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In the present article, a method shall be given by whieh known laws of
geometrical optics can be represented in an espedmllijtive form. The method
consists of assigning a unit vect®rto each point in the direction of the light raysimnch

a way that the tools of vector calculus will becométfintifor our class of problems

() The method was developed by Sommerfeld in a lecturmi@¥, 1910) and further elaborated by J.
Runge for the questions of curvilinear light rays, irtipatar, in 8 7 and 11.
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l. Rectilinear light rays.

Geometrically speaking, the light rays in a homogenanedium are a family of
straight lines through which one can construct a nosudhce at any point — i.e., a
surface that is perpendicular to every ray.

These two conditions — viz., rectilinearity and tlkestnce of normal surfaces — will
now be expressed in the language of vector calculus.

8 1. Rectilinearity

Light rays are the streamlines of a vector fi€ldthe condition requires that they

must be straight, and thus, of zero curvature.
If we first start with the arbitrary curvilinear caséa given ray curve through the
unit vector® then since the length @ is assumed to be constant (= 1) as we advance

along such a curve, the infinitely small vecti&¥ will be perpendicular t& and equal to
the change in angle between two neighboéhdFig. 1). If one then denotes the line

element of the ray curve lgs then the curvature or change of direction per line elegm
will be equal tad& / ds, and one must then have:

de
1 — =0
1) &S
for rectilinear rays.
/|}y
— s S +dS

G +d6
Figure 1.

This condition can be altered somewhat by a comparadeilation.
Itis:

dS _ 96 dx, 96 dy , 06 dz

ds oxds odyds 0zds’

However, the quantitiedx / ds, dy / ds, dz/ ds are nothing bu6,, Gy, G, so we have:

(1a) d_6 :6X6_6+6ya_6+626_6.
ds 0x oy 0z
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On the other hand, sinc&| = 1 for any direction of the gradient:
(1b) 0 =lgrad |6 [ = &4 grad&y + G, grads, + &, grads,.
By subtracting (1a) and (1b), it then follows that:

45 Gx(a—e—gradexj+6y 96 _ grads, +Gz(a—6— gra(‘sz.
ds 0x oy 0z

If one takes — e.g. — thecomponent of this vector equation:

(6 =6,, grad= ij
0X

then the first term on the right will drop out, amécket of the second will be:

S
95, _95, =-rot S,
dy  Ox

and that of the third will correspondingly be eqteat roy S, so:

ds,
ds

=-Gyrot; 6+ G, 1oy S =[rot G, S]y .

As a result, one will have:

(2) das =[rot G, G].
ds

From (1), it then follows that the vectorial foror the condition of rectilinearity will be:

(3 [rotS, 6] = 0.

8 2. The existence of normal surfaces
A vector field that is surface-normal must have same direction as the gradient of a
function ¢ of position that is constant on the surfaces efftimily and can then be made
identical to it by multiplying by a suitable positi-dependent factor; we will then have:
A G =gradg.

If one computes the rotation then one will get:
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rotA & =rot gradg = 0.
Now, one has:
rotA S =ArotS - [6, gradA],
so it will follow that:
ArotS =[G, grad/],

ie.:

rots e,
or
(4) (rots, 6) =0.

8 3. The characteristic condition for optical ray bundles

The two conditions (3) and (4) can now be combined mtsingle one. The
equations:
[rot &, 6] =0,

(rot6,6) =0
are compatible with each other only if:
(5) rots = 0,

since they require that r@i is simultaneously { and] &.
This vanishing of rot& — or, in the language of the theory of currerite
irrotationality of the current & — is the characteristic condition for optical rays f

general Kummer ray systems.

One can make the rotation character of the genayabundle more intuitive thus:
Once one has distinguished a “principal ray,” one considersays of the system that
are infinitely close to it to be an “infinitely-thin bdle,” and marks the points at which a
planeE that is perpendicular to the principal ray, as wel garallel plan&’that is at an
infinitely-small distanced from it, are met by the rays of the bundle. Theoaiated
points ofE andE’are related by a general affine transformation. Rimemfundamental
theorem of the kinematics of plane continua, it chmags be decomposed into a
deformation along two mutually-perpendicular directioastransformation of an even
character in the coefficients) and a rotation (a frangtion of an odd character). If one
draws an infinitely-small circle in the plarte around its intersection point with the
principal ray then it will be converted into an ellipse by tleformation; this ellipse will
be rotated by the rotation. The angular velocity - tle infinitely-small rotation,
divided by d — will now be equal toirot S, which is similar to the vorticial velocity in
hydrodynamics; the rotation must then be calculateldeatidpoint of the plang (or E’)

and represents the component of that vector along ttagal ray. (The components that
are perpendicular to it will vanish, from (8), due to thetilinearity of the bundle.)A
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particular screw-sense around the principal ray is then defined by the sign of rot & at

any location of the general Kummer ray bundle.

For the other one — viz., the deformation componeng-+wb mutually-perpendicular
directions — viz., the “principal dilatation directidreze fixed; i.e.,each of them remains
parallel to itself when it advances along the principal ray. One concludes that from a
simple calculation that lies beyond the scope ofdtisle and will be passed over here.

If rot © = 0 then the deformation ellipse will not rotatece® advances along the

principal ray, and the principal axes of the deformagdipses will lie in two fixed,
mutually-perpendicular planes through the principal tlagy aresymmetry planes for the
structure of the ray bundle. In particular, they godlgh the two degenerate cases of the
deformation ellipse for which it contracts to onatsftwo principal axes. The two points
of the principal ray in whose associated cross-sedtjglaaes one finds the degenerate
case are called tHecal points of the bundle, and the planes through the principahraly
the directions into which the ellipse degeneratesheiltalledorincipal planes. Sturm’s
theorem states that the principal planes for an dpbicadle are perpendicular to each
other. In our way of looking at things, it is then immmediate consequence of the
fundamental theorem of the kinematics of two-dimensi@oakinua, together with the
vanishing vorticity of optical ray bundles. The facttkthe focal points must always be
real in the optical cases is connected with the fact itihahe absence of rotation
components, the advancing deformation of the ellipse teadtto a degeneracy of the
ellipse in one and the other principal direction.

On the other hand, if rot & # 0 then there cannot be any symmetry plane for the ray

bundle; furthermore, a sense of rotation will be giby the sign of ro® in any cross-

section of the bundle. Whether the focal pointsraed or imaginary will depend upon
the magnitude of ra&. For small values of | r@ |, the effect of the deformation on the

form of the deformation ellipse will predominate, andeowill then arrive at a
degeneracy of the ellipse in two cross-sections. Honyéwe positions of the principal
planes that are defined as above are influenced by thenues of the rotation and will no
longer be mutually perpendicular. By contrast, for largees of | rotS |, the influence

of the rotation will predominate. The deformation ttedtes place along the spatially-
fixed dilatation directions, but relative to the defatman ellipse, along rapidly-
alternating diameters, will then lead to no real deganeof the ellipse. The entire ray
bundle is arranged around the principal ray in the sehsaeright-wound or left-wound
screw, according to whether Gtis greater than or less than zero, respectively.

The existence of two mutually-perpendicular symmetryngdafor the optical ray
bundle is then the external feature of its rotatie@® fstructure; likewise, the presence of a
screw sense and the possible absence of focal poihizomit to the rotational character
of the general ray bundle.

Il. Rays in inhomogeneous media

Before we go on to relate the further theorems afnggdrical optics with the
condition (5), we might mention a generalization tisa@éspecially interesting due to the



Sommerfeld and Runge — The application of vector caldoltise foundations of geometrical optics. 6

fact that it exhibits the connection between that pugggmetrical condition and its
physical basis.

One addresses the presentation of the correspondingiaoridr the ray vector in an
arbitrary homogeneous medium. Naturally, the pathweatshall embark upon can not
be the same as the above path. There, we startetheittiea that the rectilinear form of
the ray curve was a fact of experience, while herddahaulas that we will present shall
give us the means to construct the paths of the valysh are generally curvilinear.
Moreover, the knowledge of the inhomogeneous medium anghisical influence on
the light ray must define the starting point here.

§4. The general rotation condition

We have already used the idea that the light raygarpendicular to surfaces. Now,
we shall add that these surfaces are wave surfaceshdevadvance the speed of light
will be measured. In that, the index of refractignwhich is given to us as a function of
position, will be the ratio of the speed of lightvacuo to the speed at that location in the
medium in question:

(6) n

CSlo

The connection between the position of the wave sesfacor surfaces of constant phase
— and the index of refraction is now expressed by the iequat

(7) | gradp | = %=

if @ means the phase at any moment in time as a funofigosition,v means the
frequency (= 21/ 1), andr means the period of oscillation.

@ = const. +d¢

d @ = const.

Figure 2.

If one imagines that at some moment in time one pashaps, fixed all of the
surfaces for which the phase is a multiple aftBen an individual wave surface that
passes between them will pass each of these surfaegaadttime intervalg, and if one
chooses the successive surfaces to have a small pffasende then the time interval
will be proportional to the time interval. In the limone will then have:
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= const. =—— = vu.
T

d¢ 21T
8 _r
(8) o
If we denote the geometrical distance between neigithaurfaces byl (Fig. 2)
then one will have:
d

— =y,
t

which equals the speed of light at the location consitjened it will follow that:

dp _ dp ol _

d¢ _v_vm
d o d dt ’

c

v
| gradg | = -
U

as was asserted in (7).
Now, & is a unit vector that is perpendicular to the wave sasfaso one will have:

S = M = grad¢ Di
| gradg | vn/c

or
) @ 05 = gradg .

With that, we have found the physical meaning of thnultiplier A that was left
undetermined in § 2.
However, due to the fact that rot grad O, it will follow immediately that:

ving _
o

rot 0,

or if one drops the constawt c:
(20) ron S = 0.

This is thegeneral condition for the ray vector G in any medium. For a constam, it will

go to the special form:
rots =0,

and can also revert to rectilinearity, since fréna telation (2):

a6 =[rot &, 6],
ds

the curvature will vanish with rad.
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8 5. Consequences for curvilinear ray progressions

In the general case, (2) will yield an expressionterdurvature of the ray path in an
inhomogeneous medium, and indeed its position and magnitude.
The magnitude of the curvature is:

K= ‘d—G =|[rot6, &] |,
ds
in which rot& is calculated from (10):

(10a) O=ronh& =nrotS — [, gradn], rotS =[S, gradn).

Since© and rot& will be mutually perpendicular from now on, the magadé of their
vector product will be equal to simply the product of tleggnitudes, or, sinceq | = 1:

_ | gradn
n

(11) K=|rot& | :‘%[G,gradn] sin (&, gradn).

As far as its position is concerned, the ved®r/ ds has the direction of the principal

normal of the ray curve, so it will lie in the p&f two neighboring tangents — i.e., in
the osculating plane — and sing® | = 1, it will be perpendicular t&. Now, since rotS

0 &, from (10a), and ro& [0 dS / ds, from (2), and therefor®, rot &, dS / ds will
define a system of mutually-perpendicular directjoso rotS will have the direction of
the binormal of the curve. However, from (10ag, dlirection of the vector ra® is given
in such a way that it is perpendicular@and gradnh, and as a result, the plane that is
determined by and grach will be the osculating plane of the curve.

Thus, if a starting position fa® is given at a point, analis known as a function of

position, in addition, then the osculating plandl wé determined at that place, along
with the curvature, and therefore the position lbé tcenter of curvature will be
determined; however, the ray curve can be consuftom its successive curvature
circles.

8 6. The law of refraction
For the case of a boundary between two homogeneeds, one must give the law

of refraction from condition (10). It can be dexivin the same way that the continuity
of the tangential components is derived frivlaxwell’s equations in electrodynamics.
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Figure 3.

One then takes a continuous transition and definestigent component of rotS,
which is the line integral:

1
gﬁﬂknexm),

when it is taken around a small rectangle that lieqénimterface perpendicular to the
boundary surface and has the sideb (Fig. 3). If one denotes the values in the second
medium by a prime then the magnitude that the siddsedbingential rectangle yield will
be:

-n'&,)[A.

tan

1
—(n6
alb
The component that originates in the normal sides is:

1 0
——(|n6&,_ . _db)a.
al:b aa(J. norm. )
One then has:
rotn & = nGtan._nGtan._i_Ei
b b 0a

norm. :

jne db

One sees that the first term on the right-hand sideeases beyond all limits with
vanishingb and a non-vanishing numerator, while the second oneemildin finite; now,
since roin G = 0, from the condition (10), it will follow in any sa that:

n Gtan__ nIGLan_ = 0
The equation represents the law of refraction; agreemih the usual form will be
obtained immediately when one observes that the taagjenimponent of5 is equal to

the sine of the incident (refracted, resp.) angle.(#jg

Gtan. = Sini, G

tan.

= sini’, nsini =n' sini'.
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Figure 4.

In order to have a relation here that involves thérenectorS, as well, the normal
components can be included in the equation. One gets:

(12) né-n &' =9m,

in which 91 means a vector that is perpendicular to the boundarycsuréand whose
magnitude is simply the difference between the noomalponents of S andn’ &':

(12a) M|=N=nG&norm—n & =ncosi—n cosi'.

norm.

Figure 5.

The reflection law is also included in this form of thedrem. If the ray turns back into
the first medium then’ = n, and equation (12) will say that:

Gtan.= 6

[
tan.?

so the incident and reflected angles will be equal.
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lll. General theorems for geometrical optics

For the further theorems, one no longer needs torrébuthe basic condition rat &

= 0 now. Moreover, since, in reality, one must deahost exclusively with
homogeneous media and discontinuous boundaries betweenthieecondition ro& = 0

and the law of refraction will be satisfied. We thumtto the purely geometrical optics
that starts with the rectilinearity of rays and taw lof refraction as empirical data, and
knows nothing of wave surfaces.

8§ 7. Malus’s theorem

From this standpoint, the condition 1&t= 0 is, at first, applicable to only those ray

systems for which one knows that they are surfacealor i.e., parallel or radial rays.
Malus’s theorem now asserts that the property is preseosedrbitrary reflections and
refractions.

The proof follows from the law of refraction in therdn (12); at all points of the
refracting (or reflecting) surface, it is:

NG -n &' =9.

If we construct the component of the rotation thatasmal to the surface then we will
have:

Mothorm. (NS —N' &") =N 1ot horm. & — N 10t orm. &' = rOthorm. 1.

However, one now has:
rOthorm. D1 = 0,

sinceft has no tangential components and:
rothorm. & = 0,

since© was assumed to be surface-normal. One then also has:
rothorm. &' = 0,

and rot&' must then be tangential to the refracting surfaceanil&iy, however, the
condition (3) that was derived in § 1 — viz., that@t|| &' — is true for&'. Since that is
not consistent with the position of rét, rot &' must vanish, and as a resuf, will be
surface normal.
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(n)

Figure 6.

§ 8. The constancy of the optical length

With the help of this theorem, one can now derivedlaheof the constancy of the
optical length. Suppose a light bundle that emanates & pointP is refracted by some
optical system in such a way that it converges to iat@g®. We choose two rays,
imagine that there is a surface that spans the spagedrethem, and define the integral:

jrotneda

over that surface (Fig. 6). The surface is compagea number of pieces, each of which
lies entirely within a homogeneous medium, andosrioled by a piece of the two rays,
and in general, by two curves on the two boundingases of the medium. Inside of
these surface patches will always be continuous, sinceis constant, and the integral

can then be converted into a boundary integraldiyg5tokess theorem:
jrotr; 6, do;, = j(rg G;,ds).

If one adds all of these boundary integrals thea oan remove the boundary lines
between two pieces that relate to two media since, from the law of refraction, the two
integrals that belong to the two boundary lines are

[(n&,,ds)-[(n &, ,ds)= [(O,.ds),

and {1, ds), sinceM is perpendicular tds.
What remains is then precisely the line integkardhe two rays itself:

PRRP

HrotnGdU:Znij rot&, do, = I (nG,ds)+ I (n&,ds).
POQP'

Now, since rot5 vanishes in any homogeneous part, one will have:
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(13) j (nG,ds) = j (nG,ds).

PQQP PRRP'

Now, & points in the direction of the path of integration both rays, and therefore a
total magnitude of 1 will enter into the calculatg One also has:

(14) I nds = '[nds

PQQP' PRRP'

then. However, this integral expresses nothingthetoptical length along the two rays,
or the time duration for the transition frdPto P’, up to the factoc. In fact, from (6), if
n=c/v, and at the same timds/ v = dt then:

jnds :CI%S :cjdt.

In regard to this, we remark that equation (13jru2 not only for actual light rays
PQQ'P (PRRP', resp.), but for any two entirely arbitrary (andsoa curvilinear)
connecting paths between any two poRtndP’. In fact, the first use of the assumption
that the direction of this connecting path coinsigath that of our light rays was made
in the transition from (13) to (14). Equation (18y means of our rotation condition,
generally expresses the idea that the line integrdie vectom & is independent of the

path.

8 9. The eikonal and the limits of geometrical optics

We shall now exhibit the connection between outhoe of ray vectors and the
method of the eikonal that was introduced by H.rBr(the generadflamiltonian theory
of characteristic functions, resp.).

The eikonal is a function of the coordinates ob points, namely, the line integral of
the vectom &, that indeed for a given distribution of variougdia, from the remark at
the end of the last paragraph, is independent efpiédth of integration. In fact, in
connection with (13), one defines

EP,P)= ?(n@,ds).

If one now fixes the poirf then the eikonal will be purely a function of fhesition
of P', and from the meaning of the line integral, onk kave:

(14a) gradE =n' &',
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in which the right-hand side and left-hand side bothr eféhe point?’. Likewise, when
one fixesP' and varies:
(14b) graE=-nGS.

From its double dependency upon position, the fundiomill then be thepotential of
the two vectorst S andn’ &', which is demanded directly by the conditionma® = 0.

It is then also identical to the phase functgpof § 4, up to a constant factor, except that
it also includes the position of the starting pdirds a variable.
One gets two differential equations t©from the relations:

16|=1 and &' =1,

and it will follow from that, by (14a) and (14b), when ayees to the absolute values in
those equations, that:

| gradE | =—n,
| gradE| =n',
or
2 2 2
(5)-(5] (5] oo
0x oy 0z
(15)

(G_Ejz +(6_Ej +(6_Ej2 =D'(E) = n'2.
ox oy 0z

From a casual verbal remark Débye these differential equations can give wajthe
differential equation of wave optics by passing to the limit.
It reads:
Au+Ku=0,

in whichu is the light excitation (free of the factéY'), as measured by any of its electric
or magnetic components, akds the “wave number” Z/ A, and is thusa very large
number when measured in ¢

The introduction of the eikonal into this equaticames about by way of the
following argument: The light rays that geometrioptics works with are to be regarded
physically, not as infinitely-thin tubes, but aeqes of a plane wave whose temporal
extension must be large in comparison to the wavgth of light. Indeed, by the
abstraction that is implied by the words “light fathe peculiarity exists that we might
drift far from the ideal case of a rectilinearlydmwed light ray by seeking to realize it in
isolation by an infinitely-thin light bundle. Nowhe wave-optical Ansatz for a plane

wave is: _
u=ugek@x+py+ra

in whichn (ax + By + y2) is the light path along the propagation of theveva While
recalling the meaning of the eikonal, we then poadingly set the light path equal to:
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i“e

u=ue" .

In that way, we then see to determib@s a function of position in such a way that this
Ansatz satisfies the wave equation approximately, if oepké mind the magnitude of
k, and one no longer regardg as strictly constant, but as a slowly-varying functadn
position that is appreciably constant only along segmehtsse order of magnitude is
that of the wave length.
One now calculates:
ik .

gradu = en” (%uogradE+ gradloj
and

. o kg K2 ik ik
div gradu =Au = e" —FUOD(E)+FUOAE+F(gradu0,gra(E ¥Au, |.

If one substitutes this into the differential egoia for wave optics then one will get
the differential equation fdg:

k2u in in n2
16 0=—2!n*-D(E)+—AE +—(gradu, ,graE ¥y ——Au, ;.
(16) - { (E) ” uk@ U, .0 }uw %}

2
0 0

The factor 1 k is considered to be small in geometrical optiosthiat approximation,
(16) will then go to the differential equation finve eikonal that was already given above:

0 =n®*-D(E).

If one integrates this — e.g., for the case ofraabée n — then the course of the light ray
will follow from the relation (14a):
n & =- gradE.

However, at the same time, one can (also accotdirigebye) extract from (16) the
cases in which neglecting terms that are endowéd i k is not permissible, namely,
when the numerator of one of those terms has tther @f magnitudd. That will yield
the following two exceptional cases:

1. AE becomeslarge. One haf\E = n div &; however, from its vectorial-geometric
definition, d& is the difference between two neighboring crossises of an infinitely-

thin ray bundle, divided by the space that is esedbbetween them. If one calculates the
cross-section in question as the product of itgtles in the directions of principal
curvature then its difference will be equal tositscalled mean curvature (viz., ds 4+ 1/

r, wherery, ry are the principal radii of curvature of one of thess-sections), multiplied
by the volume of the enclosed space. One thesihgdy:
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divs =

»:‘lH

1
+=.
r2

div & then becomes very large at all locations where hhedle, in the sense of

geometrical optics, hasfacal surface, on in particular, docal line, or afocal point, at
which one or both values, r, vanish.

2. gradup becomes large, i.e.,up is no longer slowly-varying, but varies considdyab
along small distances; that happens, e.g., for getrshadow boundaries.

In both cases, the laws of geometrical opticsharéonger a sufficient approximation,
and diffraction phenomena appear.

It seems to us that this simple argument can, é¢daim degree, replace the
circumstantial considerations by which, e.irchhoff restricted the validity of the
rectilinear ray path in his first lectures on ogtic

IV. Two examples of special applications
§ 10. The sine law

If a pointP of an axially-symmetric optical system were mappea pointP’ by a
light bundle with a finite aperture, and at the saime, a small circular disc of radius
that is perpendicular to the axis Rtwere mapped to a likewise small circular disc of
radiusl “that is perpendicular to the axisRatthen for all rays that start fromand end at
P’, one will have thé\bbe relation:

a7) nlsinu=n"l"sinu,

if uandu’ mean the angles between the ray and the axes.

Due to the rotational symmetry, one needs onbyotasider a meridian plane.

Let (1) be the axial ray frorR to P/, let (2) be any other ray that arrivesPdtafter
refracting fromP, and let (3) and (4) be two rays that start frb meighboring poine;
and arrive at?’, of which, (3) lies close to (1), and (4) liessdao (2) (Fig. 7). From the

constancy of the optical lengths, the optical lbagtill satisfy:

(18) 1) =), (3) = (4.

Now, if X andx are the abscissas BfandP, resp., as measured along the axis, then the
optical lengths will satisfy:
(1) =(2) =E (x, 0,x, 0)
and B)=@)EXILX, 1),
and therefore:
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_ o v [9E) L(OEY,,
B - =EXIXx,1")-E (X, 0,x, 0) [ayjll+[0y’jll’

in which the differential quotients on the right-handesare taken for the ray path (1).

Figure 7.

However, one has:
_a_E:nGy, a_E:n’ 6;,,
ay oy’

and bothy-components are equal to zero for the ray path (1). v@heherefore also
have:

) -(@1)=0,
and thus, due to (18), also:

4 -2 =0.

However, if we calculate the infinitely-small difeerce between the light paths (4) and
(2) and the eikonal then, just as before, that wilkgiv

o OB L(OE) .
(4)_(2)_0_[63/}2'{63/’}2' ’

in which the differential quotients & are now taken for the ray path (2); that is:

but, as is clear from the figur&, (&, , resp.) are equal to sin(sinu’, resp.), so one will

have:
O=nlsinu—=n'l’sinu,

which was to be proved.
An entirely analogous theorem can be derived in the seagavhen one displac&s
to P through the small distandan the axial direction, instead of the perpendiculag,on



Sommerfeld and Runge — The application of vector calduoltise foundations of geometrical optics. 18

and poses the requirement that under the map by a liglkilebof finite aperture, it
should correspond to a poif that is displaced bl and then also lies on the axis. The

single difference consists of the fact that the dafiftial quotients of the eikonal with
respect tax andx' enter in place of the ones with respecy emdy’, resp. That will then
yield:

3)-(1)=nl+n’l

(4) - (2) =-nl cosu+u’l’cosu’
so one will have the relation:

(19 nl(1-cosu)=n’l"(1-cow’).

It emerges from the incompatibility of this conditiorthw{17) that no optical system can
sharply map laterally and axially-neighboring points atddmme time by a wide-aperture
bundle.

If one compares this proof with the proof ldbckin that was presented bxyon
Drude (%) then one will recognize immediately that both of thest upon entirely the
same notions, but thatockin’s proof seems to be somewhat more complicated by the
introduction of some unnecessary geometric speciaizati Our proof is also identical
to the one that was given I8chwarzschild (%), in principle. Straubel (°) emphasized
the connection between the sine law and a general oettipfaw in geometrical optics.

8 11. Refraction by a spherical surface for oblique inciderec

A ray bundle that is refracted by a spherical surfaitk oblique incidence will no
longer have any rotational symmetry, and, fiStarm’s theorem, will then possess two
focal points. Their distance from the refracting scefshall be determined.

It is clear that when the incident bundle starts fieopoint (i.e., is “stigmatic”), the
two distinguished planes of the refracted bundle can balyhe incidence plane of the
principal ray and the plane that is perpendicular tdHibwever, the same thing will also
be true when the incidence plane itself is alreadyidiamtic,” in such a way that its
distinguished planes simultaneously coincide with thedemie plane and the plane that
is perpendicular to it. When we consider this fordase of an astigmatic bundle, which
is important in the applications, we shall denotedtaeting point of the ray in the plane
of incidence by another symbal)(from the starting pointS) of the ray in the plane that
is perpendicular to it, in such a way tiaandS will refer to the two distinct focal points
of the astigmatic incident bundle. The neighboring maybe plane perpendicular to the
plane of incidence, which will be referred to asagittal rays, lie on the surface of a cone
whose vertex lies at the focal poitand whose axis goes through the center of the
sphereC. On the grounds of symmetry, it will then be obvious ttsameeting poins’

() P. Drude, Lehrbuch der Optik, 2" ed., pp. 55.

(® K. Schwarzschild Abhandl. d. Géttinger Ges. d. Wiss. 4, no. 1, 190&tersuchungen zur
geometrischen Optik 1, § 3.

() R. Straubel, Physik. Zeitschr4 (1920), 114.
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after the refraction will likewise lie along that axi€ne then needs only to look for the
point of intersection of the principal ray with thesaxi

Figure 8.

If Q is the point at which the principal ray is refracter (B) then the law of refraction:
nG-n& =%

will be valid atQ. We drop the perpendicul@L= h from Q onto the axis and find the
component of this equation in the direction of the pedjpertar, which is measured in the
sense oL.Q being positive:

NGSh—NG, =M.

If we now denote the distanc89 andS’Q by s ands, respectively, and the radius of the
sphere by then, since one ha®|| = |&' | = 1 and 91 | =N, one will have:

nh nh h
+—+— =+N—
s s r
or
n n N
_+_’ = —.
S S r

The derivation is somewhat more complicated for s rthat lie in theplane of
incidence and start from the focal poifit— viz., the so-callethngential rays — since their
meeting poinfT “is not determined by finite relations, but must be fobya differential
consideration. LetQ’T’(Fig. 9) be a tangential ray that is close to theqpal rayT Q
T’, Differentiation of the law of refraction yields:

(20) nds —-n' d&' = dt .

We find the component in the direction of the infiptemall chordQQ".
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S/

Figure 9.

Since® is a unit vectordS must be perpendicular & and equal to the ang@ T
Q' so when one makd®T =T Q, to a sufficient approximation:

46 = QR _ QR_ hcos(RQQ’),

TQ t t
4" = QR _QR :_hcosRQ'Q)’
TQ t' t'

and the components in thalirection are:

hcos RQQ)
—

_hcos RQQ)
—

dGh =
da, =

Now, if QR, QQ’ Q’R’are infinitely-small chords in three circles witie centers, C,
and T"and radiTQ =t, CQ =r, and T’ Q’ = t', resp., then they will be almost
perpendicular to the associated radii, and theedtfoe anglesR Q Q') and R’ Q’ Q) will
agree, up to quantities of orderwith the angles between the ra@iQ andC Q (T'Q’
andC Q’, resp.), that is, the angle of incidem@nd the angle of refraction Therefore,
the cosines of these angles will equal ic®si ’, resp.) to the same error. We then have,
up to quantities of order two:

hcos'i

déy = :
" t
ds = _hC(;)’SZI |
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On the right-hand side of (20), one finds theomponent of the differentiabt. If one
decomposesi)t parallel and perpendicular 8 then the parallel component will be

equal to the change in magnitudid, and the perpendicular one will eqdablg, if dg is
the change in direction 8t. The latter component is parallellipso one will have:

d‘ﬁh:Nd¢:NTh.

We then have:

hcosi , hcosi’ _ Nh
" T T

or, after dividing byh, and up to quantities of first orderhn

cosi _, cosi' 1
n +N——= N-—.
t t r

Finally, one might replacd with its value in (12a):
N =n cosi —n' cosi'.
The well-known formulas then arise:

For sagittal rays:

21) ﬂ+ﬂ’ _ hcosi—n’ cos |
s s r
For tangential rays:
n i n i’ i —n' cos'
(22) c:)s2 N CSSZ _ ncosi —n' cos’
r

Whereas in the first three sections, our vectaydic method proved to be especially
suitable for giving the simplest expressions to ¢lemeral concepts and theorems of
geometrical optics, from the examples of the lasttisn, one might expect that they
might also prove themselves in the treatment ofesgpecial problems in geometrical
optics, due to their adaptability to the speciaidaor of problems in which one must
carry our calculations by taking the components@la certain direction and due to the
elimination of all superfluous calculations.

Munich, Institut f. theoretische Physik, March 1911.
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