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On the Dirac equation
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Institut de Radium, Paris

Translated by D. H. Delphenich

Abstract. — The author shows that the wave function that is deflmethe Dirac equation is not a
guantity with four scalar components, but one with sixte®&/hen one then addresses the problem in full
generality, most of the objections that one presendligas about the Dirac equation vanish. The concept
of ¢ as a semi-vector then becomes useless; the equatwaritten in a form that is invariant under the
Lorentz transformations and is perfectly symmetrioreover.

In order to obtain the most general results, the autses hypercomplex numbers. He writes the four-
dimensional current by means of the ngvand attaches the number of components it has to tlyecke
of freedom” of the electron. He shows that these 16poorents are susceptible to an immediate physical
interpretation and he specifies the meaning that oves ¢p these quantities in terms of probabilities.

Finally, in the course of these considerations, tw@ne present themselves very naturally: that of the
“fifth dimension” and that of the "tensorial or hypemplex probability.” The author then rapidly
examines their essential traits.

1. Introduction. — The substitution of the relativistic Dirac equatiam that of
Schrodinger marks an extremely important step forwandame mechanics. However,
the study of that equation further presents some gapsitigatlarly restrict its scope.
The objections that one makes show clearly thatovietlg the expression of Darwin,
“several things have passed through the net;” they do owg\er, permit one to specify
what element has escaped the analysis, nor to seerf®may discover it.

The considerations that follow have the goal of ppghout and filling in one of these
gaps. Their point of departure is the banal observatatrfitlst comes to light when one
begins the study of the Dirac equation. It conceragptssage from that unique system
to a system of four partial differential equations e deduced from it, and which, to
abbreviate, we call thBarwin equations

Let a; be the elements of the matrices with four rows and éelumnsay, (¢ =1, 2,
3, 4) that appear in the Dirac equatidg = 0. Dirac, Darwin, and their school of all

those of who occupied themselves with that equation hdwatted that when one
develops that equation, one must write:

au =Y a,. (1)
k=1

for the action of thex, on ¢. This amounts to defining four wave functiogs, ¢», ¢,
Y, . One then supposes thats expressed by means of these four functions like exmat
that reduces to just one column of elementsis, s, Y.
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Now, there is no justification for this last assumptiahjs a gratuitous hypothesis
that restricts the generality and introduces pointlessplications. Indeed, the
HamiltonianH, which is the sum of four matrices, is itself a matwith four rows and
four columns. The equatidtiy = 0 signifies that one must find a quantity that gives zero
when multiplied by such a matrix. It is obvious thatgeneral,¢y must be a matrix with
four rows and four column@). It is not surprising that one finds asymmetric rssahd
details of one assumes from the outset, and with oesséy, that three of these columns
have their elements equal to zero. Moreover, ibigaus that upon multiplyingd times
¢ and annulling the elements of the matrix product the l6ltreg equations are
identical in groups of four; these are the equations tieap@duced by the composition
of a given line oH with the columns ofy. ¢ is thus a matrix whose last three columns
are identical to the first one, but whigre non-zeroin any case, as one presently
assumes.

The correct results that the Dirac equation leadsn&y be obtained only if one
eliminates the limiting hypothesis. We shall attemptdtw that in the following
paragraphs by working through the idea that we just sketmltequalitatively.

2. TheDirac equation. In order to account for the effects that were laited to the
rotating electron in the theory of spectra, and tesfathe demands of relativity, Dirac
was compelled to replace the relativistic equations aid@o and Klein with the first
order equation:

(Potaprtdptazsps+asmg =0 (2
or:
o h 0 e
2mcot c
h 0 e
=t ——+— r=1, 2, 3).
R 2mox, ¢ ( )

Ao Iis the scalar potentiady,, Az, As define the vector potential, ande+s the charge of the
electron.

The a, are operators that commute with thethe x, andt, and which satisfy, in
addition, the conditions:

aqata,a,=0, a;=1@uv=123,4). (3)

They can be put into the form of matrices withrfoews and four columns whose
elements arec(u)"‘; Dirac pointed out a possible form for these noa8i

The a,do not operate on the y, z t; ¢ must therefore contain a new variaiflen
which thea, do operate, namely/(x, y, z t; {). Most often, one writes that variable with

() Ifit has more, since a certain number of its eleta will be arbitrary, then the number of unknowns
will exceed the number of equations that must determine.them
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an indexy; . If thea, are expressed in the form of matrices then one defireesianner
by which they operate og by:

ay =2 (o) th . (4)

This definition succeeds in specifying the meaning of equgfp With the Dirac
matrices, the unique equation (2) is equivalent, by (4),e®ystem of equations in four
unknown functiong/, ¢k, Y5, Yathat were written for the first time by Darwin:

(P + Moy, +(R— iRy, + ;=0
(Pt Moy, +( R+ ipY,— Y ,=0,
(Po‘m©¢’3+( R- ipz)l//2+ py/1=0,
(Pp—moy,+( R+ ip)y,~ p,=0.

®)

Dirac decomposed the into factors by using the six matrices with four rows and
four columnsai, &, a5, andpy, o, ps -

=P, @Gm=PpGk, BG=PcG A=ps. (6)

If the “vector” (g1, 05, 03) is denoted byS and by, p2, ps), by P then the symbolic
equation (2) may be further written:

[po+01(S,P)+p0smd ¢=0, 7

when (S, P) represents the scalar product of the vec®asdP .

3. Objections. — From the outset, two objections were made to this equair to
the ones that were derived from it, which are very irtgt because they bring to light
an imperfection of the theory, and, as we will confitaber on, some inadmissible
restrictions from the physical viewpoint. In the tfipgace, one can criticize the complete
lack of symmetry in its form. The introduction of t@ldy generally increases the
symmetry since the coordinates and time are treatdeeisame fashion; here, we have
scarcely arrived at that result. Next, the equatious obtained is not written in a
tensorial form, while, in reality, it is not altered hyLorentz transformation; although it
is basically invariant, its form is not. The set ofif scalars ¢x, ¢, (s, ¢s) is not a
vector It obeys different transformation laws that have Ibeen encountered in physics
up to the present.

With the goal of clarifying this question, various authaase sought to continue, as
far as possible, the study of either the Hamiltortiar po + o1(S,P) + ps mcor the
magnitudey. Among those who studidd, Eddington proposed to give a symmetric
form to the fundamental equation, and he arrived d&tyitstarting with a system of
matrices that were different from that of Dirac.owkver, the general solution of the
symmetrization oH was given by Schouten in a paper that we shall exalatieeon.
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Some other authors have studied, more specificallyatiadogy with the Maxwell
equations, and have proposed to replace the four fungion, s, s with either eight
other ones that are defined by a different system of eqsabr by just two functiongs,

{» that must suffice. Finally, another category of augh@ve taken the Dirac equations
for their basis and sought to directly study the new diyag to which one has likewise
given a new name: the “semi-vector.”

As interesting as these parallel considerationsiadges not seem that they must
provide the complete solution to the problem. This sdene much simpler: We seek
to show that all of the difficulties disappear wherm ¢akes care to envision the problem
in full generality. The imperfections that one encorstare produced simply by an
unjustified specialization of the givens. Furthermore,dbneral treatment offers us the
advantage of making the physical interpretation of theutations as simple as possible,
which is extremely desirable in this chapter of thecaéptysics.

We shall thus recall the study of Dirac in the beginfupdollowing his personal line
of reasoning; to simply, we first assume that thectebmagnetic) field is zero.

4. General relativistic equation. — Let the energy equation in special relativity be:

SRR Rt Rt gC=0, (8)

wheremy is the proper masgy is the energy, ang;, p., ps are the momenta of the
electron. Seps =i po and:

9)

h a k=12,34,
X, =ict,

(8) becomes:

Y t2 =0. (10)

The Schrddinger equation that is deduced from temuél0) by the usual process is
not admissible because it is of second order; a@mgrto Dirac, it must be of first order.
In order to obtain such an equation, Dirac decomgpdd0) into two factors of first
degree. The most symmetric way of doing this alslip consists in setting:

The equation that will replace the Schrédingeragiqn will then be simply:

Fy=0,
or
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(Eltl + Boty + Bty + B4ty + Es C) 4[/: 0, (12)

theE; being defined by the identity (11). Upon equating the coeffis of the two sides,
one sees that th& must satisfy the conditions:

(i,k=1,2, 3, 4,5) (13)
EE=-EE.

No other restriction is imposed upon them. From (13),Bhare numbers whose
multiplication is not commutativehey are thus hypercomplex numbers, in genefdlis
simple observation, which nonetheless has considerabdzajity, will give us the key to
solving the problem.

We shall thus commence by studying the particular systecomplex numbers in
which F is written by taking, in addition, the simplifying hypotlsethat this system has
an associative multiplicatiori)(

5. The quadri-quaternions. — In order to determine a system of complex numbers,
it suffices to know its ordan and a basisy, e, ..., & ; i.e.,n numbers in the system that
are linearly independent. Any number of the system ey ble put into the form:

X=X1e1 + X6 + ... +X€n,
thex being ordinary numbers.

The determination of the simplest system in which care write the Dirac equation
was done by Schouten in a very-little-known nde (First, observe that the equation
EiF¢= 0, which is equivalent to (12), is a sum of five tern@ne of them has the
coefficient 1, by virtue of (13), and the other four are bara of the system, &, &, &,
which verify, in addition, the relations:

2 _
ot (14)
£& 66 =0.

One then concludes thittur numberss;, &, &, & (and the principal unity 1) suffice
to write this equation.

Thus, consider four numbegghat are constrained only to verify the conditions (14)
The product of two of them is again a number of the sys¢e the numbers:

1, a&, &&, &&, &&, &&,2 &&

likewise belong to it. Upon repeating the same argunee® sees that the same is true
for:

() For the study of such numbers, see, for exampéegstellent article of CARTAN in the French
edition of theEncyclopédie des Sciences mathématiquek vol. 1, fasc. 3, Gauthier-Villars and B. G.
Teubner, 1908, or also DICKSOAIgebren und ihre Zahlentheoyigtrich, 1927.

() Proc, Amst.32 (1929), pp. 105.
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81683, EE3&, E3&E, Ei&18,
and

E1EE384,

and that these numbers are linearly independent, moredi@wrever, if one attempts to

pursue this process further, one is stopped: Any product tbaimposed of two numbers

of the preceding list reproduces another one that headgiroeen found. We are thus in
the presence of the maximum number of linearly indepenaembers of the system.

This maximum number — vizn = 16 — is therefore therder of the system; the numbers
above may be chosen to be unity; they constitlitegses There arel6 units namely:

1, a&&s;
&8é&, &&, &&, &é&, &E&, &Eé&,
&, &, &, &, 81683, E&3&, &8, E&18,
which we denote by:

&=1, &, .., E2=868&, ... f123= 8&EE, E1234= EEE3&,

or also sometimes, to simplify, lsy(i = 1, 2, ..., 15, 16).

Such systems have already been imagined by the matbiamsit they are the
guadri-quaternions a system with associative multiplication withteen units and a
principal unity ¢).

The remark of Schouten consists of observing that whengiven such a system
that is defined by, &, &, &, one may find at modtve numbers Eof the system that
satisfy:

Ei2 =0,
(i,k=1,2,3,4,5), (16)
E E+EE=0.
Indeed, it will suffice to take:
E =¢ k=12,3,4
k k ( ) (17)
E5 = 81‘928384'

Such a system of numbers will be callecbahogonal system

Now, the general equation (12) has a linear and homogeneoos whose
coefficients satisfy (16).The Hamiltonian F is therefore a quadri-quaternion such that
elevenof its components are zero, while the other ones correspond to an orthogonal
syster(?).

Summarizing the results that we have obtained up to mesv,can say. The
Hamiltonian considered by Dirac consists of a linear hathogeneous form whose

() See, for example, COMBEBIA@uIl. Soc. Math. Franc&0 (1920), pp. 1; W.-K. CLIFFORD,
Mathematical PapersLondon (1882), pp. 266, 397; LIPSCHITAull. Sc. math.11 (1887), pp. 115;
Journal math. pures appk (1886), pp. 373 and 439.

(® Compare this to the results of Eddington, Proc. Roy, 8821 (1928), pp. 524.
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coefficients are hypercomplex numbers that form ahoganal system in the system of
guadri-quaternione, &, ..., €16.

6. The wave function ¢. — Our goal is the study of the wave functign Having
posed the problem as we just did, the solution is immedig is determined by the
equation:

Fy=0,

whereF is a quadri-quaternionThe general solution will thus be a quadri-quaternion of
the form:

hertypet ... +ihekis,

where the numberg/, which areordinary numbers will have arbitrary — but not
necessarily zero — values.

The first conclusion that one may deduce from thisréiss is that they defined by
the Dirac equation has sixteen componeats] not four, as one usually assumes. This
equation is thus equivalent, not to four differential equmsti but to 16: One obtains them
by taking the product:

Fyu=@E@tu+tet+tatztatutat) (e t+tiypet. ... +ihser) =0,

taking into account the rules of multiplication, and dinmy the coefficients of the 16

unitsey, e, ..., €16.
One may introduce a notation that simplifies thewaton enormously. Any uné

is a product of numbers &, &, &, & . We may thus write:

Y=th+r(hatpp+yss+ i)
+ (2 &2+ Ybz Ex3 + YB1 31+ Yha E1a + UYba E2a + R4 E34)
+ (¢h23 E123 + Yh3a 234+ ka1 Eaa1 + Wa12 £412) + Yh234 E1234. (19)

The index of eacls is equal to the number that is defined by the indicebeotihits
that correspond to it, taken in the same order: e.g.cdb#icient of&23 = & & & will
thus be¢x2s and so on. In addition, the coefficient of the ppatunit & = 1 will be
denoted by .

It is, moreover, easy to write the equation direiftne adopts the notation (18). We
commence with an arbitrary term Bf— for exampleg; t = & ti — and multiply it by a
likewise arbitrary term ofn — for examplefis &&= Yha &4 . Yrs Will thus be the
coefficient ofg, & & = & In F¢. We thus attempt to find out what the other coeffitse
of e; are inFy. The following term in the Dirac equationgst,, so the ternyk & that it
corresponds to must be such tlagdi = & ; therefore& = & &, k = 24, and it will
consequently b&ss. When the same process is applied to all of the taimase will be
five of them. One has, for the equation:

tL Yha+ 1 s+ 13 Yha+1a Yo +13 Y23 =0,
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or

al)lll4 + a4[/24 + a4[/34 + awo + 277] n-l)qalzsz O, (19)
ox, 0%, 0% O0Xx, h
and 15 other analogous equations, which one wdib@s) immediately.

The general solution of the Dirac equation thw®lives 16 functions, instead of four.
One thus understands the sense in which the ietatfmn that one is presently given is
limiting. One can better understand this diffeeenagth the aid of an observation of
Schouten?): The systen® of complex numbers that we envisioned above ichthg the
product of two systems of quaternions. In otherdspa basis for this system may be
obtained in the following manner: If one is givevotsystems of quaternions that have 1,
A1, A2, A3, Ag and 1,44, fo, s, [s TOr their units then the sixteen numbersil i, A ik =
L A (i, k =1, 2, 3) may be considered to be the units efdystenS (%). It is this
peculiarity that justifies the name “quadri-quatens.” Any number in this system may
then be written in the form:

No + NiAr + NoAz2 + Nads, (20)

the componenthl, being themselves quaternions.

Schouten observed that Dirac, by employing theriogsto andp, basically used this
particular system of units. Similarly, without sgging the matrix nature of the
coefficients, thay may thus be written in the form (20) with four qoanents, but these
components/, ¢k, Ys, s are themselves quaterniongonsidering them to be scalars
thus constitutes an error that might lead to indetepresults that are valid only in certain
special cases.

We thus now know the form of the general solutadnthe symbolic equation of
Dirac. The first thing to do will thus be the systatic examination of the results that
were obtained up to now when one replaces the dsualkcomponents with the 14 .
However, before entering into such a task, we aaintput some results of a general
nature that are independent of the solution eqosit{@9). These results are destined to
show that the process employed, which is the oodychlly admissible one, possesses
some other advantages, in addition, among which,has that of facilitating the physical
interpretation of the quantitias .

7. Lorentz transformations. — The general relativistic equation (1B¢ = 0, is
invariant under Lorentz transformations, just like Dirac equation itself, but moreover,
it is writtenin an invariant form This is an extremely satisfying characteristioce the

() SCHOUTENloc. cit, pp. 106.
() For example, by taking:

Ei1=A1 45, E,=/A 15, Es= /s 5, Es=—ig, Ei=-iw .
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theory is essentially based, as Darwin remarkgdof the invariance of form of the
equations. We thus set=ict and consider the Lorentz transformations:

K
X, = ZOH)q (=123, 4), (21)
E
with
K K
:E:(qdcql = 2,040 = &
=

1=1 |

equations to which we add a fifth one that expressestiagiance of the proper mass,
and which is not contained in the preceding ones:

My = constant. (21
Since thep (or thet) transform like a vector, the equatibg = 0 becomes:
5 4 4 4
{Z(Zoﬂ'jﬁ}w' - {Z[Zonﬁjrwca}w' =0,
i=1 \ I=1 =1 \li=1

which has the original form:

[Z E ﬁ'jl/": 0

if
E =30k (=123 4) 22)
E; =Es, (23)

and the new equation is always a Dirac equation, becagseas:

E? =1,
EE+EFE =0 (.j+1 23, 4,5),

as one verifies immediately.
The relation (23) is a consequence of (22), becauseasne h

Eé = EiE;E,'E4:E1E2E3E4:E5.

() DARWIN, loc. cit, pp. 657. Darwin observed that in order to assure dhisdl invariance of the
equations it is necessary to introduce 16 quantities intcdlmilations, which he declined to define,
because it seemed absurd to him that an electron nezdezhy elements in order for it to be defined. We
nonetheless confirm that this situation, far from geanmmathematical complication, brings us closer to the
physical side of the question.
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Now consider the transformation law for tgeunder the hypothesis of the formal
invariance of the equatida ¢y= 0. The law (22) forth&; =&, E; =, Es=&, E1 =&
provides us with the transformation law of all the umlits and consequently, all the
componentg of:

Y=thr+pa+ ..t &8 & .

One easily sees théh, E;, Es, E4 transform according to (22), and thus, like the
components of a vector. The same is true for:

E; B3 E4, Es E4 Eq, Es E1 B, E1 E Es,
which one assures by writing:
-EsEy, Es E», - Es E3, Es Ea,

and taking into account that, from (28 is an invariant. It follows from this that the
U, Wb, Uk, s, on the one hand, and the,s, rsa, Y1, Wai2 ON the other, can represent
the components of two vectors that we denotdPnd R, respectively. In the same
fashion, one accounts for the fact thto( ¢es, ¢k1, Yha, Yba, Ysa) are the components of
an anti-symmetric tensM of second rank. Moreover, 1 akg are invariantsy and
{na3aare thus scalars that we denotarbgndA, respectively.

The ¢ of Dirac is therefore a mathematical entityat is composed of two scalars m
and A, two vectors P and R, and an anti-symmetric tensor M of seemkd This is not
what one has called semi-vector but a quantity whose transformation laws are the
ordinary laws of tensor calculus. One immediately sebat the general type of
guantities of this genre is if one observes that thebmus of components of its
constituents, when conveniently arranged, reproduce thdicieafs of a binomial
development:

1,4,6,4,1.

The general solution of the fundamental equation of guanmechanics thus
introduces 16 components, in place of the four of Darwins ttwmplication is
nonetheless redeemed by a considerable advantage. Irgeeahpbdrtant point is that
one can give an immediate physical interpretation to ti€squantities which it does
not have, and cannot have, in the Dirac theory with doanponents.

As one confirms later on, the two vectd?sand R are attached to the momentum
quadri-vector |1, p2, ps, E/C) and the radius quadri-vectox, §/, z, ct). M is attached to
the tensor that is defined by the magnetic moment (coemge 12, 23, 31), and the
electric moment (components 14, 24, 34) of the electrdie invariantm will be
attached to the rest mass, and finallyvill be linked with the fundamental de Broglie
wave length.

8. The degrees of freedom of the electron. — One can reasonably think that,
priori, the elements that are attached toitloependentnitse;, like the ¢, refer to the
characteristicquantities of the electron. The preceding analyssvstus that we have
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16 unitse, . This fact leads us to examine the following problémdependently of the
Dirac equation, and likewise of the theory of quartaw many independent quantities
do we need in order to determine an electron? How mangib®sindependent
variations, or furthermordiow many degrees of freedom does an electron p@ssess

A simple calculation, which has never been done becthes@roblem was never
posed, gives us 16 quantities for the result: Namely, doordinates, four momenta,
three components for the magnetic moment, threthéoelectric moment (whichrenkel
introduced without the aid of quantum theory), the mass,tiae de Broglie wavelength,
or, more precisely, the mass and the coordinate tlamisigate to it). One therefore
justifies this number — viz., 16 — of degrees of freegitnysically a fundamental result
on which Eddington?j based the calculation of the value of the elemgnthargee.
One can easily deduce from this that when a systemvoelectrons is present one will

have a number of degrees of freedom that is equal fo- 162 = 256 — 120 = 136.

However, whereas for the Eddington school these numbesslt from abstract
mathematical considerations (this number is the numbeegrtain abstract “rotations” in
a matrix space), here they appear with an immediate galtysiterpretation. This
intuitive calculation is confirmed by the fact that tBerac equation automatically
introduces, with no supplementary hypothesis, sixteen pildles that correspond to
each of these quantities, and this agrees with thefaramstion law that relativity
imposes upon them. This does not seem to be a simpladence.

We shall now examine how one can be led to jushié/ihterpretation that we have
given for the quantities that correspond to #ae The basic principle of the method is
the same one that permits us to attribute, for examble character of an angular
momentum for the electron to tlaeof Dirac. Rigorously, this justification can be done,
up to a certain point, by means of concepts that are krandnuniversally accepted.
Nonetheless, it seems to us that in this fashion oeatlgrand unnecessarily limits the
generality of the proofs. We shall thus treat the gnoldh a manner that seems logically
and physically correct to us. This will lead us to usetion that we have introduced
previously ¢), with the name of “the fifth dimension.” It witllways be possible for the
reader to assume that the introduction of this “fiftimehsion” in what follows is only a
mathematical artifice; the results will not be edtt We nevertheless think that it
presents a certain interest and physical significarataghmuch more profound than that.

9. The fifth dimension. — Consider a material point @ariable massthat is in
motion. In classical analytical mechanics, one deesrmotion in a complete fashion by
giving the values of the coordinates, the momenta, tbegg, and finally, the mass, or a
quantity that is proportional to imc. We have showrf) that this manner of proceeding
is a sin against symmetry and generality. The quasgtierisioned can be arranged into
a table such as:

() SeeComptes Renduk86 (1928), pp. 739 antigé (1928); the question of this conjugate coordinate
will be reprised in § 9.

() Proc. Roy. SocA122 (1929), pp. 358.

() Comptes Rendus86 (1928), pp. 739.
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E
px’ py’ pZ’ /C’ mc} (24)

X Y, z t 2

in such a fashion that they correspond pair-wise. Eachentum then corresponds to a
coordinate to which it is canonically conjugate.

It is indubitable that the mass must be arranged icabegory of momenta; indeed,
one obtains a conservation law, as one does foottter momenta. However, analytical
mechanics makes the additional arbitrary hypothesishiatariable that is canonically
conjugate to the mass does not exist, or rather, that it is always exgato. We must
eliminate this hidden hypothesis if we would like to study tleblem of motion in full
generality;this is, above all, desirable in a relativistic theorAs we have shown, the
conjugate variable to mass represents the de BroglieleveybA. If one considers — as
one always does — that the rest mass is well-defin@@gunal tam, then the value of is
indeterminate of the form Ao , Ag being the fundamental de Broglie wavelengiw h /
myC, andn is an arbitrary integer.

Quantum mechanics, just like classical mechanics, dets 0; however, the
commutation relationpq — gp= (W277) 1 lead to an absurdity in this case, namely, that
one can consider the mass to be an element thaddsible to variation.

In summation, the description of the motion thatlyieal mechanics envisions is
incomplete; one must introduce the coordindtéhat is conjugate to the mass. The
universe in which phenomena take place is not spacexfiye, ct, but a space-time that
is completed by a fifth dimensioA that characterizesatter in some way. The
repugnance by which one employs this fifth dimension seeus completely analogous
to what one felt, before Minkowski, when considering filmdamental element of space-
time; i.e., the adjunction of time to space intoistimate fusion ofspace-time Yet, it
seems absurd to us (although this is not an argumenthdgttuctural element that one
must start with in order to describe phenomenaiguelyspace and time. This amounts
to reducing the matter to space and time. It seems mooh satisfactory to introducke
from the outset, since it is introduced by itselfwedl, and to start with a universe that is
not a space-time, but space-time-matter.We may hope to establish a coherent, and
above all complete, theory of phenomena (which willessarily be a “field” theory)
only by starting with a geometric element that is definedthe complete five-
dimensional universe. It is particularly interestimg remark that the new theory of
Einstein is not in contradiction with this demand, siitdée independent of the number of
dimensions of the continuum envisioned.

Regardless of these general considerations, we reiuthetDirac equation. It is a
linear combination of momenta, p1, P2, Ps, and myc. The quantitynyc thus intervenes
in a symmetric fashion, arglays the same role as the momenga pn order to pass to
the Dirac equation, one must set:

h 0
=tg= —— k=1, 2, 3, 4).
Pk = & 277i6xk ( )

In order to increase the symmetry, we may also set
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meC =15 = L (25)
27

0
oX;
Xs representing a fifth coordinate. Eddington, fietly pursuing the goal of attaining a
higher degree of symmetry, was led to write thenfdrequation (25); however, he is to
be defended for attributing the role of a fifth @insion toxs (*). His argument is based
on the form of the Dirac equation for two electroigs not presently valid, since that

equation has since been recognized to be incoreext, in particular, by Eddington
himself, who replaced it with an equation of Ga(ihtwhich is itself subject to criticism.

On the contrary, for us the appearancengfc in the Dirac equation and the
symmetric role that it plays is a confirmation bdethypotheses that were previously
presented. We believe that we can legitimately set

ts=——,

271 Ox,

ts being the fifth dimension, because this relatigmifies something more that a simple
calculation device. We may, moreover, specify thatvhen applied ta/ gives mycy,
however, this does not signify that if one applteto another function one will always
recovermoc as a factor. In particulats (Xs {) Z Xs ts = meC X% (.

10. Intepretation of the quantities that are attached to the e . — First consider the
o, Uks, k1, Which are the coefficients of tRgE,, EE;, EsEj, respectively.

5
LetF = z Et , and look for the first integrals of the motiom.j the expressions that
1

satisfy:
FX —XF=0.

Eddington observed that t; —x, t; is not a first integral, but, by comparison:
1 h
Mp=Xth—xt1+ =———E E
12 1 2 2 U1 2 277] 1 =2

is one. Indeed, it is easy to verify tivdt, commutes with.
One interprets this in the following fashion: Irdmary mechanicsg t, —xo t; will be
the moment of impulse, which is an integral of thetion. In the new mechanics, in

order to have a first integral, one must azldgll_ElEz . This quantity (and consequently,
7i

() Proc. Roy. Soc. 221 (1928), pp. 524.
() Ibidem A122 (1929), pp. 513; see also BREIT, Phys. Rev34 (1929), pp. 553.
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also EL_ EEs, EL_ EsE;) is therefore of the same nature as the precedingrofeet,
2 2 2 2

it is the angular momentum of the electron, corredpmnto its magnetic moment.
In an analogous fashion, the terms in:

EiEs, EoB4, Esks,

(relative to the coordinate, and therefore, to time) correspond to the eleatoenent of
the electron. The set of these six components:

(12), (23), (31); (14), (24), (34

form an anti-symmetric tensor of second rank thatesgnts the total moment of the
electron, which is the “six-component vector” of Hrehn

The combinationsEiE;, ... that characterize them where they appear are the
components of this moment. It is therefore entirdyural to suppose that the scalars
o, ks, ..., Which are the coefficients &fE;, E;Eg, ... In

U=ip+ ... +¢/12E1E2+ ceny

are the quantities that are attached to each of tip@aents of the total moment tensor
of the electron. To abbreviate, we say tigt for example, is the “probability” of the 12
component of the magnetic moment of the electronthénfollowing paragraph, we will
examine the interpretation of these probabilitigsin a more precise fashion in the
language of ordinary probability.

Now consider thelbss, (sa1, Wni2 Yhos. They are the coefficients Bf Es Eg, ... that
one may also write as:

- EsE;y, Es E», - EsE;3, EsEs.

The same calculation as before shows us that:

1nh
Mis =X ts —Xs tx + =——— Es Ex
2 27

is a first integral.

The %ZL EsE; or E% E, E; E4 is therefore of the same nature as the momxetat
Vil

7i 2
— Xs t1, or simply the momenk; ts. Now, the latter operator (M is applied toyg)

reduces tan,c x. Consequently, the probabiligysss that is attached t&; Es E4 may be
considered to be simply attached to the coordinagecem, remains constant. Thus:

Uh3a, Ykay, Ynio Yho3

are the probabilities that are attached to the four coordinates x.cy, z,
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On the other hand, in the expression for the Hamétothe coefficients dt;, E,, Es,
E4, Es are the quantities of motion, the energy, and the ,masgectively. It is therefore
natural to further suppose here thatyhe viz., the coefficients of thEs, ... — will be
attached to probabilities:

Un, Up, Ui to the components of the quantity of motion,
Uk, to the energy, or tB/c,
Uk = 23 1o the mass, or tmyC.

Finally, as for the coefficienf of the principal unit, there can be no doubt in that
regard: The complete system that we have introduced sstoqpte well that this
probability is attached to the coordinatghat is conjugate to the mass, namely, the de
Broglie wavelength.

We therefore have “probabilities” for each of the poments of the quantities that
characterize an electron. The following table sumrearthis:

Un, Up, UYs: quantity of motion ¢u:  energy, {h234 MaAss,
Ubsa, Ukar, Wnio. coordinates, y, z,  (ho3: time, (: de Broglie wavelength,
Uho, Ubs, U1 magnetic moment, a4, s, Yrs: electric moment.

The introduction of 16 components, far from being a caapbn, simplifies the
physical interpretation of the general problem.

11. Nature of the ¢k« . Hypercomplex probabilities. We now examine the nature of
the “probabilities”¢x, ¢, ... a little more closely. In the first place,stabvious that the
same interpretation, such as it is, must be truehfagt as well for¢y = ¢ + Y1 Ex + ...
Today, one assumes that tivdhat is given by the wave equation is a probability, for, i
one prefers, a quantity that allows one to calculagtbbabilities uniquely if one starts
with it (). However, what physical sense must we give to $&sréion in the case of the
U?

Consider the Schrédinger equatiog [{dq will be the probability of the presence of
the electron in the volume elemeftfand| |/ Fdg= 1. In order to obtain the probability
of an energy stata, we must develop the general solution in a series afackeristic
functions that correspond to the energy:

w=Scw (e,

() Here, we recover the same situation as in thenaiigheory of Schrodinger: The are ordinary
numbers, but they may be complex numbers. This wilcreate any difficulty if one adopts the concept
of imaginary probability that was proposed previously flysP10 (1929), pp. 12]. In the contrary case,
one must specify that it is the modulusy/othat will give this probability.
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or into integrals, if one is dealing with a continuopectrum. |c, [* will then be the
probability for the atom to be found in tmd quantum state, the function being
normalized. If we would like to obtain the probabilibr the system to have a moment
that is found betweep and p + dp, we only have to develop the solution in the
corresponding proper functions. In general, when we lla&egeneral solutioy the
probability that a variable is found betweerr andr + dr will be given by the
coefficients of the development @ in corresponding proper functions. The precise
manner by which this may be done is given by the Dirasfoamation theory; Darwin
has recently insisted on the physical significance ofttisess?).

The rational interpretation of thig emerges immediately. In the usual case, we must
developthe samdunction ¢ into a Fourier series (or integral) in no particulariable.
However, in the present case, where:

4[/:%+¢/1E1+...,

we develop thek that corresponds to that variable itselfft we would like to obtain the
probability for the atom to be found in the energy steiieen we would have to develop
the functionyy, in a series; however, if we seek the probabilitytfer coordinate to be
found betweenx and x + dx then we no longer develogs, but the function that
corresponds ta, viz., ¢»34. Each element that determines an electron thugshpoper
probability functiong .

The foregoing also indicates what one must say when annfirms thaty is a
probability. That probability is a global element: Iveg information abouall of the
characteristic quantities of the electron.

In a certain sense/ contains all of the probabilities concerning the etattrNow, ¢
is a hypercomplex number. It is also a set of sixteenponents, among which one may
find vectors, a tensor, etc. One may then speakens$orial or hypercomplex
probabilities these terms are introduced with no ambiguity. One do¢sencounter
them in the classical calculus of probabilities becaheg never appear in the problems
that one usually studies. However, it is perfectlyitieate to associate several
continuous probabilities that satisfy certain condgidor them to be a “tensor” and to
study the tensorial calculus of probabilities for itsélthis has not been done, and even if
it were done, it would remain a simple mental exerdiseause one did n&,priori, see
any immediate class of problems that might suggest thisilaa since one could not
easily imagine any problems that would use this concept.

Things are different now. The undulatory mechanics shaswthe class of problems
in which these probabilities appear. At the same tiheepreceding developments bring
to light the interest that a calculus of this typgimipresent for the implementation of the
new concepts of quantum mechanics. It is for this redsat it has not been completely
pointless to exhibit this problem in a specific fashionthe mathematicians.

() DARWIN, “La théorie ondulatoire de la matiére,” Anrslée I'Institut Henri Poincar# (1930), pp.
25.



Proca — On the Dirac equation 17

12. Components of the quadri-dimensional current. — Another very important
guestion can be treated without entering into the dstty of equations (19), viz., that
of the current and continuity equation that it satssfie

In the case of the Schrddinger equation, or that cdd)the current is calculated by
starting with¢ and its conjugatéy. It thus seems that it is necessary to generdigze t
definition of imaginary conjugate in our case. Howevelis itot in this manner that we
shall proceed, since another method lends itself taydmeralization better. Indeed, the
current is calculated, as usual, by starting withwhich is solution of the given equation,
and ¢, which is a solution of amdjoint equationthat is easily derived from the
preceding one.

Then consider the fundamental equation (12):

h oy oy oy oy
27 [Elaxl * Ezax2 * Egaxf E“ax4

j+ myc B¢ = 0. (12)

The adjoint equation will be:

__h|owE), fE =
277i_ 1 + }Hnocw Es =0,
or
oy oy N
_ E-=0. 24
27| ox, 0X, E4}+moc¢/ 5=0 (24)

Multiplying the first one by/* on the left and the second one ¢n the right, and

taking the difference gives:
oy aw 640 Loy _
o[ =5 0 e )

or furthermore:

P I Y DI
&(Cl/’ E#’)‘*‘al(aﬂ Ez‘»l’)"‘a—z(@’ EY) at(l/’ iEy) = 0.

This is the continuity equatipwhich shows that one may take the componentiseof t
guadri-dimensional current to have the expressions:

x=CYBLWY, jy=cyEy j.=cyEsy, p=- (B (26)

These have the same form as the classical expnssall of the results that were
established before must thus persist.
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Observe, moreover, that the usual continuity equatasnamly four terms sinctne
mass is constantlf this were not true then one would have to writeeguation in five
terms and the current would be a current with five compspearmere the fifth one would
represent a sort of matter flux. These consideratoesattached to the ones that were
presented in paragraph 9; we do not insist upon them.

When studying the relativistic equation in full geneyaldne can therefore hope to
have more complete results and agree with physicaltyaabre closely for certain
considerations that are drifting much too far away. fiiisé problem that these general
considerations poses consists in studying, in detail, Hewirtroduction of the 16
components modifies the solution to the problems that welved before and in seeing if
other problems are not susceptible to a simple treatmiens. clear that certain results
that were originally obtained by a process of approxonatemain the same as before;
by contrast, other problems must receive a completiglsed solution.




