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______ 

 
 In the present article, a method shall be given by which the known laws of 
geometrical optics can be represented in an especially intuitive form.  The method 
consists of assigning a unit vector S to each point in the direction of the light ray in such 

a way that the tools of vector calculus will become fruitful for our class of problems (1). 
 
 
 
 

                                                
 (1) The method was developed by Sommerfeld in a lecture (Munich, 1910) and further elaborated by J. 
Runge for the questions of curvilinear light rays, in particular, in § 7 and 11. 
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I.  Rectilinear light rays. 
 

 Geometrically speaking, the light rays in a homogeneous medium are a family of 
straight lines through which one can construct a normal surface at any point – i.e., a 
surface that is perpendicular to every ray. 
 These two conditions – viz., rectilinearity and the existence of normal surfaces – will 
now be expressed in the language of vector calculus. 
 
 

§ 1.  Rectilinearity 
 

 Light rays are the streamlines of a vector field S; the condition requires that they 

must be straight, and thus, of zero curvature. 
 If we first start with the arbitrary curvilinear case of a given ray curve through the 
unit vector S then since the length of S is assumed to be constant (= 1) as we advance 

along such a curve, the infinitely small vector dS will be perpendicular to S and equal to 

the change in angle between two neighboring S (Fig. 1).  If one then denotes the line 

element of the ray curve by ds then the curvature or change of direction per line element 
will be equal to dS / ds, and one must then have: 

 

(1)      
d

ds

S
 = 0 

for rectilinear rays. 
 

Figure 1. 

O S 

S + dS 
dS 

ds 

S 

S + dS 

 
 
 This condition can be altered somewhat by a component calculation. 
 It is: 

d

ds

S
 = 

dx dy dz

x ds y ds z ds

∂ ∂ ∂+ +
∂ ∂ ∂
S S S

. 

 
However, the quantities dx / ds, dy / ds, dz / ds are nothing but Sx, Sy, Sz so we have: 

 

(1a)    
d

ds

S
 = x y zx y z

∂ ∂ ∂+ +
∂ ∂ ∂
S S S

S S S . 
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On the other hand, since | S |2 = 1 for any direction of the gradient: 

 
(1b)  0 = 12 grad | S |2 = Sx grad Sx + Sy grad Sy + Sz grad Sz . 

 
By subtracting (1a) and (1b), it then follows that: 
 

d

ds

S
 = grad grad gradx x y y z zx y z

 ∂ ∂ ∂   − + − + −    ∂ ∂ ∂    

S S S
S S S S S S . 

 
If one takes – e.g. – the x-component of this vector equation: 
 

, gradx x

∂ = = ∂ 
S S  

 
then the first term on the right will drop out, and bracket of the second will be: 
 

yx

y x

∂∂ −
∂ ∂

SS
 = − rotx S, 

 
and that of the third will correspondingly be equal to + roty S, so: 

 

xd

ds

S
 = − Sy rot z S+ Sz roty S = [rot S, S]x . 

 
As a result, one will have: 

(2)      
d

ds

S
 = [rot S, S] . 

 
From (1), it then follows that the vectorial form for the condition of rectilinearity will be: 
 
(3)      [rot S, S] = 0. 

 
 

§ 2.  The existence of normal surfaces 
 

 A vector field that is surface-normal must have the same direction as the gradient of a 
function ϕ of position that is constant on the surfaces of the family and can then be made 
identical to it by multiplying by a suitable position-dependent factor; we will then have: 
 

λ S = grad ϕ . 
 

If one computes the rotation then one will get: 
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rot λ S = rot grad ϕ = 0. 

Now, one has: 
rot λ S = λ rot S – [S, grad λ], 

 so it will follow that: 
λ rot S = [S, grad λ], 

i.e.: 
rot S ⊥ S, 

or 
(4)      (rot S, S) = 0. 

 
 

§ 3.  The characteristic condition for optical ray bundles 
 

 The two conditions (3) and (4) can now be combined into a single one.  The 
equations: 
 [rot S, S] = 0, 

 (rot S, S) = 0 

 
are compatible with each other only if: 
 
(5) rot S = 0, 

 
since they require that rot S is simultaneously || S and ⊥ S. 

 This vanishing of rot S – or, in the language of the theory of currents, the 

irrotationality of the current S – is the characteristic condition for optical rays for 

general Kummer ray systems. 
 One can make the rotation character of the general ray bundle more intuitive thus: 
Once one has distinguished a “principal ray,” one considers the rays of the system that 
are infinitely close to it to be an “infinitely-thin bundle,” and marks the points at which a 
plane E that is perpendicular to the principal ray, as well as a parallel plane E′ that is at an 
infinitely-small distance δ from it, are met by the rays of the bundle.   The associated 
points of E and E′ are related by a general affine transformation.  From the fundamental 
theorem of the kinematics of plane continua, it can always be decomposed into a 
deformation along two mutually-perpendicular directions (a transformation of an even 
character in the coefficients) and a rotation (a transformation of an odd character).  If one 
draws an infinitely-small circle in the plane E around its intersection point with the 
principal ray then it will be converted into an ellipse by the deformation; this ellipse will 
be rotated by the rotation.  The angular velocity – i.e., the infinitely-small rotation, 
divided by δ – will now be equal to 12 rot S, which is similar to the vorticial velocity in 

hydrodynamics; the rotation must then be calculated at the midpoint of the plane E (or E′) 
and represents the component of that vector along the principal ray. (The components that 
are perpendicular to it will vanish, from (8), due to the rectilinearity of the bundle.)  A 
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particular screw-sense around the principal ray is then defined by the sign of rot S at 

any location of the general Kummer ray bundle. 
 For the other one – viz., the deformation component – the two mutually-perpendicular 
directions – viz., the “principal dilatation directions” are fixed; i.e., each of them remains 
parallel to itself when it advances along the principal ray.  One concludes that from a 
simple calculation that lies beyond the scope of this article and will be passed over here. 
 If rot S = 0 then the deformation ellipse will not rotate as one advances along the 

principal ray, and the principal axes of the deformation ellipses will lie in two fixed, 
mutually-perpendicular planes through the principal ray; they are symmetry planes for the 
structure of the ray bundle.  In particular, they go through the two degenerate cases of the 
deformation ellipse for which it contracts to one of its two principal axes.  The two points 
of the principal ray in whose associated cross-sectional planes one finds the degenerate 
case are called the focal points of the bundle, and the planes through the principal ray and 
the directions into which the ellipse degenerates will be called principal planes.  Sturm’s 
theorem states that the principal planes for an optical bundle are perpendicular to each 
other.  In our way of looking at things, it is then an immediate consequence of the 
fundamental theorem of the kinematics of two-dimensional continua, together with the 
vanishing vorticity of optical ray bundles.  The fact that the focal points must always be 
real in the optical cases is connected with the fact that in the absence of rotation 
components, the advancing deformation of the ellipse must lead to a degeneracy of the 
ellipse in one and the other principal direction. 
 On the other hand, if rot S ≠ 0 then there cannot be any symmetry plane for the ray 

bundle; furthermore, a sense of rotation will be given by the sign of rot S in any cross-

section of the bundle.  Whether the focal points are real or imaginary will depend upon 
the magnitude of rot S.  For small values of | rot S |, the effect of the deformation on the 

form of the deformation ellipse will predominate, and one will then arrive at a 
degeneracy of the ellipse in two cross-sections.  However, the positions of the principal 
planes that are defined as above are influenced by the presence of the rotation and will no 
longer be mutually perpendicular.  By contrast, for large values of | rot S |, the influence 

of the rotation will predominate.  The deformation that takes place along the spatially-
fixed dilatation directions, but relative to the deformation ellipse, along rapidly-
alternating diameters, will then lead to no real degeneracy of the ellipse.  The entire ray 
bundle is arranged around the principal ray in the sense of a right-wound or left-wound 
screw, according to whether rot S is greater than or less than zero, respectively. 

 The existence of two mutually-perpendicular symmetry planes for the optical ray 
bundle is then the external feature of its rotation-free structure; likewise, the presence of a 
screw sense and the possible absence of focal points will point to the rotational character 
of the general ray bundle. 
 
 

II. Rays in inhomogeneous media 
 
 Before we go on to relate the further theorems of geometrical optics with the 
condition (5), we might mention a generalization that is especially interesting due to the 
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fact that it exhibits the connection between that purely geometrical condition and its 
physical basis. 
 One addresses the presentation of the corresponding condition for the ray vector in an 
arbitrary homogeneous medium.  Naturally, the path that we shall embark upon can not 
be the same as the above path.  There, we started with the idea that the rectilinear form of 
the ray curve was a fact of experience, while here the formulas that we will present shall 
give us the means to construct the paths of the rays, which are generally curvilinear.  
Moreover, the knowledge of the inhomogeneous medium and its physical influence on 
the light ray must define the starting point here. 
 
 

§ 4. The general rotation condition 
 

 We have already used the idea that the light rays are perpendicular to surfaces.  Now, 
we shall add that these surfaces are wave surfaces, by whose advance the speed of light 
will be measured.  In that, the index of refraction n, which is given to us as a function of 
position, will be the ratio of the speed of light in vacuo to the speed at that location in the 
medium in question: 

(6)      n = 
c

υ
. 

 
The connection between the position of the wave surfaces – or surfaces of constant phase 
– and the index of refraction is now expressed by the equation: 
 

(7)     | grad ϕ | = 
v

υ
= 

vn

c
= 

2

n r

c π
, 

 
if ϕ means the phase at any moment in time as a function of position, v means the 
frequency (= 2π / τ), and τ means the period of oscillation. 

 ϕ = const. + dϕ 

ϕ = const. dl 

 
Figure 2. 

 
 If one imagines that at some moment in time one has, perhaps, fixed all of the 
surfaces for which the phase is a multiple of 2π then an individual wave surface that 
passes between them will pass each of these surfaces at equal time intervals τ, and if one 
chooses the successive surfaces to have a small phase difference then the time interval 
will be proportional to the time interval.  In the limit, one will then have: 
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(8)     
d

dt

ϕ
 = const. = 

2π
τ

 = υ. 

 
 If we denote the geometrical distance between neighboring surfaces by dl (Fig. 2) 
then one will have: 

dl

dt
 = υ, 

 
which equals the speed of light at the location considered, and it will follow that: 
 

| grad ϕ | = 
d

dl

ϕ
 = 

d dl

dl dt

ϕ ⋅ = 
v

υ
 = 

n

c

ν ⋅
, 

as was asserted in (7). 
 Now, S is a unit vector that is perpendicular to the wave surfaces, so one will have: 

 

S = 
grad

| grad |

ϕ
ϕ

 = grad ϕ ⋅⋅⋅⋅ 1

/v n c
 

or 

(9)      
n

c

ν ⋅ ⋅⋅⋅⋅ S = grad ϕ . 

 
With that, we have found the physical meaning of the multiplier λ that was left 
undetermined in § 2. 
 However, due to the fact that rot grad ϕ = 0, it will follow immediately that: 
 

rot 
n

c

ν ⋅ S
 = 0, 

or if one drops the constant v / c: 
(10)     rot n S = 0. 

 
This is the general condition for the ray vector S in any medium.  For a constant n, it will 

go to the special form: 
rot S = 0, 

 
and can also revert to rectilinearity, since from the relation (2): 
 

d

ds

S
 = [rot S, S], 

 
the curvature will vanish with rot S. 
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§ 5. Consequences for curvilinear ray progressions 
 

 In the general case, (2) will yield an expression for the curvature of the ray path in an 
inhomogeneous medium, and indeed its position and magnitude. 
 The magnitude of the curvature is: 
 

K = 
d

ds

S
 = | [rot S, S] |, 

 
in which rot S is calculated from (10): 

 
(10a)  0 = rot n S = n rot S – [S, grad n], rot S = [S, grad n]. 

 
Since S and rot S will be mutually perpendicular from now on, the magnitude of their 

vector product will be equal to simply the product of their magnitudes, or, since | S | = 1: 

 

(11)  K = | rot S | = 
1

[ ,grad ]n
n
S  = 

| grad |n

n
sin (S, grad n). 

 
 As far as its position is concerned, the vector dS / ds has the direction of the principal 

normal of the ray curve, so it will lie in the plane of two neighboring tangents – i.e., in 
the osculating plane – and since | S | = 1, it will be perpendicular to S.  Now, since rot S 

⊥ S, from (10a), and rot S ⊥ dS / ds, from (2), and therefore S, rot S, dS / ds will 

define a system of mutually-perpendicular directions, so rot S will have the direction of 

the binormal of the curve.  However, from (10a), the direction of the vector rot S is given 

in such a way that it is perpendicular to S and grad n, and as a result, the plane that is 

determined by S and grad n will be the osculating plane of the curve. 

 Thus, if a starting position for S is given at a point, and n is known as a function of 

position, in addition, then the osculating plane will be determined at that place, along 
with the curvature, and therefore the position of the center of curvature will be 
determined; however, the ray curve can be constructed from its successive curvature 
circles. 
 

 
§ 6. The law of refraction 

 
 For the case of a boundary between two homogeneous media, one must give the law 
of refraction from condition (10).  It can be derived in the same way that  the continuity 
of the tangential components is derived from Maxwell’s equations in electrodynamics. 
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(n) 

(n′) 

a 

b 

 
Figure 3. 

 
 One then takes a continuous transition and defines the tangent component of rot n S, 

which is the line integral: 
1

( , )n d
a b⋅ ∫

S s , 

 
when it is taken around a small rectangle that lies in the interface perpendicular to the 
boundary surface and has the sides a, b (Fig. 3).  If one denotes the values in the second 
medium by a prime then the magnitude that the sides of the tangential rectangle yield will 
be: 

tan tan

1
( )n n a

a b
′ ′− ⋅

⋅
S S . 

 
The component that originates in the normal sides is: 
 

( )norm.

1
n db a

a b a

∂
⋅ ∂ ∫ S . 

One then has: 

rot n S = tan. tan.
norm.

1n n
n db

b b a

′ ′− ∂+
∂ ∫

S S
S . 

 
One sees that the first term on the right-hand side increases beyond all limits with 
vanishing b and a non-vanishing numerator, while the second one will remain finite; now, 
since rot n S = 0, from the condition (10), it will follow in any case that: 

 
n Stan. − tan.n′ ′S  = 0. 

 
 The equation represents the law of refraction; agreement with the usual form will be 
obtained immediately when one observes that the tangential component of S is equal to 

the sine of the incident (refracted, resp.) angle (Fig. 4): 
 

Stan. = sin i, tan.′S  = sin i′,  n sin i = n′ sin i′. 
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tan.′S  (n) 

(n′) 

S 

Stan. 
i 

i′ 

S′ 

 
Figure 4. 

 
In order to have a relation here that involves the entire vector S, as well, the normal 

components can be included in the equation.  One gets: 
 
(12)     n S – n′ S′ = N, 

 
in which N means a vector that is perpendicular to the boundary surface, and whose 

magnitude is simply the difference between the normal components of n S and n′ S′: 
 
(12a)   | N | = N = n Snorm. − n′ norm.′S  = n cos i – n′ cos i′. 

 

S 

i 
Stan. tan.′S  

i′ 

S′ 

 
Figure 5. 

 
The reflection law is also included in this form of the theorem.  If the ray turns back into 
the first medium then n′ = n, and equation (12) will say that: 
 

Stan. = tan.′S , 

 
so the incident and reflected angles will be equal. 
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III. General theorems for geometrical optics 
 
 For the further theorems, one no longer needs to return to the basic condition rot n S 

= 0 now.  Moreover, since, in reality, one must deal almost exclusively with 
homogeneous media and discontinuous boundaries between them, the condition rot S = 0 

and the law of refraction will be satisfied.  We thus turn to the purely geometrical optics 
that starts with the rectilinearity of rays and the law of refraction as empirical data, and 
knows nothing of wave surfaces. 
 
 

§ 7.  Malus’s theorem 
 
 From this standpoint, the condition rot S = 0 is, at first, applicable to only those ray 

systems for which one knows that they are surface normal – i.e., parallel or radial rays.  
Malus’s theorem now asserts that the property is preserved for arbitrary reflections and 
refractions. 
 The proof follows from the law of refraction in the form (12); at all points of the 
refracting (or reflecting) surface, it is: 
 

n S – n′ S′ = N. 

 
If we construct the component of the rotation that is normal to the surface then we will 
have: 

rotnorm. (n S – n′ S′) = n rot norm. S – n rot norm. S′ = rotnorm. N. 

 
However, one now has: 

rotnorm. N = 0, 

 
since N has no tangential components and: 

 
rotnorm. S = 0, 

 
since S was assumed to be surface-normal.  One then also has: 

 
rotnorm. S′ = 0, 

 
and rot S′ must then be tangential to the refracting surface.  Similarly, however, the 

condition (3) that was derived in § 1 – viz., that rot S′ || S′ − is true for S′.  Since that is 

not consistent with the position of rot S′, rot S′ must vanish, and as a result, S′ will be 

surface normal. 
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P 

(n) 
Q 

R 
R′ 

P′ 

Q′ 

(ni) 

(nk) 

 
Figure 6. 

 
 

§ 8.  The constancy of the optical length 
 
 With the help of this theorem, one can now derived the law of the constancy of the 
optical length.  Suppose a light bundle that emanates from a point P is refracted by some 
optical system in such a way that it converges to a point P′.  We choose two rays, 
imagine that there is a surface that spans the space between them, and define the integral: 
 

rot n dσ∫ S  

 
over that surface (Fig. 6).  The surface is composed of a number of pieces, each of which 
lies entirely within a homogeneous medium, and is bounded by a piece of the two rays, 
and in general, by two curves on the two bounding surfaces of the medium.  Inside of 
these surface patches, n S will always be continuous, since n is constant, and the integral 

can then be converted into a boundary integral by using Stokes’s theorem: 
 

rot i i in dσ∫ S  = ( , )i in d∫ S s . 

 
If one adds all of these boundary integrals then one can remove the boundary lines 
between two pieces that relate to two media i, k, since, from the law of refraction, the two 
integrals that belong to the two boundary lines are: 
 

( , ) ( , )i i k kn d n d−∫ ∫S s S s = ( , )ik d∫ N s , 

 
and (N, ds), since N is perpendicular to ds. 

 What remains is then precisely the line integral over the two rays itself: 
 

rot n dσ∫∫ S  = rot i i in dσ∑ ∫∫ S  = ( , ) ( , )
PQQ P P R RP

n d n d
′ ′ ′ ′

+∫ ∫S s S s . 

 
Now, since rot S vanishes in any homogeneous part, one will have: 
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(13)    ( , )
PQQ P

n d
′ ′
∫ S s  = ( , )

PRR P

n d
′ ′
∫ S s . 

 
Now, S points in the direction of the path of integration on both rays, and therefore a 

total magnitude of 1 will enter into the calculations.  One also has: 
 

(14)    
PQQ P

n ds
′ ′
∫  = 

PRR P

n ds
′ ′
∫  

 
then.  However, this integral expresses nothing but the optical length along the two rays, 
or the time duration for the transition from P to P′, up to the factor c.  In fact, from (6), if 
n = c / v, and at the same time, ds / υ = dt then: 
 

n ds∫  = c
ds

υ∫
 = c dt∫ . 

 
 In regard to this, we remark that equation (13) is true not only for actual light rays 
PQQ′P′ (PRR′P′, resp.), but for any two entirely arbitrary (and also curvilinear) 
connecting paths between any two points P and P′.  In fact, the first use of the assumption 
that the direction of this connecting path coincides with that of our light ray S was made 

in the transition from (13) to (14).  Equation (13), by means of our rotation condition, 
generally expresses the idea that the line integral of the vector n S is independent of the 

path. 
 
 

§ 9.  The eikonal and the limits of geometrical optics 
 
 We shall now exhibit the connection between our method of ray vectors and the 
method of the eikonal that was introduced by H. Bruns (the general Hamiltonian  theory 
of characteristic functions, resp.). 
 The eikonal is a function of the coordinates of two points, namely, the line integral of 
the vector n S, that indeed for a given distribution of various media, from the remark at 

the end of the last paragraph, is independent of the path of integration.  In fact, in 
connection with (13), one defines 
 

E (P, P′) = ( , )
P

P

n d
′

∫ S s . 

 
 If one now fixes the point P then the eikonal will be purely a function of the position 
of P′, and from the meaning of the line integral, one will have: 
 
(14a)    grad′ E = n′ S′, 
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in which the right-hand side and left-hand side both refer to the point P′.  Likewise, when 
one fixes P′ and varies: 
(14b)    grad E = − n S . 

 
From its double dependency upon position, the function E will then be the potential of 
the two vectors n S and n′ S′, which is demanded directly by the condition rot n S = 0.  

It is then also identical to the phase function ϕ of § 4, up to a constant factor, except that 
it also includes the position of the starting point P as a variable. 
 One gets two differential equations for E from the relations: 
 

| S | = 1  and  | S′ | = 1, 

 
and it will follow from that, by (14a) and (14b), when one goes to the absolute values in 
those equations, that: 
 | grad E |  = − n, 
 | grad′ E | = n′, 
or 

(15)  

22 2
2

22 2
2

( ) ,

( ) .

E E E
D E n

x y z

E E E
D E n

x y z

  ∂ ∂ ∂   + + = =     ∂ ∂ ∂     


  ∂ ∂ ∂    ′ ′+ + = =     ′ ′ ′∂ ∂ ∂    

 

 
From a casual verbal remark of Debye, these differential equations can give way to the 
differential equation of wave optics by passing to the limit.  
 It reads: 

∆u + k2 u = 0, 
 

in which u is the light excitation (free of the factor eivt), as measured by any of its electric 
or magnetic components, and k is the “wave number” 2π / λ, and is thus a very large 
number when measured in cm−1. 
 The introduction of the eikonal into this equation comes about by way of the 
following argument: The light rays that geometrical optics works with are to be regarded 
physically, not as infinitely-thin tubes, but as pieces of a plane wave whose temporal 
extension must be large in comparison to the wave length of light.  Indeed, by the 
abstraction that is implied by the words “light ray,” the peculiarity exists that we might 
drift far from the ideal case of a rectilinearly-bounded light ray by seeking to realize it in 
isolation by an infinitely-thin light bundle.  Now, the wave-optical Ansatz for a plane 
wave is: 

u = u0 e
ik (α x + β y + γ z), 

 
in which n (α x + β y + γ z) is the light path along the propagation of the wave.  While 
recalling the meaning of the eikonal, we then correspondingly set the light path equal to: 
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u = u0 
k

i E
ne . 

 
In that way, we then see to determine E as a function of position in such a way that this 
Ansatz satisfies the wave equation approximately, if one keeps in mind the magnitude of 
k, and one no longer regards u0 as strictly constant, but as a slowly-varying function of 
position that is appreciably constant only along segments whose order of magnitude is 
that of the wave length. 
 One now calculates: 

grad u = 0 0grad grad
ik

E
n

ik
e u E u

n
 + 
 

 

and 

div grad u = ∆u = 
2

0 0 0 02 ( ) (grad ,grad )
ik

E
n

k ik ik
e u D E u E u E u

n n n

 
− + ∆ + + ∆ 
 

. 

 
 If one substitutes this into the differential equation for wave optics then one will get 
the differential equation for E: 
 

(16)  0 = 
2 2

20
0 02 2

0 0

( ) (grad ,grad )
k u in in n

n D E E u E u
n k u k u k

 
− + ∆ + + ∆ 

 
. 

 
The factor 1 / k is considered to be small in geometrical optics; in that approximation, 
(16) will then go to the differential equation for the eikonal that was already given above: 
 

0 = n2 – D(E). 
 
If one integrates this – e.g., for the case of a variable n – then the course of the light ray 
will follow from the relation (14a): 

n S = − grad E. 

 
 However, at the same time, one can (also according to Debye) extract from (16) the 
cases in which neglecting terms that are endowed with 1 / k is not permissible, namely, 
when the numerator of one of those terms has the order of magnitude k.  That will yield 
the following two exceptional cases: 
 
 1.  ∆E becomes large.  One has ∆E = n div S; however, from its vectorial-geometric 

definition, dS is the difference between two neighboring cross-sections of an infinitely-

thin ray bundle, divided by the space that is enclosed between them.  If one calculates the 
cross-section in question as the product of its lengths in the directions of principal 
curvature then its difference will be equal to its so-called mean curvature (viz., 1 / r1 + 1 / 
r2, where r1, r2 are the principal radii of curvature of one of the cross-sections), multiplied 
by the volume of the enclosed space.  One then has simply: 
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div S = 
1 2

1 1

r r
+ . 

 
div S then becomes very large at all locations where the bundle, in the sense of 

geometrical optics, has a focal surface, on in particular, a focal line, or a focal point, at 
which one or both values r1, r2 vanish. 
 
 2.  grad u0 becomes large, i.e., u0 is no longer slowly-varying, but varies considerably 
along small distances; that happens, e.g., for geometric shadow boundaries. 
 
 In both cases, the laws of geometrical optics are no longer a sufficient approximation, 
and diffraction phenomena appear. 
 It seems to us that this simple argument can, to certain degree, replace the 
circumstantial considerations by which, e.g., Kirchhoff  restricted the validity of the 
rectilinear ray path in his first lectures on optics. 
 
 

IV. Two examples of special applications 
 

§ 10.  The sine law 
 

 If a point P of an axially-symmetric optical system were mapped to a point P′ by a 
light bundle with a finite aperture, and at the same time, a small circular disc of radius l 
that is perpendicular to the axis at P were mapped to a likewise small circular disc of 
radius l′ that is perpendicular to the axis at P′ then for all rays that start from P and end at 
P′, one will have the Abbe relation: 
 
(17)     n l sin u = n′ l′  sin u′, 
 
if u and u′ mean the angles between the ray and the axes. 
 Due to the rotational symmetry, one needs only to consider a meridian plane. 
 Let (1) be the axial ray from P to P′, let (2) be any other ray that arrives at P′ after 
refracting from P, and let (3) and (4) be two rays that start from the neighboring point P1 
and arrive at 1P′ , of which, (3) lies close to (1), and (4) lies close to (2) (Fig. 7).  From the 

constancy of the optical lengths, the optical lengths will satisfy: 
 
(18)     (1) = (2), (3) = (4). 
 
Now, if x and x are the abscissas of P and P, resp., as measured along the axis, then the 
optical lengths will satisfy: 
  (1) = (2) = E (x, 0, x′, 0) 
and  (3) = (4) = E (x, l, x′¸ l′ ), 
and therefore: 
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(3) – (1) = E (x, l, x′, l′ ) – E (x, 0, x′, 0) = 
1 1

E E
l l

y y

   ∂ ∂ ′+   ′∂ ∂   
, 

 
in which the differential quotients on the right-hand side are taken for the ray path (1). 

 

l 

P 

P1 

u 

(1) 

(4) 
(3) 

(2) 
u′ 

P′ 

l′ 

1P′  

 
Figure 7. 

 
 However, one has: 

− 
E

y

∂
∂

 = n Sy ,  
E

y

∂
′∂
 = n′ y

′S , 

 
and both y-components are equal to zero for the ray path (1).  One will therefore also 
have: 

(3) – (1) = 0, 
and thus, due to (18), also: 

(4) – (2) = 0. 
 
However, if we calculate the infinitely-small difference between the light paths (4) and 
(2) and the eikonal then, just as before, that will give: 
 

(4) – (2) = 0 = 
2 2

E E
l l

y y

   ∂ ∂ ′+   ′∂ ∂   
, 

 
in which the differential quotients of E are now taken for the ray path (2); that is: 
 

0 = − n Sy ⋅⋅⋅⋅ l + n′ y
′S  l′, 

 
but, as is clear from the figure, Sy ( y

′S , resp.) are equal to sin u (sin u′, resp.), so one will 

have: 
0 = n l sin u – n′ l′ sin u′, 

 
which was to be proved. 
 An entirely analogous theorem can be derived in the same way when one displaces P1 
to P through the small distance l in the axial direction, instead of the perpendicular one, 
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and poses the requirement that under the map by a light bundle of finite aperture, it 
should correspond to a point 1P′  that is displaced by l′ and then also lies on the axis.  The 

single difference consists of the fact that the differential quotients of the eikonal with 
respect to x and x′ enter in place of the ones with respect to y and y′, resp.  That will then 
yield: 
 (3) – (1) = − n l + n′ l′, 
 (4) – (2) = - n l cos u + u′ l′ cos u′, 
so one will have the relation: 
 
(19)    n l (1 – cos u) = n′ l′ (1 – cos u′ ). 
 
It emerges from the incompatibility of this condition with (17) that no optical system can 
sharply map laterally and axially-neighboring points at the same time by a wide-aperture 
bundle. 
 If one compares this proof with the proof of Hockin that was presented by von 
Drude (1) then one will recognize immediately that both of them rest upon entirely the 
same notions, but that Hockin’s proof seems to be somewhat more complicated by the 
introduction of some unnecessary geometric specializations.  Our proof is also identical 
to the one that was given by Schwarzschild (2), in principle.  Straubel (3) emphasized 
the connection between the sine law and a general reciprocity law in geometrical optics. 

 
 

§ 11.  Refraction by a spherical surface for oblique incidence 
 

 A ray bundle that is refracted by a spherical surface with oblique incidence will no 
longer have any rotational symmetry, and, from Sturm’s theorem, will then possess two 
focal points.  Their distance from the refracting surface shall be determined. 
 It is clear that when the incident bundle starts from a point (i.e., is “stigmatic”), the 
two distinguished planes of the refracted bundle can only be the incidence plane of the 
principal ray and the plane that is perpendicular to it.  However, the same thing will also 
be true when the incidence plane itself is already “astigmatic,” in such a way that its 
distinguished planes simultaneously coincide with the incidence plane and the plane that 
is perpendicular to it.  When we consider this for the case of an astigmatic bundle, which 
is important in the applications, we shall denote the starting point of the ray in the plane 
of incidence by another symbol (T) from the starting point (S) of the ray in the plane that 
is perpendicular to it, in such a way that T and S will refer to the two distinct focal points 
of the astigmatic incident bundle.  The neighboring rays in the plane perpendicular to the 
plane of incidence, which will be referred to as sagittal rays, lie on the surface of a cone 
whose vertex lies at the focal point S and whose axis goes through the center of the 
sphere C.  On the grounds of symmetry, it will then be obvious that its meeting point S′  

                                                
 (1) P. Drude, Lehrbuch der Optik, 2nd ed., pp. 55.  
 (2) K. Schwarzschild, Abhandl. d. Göttinger Ges. d. Wiss. 4, no. 1, 1905; Untersuchungen zur 
geometrischen Optik I, § 3. 
 (3) R. Straubel, Physik. Zeitschr. 4 (1920), 114.  
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after the refraction will likewise lie along that axis.  One then needs only to look for the 
point of intersection of the principal ray with the axis. 

 

S′ 

h 

S 

S 

s 

L C 

N 
Q 

r 
s′ 

S′ 

 
Figure 8. 

 
If Q is the point at which the principal ray is refracted (Fig. 8) then the law of refraction: 
 

n S – n′ S′ = N 

 
will be valid at Q.  We drop the perpendicular QL= h from Q onto the axis and find the 
component of this equation in the direction of the perpendicular, which is measured in the 
sense of LQ being positive: 

n Sh – n′ h
′S  = Nh . 

 
If we now denote the distances SQ and S′ Q by s and s′, respectively, and the radius of the 
sphere by r then, since one has | S | = | S′ | = 1 and | N | = N, one will have: 

 

+ 
nh n h

s s

′
+

′
 = + N 

h

r
 

or 
n n

s s

′
+

′
 = 

N

r
. 

 
 The derivation is somewhat more complicated for the rays that lie in the plane of 
incidence and start from the focal point T – viz., the so-called tangential rays – since their 
meeting point T′ is not determined by finite relations, but must be found by a differential 
consideration.  Let TQ′ T′ (Fig. 9) be a tangential ray that is close to the principal ray T Q 
T′,  Differentiation of the law of refraction yields: 
 
(20)     n dS – n′ dS′ = dN . 

 
We find the component in the direction of the infinitely-small chord QQ′. 
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Figure 9. 

 
 Since S is a unit vector, dS must be perpendicular to S and equal to the angle Q T 

Q′,  so when one makes R T = T Q, to a sufficient approximation: 
 

 dS = 
QR

TQ
 = 

QR

t
= 

cos( )h RQQ

t

′
, 

 dS′ = 
Q R

T Q

′ ′
′ ′

 = 
Q R

t

′ ′
′

= − cos ( )h R Q Q

t

′ ′
′

, 

 
and the components in the h direction are: 
 

 dSh =      
2cos ( )h RQQ

t

′
, 

 hd ′S  =  −
2cos ( )h R Q Q

t

′ ′
′

. 

 
Now, if QR, QQ′, Q′ R′ are infinitely-small chords in three circles with the centers T, C, 
and T′ and radii TQ = t, CQ = r, and T′ Q′ = t′, resp., then they will be almost 
perpendicular to the associated radii, and therefore the angles (R Q Q′ ) and (R′ Q′ Q) will 
agree, up to quantities of order h, with the angles between the radii T Q and C Q (T′ Q′ 
and C Q′, resp.), that is, the angle of incidence i and the angle of refraction i′.  Therefore, 
the cosines of these angles will equal cos i (cos i′, resp.) to the same error.  We then have, 
up to quantities of order two: 

 dSh =      
2cosh i

t
, 

 hd ′S  =  −
2cosh i

t

′
′

. 
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On the right-hand side of (20), one finds the h-component of the differential dN.  If one 

decomposes dN parallel and perpendicular to N then the parallel component will be 

equal to the change in magnitude dN, and the perpendicular one will equal N dϕ, if dϕ is 
the change in direction of N.  The latter component is parallel to h, so one will have: 

 

dNh = N dϕ = 
N h

r
. 

We then have: 

n 
2cosh i

t
+ n′

2cosh i

t

′
′

= 
N h

r
, 

 
or, after dividing by h, and up to quantities of first order in h: 
 

n 
2cos i

t
+ n′

2cos i

t

′
′

= 
1

N
r

. 

 
 Finally, one might replace N with its value in (12a): 
 

N = n cos i – n′ cos i′. 
 
The well-known formulas then arise: 
 
 For sagittal rays: 

(21)    
n n

s s

′
+

′
 = 

cos cosn i n i

r

′ ′−
, 

 For tangential rays: 

(22)   
2cosn i

t
+ 

2cosn i

t

′ ′
′

 = 
cos cosn i n i

r

′ ′−
. 

 
 Whereas in the first three sections, our vector-analytic method proved to be especially 
suitable for giving the simplest expressions to the general concepts and theorems of 
geometrical optics, from the examples of the last section, one might expect that they 
might also prove themselves in the treatment of some special problems in geometrical 
optics, due to their adaptability to the special behavior of problems in which one must 
carry our calculations by taking the components along a certain direction and due to the 
elimination of all superfluous calculations. 
 
 Munich , Institut f. theoretische Physik, March 1911. 
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