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 Abstract. − The author shows that the wave function that is defined by the Dirac equation is not a 
quantity with four scalar components, but one with sixteen.  When one then addresses the problem in full 
generality, most of the objections that one presently makes about the Dirac equation vanish.  The concept 
of ψ as a semi-vector then becomes useless; the equation is written in a form that is invariant under the 
Lorentz transformations and is perfectly symmetric, moreover. 
 In order to obtain the most general results, the author uses hypercomplex numbers.  He writes the four-
dimensional current by means of the new ψ and attaches the number of components it has to the “degrees 
of freedom” of the electron.  He shows that these 16 components are susceptible to an immediate physical 
interpretation and he specifies the meaning that one gives to these quantities in terms of probabilities. 
 Finally, in the course of these considerations, two notions present themselves very naturally: that of the 
“fifth dimension” and that of the “tensorial or hypercomplex probability.”  The author then rapidly 
examines their essential traits. 
 
 
 1.  Introduction. – The substitution of the relativistic Dirac equation for that of 
Schrödinger marks an extremely important step forward in wave mechanics.  However, 
the study of that equation further presents some gaps that singularly restrict its scope.  
The objections that one makes show clearly that, following the expression of Darwin, 
“several things have passed through the net;” they do not, however, permit one to specify 
what element has escaped the analysis, nor to see how one may discover it. 
 The considerations that follow have the goal of pointing out and filling in one of these 
gaps.  Their point of departure is the banal observation that first comes to light when one 
begins the study of the Dirac equation.  It concerns the passage from that unique system 
to a system of four partial differential equations that are deduced from it, and which, to 
abbreviate, we call the Darwin equations. 
 Let ik

µα  be the elements of the matrices with four rows and four columns αµ (µ = 1, 2, 

3, 4) that appear in the Dirac equation Hψ = 0.  Dirac, Darwin, and their school of all 
those of who occupied themselves with that equation have admitted that when one 
develops that equation, one must write: 
 

αµ ψ = 
4

1

ik
k

k
µα ψ

=
∑ .      (1) 

 
for the action of the αµ on ψ.  This amounts to defining four wave functions ψ1, ψ2, ψ3, 
ψ4 .  One then supposes that ψ is expressed by means of these four functions like a matrix 
that reduces to just one column of elements ψ1, ψ2, ψ3, ψ4 . 
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 Now, there is no justification for this last assumption; it is a gratuitous hypothesis 
that restricts the generality and introduces pointless complications.  Indeed, the 
Hamiltonian H, which is the sum of four matrices, is itself a matrix with four rows and 
four columns.  The equation Hψ = 0 signifies that one must find a quantity that gives zero 
when multiplied by such a matrix.  It is obvious that, in general, ψ must be a matrix with 
four rows and four columns (1).  It is not surprising that one finds asymmetric results and 
details of one assumes from the outset, and with no necessity, that three of these columns 
have their elements equal to zero.  Moreover, it is obvious that upon multiplying H times 
ψ and annulling the elements of the matrix product the 16 resulting equations are 
identical in groups of four; these are the equations that are produced by the composition 
of a given line of H with the columns of ψ.  ψ is thus a matrix whose last three columns 
are identical to the first one, but which are non-zero in any case, as one presently 
assumes. 
 The correct results that the Dirac equation leads to may be obtained only if one 
eliminates the limiting hypothesis.  We shall attempt to do that in the following 
paragraphs by working through the idea that we just sketched out qualitatively. 
 
 
 2.  The Dirac equation.  In order to account for the effects that were attributed to the 
rotating electron in the theory of spectra, and to satisfy the demands of relativity, Dirac 
was compelled to replace the relativistic equations of Gordon and Klein with the first 
order equation: 

(p0 + α1 p1 + α2 p2 + α3 p3 + α4 mc) ψ = 0   (2) 
or: 

     p0 = − 02

h e
A

i c t cπ
∂ +
∂

, 

 

     pr = + 
2 r

r

h e
A

i x cπ
∂ +

∂
  (r = 1, 2, 3). 

 
A0 is the scalar potential, A1, A2, A3 define the vector potential, and – e is the charge of the 
electron. 
 The αµ are operators that commute with the pi, the xi, and t, and which satisfy, in 
addition, the conditions: 
 

αµ αν + αν αµ = 0, 2
µα  = 1 (µ, ν = 1, 2, 3, 4).   (3) 

 
 They can be put into the form of matrices with four rows and four columns whose 
elements are (αµ)ik; Dirac pointed out a possible form for these matrices. 
 The αµ do not operate on the x, y, z, t; ψ must therefore contain a new variable ζ on 
which the αµ do operate, namely, ψ(x, y, z, t; ζ).  Most often, one writes that variable with 

                                                
 (1) If it has more, since a certain number of its elements will be arbitrary, then the number of unknowns 
will exceed the number of equations that must determine them. 
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an index ψζ .  If the αµ are expressed in the form of matrices then one defines the manner 
by which they operate on ψ by: 
 

αµ ψk = ∑ (αµ)ikψk .      (4) 
 
 This definition succeeds in specifying the meaning of equation (2).  With the Dirac 
matrices, the unique equation (2) is equivalent, by (4), to the system of equations in four 
unknown functions ψ1, ψ2, ψ3, ψ4 that were written for the first time by Darwin: 
 

0 1 1 2 4 3 3

0 2 1 2 3 3 4

0 3 1 2 2 4 1

0 4 1 2 1 3 2

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0,

( ) ( ) 0.

p mc p ip p

p mc p ip p

p mc p ip p

p mc p ip p

ψ ψ ψ
ψ ψ ψ
ψ ψ ψ
ψ ψ ψ

+ + − + = 
+ + + − = 
− + − + = 
− + + − = 

   (5) 

 
 Dirac decomposed the α into factors by using the six matrices with four rows and 
four columns σ1, σ2, σ3, and ρ1, ρ2, ρ3 : 
 

α1 = ρ1 σ1,  α2 = ρ1 σ2 ,  α3 = ρ1 σ3,  α4 = ρ3 .  (6) 
 

 If the “vector” (σ1, σ2, σ3) is denoted by S  and (p1, p2 , p3), by P  then the symbolic 
equation (2) may be further written: 
 

[p0 + ρ1( S , P ) + ρ3 mc] ψ = 0,   (7) 
 
when (S , P ) represents the scalar product of the vectors S andP . 
 
 
 3.  Objections. – From the outset, two objections were made to this equation, or to 
the ones that were derived from it, which are very important because they bring to light 
an imperfection of the theory, and, as we will confirm later on, some inadmissible 
restrictions from the physical viewpoint.  In the first place, one can criticize the complete 
lack of symmetry in its form.  The introduction of relativity generally increases the 
symmetry since the coordinates and time are treated in the same fashion; here, we have 
scarcely arrived at that result.  Next, the equation thus obtained is not written in a 
tensorial form, while, in reality, it is not altered by a Lorentz transformation; although it 
is basically invariant, its form is not.  The set of four scalars (ψ1, ψ2, ψ3, ψ4) is not a 
vector: It obeys different transformation laws that have not been encountered in physics 
up to the present. 
 With the goal of clarifying this question, various authors have sought to continue, as 
far as possible, the study of either the Hamiltonian H = p0 + ρ1( S , P ) + ρ3 mc or the 
magnitude ψ.  Among those who studied H, Eddington proposed to give a symmetric 
form to the fundamental equation, and he arrived at it by starting with a system of 
matrices that were different from that of Dirac.  However, the general solution of the 
symmetrization of H was given by Schouten in a paper that we shall examine later on. 
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 Some other authors have studied, more specifically, the analogy with the Maxwell 
equations, and have proposed to replace the four functions ψ1, ψ2, ψ3, ψ4 with either eight 
other ones that are defined by a different system of equations or by just two functions ψ1, 
ψ2 that must suffice.  Finally, another category of authors have taken the Dirac equations 
for their basis and sought to directly study the new quantity ψ, to which one has likewise 
given a new name: the “semi-vector.” 
 As interesting as these parallel considerations are, it does not seem that they must 
provide the complete solution to the problem.  This seems to be much simpler: We seek 
to show that all of the difficulties disappear when one takes care to envision the problem 
in full generality.  The imperfections that one encounters are produced simply by an 
unjustified specialization of the givens.  Furthermore, the general treatment offers us the 
advantage of making the physical interpretation of the calculations as simple as possible, 
which is extremely desirable in this chapter of theoretical physics. 
 We shall thus recall the study of Dirac in the beginning by following his personal line 
of reasoning; to simply, we first assume that the (electromagnetic) field is zero. 
 
 
 4. General relativistic equation. – Let the energy equation in special relativity be: 
 

− 2 2 2 2 2 2
0 1 2 3 0p p p p m c+ + + +  = 0,    (8) 

 

where m0 is the proper mass, p0 is the energy, and p1, p2, p3 are the momenta of the 
electron.  Set p4 = i p0 and: 

tk = pk = 
2 k

h

i xπ
∂

∂
  

4

1,2,3,4,

,

k

x ict

= 
 = 

   (9)  

          t5 = m0 c. 
 (8) becomes: 

5
2

1
i

i

t
=
∑  = 0.     (10) 

 
 The Schrödinger equation that is deduced from equation (10) by the usual process is 
not admissible because it is of second order; according to Dirac, it must be of first order.  
In order to obtain such an equation, Dirac decomposed (10) into two factors of first 
degree.  The most symmetric way of doing this obviously consists in setting: 
 

 
5

2

1
it∑  ≡ F2 ≡ 

5 5

1 1
i i i iE t E t

  
  
  
∑ ∑ .     (11) 

 
 The equation that will replace the Schrödinger equation will then be simply: 
 

Fψ = 0, 
or 
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(E1t1 + E2t2 + E3t3 + E4t4 + E5 m0 c) ψ = 0,   (12) 

the Ei being defined by the identity (11).  Upon equating the coefficients of the two sides, 
one sees that the Ei must satisfy the conditions: 

        2
iE  = 1, 

(i, k = 1, 2, 3, 4, 5).  (13) 
      Ei Ek = − Ek Ei . 

 
 No other restriction is imposed upon them.  From (13), the Ei are numbers whose 
multiplication is not commutative; they are thus hypercomplex numbers, in general.  This 
simple observation, which nonetheless has considerable generality, will give us the key to 
solving the problem. 
 We shall thus commence by studying the particular system of complex numbers in 
which F is written by taking, in addition, the simplifying hypothesis that this system has 
an associative multiplication (1). 
 
 
 5. The quadri-quaternions. – In order to determine a system of complex numbers, 
it suffices to know its order n and a basis e1, e2, …, en ; i.e., n numbers in the system that 
are linearly independent.  Any number of the system may then be put into the form: 
 

x = x1e1 + x2e2 + … + xnen , 
the xi being ordinary numbers. 
 The determination of the simplest system in which one can write the Dirac equation 
was done by Schouten in a very-little-known note (2).  First, observe that the equation 
EiFψ = 0, which is equivalent to (12), is a sum of five terms.  One of them has the 
coefficient 1, by virtue of (13), and the other four are numbers of the system ε1, ε2, ε3, ε4, 
which verify, in addition, the relations: 

2 1,

0.
i

i r r i

ε
ε ε ε ε

=
+ =

    (14) 

 
 One then concludes that four numbers ε1, ε2, ε3, ε4 (and the principal unity 1) suffice 
to write this equation. 
 Thus, consider four numbers ε that are constrained only to verify the conditions (14).  
The product of two of them is again a number of the system, so the numbers: 
 

1,   ε1ε2,   ε2ε3,   ε3ε1,   ε1ε4,   ε2ε4,   ε3ε4 
 

likewise belong to it.  Upon repeating the same argument, one sees that the same is true 
for: 

                                                
 (1) For the study of such numbers, see, for example, the excellent article of CARTAN in the French 
edition of the Encyclopédie des Sciences mathématiques, t. 1, vol. 1, fasc. 3, Gauthier-Villars and B. G. 
Teubner, 1908, or also  DICKSON, Algebren und ihre Zahlentheorie, Zürich, 1927. 
 (2) Proc, Amst., 32 (1929), pp. 105.  
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ε1ε2ε3,   ε2ε3ε4,   ε3ε4ε2,   ε4ε1ε2, 
and 

ε1ε2ε3ε4, 
 
and that these numbers are linearly independent, moreover.  However, if one attempts to 
pursue this process further, one is stopped: Any product that is composed of two numbers 
of the preceding list reproduces another one that has already been found.  We are thus in 
the presence of the maximum number of linearly independent numbers of the system.  
This maximum number – viz., n = 16 – is therefore the order of the system; the numbers 
above may be chosen to be unity; they constitute a basis.  There are 16 units, namely: 
 

1; ε1ε2ε3ε4; 
ε1ε2,   ε2ε3,   ε3ε1,   ε1ε4,   ε2ε4,   ε3ε4; 

ε1, ε2, ε3, ε4;  ε1ε2ε3,   ε2ε3ε4,   ε3ε4ε2,   ε4ε1ε2, 
which we denote by: 
 

ε0 = 1, ε1, …, ε12 = ε1ε2, … ε123 =  ε1ε2ε3, ε1234 = ε1ε2ε3ε4, 
 
or also sometimes, to simplify, by ei (i = 1, 2, …, 15, 16). 
 Such systems have already been imagined by the mathematicians; they are the 
quadri-quaternions, a system with associative multiplication with sixteen units and a 
principal unity (1). 
 The remark of Schouten consists of observing that when one is given such a system 
that is defined by ε1, ε2, ε3, ε4, one may find at most five numbers Ei of the system that 
satisfy: 
        2

iE  = 0, 

(i¸k = 1, 2, 3, 4, 5),  (16) 
Ei Ek + Ek Ei = 0. 

 Indeed, it will suffice to take: 
 

5 1 2 3 4

( 1,2,3,4),

.
k kE k

E

ε
ε ε ε ε

= =
=

    (17) 

 
 Such a system of numbers will be called an orthogonal system. 
 Now, the general equation (12) has a linear and homogeneous form whose 
coefficients satisfy (16).  The Hamiltonian F is therefore a quadri-quaternion such that 
eleven of its components are zero, while the other ones correspond to an orthogonal 
system (2). 
 Summarizing the results that we have obtained up to now, we can say: The 
Hamiltonian considered by Dirac consists of a linear and homogeneous form whose 

                                                
 (1) See, for example, COMBEBIAC, Bull. Soc. Math. France 30 (1920), pp. 1; W.-K. CLIFFORD, 
Mathematical Papers, London (1882), pp. 266, 397; LIPSCHITZ, Bull. Sc. math. 11 (1887), pp. 115; 
Journal math. pures appl. 2 (1886), pp. 373 and 439. 
 (2) Compare this to the results of Eddington, Proc. Roy, Soc. A121 (1928), pp. 524.  
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coefficients are hypercomplex numbers that form an orthogonal system in the system of 
quadri-quaternions e1, e2, …, e16 . 
 
 
 6. The wave function ψ. – Our goal is the study of the wave function ψ.  Having 
posed the problem as we just did, the solution is immediate.  ψ is determined by the 
equation: 

F ψ = 0, 
 
where F is a quadri-quaternion.  The general solution will thus be a quadri-quaternion of 
the form: 

ψ1 e1 + ψ2 e2 + … + ψ16 e16, 
 
where the numbers ψi, which are ordinary numbers, will have arbitrary – but not 
necessarily zero – values. 
 The first conclusion that one may deduce from this assertion is that the ψ defined by 
the Dirac equation has sixteen components, and not four, as one usually assumes.  This 
equation is thus equivalent, not to four differential equations, but to 16: One obtains them 
by taking the product: 
 

F ψ = (e1 t1 + e2 t2 + e3 t3 + e4 t4 + e5 t5)( ψ1 e1 + ψ2 e2 + … + ψ16 e16) = 0, 
 

taking into account the rules of multiplication, and annulling the coefficients of the 16 
units e1, e2, …, e16 . 
 One may introduce a notation that simplifies the calculation enormously.  Any unit ek 
is a product of numbers 1, ε1, ε2, ε3, ε4 .   We may thus write: 
 
  ψ = ψ0 + (ψ1 ε1 + ψ2 ε2 + ψ3 ε3 + ψ4 ε4)  
   + (ψ12 ε12 + ψ23 ε23 + ψ31 ε31 + ψ14 ε14 + ψ24 ε24 + ψ34 ε34) 

 + (ψ123 ε123 + ψ234 ε234 + ψ341 ε341 + ψ412 ε412) + ψ1234 ε1234 .  (19) 
 
 The index of each ψi is equal to the number that is defined by the indices of the units 
that correspond to it, taken in the same order: e.g., the coefficient of ε123 = ε1 ε2 ε3 will 
thus be ψ123, and so on.  In addition, the coefficient of the principal unit ε0 = 1 will be 
denoted by ψ0 . 
 It is, moreover, easy to write the equation directly if one adopts the notation (18).  We 
commence with an arbitrary term of F – for example, e1 t ≡ ε1 t1 – and multiply it by a 
likewise arbitrary term of ψ1 – for example,ψ14 ε1ε4 = ψ14 ε14 . ψ14 will thus be the 
coefficient of ε1 ε2 ε3 = ε4 in Fψ.  We thus attempt to find out what the other coefficients 
of e4 are in Fψ.  The following term in the Dirac equation is ε2 t2, so the term ψk εk that it 
corresponds to must be such that ε2εk = ε4 ; therefore εk = ε2 ε4 , k = 24, and it will 
consequently be ψ24 .  When the same process is applied to all of the terms, there will be 
five of them.  One has, for the equation: 
 

t1 ψ14 + t2 ψ24 + t3 ψ34 + t4 ψ0 + t3 ψ123 = 0, 
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or 

34 014 24
0 123

1 2 3 4

2 i
m c

x x x x h

ψ ψψ ψ π ψ∂ ∂∂ ∂+ + + +
∂ ∂ ∂ ∂

= 0,  (19) 

 
and 15 other analogous equations, which one writes down immediately. 
 The general solution of the Dirac equation thus involves 16 functions, instead of four.  
One thus understands the sense in which the interpretation that one is presently given is 
limiting.  One can better understand this difference with the aid of an observation of 
Schouten (1): The system S of complex numbers that we envisioned above is basically the 
product of two systems of quaternions.  In other words, a basis for this system may be 
obtained in the following manner: If one is given two systems of quaternions that have 1, 
λ1, λ2, λ3, λ4 and 1, µ1, µ2, µ3, µ4 for their units then the sixteen numbers 1, λi, µi, λi µk = 
µk λi (i, k = 1, 2, 3) may be considered to be the units of the system S (2).  It is this 
peculiarity that justifies the name “quadri-quaternions.”  Any number in this system may 
then be written in the form: 

N0 + N1λ1 + N2λ2 + N3λ3 ,    (20) 
 
the components Ni being themselves quaternions. 
 Schouten observed that Dirac, by employing the matrices σ and ρ, basically used this 
particular system of units.  Similarly, without specifying the matrix nature of the 
coefficients, the ψ may thus be written in the form (20) with four components, but these 
components ψ1, ψ2, ψ3, ψ4 are themselves quaternions.  Considering them to be scalars 
thus constitutes an error that might lead to incomplete results that are valid only in certain 
special cases. 
 We thus now know the form of the general solution of the symbolic equation of 
Dirac.  The first thing to do will thus be the systematic examination of the results that 
were obtained up to now when one replaces the usual four components with the 16 ψk .  
However, before entering into such a task, we can point out some results of a general 
nature that are independent of the solution equations (19).  These results are destined to 
show that the process employed, which is the only logically admissible one, possesses 
some other advantages, in addition, among which, one has that of facilitating the physical 
interpretation of the quantities ψk . 
 

* 
*  * 

 
 7.  Lorentz transformations. – The general relativistic equation (12), Fψ = 0, is 
invariant under Lorentz transformations, just like the Dirac equation itself, but moreover, 
it is written in an invariant form.  This is an extremely satisfying characteristic, since the 

                                                
 (1) SCHOUTEN, loc. cit., pp. 106.  
 (2) For example, by taking: 
 

E1 = λ1 µ3 , E2 = λ2 µ3 , E3 = λ3 µ3 , E4 = − iµ1, E1 = − iµ2  . 
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theory is essentially based, as Darwin remarked (1), on the invariance of form of the 
equations.  We thus set x4 = ict and consider the Lorentz transformations: 
 

4x′  = 
1

k

kl l
l

O x
=
∑   (l = 1, 2, 3, 4),    (21) 

with 

1

k

kl il
l

O O
=
∑  = 

1

k

kl li
l

O O
=
∑ = δik , 

 
equations to which we add a fifth one that expresses the invariance of the proper mass, 
and which is not contained in the preceding ones: 
 

m0 = constant.     (21′) 
 

 Since the p (or the t) transform like a vector, the equation Fψ = 0 becomes: 
 

5 4

1 1
li l i

i l

O t E ψ
= =

  ′ ′  
  

∑ ∑  = 
4 4

0 5
1 1

li i i
l i

O E t m c E ψ
= =

   ′ ′+  
  

∑ ∑  = 0, 

 
which has the original form: 

5

1
l l

l

E t ψ
=

 ′ ′ ′ 
 
∑ = 0 

if 

lE′  = 
4

1
li iO E∑   (i = 1, 2, 3, 4),     (22) 

 

5E′  = E5,       (23) 

 
and the new equation is always a Dirac equation, because one has: 
 
          2

jE′  = 1, 

    i j j iE E E E′ ′ ′ ′+  = 0  (i, j + 1, 2, 3, 4, 5), 

 
as one verifies immediately. 
 The relation (23) is a consequence of (22), because one has: 
 

5E′  = 1 2 3 4E E E E′ ′ ′ ′  = E1 E2 E3 E4 = E5 . 

                                                
 (1) DARWIN, loc. cit., pp. 657.  Darwin observed that in order to assure this formal invariance of the 
equations it is necessary to introduce 16 quantities into the calculations, which he declined to define, 
because it seemed absurd to him that an electron needed so many elements in order for it to be defined.  We 
nonetheless confirm that this situation, far from being a mathematical complication, brings us closer to the 
physical side of the question. 
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 Now consider the transformation law for the ψ under the hypothesis of the formal 
invariance of the equation F ψ = 0.  The law (22) for the E1 = ε1, E2 = ε2, E3 = ε3, E4 = ε4 
provides us with the transformation law of all the units ek , and consequently, all the 
components ψk of: 

ψ = ψ0 + ψ1 ε1 + … + ψ1234 ε1 ε2 ε3 ε4 . 
 

 One easily sees that E1, E2, E3, E4 transform according to (22), and thus, like the 
components of a vector.  The same is true for: 
 

E2 E3 E4 , E3 E4 E1 , E4 E1 E2 , E1 E2 E3 , 
 
which one assures by writing: 
 

− E5 E1, E5 E2,  − E5 E3, E5 E4, 
 
and taking into account that, from (23), E5 is an invariant.  It follows from this that the 
ψ1, ψ2, ψ3, ψ4, on the one hand, and the ψ123, ψ234, ψ341, ψ412, on the other, can represent 
the components of two vectors that we denote by P and R, respectively.  In the same 
fashion, one accounts for the fact that (ψ12, ψ23, ψ31, ψ14, ψ24, ψ34) are the components of 
an anti-symmetric tensor M of second rank.  Moreover, 1 and E5 are invariants; ψ0 and 
ψ1234 are thus scalars that we denote by m and λ, respectively. 
 The ψ of Dirac is therefore a mathematical entity that is composed of two scalars m 
and λ, two vectors P and R, and an anti-symmetric tensor M of second rank.  This is not 
what one has called a semi-vector, but a quantity whose transformation laws are the 
ordinary laws of tensor calculus.  One immediately sees what the general type of 
quantities of this genre is if one observes that the numbers of components of its 
constituents, when conveniently arranged, reproduce the coefficients of a binomial 
development: 

1, 4, 6, 4, 1. 
 

 The general solution of the fundamental equation of quantum mechanics thus 
introduces 16 components, in place of the four of Darwin; this complication is 
nonetheless redeemed by a considerable advantage.  Indeed, the important point is that 
one can give an immediate physical interpretation to these 16 quantities, which it does 
not have, and cannot have, in the Dirac theory with four components. 
 As one confirms later on, the two vectors P and R are attached to the momentum 
quadri-vector (p1, p2, p3, E/c) and the radius quadri-vector (x, y, z, ct).  M is attached to 
the tensor that is defined by the magnetic moment (components 12, 23, 31), and the 
electric moment (components 14, 24, 34) of the electron.  The invariant m will be 
attached to the rest mass, and finally λ will be linked with the fundamental de Broglie 
wave length. 
 
 
 8. The degrees of freedom of the electron. – One can reasonably think that, a 
priori , the elements that are attached to the independent units ek, like the ψk, refer to the 
characteristic quantities of the electron.  The preceding analysis shows us that we have 
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16 units ek .  This fact leads us to examine the following problem: Independently of the 
Dirac equation, and likewise of the theory of quanta, how many independent quantities 
do we need in order to determine an electron?  How many possible independent 
variations, or furthermore, how many degrees of freedom does an electron possess? 
 A simple calculation, which has never been done because the problem was never 
posed, gives us 16 quantities for the result: Namely, four coordinates, four momenta, 
three components for the magnetic moment, three for the electric moment (which Frenkel 
introduced without the aid of quantum theory), the mass, and the de Broglie wavelength, 
or, more precisely, the mass and the coordinate that is conjugate to it (1).  One therefore 
justifies this number – viz., 16 – of degrees of freedom physically, a fundamental result 
on which Eddington (2) based the calculation of the value of the elementary charge e.  
One can easily deduce from this that when a system of two electrons is present one will 
have a number of degrees of freedom that is equal to 162 − 2

16C = 256 – 120 = 136.  

However, whereas for the Eddington school these numbers result from abstract 
mathematical considerations (this number is the number of certain abstract “rotations” in 
a matrix space), here they appear with an immediate physical interpretation.  This 
intuitive calculation is confirmed by the fact that the Dirac equation automatically 
introduces, with no supplementary hypothesis, sixteen probabilities that correspond to 
each of these quantities, and this agrees with the transformation law that relativity 
imposes upon them.  This does not seem to be a simple coincidence. 
 We shall now examine how one can be led to justify the interpretation that we have 
given for the quantities that correspond to the ψk .  The basic principle of the method is 
the same one that permits us to attribute, for example, the character of an angular 
momentum for the electron to the σ of Dirac.  Rigorously, this justification can be done, 
up to a certain point, by means of concepts that are known and universally accepted.  
Nonetheless, it seems to us that in this fashion one greatly and unnecessarily limits the 
generality of the proofs.  We shall thus treat the problem in a manner that seems logically 
and physically correct to us.  This will lead us to use a notion that we have introduced 
previously (3), with the name of “the fifth dimension.”  It will always be possible for the 
reader to assume that the introduction of this “fifth dimension” in what follows is only a 
mathematical artifice; the results will not be altered.  We nevertheless think that it 
presents a certain interest and physical significance that is much more profound than that. 
 
 
 9. The fifth dimension. – Consider a material point of variable mass that is in 
motion.  In classical analytical mechanics, one describes motion in a complete fashion by 
giving the values of the coordinates, the momenta, the energy, and finally, the mass, or a 
quantity that is proportional to it, mc.  We have shown (3) that this manner of proceeding 
is a sin against symmetry and generality.  The quantities envisioned can be arranged into 
a table such as: 

                                                
 (1) See Comptes Rendus 186 (1928), pp. 739 and 186 (1928); the question of this conjugate coordinate 
will be reprised in § 9. 
 (2) Proc. Roy. Soc. A122 (1929), pp. 358.  
 (3) Comptes Rendus 186 (1928), pp. 739.  
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    (24) 

 
in such a fashion that they correspond pair-wise.  Each momentum then corresponds to a 
coordinate to which it is canonically conjugate. 
 It is indubitable that the mass must be arranged in the category of momenta; indeed, 
one obtains a conservation law, as one does for the other momenta.  However, analytical 
mechanics makes the additional arbitrary hypothesis that the variable that is canonically 
conjugate to the mass does not exist, or rather, that it is always equal to zero.  We must 
eliminate this hidden hypothesis if we would like to study the problem of motion in full 
generality; this is, above all, desirable in a relativistic theory.  As we have shown, the 
conjugate variable to mass represents the de Broglie wavelength λ.  If one considers – as 
one always does – that the rest mass is well-defined and equal to m0 then the value of λ is 
indeterminate of the form u λ0 , λ0 being the fundamental de Broglie wavelength, λ0 = h / 
m0c, and n is an arbitrary integer. 
 Quantum mechanics, just like classical mechanics, sets λ ≡ 0; however, the 
commutation relations pq – qp = (h/2πi) 1 lead to an absurdity in this case, namely, that 
one can consider the mass to be an element that is susceptible to variation. 
 In summation, the description of the motion that analytical mechanics envisions is 
incomplete; one must introduce the coordinate λ that is conjugate to the mass.  The 
universe in which phenomena take place is not space-time x, y, z, ct, but a space-time that 
is completed by a fifth dimension λ that characterizes matter in some way.  The 
repugnance by which one employs this fifth dimension seem to us completely analogous 
to what one felt, before Minkowski, when considering the fundamental element of space-
time; i.e., the adjunction of time to space into an intimate fusion of space-time.  Yet, it 
seems absurd to us (although this is not an argument) that the structural element that one 
must start with in order to describe phenomena is uniquely space and time.  This amounts 
to reducing the matter to space and time.  It seems much more satisfactory to introduce λ 
from the outset, since it is introduced by itself, as well, and to start with a universe that is 
not a space-time, but a space-time-matter.  We may hope to establish a coherent, and 
above all complete, theory of phenomena (which will necessarily be a “field” theory) 
only by starting with a geometric element that is defined in the complete five-
dimensional universe.  It is particularly interesting to remark that the new theory of 
Einstein is not in contradiction with this demand, since it is independent of the number of 
dimensions of the continuum envisioned. 
 Regardless of these general considerations, we return to the Dirac equation.  It is a 
linear combination of momenta p0, p1, p2, p3, and m0 c.  The quantity m0c thus intervenes 
in a symmetric fashion, and plays the same role as the momenta pk .  In order to pass to 
the Dirac equation, one must set: 
 

pk = tk = 
2 k

h

i xπ
∂

∂
  (k = 1, 2, 3, 4). 

 
 In order to increase the symmetry, we may also set: 
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m0c = t5 = 
52

h

i xπ
∂

∂
,     (25) 

 
x5 representing a fifth coordinate.  Eddington, justifiably pursuing the goal of attaining a 
higher degree of symmetry, was led to write the formal equation (25); however, he is to 
be defended for attributing the role of a fifth dimension to x5 (

1).  His argument is based 
on the form of the Dirac equation for two electrons; it is not presently valid, since that 
equation has since been recognized to be incorrect, and in particular, by Eddington 
himself, who replaced it with an equation of Gaunt (2), which is itself subject to criticism. 

 On the contrary, for us the appearance of m0 c in the Dirac equation and the 
symmetric role that it plays is a confirmation of the hypotheses that were previously 
presented.  We believe that we can legitimately set: 
 

t5 = 
52

h

i xπ
∂

∂
, 

 
t5 being the fifth dimension, because this relation signifies something more that a simple 
calculation device.  We may, moreover, specify that t5, when applied to ψ gives m0cψ; 
however, this does not signify that if one applies it to another function one will always 
recover m0c as a factor.  In particular, t5 (x5 ψ) ≠ x5 t5 = m0c x5 ψ. 
 
 
 10. Intepretation of the quantities that are attached to the ei . – First consider the 
ψ12, ψ23, ψ31, which are the coefficients of the E1E2, E2E3, E3E1, respectively. 

 Let F = 
5

1
i iE t∑ , and look for the first integrals of the motion; i.e., the expressions that 

satisfy: 
FX – XF = 0. 

 
Eddington observed that x1 t2 – x2 t1 is not a first integral, but, by comparison: 
 

M12 = x1 t2 – x2 t1 + 
1

2 2

h

iπ
E1 E2 

 
is one.  Indeed, it is easy to verify that M12 commutes with F. 
 One interprets this in the following fashion: In ordinary mechanics, x1 t2 – x2 t1 will be 
the moment of impulse, which is an integral of the motion.  In the new mechanics, in 

order to have a first integral, one must add 
1

2 2

h

iπ
E1E2 .  This quantity (and consequently, 

                                                
 (1) Proc. Roy. Soc. A121 (1928), pp. 524.  
 (2) Ibidem, A122 (1929), pp. 513; see also G. BREIT, Phys. Rev. 34 (1929), pp. 553.  
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also 
1

2 2

h

iπ
E2E3, 

1

2 2

h

iπ
E3E1) is therefore of the same nature as the preceding one; in fact, 

it is the angular momentum of the electron, corresponding to its magnetic moment. 
 In an analogous fashion, the terms in: 
 

E1E4, E2E4, E3E4 , 
 
(relative to the coordinate x4, and therefore, to time) correspond to the electric moment of 
the electron.  The set of these six components: 
 

(12), (23), (31);  (14), (24), (34) 
 
form an anti-symmetric tensor of second rank that represents the total moment of the 
electron, which is the “six-component vector” of Frenkel. 
 The combinations E1E2, … that characterize them where they appear are the 
components of this moment.  It is therefore entirely natural to suppose that the scalars 
ψ12, ψ23, …, which are the coefficients of E1E2, E2E3, … in 
 

ψ = ψ0 + … + ψ12 E1E2 + …, 
 
are the quantities that are attached to each of the components of the total moment tensor 
of the electron.  To abbreviate, we say that ψ12, for example, is the “probability” of the 12 
component of the magnetic moment of the electron.  In the following paragraph, we will 
examine the interpretation of these probabilities ψk in a more precise fashion in the 
language of ordinary probability. 
 Now consider the ψ234, ψ341, ψ412, ψ123 .  They are the coefficients of E2 E3 E4, … that 
one may also write as: 
 

− E5 E1, E5 E2,  − E5 E3, E5 E4 . 
 
 The same calculation as before shows us that: 
 

Mk5 = xk t5 – x5 tk + 
1

2 2

h

iπ
E5 Ek  

is a first integral. 

 The 
1

2 2

h

iπ
E5 E1 or 

1

2 2

h

iπ
E2 E3 E4 is therefore of the same nature as the moment x1 t5 

– x5 t1 , or simply the moment x1 t5 .  Now, the latter operator (if M is applied to ψ) 
reduces to m0c x1.  Consequently, the probability ψ234 that is attached to E2 E3 E4 may be 
considered to be simply attached to the coordinate x, since m0 remains constant.  Thus: 
 

ψ234, ψ341, ψ412, ψ123 
 
are the probabilities that are attached to the four coordinates x, y, z, ct. 
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 On the other hand, in the expression for the Hamiltonian the coefficients of E1, E2, E3, 
E4, E5 are the quantities of motion, the energy, and the mass, respectively.  It is therefore 
natural to further suppose here that theψ – viz., the coefficients of the E1, … − will be 
attached to probabilities: 
 
  ψ1, ψ2, ψ3 to the components of the quantity of motion, 
         ψk , to the energy, or to E/c, 
  ψ5 = ψ1234, to the mass, or to m0 c. 
 
 Finally, as for the coefficient ψ0 of the principal unit, there can be no doubt in that 
regard: The complete system that we have introduced shows quite well that this 
probability is attached to the coordinate λ that is conjugate to the mass, namely, the de 
Broglie wavelength. 
 We therefore have “probabilities” for each of the components of the quantities that 
characterize an electron.  The following table summarizes this: 
 
 ψ1, ψ2, ψ3 : quantity of motion ψ4 : energy,  ψ1234: mass, 
 
 ψ234, ψ341, ψ412: coordinates x, y, z, ψ123 : time, ψ0 : de Broglie wavelength, 
  
 ψ12, ψ23, ψ31: magnetic moment, ψ14, ψ24, ψ34: electric moment. 
 
 The introduction of 16 components, far from being a complication, simplifies the 
physical interpretation of the general problem. 
 
 
 11. Nature of the ψk .  Hypercomplex probabilities.  We now examine the nature of 
the “probabilities” ψ1, ψ2, … a little more closely.  In the first place, it is obvious that the 
same interpretation, such as it is, must be true for theψk, as well for ψ = ψ0 + ψ1 E1 + …  
Today, one assumes that the ψ that is given by the wave equation is a probability, or, if 
one prefers, a quantity that allows one to calculate the probabilities uniquely if one starts 
with it (1).  However, what physical sense must we give to that assertion in the case of the 
ψk? 
 Consider the Schrödinger equation.  |ψ |2 dq will be the probability of the presence of 
the electron in the volume element dq and ∫ |ψ |2 dq = 1.  In order to obtain the probability 
of an energy state n, we must develop the general solution in a series of characteristic 
functions that correspond to the energy: 
 

ψ = 
2

( )
n

i
E t

h
n n

n

c q e
π

ψ
−

∑ , 

                                                
 (1) Here, we recover the same situation as in the original theory of Schrödinger: The ψk are ordinary 
numbers, but they may be complex numbers.   This will not create any difficulty if one adopts the concept 
of imaginary probability that was proposed previously [J. Phys. 10 (1929), pp. 12].  In the contrary case, 
one must specify that it is the modulus of ψ that will give this probability. 
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or into integrals, if one is dealing with a continuous spectrum.  | cn |
2 will then be the 

probability for the atom to be found in the nth quantum state, the functions ψn being 
normalized.  If we would like to obtain the probability for the system to have a moment 
that is found between p and p + dp, we only have to develop the solution in the 
corresponding proper functions.  In general, when we have the general solution ψ the 
probability that a variable r is found between r and r + dr will be given by the 
coefficients of the development of ψ in corresponding proper functions.  The precise 
manner by which this may be done is given by the Dirac transformation theory; Darwin 
has recently insisted on the physical significance of this process (1). 
 The rational interpretation of the ψk emerges immediately.  In the usual case, we must 
develop the same function ψ into a Fourier series (or integral) in no particular variable.  
However, in the present case, where: 
 

ψ = ψ0 + ψ1 E1 + …, 
 
we develop the ψk that corresponds to that variable itself.  If we would like to obtain the 
probability for the atom to be found in the energy state n then we would have to develop 
the function ψ4 in a series; however, if we seek the probability for the coordinate x to be 
found between x and x + dx then we no longer develop ψ4, but the function that 
corresponds to x, viz., ψ234 .  Each element that determines an electron thus has its proper 
probability function ψk . 
 The foregoing also indicates what one must say when one confirms that ψ is a 
probability.  That probability is a global element: It gives information about all of the 
characteristic quantities of the electron. 
 In a certain sense, ψ contains all of the probabilities concerning the electron.  Now, ψ 
is a hypercomplex number.  It is also a set of sixteen components, among which one may 
find vectors, a tensor, etc.  One may then speak of tensorial or hypercomplex 
probabilities; these terms are introduced with no ambiguity.  One does not encounter 
them in the classical calculus of probabilities because they never appear in the problems 
that one usually studies.  However, it is perfectly legitimate to associate several 
continuous probabilities that satisfy certain conditions for them to be a “tensor” and to 
study the tensorial calculus of probabilities for itself.  This has not been done, and even if 
it were done, it would remain a simple mental exercise, because one did not, a priori, see 
any immediate class of problems that might suggest this calculus since one could not 
easily imagine any problems that would use this concept. 
 Things are different now.  The undulatory mechanics shows us the class of problems 
in which these probabilities appear.  At the same time, the preceding developments bring 
to light the interest that a calculus of this type might present for the implementation of the 
new concepts of quantum mechanics.  It is for this reason that it has not been completely 
pointless to exhibit this problem in a specific fashion for the mathematicians. 
 
 
 

                                                
 (1) DARWIN, “La théorie ondulatoire de la matiére,” Annales de l’Institut Henri Poincaré 1 (1930), pp. 
25. 
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 12. Components of the quadri-dimensional current. – Another very important 
question can be treated without entering into the direct study of equations (19), viz., that 
of the current and continuity equation that it satisfies. 
 In the case of the Schrödinger equation, or that of Dirac, the current is calculated by 
starting with ψ and its conjugate ψ .  It thus seems that it is necessary to generalize the 
definition of imaginary conjugate in our case.  However, it is not in this manner that we 
shall proceed, since another method lends itself to this generalization better.  Indeed, the 
current is calculated, as usual, by starting with ψ, which is solution of the given equation, 
and ψ+, which is a solution of an adjoint equation that is easily derived from the 
preceding one. 
 Then consider the fundamental equation (12): 
 

1 2 3 4
1 2 3 42

h
E E E E

i x x x x

ψ ψ ψ ψ
π
 ∂ ∂ ∂ ∂+ + + ∂ ∂ ∂ ∂ 

+ m0c E5ψ = 0.  (12) 

 
 The adjoint equation will be: 
 

− 1

1

( )

2

Eh

i x

ψ
π

+ ∂ + ∂ 
⋯  + m0c ψ+ E5 = 0, 

or 

− 1 4
1 42

h
E E

i x x

ψ ψ
π

+ + ∂ ∂+ + ∂ ∂ 
⋯  + m0c ψ+ E5 = 0.  (24) 

 
 Multiplying the first one by ψ+ on the left and the second one by ψ on the right, and 
taking the difference gives: 
 

1 1 4 4
1 1 4 42

h
E E E E

i x x x x

ψ ψ ψ ψψ ψ ψ ψ
π

+ +
+ +    ∂ ∂ ∂ ∂+ + + +    ∂ ∂ ∂ ∂    

⋯  = 0, 

 
or furthermore: 
 

1 2 3 4( ) ( ) ( ) ( )c E c E c E iE
x y z t

ψ ψ ψ ψ ψ ψ ψ ψ+ + + +∂ ∂ ∂ ∂+ + −
∂ ∂ ∂ ∂

= 0. 

 
 This is the continuity equation, which shows that one may take the components of the 
quadri-dimensional current to have the expressions: 
 

jx = cψ+E1ψ,    jy = cψ+E2ψ,    jz = cψ+E3ψ,    ρ = − ψ+(i E4)ψ. (26) 
 
 These have the same form as the classical expressions; all of the results that were 
established before must thus persist. 
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 Observe, moreover, that the usual continuity equation has only four terms since the 
mass is constant.  If this were not true then one would have to write an equation in five 
terms and the current would be a current with five components, where the fifth one would 
represent a sort of matter flux.  These considerations are attached to the ones that were 
presented in paragraph 9; we do not insist upon them. 
 
 When studying the relativistic equation in full generality, one can therefore hope to 
have more complete results and agree with physical reality more closely for certain 
considerations that are drifting much too far away.  The first problem that these general 
considerations poses consists in studying, in detail, how the introduction of the 16 
components modifies the solution to the problems that were solved before and in seeing if 
other problems are not susceptible to a simple treatment.  It is clear that certain results 
that were originally obtained by a process of approximation remain the same as before; 
by contrast, other problems must receive a completely altered solution. 
 
 

__________________ 
 

 


