of the sphere in this 
case, and will remain unchanged for all ∞7 motions and similarity transformations of K.  
For that reason, one says that all spheres cut U (and each other) in the same imaginary 
sphere-circle.  By abuse of terminology, it will be called “the imaginary circle,” 
regardless of that fact that there are naturally other imaginary sphere-circles at finite 
points (viz., ∞3 in each plane). 
 If one cuts the polar system of a sphere with a plane E then two points J, J′ of the 
circle of intersection will lie on each line of E, and therefore also on the line u at infinity 
[cf., the last remark in § 72, a)].  The involution by which J, J′ is represented will be cut 
out of u by any rectangular ray involution in E, and will be independent of which (real or 
imaginary) sphere one has intersected with E.  For that reason, one says that all (real or 
imaginary) circles in a plane E go through the same two infinitely-distant points J, J′ of 
E, namely, the imaginary circle points of E.  They will likewise be the points of 
intersection of E with the imaginary sphere-circle. 
 Since the center M of a circle k in E is the pole of u, from § 72, b, II, α), the 
rectangular ray involution of the pencil (M, E) will represent two tangents to k; they have 
only J, J′ in common with k.  One calls them the two tangents at the imaginary circle 
points (at infinity).  They will also be tangents to any cone through k. 
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 The totality of all special, imaginary lines that cut the imaginary sphere-circle K is 

represented by all rectangular ray involutions; there are ∞5 of them.  Any ∞3 of them have 
the same position and will go through the same point of K.  From Theorem 143, they will 

fulfill the equation: 
3

2

1

qλ
λ=
∑ = 0. 

 
 Since the polar of a diameter d of a sphere lies at infinity, a rectangular plane 
involution with the axis d will represent a contact plane to the sphere whose contact point 
lies at infinity, and thus on K.  Such a plane will itself contact K.  It will therefore also 

have one such plane in common with every sphere.  The planes that contact the imaginary 
sphere-circle will then be represented by all rectangular plane involutions.  Starting from 
here, we can arrive at an analytic representation of K immediately: Namely, from 

Theorem 143, the characteristic feature of a rectangular plane involution reads: 
 
(94)     u2 + v2 + w2 = 0 
 
in rectangular pointers u, v, w.  This will then be the equation for K in plane pointers, as 

well. 
 In order to obtain a general, imaginary tangent t to a sphere, from § 72, b, II, β), we 
can choose its imaginary contact point A arbitrarily, and connect it with an arbitrary 
imaginary point of the polar a′ of the carrier a to A.  In particular, if we choose A to be at 
infinity then a′ will be a diameter of the sphere, and thus perpendicular to the position of 
A, and likewise the middle plane of the net that belongs to t.  It will follow from this that 
a′ is the principal ray of the net and that the net is a rotational net. 
 However, even if we do not relate to a sphere then we will see immediately that only 
one imaginary line of a rotational net has the property that it meets the imaginary sphere-
circle.  This then says nothing else but that its point of intersection with the plane at 
infinity is represented by the intersection of a rectangular ray involution.  However 
(Theorem 141), the rotational nets are characterized by the equation: 
 

3
2

1

qλ
λ=
∑ = 0. 

 
Since the special imaginary lines of intersection of K also fulfill this equation, we can say 

(Lindemann, Math. Ann., Bd. 7): 
 
 Theorem 152:  The equation of the imaginary sphere-circle reads (*): 
 

                                                
 (*) A curve can be represented in line pointers by the totality of its lines of intersection, which defines a 
complex.  When one considers the imaginary elements, a complex will contain ∞6 lines.  In fact, there are 
∞6 rotational nets. 
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(95)     2 2 2
1 2 3q q q+ +  = 0 

in (rectangular) line pointers and: 
u2 + v2 + w2 = 0 

in plane pointers. 
 
 A curve is represented by two equations in point pointers.  Since K lies in the plane at 

infinity, and its points possess no actual representation in rectangular point pointers, K 

can also experience no actual representation in terms of such things.  However, K can 

also be characterized completely as the intersection of the plane at infinity with a conic 
surface that K projects from any finite point – e.g., the origin.  Since the generators meet 

the conic surface K, their pointers must fulfill (95).  We can then translate this equation 

into point pointers immediately if we set: 
 

q1 = x′ – x, q2 = y′ – y, q3 = z′ – z, 
 
as in § 33, and take x, y, z to be the fixed pointers of the vertex of the conic surface and 
consider x′, y′, z′ to be the running pointers, or conversely. 
 Since an imaginary line S cuts a rotational net K and the point of intersection also 

belongs to any sphere K, S will contact K at a point at infinity, if it contacts K at all; i.e., 

no imaginary line that contacts K at a finite point will correspond to a rotational net.  This 
should not be surprising, since one already sees that for the special, imaginary lines any 
involution of a pencil of real tangents will represent a tangent to the sphere, so the 
associated involution will thus, by no means, always be a rotational structure. 
 From equation (88.a), we shall now exhibit the equation of the sphere: 
 
(97)     x2 + y2 + z2 = r2 
 
in line pointers.  We think of (97) as being made homogeneous by a fourth variable t and 
must then let the variables: 

t, x, y, z 
correspond to: 

x1, x2, x3, x4, 
 
respectively (§ 31), in order to remain in agreement with the chosen notations.  This will 
give: 
(98)    2 2 2 2 2 2 2

4 5 6 1 2 3( )q q q r q q q+ + − + +  = 0. 

 
 For a sphere tangent S that meets K, one will have: 

 
2 2 2
1 2 3q q q+ +  = 0, 

so one will also have: 
2 2 2
4 5 6q q q+ +  = 0.
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In fact, we already know that the principal net of such a tangent will go through the 
origin, and that from § 68, b), the rotational net will also fulfill the last equation for that 
position. 

__________ 
 
 

Practice problems: 
 

 47. Find the analytical way of characterizing the special position of an imaginary 
point with respect to a non-incident real line that was mentioned in the conclusion (rem.) 
to § 64. 
 
 48. Represent the gathered involution as a point transformation on the basis of 
equation (35) in § 65, f), rem. 
 
 49. Carry out the constructions that are dual to the ones in § 66. 
 
 50. Convince yourself that the double rays of an elliptic-involutory family of rulings 
are independent of which pair one bases the representation upon, instead of p, p′ (§ 67). 
 
 51. Calculate the rectangular pair of the involution of an imaginary plane or special, 
imaginary line from the given pointers. 
 
 52. Exhibit the equation for a sphere with its center at (a, b, c) and a radius of r in line 
pointers. 
 
 53. A general, imaginary line S is given in the most special position with respect to 

the pointer system, namely [§ 68, b)]: 
 
 q1 = 1, q2 = m i, q3 = 0, 
 q4 = n m, q5 = n i, q6 = 0. 
 
Find the geometric locus of the centers of all spheres that contact S. 

 
 54. Exhibit the line equations of: 
  α) The rotational paraboloid x2 + y2 = 2z . 
  β)  The equilateral hyperbolic paraboloid xy = z . 
 
 55. What is the relationship between second-order surfaces of rotation and imaginary 
sphere-circles? 
 
 56. Find the imaginary generators of a ruled surface F2 that correspond to a rotational 
net. 

__________ 
 



 

Chapter VI 
 

The manifold of linear complexes, 
with applications to mechanics and the theory of motion 

____ 
 
 

§ 74.  The axis manifold of the complexes of a pencil. 
 

 We have already learned several theorems on pencils of complexes (viz., Theorems 
97, 98, 114, 115, 127), because they were useful in the investigation of ray nets.  We now 
ask what would be the locus of all axes of a pencil of complexes and their associated 
pitches (Steigungen).  It is irrelevant whether we base our arguments upon the abstract 
concepts of twist and screw or the concrete ones of dyname and winding, since the laws 
of composition and decomposition are the same.  For the sake of intuitive appeal, we 
might appeal to one or the other, as the situation dictates, and when two theorems 
correspond to each other under duality (§ 18) in the theory of motion and mechanics, we 
will mostly state just one of them. 
 We consider two dynames A and B with the pointers an and bn .  The ratios of those 

numbers are also pointers of the associated complexes A and B.  The dynames of the 
form: 
(1)     cn = λ an + µ bn  (n = 1, …, 6) 
 
define a doubly-infinite manifold to which merely ∞1 linear complexes then belong.  
Then, if: 

nc′  = λ′ an + µ′ bn , 

and if: 
λ′ : µ′ = λ : µ , 

 
then one will obtain the dyname C′ from C by multiplying by a numerical factor.  Thus, 

the pointers of the complex C will also be represented by (1), which belongs to all ∞1 
dynames for which µ : λ = κ has the same value.  C will run through a pencil of 
complexes when one changes κ.  We now first assume only a temporary orientation, such 
that: 
 
 I) The rod parts of the dynames A and B are non-zero. 

 
Their directions (*) will then determine a common location σ in which lies the angle ϑ 
that the complex axes define with a direction of σ.  One will find the direction of the rod 
part of the restultant dyname of two given ones when one combines the rod parts of the 
given ones as if they were vectors (§ 14).  The values κ and tan ϑ will then be mutually 

                                                
 (*) If they are parallel then the situation will be similar to the one in II).  
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associated with each other, and we can employ tan ϑ, instead of κ, as the parameter (*) of 
the pencil. 
 
 II) If the rod part of B is zero then B can be decomposed into two moments, one of 

which acts as merely a displacement of the dyname (§ 14). 
 
Here, the axis manifold will then consist of a pencil of parallel rays, and we can employ a 
linear quantity as a parameter. 
 
 III) If the rod parts of both dynames are zero then we will have two moments before 
us, and all force systems that can be composed from them will again be only moments. 
 
The axis manifold is then to be regarded as the pencil of rays at infinity whose vertex is 
given by the common direction of both fields.  The carrier of the pencil is a singular ray 
net for which e (in the notation of § 54, conclusion) lies at infinity. 
 In absolutely all cases in which the net is singular, all complexes of the pencil will 
also be singular (thus, the question of the pitch will go away), and the axis manifold will 
be a plane pencil of rays.  We can ignore this case, since the composition of the given 
force system will also result from elementary rules.  The only cases that remain to be 
actually investigated are: 
 
 a) The carrier of the pencil of complexes is a hyperbolic ray net, and both focal lines 
lie at infinity. 
 
 b) One of them lies at infinity. 
 
 c) The carrier is an elliptic ray net. 
 
 d) The carrier is a special net whose focal line lies at infinity. 
 
 e) Its focal line lies at infinity. 
 
 We shall treat cases a), c), d) together and define the pointer system as simply as 
possible relative to the ray net, namely, as we did in § 55, a), c), d).  We can then write 
equations (79), (84), (87) of § 55 in the common form: 
 

(2)    4 1

5 2

0 (complex ),

0 (complex ),

q q A

q q B

+ =
′+ =
k

k
 

 
where in cases a), c), d) one will have: 
 

                                                
 (*) From now on, in order to guard against confusion with the “parameter” of a parametric 
representation, we will always call the quantity k that was defined in §§ 1 and 15 the “pitch” of the screw, 
winding, or dyname. 
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 a) k = − c tan α, k′ = c cot α, 

 c) k = cm, k′ = c : m, 

 d) k = 0, k′ = K, 

 
respectively.  Therefore, from § 48, equation (38), k, k′ will actually be the pitches of the 

twist in question.  It is characteristic of the cases that k and k′ will have opposite signs in 

a) and the same signs in c).  If the pitches are given for two twists whose axes intersect at 
right angles then one can calculate the constants c and a (c and m, resp.), which are 
characteristic of the form and magnitude of the associated net, from equations a) or b), 
resp.: 
 a′) c2 = − k k′, tan2 α  = − k : k′, 
 c′) c2 = k k′, m2 = k : k′. 
 
Whenever m and tan α are always positive, c will have the sign of k′. 
 A linear complex is determined by its axis and its pitch k: If we carry the quantity k on 

the axis, with consideration given to its sign (by which, the sense of rotation of the 
associated screwing motion will determine the positive direction of the axis), then the 
complex will be represented by a rod, namely, its pitch rod (*).  The rods of a pencil of 
complexes will then define a rod surface (§ 43), which we would like to find. 
 If we compare equations (2) with equation (7) of § 46 then we will see that the axis of 
A coincides with the X-axis and that of B coincides with the Y-axis.  We will frequently 
say that a complex or a screw lies in a plane when the representative rod lies in a plane.  
The possibility of representing any pencil of complexes in the cases a), c), d), of § 55 in 
the form (2) implies the: 
 
 Theorem 153:  Any pencil of complexes whose carrier is not a singular ray net with 
a middle plane can be defined by the two complexes that lie in the middle plane – viz., the 
“principal complexes” – whose axes are perpendicular to each other and coincide with 
the axes of the net for a general net.  In the case of a hyperbolic net, the principal 
complexes are oppositely wound, while in the case of an elliptic net, they will be wound 
the same; in the case of a special net, one of the principal complexes will be singular. 
 
 For the pencil of complexes (2), one will have: 
 
 a1 = 1, a4 = k, the remaining an are zero, 

 b2 = 1, b5 = k,  “ “ an “    . 

 
Therefore, from (1), one will have: 

                                                
 (*) A pitch rod differs from a force rod in that the latter will also have meaning in the absence of a 
positive direction for its carrier.   By contrast, a pitch rod already has an intrinsically-determined sign (viz., 
that of k).  If one then changes the positive direction of the carrier then one must apply the rod pitch to the 

same twist in the opposite sense. 
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 c1 = λ, c2 = µ, c3 = 0, 
 c4 = λ k, c5 = µ k′, c6 = 0. 

 
We call the angle that the complex axis defines with the X-direction ϑ, and we know 
from I) that tan ϑ is a suitable independent variable, so we set: 
 

λ = cos ϑ, µ = sin ϑ, 
 
and obtain the pitch kc of C and the points ai of its axis from § 48, equations (38) and 

(40): 
(3)    kc = k cos2 ϑ + k′ sin2 ϑ, 

 

(4)  1 2 3
2 2

4 5 6

cos , sin , 0,

( )sin cos , ( )sin cos , 0.

ϑ ϑ
ϑ ϑ ϑ ϑ

= = =
′ ′= − − = − =

a a a

a k k a k k a
 

 
The rod a cuts the Z-axis and is parallel to the XY-plane; in order to find its distance z 

from that plane, we introduce the expressions for the a in point pointers that are given by 

§ 33, equations (24), whereby we immediately set: x = y = 0.  We obtain, in double 
agreement: 

z = (k′ − k) sin ϑ cos ϑ. 

The equations: 
 x = r cos ϑ, 
(5) y = r sin ϑ, 
 z = (k′ − k) sin ϑ cos ϑ  
 
will then give a generator of the desired axis surface of the pencil of complexes (2) for 
each value of ϑ.  If one eliminates r and ϑ from (5) then one will obtain the equation of a 
third-order ruled surface that is called the “cylindroid” (*): 
 
(6)    (x2 + y2) z = (k′ − k) xy. 

 
According to whether we consider this surface as a line surface or a rod surface, we will 
distinguish these two constructions, when necessary, as the “line cylindroid” or the “rod 
cylindroid,” resp.; the latter is defined by equations (5) and (3) together. 
 If k′ = k then it will follow from equation c) that: 

 
m = 1. 

                                                
 (*) It has other names, among which are the “Plücker conoid” and the “Cayley line surface,” that get 
some degree of use.  It was discovered by Hamilton (1830), investigated more thoroughly by Plücker (Neue 
Geom. des Raumes, 1868), and most thoroughly by Ball in his work A Treatise on the Theory of Screws 
(Cambridge, 1900), which summarized his previous research in the realm of kinematics and mechanics 
(since 1870).  We shall follow the latter work, in part, in § 76. 
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That is: If a rotation net is the carrier of a pencil then the twist axes will define a plane 
pencil of rays in the middle plane of the net; from (3), the pitch will then be constant.  We 
see that the rotation net that we spoke of in § 59, b, γ) is the only one that belongs to a 
given twist. 
 
 b) In this case, the finite focal line must be a diameter of all twists of the pencil.  We 
can then anticipate that its axes will define a pencil of parallel rays, in general.  In order 
to correctly obtain the pitches, with their signs, then it would be best to start here with the 
analytical representation of the ray net in § 55, b), equations (82): If we first preserve the 
parameters λ and µ of equation (1) then that will give us, as before: 
 

(7)      kc = 
µ
λ

cos ω. 

 

(8)    1 2 3
2

4 5 6

cos , 0, cos ,

sin cos , 0, sin .

λ ω λ ω
µ ω ω µ ω

= = =
= − = =

a a a

a a a
 

 
The middle two equations show that all complex axes cut the Y-axis perpendicularly.  We 
may then go to point pointers and immediately set x = z = 0 and obtain the distance y of a 
rod from the finite focal line: 

y = − 
µ
λ

sin ω, 

and from this: 
(9)      kc = − y cot ω. 

 
 Thus, for ω = 0 it is immediately clear that the rod surface consists of all rods on the 
focal line, because the net will then consist of all pencils of rays whose vertices lie on the 
focal line and whose planes are perpendicular to it.  With Study, we will call such a net a 
normal net (“Ein neuer Zweig der Geometrie,” Jahresber. d. D. Math. Ver., Bd. 11). 
 
 e) Here, one obtains: 

(10)     kc = − 
1

K
, 

 
(11)  a2 = − µK, a6 = λ,  the remaining a zero 

 
from equations (89) of § 55 by the same process.  All twists of the pencil will then have 
the same pitch, and their axes will define a pencil of parallel rays in the XY-plane that 
belongs to the X-axis.  If one displaces a twist in a direction that cuts its axis 
perpendicularly then one can, in fact, see immediately that all rays will be parallel to the 
connecting plane of the axis and that direction will remain the same. 
 We have now discussed all possible cases, and summarize them as: 
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 Theorem 154:  The axis surface of a pencil of complexes consists of: 
 
 α) A plane pencil of rods of constant length whose vertex coincides with the center of 
the net and whose plane coincides with the middle plane when the carrier is a rotation 
net. 
 
 β) A plane pencil of rods that are all parallel to the finite focal line b of a hyperbolic 
net with a focal line at infinity whose position does not intersect b perpendicularly, and 
whose lengths are proportional to their distance from b when the carrier is that 
hyperbolic net. 
 
 γ) A plane pencil of equal and parallel rods that lie in the principal plane of a 
special net with a focal line at infinity that is perpendicular to the principal direction 
when the carrier is that special net. 
 
 δ) A plane pencil of rays whose vertices and planes coincide with the vertices and 
planes of a singular net when the carrier is that singular net (*). 
 
 ε) The rods of the focal line of a normal net when the carrier is that normal net. 
 
 ζ) A cylindroid, in all (three) remaining cases. 
 
 We also call the middle planes of the ray net from which we started the middle plane 
of the cylindroid [it will coincide with the XY-plane in the representation b)], and also call 
the axes of the principal complex the “principal generators” of the cylindroid. 
 

_______________ 
 
 

§ 75.  The cylindroid. 
 

 a) When we set k′ – k = 2h, the rod cylindroid will be defined by the equations: 

 
 x = r cos ϑ, 
(5) y = r sin ϑ, 
 z = h sin 2 ϑ, 
 
(3′)    kϑ = k cos2 ϑ + k′ sin2 ϑ, 

 
and the line cylindroid will be defined by (5) alone or by: 
 
(6′)     (x2 + y2) z = 2h x y. 

                                                
 (*) Here, one cannot regard the axis surface as a rod surface, because all rods will have a length is either 
zero or infinite. 
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We first discuss the latter: A single parameter h enters into (6′) that remains unchanged 
when one simultaneously changes k and k′ by the same amount; thus: 

 
 Theorem 155:  All line cylindroids are similar to each other, and ∞1 pencils of 
complexes belong to each of them. 
 
 One infers from (5) that all generators of the cylindroid cut the Z-axis 
perpendicularly.  For ϑ = π / 4 and 3π / 4, that will yield the “extreme” generators: 
 

z = ± h, 
y

x
 = ± 1. 

 
Two generators of the cylindroid lie in each parallel plane between the “extreme” planes 
z + h and z = − h; the equation sin 2ϑ = z: h will then have two solutions ϑ.  No real 
generators of the surface lie outside of these planes.  The Z-axis is a double line of it and 
belongs to it for its entire course.  In order to obtain the surface completely, it will suffice 
to let ϑ increase from zero to π.  In order to get an intuitive picture of it, we cut it with a 
cylinder: 

x2 + y2 = r2. 
 

The curve of intersection on it will be represented by the last of equations (5).  If we 
develop the cylinder onto a plane then we will obtain two complete waves of a sinusoid 
in the extended sense of the word.  If we let r increase for one and the same cylindroid 
then the height of that wave will remain unchanged, while its length will increase 
proportional to r. 
 

3 2 

Figure 65. 

Z 

1 
4 5 

16 1′ 2′ 3′ 
16′ 

1″ 
ϑ 

 
 One can then present a model of the cylindroid by the simplest means thus: One 
draws two waves of the curve: 
(13)     z = h sin 2ϑ 
 
on a rigid, but still bendable, piece of cardboard in a rectangular system of pointers (ϑ, z) 
for a well-defined value h, and indeed, we emphasize that in order to obtain a sufficiently 
large neighborhood of the double line, we must take h = 3 / 4, as well as the six-fold scale 
in Figure 65.  In fact, the smaller that one makes h, the larger the neighborhood of the 
double line that one obtains will be, but the smaller the scale of the model will be.  One 
then divides each quadrant into − say − four equal pieces, sticks a pin through the 
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indicated points 1, 2, 3, …, 16; 1′, 2′, …, 16′, 1″, cuts short the cardboard with the dashed 
line, bends it around a circular cylinder in such a way that the hatched boundaries 
overlap, and attaches them together.  In order to assure the circular form of the cylinder 
base, one immediately stiffens the model by putting a circular cardboard frame around 
the cylinder (Fig. 66) and attaches it.  One draws a string on it through 1, 1′, 2, 2′, 3, 3′, 4, 
etc., in sequence.  It is important to choose the length of the string in such a way that the 
16 generators distribute themselves on four strings.  In Fig. 66, the model is depicted with 
a small alteration (cf., App. II). 
 
 

H′ 
B 

D′ 

G H 
A 

C 

K 
B′ 

D 

G′ 

A′ 

Figure 66. 

 
 If one cuts the cylindroid with a plane E that contains a generator then the rest of the 
intersection must be a second-order curve, and in fact, an ellipse, because it is contained 
completely in the strips of E between the extreme planes. 
 We now examine the intersection of a circular cylinder C that contains the double line 
d as a generator with the cylindroid C.  Since d must be counted twice, the curve of 

intersection must decompose into d and a planar conic section, which we would like to 
confirm immediately: If ϑ0, ρ are the polar pointers of the point of intersection of the 
cylinder axis with the middle plane then (Fig. 67): 
 

r = 2ρ cos (ϑ – ϑ0) 
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will be the polar equation of the 
cylinder base.  Therefore: 
 
 x = 2ρ cos (ϑ – ϑ0) cos ϑ, 
(14) y = 2ρ cos (ϑ – ϑ0) sin ϑ, 
 z = h sin 2ϑ 
 
will be the equation of the curve  of 
intersection of C and C.  If one 

defines: 
 
 x sin ϑ0 + y cos ϑ0 
 
 = 2ρ cos (ϑ – ϑ0) sin (ϑ + ϑ0) 
 = ρ (sin 2ϑ + sin 2ϑ0) 
 
then one will see that by eliminating J 
from equations (14) one will obtain a 
linear equation that represents the plane E: 

(15)    x sin ϑ0 + y cos ϑ0 = ρ 0sin 2
z

h
ϑ + 

 
. 

 
The intersection of C and C will also be the intersection of C and E then; i.e., an ellipse.  

We would like to look for the generator ϑ1 of C that lies in E.  For that, one has to 
introduce: 
 

x = r cos ϑ1, y = r sin ϑ1 
 

into (15) and impose the condition on ϑ1 that the value of z that is calculated from (15) 
must agree with h sin 2 ϑ1 ;  however, one sees immediately that the solution is: 
 
(16)     ϑ1 = − ϑ0 .  
 
If one then rotates C around the double line then the generator that E has is common with 
C will run through the entire cylindroid in the opposite sense.  Furthermore, the angle γ 

that the normal to E defines with the Z-axis will be: 
 

(17)     cos γ = 
2 2h

ρ
ρ +

. 

 
If ρ increases from zero to infinity then the absolute value of cos γ will run through all 
values that it can possibly assume.  Moreover, if one replaces ϑ0 with: 

0ϑ′  = ϑ0 + π 

 

X 

Y 

r 

2ρ 
ϑ ϑ0 

Figure 67. 
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then one will see from (15) that the new plane E′ is the mirror image of E in the XY-
plane.  Thus, one sees from (16) and (17) that all possible positions of E will exhaust the 
∞2 planes that go through the generators of C. 

 
 Theorem 156:  Every plane through a generator of the cylinder intersects it in an 
ellipse whose projection onto the middle plane is a circle. 
 
 Theorem 157:  If one chooses an ellipse and a generator d on a circular cylinder 
arbitrarily then the geometric locus of all lines that cut the ellipse and d, and indeed cut 
the latter perpendicularly, will be a cylindroid. 
 
 This theorem also leads to a simple construction of the cylindroid that is carried out in 
Fig. 68, and in fact 
the generator is 
chosen to go 
through the 
endpoint of the 
minor axis BB′ of 
the ellipse.  In fact, 
one will also obtain 
yet another 
cylindroid with that 
special assumption, 
because one can set 
ϑ0 = ϑ1 = 0 in (16).  
The same thing will 
follow from 
Theorem 155, 
moreover.  One can 
also give preference 
to a particular angle 
of inclination of the 
plane of the ellipse 
relative to the base 
k (one can let the 
latter go through 
BB′).  Each chord 
M′N′ of the base 
that is parallel to 
BB′ will belong to 
two equally-high 
points M, N of the 
ellipse.  If one then 
makes BD = M′M 
then DM and DN will be two generators of the cylinder. 
 

 
d 
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Figure 68. 
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 γ is independent of ϑ0 .  If one then rotates C around the double line then the pitch of 
the plane of the ellipse with respect to the base will 
remain unchanged, so the ellipse will also be 
congruent to itself.  The cylindroid must then be 
capable of being generated by a certain motion of 
that ellipse, or – what amounts to the same thing – 
the cylinder on which it lies.  The motion must be 
such that every point of the ellipse, and therefore 
also its projection onto the base – i.e., any point of 
the base – must describe a straight line.  As is 
known, the motion that has this property consists of 
a circle K rolling inside of another one of twice the 
diameter (*).  Thus: 
 
 Theorem 158:  If a circular cylinder C rolls on the inside of another one with twice 
the diameter then any point of an ellipse that remains fixed on C will describe a 
generator of one and the same cylindroid (** ). 
 
 One can infer some other theorems from the foregoing calculations and constructions.  
For example: The difference of the squares of the axes of any elliptical section of a 
cylindroid is a constant = h2. 
 Any ellipse that lies on a cylindroid C cuts the generator of its plane twice: Once on 

the double line, and the second time at a point S for which E is the contact plane of C.  

Two lines in E that lie completely on C will then go through S. 

 
 b) We now go on to the examination of the rod cylindroid.  If we carry the 
associated rod from the point of intersection with the double line on any generator then 
the endpoints of the rod will define the “characteristic curve” on the line cylindroid C, 

which is determined uniquely by its projection C.  If we set: 
 

cos2 ϑ = 1
2 (1 + cos 2ϑ), sin2 ϑ = 1

2 (1 − cos 2ϑ) 

in (3′) and: 

                                                
 (*) If the circles originally make contact at A (Fig. 69), and if the contact point goes to B under the 
rolling motion then A must arrive at A′.  One must have: 
 

arc AB = arc A′ B, 
so 

ω = ∠ A′ B = 2 ∠ A B. 
 
However, since one also has ω = 2α, it will follow that: 
 

α = ∠ AB; 
 
i.e., the point A′ will be found on the connecting line MA for any position of the inner circle. 
 (** ) If is a useful exercise to visualize this motion and its distinguished phases intuitively with the help of 
a string model. 

 

Figure 69. 
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1
2  (k + k′) = s 

then C will have the polar equation: 
(18)     kϑ = s − h cos 2ϑ . 

 
One can easily find arbitrarily many points of C with this.  One draws (Fig. 70) a circle K 
with the origin as its center and s as its radius and a circle K′ with h as its diameter that 
contacts the Y-axis at the origin, and whose center lies on the negative or positive side of 
the X-axis according to whether h is positive or negative, respectively.  In order to find a 
value ϑ for a point of C, one makes the ray 2ϑ cut K′ at A and makes SB = OA (with 
consideration given to the sign), and analogously S′ B′ = OA′.  For a certain cylindroid, h 
will be constant; thus: 
 
 Theorem 159:  One obtains all characteristic curves of a line cylindroid from one of 
them when one displaces each of their points through the same segment on the generator 
on which it lies, where the sense of the displacement on a generator can be chosen 
arbitrarily and can be determined by continuity on the remaining ones. 
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K 
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 We then consider the simplest case of s = 0.  In this case, since ϑ ranges only from 0 
to π, the equation: 
(19)     kϑ = − h cos 2ϑ 

 
will represent one-half of a “four-leafed clover” (Fig. 71), in which one must observe that 
for a positive h, kϑ will be negative in the domain 0 < ϑ < 45o, so the entire piece AOB of 

the curve 1 will belong to the first quadrant of ϑ.  If the moving ray rotates through π 
then its positive direction will change; the value kϑ has also been carried into the opposite 

direction then (cf., the rem. on pp. 216).  It will therefore happen that the characteristic 
curve is not closed, although its endpoints are associated with the same twist. 
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 The general curve is also symmetric with respect to the Y-axis.  We then need to 
pursue it in just one quadrant: If we carry the constant segment s in the current direction J 
then, from (1), we will get type 2, 3, or 4 (Fig. 71) for a positive s according to whether s 
is smaller than, equal to, or greater than h, respectively (*).  We denote the curve C by C1, 
…, C4, according to the type that it belongs to.  The equation of C3 reads: 
 
(20)     kϑ = 2h sin2 ϑ . 

 
The tangent directions of the possible double point are determined by: 
 

(21)     tan2 ϑ = − 
′
k

k
. 

 
These values of J correspond to singular complexes. 
 With the help of the curve C, one can, in all cases, form an intuitive picture of the 
distribution of pitches for the complexes of a pencil whose line cylindroid is given.  The 
choice of system of pointers in § 55 corresponds to the assumption that one always has: 
 

k′ > k, 

 
no matter how the signs of these quantities might be arranged.  h will then be positive, 
and the generators of C will lie over the XY-plane in the first quadrant and below it in the 

second. 
 We begin with the case C1, in which one has: 
 

k′ = − k = h. 

 
The extreme generators a, a1 of C are simultaneously the focal lines b, b1 of the 

associated net, which is therefore rectangular, and indeed, b will lie above the XY-plane 
at a distance of h, etc.  The sign in the octants of Fig. 72 indicates the winding of the 
complexes of the pencil, such that the positive sign will correspond to a left-wound 
winding (§ 11, conclusion). 
 If we go on to the other pencils of complexes of the same cylindroid, while we let k 

and k′ increase by the same amount (Fig. 73), then b and b1 will approach the XY-plane by 

the same amount, until they coincide for k = 0, at which point, they will become a focal 

line of a special net.  If k is also positive then the net will be elliptic, but one can calculate 

its constants c, m from equations (c′) of § 74, and thus determine its position with respect 
to C.  If one sets k′ = k + h in them then one will get: 

 

                                                
 (*) Plücker’s remark (Neue Geom. des Raums, art. 93) that one has to let all points either approach the 
double line or move away from it is therefore not true, in general. 
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(22)   c = ( )h+k k , m = 
h+
k

k
; 

 
both roots are taken to be positive.  The net is left-wound, and will always approach a 
rotation net with increasing k.  The major axes of the throat ellipses of the net will fall 

upon the X-axis.  All twists of the pencil will be right-wound. 
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Figure 72. 
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 It is now easy to follow through what happens when k and k′ both decrease from their 

initial values by the same amount.  When both of them are ultimately negative, one must 
take the first root in (22) to have the negative sign.  One will have m > 1; i.e., the major 
axes of the throat ellipses of the net will fall upon the Y-axis, so they will always fall 
upon the axis that belongs to the principal complex with an absolutely smaller pitch.  For 
all nets of the cylindroid, one will have: 
 

(23)     c = h ⋅⋅⋅⋅ 21

m

m−
. 

 
 Theorem 160:  Two special and one rectangular ray net belong to any line 
cylindroid, as well as ∞1 hyperbolic and ∞1 elliptic nets, moreover.  The pair of focal 
lines of the former will be left-wound or right-wound according to whether the two 
pitches k, k′ of the principal complex have the positive or negative of the greater absolute 

value, respectively.  The latter are left-wound or right-wound according to whether k, k′ 
are both positive or negative, respectively. 
 
 c) If a ray s of a net N is cut by a ray a of the associated cylindroid C then s will 

belong to the complex C of the associated pencil whose axis falls upon a.  If C is a twist 
then a and s will intersect perpendicularly.  Since C is of third order, at least point of one 

intersection with s will be real.  It will follow from this that: 
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 Theorem 161:  Any ray of a net N (except the principal ray) cuts one and only one 

generator of the associated cylindroid perpendicularly.  The other two points of 
intersection will or will not be real according to whether N is hyperbolic or elliptic, 

resp.; in the former case, they will lie on the focal lines. 
 
 In fact, s cannot be on more than one generator of C without the double lines 

coinciding, but on the other hand, the possible focal lines of N, which also lie on C, must 

intersect.  From the first part of Theorem 161, and from the reciprocal position of C and 

N, which we studied in b), it will follow immediately that: 

 
 Theorem 162:  The locus of the shortest distances from the principal ray of a net to 
all other rays is the associated cylindroid of the net. 
 
 Thus, ∞1 of these shortest distances will lie on the same line.  From Theorem 99, the 
associated rays s will define a family of rulings, and in fact, an equilateral, hyperbolic 
paraboloid. 
 

_______________ 
 
 

§ 76.  The composition of two dynames or windings. 
 
 The two equations: 
 
(19)   kϑ = s – h cos 2ϑ, z = h sin 2ϑ 

 
represent the characteristic 
curve of the rod cylindroid.  
We would now like to rotate 
all of its rods around the Z-
axis in the same plane.  Their 
endpoints will then define a 
plane curve whose equation 
we will get by eliminating ϑ 
from equations (19): 
 
(20) (kϑ − s)2 + z2 = h2, 

 
which is then a circle K with 
radius h.  We draw K in the 
XZ-plane.  Its points of 
intersection with the X-axis 
have X-pointers (Fig. 74): 

 

2ϑ 2ϑ1 

Figure 74. 
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 s – h = k = OA, 

  s + h = k′ = OB, 

 
by which, it is determined completely.  The angle 2ϑ of equations (19) is again found to 
be ∠ AMP in the figure.  Its sense of rotation is positive, since the Y-axis points below the 
reference plane.  In order to find the actual position of the rod P′P in space, we have to 
rotate it around the Z-axis through the angle ϑ; i.e., through a peripheral angle ABP on 
the arc AP.  Lewis’s theorem then follows from this: 
 
 Theorem 163:  If a point moves in a circle K with uniform angular velocity, while K 
itself rotates around a Z-axis that lies in its plane with one-half that angular velocity, 
then the distances to the points of Z will define the rods of a cylindroid.  The associated 
net will be hyperbolic, special, or elliptic, according to whether the circle K cuts the axis, 
contacts it, or does not cut it, respectively. 
 
 One thus obtains the rod cylindroid completely when the point on K performs a 
complete circuit, so ϑ will run through the domain 0, …, π.  If a rod cylindroid is given 
by the “principal rods” k, k′ then it will be immediately obvious how one can find the rod  

that is associated with each value of ϑ: One draws K, then ∠ ABP = ϑ, then makes the 
two legs intersect K at P, and then rotates P′P through ϑ out of the reference plane. 
 

Figure 75. 
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 However, one can also find the circle K, and therefore the principal rods k, k′, from 

the two arbitrary rods kϑ , kη of the cylindroid (*): Let Z be the line of shortest distance 

P′Q′ between t and t′.  We choose the direction on it to be positive when the angle (t, t′) = 
σ appears to be concave (Fig. 75) from it.  We choose the plane Z, t to be the reference 
plane for K (Fig. 76) and rotate t′, together with kη, in it around Z.  The circle K must then 

have the property that it goes through the endpoints P, Q of both rods, and σ must be its 

                                                
 (*) Therefore, every rod must be given a positive direction on the carriers t, t′, because otherwise one 
could not evaluate the sign of the rod  (cf., rem. 3 in § 74). 
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peripheral angle on the arc PQ.  There are two such circles with centers M, M′; however, 
the arc PQ = 2σ will be traversed, in some sense, for only one of them (viz., K), so that 
the positive Z semi-axis and t will be determined in that sequence.  For that reason, only 
K will be the desired circle.  Now, one knows the angle ABP = ϑ = (X, t), so one can draw 
the X-axis in Fig. 75, and likewise the principal rods k, k′, whose lengths and signs one 

infers from Fig. 76 (k = OA, k′ = OB).  The position of the point O on the shortest 

distance is also determined by Fig. 76, such that the problem of finding a rod cylindroid 
from two of its rods is solved completely in a constructive way (*).  One finds a 
computational solution in Schell, Theorie der Bewegung und der Kräfte, Bd. II, pp. 220 
(2nd ed.). 
 With that, the problem of composing two given dynames with the help of the 
cylindroid is also solved [Study has given other constructive solutions in Geometrie der 
Dynamen (I, 1901), where the theories that are discussed here are developed upon a new 
foundation].  Then, from the beginning of § 74, the rod pitch of the resultant dyname 
must belong to the cylindroid of the two given ones, and the directions and magnitudes of 
the forces of the given dynames must determine the direction ϑ and magnitude of the 
resultant force.  However, there is a single rod with a given direction ϑ in a cylindroid, 
which we just learned how to construct; it will give us the position and pitch of the 
resultant dyname.  We shall leave to the reader the task of carrying this out as a 
continuation of Figures 75 and 76.  In this, one must observe: If a dyname D is given by 

its force part k and its moment m (in the form of a rod and a rectangular field) then its rod 
pitch will be kϑ = m : k.  Its construction thus comes down to converting one right angle 

into another one, one side k of which is given.  Thus, if the rod pitches kϑ , kη of the 

dynames D, D′ are known then one can choose the magnitudes and senses of the forces 

k, k′ on the carriers t, t′, of kϑ and kη , resp., arbitrarily in order to give them completely. 

 
_______________ 

 
 

§ 77.  The manifold of linear complexes. 
 

 The linear complexes define a five-fold infinite manifold (§ 2) in which an individual 
representative can be determined by the ratios of six numbers, viz., its (ray or axis) 
pointers (§ 49) in a tetrahedral system of pointers.  We consider k + 1 complexes C0, C1, 
…, Ck with the pointers: 
 c01 c02 … c06 
(21) ……………….. (k ≤ 5) 
      ck1 ck2 … ck6 . 
 

                                                
 (*) Figures 75 and 76 are intended to represent the case in which kϑ is negative and kη is positive.  The 
reader will convince himself that the solution is independent of the sequence of the two rods. 
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If this matrix has rank k + 1 [with the definition of rank in § 39), c)] then we will call the 
complexes independent of each other, and otherwise, dependent.  We now assume that 
C0, …, Ck are independent of each other and compose the pointers of a complex B from 
their pointers in the following way: 
 

(22)    ρ bν = 
0

k

cκ κν
κ

λ
=
∑  (ν = 1, …, 6), 

 
where ρ is a proportionality factor.  Let: 
 

 ρ bν′ = 
0

k

cκ κν
κ

λ
=

′∑  (ν = 1, …, 6) 

 
be the pointers of B′.  B′ is then identical with B only when the λ′ are proportional to the 
λ.  It will then follow from a suitable choice of k + 1 of the six equations: 
 

0

( )
k

cκ κ κν
κ

λ σλ
=

′−∑ = 0 

that: 
λκ – σ κλ′  = 0   (κ = 0, 1, …, k). 

 
If we let the ratios of the λ assume all possible real values then (22) will represent a k-
fold infinite manifold Mk of complexes.  We say that Mk has dimension k, or (with 
Grassmann) that it has rank k + 1 (k + 1-rank), because k + 1 complexes are necessary for 
its determination.  We now choose k + 1 well-defined complexes B0, B1, …, Bk from Mk: 
 

(23)   ρµ bµν = 
0

k

cµκ κν
κ

λ
=
∑  (ν = 1, …, 6; µ = 1, …, k). 

 
It follows from the multiplication theorem for determinants that any k + 1-rowed 
determinant of the matrix of b can be obtained from the corresponding one in the matrix 
(21) by multiplying by: 

Λ = | λµκ |  (µ, κ = 0, 1, …, k). 
 

Thus, if, as we shall now assume: 
(24)     Λ ≠ 0 
 
then B0, …, Bk will also be independent of each other.  We let B, C, … denote not only 
the complexes, but also the linear forms that enter into their equations, namely: 
 

Bµ = 
6

1

b pµν ν
ν =
∑ ,  Cκ = 

6

1

c pµν ν
ν =
∑ , … 
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etc.  In them, the p are homogeneous line pointers, and ray or axial pointers, according to 
whether the complex pointers are axial or ray pointers, respectively (§ 49).  One then has 
identically: 

(25)     ρµ Bν = 
0

k

Cµκ κ
κ

λ
=
∑ . 

 
That is, the forms of the B are linearly derived from the forms of the C, which is why the 
manifold M is also called linear or a linear complex domain.  For k = 1, we get the pencil 
of complexes that is known to us, for k = 2, the net of complexes, for k = 3, the bush of 
complexes, for k = 4, the web of complexes (a terminology of Reye and Sturm), and for k 
= 5, the entire space of complexes.  If B is linearly derivable from C0, …, Ck then B, C0, 
…, Ck will be independent of each other, and conversely.  Since each linear form in these 
variables is linearly derivable from these six forms in six variables, one will have: 
 
 Theorem 164:  More than six linear complexes are always dependent upon each 
other. 
 
 Due to (24), the forms Cκ can be also represented in terms of the Bµ by way of (23).  
Thus, for arbitrary λ′, the system of equations: 
 

(26)    
0

k

Bτµ µ
µ

λ
=

′∑ = 0  (τ = 0, …, k) 

 
encompasses precisely the same complexes that the system of equations: 
 

0

k

Cµκ µ
κ

λ
=
∑ = 0 

does for arbitrary λ.  That is: 
 
 Theorem 165:  A linear complex domain of dimension k is determined by any k + 1 of 
its independent complexes in the same way as it is by the original k + 1. 
 
 We now let M, N, S, V always denote linear complex domains whose dimension will 
be indicated by the index.  One can now let the first l + 1 (l < k)  of the λ in equations 
(22) be arbitrary, and let the other ones be zero.  It will then follow that: 
 
 Theorem 166: If l + 1 independent complexes of one Ml of two linear complex 
domains is contained in the other one Mk then all of Ml will be contained in Mk . 
 
 As a result of the last theorem, one can obtain − e.g., a net of complexes − in the 
following way: If one links each complex of a pencil (that is defined by C0 and C1) with a 
complex C2 that does not belong to the pencil by another pencil of complexes then one 
will obtain the ∞2 complexes that make up the net.  This process will then correspond 
analytically to the one that couples a fixed choice of λ0 : λ1 to all values of λ2 by defining 
the linear form: 
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ρ B = λ0 C0 + λ1 C1 + λ2 C2 . 
 
Analogously, one can derive a bush of complexes from a net of complexes and a fourth 
complex, etc. 
 One remarks the analogy with the following theorems of elementary geometry: A line 
(plane, resp.) is determined by two (three, resp.) of its points.  If two points of a line lie in 
a plane then the entire line will lie in the plane.  One will obtain all points of a plane 
when one connects all points of a line with an external point by lines, and all points of 
space, when one connects all points of a plane with an external point.  However, whereas 
this construction cannot be continued further in point space, in the manifold of linear 
complexes, one can go on to four-dimensional domains and the five-dimensional space of 
complexes.  We will evaluate this remark for the geometrically fundamental concept of 
“multi-dimensional spaces” (§ 80).  However, first we would like to look into whether the 
laws of meet and join for the linear structures in point space also have an analogue in the 
space of complexes.  These laws for points, lines, and planes in space can be summarized 
as follows (the index will again denote the dimension, where the index zero refers to a 
point): In general, Mm and Nn have a common meet sm+n−3 or determine a join vm+n+1 

according to whether m + n ≥ 3 or m + n < 3, respectively; in these expressions, m, n can 
assume the values 0, 1, 2, 3. 
 In the space of complexes, we define the join of two domains to be the totality of all 
complexes of all pencils that link any complex of the one domain with a complex of the 
other domain.  We understand the term “linear complex domains Mk and Nl in general 
position” to mean two that are not contained in any lower-dimensional linear domain as 
they are in all of the space of complexes when k + l ≥ 5 and two that have no common 
complex when k + l < 5.  We now prove the: 
 
 Theorem 167:  If one counts the dimension s of the meet of Mm and Nn as – 1 when 
no common complex at all is present and zero when a single one is present, and if v is the 
dimension of their join then: 
(27)     s + v = m + n. 
 
 We think of Mm as being defined by the independent complexes B0, …, Bm, and Nn as 
being defined by the complexes C0, …, Cn .  Any complex of M can be represented in the 
form: 

ρ B = 
0

m

Bκ κ
κ

λ
=
∑  

and any complex of N, in the form: 

ρ′ C = 
0

m

Cκ κ
κ

λ
=

′∑ . 

 
Now, one might be able to find a, but no more, mutually-independent C that depend upon 
B (a can also be zero).  From Theorem 165, we can assume that these a complexes are the 
first a of the sequence C0, …, Cn .  The complexes C0, …, Ca−1 will then define a meet of 
dimension a – 1 = s; moreover: 
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(28)    B0, …, Bm , Ca, …, Cn 
 
are independent of each other.  If one then had, perhaps: 
 

a a n nC Cλ λ′ ′+ +⋯  = λ0 B0 + … + λm Bm 

 
identically then, contrary to the assumption, the linear forms on both sides of the equal 
sign would be additional (a +1)th forms that would depend upon the C, but not upon C0, 
…, Ca, and would also be dependent upon B.  Thus, the sequence (28) would define a the 
join of dimension v = m + 1 + (n – a + 1) – 1 = m + n + 1 – a.  Therefore (cf., Grassmann, 
Ges. W. I, b, art. 25): 

v + s = m + n. 
 
Theorem 167 is also true when one goes to the rank numbers, because each of the four 
numbers will then be raised by one.  For a complex domain in general position, one will 
have v = 5, in the event that m + n ≥ 5; thus: 
 
 Theorem 168:  Two complex domains Mm, Nn in general position will have a 
common meet of dimension m + n – 5 when m + n ≥ 5. 
 
 When a = 0, all m + n – 2 defining complexes of both domains will be independent of 
each other; thus: 
 
 Theorem 169:  Two complex domains Mm, Nn in general position will have a 
common join of dimension m + n + 1 when m + n < 5. 
 
 For example, one can obtain a bush of complexes from two pencils of complexes in 
general position as the totality of connecting pencils in precisely the same way that one 
obtains the entire point space as the join of two skew lines. 
 If one writes the quantities bν in (22) as the last column in the matrix (21) then one 
will obtain a matrix in which all k + 2-rowed determinants are zero.  One has then 
eliminated the quantities λ from (22) and obtained linear, homogeneous equations 
between the b whose coefficients depend upon only the given fixed quantities c.  We 
already know that these equations are satisfied by at least ∞k systems of values b1 : b2 : … 
: b6 , but also no more than that, because conversely the system (22) can be derived from 
these equations [cf., the conclusion of § 39, c)].  Thus, when one also considers the 
absolute values of the b, ∞k+1 systems of values bν will satisfy the equations; therefore, 6 
– (k + 1) = 5 – k of the latter will be independent. 
 
 Theorem 170:  A linear complex domain of dimension k can be represented by 5 – k 
linear, homogenous equations in the complex pointers. 
 
 For example, a web of complexes will be represented by one such equation and a 
pencil of complexes, by four of them.  One observes the analogy with the theorems: A 
plane will be represented by one linear, homogeneous equation in the tetrahedral point 
pointers, and a line by two of them. 
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§ 78.  Extended domains of complexes. 
 

 The condition for the involution of two complexes A and B, with pointers ai and bi, 
resp., was bilinear (§ 56): 

ω(a, b) = ∑ ai+3 bi = 0. 
Now: 

(29) (a, λb + λ′b′ + …)  = λ ⋅⋅⋅⋅ ∑ ai+3 bi + λ′ ⋅⋅⋅⋅ ∑ ai+3 ib′  + … 

 = λ ⋅⋅⋅⋅ ω(a, b) + λ′ ⋅⋅⋅⋅ ω(a, b′) + … 
 
If B, B′, …, B(k) are independent complexes then they will define a linear domain Nk , and 
it will follow that: 
 
 Theorem 171:  If a complex lies in involution with k + 1 independent complexes of a 
linear domain Nk then it will lie in involution with every complex of Nk . 
 
 We now ask what all of the complexes A that lie in involution with every complex of 
Nk would be.  They are defined by the k + 1 mutually-independent equations: 
 
(30)    ω(a, b) = 0, ω(a, b′) = 0, …, 
 
so, from Theorem 170, they will define a linear domain M4−k that we also call the 
extended domain of Nk ; Nk will also be the extended domain of M4−k .  It is then 
contained in it in any case, since it already has the right dimension.  We also say that M 
and N are “extended domains of each other.” 
 
 Theorem 172:  Every linear complex domain is then associated with another one in 
such a way that every complex of the one domain lies in involution with each of the 
others and the dimensions of such “mutually-extended” domains are extended to four 
(the rank numbers to six, resp.). 
 
 If follows immediately from the representation (25) of a linear complex domain that: 
 
 Theorem 173:  The rays that are common to k + 1 independent complexes of a linear 
domain Mk define the totality of rays that are common to all complexes of Mk . 
 
 A singular complex C is in involution with an arbitrary complex C′ when (Theorem 
112) C′ is the carrier of C as a ray of the complex; it then follows from this that: 
 
 Theorem 174:  The carriers of the singular complexes of a linear domain are 
identical with the common rays of the extended domain. 
 
 From Theorems 172 and 168, one can easily judge, in any case, how many 
independent complexes inside of a linear domain Ll can lie in involution with a given 
domain M that also belongs to Ll .  If we assume, e.g., that L is a net of complexes (l = 2) 
then it will follow that there is a pencil of complexes inside L that are in involution with a 
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complex of L.  One notes the analogy with the theorem about sheaves of rays: There is a 
pencil of normal rays for every ray s of a sheaf.  If s is normal to two rays of a pencil then 
it will be normal to all of them.  Not only the concept of perpendicularity, but also that of 
angle, can find an analogue in complex domains.  On this, cf., D’Ovidio (e.g., “Le ser. 
triple, etc.,” Acc. dei Lincei, Ati, 1876; Ser. II, tom. 3), Müller (“Die Lineiengeom. nach 
d. Prinzipien d. Grassmannschen Ausdehnungsl.,” art. 12; Monatsh. f. Math. u. Phys. II). 
 There is no middle ground between normal and skew position in a sheaf of rays, but 
things are different in complex domains: In general, there will be no complexes in an 
arbitrary net of complexes 2M ′  that lie in involution with all complexes of another net M2 

.  However, if 2M ′  and the extended domain N2 of M2 do not lie in general position then 

one, two, or three mutually-independent complexes that fulfill the stated condition can 
exist in 2M ′ .  One can then call 2M ′  “simply,” “doubly,” or “triply normal” to M2 

(D’Ovidio, loc. cit.); in the last case, 2M ′  will be identical with N2 .  We leave the 

examination of the other cases to the reader and remark only that the terms “simply, …, 
normal” should not relate to just any sort of domain, but only to the sequence of possible 
special positions.  Thus, a net of complexes 2M ′  will first become simply normal to a 

pencil of complexes M1 when two complexes can be found in 2M ′  that lie in involution 

with all complexes of M1, because one such complex will always be present, anyway. 
 One calls two complex domains completely normal to each other when each complex 
of the one domain lies in involution with each of the other ones; in this, it is not assumed 
the domain is linear (*).  It emerges from this that: 
 
 Theorem 175:  If G and G′ are completely normal to each other, and M is the 
smallest linear domain in which G is contained then G′ will be contained in an extended 
domain of M. 
 
 Theorem 176:  If M and N are mutually-extended domains then any sub-domain of M 
will be completely normal to any sub-domain of N.  The extended domain of any domain 
of M will contain N. 
 
 In particular, two involutory complexes are also completely normal to each other, but 
the addition of the word “completely” would be superfluous here. 
 

_______________ 
 
 

§ 79.  The common rays of the complexes of a linear domain Mk . 
 

 For k = 1, we get the ray net (§ 53); we then go on to the case: 
 
 A) k = 2.  We imagine that the net of complexes M2 is defined by three independent 
complexes A, B, C with the pointers ai, bi, ci, resp.  A and B determine a ray net N.  The 

                                                
 (*) One imagines that nonlinear complex domains are defined by nonlinear equations in the complex 
pointers.  
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rays of N that also belong to C are the common rays of M2 .  If N has two focal lines 

then, from Theorem 9, these rays will define a family of rulings R.  In order to also 

conveniently survey all special cases and the case in which R is imaginary, we focus on 

the analytical representation of a fourth complex D of M2 that takes the form: 
 
(31)    D = λ A + µ B + ν C. 
 
From Theorem 174, this will be the same as the problem of determining the carriers of 
the singular complexes of a net (namely, the extended one).  We thus impose the 
condition that D must be singular: 

ω(d) = ω(λ A + µ B + ν C) = 0, 
or 
(32) λ2 ⋅⋅⋅⋅ ω(a) + µ2 ⋅⋅⋅⋅ ω(b) + ν2 ⋅⋅⋅⋅ ω(a) + 2λµ ⋅⋅⋅⋅ ω(a, b) + 2µν ⋅⋅⋅⋅ ω(b, c) +2νλ ⋅⋅⋅⋅ ω(c, a) 

= f(λ, µ, ν) = 0. 
 
The complexes of M2 will be mapped onto E by the null point of a fixed plane E in such a 
way that every pencil of complexes will correspond to a line; from Theorem 127, double 
ratios will also remain unchanged under this map A.  We can then say: 

 
 Theorem 177:  A net of complexes will be mapped collinearly onto a fixed plane E by 
the null point of E. 
 
 On the other hand, if one interprets λ : µ : ν in (31) as homogeneous point pointers in 
E then one will obtain a map A′ with essentially the same properties (cf., the expression 

for the double ratio of four complexes in § 63).  A′ is also collinear to M2, and thus, also 

to A.  One can then arrive at A′ and A being identical by a suitable choice of the basis 

triangle for λ : µ : ν. 
 Now, (32) means the equation of a conic section K in E.  The determinant of its 
equation is: 

(33)    ∆ = 

( ) ( , ) ( , )

( , ) ( ) ( , )

( , ) ( , ) ( )

a a b a c

a b b b c

a c b c c

ω ω ω
ω ω ω
ω ω ω

. 

We first assume: 
 
 a) Let ∆ be non-zero.  K is then a proper conic section that can be either α) real or β) 
imaginary.  In the first case, a line in E will correspond to a pencil of complexes with a 
hyperbolic, special, or elliptic carrier, according to whether it cuts, contacts, or does not 
cut K, respectively.  The argument at the beginning of this paragraph will then be in force 
(since one can choose A and B to be in a pencil with a hyperbolic carrier), and the 
common rays of M2 will define a real family of rulings R that cuts E along K.  However, 

in the case β), a real polar system Σ will also be always present that represents K.  We 
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express the idea that a complex λ : µ : ν lies in involution with another one λ′ : µ′ : ν′, 
namely: 

ω(λa + µb + νc, λ′a + µ′ b + ν′ c) = 0, 
or 
(34)   λλ′ ⋅⋅⋅⋅ ω(a) + (λµ′ + λ′µ) ⋅⋅⋅⋅ ω(a, b) + … = 0. 
 
If we fix P ≡ (λ′ : µ′ : ν′) then (34) will represent the polar of P in Σ; so: 
 
 Theorem 178:  Every complex of a net M2 is associated with a completely normal 
pencil of complexes in M2 .  This association in M2 is a polar system, and, as such, also 
maps onto any plane E by means of Theorem 177. 
 
 We can show that the ∞3 polar systems that emerge for the various positions of E are 
sections of one and the same spatial polar system Σ (*); in case α), S is defined by R.  In 

case β), we take A, B, C to be three complexes whose null points lie in E on the vertices 
A′, B′, C′ of a polar triangle; let its sides be A′B′ ≡ c, etc.  Each of the complexes A, B, C 
will lie in involution with each of the other ones.  If we then rotate E around c then A′, B′ 
will describe two involutory point sequences A″, B″ on c, one pair of which will be the 
original positions A′, B′, while starting with the null point C″ of the third complex C of 
C′, it will describe the polar c′ of c in C.  In the various positions of E, the points A′ will 
then be associated with the rays of the pencil (B′, c′), whose vertex will always lie on the 
fixed line a for all possible rotations of E around A′, so, along with c′, it will determine a 
fixed plane α that corresponds to the point A′ in S.  Thus, if R is not also real then the 

associated polar system can always be found, because the gathered involution of an 
elliptic net [cf., especially, § 66, h)] can be regarded as known.  From § 72, the ordering 
surface of S can be considered to be an imaginary second-order ruled surface, and it will 

follow, in connection with Theorem 174, that: 
 
 Theorem 179:  If ∆ is non-zero then the carriers of the singular complexes of a net 
M2 will define a family of rulings R, and the common rays of all complexes of M2 will 

define the guiding family L of R.  Conversely, for the extended net N2, L will be the locus 

of the singular complexes and R will be the locus of the common rays. 

 
 When R is imaginary, all complexes of M2 will have pitches that are denoted the 

same, and likewise for N2 .  L is also called the “basic family of rulings” of the net M2 . 

 

                                                
 (*) This is not to be confused with the polar system that is defined by a bush of complexes: 
  

λA + µB + νC + ρD 
 
when one seeks the completely normal net of complexes for every complex in it and interprets λ : µ : ν : ρ 
as homogeneous spatial point pointers. 
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 b) ∆ has rank 2.  K then decomposes into two straight lines g, g′.  The pencils B, B′, 
which are mapped by g, g′, resp., contain nothing but special complexes that are 
subordinate to a common C.  We can think of B as being determined by the two 
complexes C, A, and B′ as being determined by C, A′; the axes of A, A, A′ might be called 
c, a, a′, respectively.  c, a will then intersect, as will c, a′, but not a, a′, since they will 
give rise to a third pencil of singular complexes in M2, while K contains only two lines.  
The axes of the singular complexes will define the two pencils of rays c, a ≡ (S, a) and c, 
a′ ≡ (S, a′) (Fig. 77), while the common rays of M2 will be the pencils of rays (S, α′) and 
(S′, α).  We have already encountered a similar figure (Fig. 50).  c will always be real, 
but g, g′, and thus also a, a′, do not need to be so; all of the complexes of M2 will then 
have a single real ray c in common that will likewise be the carrier of the only singular 
complex of M2 .  We will obviously obtain this case when we connect all of the 
complexes of a pencil with an elliptic carrier N with a singular complex whose carrier c 

also belongs to N.  c will then be the only ray that is common to all complexes of M2 .  

More generally, we can say: 
 
 Theorem 180: If ∆ has rank two 
then one can obtain the net of 
complexes M2 in such a way that one 
connects all of the complexes in a 
pencil whose carrier N is elliptic or 

hyperbolic with a singular complex 
whose axis belongs to N. 

 
 c) ∆ has rank one.  f(λ, µ, ν) is 
then a complete square of a linear 
form (cf., Killing , Analyt. Geom. I, § 
17).  In our mapping of M2 onto E, 
there will then be a single line that 
represents the locus of the images of singular complexes.  The latter define a pencil of 
complexes B.  We can determine M2 by way of two complexes A, B in B, as well as a 

third complex C; we will then have: 
 

ω(a) = ω(b) = ω(a, b) = 0. 
 
Now, in order for ∆ to actually have rank one, one must also have: 
 

ω(b, c) = ω(a, c) = 0 ; 
 

i.e., the carriers of A and B must be contained in C. 
 
 Theorem 181:  If ∆ has rank one then we will obtain the net of complexes when we 
connect all of the complexes in a pencil of singular complexes with a twist whose carrier 
contains the singular complexes. 

 
α 

a 

S c 

a′ 

S′ 
α′ 

Figure 77. 
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 d) Finally, ∆ has rank zero; i.e., all coefficients of (32) vanish individually.  The 
complexes of M2 will all be singular then, and the axes of any three of them must 
intersect. 
 
 Theorem 182:  If ∆ has rank zero then M2 will consist of nothing but singular 
complexes whose axes will fill up either the same sheaf or the same field. 
 
 We can now quickly deal with the remaining cases with the help of Theorem 174: 
 
 B) k = 3.  The extended domain N1 of M3 is a pencil of complexes; thus: 
 
 Theorem 183:  The axes of the singular complexes of a pencil of complexes M3 
define a net of rays N.  According to whether N is a) hyperbolic, b) special, c) elliptic, d) 

singular, all complexes of M3 will have two, one, no real rays, or a pencil of rays in 
common, respectively. 
 
 Conversely, M3 is determined by N; e.g., by a plane pencil of rays in the last case. 

 
 C) k = 4.  The extended domain of M4 is single complex; thus: 
 
 Theorem 184:  The axes of the singular complex of a web of complexes M4 define a 
linear complex C.  All complexes of M4 will or will not have a ray in common depending 
upon whether C is (a) singular or (b) not, respectively. 
 

_______________ 
 
 

§ 80.  Logical remarks about the geometry of multi-dimensional space. 
 

 In § 77, we already remarked about certain analogies with the geometry of point 
space for which the manifold of linear complexes is also characterized as a linear one, 
independently of its analytical representation, when one first of all starts with a pencil of 
complexes and arrives at a domain of the next higher rank by connecting a linear domain 
with a complex that lies “external” to it, and secondly, verifies that the laws of linear 
meets and joins that we expressed in Theorems 165-169 are valid for the domain thus-
obtained.  We developed these theorems upon the concrete foundations of line geometry; 
however, one sees that the number five plays no role in their proof as an upper limit on 
the dimension of the domains in questions.  Moreover, we can start with a matrix: 
 
 x01 … x0, q+1 
(35) …………… 
 xk1 … xk, q+1 
 
instead of (21), which is so arranged that the q + 1 variables x1, …, xq+1, whose ratios are 
all that will be considered, will produce k + 1 special systems of values.  An arithmetic 
value domain will then be defined by: 
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(36)   ρ yν = 
0

k

xκ κν
κ

λ
=
∑   (ν = 1, …, q+ 1), 

 
in which the y are not all simultaneously unrestricted in their variability; otherwise, their 
ratios could assume only ∞k systems of values.  The same domain of values can also be 
represented by q – k linear, homogeneous equations between the y (cf., Theorem 170), 
and for that reason, it will be called linear.  Now, just the number q will enter in place of 
five in Theorem 168, 169, and the definition of the general position.  Moreover, the laws 
of linear meet and join will be valid for the q-dimensional manifold of the variables x1 : 
x2 : …: xq+1 and its linear sub-domains, which are completely analogous to those of our 
space, for which reason, one might care to refer to the entire domain of values x1 , …, xq+1 
briefly as a q-dimensional space.  The laws that underlie its sub-domains (and even the 
nonlinear ones) define the content of q-dimensional geometry.  In particular, one counts 
those theorems that are a generalization of the investigations of analytic geometry in 
space or have an application to the apparent geometry of the eyes, or finally, are methods 
and ways of presenting things that are analogous to the ones that are accessible in 
synthetic geometry.  We would like to give an immediate example of the latter situation.  
Five-dimensional geometry is, in fact, realized in the domain of complexes (*).  We can 
then think of the space of complexes as the substrate for the linear constructions in five-
dimensional space, without leaving behind the foundations of ordinary Euclidian 
geometry.  However, since its other properties besides the laws of linear meet and join do 
not come under consideration, we will refer to its one-dimensional linear domains as 
lines, in order to evoke an analogy with point space, and the two-dimensional ones as 
planes, and when necessary, suggest the dimension of the domain by indices.  We can 
also schematically map the lower-dimensional subspace to points, lines, …, and keep 
them in our mental picture. 
 
 Example: We choose three planes E, E′, E″ (Fig. 78) in general position (§ 77) in 
five-dimensional space.  One can then draw a single line G through a point P of E that 
cuts E′, as well as E″, namely, the line of intersection (Theorem 168) of the join space 3R′  
≡ (P, E′) and 3R′′  ≡ (P, E″).  The latter actually have only one line in common, since 

otherwise they would be contained in an R4, in which E′ and E″ would also have to 

                                                
 (*) This rests upon the fact that any complex can be determined by the ratios of six numbers – viz., its 
pointers – that are subject to no further restrictions, while the line pointer must fulfill a quadratic equation.   
For that reason, the straight lines in space do not define a linear domain; it is already impossible to take the 
first step in the construction of a linear domain here, namely, to give a rule by which two lines would 
determine a simple manifold of lines in such a way that they would be determined by two other lines in it 
using the same rule.  The linearity of the domain of complexes is naturally accessible to a synthetic 
examination (Reye, Sturm) that can be abbreviated by the use of a fundamental theorem on linear manifolds 
(cf., Zindler, “Nachweis lin. Mannigf., etc.,” Wiener S. B. Math. Cl., Bd. CI, Abt. II, 1892; § 1).  Therefore, 
the validity of the laws that define linearity needs to be proved in the domain in question only up to q = 2, 
with which, they will be true for the entire domain in its own right, regardless of what rank it has.  In order 
to apply this theorem, one thus does not need to possess an analytical representation, or even know its 
dimension.  One will then have to regard the possibility of determining the individual elements of a domain 
by numbers that are subject to no restrictions as, in fact, a sufficient characterization, but not a definition, of 
linearity. 
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intersect.  Let G cut E′ at Q and E″ at N; analogously, let a line G′ be defined that goes 
through the point P′ of E and cuts E′ at Q′ and E″ at N″.  The lines PP′, QQ′, NN′ will 
then also lie in the join space R3 ≡ (G, G′), and will thus define a ruled surface in it that 
also belongs to G, G′; i.e., if one moves P along a line in E then G will move along a 
family of rulings.  It follows from this that: 
 
 Theorem 185:  Three planes in general position in R5 define a system of ∞2 lines, all 
of which will intersect, and by means of which they will be related to each other 
collinearly. 
 
 The actual meaning of theorems of this sort will emerge when one either chooses an 
arithmetic manifold as a substrate or a linear manifold as a geometric structure (*).  Now 
the former is, without a doubt, logically simpler; however, the arithmetic method must 
always be supported by a well-defined form for the representation of the value domain 
(the value domain of a line in space can already be represented by two equations in a 
multitude of ways or be derived from two of its points), whereby superfluous elements 
will be dragged into the investigation.  By contrast, the synthetic method operates with 
only the structures themselves, and certainly Theorem 185 could not have been proved so 
simply by calculating in a domain of five variables.  Indeed, the synthetic methods of 
multi-dimensional geometry share a certain intuitiveness with ordinary geometry.  
Admittedly, they relate to only the subordinate depictions (cf., “Surrogatvorstellungen,” 
Beitr. z. Th. d. math. Erkenntnis, Wiener S. B. Phil.-hist. Cl., Bd. 118, § 26) of certain 
other objects. 
 The application of multi-dimensional geometry to the geometry of point space now 
takes the form: If one has proved a theorem of the pure geometry of position in any n-
dimensional manifold M of our space then one will first project the result into a three-
dimensional domain G3 inside of M or intersect it with G3 ; one will then map G3 
collinearly to point space, with which, one will obtain a theorem in point space.  One thus 
does not need to leave behind the foundations of ordinary geometry at any step.  For 
example, Theorem 185 can be immediately interpreted as the statement that three planes 
in point space can be collinearly related to each other in such a way that the three 
corresponding projective point sequences will define the same family of rulings. 
 If one has based the methods of the “projection and intersection of higher spaces” in a 
logically consist way in this manner then naturally one will not need to think of their 
application to a substrate every time, but one can operate exactly as if the barrier had 
fallen that puts the constructions into our space by the limited number of its dimensions.  
However, one cannot assume that standpoint from the outset, or else metaphysical 

                                                

 (*) Since the coefficients of an mth-order form in x, y are 1 + 2 + 3 + … + (m + 1) = 
2

2

m +
 
 

 in number, 

the planar algebraic curves of order m will produce linear domains up to degree n = 
2

2

m +
 
 

 − 1.  The 

interpretation of multi-dimensional geometry by systems of algebraic structures has the advantage of being 
valid for an arbitrary dimension at one stroke, but has the disadvantage of being complicated by the theory 
of imaginaries; by contrast, the real complexes define a five-dimensional domain with no exceptions in 
themselves (cf., also “Synth. Gewinnung geom.. lin. Mf. beliebiger Dim.,” Journ. f. r. u. a. Math., Bd 111). 



§ 80.  Logical remarks about the geometric of multi-dimensional space. 243 

speculations (like the proof of the possible limitations of our perception) would come 
about by their introduction. 
 One has introduced multi-dimensional geometry from three standpoints (similar to 
what one does in the theory of imaginary elements): 
 
 a) One repeats the steps that lead from the plane to space, per analogiam, and thinks 
of the constructions that were true for the plane and space as being continued as if one 
would find points outside of our space that one could link with the points of our space.  
This process is logically inadequate, even if it does lead to correct results.  At best, one 
can say hypothetically by this method: If there is any sort of higher manifold for which 
analogies that one starts with are verified then the further theorems that follow from them 
will also be true.  However, this does not suffice for the application of multi-dimensional 
geometry to ordinary geometry.  There, one must actually eliminate those manifolds that 
are based in either the arithmetic domain or the linear systems of geometric structures in 
our space. 
 
 b) One refuses to employ the manner of presentation and methods that currently 
comprise multi-dimensional geometry at all, and prefers to immediately establish the 
original real meaning that such investigations might have any time that linear systems of 
geometric structures appear (Sturm, Foreword to v. III of Liniengeom.).  This standpoint 
is logically correct, but inconvenient.  One will then gain the advantage of being able to 
apply one and the same schema to many investigations that would otherwise have to be 
carried out in the individual cases.  The criticism that multi-dimensional geometry 
replaces “the intuitive with the non-intuitive” (Sturm, loc. cit.) is also inapplicable.  
Moreover, our simple example already shows how intuitively one can go about one’s 
affairs with the concepts of multi-dimensional geometry; indeed, one will be forced into 
schematic notations, similar to what happens in the theory of imaginary elements. 
 
 c) One bases the methods of multi-dimensional geometry in one of two ways that 
were already discussed in the conclusion of a).  If this is done once and for all then, 
consistent with that, the standpoint a) will be legitimate, and one will now only operate 
with the abstract concepts of “points, lines, … in a four or n-dimensional space” in order 
to see the advantage of those methods.  These words are by no means superfluous, but 
contribute to an economy of thought, just as the expressions in the theory of imaginary 
elements do.  We have also taken the standpoint c) and sought to develop it in the most 
elementary way possible on the basis of line geometry, which is eminently suited to it. 
 The capability of using the methods of multi-dimensional geometry − or as one 
sometimes says, “thinking in n dimensions” − has been expanded even more in the last 
decade by mathematicians, and is presently indispensible in most branches of 
mathematics.  We will also occasionally use these methods from now on. 
 One also confers Killing , Grundl. d. Geom. I, sect. 3, for the subject of this paragraph. 
 

_______________ 
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§ 81.  General complex pointers and line pointers.  Kleinian line pointers. 
Co-reciprocal twists. 

 
 Up to now, we have always employed the ratios of the six numbers that were defined 
in § 49 (which now call x1, …, x6) as complex pointers.  Thus, the relation: 
 
(37)    ω(x) = 2 (x1 x4 + x2 x5 + x3 x6) = 0 
 
expresses the idea that the complex x is a special one, and its pointers can then be 
considered to be the pointers of its carrier; the relation: 
 

(38)    ω(x, x′) = 
6

3
1

k k
k

x x +
=

′∑  = 0 

 
asserts the involution of the complexes x and x′.  We can now put the ratios of the 
sextuples of values x and y into a one-to-one correspondence by a linear transformation: 
 

(39)    ρ xi = 
6

1
ik k

k

a y
=
∑  (i = 1, …, 6), 

 
whose determinant | aik | = A we assume to be non-zero.  Along with (39), we pose: 
 

(40)    σ yk = 
6

1
ik i

i

A x
=
∑  (i = 1, …, 6), 

 
in which the Aik are sub-determinants of A or proportional to them.  A complex is then 
determined by the ratios of the six numbers y in the same way as it is by the x, regardless 
of whether the transformation (39) can be interpreted as the change of pointers (§ 40) or 
not and regardless of whether the aik are real or complex.  We call the y general complex 
pointers. 
 If one substitutes the form ω(x) into the expression (39) then one will obtain a 
quadratic form Ω(y).  The equation: 
(41)     Ω(y) = 0 
 
will mean that the y are now pointers of a special complex; i.e., they are line pointers.  
We will call them general line pointers.  Analogously, (38) will go to another bilinear 
condition: 

Ω(y, y′) = 0. 
 One will likewise have: 

2 ω(x, x′) = 
6

1

( )
i

i i

d x
x

dx

ω
=
∑ . 

 
 One can show that one likewise has: 
 



§ 81.  General complex pointers.  Kleinian line pointers.  Co-reciprocal twists. 245 

(42)    2 Ω(y, y′) = 
6

1

( )
i

i i

d x
y

dy=

Ω
∑ . 

 
 The form on the right-hand side is called the polar form of the form Ω(y).  Namely, 
the systems of values x and y correspond just as the systems x′ and y′ do, and due to the 
linearity of the transformation equations, the systems xi + λ ix′  and yi + λ iy′  will also 

correspond for arbitrary values of λ, such that one will have: 
ω (x + λ x′) = Ω(y + λ y′) 

 
identically, as long as one expresses the x and x′ in terms of y and y′ by means of (39).  
We develop both sides in a Taylor series for six independent variables: 
 

ω(x) + λ ( )
i

i

d x
x

dx

ω ′∑  + λ2 ω(x′) = Ω(y) + λ ( )
i

i

d y
y

dy

Ω ′∑  + λ2 Ω(y′). 

 
 Now, we already know that because of (39), one will have: 
 

ω(x) = Ω(y),  ω (x′) = Ω(y′) 
 
identically.  The two sums must then also go to each other identically, of which, the one 
on the left-hand side will be equal to 2ω(x, x′), while we have called the one that form 
goes to 2Ω(y, y′).  With that, we have proved (since the special type of form ω and the 
number of variables have played no role): 
 
 Theorem 186:  Under a transformation of a quadratic form by a linear substitution, 
the polar form of the original form will, at the same time, go to the polar form of the new 
one. 
 
 If x and y are line pointers then the vanishing of an x will mean that the line cuts an 
edge of the basic tetrahedron [(§ 39.a)]; it will then belong to a certain special complex.  
Analogously, y = 0 now means that the line y belongs to the linear complex: 
 

6

1
ik i

i

A x
=
∑ = 0. 

 
Six arbitrary complexes – viz., the fundamental complexes – will now enter in place of 
the six tetrahedral edges. 
 One can now choose the a such that the form Ω assumes an especially simple form.  
Along with the original pointer system, one can then distinguish the Kleinian pointers 
(Math. Ann., Bd. II) (*), for which one has (up to a possible constant factor): 

                                                
 (*) De Paolis (Atti della R. Acc. dei Linc., ser. IV, Bd. I, 1885) has presented complex pointers on the 
basis of six co-reciprocal twists in a more synthetic way.  He assumed a “unit complex” that was analogous 
to the unit point in the basic tetrahedron and coupled it with analogous constructions, as well.  Müller has 
treated the co-reciprocal twist with the help of the Ausdehnungslehre (Monatsh. f. Math. u. Phys II). 
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(43)     Ω(y) = 
6

2

1

yλ
λ=
∑ . 

 
 One arrives at such pointers very simply (Koenigs, Géom. réglée, art. 75), e.g., when 
one recalls the identity: 
 

2 ω(x) = (x1 + x4)
2 + (x2 + x5)

2 + (x3 + x6)
2 − (x1 − x4)

2 − (x1 − x4)
2 − (x1 − x4)

2, 
 
and sets: 
 x1 + x4 = y1 , x1 − x4 = i y4 , 
(40a) x2 + x5 = y2 , x2 − x5 = i y5 , 
  x3 + x6 = y3 , x3 − x6 = i y6 ; 
correspondingly: 
 
(39a)   x1 = 1

2 (y1 + i y4), x4 = 1
2 (y1 − i y4), etc. 

 
 Naturally, the Kleinian pointers cannot be arrived at by a real transformation; 
however, all of the fundamental complexes can possibly be real (as they are here).  One 
sees from their equations: 

x1 + x4 = 0, x1 − x4 = 0, 
 

etc., that none of them are special, and any two of them lie involutorily.  As we would 
now like to show, these two properties will also be true for the most general Kleinian 
pointers z.  One will obtain them when one applies an arbitrary, orthogonal substitution S 
to the y; i.e., a substitution for which one has: 
 

6
2

1

yλ
λ=
∑  = 

6
2

1

zλ
λ=
∑ . 

 
(39) and S will combine into a linear transformation T.  Without also writing it down, we 
know that ω(x, x′) will go to: 
(44)     Ω(z, z′) = i iz z′∑  

 
under T [Theorem 186 and equation (42)].  The equations of the fundamental complexes 
will now be: 
(45)    zλ = 0  (λ = 1, …, 6). 
 
 The equation of a linear complex: 

∑ Aλ xλ = 0 
goes to an equation: 

∑ Bλ yλ = 0 
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under T, in which the B likewise combines a substitution T′ with A.  Also without 
calculating T′, one can assert that: 

∑ A2 = ∑ B2, 
 
and for any two sequences of coefficients: 
 

3i iA A+′∑  = 3i iB B+′∑ . 

 
For the original pointer system x, coefficients and pointers will either be identical or will 
become so when one changes the indices mod 3, according to the choice of notation.  One 
can also identify whether a complex is special or lies involutorily with another one from 
the coefficients of its equation in the system z.  One now sees from the coefficients of 
equations (45): 
 
 Theorem 187:  None of the fundamental complexes of a Kleinian pointer system is 
special, and any two of them lie involutorily. 
 
 Ball called two involutory twists (i.e., screws) reciprocal and several twists, any two 
of which lie involutorily, co-reciprocal.  One can obtain six co-reciprocal twists in the 
following way: One chooses the first one A arbitrarily, the second one B is arbitrary in the 
extended domain (§ 78) A4 of A, the third one C is arbitrary in the extended domain B3 of 
the pencil AB, etc.; finally, the sixth one will be determined uniquely. 
 Ball (Theory of Screws, art. 41) gave a superbly simple system of six co-reciprocal 
twists: Namely, from the expression for the moment of two twists in § 52, equation (55), 
we next infer: 
 
 Theorem 188:  If the axes of two twists cut perpendicularly, or if they cut arbitrarily 
(i.e., are parallel) and likewise have equal and opposite pitches then the twists will lie 
involutorily. 
 
 Ball’s system of “canonical” co-reciprocal twists follows from this immediately: 
 
 Theorem 189:  If one uses each axis of a rectangular pointer system as the axis of 
two twists with equal and opposite pitches then one will obtain six co-reciprocal twists. 
 
 Six co-reciprocal twists determine two times 15 ray nets and three times 20 families 
of rulings R.  These and the focal lines of any net have many relationships to each other.  

For the study of this configuration, we must, however, refer to the previously-cited 
treatises of Klein and Koenigs (loc. cit., art. 78, et seq.).  Moreover, any ray net gives rise 
to a gathered involution (Theorem 116), and R, to a polar system, although there are only 

ten of them, since any two R will be guiding families of each other (Theorem 179).  If 

one includes the six null systems and the identity then one will have 16 correlations and 
16 collineations.  This shows that the geometric conversions define a group with 
numerous subgroups (Sturm, Liniengeom., I., art. 175, et seq.). 
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 The ratios of the y are homogeneous pointers of a five-dimensional manifold.  The 
lines will be cut out from inside of this by the quadratic equation: 
 

Ω(y) = 0 
 
(whose special form we shall not go into further), in a way that is similar to the way that a 
second-order surface is cut out of point-space by a quadratic equation.  One can thus also 
say that (at least, projectively) line geometry comes down to developing the geometry of 
a four-dimensional quadratic manifold M in five-dimensional space (Klein, Math. Ann. 
V).  Segre has also exploited this approach to line geometry (Mem. dell’ Acc. di Tor., ser. 
II, v. 36).  For him, e.g., M was “contacted” by the pencils of complexes with special 
carriers. 

_______________ 
 

 
§ 82.  The axis manifolds of linear complex domains of dimensions four and three. 

 
 If we represent any complex by a rod, as in § 74, then the axes of the complex will 
define a linear domain in a rod manifold that will represent the domain of complexes 
itself completely when the sign of each rod is known.  Up to now, all that we have 
discussed precisely regarding these rod structures is the rod surface of a pencil of 
complexes (§ 74, 75).  Our next topic is: 
 
 I) The rod forest S of a web of complexes. 

 
 This consists of the rods of all complexes C that are reciprocal to a given one C′ 
(Theorem 172), so, from § 52, they can be represented by the equation: 
 
(46)    (k + k′) cos ω – d sin ω = 0, 

 
in which k′ is constant, and k, d, ω are variable.  Now, if αi are the pointers of the rod of 

C, and iα ′  are those of the rod of C′ then we can deduce the corresponding rod equation 

immediately from § 52, equation (53): 
 

(47)    (k + k′)
3 6

3
1 1

i i i i
i i

α α α α+
= =

′ ′+∑ ∑  = 0. 

 
Therefore, in order for the rods to have the associated lengths, from Theorem 48, one 
must have: 

(48)   k = 2 2 2
1 2 3α α α+ + , k′ = 2 2 2

1 2 3α α α′ ′ ′+ + . 

 
If one gets rid of the root signs on the variable quantities in (47) then one will come to an 
equation of degree four in the αi . 
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 Theorem 190:  The rod forest S of the web of complexes is of degree four. 

 
 In order to examine it more closely, we define the pointer system such that the rod iα ′  
falls on the Z-axis, so all α will be zero, except for 3α ′ .  The equation of S will then read: 

 
(49)     (k + k′) α3 + α6 = 0. 

 
If we select a rod in S for which k has a well-defined value then we will see: 

 
 Theorem 191:  The rod forest S can be decomposed into ∞1 twists with common 

axes by the lengths of its rods (*). 
 

A 

T 

ξ 

Figure 79. 

t 

B 

P 

ω0 

 
 
 This axis is the Z-axis here.  If we drop the normal n with the foot N onto it from a 
point P then it will follow that: 
 
 Theorem 192:  The fourth-order surface F4 that is associated with the point P 
through S according to Theorem 67 can be generated by rotating a circle with the 

variable radius r whose center is always at P around n. 
 
 We infer the dependency of r upon the position of the circle plane from (46): 
 

(51)     tan ω = 
r

d

′+ k
. 

                                                
 (*) One can find this theorem and the analogous ones for other axis manifolds (in another form) in 
D’Emilio, Gli Assoidi… [Atti del Ist. Ven. (6), 3, b; 1885]. 
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Thus (from § 12, b), d can always be chosen to be positive, but then the sense of rotation 
of: 

ω = (k, k′) 
 

will be determined by NP as the positive semi-normal of the position (k, k′).  Since 

negative values of k are also meaningful, r must run through the entire interval − ∞, …, + 

∞.  We get an intuitive picture of the pectenoid F4 when we draw a plane E′ through P 
perpendicular to PN and intersect it with F4 .  (51) or: 
 
(52)     r = d tan ω – k′ 
 
will then be the polar equation of the curve of intersection.  The polar axis ζ will be 
parallel to the Z-axis.  The latter will lie below the reference plane E′ at a distance of d.  
From the limiting value that ζ = r cos ω = d sin ω – k′ cos ω assumes for ω = ± π / 2, one 

sees that the curve will have the two lines ζ = ± d for asymptotes.  The figure is indicated 
for positive k′ (and indeed for k′ = 2d / 3).  If T is the point that is furthest from the 

asymptote then TP will be perpendicular to the tangent t at the origin P; t will be 
determined by tan ω0 = k′ : d.  The complete F4 will arise when one makes PB = AP for 

every point A of the curve and describes a circle over AB as its diameter whose plane is 
perpendicular to the reference plane E′.  However, by an argument that is similar to the 
one that was made for the rod cylindroid (where one took only half of the characteristic 
curve), ω can run through only the interval 0, …, π, so it can move on just the semi-circle 
whose projection covers the segment AP twice.  The interval ω0 < ω < π / 2 will 
correspond to rods with positive signs, and thus left-wound complexes, while the other 
two intervals will correspond to right-wound ones.  One finds a drawing of the pectenoid 
in Ball’s Theory of Screws, art. 236.  One sees immediately (cf., Theorem 188) that F4 
decomposes into a sphere and a (doubly-counted) plane for d = 0. 
 
 This investigation will take on a mechanical interpretation when we represent k′ as 

the image of a winding W.  From Theorem 96, the rod forest of all k will then be a 

representation of all dynames, under whose influence a body that is only free to perform 
the winding W will remain in equilibrium.  The investigation is also true for k′ = 0, when 

W reduces to a pure rotation.  By contrast, for k′ = ∞ (i.e., W is a translation), we must 

revert to equation (54.a) in § 52.  If we set k′ = 0 there then we will obtain k cos ω = 0 as 
the condition for a dyname (k, m) to perform no work under the translation.  S will now 

consist of all rods that are perpendicular to the Z-axis and all rods at infinity – i.e., 
rotational moments – which is a result that is mechanically self-explanatory. 
 Naturally, the dual interpretation is also possible: One can understand k′ to mean the 

image of a dyname D.  The rod forest will then represent all windings that a body can 
perform without D doing any work.  In particular, the rods t of length zero whose 
direction is restricted to the contact plane of the pectenoid will represent the rotational 
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axes (which were already known to Möbius) for which D does not perturb the 
equilibrium. 
 
 II) The rod complex G of a bush of complexes. 

 
 A bush of complexes can then be defined in such a way that it is the extended domain 
to a pencil of complexes B.  When we carry over the term “reciprocal” from the 

complexes and screws to the rods that represent them, we can say:  We have to look for 
all rods that are reciprocal to the rods of the rod surface F of B; for this, it will suffice for 

them to be reciprocal to two rods k′, k″ of F. 

 
 a) For the main case, in which F is an actual cylindroid, we take the rods of the 

principal complexes to be k′ and k″, and assume, as in § 74, that k′ lies on the X-axis, and 

k″, on the Y-axis.  We thus subsume the case α) in Theorem 154 (i.e., k′ = k″), as well.  If 

we let k denote the variable rod that is reciprocal to k′ and k″ then its pointers αi must 

fulfill the equations: 
(53)   (k + k′) α1 + α4 = 0,  (k + k″) α2 + α5 = 0, 

 
which emerge from (49) by cyclic permutation.  One thus has, once more: 
 

k = 2 2 2
1 2 3α α α+ + . 

 
In order to find the carrier complex T of G, from Theorem 71, we have to eliminate t 

from the equations: 
(t k + k′) α1 + α4 = 0,      (t k + k″) α2 + α5 = 0. 

This will give: 
(54)    (k′ − k″) α1α2 + α2α4 − α1α5 = 0 

as the equation of T. 

 
 Theorem 193:  The axes of the complexes of a bush of complexes define a quadratic 
complex T. 

 
 (54) will always be fulfilled by α1 = α2 = 0; i.e., the complex cone of any point will 
include the parallel p to the principal ray of the ray net of B (as the double line of the 

cylindroid F).  Equations (53) will represent G as the intersection of two rod forests; it 

will then follow from Theorem 191 that: 
 
 Theorem 194:  G can be decomposed into ∞1 ray nets according to the length 

(endowed with a sign) of its rods. 
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 The equations of one such net that has a length of k = r are: 

 
(55)   (r + k′)α1 + α4 = 0,  (r + k″)α2 + α5 = 0. 

 
We seek the rod of the net that goes through the point P′ ≡ (x′, y′, z′).  If we let λ, µ, ν 
denote its direction cosines then we will have: 
 
(56)  α1 = x – x′ = ± λ r, α4 = zy′ – z′y = ± r (ν y′ − z′ µ), etc. 
 
Equations (55) will go to: 
 (r + k′) λ – z′µ + y′ν = 0, 

 z′λ – (r + k″) µ – x′ν = 0, 

so 
(57)  λ : µ :ν = [x′z′ – y′ (r + k″)] : [y′z′ + x′ (r + k′)] : [(r + k′) (r + k″) + z′2]. 
 
If we establish P′ then we will have represented the complex cone K as the rod surface 

when we know the direction of the rod as a function of its length.  For r = ∞, one will 
have λ : ν = µ : ν = 0.  p will then be the asymptote of the “characteristic curve” on which 
the endpoints of the rod lie; r will have to run through the entire interval + ∞, …, − ∞.  
For r = 0, the curve will go through the vertex of the cone, whereby the associated screws 
will change their sense of winding. 
 By means of (56), one will deduce from (54) that: 
 
(58)   (λ2 + µ2) z′ − λ µ (k′ – k″) + λ ν x′ − µ ν y′ = 0. 

 
One can regard this as the equation of the curve of intersection U of K with the plane at 

infinity in the homogeneous pointers λ, µ, ν .  Should U decompose into two lines then 

one would need to have: 
2 ( )

( ) 2

0

z x

z y

x y

′ ′′ ′ ′−
′′ ′ ′ ′− −

′ ′−

k k

k k  = 0 

or 
(x′2 + y′ 2) z′ = (k′ – k″) x′ y′. 

 
 Theorem 195:  The complex cone of G decomposes into two planes for the points of 

the cylindroid that belongs to the reciprocal pencil of complexes. 
 
 There is nothing difficult about representing the pointers x, y, z of a point of the 
characteristic curve as functions of r with the help of (56) and (57). 
 For the analogous investigations into the remaining cases, we can briefly assume: 
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 b) In the cases β) and γ) of Theorem 154, F consists of nothing but parallel rods.  We 

decompose one of them k′ along the Z-axis; another k″ shall cut the Y-axis at the point y = 

y0 .  The non-zero pointers of k″ will then be: 

 

3α ′′  = k″, 4α ′′  = y0 k″, 
and the equations of G will be: 

 
(59)  (k + k′)α3 + α6 = 0,  (k″ − k′)α3 + y0 α1 = 0, 

 
and the latter are, at the same time, the equations of the carrier complex T, which is 

linear and singular with an axis at infinity, here. 
 
 c) In the case ε) of Theorem 154, we decompose b into the Z-axis and obtain: 
 

(k + k′)α3 + α6 = 0,  (k + k″)α3 + α6 = 0. 

 
Both equations can be fulfilled only by α3 = α6 = 0, which is mechanically self-
explanatory, from Theorem 46.  The complex G will consist of all rods that lie on the 

rays of a normal net, here. 
 
 d) Finally, if the carrier of the pencil of complexes B is singular then all complexes 

will be singular, and their axes will define a planar pencil.  If its plane E, as well as its 
vertex S, lie at infinity then one can regard this as a limiting case of case a) when one lets 
k′ = k″ = 0 in the results there.  Finally, if S, as well as E, lie at infinity then one can make 

sense of the pencil of complexes in terms of all translations that are perpendicular to a 
certain direction ρ.  Any translation then belongs to a singular complex with an axis at 
infinity.  One can now immediately look for either the dynames that perform no work 
relative to these motions or infer from the discussion of the case k′ = ∞ in I) that S 

consists of all rods that go through the point at infinity on ρ. 
 

_______________ 
 

§ 83.  The rod congruence (2)
3C  of a net of complexes. 

 
 A) In the main case, we can determine the rod surface of a pencil of complexes from 
two rods k, k′ in it that intersect perpendicularly (§ 74).  If we define the pointer system as 

we did there and add a third rod k″ on the Z-axis then the three rods that intersect each 

other perpendicularly will, in any event, define a net of complexes N.  One asks only 
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whether it is general; the constant count would suggest that (*).  In order to decide 
whether that is true, we calculate the family of rulings R of singular complexes in N that 

is determined by the three complexes: 
 
(60)  p4 + k′ p1 = 0,  p5 + k″ p2 = 0,  p6 + k″′ p3 = 0. 

 
In order to find the point equation of R for an arbitrary net of complexes, we have to 

express the idea that a point P ≡ (x¸ y, z) should lie in a common line of the three defining 
complexes: 

(61)  ∑ ai pi+3 = 0,  ∑ bi pi+3 = 0,  ∑ ci pi+3 = 0. 
 
The condition for the incidence of P and p was expressed by the four equations (40) in § 
38, although only two of them were independent.  Therefore, two of these equations, the 
three equations (61), and: 

(62)     ω(p) = ∑ pi pi+3 = 0, 
 
must all be fulfilled by the values of p for a point P of R.  However, we can also choose 

the other two of the aforementioned equations (40), instead of (62).  The compatibility of 
equations (40) will then bring the fulfillment of (62) along with it, since the factor ω(p) is 
contained in the determinant of (40).  We then have seven linear, homogeneous equations 
in the p.  The seven sixth-order determinants from the matrix of their coefficients must 
vanish.  Of the equations that we thus obtain, the four that contain the three sequences a, 
b, c will be equivalent, since equations (40) can go to each other by changing the 
notation, while the other three will be fulfilled identically, since otherwise that would 
give a condition for a point to lie on the common ray of two complexes.  A single 
condition for P will then remain that will reduce to: 
 

(63)    

4 3 1

4 2 1

3 2 1

1

1

1

x x x

x x x

x x x

− −
− −

− −
′

′′
′′′

k

k

k

 = 0 

 
in our case (if we ignore the first row of the matrix).  By developing the last three rows, 
one will get: 
(63a)    k′ k″ k″′ + k′ 2

2x + k″ 2
3x  + k″′ 2

4x  = 0. 

 

                                                
 (*) A net of complexes, as a plane in a five-dimensional space, depends upon 3 ⋅⋅⋅⋅ 5 – 3 ⋅⋅⋅⋅ 2 = 9 constants; 
this is the same as the number of triples of rods in it that define a rectangular trigon. 
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The calculations up to this point are true for an arbitrary pointer system; for our 
rectangular one, x1, x2, x3, x4 are replaced by 1, x, y¸ z (§ 31).  The equation of R will then 

be: 

(64)    
2 2 2x y z+ +

′′ ′′′ ′′′ ′ ′ ′′k k k k k k
+ 1 = 0. 

 
This will be an imaginary surface or a hyperboloid, according to whether α) all three 
quantities k have the same symbol, or β) they do not. 

 
 Theorem 196:  If the singular surface F2 of a net of complexes N is an actual 

second-degree midpoint surface then N can be defined by three complexes whose axes 

fall upon the principal axes of F2 . 
 
 With our assumption, we have thus, in fact, met up with the main case – viz., the 
“general” net of complexes.  If we change the sign on all three k then, from Theorem 189, 

we will obtain the extended domain of N, of which, we already know (Theorem 179) that 

it possesses the same singular surface, which we confirm here.  From the pointers: 
 
 a1 = 1   a4 = k′ 
  b2 = 1   b5 = k″ 
   c3 = 1   c6 = k″′ 
 
of the three “principal complexes” of the net, we can compose those of the one arbitrary 
fourth complex di from the formula: 
 

di = λ ai + µ bi + ν ci  (i = 1, …, 6) 
namely: 
 d1 = λ d2 = µ d3 = ν 
(65)  
 d4 = λ k′ d5 = µ k″ d6 = ν k″′, 
 
and calculate the pitch k of d from Theorem 88 and the line pointers ai of its axis.  We can 

then assume that λ2 + µ2 + ν2 = 1; i.e., these quantities can be interpreted as the direction 
cosines of the axis. 

(66) k = ∑ di di+3 = λ2 k′ + µ2 k″ + ν2 k″′. 
 

(67)  1 2 3

4 5 6( ) ( ) ( ).

λ µ ν
λ µ ν

= = =
 ′ ′′ ′′′= − = − = −

a a a

a k k a k k a k k
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Equations (67) exhibit a unit rod on the complex axis, while (66) give the length of the 
representative rod of d.  (67) then represents the axis congruence C of N without having 

to recall the pitch of the complex – i.e., as a line structure – and, by contrast, (67) and 
(66) together represent it as a rod congruence.  If we express the idea that the rod (67) is 
incident with the point (x, y, z) then when we set, to abbreviate: 
 

k′ – k = δ′, etc., 

we will get: 
(68)    λ δ′ x + µ δ″ y + ν δ″′ z = 0, 
 

(69)    

0,

0,

0

z y

z x

y x

λδ µ ν
λ µδ ν
λ µ νδ

′ + − =
 ′′− + + =
 ′′′− + =

 

 
from equations (40) of § 38.  If will follow from (69) that: 
 

(70)    

z y

z x

y x

′ − −
′′− −

′′′− −

k k

k k

k k

 = 0 

 
will determine k, from which each root will be associated with a unique direction λ : µ : 

ν.  However, if we express the idea that the rod (67) is incident with the plane (u, v, w) 
then it will follow analogously from equations (39) of § 38 that: 
 

(70a)    

1

1

1

w v

w u

v u

δ δ
δ δ
δ δ

′′ ′′′−
′ ′′′−
′ ′′−

 = 0. 

 
This equation is only of degree two in k, so: 

 
 Theorem 197:  The axis congruence of a general net of complexes is of order three 
and class two. 
 
 However, only one of the rays that go through the points at infinity will be real, 
since, from (67), the pointers are given uniquely as functions of the direction.  We derive 
three equations from (67) that are linear for a constant k: 

 
(71)    a4 = a1 δ′, a5 = a2 δ″, a6 = a3 δ′″. 
 
 However, the structure that is defined by the intersection of three linear complexes is 
a family of rulings, so: 
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 Theorem 198:  The axis congruence of a general net of complexes can be 
decomposed into ∞1 families of rulings according to the lengths of their rods. 
 
 We can find the equations of this family of rulings in the same way that we 
previously found the equations of F2 .  However, we see from a glance at the formulas 
that we now need to set k – k′, etc., in place of k′, etc., in the results.  One will then have: 

 

(72)  
2 2 2

( )( ) ( )( ) ( )( )

x y y+ +
′ ′′′ ′′′ ′ ′′′ ′− − − − − −k k k k k k k k k k k k

+ 1 = 0 

 
for the equation of this ruled surface (naturally, F2 is itself included in it for k = 0).  For 

all values of k, it represents a coaxial system of surfaces that, in fact, contains only 

hyperboloids, along with imaginary surfaces.  We separate the cases: 
 
 α) For example, let all three principal rods be positive.  We can always assume that 
the middle lengths lie on the Y-axis, but in order to ensure that the pointer system is one 
of the first kind, we must admit two cases: 
 

k′ < k″ < k″′  or k′ > k″ > k″′. 
 
 It suffices to discuss one of them – say, the first one: We obtain real surfaces for the 
intervals k′ < k < k″ and k″ < k < k″′, and in the first interval, we set: 

 
 (k – k″) (k – k″′)  =    a2, 

(73) (k – k″′) (k – k′)  = − b2, 

 (k – k′) (k – k″)  = − c2. 

 
 ai, b, c are the three principal axes of the hyperboloid H, respectively.  If we let k 

decrease to k′ then H will enclose the X-axis ever more closely.  However, if we let it 

increase to k″ then the asymptotic cone of H will approach the YZ-plane, while, at the 

same time, the throat ellipse in this plane will approach a certain finite segment on the Y-
axis.  If one lets k′ decrease monotonically through the interval k″′… k″ then this second 

part of the family of hyperboloids will begin with ones that closely encircle the Z-axis 
and conclude with ones whose throat ellipse is the same segment as before, but this time 
it will approach the XY-plane.  One can construct an intuitive picture of the distribution of 
rods in this congruence in that way. 
 In the case β), nothing in the foregoing discussion will change, except that one of the 
hyperboloids will become the singular surface F2 .  Moreover, one sees from (72) that 
when one changes all three quantities k′, k″, k″′ by the same amount the family of surfaces 

will remain the same, except that the singular surface will be displaced inside the family, 
and, above all, the individual surfaces will be associated with the values of k in a different 
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way.  An analogous situation already appears for the cylindroid and is true for the axis 
manifold of a linear manifold of a linear complex domain of arbitrary dimension.  Since 
only the sums of the pitches appear in the condition for the reciprocity of two complexes: 
 

(k + k′) cos ω – d sin ω = 0 

 
it will then follow that (Ball): If one increases the pitches of all complexes of a linear 
domain by the same amount (while keeping the same axes) and simultaneously decreases 
the pitches of all complexes of the extended domain by the same amount then, as before, 
each complex of the one domain will be reciprocal to each complex of the other one.  
However, since its dimensions must be preserved, the domain must remain linear (cf., 
Theorem 175). 
 
 Theorem 199:  Any axis manifold of a linear complex domain belongs to ∞1 other 
domains of the same dimension.  The associated rod structures emerge from one of them 
when one changes the lengths of all rods by the same amount. 
 
 When k′ = k″, only the second part of the family H will remain, which will now 

consists of hyperboloids of rotation.  The case of k′ = k″ = k″′ is especially noteworthy.  It 

follows from (66) here that all rods will have the same length and from (67) that they will 
go through the origin.  In fact, one can also infer this synthetically: From Theorem 154, 
k′, k″ will then determine a pencil of rods of constant length.  If we couple a varying rod 

of it with k″′ then we will obtain ∞1 such pencils that make up the congruence. 

 
 Theorem 200:  The totality of complexes of constant pitches whose axes intersect in 
the same point or lie in the same plane also belong to a net of complexes. 
 
 The last part of the theorem is, in fact, illuminated by an entirely analogous 
construction.  In these cases, the extended nets consist of all complexes of opposite pitch 
and the same axes. 
 We return to the general case and direct our remarks to the case in which k was one of 

the principal rods; e.g., k = k′.  Here, equations (71) will become: 

 
a4 = 0,  a4 = a2 (k″ – k′), a6 = a3 (k″′ – k′). 

 
 The last two equations define a ray net.  One must look for those of them that cut the 
X-axis, but themselves belong to the rays of the net.  Here, the ruled surface then 
decomposes into two (real or imaginary) ray pencils, as we have already frequently 
encountered. 
 One obtains the equations of its planes from (72) when one first clears the 
denominators and then specializes k; e.g., for k = k″: 
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z

x
 = 

′′ ′−
′′′ ′′−
k k

k k
. 

 
 One sees that: Of the three pairs of pencils of rays that are present in the family of 
rulings, two of them are imaginary and one of them is real.  The distances from the 
vertices to the origins are equal to the limiting values that the principal axes of the ruled 
surface that are laid along the same pointer axes assume; thus, for, e.g., k = k″: 
 

e2 = ( )( )′′′ ′′ ′′ ′−k k k - k . 

 
 We confirm this when we seek all rays of the congruence that go through the point 0, 
e2, 0 from (69) and (70).  Here, (70) will yield: 
 

δ″ (δ′ δ″′ + 2
2e ) = 0. 

 
 In fact, µ becomes indeterminate and ν : λ becomes real for δ″ = 0 or k = k″.  We will 

then get the pencil of rays that is already known to us.  The equation: 
 

(k′ – k)(k″ – k) + 2
2e  = 0 

 
will once more have the root k = k″, but in addition, it will also have: 

 
k = k′ − k″ + k″′, 

 
for which, µ = 0 and ν : λ will be real.  Thus, a ray of the congruence that is not 
contained in the pencil will then go through the vertex of the pencil.  Thus: 
 
 Theorem 201:  The general axis congruence (2)

3C  can also be determined by a pencil 

of singular complexes and a twist whose axis goes through the vertex of the pencil. 
 
 Now, if one of the three principal complexes of the net is singular (e.g., k′ = 0) then 

the axis congruence and the family H will show absolutely no peculiarity (Theorem 199), 
in and of themselves, except that the surface F2 of the axes of the singular complexes will 
be inserted into a decomposable surface of the family H (three of which will be present in 
the family, in general), and we will have the case A, b) of § 79 before us. 
 For k′ = k″, H will decompose into two pencils of rays only when k = k″′.  By contrast, 

one likewise recognizes from (71) that for k = k′ = k″ it will reduce to a pencil of rays in 

the XY-plane, and the case A, c) of § 79 will lie before us.  Finally, for k′ = k″ = k″′ = 0, 

we will have the case A, d) of  § 79. 
 We thus have only to examine the cases in which the basic family of rulings of the net 
(or its degenerate forms) exhibits a special behavior with respect to the plane at infinity, 
but before that we will consider the relationship of two congruences C, C′ to each other 
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that are defined by a net of complexes N and the extended one N′, resp.  The analytic 

representation of C′ will emerge from that of C when one simultaneously changes the 
signs of k′, k″, k″′ in the formulas.  The family of surfaces (72) will not change as a result 

of this; moreover, in each surface of the family, the one family of rulings will go through 
C, while the other one will go through C′, as Theorem 188 will confirm.  If a line g cuts 
two rays t1, t2 of C perpendicularly then it will belong to C′; one then draws a ray t of C 
through an arbitrary point P of g.  It is the axis of a twist G of N, whose pitch we assume 

is k.  If now lets g be the axis of a twist G′ with an pitch of – k then, from Theorem 188, 

G′ will be reciprocal to G, as well as to the two twists of N whose axes lie upon t1, t2.  

Thus, G′ will belong to N′. 
 
 Theorem 202:  Of the axis congruences that belong to two mutually-extending 
general nets of complexes, each of them will be the system of shortest transversals 
between any two rays of the other one. 
 
 If one fixes a hyperboloid in the family (72) and a family of rulings R of C on it then 
that will already define ∞2 shortest transversals that therefore belong to C′.  Conversely, 
if a ray s′ of C′ cuts two rays t1, t2 of R at real points then, from Theorem 188, this will 
happen perpendicularly.  The pitches that belong to s′ and t1 cannot be equal and opposite 
then, since s′ and t1 will lie on different surfaces of the family.  Thus: 
 
 Theorem 203:  The system of ∞2 shortest distances (*) between any two rays of a 
family of rulings of second order is (apart from reality questions) identical with the axis 
congruence of a net of complexes. 
 
 B)  We now turn to the cases in which the axis congruence of a net of complexes N 
does not contain three mutually-perpendicular, intersecting rays, which are just the cases 
that we have still not encountered up to now (cf., § 79): 
 
 a) When the basic family of rulings R of N lies on a hyperbolic paraboloid P. 
 
 b) When N can be obtained in the manner of Theorem 180, and indeed in such a way 
that α) one or β) both vertices of the pencils of rays into which R decomposes lie at 
infinity.  In the last case, γ) one of the pencils can itself lie at infinity. 
 
 c) When N arises in the manner of Theorem 181, such that the vertex of the pencils 
of singular complexes lies at infinity. 
 

                                                
 (*) Waelsch (“Über eine Strahlenkongruenz beim Hyperboloid,” Wiener Sitzgber., Bd. 95, II; 1887) 
examined this congruence from this starting point, whose definition is suitable for any surface of the family 
H, even ones that decompose into two pencils of rays.  Cf., also Demoulin, Applic. d’une meth. vect., etc., 
Bruxelles, 1894.  
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 d) When the axes of the complexes of N fill up α) a sheaf with a vertex at infinity or 
β) the field at infinity (the case of the field 
at finite points is dealt with in Theorem 
200). 
 
 a) We saw in A) that decomposable 
surfaces could appear there among the 
surfaces H that could serve as the starting 
point of the examination, but that was no 
advantage there.  Here, one might likewise 
expect that the cases a) and b, α) are 
identical, which is why we will first 
examine b, α).  Only in the case for which 
P is equilateral do we require its special 

feature: 
 Let the X and Y axes of a rectangular system be the principal generators of P, and 
indeed, the latter are the ones that are included in R.  The guiding family L of R will then 
be the locus of the axes of the singular complexes of N and can be defined by the X-axis, 
the line at infinity u in the YZ-plane, and a line l that cuts the Y-axis perpendicularly and 
defines the same angles with the other axes.  We can choose the non-zero pointers ai, bi, 
ci of these three lines to be: 
 
 a1 = 1, b4 = 1, 
 c1 = c3 = 1, c4 = − c6 = 1, 
 
resp.  The three singular complexes a, b, c define N completely, but so do the three 
complexes ai, bi, ci – bi – ai ; i.e., of the last row, we need only to keep: 
 

c3 = 1,  c6 = − 1, 
 
and we now summarize the pointers of an arbitrary complex of N using the formula di = λ 
ai + µ bi + ν ci : 
 d1 = λ, d2 = 0, d3 = ν, 
(74) 
 d4 = µ, d5 = 0, d6 = −ν . 
  
By Theorem 88, the axis of d is determined by: 
 

(75)     k = 
2

2 2

λµ ν
λ ν

−
+

. 

 
 a1 = λ, a2 = 0, a3 = ν, 

(76)   
 a4 = µ – λ k, a5 = 0, a6 = − ν (1 + k). 

 

 

X r′ 

r 

Z 

Y 

l 

l′ 
Figure 80. 
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The axes thus always satisfy the three equations: 
 
(77) a2 = 0, a5 = 0, a6 + a3 (1 + k) = 0, 

 
the first two of which define the normal net Σ of the Y-axis; for constant k, the third one 

represents a twist whose axis lies on the Z-axis, so a family of rulings of an equilateral 
paraboloid will then be singled out of Σ. 
 
 Theorem 204:  The axis congruence of a net of complexes whose basic family of 
rulings R lies on an equilateral paraboloid P consists of the normal net of the principal 
generators of R.  The congruence decomposes into ∞1 families of rulings of equilateral 
paraboloids that all have the principal generator in common with P according to the 
lengths of their rods. 
 
 One of these families of rulings – 
viz., k = − 1 – decomposes into two 

pencils of rays, one of which has its 
vertex at infinity (Fig. 80). 
 
 b, α)  Let two pencils of rays with 
a common ray be defined by two lines 
a, b, c, of which, a, c intersect, as well 
as b, c, but not a, b.  Let E, E′ be the 
planes of the pencils, and let b be at 
infinity (Fig. 81).  We place the origin 
of a rectangular system at the vertex 
of the pencil (a, c), the Z-axis along c, 
and the X and Y axes in the bisecting 
planes of the two wedges (E, E′).  If 
we finally assume that a ⊥ c then we 
can assume that the non-zero pointers 
of a, b, c are: 
 
 a1 = 1, a2 = 1,   
    b4 = 1, b5 = 1, 
   c3 = 1. 
 
We can leave aside the case m = 1, in which E ⊥ E′, which was just dealt with, and 
assume that m < 1, which comes from locating the X-axis in the acute wedge.  As the axes 
of singular complexes, a, b, c will define a net of complexes N, so an arbitrary complex 
of N will have the pointers: 
 
 d1 = λ, d2 = λµ, d3 = ν, 
(78) 
 d4 = µ m, d5 = µ, d6 = 0, 
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and the axis (Theorem 88): 

(79) 1 2 3

4 5 6

, , ,

, , ,

m

m m

λ λ ν
µ λ µ λ ν

= = =
 = − = − = −

a a a

a k a k a k
 

where: 

(80)    k = 2 2 2

2

(1 )

m

m

λµ
λ ν+ +

. 

The a will satisfy the equations: 

 
(81)  m a1 – a2 = 0,  k a3 + a6 = 0,  k (1 – m2) a1 + a4 – m a5 = 0, 

 
which represent a family of rulings as the intersection of three complexes for a constant k.  

One will obtain its equation in point pointers by a calculation that is similar to the one in 
A), namely: 
(82)    y2 – m2 x2 – 2m k z + k2 (1 – m2) = 0. 
 
For k = 0, we will obtain the plane pair that we started with, but for all other values of k 

we will get paraboloids with common principal planes E, E′.  They will all have the same 
form; their magnitude will be proportional to k .  With that, we will have an intuitive 

picture of the distribution of rods in space.  Equation (82) is only special to the extent that 
the rod k = 0 falls on the decomposable surface.  We need only to write k – k′ instead of k 

(Theorem 199) in order to make the axes of the singular complexes shift over to a general 
surface of the family: 

(83)    
2 2 2

2

2

( )

y m x mz− −
′ ′− −k k k k

 + 1 – m2 = 0. 

 
Since the paraboloids that appear are general, and the entire family is determined by each 
of them, we will subsequently see that the case a) is also resolved with that.  There is 
nothing difficult about writing down the equations that correspond to (70) and (70.a) 
here, and to then see from them that the axis congruence is now of order and class two.  If 
one takes the family of rulings that is parallel to a certain principal plane E from all 
paraboloids then the shortest transversals to any two rays will all be perpendicular to E.  
In fact, this will separate a sheaf of rays with a vertex at infinity from the general (2)

3C  of 

case A). 
 
 Theorem 205:  If the basic family of rulings of a net of complexes lies on a skew 
paraboloid P then the axis congruence will be of order and class two and will 
decompose, according to the lengths of the rods, into ∞1 families of rulings (amongst 
which, there is a decomposable one) on paraboloids that have their principal planes (but 
no longer their vertices) in common with P. 
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 b, β) We obtain this case when we couple a pencil of complexes B with a singular 
complex C whose axis falls on the ray at infinity of the ray net N of B.  Let the rod 
surface of B be a cylindroid.  A rod of it defines a pencil of complexes with C whose axis 
surface consists of nothing but equal parallel rods (Theorem 154, γ). 
 
 Theorem 206:  If the basic family of rulings of a net of complexes decomposes into 
two pencils of rays with vertices at infinity then the axis congruence will decompose 
according to the lengths of its rods into ∞1 pencils of parallel rays and can be obtained 
from a rod cylindroid in which one displaces any of its rods along a direction that is 
perpendicular to the double line (but does not coincide with it). 
 
 b, γ)  The net complex N can be defined here by two lines at infinity in two (mutually 
perpendicular) planes E, E′, and a line g in E that is the axis of three singular complexes.  
The line of intersection s of E, E′ is the axis of a pencil of planes whose lines at infinity u 
all define singular complexes that belong to N.  N can then also be defined as the totality 
of the pencils of complexes that link g with all bushes of rays u.  These are nothing but 
pencils of complexes whose rods make up a pencil of parallels that g belongs to, as in 
Theorem 154, β).  The rods of N thus define a sheaf of parallels, in general, that must be 
defined by three of its rods.  In fact, one sees immediately that: If one defines a net of 
complexes by three parallel rods in the direction ρ and links their starting and ending 
points with a plane then, from Theorem 154, β) and γ), all rods in the direction ρ that are 
bounded by the two planes will belong to the rod congruence of the net. 
 
 b, δ)  However, if g is perpendicular to s then the rod congruence (cf., § 74, b) will 
consist of all rods of a pencil of parallel rays.  One obtains this case when one chooses 
the three parallel rods to be in the same plane (but not bounded by two lines). 
 
 c) Let E be the plane of the pencil B of singular complexes C with parallel axes α, 
and let a be the axis of twist G that includes all axes α; one will then have a || E.  If we 
define a net of complexes N by G and two of the C then all twists G that arise from G by 
a displacement in the direction α will also belong to N.  They will then define a pencil of 
complexes whose carrier is a special net of rays with a focal line at infinity (Theorem 
154, γ), that is, on the other hand, defined by G and the line at infinity of E.  Any G′ and 
any C will define a cylindroid whose rod surface belongs to the axis congruence G of N.  

We will obtain ∞2 such cylindroids, which, however, contain only ∞2 rays.  Each of them 
can be obtained from every other one by a translation of the position of E.  We will once 
more come down to the case b, β).  G will be of order two and class one, here.  A ray of 

G in an arbitrary plane E can only have the direction (E, E) that enters a cylindroid only 

once. 
 However, if the axes of the singular complex C define a pencil at infinity then any C 
will define a special ray net with focal lines at infinity, along with G.  From Theorem 
154, γ), one will thus come to the case in which the rod congruence consists of nothing 
but parallel rods of equal length, which is included in b, γ). 
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 d, α) is treated as in b, γ); we shall say nothing further about d, β). 
 
 We now summarize the various degeneracies of the axis congruences of a net of 
complexes, without once more specifying the cases in which they appear: 
 
 Theorem 207:  The rod congruence that represents the axes and pitches of the 
complexes of a net is, in general, of order three and class two.  In special cases: 
 α) It is of order and class two, 
 β) It is of order two and class one, 
 γ) It is a normal net,  
 δ) Its rods belong to the same sheaf (they are of equal length or can be unequal, 
according to whether the vertex of the sheaf does or does not lie at infinity, respectively), 
 ε) Its rods belong to the same field (and are of equal length when the field lies at 
finite points), 
 ζ) Its rods fill up a pencil of parallel rays. 
 

_______________ 
 
 

§ 84.  The degrees of freedom for motion. 
 

 The position of a freely-moving, rigid body K depends upon six constants ci (e.g., one 
needs three of them to fix a point P in it, two more to fix an axis a that goes through P, 
and the last one, to establish the azimuth).  If the motion of the body is subject to 
conditions from the outset then that will reduce the number of constants.  For example, 
the restriction that a point Q of the body is constrained to remain on a surface is a “simple 
condition”: i.e., it will result in one equation between the constants ci .  This will be the 
equation of the surface itself when one selects the pointers of Q from the ci; the body 
will, moreover, assume only ∞5 positions.  One now says that the motion of a body has k 
degrees of freedom when it can assume ∞k positions, or, what amounts to the same thing, 
when the choice of the values of k parameters, in addition to the given conditions, is 
necessary for the determination of its position.  For example, when 6 – k points of a body 
are constrained to move on a surface, its motion will have k degrees of freedom (k = 1, 
…, 6), and when one point of a body is fixed, its motion will have three degrees of 
freedom. 
 If K exhibits any motion from a certain initial position L then the beginning of the 
motion will correspond to a certain instantaneous twist (§ 20) that is determined (except 
for its velocity and its sense) by the pitch rod (endowed with a sign) of the associated 
instantaneous screw.  We now address the question of finding the connection between the 
degree of freedom in the motion of all instantaneous screws that correspond to the 
position L.  If two windings W1 and W2 are compatible with the conditions then one can 
combine them with arbitrary velocity ratios, and in that way obtain a winding W that is 
also compatible with the given conditions.  Then, instead of immediately subjecting K to 
the given conditions, one can think of this body as being coupled with another one K′ in 
such a way that only the instantaneous winding W1 can enter into it, while K′ should be 
subject to the same conditions as K was before.  In that way, K will keep the same degree 
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of freedom, since the mobility of K with respect to K′ is restricted to a winding that K′ 
can already enter into with an arbitrary velocity.  However, the fact that the winding 
velocities of that screw can be added only algebraically is clear.  The replacement above 
is then actually equivalent to the original conditions.  If we now let K belong to the 
winding W1 relative to the K′ and, at the same time, let K′ itself belong to the winding W2, 
both of which have arbitrary velocities, then we will obtain (§ 17) an instantaneous 
winding of K that is composed of W1 and W2 in the same way that a dyname is composed 
of two given ones by means of duality (§ 18).  We have, however, discussed the last case 
quite thoroughly (§ 74 – 76), and can therefore carry over the results to the present 
discussion: If one represents W1 and W2 by a rod then any winding of the rod surface F 
that is defined by this (which is, in general, a rod cylindroid; however, cf., Theorem 154) 
will be compatible with the conditions. 
 If, along with W1 and W2, yet a third winding W3 of K that is independent of them 
(i.e., it does not belong to F) is compatible with the conditions then every rod surface that 
is defined by W3 and a rod of F will represent nothing but windings that are compatible 
with the conditions, and we will thus arrive at the rod congruences that were studied 
precisely in § 83, etc. 
 
 Theorem 208:  The instantaneous windings that a body with k degrees of freedom in 
its motion can enter into from a certain position define a linear domain of rank k. 
 
 We call this linear domain the associated winding domain to any position.  We can 
carry over all theorems that we learned about linear complex domains and their 
representations by rod structures to the present context.  Here, any rod represents a 
winding.  If the rod lengths were zero, while the carrier preserved a certain position, then 
the winding would go over to a pure rotation.  If one shifts its carrier to infinity then it 
will represent the translation that is perpendicular to the position of its representative 
plane. 
 We first consider two degrees of freedom more closely:  The entire winding domain 
G that is associated with a position will be defined by two windings W1, W2 here.  Two 
linear complexes C1, C2 that have a ray net N in common are given, along with W1, W2 .  
Let W be an arbitrary winding of the domain, and let C be the associated linear complex.  
A point P will then be associated with a direction of advance by W that lies in the normal 
to the null plane of P relative to C.  If we let W assume all possible positions on the rod 
surface then C will describe the pencil of complexes whose axis surface is F; v will then 
rotate around the ray of N that goes through P.  However, if an entire pencil of such rays 
of N goes through P then v will constantly remain in the normals of that pencil.  Finally, 
if an entire sheaf of rays of the net goes through P (which is possible for only singular 
nets) then P will be fixed.  Conversely, since a pencil of complexes is also established 
uniquely by a ray net, we can say (*): 
 
 Theorem 209:  A motion with two degrees of freedom is determined completely by a 
ray net N.  The velocities that a point can assume under all allowable motions are, in 
general, restricted to a plane pencil of rays whose normal is the ray of N that goes 
                                                
 (*) This theorem essentially originated with Schönemann (“Über die Konstr. der Normalen, etc.,” 
Berliner Akad., 1855, reprinted in Journ. f. Math., Bd. 90).  
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through P.  It is only when ∞1 or ∞2 rays of N go through P that the velocity of P will be 
restricted to a single direction (with both senses) or zero, respectively. 
 If N is hyperbolic then for any point of one focal line b the normal to its connecting 
line with the other focal line b′ will be the only possible direction of advance.  This 
agrees with the fact that any winding of G can be composed of two rotations around b, b′; 
in fact, b, b′ are the common polar pairs for all ray twists of the pencil (cf., § 53 and 
Theorem 31).  One can compose any winding of G from two whose axes intersect 
perpendicularly (one takes the principal rod of the cylindroid) in other ways that are 
distinctive and independent of the reality of focal lines; if N is parabolic then the one 
winding will go to a rotation (*). 
 If one poses the argument that leads to this theorem in a completely analogous way 
for the higher degrees of freedom then that will yield: 
 
 Theorem 210:  If the motion of a rigid body possesses k degrees of freedom (k ≥ 3) 
then one of its points P can move in all directions in space, in general.  It is only when 
one, ∞1, or ∞2 common rays of the associated winding domain go through P that the 
directions of motion will be restricted to a plane pencil of rays or a line, or cease to exist, 
respectively. 
 
 For example, if the three degrees of freedom of the common rays of the associated net 
of complexes define a real family of rulings then the points of that hyperboloid will have 
only two degrees of freedom, so to speak.  We shall pass over the remaining cases, since 
we almost have to do nothing but repeat the discussion in § 79.  Many theorems on the 
decomposition and composition of windings for higher degrees of freedom are also 
derived from the present standpoint in itself; e.g. (cf., the determination of the rod 
congruence in § 83 by the three principal rods): 
 
 Theorem 211:  In the general case of motion with three degrees of freedom, any 
possible winding can be composed of three windings whose axes define a rectangular 
trigon. 
 
 If we prescribe a surface that cannot be ignored for four points of a rigid body then 
we will have two degrees of motion, and the four normals to the surface at the four points 
will determine the associated ray net for any position of the body.  Since we can 
determine all ray nets by four rays, we can, conversely, obtain two degrees of freedom.  
The choice of the four points of the body is restricted only by the fact that the four 
normals must actually determine a net; nothing will prevent, e.g., three of them from 
lying in a plane. 
 We can no longer obtain three degrees of freedom in an analogous way.  If we then 
prescribe three points of a surface then the three normals will be the common rays of all 
complexes of the associated winding domain.  The basic family of rulings G of this 

domain will thus always be real.  This poses the question of whether the case in which G 

is not real and all of the remaining (special) cases can be realized by real motions at all.  

                                                
 (*) Schönemann’s belief that the motion in this case will reduce to a rotation around the single focal line 
(loc. cit., art. 3) is therefore incorrect. 
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If we define an arbitrary given winding domain of rank k by k independent windings W1, 
…, Wk then we can couple the body K with another one W1 in such a way that it can 
belong to W1 relative to K1, then couple K1 with K2 in such a way that K1 can belong to 
only W2 relative to K2, etc.  Finally, K will have k degrees of freedom compared to Kk 
with the given winding domain. 
 
 Theorem 212:  Any linear winding domain can appear as the associated domain of a 
real motion. 
 
 Theorem 213:  k degrees of freedom can be obtained in such a way that one forces 6 
– k suitable points of the body to remain on a surface only for k = 1 and 2. 
 
 Thus, only the contact planes of the surfaces will come under consideration for a 
particular position.  Naturally, the process for realizing an arbitrary degree of freedom 
that was just suggested is not the simplest one.  For example, five degrees of freedom can 
be attained in the most general way by a simple mechanical device; on this, one might 
look at Thomson and Tait, Theor. Phys. I, art. 201. 
 

_______________ 
 
 

§ 85.  The equilibrium of a rigid body. 
 

 We first begin with a theorem from the theory of motion that we can evaluate for 
force systems in terms of duality.  If one defines a new winding W linearly from k 
independent windings W1, …, Wk , which therefore define a linear domain of rank k – i.e., 
we compose k windings with arbitrary velocity ratios – then W will also belong to the 
domain G (cf., the proof of Theorem 208), and conversely: Any winding that belongs to 
G must be linearly derivable from W1, …, Wk (cf., § 77).  Any winding at all must be 
derivable from six independent windings.  If we replace the resulting winding W by the 
opposite one W′, which also belongs to G, then the k + 1 windings W′, W1, …, Wk will 
give a zero resultant. 
 
 Theorem 214:  If n windings have a zero resultant then they will belong to the same 
winding domain of rank n – 1; its representative rods will thus belong to the same n – 2-
dimensional rod structure, namely, for n = 3, 4, 5, 6, in general, they will belong to a rod 
cylindroid, a rod congruence of order three and class two, a quadratic rod complex, and 
a rod forest of degree four, respectively (§ 82).  Seven windings can always be composed 
with velocities in such a way that they will yield a zero resultant. 
 
 In particular, if we demand that all windings possess the same pitch then it will follow 
from the decomposition of this rod structure according to the lengths of its rods (Theorem 
191, 194, 198, 204, 205) that: 
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 Theorem 215:  If n windings of equal pitch have a zero resultant then for n = 4, 5, 6, 
their axes will belong to the same family of rulings, the same ray net, and the same linear 
complex, respectively. 
 
 The theorem is also true for the special case of rotations (i.e., zero pitch); we express 
it in the dual domain as: 
 
 Theorem 216:  If n forces are in equilibrium then for n = 4, 5, 6 their lines of action 
will belong to the same family of rulings, the same ray net, and the same linear complex, 
respectively.  One can always find forces on seven lines that are in equilibrium. 
 
 Naturally, the special case of forces in equilibrium admits an elementary treatment: 
For example, if one draws a line g that cuts the lines of action of three of four forces then 
the moment of the fourth force with respect to g must also be zero (Möbius), etc.  For five 
forces, one can conclude the corresponding theorem in this way only when the associated 
ray net has real, separate focal lines. 
 If n lines g1, …, gn fulfill the conditions of Theorem 216 then that will pose the 
question of how one can construct n forces on them that are in equilibrium. 
 
 a) n = 4.  The associated force polygon must be closed.  If one then chooses a force 
on g1 arbitrarily and draws parallels 2g′  and 4g′  to g2 and g4 at the ends of their rods then 

one will find a single ray 3g′  that cuts 2g′ , 4g′ , and is parallel to g3 .  The sides of this 

closed, skew tetrangle will represent the magnitudes of the forces. 
 
 Theorem 217:  Two families of rulings of the same ray net or one family of rulings 
and one ray net of the same linear complex have two common rays. 
 
 In the first case, one can, in fact, represent the ray net by two linear equations 
between line pointers and each of the families of rulings by yet a third equation; if one 
recalls the relation between the line pointers then that will yield the first part of the 
theorem, and the second one analogously. 
 
 b) n = 5.  We treat this case as Sturm did (“Sulle forze in equil.,” Ann. di Mat., ser. 
2, v. 7, 1875), where the remaining cases are also addressed, along with references to the 
older literature (*).  g1, g2, g3 and g1, g4, g5 determine two families of rulings R and R′, 
which, from Theorem 216, belong to the same ray N, and therefore, from Theorem 217, 
they will have, in addition to g1, yet a second ray g′ in common.  It can be found when 
one draws two planes E, E′ through g1 and considers N to be the generator of two 

                                                
 (*) Among them are (in addition to the previously-cited work of Möbius), the works of Sylvester, and 
especially Chasles (Comptes R., t. 16 and 52) are to be stressed.  We find a supremely simple argument in 
the latter: If six forces with the lines of action g1, …, g6 are in equilibrium in a rigid body K then the sum of 
the works that they do during an arbitrary motion of K must be zero.  If one now determines a twist G by 
g1, …, g6 and assigns the instantaneous winding that is thus defined to K then the corresponding forces will 
be perpendicular to the paths of their points of application (§ 22), so they will perform no work.  Therefore, 
the sixth force can also do no work, and will act perpendicular to the path of its point of application; i.e., its 
line of action will belong to G. 
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collinear fields (Theorem 100).  In that way, R, R′ will be mapped to E by lines r, r′.  The 
point of intersection of r, r′ will determine g′.  If one now chooses two equal and opposite 
forces k, − k on g′, then constructs a system S that is in equilibrium with g1, g2, g3, g′ and 
k belongs to, as in a), and furthermore, a system S′ that is in equilibrium with g1, g4, g5, g′ 
and − k belongs to then the system S + S′ will also be in equilibrium.  However, the forces 
on g′ cancel each other in such a way that only a system of five forces on the given lines 
of action will remain.  If the point of intersection of r, r′ falls on g1 then g′ will coincide 
with g1, and R, R′ contact along g1.  One can then let one of the other five lines play the 
role of g1 . 
 
 The theorems up to now on forces in equilibrium (and the dual version of Theorem 
214) can be regarded as theorems about the equilibrium of a free, rigid body.  We now 
turn to the most general theorem that can be posed about the equilibrium of a rigid body 
(*): The windings that K can perform at a given moment are defined by a linear winding 
domain G (§ 84).  Should K remain in equilibrium for a dyname D then D must be 
reciprocal to any winding of G (cf., Theorem 96).  Conversely, this condition will be 
sufficient.  If K belonged to a winding W for D then D would thus do work, so it would 
not be reciprocal to W.  Now, the screws on which all of the dynames that are reciprocal 
to all windings of G will also define a linear domain, namely, the extended domain (§ 
78); thus: 
 
 Theorem 218:  A rigid body K with m degrees of freedom in its motion remains in 
equilibrium for all dynames in equilibrium whose screws fill up the 6 – m-rank extended 
domain of the winding domain of K. 
 
 Since we have discussed linear screw domains, their relationship to the extended 
domains, and their representation by rod structures precisely, despite its great generality, 
we can also endow this theorem with an intuitive content and deduce numerous 
consequences from it: If one determines a family of rulings by way of the three axes of 
three windings of a body with three degrees of freedom then the axes of the dynames for 
which K remains in equilibrium will define the system of shortest transversals of any two 
rays of R (cf., Theorem 202 and 203). 
 

_______________ 
 
 

§ 86.  Pointers for linear complex domains. 
 

 We can repeat the steps that led us from the point pointers to the line pointers in space 
of complexes: Let: 
(84)    xi1, xi2, …, xi6  i = (1, …, µ; µ < 6) 
 

                                                
 (*) Ball, Theory of Screws, art. 73.  We once more emphatically draw attention to this comprehensive 
and original work. 



§ 85.  The equilibrium of a rigid body. 271 

be the pointers of µ linear complexes.  We assume that the matrix (84) has rank µ, so a 

rank µ linear complex domain G will be defined by it.  We call the 
6

µ
 
 
 

 determinants of 

order µ that can be defined by it the homogeneous pointers of G.  Only their ratios will 
enter into this, which are independent of the choice of the complex inside of G.  If one 
then sets: 

1
i i

i

x
µ

κ να
=
∑   (ν = 1, …, 6; κ = 1, …, µ), 

 
in place of xκν then the pointers will all be multiplied by the determinant of the 
substitution |αiκ | (cf., prob. 26).  Since, by assumption, one and the same G can be 
determined by µ complexes in ∞µ (µ – 1) ways, it will depend upon: 
 

5 µ − (µ − 1) µ = µ (6 − µ) 
constants.  There must then be: 

6

µ
 
 
 

 − 1 – m (6 – m) 

 
relations between the ratios of the pointers and just as many homogeneous relations 
between the pointers themselves.  The argument does not change when we base it upon 
an arbitrary n-dimensional space, instead of the five-dimensional complex space, and 
accordingly substitute n + 1 for 6, in the formulas: 
 

 Theorem 219:  Of the 
1n

µ
+ 

 
 

 homogeneous pointers of an m – 1-dimensional 

domain in an n-dimensional space, all of the remaining ones can be determined by 1 + µ 
(n + 1 – µ) suitable ones that are mutually independent. 
 
 For a pencil of complexes, the matrix will be: 
 

(85)     11 16

21 26

x x

x x

⋯

⋯
 

 
We set x1i x2k – x1k x2i = uik .  In order to find the six relations between the u, we once 
more think of writing down the same matrix as in (85), such that we can now define 
fifteen four-rowed determinants from the new matrix that are all zero and produce one 
relation in precisely the same way as we did for line pointers (§ 32).  Of these relations, 
however, nine suitably-chosen ones must be consequences of the six remaining ones.  In 
particular, we shall consider the six relations that we obtain when we couple two fixed 
columns – e.g., the last two – with two others in all ways in the definition of the 
determinants.  These six relations are certainly independent of each other; each uik (i, k ≤ 
4) is then present in only of them.  For that reason, these relations will also be soluble 
rationally in terms of the aforementioned six uik . 
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 Theorem 220:  Six independent quadratic relations exist between the fifteen 
homogeneous pointers of a pencil of complexes (ray net); the remaining six pointers can 
be expressed rationally in terms of nine suitably-chosen ones of them. 
 
  The qualification “suitably-chosen” is necessary if one is to exclude certain special 
choices; e.g., it is clear that when one has nine pointers that involve only five columns of 
the matrix, the remaining pointers cannot be determined in terms of them, since the ray 
net itself will not be determined. 
 In order to find the ten relations for µ = 3, we must apply the process of Vahlens 
(“Über die Relationen zw. den Determ. einer Matrix,” Journ. f. Math., Bd. 112): We let 
uklm denote the determinant of the kth, l th, and mth columns of the matrix: 
 
 x11 … x16 
(86) x21 … x26 
  x31 … x36 
 
and denote the adjoint of xλµ in u123 by ξλµ , in which we can assume that u123 is non-zero.  
From the multiplication theorem, when we couple columns with columns, we will get: 
 

(87)  
1 1 1 11 12 13

2 2 2 21 22 23

3 3 3 31 32 33

k l m

k l m

k l m

x x x

x x x

x x x

ξ ξ ξ
ξ ξ ξ
ξ ξ ξ

 = 
3

1
i i

i

xλ µξ
=
∑   (λ = k, l, m; µ = 1, 2, 3). 

 
Any element of the determinant on the right will itself be a determinant that arises when 
one deletes either the first, second, or third column from the matrix of u123 , according to 
the value of µ, and substitutes the kth, l th, or mth column of (86) for them, according to the 
value of λ, respectively; thus: 

(88)    uklm ⋅⋅⋅⋅ 2
123u  = 

23 1 3 12

23 1 3 12

23 1 3 12

k k k

l l l

m m m

u u u

u u u

u u u

 . 

 
If we set k, l, m (in any order, whose choice will only have possible changes of sign on 
both sides as a result) equal to 1, 2, 3 then we will obtain the identity: 
 

3
123u  = 3

123u . 

 
If we choose only one of the three numbers k, l, m to be greater than three then we will 
also get an identity.  By contrast, if we choose two of the numbers to be greater than three 
– e.g., k = 1, l > 3, m > 4 – then we will get: 
 

u1lm ⋅⋅⋅⋅ u123 = u1l3 ⋅⋅⋅⋅ u12m - u1m3 ⋅⋅⋅⋅ u12l . 
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There will be nine of these relations.  If we finally choose k, l, m = 4, 5, 6 then we will 
get a relation of degree three.  These ten relations will be independent of each other, since 
one u − namely, the uklm that is on the left-hand side − will be present in each of them, 
which cannot appear in any of the remaining ones.  In fact, only one index will be greater 
than three on the right, but at least two of them in uklm will be greater then three on the 
left.  The relations will be likewise solved for these ten u. 
 Theorem 221:  Ten independent relations exist between the twenty pointers of a net 
of complexes (a family of rulings), one of which is of degree three, while the rest are of 
degree two.  The remaining ones can be expressed rationally in terms of ten suitably-
chosen pointers. 
 
 For µ = 4, we will again get six independent quadratic relations from the same 
process, as the duality between the linear complex domains and their extended domains 
would suggest from the outset.  For µ = 5, we will obtain no further relations. 
 We have regarded the complex domains of intermediate dimensions (µ = 2, 3, 4) as 
domains that are bounded by the definition of their pointers.  One can also regard them as 
intersection structures in the domain of highest dimension (µ = 5) and thus obtain two 
kinds of pointers for the three kinds of domains in a manner that is similar to how we 
distinguished ray pointers and axial pointers for the lines in space.  The connection 
between these two kinds of pointers was found by Pasch (“Zur Th. d. lin. Kompl.,” § 1, 
2, Journ. f. Math., Bd. 75); thus, we can also distinguish tetrahedral and rectangular, 
homogeneous pointers.  We would not like to pursue this further, but only remark that by 
linking the results of this theorem and the theorems of § 84, like the following one, it will 
become obvious that: 
 
 Theorem 222:  The conditions to which a rigid body with three degrees of freedom in 
its motion can be subjected to can be characterized completely at each moment by twenty 
homogeneous pointers, ten of which are independent (i.e., nine essential parameters). 
 

_______________ 
 
 

Practice problems: 
 

 57. When does an ellipse that lies on a cylindroid contact the generator of its plane 
E? 
 
 58. Derive the foregoing theorems on the cylindroid from Theorem 163, to the 
greatest extent that is possible. 
 
 59. In Fig. 76, kϑ is negative and kη is positive.  Draw some other cases. 

 
 60. If one replaces a, b, c with three other complexes of the net then the determinant 
(33) will only be multiplied by a factor. 
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 61. Specify the (six) cases in which a linear complex domain will have a complex in 
common with its extended domain. 
 
 62. If a complex of a pencil B can be found that lies involutorily to another pencil B′ 
then conversely a complex B′ can be found that lies involutorily to all complexes of B 
(Ball, Theory of Screws, art. 118). 
 
 63. Which case of a net of complexes does one obtain when one couples a pencil of 
singular complexes whose axes define a plane pencil B with a twist whose axis belongs to 
B? 
 
 64. If a line g with three points A, B, C moves on three surfaces then any point of g 
will move on a surface whose normal lies hyperbolically with the three surface normals at 
A, B, C (Schönemann, Journ. f. Math., Bd. 90). 
 
 65. Show that the order in which one draws the lines of the construction in § 85, a) 
has no effect on the result. 
 
 66. Treat the cases of n = 6, 7, as well, by analogy to the problem § 85, b). 
 

____ 
 
 

Mixed practice problems: 
 
 67. If a line is tangent to one of its points under a motion then so will its polar with 
respect to the twist that belongs to instantaneous screw will be so, as well. 
 
 68. If a line is characteristic of a plane E then its polar will be characteristic of 
another plane that is perpendicular to E. 
 
 69. When a line g moves, the tangents to the paths of its points will define a 
paraboloid. 
 
 70. The volume of the parallelepiped that is determined by any three generators of 
the same family of rulings is constant. 
 
 71. If one orders the vertices of two tetrahedra in any manner then the four 
connecting rays will define a ray net, just as the lines of intersection of the pairs of given 
planes will.  These two nets will be of the same kind. 
 
 72. If the parameters δ, δ′ of a ray net satisfy the equation: 
 

a δδ′ + b δ + c δ′ + δ = 0 
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in the representation § 55, a) then a family of rulings will be distinguished in the net that 
will be a paraboloid for a = 0. 
 
 73. Show that the line: 
 

x = λ z + m a,  y = µ z + λ b 
 
traces out a ray net for varying λ and µ. 
 74. If two transversals to four lines coincide in a single one t then the double ratio 
of their four points of intersection will be equal to the double ratio of their four 
connecting planes with t. 
 
 75. Derive the parameter representation of a twist for a parabolic net in a manner 
that is similar to the one that was employed in § 60 for elliptic and hyperbolic nets. 
 
 76. Three mutually-involutory complexes group the points of space into tetrahedra 
(cf., the grouping of four elements P, Q, α, β in § 56 into two involutory complexes).  
Four mutually-involutory complexes give rise to two groups of eight points and eight 
planes that can be regarded as two Möbius tetrahedra in four ways. 
 
 77. The complexes of a pencil are pair-wise reciprocal with respect to one of them. 
 
 78. A ray net can be generated by ∞1 families of rulings, two rays of which, s, s′, 
will be fixed, while the third one t will move on a family of rulings R that go through one 
of the fixed lines s. 
 
 79. A twist can be generated by ∞2 families of rulings, two rays of which, s, s′, are 
fixed, while the third one t moves in a ray net that also belongs to one of the fixed lines s.  
It can also be generated by ∞2 families of rulings, one ray of which is fixed, while the 
other two move freely in a ray net.  It can also be generated by ∞1 families of rulings, 
three rays of which s, s′, s″ are fixed, while the fourth one t moves in a family of rulings, 
to which two rays of the family of rulings (s, s′, s″) belong. 
 
 80. The polars of a fixed line relative to all complexes of α) a net of complexes, β) 
of a bush, γ) of a web, define α) a net of rays, β) a linear complex, or γ) fill up all of 
space, respectively. 
 
 81. The geometric locus of all lines on which two projective pencils of planes 
determine an involution is a linear complex. 
 
 82. Calculate the double ratio (a b c d) of four hyperbolic lines from their pointers 
ai, bi, ci, di . 
 

_______________ 
 



 

Appendix I 
 

Hints for solving the practice problems 
 

 Some of the easier problems will be tacitly passed over here.  As for the other ones, 
we shall, according to the nature of the problem, suggest how to begin the problem, the 
main steps in the process of solving it, or the final result, or even refer to a treatise in 
which the solution can be found.  Wherever an author was already cited in the statement 
of the problem, the solution that will be given here will be a different one. 
 
 

Chapter I 
 

 1. If a ray m rotates in a plane E that is parallel to the axis then for every position of 
m the rays of the twist that are parallel to m will fill up a plane.  This plane will define a 
planar pencil of parallels that also belongs to E. 
 
 2. Its pointers are: 

x = 
B

C

k
, y = − 

A

C

k
, z = − 

D

C
. 

 
 3. One simultaneously introduces: 
 
 x = x1 cos α – y1 sin α, 
 y = x1 sin α + y1 cos α, 
 ξ = ξ1 cos α – η1 sin α, 
 η = ξ1 sin α + η1 cos α 
into equation (8), etc. 
 
 5. Cf., the construction in Fig. 17. 
 
 6. If one chooses the direction of the axis to be perpendicular to g then g′ will be cut 
by the axis; if one chooses it to be parallel to g then one will not get an actual twist, but a 
bush of rays. 
 
 9. Construct the null plane of the point at infinity on s.  The direction in it that is, at 
the same, the shortest distance from g to g′ will be the direction of the axis.  With that, 
one comes to the manner of determination b).  However, when this solution fails (in what 
way?), one provides a second polar pair.  The simplest way to do that is to look for the 
polar to the connecting line of a point of g and one of s. 
 
 10. Construct the polar to a transversal of g and h, etc. 
 
 11. If 1l ′  and 1d′  are the perpendicular projections of l1 and d1 onto the horizontal 

plane through P then one will have: 
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d1 = 1d′  = d ⋅⋅⋅⋅ sin α. 

 
All that one will then have to show is that: 
 

sin α ⋅⋅⋅⋅ cot ν1 = cot ν, 
 
which one does with the help of a spherical triangle whose vertices lie on l1, 1l ′ , d. 

 
 13. The height of the screw path increases in a quadratic proportion to the radius of 
the cylinder, since the tangent to the pitch angle will, in fact, increase in a simple 
proportion with the circumference. 

________ 
 
 

Chapter II  
 

 14. a)  Relative to the normals to the null plane n of P. 
  b) and c)  The sphere contacts n at P (Möbius, Statik, § 89). 
 
 15. b)  If M1 and M2 are the moments relative to a1 and a2, respectively, then the null 
point must lie on a line whose points have the distance ratio M1 : M2 from a1 and a2, etc. 
(Möbius, Statik, § 96). 
 
 16. c)  If k, m is the given dyname, K is the magnitude of the rod of the cross, and d is 
its separation from the axis then Theorem 25 will yield: 
 

K = 2
2

k
, d = m : k = k. 

 
 18. b)  From 17, b), the limiting position will be the same as if g had rotated around 
g′, so it will be the foot of the shortest distance from g′, and thus the axis, as well. 
 
 19. The normal of E that intersects both polars is a ray of the associated twist; its 
point of intersection with E will then have a velocity vector that is in E itself. 
 
 21. The attainable zone will be bounded by two circles with radii ω and ω + 2γ (Fig. 
25) and their centers at A″. 
 
 22. a)  The altitude is also an altitude in the reciprocal tetrahedron, but the vertex and 
foot are reversed. 
  b, α) The octahedron corresponds to a body that is bounded by two squares and 
four broken tetrangles (Fig. 82). 
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Figure 82. 

M 

 

Figure 83. 

B′ 

C′ 

P 

A′ 

R 

Q 

B 
A 

C 

 
 

M should not be considered to be a vertex of a polyhedron. 
 
 β)  The cube (Würfel) is a body that is bounded by two triangles ABC and A′B′ C′ that 
go to each other by parallel translation and six triangles A′ B C, B′ C A, C′ A B, A B′ C, B 
C′ A, C A′ B (Fig. 83).  The sides of the triangle PQR are not to be considered as edges of 
a polyhedron, nor should the overlapping tetrangle A B A′ B′, etc., be considered to be 
faces of a polyhedron. 
 
 23. Half of the solution is indicated in Fig. 84.  One obtains the other half by a 
reflection along MN.  One would start by drawing PQ = a = 5c / 2 parallel to a, then 
drawing 1, 2 parallel to the rods with the same names in Fig. 31.  One would then make 
PS = c, etc. 

 

P 

Figure 84. 
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 24. Confer the paper of Hauck that was cited in § 27.  One will find even more 
general theorems in Hauck, Journ. f. d. r. u. a. Math., Bde. 100 and 120.  Schmidt, 
Monatsh. f. Math. u. Phys., Bd. VIII. 

______ 
 
 

Chapter III  
 

 26. If one introduces linear, homogeneous forms in the pointers y, z: 
 

iy′  = λ yi + µ zi , iz′  = ν yi + ρ zi , 

 
in place of those pointers, then the line pointers will be multiplied by factors that are 
independent of the indices. 
 
 29. One has: 

l l

m m

A A

A A
λ µ

λ µ
 = ± A i i

k k

a a

a a
ι κ

ι κ

, 

 
in which the upper or lower sign is valid, according to whether the permutations l, m, i, k 
and λ, µ, ι, κ belong to the same or different classes (cf., Pascal, Determ., § 8).  However, 
since the permutation l, m, i, k is fixed in equation (72), and only the ratios of the 
coefficients of p′ enter into it, we can let the sign depend upon the permutation λ, µ, ι, κ 
alone, etc. 
 
 31. Let a determinant of order ν that has the form: 
 

∆ = 

1 1

1 2

1 2

λ λ λ ν

λ λ λ ν

λ ν λ ν λ

ϕ ϕ ϕ
ϕ ϕ ϕ

ϕ ϕ ϕ

− − +

+ − +

+ − + −

⋯

⋯

⋮ ⋮

⋯

 

 
be given, in which each element is a 
homogeneous function of any other quantities pi 
whose degree is indicated by the index.  ∆ will 
then be a homogeneous function of degree λν in 
the pi , as one convinces oneself by going from 
ν to ν + 1.  (If one changes all of the indices in a 
row or column in determinant of this sort by the 
same amount then it will remain homogeneous 
in the pi if it was before.)  Nothing will change 
in this when one replaces arbitrarily many 
elements with zeroes. 

 

Figure 85. 

kψ 

kϕ 
 

kψ′  

kϕ′  



280 Appendix I 

 If we assume that m ≤ n then the construction of D can be made tangible by Fig. 85, 
in which the two strongly-bounded parallelograms are filled with elements ϕ and ψ 
(including the slanted boundaries), and the rest of space with zeroes.  If one develops D 
in the sub-determinants of the first m rows then one will get nothing but products of the 
determinants ∆ϕ ⋅⋅⋅⋅ ∆ψ , whose principal terms will be: 
 

∆ϕ  = m
nϕ ,  ∆ψ = 0

nψ . 

 
The principal term in ∆ϕ  will then have dimension mn, while that of ∆ψ  will have 
dimension zero.  One will obtain all other terms from the principal term when one 
replaces the sub-columns kϕ (k ≤ m) of ∆ϕ  by other kϕ′  (k′ > m) and simultaneously 

switches the extended sub-columns kψ′  and kψ  in ∆ψ .  The dimensions of ∆ϕ  and ∆ψ will 

then change by the same number in the opposite senses. 
 
 32. Here, the word “locus” can be understood only in the sense of point geometry.  
However, two equations in line pointers will not determine a “locus” then. 
 

_____ 
 
 

Chapter IV  
 

 33. If projective pencils are 
given by (S; a¸b, c) and (S′, a, b′, c′) 
(Fig. 86) then the direction α of the 
axis will be constructed as the null 
point of the plane at infinity when 
one draws β || b′, γ || c′ through S 
and intersects the planes bβ and cγ.  
Even though the spatial structure is, 
for the most part, still not fixed by 
the elements that are suggested in 
the drawing, one can still construct a 
point T of α when one employs an 
auxiliary plane E0 || a.  In order to 
find the axis itself, one must look 
for the null point of a plane that is 
perpendicular to α (which is no 
longer done, and would first become 
possible if one eliminated the 
aforementioned multi-valuedness in 
the figure). 
 

 

T 

Figure 86. 
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 35. In fact, the twist does not lose its axial symmetry, but its parameter will change in 
proportion to q, as one can easily confirm in the null planes of the point in E, as well as in 
the ones whose shortest distance from the axis is perpendicular to E. 
 
 36. If one makes the Z-axis the axis of the twist then the equation of the associated C2 

will assume the simpler form: 
 

(a6 q3 + a3 q6)
2 – M′ 2 2 2 2

1 2 3( )q q q+ +  = 0. 

 
 One can restrict oneself to the examination of the complex cone whose vertex (with 
the abscissa x) lies on the X-axis, and here again, to the search for two rays that cut the X-
axis perpendicularly.  If one then sets: 
 

6

3

a

a
 = k, 

2

2
3

M

a

′
= m, 

 
in which k is then the parameter of the associated twist G, then one will get: 

 
(1)    (k2 – m) z′2 + 2k x y′ z′ + (x2 – m) y′ 2 = 0. 

 
 The direction coefficient λ = z′ : y′ can be calculated from this, and likewise the 
vertex angle of the cone. 
 C2 can thus generate the ruled surface (1) by displacement and a screwing motion −  

i.e., a fourth-order ruled surface – in the same way that the twist will generate the 
hyperbolic paraboloid: 

λ = − 
x

k
 

by displacement and a screwing motion. 
 If one next has: 
 
 I) m = k2 then it will follow from (1) that all diameters of G belong to C2 . 

 
 In fact, it is mechanically obvious from the outset that for M′2 = 2

6a  − i.e., when the 

given moment is equal to the field of the equivalent dyname – any diameter of G will 

solve the problem.  The rod part of the dyname will then have a zero moment with 
respect to it, and the field part will have the same moment with respect to all diameters.  
Here, the degree of ruled surface will reduce to three. 
 
 II) m < k2 then it will be even more mechanically obvious that real rays of C2 must go 

through each point, since the absolute values of the attainable moments for the axes 
through a point will have a maximum, but no non-zero minimum (problem 14). 
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 III) m > k2 then no rays of C2 will enter into the interior of the cylinder of radius 
2m− k .  It will be contacted by rays whose pitch is: 

 

2m−
k

k
. 

 
 All of the rays of C2 can be associated with tangents to helices, two families of ∞1 of 

which will lie on each coaxial cylinder.  One should note the special case of k = 0 (cf., § 

48, b). 
 
 38.  Each hyperbolic net can be obtained from a rectangular net N by a 

transformation T as in Theorem 108.  If one cuts N with two planes parallel to the middle 

plane that harmonically separate the focal lines then one will obtain two such affine 
systems Σ, Σ1 whose projections Σ, Σ′ onto each other will have mutually-involutory 
central pencils.  If one makes their double rays into axes then the affinity between Σ and 
Σ′ can be represented by the equations: 
 
(1)     x′ = µ x, y′ = − µ y. 
It will emerge from: 

y

x

′
′
= − 

y

x
,  x′ y′ = − µ2 x y 

 
that the system Σ′ can be derived from Σ by reflection along a line and a similar 
enlargement with a ratio µ.  Therefore, N can be generated by two such affine systems in 

∞1 different ways, which are derivable from each other by reflection, similarity 
transformations, and translations. 
 If one cuts N with two planes that have the same distance from the middle plane on 

both sides then the equations: 

(2)     x′ = κ x, y′ = 
1

κ
 y 

 
will enter in place of (1), in which κ means a positive or negative constant, according to 
whether the two planes lie between the focal lines or outside of them, respectively. 
 The further equations: 

κ 
y

x

′
′
 = 

1 y

xκ
,  x′ y′ = x y 

 
will no longer admit such a simple interpretation. 
 

 41.  x′ = c cot α ⋅⋅⋅⋅ y

z
, y′ = c tan α ⋅⋅⋅⋅ x

z
, z′ = 

2c

z
. 
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 42. If one considers y, y′ to be fixed and x, x′ to be moving then one will come to 
Sylvester’s method of generation.  The point x is associated with the plane (g, x′) as its 
null plane, which will always be the same then, no matter which pair one considers to be 
fixed, instead of y, y′.  Since g, g′ are also rays of all twists, they will be identical.  This 
method of determination by two projective point sequences then comes down to giving a 
special ray net and one ray from the twist. 
 
 44. For example, one can deduce from (113.a): If one chooses any quantities pi that 
satisfy the equation: 
(1)      c p3 + p6 = 0 
and the equation: 

(2)      ∑ pi pi+3 = 0 
 
then one can calculate the four real quantities σ, y, z, w from the four equations: 
 

σ p1 = c, σ p2 = − z, σ p3 = y, σ p5 = c w. 
 

The two extra equations: 
σ p6 = − c y, σ p4 = y2 + z w 

 
will then be fulfilled by means of (1) and (2) by themselves. 
 
 45. In (110), the u-surfaces and the v-surfaces are hyperbolic paraboloids, the u, z and 

v, z congruences are special ray nets, and indeed in one case the focal lines will be at 

infinity; analogous statements will be true for (113). 
 
 46. One chooses two points on g; its null planes relative to the complex of the pencil 
will describe two projective planar pencils, etc. 
 

______ 
 
 

Chapter V 
 

 48. If one sets: 
xk = ak + i ka′ ,  yk = bk + i kb′ , 

and writes: 
 λ + i λ′, instead of λ, 
 µ + i µ′, “ µ, 
 zk + i kz′ , “ zk , 

then one will have: 
 

σ zk = ak (ν λ + ν′ λ′) + ka′ (ν′ λ – ν λ′) + bk (ν µ + ν′ µ′) + kb′ (ν′ µ – ν µ′ ) 
σ kz′ = ak (ν′ λ − ν λ′) − ka′ (ν λ – ν′ λ′) + bk (ν′µ − ν µ′) − kb′ (ν µ + ν′ µ′ ). 
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 If one solves each of the two systems in parentheses and sets the solutions 
proportional to each other then one will obtain a representation of the gathered involutory 
collineation that is free of parameters.  When one denotes the adjoint of every element in 
the determinant: 

k k k ka a b b′ ′   (k = 1, …, 4) 

 
with the corresponding Greek symbol, it will read: 
 

 τ ∑αk kz′  =   ∑ kα ′ zk , τ ∑βk kz′  =    ∑ kβ ′ zk , 

 τ ∑ kα ′
kz′  = −∑ αk zk , τ ∑ kβ ′

kz′  = − ∑ βk zk  . 

 
 One sees from the equations that the collineation is involutory and that no real double 
points are present.  It will then follow that τ2 = − 1 for the double points. 
 
(52)  (b2 + c2 – r2) 2

1q + (c2 + a2 – r2) 2
2q + (a2 + b2 – r2) 2

3q  
2
4q + 2

5q + 2
6q − 2 [a b q1 q2 + b c q2 q3 + c a q3 q1] 

+ 2a (q3 q5 – q2 a3) + 2b (q1 q6 – q3 a4) + 2c (q2 q4 – q1 a5) = 0. 
 
 53. The locus is the equilateral paraboloid: 
 

ab

c
= − 

n

m
(1 – m2). 

 
 If one chooses its center to be on this surface then the radius of the sphere is 
determined from: 

b2 – a2 m2 + (c2 – r2 – n2) (1 – m2) = 0. 
 

In fact, it is a two-fold condition for an imaginary line to contact a sphere, since it will be 
contacted by its conjugate, as well. 
 

(54)    
2 2
3 6 1 5 2 4
2 2
3 6 2 5 1 4

2( ) 0,

2( ) 0.

q q q q q q

q q q q q q

− + − =
+ + − =

 

 
 
Cf., also Zeuthen, Math. Ann., Bd. I. 
 
 55. In double contact.  They will then have only two common points with it, and the 
number of points of intersection can only reduce in an imaginary domain, since some of 
them will coincide.  In fact, one can make this intuitive when one passes to the limit for a 
general surface for which two umbilic points coalesce into a vertex, so their tangent 
involutions will cut out the same involution from the lines at infinity of all parallel circle 
planes. 
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 56. They will be the ones that meet the imaginary sphere-circle K.  This can happen 

only at the common points of K and the infinitely-distant curve C of F2 .  C will also be 

the intersection of the asymptotic cone A of F2 with the plane at infinity.  The ray 
involutions in the cyclic planes of A define imaginary rays of A that also meet K.  They 

thus cut the four points of intersection of C and K from the plane at infinity, since they 

are taken in both senses.  One thus has the following theorem: An involution is defined 
by a hyperboloid H in a pencil of parallel planes that contains a cyclic plane of H.  This 
also cuts out an involution from any generator e of H, which then also defines a gathered 
spatial involution (Theorem 137).  The ordering rays of the latter define a rotation net.  
We have formulated the result in the real case; however, it was not so easily derived 
without the theory of imaginary elements. 
 

______ 
 
 

Chapter VI  
 

 57. If E goes through one of the external generators of the cylindroid. 
 
 61. From the classification of § 79, these will be the cases A) b, c, d; B) b, d; C a.  The 
common complexes can only be singular. 
 
 62. Let C be the complex of B that lies completely normal to B′ (§ 78).  B′ will then 
lie in the extended domain C4 to C (Theorem 175).  However, the extended domain B3 of 
B will also lie in C4, so here it will cut B′ in a complex C′ that is completely normal to B. 
 
 63. The case in which the basic family of rulings is an equilateral paraboloid (§ 83, B, 
a). 
 
 64. Since one might also consider g to be the component of a body with three degrees 
of freedom, the surface normals at A, B, C will define the basic family of rulings of the 
associated linear winding domain. 
 
 66. Cf., the paper of Sturm that was cited in § 85. 
 

___________ 
 
 

Mixed practice problems 
 

 69. Chasles, C. R. 16 (1843).  Refer to the two books by Schönflies Geometrie der 
Bewegung in synth. Darst. (1886) and Mannheim Géométrie cinématique (1884) on this 
subject. 
 
 70. Franel, Vierteljahrsschr. der naturf. Ges. Zürich, Bd. 40, 1895. 
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 71. Franel, ibidem; for the case in which the nets are identical, cf., Kohn, Wiener 
Sitzsber., Bd. 107, II, 1898. 
 
 72. A projectivity will be defined on the focal lines by the equation (D’Emilio, the 
paper that was cited in § 55). 
 
 73. It will always cut the two lines: 
 

x b y a−  = 0, z = ab  

and 

x b y a+  = 0, z = − ab . 

 
(Hermes, “Über Strahlensyst. 1. Ord. u. Kl.,” Journ. f. Math., Bd. 67, 1867).  The net is 
hyperbolic or elliptic, according to whether a, b do or do not have the same symbols, 
respectively. 
 
 74. t is then a focal line of a parabolic ray net that can be defined by a correlation with 
the carrier t. 
 
 76. Klein, Math. Ann., Bd. II.  Caporali and del Pezzo, “Introd. alla teoria dello sp. 
rig.” (in the Mem. di. Geom. of Caporali). 
 
 77. Every ray of the associated net will then be mapped to itself by a complex of the 
pencil (Caporali and del Pezzo, loc. cit., § 8). 
 
 78. Let R be defined by s, t′, t″.  s, s′, t′, t″ will then determine a ray net N that all of 
the ∞1 families of rulings will belong to (Theorem 99), but it will be exhausted, as one 
knows, when one draws two planes through s and generates N by two collinear fields 
(Theorem 100). 
 
 79. Let N be defined by s, t1, t2, t3 .  A twist G will then be determined by s, s′, t1, t2, t3 
that all of the ∞1 families of rulings will belong to (Theorems 101 and 11), but it will also 
be exhausted.  If one then chooses an arbitrary ray p of G then it will determine a family 
of rulings with s, s′ that, from Theorem 217, will cut N a second ray besides s that is 
taken to be t if one would like to come to p.  Argue analogously in the other cases. 
 
 80. Sturm, Liniengeometrie I, arts. 130, 142, 154. 
 
 81. Caporali and del Pezzo, loc. cit., § 4. 
 
 82. We cut a, b, c, d with two rays t, t′ of the guiding family.  One will then have 
(Fig. 87): 

(a b c d) = (A B C D) = (α β γ δ). 
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Now, from § 39, c), the pointers 
of g and d can be written in the 
form: 
  γi = ai + λ bi , 
  di = ai + µ bi , 
 
in which λ and µ are to be 
determined from the condition 
that γ, c cut, just as δ, d.  If we 
then set: 
 

ω (a, c) = ∑ ai+3 ci = (a c), 
 

 
etc., then we will have: 

(a c) + λ (β c) = 0, (a d) + µ (β d) = 0, 
and from Theorem 55: 

(a b c d) = 
λ
µ

 = 
( ) ( )

:
( ) ( )

ac ad

c dβ β
. 

 
We now switch a, b, and likewise t, t′, and let B play the role of S.  We will then get: 
 

(b a c d) = 
( ) ( )

:
( ) ( )

bc bd

c dβ β
, 

and by eliminating β: 

(a b c d) = 
( ) ( )

:
( ) ( )

ac ad

cb db
. 

 
We still have to determine the sign of the root, whose positive value we will call u: If we 
calculate: 

(a c b d) = ± v 
 
using the same rule then we will get, on the one hand: 
 

(a b c d) + (a c b d) = 1, 
 
while, on the other hand, only one of the three equations: 
 

u + v = 1, u – v = 1, − u + v = 1 
 

can be fulfilled by positive values of u, v.  The double ratio can, from the nature of things, 
also be expressed rationally in terms of the pointers (Voss, Math. Ann., Bd. 8, pp. 61). 

 

 

S 

t′ 

t 
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Figure 87. 



 

Appendix II  
 

Producing the figures 
 

 While the following explanations are not indispensible for an understanding of the 
book, they can still give a geometer some idea of how spatial structures are drawn 
correctly.  Knowledge of the elements of descriptive geometry is assumed for some of the 
following explanations.  All figures in the book are, where not expressly stated to the 
contrary, drawn in axonometric projection, to the extent that they, above all, represent 
spatial structures. 
 

Chapter I 
 

 Fig. 1.  The circle is divided into twelve equal parts and the points of the parts are 
projected onto the ellipse by parallels to the axis.  When one carries the segment 11′ once 
on 1, twice on 2, etc., in the direction a, one will get the points of the helix. 
 
 Fig. 10.  Since the inclination of the plane of the ellipses that represent circles is 
determined completely by the ratio of the axes of the ellipses, and therefore the position 
of the entire spatial figure relative to the image plane, the inclination ν of the cylinder 
tangent l with respect to the circle plane – i.e., with respect to the circle tangent t at B – 
will also be determined.  The arbitrary choice of ray l of the twist through B in the image 
will then determine the parameter k of the twist.  Its ray l1, with the pitch v1 (and 
analogously for l2) must be constructed from the proportion [Equation (14)]: 
 

tan v1 : tan v = c1 : c. 
 

This happens in the accompanying figure (on a larger scale).  In order to find the 
direction of t, one draws PT || DA.  One will then have t || TQ, since PTQ is a right angle 
in space.  One has AN || t (arbitrary length), t2 || t1 || t, n2 || n1 || n || a.  S is determined as 
the point of intersection of l and n.  NS then cuts points of l1 and l1 out of n1 and n2, resp., 
since n, n1, n2 are proportional to the tangents of the anglesν, ν1, ν2, respectively. 
 
 Fig. 13.  The lines a, l1, d, d1 are chosen arbitrarily in the image, and one then draws n 
|| a through Q, 1d′ || d1 through N, with which 1l ′  is determined.  One now sees likewise 

that one can, in fact, choose those four lines arbitrarily.  One can then consider n, 1l ′ , 1d′  

to be the axis cross, etc.  Finally, one must draw l || NQ. 
 

______ 
 
 

Chapter II  
 

 Fig. 20.  The hyperboloids are merely sketched and are thought to be transparent. 
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Chapter III  
 

 Fig. 33.  The trigon P1 is cut by E in STU and by E in STU.  The vertices of these 

two triangles are chosen arbitrarily from the edges, and at the same time, E is thought of 

as being horizontal.  The trace Eh of E on E is then constructed from this, etc.  Let P1 1P′  = 

e1 be the perpendicular of P1 on E, and let N be the connecting line (e1, δ1).  e1 and Nh can 

then be chosen arbitrarily, Eh, Nh, e1 can now be considered to be the directions of the 

axes.  However, the trace Ne of N on E must be constructed (e.g., with the help of P1 s).  
Finding δ1 is just a matter of constructing the perpendicular from P1 to Ne .  Thus, if AC ⊥ 
P1B then ACB will also be a right angle in space, so AC will be the altitude of the triangle 
ABP1 that lies in N.  One will find a second altitude, and thus the point of intersection ω 
of the altitude, when one draws B ω || Nh .  P1D through ω is the desired segment δ1.  One 
draws δ2 parallel to it through P2 and bounds it with DS.  One finds e2 analogously. 

 
 Fig. 34.  E1 and E2 are first assumed to be bounded by right angles in space, and then 
P1 is chosen in E2 and P2 in E1.  If one draws α, x parallel to the boundaries of the planes 
then the perpendicular projection 2P′′  of P2 onto E2 can still be chosen arbitrarily on x.  

However, three mutually-perpendicular directions x, y, 2 2P P′′   are now known that can be 

considered to be the directions of the axes, and the projection 1P′  of P1 onto E1 must be 

constructed, since the position of the figure with respect to the image plane is well-
defined (up to its distance from it).  If we then lay 2P′′  in the image plane then we will 

obtain two points of the image trace β of E1 by way of σ ⊥ y and τ ⊥ 2 2P P′′ ; 1 1PP′  must 

then be drawn perpendicular to β and bounded by parallels to the boundaries.  One now 
knows the projections k′ and k″ of k onto E1 and E2, resp., so one can draw the segments 
d′ and s′ when S′ and S′ are chosen on k. 

 
______ 

 
 

Chapter IV  
 

 Fig. 40.  In order to get a correct sketch as simply as possible, one makes A3C = A2A3 
= NA2 , and likewise B3 4B′  = B2 B3 = B1 B2 . 

 
 Fig. 47.  The pairs of congruent ellipses of the two families in Theorem 109 
determine hyperboloids for which the principal ray of the net is an axis.  Three of these 
hyperboloids were indicated and three pairs of conjugate directions in the ellipses (e.g., 
AA′, BB′).  The contours of the hyperboloids are not drawn everywhere; however, their 
contact points with the rays of the net everywhere separate a completely extended and a 
dotted part of the ray.  The rays of the net can also be associated with equilateral, 
hyperbolic paraboloids when one combines all of them that cut a diameter of a family of 
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ellipses (e.g., AA′, and thus also BB′).  The same figure can be regarded as the image of a 
rotation net, as well as a general elliptical one. 
 

_____ 
 

Chapter V 
 

 Fig. 58.  Since the positions of the lines g, g1 are still not determined by their 
axonometric projections alone, one can choose the directions of the traces h, h1 of the pair 
of parallel planes through g and g1, resp., arbitrarily in E.  If one then projects the point 
shadow (Punktwurf) onto g in the direction g1, and conversely, then one will obtain points 
on the rays of the quadruples a, a′; b, b′ and a1, 1a′ ; b1, 1b′ .  One can now immediately 

connect this with the further construction of the common points with b).  This 
construction will then have a projective character; it will therefore make no difference 
that here it is merely the image of a construction that takes place in another plane, in 
reality. 

_____ 
 

Chapter VI  
 

 Fig. 66.  A circle K of the circular cylinder is divided into 32 equal parts (using the 
same method as in Fig. 1).  Perpendiculars to the plane of the circle are drawn through 
the points of the parts and the ordinates of the curve z = 1

2 sin 2ϑ are laid on them above or 

below the circle.  Thus, the semi-major axis of the ellipse K will be the unit of true 
length, so the eccentricity of K will be the shortening of its length in the Z direction.  If 
one then takes one-half the eccentricity CH to be the unit, then defines a scale, and 
considers 132 of the circle to be equivalent to 221

2
o then one can immediately read off the 

value of z that is laid down from a table of sines, and then remove the scale. 
 AA′ and BB′ are the axes of the principal complex of the pencil and lie in the middle 
plane.  GG′ is the lowest generator, and HH′ is the highest one.  Both of them are the 
“outermost” ones.  Their directions bisect the (right) angle between AA′ and BB′.  DD′ is 
the double line, insofar as two real generators will intersect on it.  The figure of the model 
is, for the sake of clarity, bounded by the sinusoid, instead of the dashed line in Figure 
65, which cannot be done for an actual model.  The cylinder is thought of as being 
opaque, but the cylindroid is transparent, as would indeed be the case for a string model. 
 
 Fig. 68.  An ellipse K is drawn arbitrarily and considered to be the projection of a 
circle.  Furthermore, d is chosen to go through a point B of K parallel to the minor axis of 
the ellipse.  The diameter AA′ of K that is conjugate to BB′ is perpendicular to BB′ in 
space.  If one makes A′H = − AG || d then GH will be the major axis of the ellipse in 
space that lies on the circular cylinder through K, which can then be drawn from the 
conjugate diameters BB′ and GH (the curvature circle at the endpoints of this diameter, 
according to Rohn and Papperitz, Darst. Geom., art. 210).  One now finds the generators 
of the cylindroid as is suggested in the text.  The ones that go through G and H will be the 
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lowest and the highest ones, respectively.  BB′ and the tangent to K at B will be the 
principal generators. 
 
 Fig. 81. One should note that X, a, Y, a′ define a harmonic pencil.  One arranges this 
most simply when one lays two equal segments in succession in a parallel to a′, through 
whose endpoints X, a, Y must go 
 

_____________ 
 
 


